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Abstract: We derive some congruences for rk(n) and tk(n) using their generating functions,

where rk(n) and tk(n) denote the number of representations of n as a sum of k squares and

number of representations of n as a sum of k triangular numbers, respectively.
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§1. Introduction

The sum of squares function, denoted by rk(n), gives the number of representations of n as a

sum of k squares, where zeros and distinguishing signs and order are allowed. For example, 5

can be written as a sum of two squares in the following ways

5 = (−2)2 + (−1)2 = (−2)2 + (1)2

= (2)2 + (−1)2 = (2)2 + (1)2

= (−1)2 + (−2)2 = (−1)2 + (2)2

= (1)2 + (−2)2 = (1)2 + (2)2.

So, r2(5) = 8.

The generating function for rk(n) is given by

θ(q)k =

∞∑
n=0

(−1)n rk(n) qn, (1.1)
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where

θ(q) :=

∞∑
n=−∞

(−1)nqn
2

(|q| < 1).

By Gauss’s formula [1, formula 7.324], we know that

θ(q) =

∞∏
j=1

1− qj

1 + qj
=
∏
n≥1

(1− q2n)(1− q2n−1)2 (|q| < 1). (1.2)

For any positive integer n, the numbers n(n + 1)/2 are the triangular numbers. The sum

of triangular numbers function, denoted by tk(n), gives the number of representations of n as a

sum of r triangular numbers where representations with different orders are counted as unique.

For instance, t2(7) = 2 since 7 = 1 + 6 = 6 + 1.

The generating function for tk(n) is given by

Ψk(q) =

∞∑
n=0

tk(n) qn, (1.3)

where

Ψ(q) :=

∞∑
n=0

qn(n+1)/2 = 1 + q + q3 + q6 + · · · (|q| < 1).

By Gauss’s formula [1, Eq.7. 321 on p.6], we have

Ψ(q) =

∞∏
j=1

(1− q2j)2

(1− qj)
=

∞∏
j=1

(1 + qj)2 (1− qj) |q| < 1. (1.4)

2. Some Congruences for rk(n) and tk(n)

Lemma 2.1 Let S1(n) =
∑

odd d|n
2
d , where

∑
odd d|n denotes the sum over all odd divisors d

of n. Then

rk(n) =
−k
n

n∑
j=1

(−1)j j S1(j) rk(n− j) (k, n ≥ 1). (2.1)

Proof Taking logarithm on both sides of equation (1.2), we have

log θ(q) =

∞∑
j=1

log(1− qj)−
∞∑
j=1

log(1 + qj)

= −
∞∑
j=1

∞∑
l=1

qlj

l
+

∞∑
j′=1

∞∑
l′=1

ql
′j′(−1)l

′

l′

= −
∞∑

n=1

qn

∑
d|n

1− (−1)d

d

 .
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From the equation (1.1), we get

log

{ ∞∑
n=0

(−1)n rk(n) qn

}
= −k

∞∑
n=1

S1(n) qn.

Differentiating the preceding equation with respect to q gives

∞∑
n=1

(−1)n rk(n)n qn−1 = −k
∞∑

n=1

S1(n)n qn−1
∞∑

n=0

(−1)n rk(n) qn.

Comparing coefficients of qn on both sides of the above equation we get equation (2.1). �

Lemma 2.2 Let S2(n) =
∑

d|n
1+2 (−1)d

d , where
∑

d|n denotes sum over all divisors d of n.

Then

tk(n) =
−k
n

n∑
j=1

j S2(j) tk(n− j) (k, n ≥ 1). (2.2)

Proof Taking logarithm on both sides of equation (1.4), we have

log(Ψ(q)) =

∞∑
j=1

2 log(1 + qj) +

∞∑
j=1

log(1− qj)

= −
∞∑
j=1

∞∑
l=1

2
(−1)l qlj

l
−
∞∑

j′=1

∞∑
l′=1

ql
′j′

l′

= −
∞∑

n=1

qn
∑
d|n

1 + 2 (−1)d

d
.

Then, we proceed as in the proof of the preceding lemma to arrive at equation (2.2). �

From equations (2.1) and (2.2), we deduce the following theorem.

Theorem 2.3 Let n and k be integers such that (n, k) = 1. Then

rk(n) ≡ 0 (mod k), (2.3)

and

tk(n) ≡ 0 (mod k). (2.4)

From equations (1.2) and (1.4), we deduce the following theorem.

Theorem 2.4 For all primes p, we have

rkp(np) ≡ rk(n) (mod p), (2.5)
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and

tkp(np) ≡ tk(n) (mod p). (2.6)

Theorem 2.5 If p is a prime number, then

rp+1(n) ≡
∑
j

r1(t) (mod p), (2.7)

where j is an integer and t = (n− j2)/p is integer.

Proof Using

θ(q) :=

∞∑
n=−∞

(−1)nqn
2

(|q| < 1),

we have
∞∑

n=0

(−1)n rp+1(n) qn =

∞∑
n=0

(−1)n rp(n) qn
∞∑

n=−∞
(−1)nqn

2

Comparing coefficients of qn on both sides in the above equation, we have

rp+1(n) =
∑
j

rp(n− j2).

Now from equation (2.3), we know that rp(n−j2) ≡ 0 (mod p) if p and n−j2 are co-prime.

Also, from equation (2.5), when (n− j2) is divisible by p, we have

rp(n− j2) ≡ r1(t) (mod p),

where t = (n− j2)/p. �

Proceeding as in the proof of above theorem, we deduce the following theorem.

Theorem 2.6 If p is a prime number, then

tp+1(n) ≡
∑
j

t1(t) (mod p), (2.8)

where j is positive integer and t =
(
n− j(j+1)

2

)
/p is integer.
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