A Note on

Congruences for the Sum of Squares and Triangular Numbers

Sumit Kumar Jha ${ }^{1}$, J. López-Bonilla ${ }^{2}$, R. Rajendra ${ }^{3}$ and P. Siva Kota Reddy ${ }^{4}$
1. Plot No. - 78, NHPC Society, Phi II, Greater Noida, U. P. - 201310, India
2. ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 4, 1er. Piso, Col. Lindavista 07738, CDMX, Mexico
3. Department of Mathematics, Field Marshal K. M. Cariappa College (A constituent college of Mangalore University), Madikeri-571 201, India
4. Department of Mathematics, JSS Science and Technology University, Mysuru-570 006, Karnataka, India
E-mail: kumarjha.sumit@research.iiit.ac.in, jlopezb@ipn.mx, rrajendrar@gmail.com, pskreddy@jssstuniv.in

Abstract

We derive some congruences for $r_{k}(n)$ and $t_{k}(n)$ using their generating functions, where $r_{k}(n)$ and $t_{k}(n)$ denote the number of representations of n as a sum of k squares and number of representations of n as a sum of k triangular numbers, respectively.

Key Words: Divisor sum, triangular numbers, sum of squares.
AMS(2010): 05C78.

§1. Introduction

The sum of squares function, denoted by $r_{k}(n)$, gives the number of representations of n as a sum of k squares, where zeros and distinguishing signs and order are allowed. For example, 5 can be written as a sum of two squares in the following ways

$$
\begin{aligned}
5 & =(-2)^{2}+(-1)^{2}=(-2)^{2}+(1)^{2} \\
& =(2)^{2}+(-1)^{2}=(2)^{2}+(1)^{2} \\
& =(-1)^{2}+(-2)^{2}=(-1)^{2}+(2)^{2} \\
& =(1)^{2}+(-2)^{2}=(1)^{2}+(2)^{2} .
\end{aligned}
$$

So, $r_{2}(5)=8$.

The generating function for $r_{k}(n)$ is given by

$$
\begin{equation*}
\theta(q)^{k}=\sum_{n=0}^{\infty}(-1)^{n} r_{k}(n) q^{n}, \tag{1.1}
\end{equation*}
$$

[^0]where
$$
\theta(q):=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{n^{2}} \quad(|q|<1)
$$

By Gauss's formula [1, formula 7.324], we know that

$$
\begin{equation*}
\theta(q)=\prod_{j=1}^{\infty} \frac{1-q^{j}}{1+q^{j}}=\prod_{n \geq 1}\left(1-q^{2 n}\right)\left(1-q^{2 n-1}\right)^{2} \quad(|q|<1) \tag{1.2}
\end{equation*}
$$

For any positive integer n, the numbers $n(n+1) / 2$ are the triangular numbers. The sum of triangular numbers function, denoted by $t_{k}(n)$, gives the number of representations of n as a sum of r triangular numbers where representations with different orders are counted as unique. For instance, $t_{2}(7)=2$ since $7=1+6=6+1$.

The generating function for $t_{k}(n)$ is given by

$$
\begin{equation*}
\Psi^{k}(q)=\sum_{n=0}^{\infty} t_{k}(n) q^{n} \tag{1.3}
\end{equation*}
$$

where

$$
\Psi(q):=\sum_{n=0}^{\infty} q^{n(n+1) / 2}=1+q+q^{3}+q^{6}+\cdots \quad(|q|<1) .
$$

By Gauss's formula [1, Eq.7. 321 on p.6], we have

$$
\begin{equation*}
\Psi(q)=\prod_{j=1}^{\infty} \frac{\left(1-q^{2 j}\right)^{2}}{\left(1-q^{j}\right)}=\prod_{j=1}^{\infty}\left(1+q^{j}\right)^{2}\left(1-q^{j}\right) \quad|q|<1 . \tag{1.4}
\end{equation*}
$$

2. Some Congruences for $r_{k}(n)$ and $t_{k}(n)$

Lemma 2.1 Let $S_{1}(n)=\sum_{\text {odd d|n }} \frac{2}{d}$, where $\sum_{\text {odd } d \mid n}$ denotes the sum over all odd divisors d of n. Then

$$
\begin{equation*}
r_{k}(n)=\frac{-k}{n} \sum_{j=1}^{n}(-1)^{j} j S_{1}(j) r_{k}(n-j) \quad(k, n \geq 1) \tag{2.1}
\end{equation*}
$$

Proof Taking logarithm on both sides of equation (1.2), we have

$$
\begin{aligned}
\log \theta(q) & =\sum_{j=1}^{\infty} \log \left(1-q^{j}\right)-\sum_{j=1}^{\infty} \log \left(1+q^{j}\right) \\
& =-\sum_{j=1}^{\infty} \sum_{l=1}^{\infty} \frac{q^{l j}}{l}+\sum_{j^{\prime}=1}^{\infty} \sum_{l^{\prime}=1}^{\infty} \frac{q^{l^{\prime} j^{\prime}}(-1)^{l^{\prime}}}{l^{\prime}} \\
& =-\sum_{n=1}^{\infty} q^{n}\left(\sum_{d \mid n} \frac{1-(-1)^{d}}{d}\right)
\end{aligned}
$$

From the equation (1.1), we get

$$
\log \left\{\sum_{n=0}^{\infty}(-1)^{n} r_{k}(n) q^{n}\right\}=-k \sum_{n=1}^{\infty} S_{1}(n) q^{n}
$$

Differentiating the preceding equation with respect to q gives

$$
\sum_{n=1}^{\infty}(-1)^{n} r_{k}(n) n q^{n-1}=-k \sum_{n=1}^{\infty} S_{1}(n) n q^{n-1} \sum_{n=0}^{\infty}(-1)^{n} r_{k}(n) q^{n}
$$

Comparing coefficients of q^{n} on both sides of the above equation we get equation (2.1).

Lemma 2.2 Let $S_{2}(n)=\sum_{d \mid n} \frac{1+2(-1)^{d}}{d}$, where $\sum_{d \mid n}$ denotes sum over all divisors d of n. Then

$$
\begin{equation*}
t_{k}(n)=\frac{-k}{n} \sum_{j=1}^{n} j S_{2}(j) t_{k}(n-j) \quad(k, n \geq 1) \tag{2.2}
\end{equation*}
$$

Proof Taking logarithm on both sides of equation (1.4), we have

$$
\begin{aligned}
\log (\Psi(q)) & =\sum_{j=1}^{\infty} 2 \log \left(1+q^{j}\right)+\sum_{j=1}^{\infty} \log \left(1-q^{j}\right) \\
& =-\sum_{j=1}^{\infty} \sum_{l=1}^{\infty} 2 \frac{(-1)^{l} q^{l j}}{l}-\sum_{j^{\prime}=1}^{\infty} \sum_{l^{\prime}=1}^{\infty} \frac{q^{l^{\prime} j^{\prime}}}{l^{\prime}} \\
& =-\sum_{n=1}^{\infty} q^{n} \sum_{d \mid n} \frac{1+2(-1)^{d}}{d} .
\end{aligned}
$$

Then, we proceed as in the proof of the preceding lemma to arrive at equation (2.2).
From equations (2.1) and (2.2), we deduce the following theorem.

Theorem 2.3 Let n and k be integers such that $(n, k)=1$. Then

$$
\begin{equation*}
r_{k}(n) \equiv 0(\bmod k) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
t_{k}(n) \equiv 0(\bmod k) \tag{2.4}
\end{equation*}
$$

From equations (1.2) and (1.4), we deduce the following theorem.

Theorem 2.4 For all primes p, we have

$$
\begin{equation*}
r_{k p}(n p) \equiv r_{k}(n)(\bmod p) \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
t_{k p}(n p) \equiv t_{k}(n)(\bmod p) \tag{2.6}
\end{equation*}
$$

Theorem 2.5 If p is a prime number, then

$$
\begin{equation*}
r_{p+1}(n) \equiv \sum_{j} r_{1}(t)(\bmod p) \tag{2.7}
\end{equation*}
$$

where j is an integer and $t=\left(n-j^{2}\right) / p$ is integer.
Proof Using

$$
\theta(q):=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{n^{2}} \quad(|q|<1)
$$

we have

$$
\sum_{n=0}^{\infty}(-1)^{n} r_{p+1}(n) q^{n}=\sum_{n=0}^{\infty}(-1)^{n} r_{p}(n) q^{n} \sum_{n=-\infty}^{\infty}(-1)^{n} q^{n^{2}}
$$

Comparing coefficients of q^{n} on both sides in the above equation, we have

$$
r_{p+1}(n)=\sum_{j} r_{p}\left(n-j^{2}\right)
$$

Now from equation (2.3), we know that $r_{p}\left(n-j^{2}\right) \equiv 0(\bmod p)$ if p and $n-j^{2}$ are co-prime. Also, from equation (2.5), when $\left(n-j^{2}\right)$ is divisible by p, we have

$$
r_{p}\left(n-j^{2}\right) \equiv r_{1}(t)(\bmod p)
$$

where $t=\left(n-j^{2}\right) / p$.
Proceeding as in the proof of above theorem, we deduce the following theorem.

Theorem 2.6 If p is a prime number, then

$$
\begin{equation*}
t_{p+1}(n) \equiv \sum_{j} t_{1}(t)(\bmod p) \tag{2.8}
\end{equation*}
$$

where j is positive integer and $t=\left(n-\frac{j(j+1)}{2}\right) / p$ is integer.

References

[1] N. J. Fine, Basic Hypergeometric Series and Applications, American Mathematical Soc., 1988.
[2] J. M. Gandhi, Congruences for $p_{r}(n)$ and Ramanujan's τ-function, Amer. Math. Monthly 70, No. 3 (1963) 265-274.

[^0]: ${ }^{1}$ Received September 30, 2023, Accepted December 11, 2023.
 ${ }^{1}$ Corresponding author: pskreddy@jssstuniv.in; pskreddy@sjce.ac.in

