A Note on Product Irregularity Strength of Graphs

Umme Salma and H. M. Nagesh
(Department of Science and Humanities, PES University, Bangalore, India)
E-mail: ummesalma@pesu.pes.edu, nageshhm@pes.edu

Abstract

For a graph G without isolated vertices and without isolated edges, a product irregular labeling $w: E(G) \rightarrow\{1,2, \cdots . m\}$ is a labeling of the edges of G such that for any two distinct vertices u and v of G the product of labels of the edges incident with u is different from the product of labels of the edges incident with v. The minimal m for which there exist a product irregular labeling is called the product irregularity strength of G and is denoted by $p s(G)$. In this note, we find the product irregularity strength of block graph of cycle-star graph and sunlet graph.

Key Words: Smarandachely H product-irregular labeling, product-irregular labeling, product irregularity strength, block graph, cycle-star graph, sunlet graph.
AMS(2010): 05C05, 05C15, 05C78.

$\S 1$. Introduction

Throughout this paper let G be a simple graph, i.e., a graph without loops or multiple edges, without isolated vertices and without isolated edges. Let the vertex set and edge set of G are denoted by $V(G)$ and $E(G)$, respectively. Let $w: E(G) \rightarrow\{1,2, \cdots . m\}$ be an integer labeling of the edges of G. Then the product degree $p d_{G}(v)$ of a vertex $v \in V(G)$ in the graph G with respect to the labeling w is defined by

$$
p d_{G}(v)=\prod_{v \in e} w(e)
$$

A labeling w is said to be product-irregular if for every pair of vertices $u, v \in V(G), u \neq v$,

$$
p d_{G}(u) \neq p d_{G}(v) .
$$

Generally, for a typical subgraph $H \prec G$, a labeling w is said to be Smarandachely H product-irregular if for every pair of vertices $u, v \in V(G), u \neq v$, there are $p d_{G}(u) \neq p d_{G}(v)$ for $u, v \in V(G) \backslash V(H)$ but $p d_{G}(u)=p d_{G}(v)$ for $u, v \in V(H)$. Clearly, if $H=\emptyset$, such a Smarandachely H product-irregular property is nothing else but the product-irregular property.

The product irregularity strength $p s(G)$ of G is the smallest value of m for which there exists a product-irregular labeling $w: E(G) \rightarrow\{1,2, \cdots . m\}$.

[^0]This concept was first introduced by Anholcer in [1] as a multiplicative version of the well studied concept of irregularity strength of graphs introduced by Chartrand et al. in [3].

The corona product of two graphs G and H, denoted by $G \bigodot H$, is a graph obtained by taking one copy of G (which has n vertices) and n copies $H_{1}, H_{2}, \cdots, H_{n}$ of H, and then joining the $i t h$ vertex of G to every vertex in H_{i}. The corona product $C_{n} \odot K_{1}$ is called the sunlet graph.

A graph G is connected if between any two distinct vertices there is a path. A maximal connected subgraph of G is called a component of G. A cut-vertex of a graph is one whose removal increases the number of components. A non-separable graph is connected, nontrivial, and has no cut-vertices. A block of a graph is a maximal non-separable subgraph. If two distinct blocks B_{1} and B_{2} are incident with a common cut-vertex, then they are called adjacent blocks.

There are many graph operators (or graph valued functions) with which one can construct a new graph from a given graph, such as the line graphs, the block graphs, and their generalizations.

The block graph of a graph G, written $B(G)$, is the graph whose vertices are the blocks of G and in which two vertices are adjacent whenever the corresponding blocks have a cut-vertex in common.

Jelena Sedlar [5] introduced the concept of cycle-star graph as follows: The cycle-star graph, written $C S_{k, n-k}$, is a graph with n vertices consisting of the cycle graph of length k and $n-k$ leafs appended to the same vertex of the cycle.

Figure 1 The cycle-star graphs $C S_{3,4}$ and $C S_{4,3}$

§2. Preliminary Results

Let n_{d} denote the number of vertices of degree d, where $\delta(G) \leq d \leq \Delta(G)$. Anholcer in [1] showed that

$$
\begin{equation*}
p s(G) \geq \max _{\delta(G) \leq d \leq \Delta(G)}\left\{\left\lceil\frac{d}{e} n_{d}^{\frac{1}{d}}-d+1\right\rceil\right\} . \tag{1}
\end{equation*}
$$

If the graph G is r-regular, then the expression (1) reduces to

$$
\begin{equation*}
p s(G) \geq\left\lceil{ }_{e}^{r} n^{\frac{1}{r}}-r+1\right\rceil \tag{2}
\end{equation*}
$$

Also, for a cycle C_{n} on $n \geq 3$ vertices, the bounds on $p s\left(C_{n}\right)$ is given in [1]. That is, for $n \geq 3$,

$$
p s\left(C_{n}\right) \geq\left\lceil\sqrt{2 n}-\frac{1}{2}\right\rceil
$$

for $n>17$,

$$
p s\left(C_{n}\right) \geq\left\lceil\left(\frac{n}{1-\log _{e} 2}\right)^{\frac{1}{2}}\right\rceil
$$

and that for every $\epsilon>0$ there exists n_{0} such that for every $n \geq n_{0}$,

$$
p s\left(C_{n}\right) \leq\left\lceil(1+\epsilon) \sqrt{2 n} \log _{e} n\right\rceil .
$$

Anholcer in [2] considered the product irregularity strength of complete bipartite graphs $K_{m, n}$ and proved that for two integers m and n such that $2 \geq m \geq n, p s\left(K_{m, n}\right)=3$ if and only if $n \geq\binom{ m+2}{2}$.

However, the studies on the product irregularity strength of the intersection graph on the vertex set of a graph was not attempted. In this paper we have made an attempt to fill this gap and study the the product irregularity strength of the block graph of cycle-star graph and sunlet graph.

§3. Product Irregularity Strength of Block Graph of Cycle-Star Graph $C S_{k, n-k}$

The following result in [4] determines the exact value of product irregularity strength of a complete graph K_{n} on $n \geq 3$ vertices.

Theorem 3.1 For every complete graph K_{n} on $n \geq 3$ vertices, $p s\left(K_{n}\right)=3$.
We now use Theorem 3.1 to find the exact value of product irregularity strength of block graph of cycle-star graph $C S_{k, n-k}$ for $k \geq 3$ and $n-k \geq 2$.

Theorem 3.2 Let $G=C S_{k, n-k}$ be a cycle-star graph, where $k \geq 3$ and $n-k \geq 2$. Then $p s(B(G))=3$.

Proof Since the block graph a cycle-star graph $C S_{k, n-k}$ with $k \geq 3$ and $n-k \geq 2$ leafs is a complete graph K_{n} on $n \geq 3$ vertices, from Theorem 3.1, it follows that $p s(B(G))=3$. This completes the proof.

§4. Product Irregularity Strength of Block Graph of Sunlet Graph $C_{n} \odot K_{1}$

In this section we find the exact value of product irregularity strength of block graph of sunlet graph $C_{n} \odot K_{1}, n \geq 3$.

Theorem 4.1 Let $G=C_{n} \bigodot K_{1}, n \geq 3$, be a sunlet graph. Then $p s(B(G))=n$.

Proof Let $G=C_{n} \odot K_{1}, n \geq 3$, be a sunlet graph. By definition, the block graph of sunlet graph is a star graph $K_{1, n}$ on $n \geq 3$ vertices. Let $v_{1}, v_{2}, \cdots, v_{n}$ be pendant vertices and v_{0} be the central vertex of $K_{1, n}$. At first, let us weight all the edges consecutively starting from 1 to n. Then the product degree of vertices $v \in B(G)$ is $p d_{B(G)}\left(v_{i}\right)=i$ for $1 \leq i \leq n$ and $p d_{B(G)}\left(v_{i}\right)=n$!. Clearly, product degrees of all vertices are distinct. Hence $p s(B(G))=n$. This completes the proof.

§5. Conclusion

In this note, we have found the exact values of product irregularity strength of block graph of cycle-star graph and sunlet graph. However, to find the exact values of product irregularity strength of different graph operators still remain open.

References

[1] Anholcer M. (2009), Product irregularity strength of graphs, Discrete Math, 309, 64346439.
[2] Anholcer M. (2014), Product irregularity strength of certain graphs, ARS Math. Contemp, 7, 23C29.
[3] Chartrand G., Jacobson M.S., Lehel J., Oellermann O.R., \& Saba F. (1988), Irregular networks, Congr. Numer, 64, 187-192.
[4] Skowronek-Kaziow J. (2012), Multiplicative vertex-colouring weightings of graphs, Inform. Process. Lett, 112, 191-194.
[5] Sedlar J. (2013), Extremal unicyclic graphs with respect to additively weighted Harary index, Miskolic mathematical Notes, 16(2), 1-16.

[^0]: ${ }^{1}$ Received March 3, 2023, Accepted June 10, 2023.

