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Abstract: This article discusses about the degree of vertex, edge in hesitancy fuzzy soft
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concepts are introduced over the HFSG, and its properties discussed.
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§1. Introduction

Molodtstov dealt with uncertainity and unclear objects using notions of soft set theory [2]. A

new set combining the soft sets and fuzzy sets, was then developed and proved to be more

effective by Maji.et al [2]. Akram and Nawaz dealed with properties of fuzzy soft graphs [3].

Torra.V in [4] defined the hesitancy fuzzy sets. The order and size in fuzzy graphs was found

by Nagoor Gani and Basheer [11]. Gani and Radha [10] worked on regular fuzzy graphs.

The concept of constant intuitionistic Fuzzy graph dealt by Karunambigai et.al [5]. Santhi

Maheswari and Sekar worked on regular FG in [15], [16]. [9] introduced constant hesitancy fuzzy

graph and established some concepts. Pathinathan et.al developed Hesitancy fuzzy graphs [7],

and also defined regular hesitancy fuzzy graph [8]. Hesitancy fuzzy soft graphs notions were

given by Rajeswari [6].

This article deals with degree of vertex and edge in HFSG. The concept of regular and

constant are observed over these HFSG and its characteristics are dealt with.

§2. Preliminaries

Definition 2.1 A fuzzy graph G, contains a nonempty set V with functions σ : V → [0, 1] and

µ : V × V → [0, 1]: ∀ u, v ∈ V , µ(uv) ≤ σ(u) ∧ σ(v), where σ and µ are fuzzy vertex set and
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edge set respectively in G.

Generally, let NG = (A,B) be neutrosophic fuzzy graph, i.e., let A = (TA, IA, FA) be a

neutrosophic fuzzy relation on B = (TB , IB , FB), which is a neutrosophic fuzzy set on set V . If

FA = 0 and FB = 0, then such a neutrosophic fuzzy graph is nothing else but a fuzzy graph.

Definition 2.2 The pair (F,A) is soft set over the universal set, where A ⊆ E and F : a →
P(U). That is a soft set over U is parametered collection of subsets of U .

Definition 2.3 An FSG G̃ is a 4-tuple, such that

(1) G ∗ is crisp graph;

(2) A is the parameter set;

(3) (F̃ ,A ) is fuzzy soft set over vertex set V;

(4) (K̃ ,A ) is fuzzy soft set over edge set E.

Then,
(
F̃ (a), K̃ (a)

)
is fuzzy (sub)graph of G ∗,∀ a ∈ A and can be denoted as H̃ (a).

The membership value of the edge in an FSG is given as

K̃(a)(xy) ≤ min
{
F̃ (a)(x), F̃ (a)(y)

}
.

Definition 2.4 If G̃ is an FSG, then the vetex degree is

dG̃(u) =
∑
ai∈A

(
∑
u 6=v

K̃ (ai)(uv)).

Definition 2.5 If G̃ is an FSG, then edge degree of uv is given as

dG̃(uv) = dG̃(u) + dG̃(v)− 2(
∑
ai∈A

K̃ (ai)(uv)).

Definition 2.6 Let U be the universal set and E be set of parameters, then HF(U) is set of all

hesitant fuzzy sets over U. Then, the pair (F,E) is hesitant fuzzy soft set if F (e) ∈ HF (U), for

every e ∈ E.

Definition 2.7 A hesitancy fuzzy graph G̃ = (Ṽ , E) such that µ1 : Ṽ → [0, 1] (membership),

γ1 : Ṽ → [0, 1] (non membership), β1 : Ṽ → [0, 1] (hesitancy membership), also µ1 +γ1 +β1 = 1

for all vertices.

Also E ⊆ Ṽ × Ṽ , where µ1 : Ṽ × Ṽ → [0, 1], γ1 : Ṽ × Ṽ → [0, 1], β1 : Ṽ × Ṽ → [0, 1] such

that

µ2(uv) ≤ ∧[µ1(u), µ1(v)],

γ2(uv) ≤ ∨[γ1(u), γ1(v)],

β2(uv) ≤ ∧[β1(u), β1(v)]

and 0 ≤ µ2(uv) + γ2(uv) + β2(uv) ≤ 1 for all edges.
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Definition 2.8 For a HFSG, its order is

o(G̃) =

 ∑
ai∈A,vi∈V

µ1(vi),
∑

ai∈A,vi∈V
γ1(vi),

∑
ai∈A,vi∈V

β1(vi)

 .

Definition 2.9 The size of a HFSG is

s(G̃) =

 ∑
ai∈A,vivj∈E

µ2(vivj),
∑

ai∈A,vivj∈E
γ2(vivj),

∑
ai∈A,vivj∈E

β2(vivj)

 .

§3. Degree in HFSG

Definition 3.1 Let G̃ be a hesitancy fuzzy soft graph (HFSG). Then,

dµ(u) =
∑
ai∈A

(
∑
u6=v

K̃(ai)µ2(uv)),

dγ(u) =
∑
ai∈A

(
∑
u6=v

K̃(ai)γ2(uv)),

dβ(u) =
∑
ai∈A

(
∑
u6=v

K̃(ai)β2(uv)).

Therefore, dG̃(u) = (dµ(u), dγ(u), dβ(u)) .

Definition 3.2 Let G̃ be a HFSG, then total degree of the vertex v ∈ V is given as

tdG̃(v) =

(
dµ(v) +

∑
ai∈A

(µ1(v)), dγ(v) +
∑
ai∈A

(γ1(v)), dβ(v) +
∑
ai∈A

(β1(v))

)
.

Example 3.3 Consider the following HFSG, we demonstrate the above definition.

Figure 3.1
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The degree of the vertices are found as dG̃(u) = (0.4, 0.5, 0.5), dG̃(v) = (0.6, 0.7, 0.9),

dG̃(w) = (0.7, 0.8, 0.7), dG̃(x) = (0.4, 0.4, 0.2).

The total degree is found as tdG̃(u) = (1.1, 1.0, 1.0), tdG̃(v) = (1.1, 1.0, 1.6), tdG̃(w) =

(1.2, 1.5, 1.0), tdG̃(x) = (1.1, 0.9, 0.5).

§4. Constant HFSG

Definition 4.1 If degree of all the vertices are same, then the HFSG is called constant HFSG

(c-HFSG). That is, if, G̃ is a HFSG and if dµ(xi) = k1, dγ(xi) = k2 and dβ(xi) = k3, ∀xi ∈ V .

Then G̃ is said to be (k1, k2, k3)- HFSG or c-HFSG of degree (k1, k2, k3).

Example 4.2 The following is a constant-HFSG.

Figure 4.1

The degree of the vetices are dG̃(u1) = (0.6, 0.5, 0.4), dG̃(u2) = (0.6, 0.5, 0.4), dG̃(u3) =

(0.6, 0.5, 0.4), dG̃(u4) = (0.6, 0.5, 0.4). Here dµ(ui) = 0.6, dγ(ui) = 0.5, dβ(ui) = 0.4, for all

ui ∈ V . Therefore, it is c-HFSG.

Definition 4.3 Let G̃ be a HFSG, it is said to be totally constant HFSG (tc-HFSG), if the total

degree of all the vertices are same. That is, if a HFSG, having total degree of all its vertices as

(l1, l2, l3), then it is (l1, l2, l3)- totally constant HFSG.

Example 4.4 The following graph illustrates a totally constant HFSG.

Figure 4.2

The total degree of all the vertices are found to be (0.8, 0.8, 0.6). That is tdµ(vi) = 0.8,

tdγ(vi = 0.8), tdβ(vi) = 0.6, for all vi ∈ V . Therefore it is tc-HFSG.
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Remark 4.5 A c-HFSG need not be tc-HFSG and vice versa.

Example 4.6 Consider the example 4.2, which is (0.6,0.5,0.4)-constant HFSG. But while find-

ing the total degree of all the vertices, we have tdG̃(u1) = (1.2, 1.2, 0.9), tdG̃(u2) = (1.4, 1.0, 0.6),

tdG̃(u3) = (1.4, 1.0, 0.6), tdG̃(u4) = (0.9, 0.7, 0.6). It is not same, hence it is not totally constant-

HFSG.

While taking the example 4.4, which is totally constant-HFSG. But the degree of its vertices

are dG̃(u) = (0.5, 0.4, 0.3), dG̃(v) = (0.1, 0.2, 0.2), dG̃(w) = (0.2, 0.2, 0.1), dG̃(x) = (0.2, 0, 0.1),

which are not same, thus it is not constant-HFSG.

Theorem 4.7 Let G̃ be a c-HFSG. And if
∑

ai∈A,vi∈V
F̃ (ai)(vi) is a constant function for all

vertices, then G̃ is totally constant-HFSG.

Proof Suppose G̃ is constant-HFSG, also given that
∑

ai∈A,vi∈V
F̃ (ai)(vi) is a constant

function. Then∑
ai∈A,ui∈V

F̃ (ai)(µ1(ui)) = m1,
∑
ai∈A

F̃ (ai)(γ1(ui)) = m2,
∑
ai∈A

F̃ (ai)(β1(ui)) = m3,

for ∀ui ∈ V.
Since G̃ is c-HFSG, let it be (t1, t2, t3)− constant HFSG. This implies that dG̃(µ)(ui) = t1,

dG̃(γ)(ui) = t2, dG̃(β)(ui) = t3, ∀ui ∈ V .

Then, the total degree of the vertices are

tdG̃(ui) = dG̃(µ)(ui) +
∑
ai∈A

F̃ (ai)(µ1(ui)), dG̃(γ)(ui)

+
∑
ai∈A

F̃ (ai)(γ1(ui)), dG̃(β)(ui) +
∑
ai∈A

F̃ (ai)(β1(ui))

⇒ tdG̃(ui) = (t1 +m1, t2 +m2, t3 +m3) ,∀ui ∈ V.

Therefore, it is totally constant HFSG. �

Note 4.8 For a HFSG G̃, its order is given by

o(G̃) =
∑
ai∈A

o(H(ai)).

Note 4.9 For a HFSG G̃, its size is

s(G̃) =
∑
ai∈A

∑
uv∈E

(µ2, γ2, β2)(uv).

Result 4.10 The size of a c-HFSG or a (k1, k2, k3) c-HFSG is given by[
hk1

2
,
hk2

2
,
hk3

2

]
,



38 L.Subha Lakshmi and N.R.Santhi Maheswari

where h =
∣∣∣G̃∣∣∣.

Observation 4.11 The following are observed using the above defined graphs.

(1) Let G̃ be a (l1, l2, l3) totally constant-HFSG, then

2s(G̃) + o(G̃) = (hl1, hl2, hl3),

where h = |V |.

(2) For G̃ be a (t1, t2, t3) c-HFSG and (l1, l2, l3) tc-HFSG, then the order is given as

o(G̃) = (h(l1 − t1), h(l2 − t2), h(l3 − t3)) ,

where h = |V |.

§5. Regular HFSG

Definition 5.1 A HFSG G̃ is regular, when (dµ, dγ , dβ) (degree) of all the vertices are the

same constant. That is, if G̃ is a ((µ1i, γ1i, β1i), (µ2i, γ2i, β2i)) HFSG and if dµ(vi) = dβ(vi) =

dβ(vi) = m, ∀v ∈ V and ainA, then G̃ is m-regular HFSG.

Example 5.2 Examine the following example.

Figure 5.1

In this the degree of all the vertices are found to be dG̃(u) = (0.5, 0.5, 0.5), dG̃(v) =

(0.5, 0.5, 0.5), dG̃(w) = (0.5, 0.5, 0.5), dG̃(x) = (0.5, 0.5, 0.5). Here dµ(vi) = 0.5, dγ(vi) = 0.5,

dβ(vi) = 0.5, for all vi ∈ V . Therefore it is regular HFSG or 0.5-regular HFSG.

Definition 5.3 A HFSG G̃ is totally regular, when total degree of all vertices are the alike.

That is if tdµ(vi) = tdβ(vi) = tdβ(vi) = k, ∀v ∈ V and a ∈ A, ⇒ G̃ is k-totally regular HFSG.

Example 5.4 Consider the graph in Figure 5.2 following.
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Figure 5.2

In this the total degree of all the vertices are found as tdG̃(u) = (0.8, 0.8, 0.8), tdG̃(v) =

(0.8, 0.8, 0.8), tdG̃(w) = (0.8, 0.8, 0.8), tdG̃(x) = (0.8, 0.8, 0.8). Here tdµ(vi) = 0.8, tdγ(vi) = 0.8,

tdβ(vi) = 0.8, for all vi ∈ V . Therefore it is totally regular HFSG or 0.8-totally regular HFSG.

Definition 5.5 Let G̃ be a hesitancy fuzzy soft graph. The degree of the edge uv in E is defined

as

degG̃(uv) = dG̃(u) + dG̃(v)− 2((µ2, γ2, β2)(uv)).

Definition 5.6 Let G̃ be a HFSG. The total degree of the edge uv in E is defined as

tdegG̃(uv) = dG̃(u) + dG̃(v)− ((µ2, γ2, β2)(uv)).

Example 5.7 We consider the below hesitancy fuzzy soft graph.

Figure 5.3

The degree of the edges are deg(uv) = (0.8, 0.8, 0.5), deg(vw) = (0.9, 1.1, 0.7), deg(vx) =

(0.9, 1.1, 0.6). The total degree of the edges are tdeg(uv) = (1.3, 1.5, 0.9), tdeg(vw) = (1.3, 1.5, 0.9),

tdeg(vx) = (1.3, 1.5, 0.9).

Definition 5.8 A HFSG G̃ is edge regular, if the edge degree of all the edges are alike. That is

degG̃µ2(vivj) = degG̃γ2(vivj) = degG̃β2(vivj) = p.

Then, G̃ is called p-edge regular HFSG.
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Definition 5.9 A HFSG G̃ is edge totally regular, if the total edge degree of all the edges are

alike. That is,

tdegG̃µ2(vivj) = tdegG̃γ2(vivj) = tdegG̃β2
(vivj) = r.

Then, G̃ is called r- totally edge regular hesitancy fuzzy soft graph.

Example 5.10 We use below graph to explain the definition.

Figure 5.4

The edge degree are given as degG̃(uv) = (0.9, 0.9, 0.9), degG̃(vw) = (0.9, 0.9, 0.9), degG̃(wx) =

(0.9, 0.9, 0.9), degG̃(vx) = (0.9, 0.9, 0.9). Therefore the graph is 0.9-edge regular HFSG.

Example 5.11 The following graph demonstrates the above definition.

Figure 5.5

The total edge degree are found as tdegG̃(uv) = (0.9, 0.9, 0.9), tdegG̃(vw) = (0.9, 0.9, 0.9),

tdegG̃(wu) = (0.9, 0.9, 0.9). Thus the graph is 0.9-totally edge regular HFSG.

Remark 5.12 A HFSG which is edge regular, not necessarily be total edge regular and vice

versa.

Remark 5.13 A regular HFSG can be constant HFSG, but the converse not necessarily true.

Remark 5.114 A totally regular HFSG can be totally constant HFSG, but converse may not

be true.

Theorem 5.15 Suppose G̃ is a HFSG and if its subgraphs H(ai), ai ∈ A are fuzzy cycles of

even length, with membership values of alternate edges alike, then G̃ is constant HFSG.

Proof Consider the subgraphs of G̃, H(ai), ai ∈ A. Let us take only two parameters a1

and a2, such that the membership value of edges in H(a1) and H(a2) are alternatively same.
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Let the membership value of the edges, ei in H(a1) is (l1,m1, n1) and (l2,m2, n2), when

i is odd and even respectively. And for edges ej in H(a2), the membership value is (p1, q1, r1)

and (p2, q2, r2), when j is odd and even respectively. Then we have, the degree of vertices as

dG̃(vi) = (l1 + p1 + l2 + p2,m1 + q1 +m2 + q2, n1 + r1 + n2 + r2)

for all vi ∈ V , which

⇒ (dµ(G̃), dγ(G̃), dβ(G̃))(vi) = constant

for all vi ∈ V . Thus, it is c-HFSG. �

Theorem 5.16 If G̃, a c-HFSG satisfying the conditions of above theorem, then it is totally

constant HFSG, when (µ1, γ1, β1) is constant for all the vertices.

Proof Suppose G̃ is c-HFSG, then we have (dµ(G̃), dγ(G̃), dβ(G̃))(vi) = constant for all

vi ∈ V . Also given that (µ1, γ1, β1) is constant for all vertices, then the total degree of all the

vertices is also constant, since

tdG̃(v) =

(
dµ(v) +

∑
ai∈A

(µ1(v)), dγ(v) +
∑
ai∈A

(γ1(v)), dβ(v) +
∑
ai∈A

(β1(v))

)
,

which ⇒ G̃ is totally constant HFSG. �

Theorem 5.17 Suppose G̃ is a HFSG and if its subgraphs H(ai), ai ∈ A are fuzzy cycles of

any length and if
∑

ai∈A,ei∈E
K(ai)(ei), are alike and same constant for all the edges, then G̃ is

regular HFSG.

Proof Given G̃ is a HFSG and also
∑

ai∈A,ei∈E
K(ai)(ei) are alike and same constant for all

edges. Let us consider any two subgraphs of G̃ with parameters set a1 and a2, then we have∑
ai∈A,ei∈E

K(ai)(ei) = (m,m,m).

Then, the degree of the vertices are dG̃(vi) = (2m, 2m, 2m) for all vi ∈ V. This implies that G̃

is regular-HFSG. �

Theorem 5.18 Suppose G̃ is a HFSG and its subgraphs are fuzzy cylcles of any length and if∑
ai∈A,ei∈E

K(ai)(ei),
∑

ai∈A,vi∈V
F (ai)(vi)

are alike and same constant for all edges and vertices respectively, then G̃ is both regular and

totally regular hesitancy fuzzy soft graph.
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Proof Let us consider G̃ such that ∑
ai∈A,ei∈E

K(ai)(ei)

are alike and same constant for all vertices, then by above theorem, G̃ is regular HFSG. Let it

be (m,m,m) regular HFSG.

Let ∑
ai∈A,vi∈V

F (ai)(vi) = (k, k, k)

for all vertices. Considering the total degree of all the vertices, it is found that

tdG̃(vi) = (m+ k,m+ k,m+ k)⇒ G̃

is totally regular HFSG. �
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