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Abstract: A stacked-book graph Gm,n is obtained from the Cartesian product of a star

graph Sm and a path Pn, where m and s are the orders of the star graph and the path

respectively. Obtaining the radio number of a graph is a rigorous process, which is dependent

on diameter of G and positive difference of non-negative integer labels f(u) and f(v) assigned

to any two u, v in the vertex set V (G) of G. This paper obtains tight upper and lower bounds

of the radio number of Gm,n where the path Pn has an odd order. The case where Pn has

an even order has been investigated.
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§1. Introduction

All graphs mentioned in this work are simple and undirected. The vertex and edge sets of a

graphG are designated as V (G) and E(G) respectively and e = uv ∈ E(G) connects u, v ∈ V (G)

while d(u, v) denotes the shortest distance between u, v ∈ V (G). We represent the diameter of

G as diam(G).

The radio labeling, which often aims to solve signal interference problems in a wireless

network, was first suggested in 1980 by Hale [7] and it is described as follows: Suppose that

f is a non negative integer function on V (G) and that f satisfies the radio labeling condition,

|f(u)− f(v)| ≥ diam(G) + 1− d(u, v) for every pair u, v ∈ V (G). The spanf of f is fmax(G)−
fmin(G), where fmax and fmin are largest and lowest labels, respectively, assigned on V (G)

and the lowest value of spanf is the radio number, rn(G), of G. Generally, let V1 ⊂ V (G) be a

subset of vertices in G with property P. If a labeling f satisfying the radio labeling condition

for vertices in V (G)\V1 but |f(u)− f(v)| < diam(G) + 1− d(u, v) for every pair u, v ∈ V1, then

f is called a Smarandachely radio labeling of G and spanf of f is denoted by spanSf . Clearly,
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spanSf=spanf if V1 = ∅, i.e., the case of radio labeling on G. It is established that to obtain

the radio numbers of graphs is hard. However, for certain graphs, the radio numbers have been

obtained. Recent results on radio number include those on middle graph of path [3], trees, [4]

and edge-joint graphs [12]. Liu and Zhu [11] showed that for path, Pn, n ≥ 3,

rn(Pn) =

 2k(k − 1) + 1 if n = 2k;

2k2 + 2 if n = 2k + 1.

Liu and Zhu’s results compliment those obtained by Chatrand et. al. in [5] and [6] about the

same graph. Liu and Xie worked on square graphs. In [9], they obtained rn(P 2
n) of square of

path as follows:

rn(P 2
n) =

 k2 + 2 if n ≡ 1(mod 4),n ≥ 9;

k2 + 1 if otherwise.

Other results on squares of graphs include those obtained for C2
n in [10], where Cn is a cycle of

order n. On Cartesian products graphs, Jiang [8] solved the radio number problem for (Pm�Pn),

where for m,n > 2, and obtains rn(Pm�Pn) = mn2+nm2−n
2 −mn−m+2, for m odd and n even.

Saha and Panigrahi [13] worked on Cartesian products of Cycles while Ajayi and Adefokun in

[1] and [2] probe on the radio number of the Cartesian product of path and star graph called the

stacked-book graph G = Sm�Pn. They observed in [1] that rn(Sm�Pn) ≤ n2m + 1, a result

the authors noted, citing a existing result in [8], is not a tight bound.) In [1], they obtained

improve the results for path Pn, where n is even.

In this paper, we investigate further on the radio number of stacked-book graphs, Sm�Pn,

in the case where n is odd and combined with [2], we improve the weak bounds obtained in [1].

§2. Preliminaries

Let Sm be a star of order m ≥ 3 and let v1 be the center vertex of Sm and v2, v3, · · · , vm are

adjacent to v1 and let Pn be a path containing n vertices starting from u1 to un. Furthermore,

P = u
a−→ v

b−→ w represents a path of length a + b, for which d(u, v) = a and d(u,w) = b,

where a and b are positive integers. If a stacked-book graph is obtained from the Cartesian

product Gm,n = Sm�Pn of Sm and Pn, then V (Gm,n) is the Cartesian product of V (Sm) and

V (Pn), for which if uivj ∈ V (Gm,n), then ui ∈ V (Sm), vj ∈ E(Pn), while, if uivjukvi forms an

edge in E(Gm,n), then ui = uk and vjvl ∈ E(Pn) or vj = vl and uiuk ∈ E(Sm).

Some of the following are adopted from [2].

Definition 2.1 Where it is convenient, we denote uivj as uij and edge uivjukvl as uijukl.

Remark 2.1 Stacked-book graph Gm,n contains n number of Sm stars, which can be expressed

as the set
{
Sm(i) : 0 ≤ i ≤ n

}
.

Definition 2.2 For Gm,n = Sm�Pn, V(i) ⊂ V (Gm,n) is the set of vertices on Sm(i) stated as

V(i) = u1vi, u2vi, · · · , umvi.
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Remark 2.2 We must mention that u1vi in the set in the last definition is the center vertex

of Sm(i).

Definition 2.3 Let Gm,n = Sm�Pn, n odd, the pair Sm(i), Sm(i+n−1
2 ) is a subgraph G′′(i) ⊆

Gm,n, which is induced by Vi and Vi+n−1
2

, where i /∈ {1, n+1
2 , n}.

Remark 2.3 It can be seen that with n odd, every Gm,n contains n−2
3 number of G′′(i)

subgraphs and the diameter diam(G′′(i)) of G′′(i) is n+3
3 .

Next, we introduce the following definitions:

Definition 2.4 Let Gm,n = Sm�Pn. Then, Ḡm,n ⊆ Gm,n is a subgraph of Gm,n induced by

the stars Sm(1), Sm(n+1
2 ), Sn.

We now define a class of paths P ′(i).

Definition 2.5 Let {P ′(t)}mt=1 be a class of paths in Gm,n, where P ′(t) := vj(1)
α−→ vk(n+1

2 )

β−→
vl(n), such that j 6= k 6= l, vj(1) ∈ V(i), vk(n+1

2 ) ∈ V(n+1
2 ) and vl(n) ∈ V(n) and 1 ≤ j, k, l ≤ m.

It can be verified that {P ′(t)}mt=1 contains two other sub-classes defined without loss of

generality as follows:

P ′1(t) = {v1(1)
n+1
2−→ v3(n+1

2 )

n+3
2−→ v2(n), v2(1)

n+1
2−→ v1(n+1

2 )

n+1
2−→ v3(n), v3(1)

n+3
2−→ v2(n+1

2 )

n+1
2−→

v1(n)}

P ′2(t) = va(1)
n+3
2−→ vb(n+1

2 )

n+3
2−→ vc(n), a 6= b 6= c, 4 ≤ a, b, c ≤ m. Clearly, |P ′1(t)| = 3 and

|P ′2(t)| = m− 2.

§3. Results

In the next results, we establish a lower bound of the radio number rn(Gm,n) of a stacked-book

graph Gm,n.

Lemma 3.1 Let f be the radio labeling function on Gm,n, n odd, and let

V(n+1
2 ) =

{
v1(n+1

2 ), v2(n+1
2 ), v3(n+1

2 ),
{
vd(n+1

2 ):4≤d≤m

}}
be the vertex set of the mid vertices in P (t) ⊆ {P ′(t)}mt=1. Now, let v ∈ Vn+1

2
be some vertex in

Vn+1
2

. If f(v) is fmax on V (P (t)), then

f(v) =


n+5
2 if v ∈

{
v1(n+1

2 ), v2(n+1
2 ), v3(n+1

2 )

}
;

n+3
2 otherwise.

Proof Since P (t) ⊂ Gm,n, then, radio labeling of any vertex on V (P (t)) is based on

diam(Gm,n) and for u, v ∈ V (P (t)), d(u, v) = k, where k is the distance between u and v in
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Gm,n. We consider the three paths in P ′1(t) next.

Case 1(a) For P ′1(1) := v1(1)
n+1
2−→ v3(n+1

2 )

n+3
2−→ v2(n), let f(v1(1)) = 0. Now d(v1(1), v2(n)) = n.

Therefore f(v2(n)) ≥ f(v1(1)) + diam(Gm,n) + 1 − n=2. Also, d(v2(n), v3(n+1
2 )) = n+3

2 and

thus, f(v3(n+1
2 )) ≥ f(v2(n)) + dim(Gm,n) + 1 − n+3

2 ≥ n+5
2 . (It should be note that if we set

f(v2(n)) = 0, then, f(v3(n+1
2 )) ≥

n+7
2 .)

Case 1(b) For P ′1(2) := v2(1)
n+1
2−→ v1(n+1

2 )

n+1
2−→ v3(n), let f(v2(1)) = 0, then d(v2(1), v3(n)) = n+1

and thus, f(v3(n)) ≥ n + 2 − (n + 1) = 1. Likewise, d(v3(n), v1(n+1
2 )) = n+2

2 and therefore,

f(v3(n)) ≥ n+ 3− (n+1
2 ) = n+5

2 .

1

0 5

0 2

5

Figure 1 Illustration of Case 1(a) and (b) in a G5,5 stacked-book graph

Case 1(c) Now for P ′1(3) := v3(1)
n+3
2−→ v2(n+1

2 )

n+1
2−→ v1(n), we assume f(v1(n)) = 0. Also,

d(v3(1), v1(n)) = n + 1 in Gm,n. Thus, f(v3(1)) ≥ 2 and since d(v3(1), v2n+1
2

) ≥ n+3
2 , then,

f(v2(n+1
2 )) ≥ 2 + n+ 2− (n+3

2 ) ≥ n+5
2 .

Next we consider the paths in P ′2(t).

Case 2. Every path in P ′2(t) are geometrically similar and are of the form P ′2(4) = va(1)
n+3
2−→

vb(n+1
2 )

n+3
2−→ vn(n), such that d(va(1), vc(n)) = n + 1 and d(vc(n), vb(

n+1
2 )) = n+3

2 , in Gm,n and

for all a 6= b 6= c 6= m, without loss of generality. Thus, suppose that f(va(1)) = 0, then

f(vc(n)) ≥ 1 and f(vb(n+1
2 )) ≥

n+3
2 . �

0

0 1

5

4

1

Figure 2 Illustration of Case 1(c) and Case 2 in a G5,5 stacked-book graph
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Remark 3.1 In (a) and (c) of Case 1, if the respective center vertices v1(1) and v1(n) of stars

S(1) and S(n) are labeled f(v1(1)) = f(v1(n)) = 0, the radio labels on the mid vertices of their

paths would be at least n+7
2 .

Remark 3.2 For the m paths in {P ′t}mt=1, the sum of all the radio labels on the center vertices

(span(f) of f on P ′(t) is 3(n+5
2 ) + (m− 3)(n+3

2 ) = 1
2 (mn+ 3m+ 6).

Next, we obtained a lower bound for {P (t)}mt=1.

Remark 3.3 From Remark 3.2, we notice that for optimum labeling of the three vertices on

each of the paths in {P (t)}mt=1, the end vertex, which closest to the mid vertex is most suitable

to be labeled first. These are v1(1) ∈ P ′1(1), v1(n) ∈ P ′1(3) and any end vertex in the remaining

paths. We refer to each of these ends vertices as initial label vertex.

Lemma 3.2 Let G(∗) be a subgraph of Gm,n, induced by all the end point vertices and the

midpoint vertices of {P ′1(t)}mt=1 i.e Sm(1), Sm(n+1
2 ), Sm(n). Then rn(G(∗)) ≥ 1

2 (2mn+4m−n+5)

in Gm,n.

Proof Let v1 and v2 be center vertices on Sm(1) and Sm(n) respectively. There exist vertices

uα, uβ ∈ Sm(n+1
2 ), α 6= β, uα, uβ not center vertices of Sm(n+1

2 ) such that d(v1, uα) = d(v2, uβ) =
n+1
2 . Also, there exists a subset A = {ωr} in Sm(1), (or Sm(n)) such that |A| = m − 3, and

B = {xs} in Sm(n+1
2 ), |B| = m − 1, such that for r 6= s, d(ωr, xs) = n+3

2 . Now, the sum of

span(f) of f for all the pair (ωr, xs) will be (m− 1)(n+1
2 ) = 1

2 (mn+m− n− 1) and thus,

rn(G(∗)) ≥ 1

2
(mn+m− n− 1) +

1

2
mn+ 3m+ 6]

≥ 1

2
(2mn+ 4m− n+ 5).

This completes the proof. �

We extend the result in Lemma 3.2 in other to obtain a lower bound for the radio number

of stacked book graph Gm,n, with off n ≥ 5.

Definition 3.1 Let Gm,n be a stacked-book graph with odd n, n ≥ 5, and m ≥ 4. Also, let

G(∗) as defined earlier. A subgraph G(∗∗) of Gm,n as G(∗∗) = Gm,n\G(∗).

Remark 3.4 We can see that G(∗∗) is a subgraph of Gm,n, induced by
{
Sm(i)

}n−1
i=2

, i 6= n+1
2 .

Definition 3.2 The subgraph of G(∗∗), induced by Sm(t) and Sm(t+n−1
2 ) is denoted by G′′(t).

Remark 3.5 It should be noted that G(∗∗) ⊂ Gm,n contains exactly n−3
2 G′′(t) subgraphs.

Remark 3.6 Let G′′(t) be induced by Sm(t) and Sm(t+n−1
2 ) and let V (Sm(t)) = {u1, u2, · · · , um}

and V (Sm(t+n−1
2 )) = {v1, v2, · · · , vm} be the vertex sets of Sm(t) and Sm(t+n−1

2 ) where u1 and

v1 are the respective center vertices. It can be seen that, d(ui, vj) ∈
{
n+1
2 , n+3

2

}
, where i 6= j.

Remark 3.7 For i 6= j, d(u1, vj) = d(uj , v1) = n+1
2 and for i 6= j, i, j 6= 1, d(ui, vj) = n+3

2 .

Now we obtain a lower bound value for the radio number labeling of G′′(t) in Gm,n.
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Lemma 3.3 Let G′′(t) ⊂ Gm,n, with m ≥ 4 and n ≥ 5, n odd, be a subgraph of Gm,n. Then

rn(G′′(t)) ≥ mn+m− 1

2
(n− 3).

Proof Let u1 and v1 be center vertices of Sm(t) and Sm(t+n−1
2 ). By Remark 3.7 above,

d(u1, vi) = d(ui, v1) = n+1
2 , is the shortest distance between the center vertex of a star in

G′′(t) and a non-center vertex in the other star in G′′(t). It is optimal, therefore to label the

center vertices as fmin and fmax. Now, without loss of generality, set fmin = f(v1) = 0. Since

d(v1, ui) = n+1
2 , i ∈ {2, 3, · · · ,m}. Therefore

f(ui) ≥ f(v1) + diam(Gm,n) + 1− d(ui, v1).

Let i = 2. Thus,

f(u2) ≥ 0 + n+ 2− n+ 1

2

≥ n+ 3

2
.

Now d(u2, v3) = n+3
2 and therefore,

f(v3) ≥ n+ 3

2
+ n+ 2− n+ 3

2

≥ n+ 3

2
+
n+ 1

2
.

Also, for d(v3, u4) = n+3
2 , f(v4) ≥ n+3

2 + 2(n+1
2 ). By continuing the iteration, we have

f(vm) ≥ n+ 3

2
+ 2m− 3(

n+ 1

2
).

Lastly,

fmax = f(u1) ≥ 2(
n+ 3

2
) + (2m− 3)(

n+ 1

2
)

= mn+m− 1

2
(n− 3). �

Next we extend the last result to obtain a lower bound for G(∗∗).

Lemma 3.4 For G(∗∗) ⊂ Gm,n, rn(G(∗∗)) ≥ 1
2 (mn2 − 2mn− 3m+ 2n− 12).

Proof From Lemma 3.3, the span(f) of f on G′′(t) = mn + m − 1
2 (n − 3). For G′′(t),

fmax = mn + m − 1
2 (n − 3). Let t = 2 and let u1 = vm(2) ∈ Sm(2) and v′1 = vm(2+n+1

2 ) ∈
Sm(2+n+1

2 ), be center vertices of Sm(2) and Sm(2+n+1
2 ). Now, d(ui, v

′
1) = n+1

2 . Thus,

f(v′1) ≥ f(u1) + n+ 2− n+ 1

2
= f(u1) +

n+ 3

2
.
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This implies that for G′′(3), induced by Sm(3) and Sm(2+n+1
2 ), fmin = f(u1)+ n+3

2 , and fmax =

f(v′′1 ), where v′′ is the center vertex of Sm(3). From the precedure in Lemma 3.3, there are n−3
2

G′′(t) subgraphs in Gm,n. Therefore, fmax of G(∗∗) is f(v
(k)
1 ) ∈ S(m(n−1

2 )), where f(v
(k)
1 ) is the

center vertex of Sm(n−1
2 ). Following the iteration,

f(v
(k)
1 ) ≥ n− 3

2
[mn+m− 1

2
(n− 3)] +

n− 5

2

(
n+ 3

2

)
≥ 1

2
(mn2 − 2mn− 3m+ 2n− 12).

This completes the proof. �

Now we establish a lower bound for the radio number of Gm,n.

Theorem 3.1 Let Gm,n be a stacked-book graph with m ≥ 4 and n ≥ 5. Then,

rn(Gm,n) ≥ mn2 +m+ 2n− 4

2
.

Proof From Lemmas 3.3 and 3.4,

rn(G(∗)) ≥ m(n+ 2)− 1

2
(n− 5) and rn(G(∗∗)) ≥ 1

2
(mn2 − 2mn− 3n+ 2n− 12).

Now, since Gm,n = G(∗) ∪ G(∗∗), suppose that u1 is the center vertex of Sm(n−1
2 ) and

v1 ∈ Sm(n) is the center vertex of Sm(n). Clearly d(u1, vi) = n+1
2 . Now, f(u1) = fmax of G(∗∗)

and

f(u1) ≥ 1

2
(mn2 − 2mn− 3m+ 2n− 12).

Therefore,

f(v1) ≥ f(ui) + n+ 2− (n+ 1)

2

≥ 1

2
(mn2 − 2mn− 3m+ 2n− 12) + n+ 2− (n+ 1)

2

≥ 1

2
(mn2 − 2mn− 3m+ n− 13) + n+ 2.

For G(∗), set f(v1) = fmin. Thus, rn(Gm,n) ≥ f(v1) + rn(G(∗)) and hence,

rn(Gm,n) ≥ 1

2
(mn2 − 2mn− 3m+ n− 13) + n+ 2 +m(n+ 2)− 1

2
(n− 5)

≥ mn2 +m+ 2n− 4

2
.

This completes the proof. �

Next, we investigate the upper bound of a stacked-book graph. The technique involves

manual radio labeling of subgraphs G(∗) and G(∗∗) and merging the results.
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Lemma 3.5 Let G(∗∗) ⊂ Gm,n, with n-odd. Then, rn(G(∗∗)) ≤ 1
2 (mn2−2mn+2n−3m−12).

Proof From earlier definition, if n is odd, then, Gm,n = G(∗) ∪ G(∗∗), where G(∗∗)
contains n−3

2 G′′(t) graphs. Let G′′(n−12 ) be induced by Sm(n−1
2 ) and Sm(n−1), n-odd. Let

V (Sm(n+1
2 )) =

{
vn−1

1 (i)

}m
i=1

, V (Sm(n−1)) = {vn−1}mi=1, where vn−1
2 (1), vn−1(1) are center ver-

tices and d(vn−1
2 (j), vn−1(j)) = n−1

2 , for all 1 ≤ j ≤ m, d(vn−1
2 (1)), vn−1(j) = d(vn−1(1), vn−1

2 (j)) =
n+1
2 and d(vn−1

2 (j), vn−1(k)) = n+3
2 . Now, let f(vn−1

2 (1)) = 0. Since d(vn−1
2 (1), vn−1(2)) = n+1

2 ,

then set f(vn−1(k)) = n+3
2 . Let f(vn−1

2 (1)) = 0. Since d(vn−1
2 (1),vn−1(2)

) = n+1
2 , then set

f(vn−1(2)) = n+3
2 , d(vn−1(2), vn−1

2 (3)) = n+3
2 and thus,

f(vn−1(4)) =
n+ 3

2
+ 2

n+ 1

2
.

Thus, by continuously alternating the process, it gets to the case where d(vn−1
2 (m), d(vn−1(m−1))) =

n+3
2 . Thus,

f(
n− 1

2
(m)) =

n+ 3

2
+m− 2(

n+ 1

2
)

and since d(vn−1
2 (m), vn−1(3)) = n+3

2 ,

f(vn−1(3)) =
n+ 3

2
+ (m− 1)(

n+ 1

2
), f(vn−1

2 (2)) =
n+ 3

2
+m(

n+ 1

2
).

Depending on the size of m, the labeling continues until

f(vn−1
2

) =
n+ 3

2
+ 2m− 3

(n+ 3)

2
+ 2(2m− 3)(

n+ 1

2
)

is attained and finally, d(vn−1
2 (m−1), vn−1(1)) = n+1

2 and thus, f(vn−1(1)) = 2(n+3)
2 + 2m− 3 +

n+1
2 . (By following the same argument, it is easy to obtain similar result for m-even.) Now,

d(vn−1(1), vn−3
2 (1)) = n+1

2 , where vn−3
2 (1) is the center vertex of G′′

m(n−3
2 )

. Therefore,

fmin(G′′(
n− 3

2
)) = f(vn−3

2 (1)) = f(vn−1(1)) + n+ 2− n+ 2

2

= f(vn−1(1)) +
n+ 3

2
=

3(n+ 3)

2
+ 2m− 3(

n+ 1

2
)

and

fmax(G′′(
n− 3

2
) = f(vn−2(1)) = f(vn−3

2 (1)) +
2(n+ 3)

2
+

(2m− 3)(n+ 1)

2

=
5(n+ 3)

2
+ 2(2m− 3)

(n+ 1)

2
,

which is fmax(G′′(n−32 )). Now, the process is extended to G′′(2), for which

f(
n+ 3

2
) =

(n− 5)(n+ 3)

4
+

(n− 3)(n+ 3)

2
+

(n− 2)(2m− 3)(n+ 1)

4

=
1

2
(mn2 − 2mn+ 2n− 3m− 12). �
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Remark 3.8 It can be observed that for the optimal radio labeling of G(∗), fmax(G(∗)) is

f(vn+1
2 (1)), the label on the center vertex of Sm(n+1

2 ). Since for vα, vβ in Sm(1) and Sm(n)

respectively, α, β 6= 1, d(vn+1
2 (1), vα) = d(vn+1

2 (1), vβ) = n+1
2 , which is less than n+3

2 , the value

of d(vn+1
2 (k), vα), where k 6= α, k, α 6= 1, and vα either belongs to Sm(1) or Sm(n). Thus, we

manually label G(∗), such that vn+1
2 (1) gets the last label and thus, f(vn+1

2 (1)) = fmax(G(∗)).

Next, we consider some necessary conditions for establishing the upper bound of G(∗).

Lemma 3.6 Let G(∗) ⊂ Gm,n be a subset of Gm,n, induced by Sm(1), Sm(n+1
2 ) and Sm(n). If

v1(1) (or vn(1)) and vn+2
2 (1) are the center vertices of Sm(1) (or Sm(n)) and Sm(n+1

2 ) respectively,

and fmin(G(∗)) 6= f(v1(1)) (or f(vn(1))), and fmax(G(∗)) 6= f(vn+1
2

) (or vice versa), then,

|fmin(G(∗))− fmax(G(∗))| 6= rn(G(∗)).

Proof Without loss of generality, select v1(1) over vn(1). Suppose that f(v1,1) and f(vn+1
2 (1))

are not fmin(G(∗)) and fmax(G(∗)) respectively. Let vα ∈ V (Sm(1)), vβ ∈ V (Sm(n+1
2 )), and vγ ∈

V (Sm(n)) be non-center vertices, and let the set of the following vertices, {vα, vβ , vγ , v1(1), vn+1
2 (1)}

be X, and let H = V (G(∗))\X be the subgraph of G(∗) induced by V (G(∗)) − X, and such

that the radio number of H is positive integer p. Without loss of generality, let there be some

vk ∈ V (H), where vk = vn(i) ∈ Sm(n), γ 6= i and d(vk, vβ) = n+3
2 , there exist a radio numbering

sequence vk → vβ ,→ v1(1) → vγ → vn+1
2 (1) → vα. Suppose that f(vk) is the fmax(H), that is,

f(vk) = p. Since d(vk, vβ) = n+3
2 , then f(vβ) = p+ n+1

2 and likewise, it is observed that the ra-

dio labeling sequence yields fmax(G(∗)) = p+2n+7. Now, suppose on the contrary, that f(v1(1))

and f(vn+1
2 (1)) are fmin(G(∗)) and fmax(G(∗)) respectively. Let vk(0) be the vertex in H, which

holds the least radio label. Obviously vk(0) 6= vk and since |V (G(∗))| − |V (H)| ≡ 3mod 1, then

vk(0) is a is also a vertex on the same star as vk, this time, Sm(n). Thus,if vk(0) is also not

a center vertex, then, d(v1(1), vk(0)) = n. Let f(v1(1)) = 0. Now, we have the radio labeling

sequence: v1(1) → (vk(0) → · · · → vk) → vβ → vα → vγ → vn+1
2 (1). Since d(vk(0), v1(1)) = n,

then, f(vk(0)) = 2 and since |fmin(H) − fmax(H)| = p, then f(vk) = 2 + p. Labeling the

sequence, afterwards, we have

fmax(G(∗)) = f(vn+1
2 (1)) = p+

3n+ 11

2
,

which is less than p+ 2n+ 7. �

Remark 3.9 It is noted that v1(1) (or vn(1)(1)) and vn+1
2

can be fmin(G(∗)) and fmaxG(∗)
interchangeably. However, they both will have to be used for these roles. It is trivial to show

that optimal radio labeling will not be attained if just one of them is used.

Next we obtain an upper bound for G(∗), based on Lemma 3.6.

Theorem 3.2 For G(∗) ⊂ Gm,n, m ≥ 5, rn(G(∗)) ≤ 1
2 (2mn+ 4m− n+ 7).

Proof From Lemma 3.6, for v1(1) ∈ Sm(1), let f(v1(1)) = 0. There exist m − 1 vertices

of Sm(n), such that for each vn(i) ∈ V (Sm(n)), i 6= 1, d(v1(1), vn(i)) = n. Thus, without loss

of generality, let the first vertex be vn(2). Then, f(vn(2)) = 2. Likewise, there exists m − 1,
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non-center vertex on Sm(n+1
2 ), and for each vn+1

2 (j), j 6= 1, d(vn(2), vn+1
2 (j)) = n+3

2 , where j 6= 2.

So, now, let j = 3, then,

f(vn+1
2 (3)) = 2 + n+ 2− n+ 3

2
= 2 +

n+ 1

2
.

In similar way,

f(v1(4)) = 2 +
n+ 1

2
+
n+ 1

2
.

Now, we label vn(1), which is at distance n from v1(4) as f(vn(1)) = 4 + n+1
2 + n+1

2 . Now, two

of the center vertices are labeled. For, say, vn+1
2 (5),

f(vn+1
2 (5)) = 4 +

n+ 1

2
+
n+ 1

2
+
n+ 3

2
.

It can be seen that for each of Sm(1), Sm(n+1
2 ) and Sm(n), there are m − 2 vertices left to be

labeled. This is now done by adding (n+1)
2 and 1 in alternating manner to the cumulative label

values, such that we have

f(v1(6)) = 4 + 3(
n+ 1

2
) +

n+ 3

2
and f(vn(7)) = 5 + 3(

n+ 1

2
) +

n+ 3

2
.

Thus by continuing the iteration until it gets to

f(vn+1
2 (1)) = (m+ 2) + (2m− 3)(

n+ 1

2
) + 2(

n+ 3

2
) =

1

2
(2mn+ 4m− n+ 7). �

Next, we merged the last results to obtain an upper bound for the radio number of a

stacked-book graph Gm,n, where m ≥ 5.

Theorem 3.3 Let m ≥ 5. Then, rn(Gm,n) ≤ 1
2 (mn2 + 2n+m− 2).

Proof Recall that G = G(∗) ∪ G(∗∗). From Lemma 3.5, where G(∗∗) is labeled, we

see that for G(∗∗), fmax(G(∗∗)) = f(vn+3
2 (1)). For G(∗) ∈ Gm,n, we see in Lemma 3.2 that

f(v1(1)) = fmin. Clearly, d(vn+3
2 (1), v1(1)) = n+1

2 . Thus, for v1(1) ∈ Gm,n,

f(v1(1)) = f(vn+3
2 (1))+

n+ 3

2
=

1

2
(mn2−2mn+2n−3m−12)+

n+ 3

2
=

1

2
(mn2−2mn+3n−3m−9).

Thus by Lemma 3.2,

fmax(Gm,n) = f(v1(1)) + fmax(G(∗∗)) =
1

2
(mn2 + 2n+m− 2). �

Remark 3.10 We observe that the result in Theorem 3.3 that the there is just a difference

of of 1 between this upper bound and the lower bound established earlier in the work. It is

believed that the lower bound can be improved to coincide with the upper bound.

A radio labeling of G5,5 is shown in Figure 3, where it is demonstrated that rn(G5,5) ≤ 69.
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64 13 54 22 35

41 19 61 10 51

33 0 69 29 43

57 7 47 16 65

50 25 38 4 58

Figure 3 A G5,5 stacked-book graph

§4. Conclusion

This work has greatly improved results obtained in [1] and extended the outcomes of [1] to the

odd-path factor of the stacked-book graph class. It is safe now to say that this work and [2] have

provided a tight bounds for the radio number of the general stacked-book graph. Further work

to obtain the exact value of the radio number for stacked-book graph should be considered.
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