Classification of the Defining Equations of Flag Varieties $\mathcal{F} \ell_{n}(\mathbb{C})$

Musa Makanjuola and Praise Adeyemo
(Department of Mathematics, University of Ibadan, Ibadan, Oyo, Nigeria)
E-mail: musadgreat1@gmail.com, ph.adeyemo@ui.edu.ng

Abstract

Using only combinatorial technique, we give a formula for classification of the defining equation of flag variety $\mathcal{F} \ell_{n}(\mathbb{C})$. The formula uses the theory of complete geometric graph based on the indexing set of the monomials of the ideal. In particular, we give a generating function to count the number of classes. The size of each class is also determined. We describe the procedure of obtaining the equations using a complete geometric graph and lastly, we give a formula to count these equations.

Key Words: Flag variety, Plücker coordinate, geometric graph, spanning tree.
AMS(2010): 14M15, 14N15, 05C20, 05C30.

§1. Introduction

Let V be an n-dimension vector space over the field of complex numbers. By a flag F in V, we mean a sequence of subspaces:

$$
F_{\bullet}:\{0\} \subset F_{1} \subset F_{2} \subset \cdots \subset F_{n}=V \text { such that } \operatorname{dim} F_{i}=i
$$

The set of all such flags in V is called the flag variety and denoted by $\mathcal{F} \ell_{n}(\mathbb{C})$. By fixing a basis $e_{1}, e_{2}, \ldots, e_{n}$, we let E_{\bullet} to denote the standard flag spanned by

$$
E_{\bullet}=\left\langle e_{1}\right\rangle \subset\left\langle e_{1}, e_{2}\right\rangle \subset \cdots \subset\left\langle e_{1}, e_{2}, \ldots, e_{n}\right\rangle
$$

The variety can also be described by considering the general linear group $G L(n, \mathbb{C})$ consisting of all non-singular $n \times n$ matrices and let \mathcal{B} be the subset of all invertible upper triangular matrices. A flag F_{\bullet} can be constructed by allowing F_{i} be the span of the first i columns of a given matrix Z in $G L(n, \mathbb{C})$. The matrices Z_{1} and Z_{2} are equivalent, that is, give the same flag if and only if there is an upper triangular matrix Y in \mathcal{B} such that $Z_{2}=Y Z_{1}$. This defines an equivalence relation on $G L(n, \mathbb{C})$. Thus $\mathcal{F} \ell_{n}(\mathbb{C})=G L(n, \mathbb{C}) / B$. The precise implication is that the general linear group $G L(n, \mathbb{C})$ acts transitively on $\mathcal{F} \ell_{n}(\mathbb{C})$ and the stabilizer of standard flag is the Borel subgroup and hence the identification of $\mathcal{F}(n)$ with G / B. Therefore, $\mathcal{F} \ell_{n}(\mathbb{C})$ is viewed as a homogeneous space. More is true $\mathcal{F} \ell_{n}(\mathbb{C})$ is a smooth projective variety being a closed subvariety of the product of Grassmanians $\prod_{k=1}^{n-1} G r(k, n)$. This gives rise to the Plücker

[^0]embedding
$$
\mathcal{F} \ell_{n}(\mathbb{C}) \hookrightarrow \mathbb{P}^{\binom{n}{1}-1} \times \mathbb{P}^{\binom{n}{2}-1} \times \cdots \times \mathbb{P}^{\binom{n}{n-1}-1} .
$$

The image of $\mathcal{F} \ell_{n}(\mathbb{C})$ via the embedding is cut out by Plücker relations (see [1]). These relations generate the homogeneous ideal of $\mathcal{F} \ell_{n}(\mathbb{C})$ which we denote by \mathcal{I}, indeed \mathcal{I} is minimally generated by these quadrics. It is well known that each flag F_{\bullet} can be represented by $n \times n$ matrix $A=\left(a_{i j}\right)$ in which the subspace F_{i} is spanned by the first i rows. The relations that a point must satisfy in order to lie in the image of $\mathcal{F} \ell_{n}(\mathbb{C})$ via the embedding are called the Plücker relations. This is achieved by defining the map

$$
\phi_{n}: \mathbb{K}\left[p_{\alpha}: \emptyset \neq \alpha \subseteq\{1, \ldots, n\}\right] \longrightarrow \mathbb{K}\left[a_{i j}: 1 \leq i \leq n-1,1 \leq j \leq n\right]
$$

sending each variable p_{α} to the determinant submatrix of A with row indices $1, \ldots,|\alpha|$ and column indices in α. It turns out that the ideal I_{n} of $\mathcal{F} \ell_{n}(\mathbb{C})$ is the kernel of ϕ_{n}. This homogeneous ideal is minimally generated by the Plücker relations. These relations which are quadrics are the equations defining the variety $\mathcal{F} \ell_{n}(\mathbb{C})$ (See $\left.[9],[1]\right)$.

Our interest is in the classification of these equations using complete geometric graphs. Specifically, we give a formula that partitions the equations by exploiting some similar properties shared by them. This ultimately allows us to know the number of equations in each subdivision thereby counts the generators for each ideal I_{n}. We plan a sequel paper to exploit this technique to give the degeneration of flag variety $\mathcal{F} \ell_{n}(\mathbb{C})$. Let \mathbb{T} be a collection of points in the plane in general position. By geometric graph on \mathbb{T}, we mean a graph G whose vertices are the elements of \mathbb{T} in which two are said to be adjacent if they are joined by a line segment. Our interest is in a graph where every pair of vertices is adjacent. This is called a complete geometric graph and is denoted by $\mathcal{K}_{n}, \mathrm{n}$ is the number of vertices. The number of edges of \mathcal{K}_{n} is $\frac{n(n-1)}{2}$ which turns out to be the dimension of flag variety $\mathcal{F} \ell_{n}(\mathbb{C})$. In section 2 , we give some background and results relevant to our discussion. In section 3, we describe the procedure to obtain the relations in the complete geometric digraph, \mathcal{K}_{n} and also compute the relations in \mathcal{K}_{3} and \mathcal{K}_{4}. In section 4, we give the classifications of relations in \mathcal{K}_{n} and the class size. We also give generating functions on the classifications and the number of classes in any \mathcal{K}_{n}. This gives the classification of the equations defining flag varieties $\mathcal{F} \ell_{n}(\mathbb{C})$.

§2. Complete Geometric Directed Graphs

In this section we give some definitions on geometric graphs and trees (see [5], [4], [2], [3], [6], [8], [7], [10] for details).

Definition 2.1 Let \mathcal{K}_{n} be a complete geometric digraph with a n points and let $\sigma \subset[n] . x_{\sigma}$ is said to be a point if $|\sigma|=1$, a line if $|\sigma|=2$, a triangle if $|\sigma|=3$ and so on.

Remark 2.2 All the x_{σ} 's for which $|\sigma| \geq 3$ are empty, that is, they have no interior points.
Example 2.3 (i) For $n=3$, the complete geometric digraph is

Figure 1
(ii) For $n=4$, the complete geometric digraph is

Figure 2

Given a complete geometric digraph \mathcal{K}_{n}, let $F_{m}=\left\{x_{\sigma}:|\sigma|=m, \sigma \subseteq[n]\right\}, F_{1}$ set of points, F_{2} set of lines and so on. Let $f_{m}=\# F_{m}$.

Definition 2.4 (i) A walk in \mathcal{K}_{n} is a sequence of vertices $v_{0}, v_{1}, \cdots, v_{k}$ and sequence of edges $\left(v_{i}, v_{i+1}\right) \in F_{2}$. If v_{i} are distinct, then we have a path and if $\left(v_{0}, v_{k}\right) \in F_{2}$, then $v_{0}, v_{1}, \cdots, v_{k}, v_{0}$ is a cycle. The length of a path or cycle is the number of edges in it.
(ii) A tree is a connected graph without any cycles. The edges of a tree are called branches and the degree 1 (number of edges incident with the vertex) vertex are called leaves.
(iii) A spanning tree T of a connected graph \mathcal{K}_{n} is the subgraph of \mathcal{K}_{n} containing all the vertices of \mathcal{K}_{n}. A chord is an edge of a graph that is not in a given spanning tree.
(iv) A rooted tree T with the vertex set V is the tree that has a specially designated vertex $v_{1} \in V$. The root of any spanning tree is defined as the vertex with highest degree.

Remark 2.5 (i) For any spanning tree T of \mathcal{K}_{n}, the number of branches is called the rank, r and the number of chords is called the nullity, μ (cyclomatic number or first Betti number). $r=n-1$ and $\mu=\frac{(n-1)(n-2)}{2}$.
(ii) There are n^{n-2} spanning tree in a complete graph and $n(n-1)$-valent spanning trees since there are only n vertices with degree $n-1$.

Lemma 2.6 Let \mathcal{C} be the set of flag varieties and \mathcal{B} be the set of complete geometric digraphs, there is a bijection

$$
\begin{aligned}
\alpha: \mathcal{C} & \longrightarrow \mathcal{B} \\
\mathcal{F} l_{n}(\mathbb{C}) & \longmapsto \mathcal{K}_{n} .
\end{aligned}
$$

Theorem 2.7 Given a complete geometric digraph \mathcal{K}_{n}, then f_{m} is given by the coefficient of

$$
P_{n}(t)=\sum_{|\sigma|=1}^{n}\binom{n}{|\sigma|} t^{|\sigma|}
$$

Proof Given a complete geometric digraph, \mathcal{K}_{n} with points indexed by [n], let $\sigma \subseteq[n]$ and $|\sigma|=r$. For $r=1$, we have a point and the number of choice of selection is $\binom{n}{1}$ and for $r=2$ we have a line and the number of choice of selection is $\binom{n}{2}$. Continuing until $r=n$, we have $\binom{n}{n}$. Then this can be generalised as

$$
\binom{n}{1} t+\binom{n}{2} t^{2}+\cdots+\binom{n}{r} t^{r}+\cdots+\binom{n}{n} t^{n}
$$

where the power of t is $|\sigma|$ and the coefficient of t is the number of such σ.
Theorem 2.7 gives the size of F_{m} for $1 \leq m \leq n$ in \mathcal{K}_{n}.

\mathbf{n}	f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}	f_{8}	f_{9}	f_{10}
1	1									
2	2	1								
3	3	3	1							
4	4	6	4	1						
5	5	10	10	5	1					
6	6	15	20	15	6	1				
7	7	21	35	35	21	7	1			
8	8	28	56	70	56	28	8	1		
9	9	36	84	126	126	84	36	9	1	
10	10	45	120	210	252	210	120	45	10	1

Table 1. Statistics of f_{m} in \mathcal{K}_{n}
Let Ω be the union of all F_{m}, we defined an ordering on Ω as follows:
Given $\sigma, \rho \subseteq[n]$ such that $\sigma=\left\{a_{1}<\cdots<a_{m}\right\}$ and $\rho=\left\{b_{1}<\cdots<b_{r}\right\}$. Let $x_{\sigma} \leq x_{\rho}$ in the poset \mathcal{P} if $m \geq r$ and $\sigma_{i} \leq \rho_{i}$ for all $i=1, \cdots, r$.

Let $\nabla=\left\{x_{\sigma} x_{\tau}+\right.$ lower terms : $1 \leq|\sigma| \leq n-2$ and $\left.2 \leq|\tau| \leq n-1\right\}$ be the set of relations between x_{σ} 's and x_{τ} 's.

Theorem 2.8 Given x_{σ} in \mathcal{K}_{n} such that $|\sigma|=3$ (i.e x_{σ} is a triangle), then x_{σ} can be expressed as a linear combination of $x_{\tau_{i}}$ which sum to zero for $\left|\tau_{i}\right|=2, \tau_{i} \subset \sigma$ and $\bigcap \tau_{i}=\emptyset$. Moreover, the number of summands is $|\sigma|$.

Proof Given a complete geometric digraph, \mathcal{K}_{n} with points indexed by [n]. Suppose $\sigma \subset[n]$ with $|\sigma|>2, x_{\sigma}$ is a subgraph of \mathcal{K}_{n}, there is a closed path in x_{σ} (x_{σ} are line segments), which is the sum of $x_{\tau_{i}}$ and $\bigcap \tau_{i}=\emptyset$ and the number of such τ_{i} is $|\sigma|$.

Remark 2.9 (i) The sign of $x_{\tau_{i}}$ in Theorem 2.8 is negative if the distance of τ is $|\sigma|-1$, otherwise positive.
(ii) Theorem 2.8 gives the relation of the paths in x_{σ}.

Example 2.10 Given the complete geometric digraph \mathcal{K}_{3}. Then triangle, $x_{\{1,2,3\}}$ with lines $x_{\{1,2\}}, x_{\{2,3\}}$ and $x_{\{1,3\}}$, can be expressed as

$$
x_{\{1,2,3\}}=x_{\{1,2\}}+x_{\{2,3\}}-x_{\{1,3\}}=0 .
$$

Remark 2.11 From Example 2.10, $x_{\{1,3\}}$ is called the equivalent path and can be expressed as $x_{\{1,3\}}=x_{\{1,2\}}+x_{\{2,3\}}$.

Corollary 2.12 Every x_{τ} such that $|\tau|>3$ can be expressed as a linear combination of $x_{\alpha_{i}}$ such that $\left|\alpha_{i}\right|=3$ and $\alpha_{i} \subset \tau$.

Example 2.13 Given the complete geometric digraph \mathcal{K}_{4}. Then $x_{\{1,2,3,4\}}$ with lines $x_{\{1,2\}}$, $x_{\{2,3\}}, x_{\{3,4\}}$ and $x_{\{1,4\}}$. Then we have $x_{[4]}=x_{\{1,2\}}+x_{\{2,3\}}+x_{\{3,4\}}-x_{\{1,4\}}=0$.
$x_{[4]}$ can be decompose into triangles as follows:

$$
x_{[4]}=x_{\{1,2,3\}}-x_{\{1,2,4\}}+x_{\{1,3,4\}}-x_{\{2,3,4\}} .
$$

The branches (for $\left|\alpha_{i}\right|=2$) in the spanning trees of \mathcal{K}_{n} are related. The relation is given by the theorem below which generalizes for $\left|\alpha_{i}\right| \geq 2$.

Theorem 2.14 Given \mathcal{K}_{n} and $\sigma \subset[n]$ such that $|\sigma| \geq 3$, then x_{σ}^{τ}, the linear combination of $x_{\alpha_{i}}$ such that $\tau \subset \alpha_{i} \subset \sigma$ is given by

$$
x_{\sigma}^{\tau}=\sum_{i=1}^{|\sigma|-1}(-1)^{i+1} x_{\alpha_{i}}
$$

for $2 \leq\left|\alpha_{i}\right| \leq|\sigma|$ and $1 \leq|\tau| \leq|\sigma|-1$.
Proof Given a complete geometric digraph, \mathcal{K}_{n} with vertices indexed by $[n]$. Since $\sigma \bigcap \alpha_{i}=$ τ, then x_{σ}^{τ} is the sum of all subgraphs of x_{σ} containing the subgraph x_{τ}.

Remark 2.15 Theorem 2.14 gives the relation of the branches in the spanning trees of \mathcal{K}_{n}.
Example 2.16 In a complete geometric digraph \mathcal{K}_{n} with points indexed $[4]=\{1,2,3,4\}$, then $x_{[3]}^{\{1\}}=x_{\{1,2\}}-x_{\{1,3\}}$.

§3. Computation of the Relations in \mathcal{K}_{n}

In this section we give the procedure for computing the relations in a complete geometric digraph \mathcal{K}_{n} for $n \leq 6$. Given a complete geometric digraph \mathcal{K}_{n}, the order is n and size is $\frac{r n}{2}$, where r is the rank of \mathcal{K}_{n}. The relations in \mathcal{K}_{n} is defined by its complete subgraphs, that is, the cycle, C_{3} and the spanning trees in the complete subgraphs, $K_{n}(n \geq 4)$ of \mathcal{K}_{n}. Since \mathcal{K}_{1} and \mathcal{K}_{2} has no cycles, they have no relation. So $3 \leq n \leq 6$, given \mathcal{K}_{n} and $\Lambda_{\sigma, \tau} \in \nabla$ as follows:
(1) For $|\sigma|=2$ and $|\tau|=1$, any cycle C_{3} in \mathcal{K}_{n} contains three binary spanning trees and each has exactly one chord. These chords are the paths in C_{3} which are linearly related as defined by Theorem 2.8 and each chord in the relation is multiplied by the root of its tree.
(2) For $|\sigma|=2$ and $|\tau|=2$, any complete geometric subgraph K_{4} of \mathcal{K}_{n} contains four 3 -valent spanning trees and each has three chords. The branches are linearly related as defined by Theorem 2.14 and each branch in the relation is multiplied by the chord not adjacent to it. Any of the four 3 -valent spanning tree of a K_{4} gives the same relation.
(3) For $|\sigma|=3$ and $|\tau|=1$, any complete geometric subgraph K_{4} of \mathcal{K}_{n} contains four 3 -valent spanning trees and each has three chords which formed a triangle. These triangle are linearly related as defined by Theorem 2.8 and is multiplied by the root of its spanning tree.
(4) For $|\sigma|=3,|\tau|=2$ and any branch in any 3 -valent spanning tree of K_{4}, there exist a C_{3} formed by a chord and the other branches. The branches are linearly related as defined by Theorem 2.14 and each is multiplied by its corresponding C_{3}. This is repeated for each 3 -valent spanning tree.
(5) For integers $n \geq 5$, consider all the complete geometric subgraphs, K_{5} of \mathcal{K}_{n}. For any branch in any 4 -valent spanning tree of K_{5}, there is exactly one C_{3} formed by the chords not adjacent to the branch. Applying to Theorem 2.14 to the branches and multiplying each branch by these C_{3}, we realize the graph relation.
(6) For $|\sigma|=3$ and $|\tau|=3$, consider all the complete geometric subgraphs, K_{5} of \mathcal{K}_{n}. There are six chords in any 4 -valent spanning tree of K_{5} with three pairs of non-adjacent chords. For any pair, we have two C_{3} formed by the chords with the branches. Applying to Theorem 2.14 to the C_{3} in each pair containing the branch highest leave (label-wise), we multiply each C_{3} in the relation with it corresponding pair.
(7) For integers $n \geq 6$, consider all the complete geometric subgraphs, K_{6} of \mathcal{K}_{n}. For any two branches in any 5 -valent spanning tree of K_{6}, there is exactly one C_{3} (non-adjacent C_{3}) formed by the chords not adjacent to these branches. There are exactly five of such relations in any of the 5 -valent spanning tree, applying to Theorem 2.14 to the C_{3} formed by a chord with these branches and multiplying each by the non-adjacent C_{3}, we realize the graph relation.
(8) For $|\sigma|=4$ and $|\tau|=1$, consider all the complete geometric subgraphs, K_{5} of \mathcal{K}_{n}. Taking root of each 4 -valent spanning tree of K_{5} to multiply the C_{4} formed by the chords with the leaves. The C_{4} in each 4 -valent spanning tree are linearly related as defined by Theorem 2.8 .
(9) For $|\sigma|=4$ and $|\tau|=2$, consider all the complete geometric subgraphs, K_{5} of \mathcal{K}_{n}. For any branch in any 4 -valent spanning tree of K_{5}, there is a C_{4} formed by the chords with the leaves. These branches are linearly related as defined by Theorem 2.14 and each is multiplied
it corresponding C_{4}. This is repeated for each 4 -valent spanning tree.
(10) For integers $n \geq 6$, consider all the complete geometric subgraphs, K_{6} of \mathcal{K}_{n}. For any branch in any 5 -valent spanning tree of K_{5}, there is exactly one C_{4} formed by the chords not adjacent to the branch. Applying to Theorem 2.14 to the branches and multiplying each branch by this C_{4}, we realize the graph relation.
(11) For $|\sigma|=4$ and $|\tau|=3$, consider all the complete geometric subgraphs, K_{5} of \mathcal{K}_{n}. For any branch in any 4 -valent spanning tree of K_{5}, we have three C_{3} containing that branch, a chord and one other branch. For each C_{3}, there is a C_{4} containing that branch, two chords and one other branch These C_{3} are linearly related as defined by Theorem 2.14 and each C_{3} is multiplied by the corresponding C_{4}. This is repeated for each branch in all the 4 -valent spanning tree.
(12) For integers $n \geq 6$, consider all the complete geometric subgraphs, K_{6} of \mathcal{K}_{n}. For any branch in any 5 -valent spanning tree of K_{6}, we have four C_{3} containing that branch, a chord and one other branch. For each C_{3}, there is a C_{4} formed by four chords in the leave of that branch and other three branches not in the C_{3}. These triangles are linearly related as defined by Theorem 2.14 and each C_{3} is multiplied by the corresponding C_{4}. Also for each C_{3}, there is a C_{4} formed by two branches and two chords in the leave of other branches not in the triangle. These C_{3} are linearly related as defined by Theorem 2.14 and each C_{3} is multiplied by the corresponding C_{4}. This is repeated for each branch in all the 5 -valent spanning tree.

We also consider all the complete geometric subgraphs, K_{7} of \mathcal{K}_{n}. For any branch in any 6 -valent spanning tree of K_{7}, we have five C_{3} containing that branch, a chord and one other branch. For each C_{3}, there is a C_{4} formed by four chords not adjacent to any of the branches in the C_{3}. These C_{3} are linearly related as defined by Theorem 2.14 and each C_{3} is multiplied by the corresponding C_{4}. This is repeated for each branch in all the 6 -valent spanning tree.

Example 3.1 For $n=3$, the relation is define by the points and lines of the graph in Figure 1. The relation is derived as follows:

Since \mathcal{K}_{3} is a C_{3}, then it contains three binary spanning trees and each has exactly one chord. These chords are the paths in C_{3} which are linearly related as defined by Theorem 2.8.

$$
x_{\{1,3\}}=x_{\{1,2\}}+x_{\{2,3\}}
$$

each chord in the relation is multiplied by the root of its tree, we have

$$
x_{\{1,2\}} x_{\{3\}}-x_{\{1,3\}} x_{\{2\}}+x_{\{2,3\}} x_{\{1\}}=0
$$

The equations above give the relation for \mathcal{K}_{3}.
Example 3.2 For $n=4$, the relations are define by the points, lines and triangles of the graph in Figure 2. The set of points, F_{1} is $\left\{x_{\{1\}}, x_{\{2\}}, x_{\{3\}}, x_{\{4\}}\right\}$, the set of lines, F_{2} is $\left\{x_{\{1,2\}}, x_{\{1,3\}}, x_{\{1,4\}}, x_{\{2,3\}}, x_{\{2,4\}}, x_{\{3,4\}}\right\}$ and the set of C_{3}, F_{3} is

$$
\left\{x_{\{1,2,3\}}, x_{\{1,2,4\}}, x_{\{1,3,4\}}, x_{\{2,3,4\}}\right\} .
$$

The relations are given below

$$
\begin{aligned}
& x_{\{1,2\}} x_{\{3\}}-x_{\{1,3\}} x_{\{2\}}+x_{\{2,3\}} x_{\{1\}}=0, \\
& x_{\{1,2\}} x_{\{4\}}-x_{\{1,4\}} x_{\{2\}}+x_{\{2,4\}} x_{\{1\}}=0, \\
& x_{\{1,3\}} x_{\{4\}}-x_{\{1,4\}} x_{\{3\}}+x_{\{3,4\}} x_{\{1\}}=0, \\
& x_{\{2,3\}} x_{\{4\}}-x_{\{2,4\}} x_{\{3\}}+x_{\{3,4\}} x_{\{2\}}=0, \\
& x_{\{2,3\}} x_{\{1,4\}}-x_{\{2,4\}} x_{\{1,3\}}+x_{\{3,4\}} x_{\{1,2\}}=0, \\
& x_{\{2,3,4\}} x_{\{1\}}-x_{\{1,3,4\}} x_{\{2\}}+x_{\{1,2,4\}} x_{\{3\}}-x_{\{1,2,3\}} x_{\{4\}}=0, \\
& x_{\{1,3,4\}} x_{\{1,2\}}-x_{\{1,2,4\}} x_{\{1,3\}}+x_{\{1,2,3\}} x_{\{1,4\}}=0, \\
& x_{\{2,3,4\}} x_{\{1,2\}}-x_{\{1,3,4\}} x_{\{2,3\}}+x_{\{1,2,3\}} x_{\{2,4\}}=0, \\
& x_{\{2,3,4\}} x_{\{1,3\}}-x_{\{1,3,4\}} x_{\{2,3\}}+x_{\{1,2,3\}} x_{\{3,4\}}=0, \\
& x_{\{2,3,4\}} x_{\{1,4\}}-x_{\{1,3,4\}} x_{\{2,4\}}+x_{\{1,2,4\}} x_{\{3,4\}}=0 .
\end{aligned}
$$

§4. Classifications of the Equations Defining Flag Varieties

In this section, we give the classifications of the relations in a complete geometric graphs.

Theorem 4.1 Given $\Lambda_{\sigma, \tau} \in \nabla$, if $\sigma \cap \tau \neq \emptyset$, then σ and τ have at most $n-3$ points of intersection and $3 \leq|\sigma|+|\tau| \leq 2 n-3$.

Proof Given any relation in $\Lambda_{\sigma, \tau}$ such $\alpha, \tau \subset[n]$ then $1 \leq|\sigma| \leq n-2$ and $2 \leq|\tau| \leq n-1$. If $\alpha \cap \tau \neq \emptyset$ and $\tau \nsubseteq \sigma$, then there is at least one point in σ not in τ. Therefore $n-3$ possible points of intersection. It also follows from the bound on $|\sigma|$ and $|\tau|$ that $3 \leq|\sigma|+|\tau| \leq 2 n-3$.

The number of terms in any relation in \mathcal{K}_{n} is bounded below by the size of C_{3} and above by n, which is capture in Theorem 4.2 following.

Theorem 4.2 In a complete geometric digraph \mathcal{K}_{n}, there are at least three terms and at most n terms in any relations.

Proof This follows from Theorems 2.8 and 2.14.
\mathcal{K}_{3} has one relation which contain three terms, \mathcal{K}_{4} has ten relations out of which nine relations have three terms each and one relation has four terms and \mathcal{K}_{5} has sixty-six relations out of which forty-five relations have three terms each, fifteen relation have four terms each and one relation has five terms.

Theorem 4.3 In a complete geometric digraph \mathcal{K}_{n}, if the elements of F_{m} form a relation then

$$
f_{m} \geq\binom{ n}{n-2}
$$

Proof Given a complete geometric digraph, \mathcal{K}_{n}. Suppose the elements of F_{m} form relations then by Theorem 4.1, $m \leq n-2$, which implies that

$$
f_{m} \geq\binom{ n}{n-2}
$$

Consider the complete geometric digraph, \mathcal{K}_{3}, it contains no relations between lines and lines since $f_{2}=3$ but \mathcal{K}_{4} contains one relation between lines and lines since $f_{2}=6$.

Suppose we wish to classify the relations in \mathcal{K}_{n} as points and lines relations, lines and lines relations, points and C_{3} relations, lines and C_{3} relations, and so on. For any \mathcal{K}_{n}, the number of relations in any of such classification is given by the following theorem.

Theorem 4.4 In a complete geometric digraph \mathcal{K}_{n}, for any $E_{\sigma, \tau} \subset \nabla$, the cardinality of $E_{\sigma, \tau}$ $\left(E_{i, j}=\# E_{\sigma, \tau}\right)$ is given by

$$
E_{i, j}= \begin{cases}\binom{n}{i-1}\binom{n}{j+1}, & \text { if } i<j \\ \binom{n}{i-2}\binom{n}{j+2}, & \text { if } i=j\end{cases}
$$

for $|\sigma|=i$ and $|\tau|=j$.
Proof Given $E_{\sigma, \tau} \subset \nabla$ in \mathcal{K}_{n} such that $\sigma=\left\{\sigma_{1}, \cdots, \sigma_{i}\right\}$ and $\tau=\left\{\tau_{1}, \cdots, \tau_{i}\right\}$ for $\sigma, \tau \subseteq[n]$ and $\sigma \nsubseteq \tau$. Let $E_{i, j}=\# E_{\sigma, \tau}$, there exist two cases for $E_{i, j}$.

Case 1. If $i<j$, then either $\sigma \cap \tau \neq \emptyset$ or $\sigma \cap \tau=\emptyset$. Suppose $\sigma \cap \tau \neq \emptyset$, then $i+j \geq n$. Since $\sigma \nsubseteq \tau$, then there is a distinct element in σ not in τ. This element is moved to τ, thereby increasing $|\tau|$ by 1 and reducing $|\sigma|$ by 1 . Then the choice of selection of $\sigma \tau$ is $\binom{n}{i-1}\binom{n}{j+1}$. But if $\sigma \cap \tau=\emptyset$, then $i+j \leq n$. So a distinct element of σ is moved to τ, thereby increasing $|\tau|$ by 1 and reducing $|\sigma|$ by 1 . Hence the choice of selection of $\sigma \tau$ is $\binom{n}{i-1}\binom{n}{j+1}$.
Case 2. If $i=j$, then either $\sigma \cap \tau \neq \emptyset$ or $\sigma \cap \tau=\emptyset$. Suppose $\sigma \cap \tau \neq \emptyset$, then $i+j \geq n$. Since $\sigma \nsubseteq \tau$, then there are two distinct elements in σ not in τ. These elements are moved to τ, thereby increasing $|\tau|$ by 2 and reducing $|\sigma|$ by 2 . Then the choice of selection of $\sigma \tau$ is $\binom{n}{i-2}\binom{n}{j+2}$. But if $\sigma \cap \tau=\emptyset$, then $i+j \leq n$. So, the two distinct elements of σ are moved to τ, thereby increasing $|\tau|$ by 2 and reducing $|\sigma|$ by 2 . Hence the choice of selection of $\sigma \tau$ is $\binom{n}{i-2}\binom{n}{j+2}$. This completes the proof.

Example 4.5 Consider relations of $\mathcal{K}_{4}, E_{\{1,2\}}=\binom{4}{0}\binom{4}{3}=4, E_{\{2,2\}}=\binom{4}{0}\binom{4}{4}=1$, $E_{\{1,3\}}=\binom{4}{0}\binom{4}{4}=1$ and $E_{\{2,3\}}=\binom{4}{1}\binom{4}{4}=4$.

Theorem 4.4 gives the number of relations in any class $\left(E_{\sigma, \tau}\right)$. The following theorem gives a generating functions classifying the relations in \mathcal{K}_{n}.

Theorem 4.6 In a complete geometric digraph \mathcal{K}_{n}, for any $E_{\sigma, \tau} \subset \nabla$ such that $|\sigma|=r$ and
$|\tau|=m$, then the cardinality of $E_{\sigma, \tau}$ in ∇ for a fixed m is given by

$$
\gamma_{n}^{\{m\}}(q)=\sum_{r=1}^{m-1}\binom{n}{m+1}\binom{n}{r-1} q^{(r, m)}+\binom{n}{m+2}\binom{n}{m-2} q^{(m, m)}
$$

for $2 \leq m \leq n-1, n \geq 3$.
Proof Given a complete geometric digraph, \mathcal{K}_{n}. For $E_{\sigma, \tau} \subset \nabla$ such that $|\sigma|=r$ and $|\tau|=m$. Then, either $r<m$ or $r=m$ in ∇. So, from Theorem 4.4, by fixing m and $1 \leq r \leq m$ we can express the number of relation $q^{(r, m)}$ as a generating function $\gamma_{n}^{\{m\}}(q)$ for integers $2 \leq m \leq n-1$.

Example 4.7 In $\mathcal{K}_{3}, n=3, m=2$, then we have

$$
\gamma_{3}^{\{2\}}(q)=q^{(1,2)}
$$

In $\mathcal{K}_{4}, n=4, m=2,3$, then we have

$$
\begin{aligned}
& \gamma_{4}^{\{2\}}(q)=4 q^{(1,2)}+q^{(2,2)} \\
& \gamma_{4}^{\{3\}}(q)=q^{(1,3)}+4 q^{(2,3)}
\end{aligned}
$$

In $\mathcal{K}_{5}, n=5, m=2,3,4$, then we have

$$
\begin{aligned}
\gamma_{5}^{\{2\}}(q) & =10 q^{(1,2)}+5 q^{(2,2)} \\
\gamma_{5}^{\{3\}}(q) & =5 q^{(1,3)}+25 q^{(2,3)}+5 q^{(3,3)} \\
\gamma_{5}^{\{4\}}(q), & =q^{(1,4)}+5 q^{(2,4)}+10 q^{(3,4)}
\end{aligned}
$$

Total number of relations in \mathcal{K}_{n}, for $n=3,4$ and 5 are 1,10 and 66 respectively.

Theorem 4.8 In a complete geometric digraph \mathcal{K}_{n}, for any $E_{\sigma, \tau} \subset \nabla$ such that $|\sigma|=i$ and $|\tau|=j$, then the cardinality of $E_{\sigma, \tau}$ in ∇ is given by

$$
M_{n}(q)=\sum_{j=2}^{n-1} \sum_{i=1}^{j-1}\binom{n}{i-1}\binom{n}{j+1} q^{(i, j)}+\sum_{r=2}^{n-2}\binom{n}{r-2}\binom{n}{r+2} q^{(r, r)}
$$

for $n \geq 3$.
Proof Given a complete geometric digraph, \mathcal{K}_{n}, for any $E_{\sigma, \tau} \subset \nabla$ and $n \geq 3$. By Theorem 4.6, the sum over all possible $\gamma_{n}^{\{i\}}(q)$ equals $M_{n}(q)$ for $n \geq 3$.

Example 4.9 In $\mathcal{K}_{3}, n=3$,

$$
M_{3}(q)=q^{(1,2)}
$$

In $\mathcal{K}_{4}, n=4$,

$$
M_{4}(q)=4 q^{(1,2)}+q^{(1,3)}+4 q^{(2,3)}+q^{(2,2)}
$$

In $\mathcal{K}_{5}, n=5$,

$$
M_{5}(q)=10 q^{(1,2)}+5 q^{(1,3)}+25 q^{(2,3)}+q^{(1,4)}+5 q^{(2,4)}+10 q^{(3,4)}+5 q^{(2,2)}+5 q^{(3,3)} .
$$

Theorem 4.10 In a complete geometric digraph \mathcal{K}_{n}, the number of classes in \mathcal{K}_{n} is two less than the size of \mathcal{K}_{n} for $n \geq 3$.

Proof Given \mathcal{K}_{n}, from Theorem 4.8 the number of terms in $M_{n}(q)$ gives the number of classes in \mathcal{K}_{n}. The number of terms is $\frac{n(n-1)}{2}-2$ which is less than the size of \mathcal{K}_{n}.

Remark 4.11 (i) The coefficient of $q^{(k, k)}$ equals $q^{(k-1, k+1)}$ for $k \geq 2$. Also $q^{(i+r, i+m)}$ and $q^{(r, m)}$ have equal coefficient for $m+r<n$ and $1 \leq i \leq n-3$.
(ii) The number of equations defining flag varieties $\mathcal{F} \ell_{n}(\mathbb{C})$ is given by

$$
M_{n}=\sum_{j=2}^{n-1} \sum_{i=1}^{j-1}\binom{n}{i-1}\binom{n}{j+1}+\sum_{r=2}^{n-2}\binom{n}{r-2}\binom{n}{r+2}
$$

with values for small number n in Table 2 .

Order(n)	Size	Number of relations $\left(M_{n}\right)$	Number of Classes
3	3	1	1
4	6	10	4
5	10	66	8
6	15	365	13
7	21	1835	19
8	28	8705	26
9	36	39748	34
10	45	176740	43
11	55	770914	53
12	66	3314601	64
13	78	14094822	76
14	91	248756927	89
15	105	1035577973	103
16	120	17713099208	1186292
17	136	72878464142	134
18	153	299021980928	151
19	171	190	

Table 2. Statistics of a complete geometric digraph

References

[1] Miller Ezra and Sturmfels Bernd, Combinatorial Commutative Algebra, Springer-Verlag, New York, 2005.
[2] Duque Frank and Fabila-Monroy Ruy, Non-crossing monotone paths and binary trees in edge-ordered complete geometric graphs, arXiv, math.CO 1703.05378v2, 2017.
[3] Li Jianxi, Chee Shiu Wai and An Chang, The number of spanning trees in a graph, Applied Mathematics Letter, 23 (2010), 286-290.
[4] Z. Abu-Sbeih Moh'd, On the number of spanning trees of K_{n} and $K_{m, n}$, Discrete Mathematics, 84 (1990), 205-207.
[5] Aichholzer Oswin and Cabello Sergio, Edge-removal and non-crossing configurations in geometric graphs, Discrete Mathematics and Theoretical Computer Science, 12 (2010), No. 1, 75-86.
[6] Aichholzer Oswin and Hackl Thomas, Packing plane spanning trees and paths in complete geometric graphs, arXiv, cs.CG 1707.05440v1, 2017.
[7] A. Rado P, A note on paths in complete directed graphs, Bulletin on the London Mathematical Society, 2 (1970), No. 1, 66-68.
[8] Bosem Prosenjit, Hurtado Ferran, Rivera-Campo Eduardo and R.Wood David, Partitions of complete geometric graphs into plane trees, Computational Geometry, 34 (2006), 116124.
[9] Fulton William, Young tableaux: with application to representation theory and geometry, London Mathematical Society Student Texts 35, Cambridge University Press, Cambridge, 1997.
[10] Lu Xiaoyun, Wang Da-Wei, Pan Jiaofeng and C. K. Wong, Rooted spanning tree in tournaments, Graphs and Combinatorics, 16 (2000), 411-427.

[^0]: ${ }^{1}$ Received July 25, 2023, Accepted December 10, 2023.

