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Abstract: Using only combinatorial technique, we give a formula for classification of the

defining equation of flag variety F`n(C). The formula uses the theory of complete geometric

graph based on the indexing set of the monomials of the ideal. In particular, we give a

generating function to count the number of classes. The size of each class is also determined.

We describe the procedure of obtaining the equations using a complete geometric graph and

lastly, we give a formula to count these equations.
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§1. Introduction

Let V be an n-dimension vector space over the field of complex numbers. By a flag F in V , we

mean a sequence of subspaces:

F• : {0} ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn = V such that dim Fi = i.

The set of all such flags in V is called the flag variety and denoted by F`n(C). By fixing

a basis e1, e2, . . . , en, we let E• to denote the standard flag spanned by

E• = 〈e1〉 ⊂ 〈e1, e2〉 ⊂ · · · ⊂ 〈e1, e2, . . . , en〉.

The variety can also be described by considering the general linear group GL(n,C) consist-

ing of all non-singular n× n matrices and let B be the subset of all invertible upper triangular

matrices. A flag F• can be constructed by allowing Fi be the span of the first i columns of a

given matrix Z in GL(n,C). The matrices Z1 and Z2 are equivalent, that is, give the same flag

if and only if there is an upper triangular matrix Y in B such that Z2 = Y Z1. This defines an

equivalence relation on GL(n,C). Thus F`n(C) = GL(n,C)/B. The precise implication is that

the general linear group GL(n,C) acts transitively on F`n(C) and the stabilizer of standard

flag is the Borel subgroup and hence the identification of F(n) with G/B. Therefore, F`n(C)

is viewed as a homogeneous space. More is true F`n(C) is a smooth projective variety being a

closed subvariety of the product of Grassmanians
∏n−1
k=1 Gr(k, n). This gives rise to the Plücker
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embedding

F`n(C) ↪→ P(n
1)−1 × P(n

2)−1 × · · · × P( n
n−1)−1.

The image of F`n(C) via the embedding is cut out by Plücker relations (see [1]). These

relations generate the homogeneous ideal of F`n(C) which we denote by I, indeed I is minimally

generated by these quadrics. It is well known that each flag F• can be represented by n × n-

matrix A = (aij) in which the subspace Fi is spanned by the first i rows. The relations that

a point must satisfy in order to lie in the image of F`n(C) via the embedding are called the

Plücker relations. This is achieved by defining the map

φn : K[pα : ∅ 6= α ⊆ {1, . . . , n}] −→ K[aij : 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n]

sending each variable pα to the determinant submatrix of A with row indices 1, . . . , | α | and

column indices in α. It turns out that the ideal In of F`n(C) is the kernel of φn. This

homogeneous ideal is minimally generated by the Plücker relations. These relations which are

quadrics are the equations defining the variety F`n(C) (See [9],[1]).

Our interest is in the classification of these equations using complete geometric graphs.

Specifically, we give a formula that partitions the equations by exploiting some similar properties

shared by them. This ultimately allows us to know the number of equations in each subdivision

thereby counts the generators for each ideal In. We plan a sequel paper to exploit this technique

to give the degeneration of flag variety F`n(C). Let T be a collection of points in the plane in

general position. By geometric graph on T, we mean a graph G whose vertices are the elements

of T in which two are said to be adjacent if they are joined by a line segment. Our interest is

in a graph where every pair of vertices is adjacent. This is called a complete geometric graph

and is denoted by Kn, n is the number of vertices. The number of edges of Kn is n(n−1)
2 which

turns out to be the dimension of flag variety F`n(C). In section 2, we give some background

and results relevant to our discussion. In section 3, we describe the procedure to obtain the

relations in the complete geometric digraph, Kn and also compute the relations in K3 and K4.

In section 4, we give the classifications of relations in Kn and the class size. We also give

generating functions on the classifications and the number of classes in any Kn. This gives the

classification of the equations defining flag varieties F`n(C).

§2. Complete Geometric Directed Graphs

In this section we give some definitions on geometric graphs and trees (see [5], [4], [2], [3], [6],

[8], [7], [10] for details).

Definition 2.1 Let Kn be a complete geometric digraph with a n points and let σ ⊂ [n]. xσ is

said to be a point if |σ| = 1, a line if |σ| = 2, a triangle if |σ| = 3 and so on.

Remark 2.2 All the xσ’s for which |σ| ≥ 3 are empty, that is, they have no interior points.

Example 2.3 (i) For n = 3, the complete geometric digraph is
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Figure 1

(ii) For n = 4, the complete geometric digraph is

Figure 2

Given a complete geometric digraph Kn, let Fm = {xσ : |σ| = m,σ ⊆ [n]}, F1 set of points,

F2 set of lines and so on. Let fm = #Fm.

Definition 2.4 (i) A walk in Kn is a sequence of vertices v0, v1, · · · , vk and sequence of edges

(vi, vi+1) ∈ F2. If vi are distinct, then we have a path and if (v0, vk) ∈ F2, then v0, v1, · · · , vk, v0
is a cycle. The length of a path or cycle is the number of edges in it.

(ii) A tree is a connected graph without any cycles. The edges of a tree are called branches

and the degree 1(number of edges incident with the vertex) vertex are called leaves.

(iii) A spanning tree T of a connected graph Kn is the subgraph of Kn containing all the

vertices of Kn. A chord is an edge of a graph that is not in a given spanning tree.

(iv) A rooted tree T with the vertex set V is the tree that has a specially designated vertex

v1 ∈ V . The root of any spanning tree is defined as the vertex with highest degree.

Remark 2.5 (i) For any spanning tree T of Kn, the number of branches is called the rank,

r and the number of chords is called the nullity, µ (cyclomatic number or first Betti number).

r = n− 1 and µ = (n−1)(n−2)
2 .

(ii) There are nn−2 spanning tree in a complete graph and n (n− 1)-valent spanning trees

since there are only n vertices with degree n− 1.
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Lemma 2.6 Let C be the set of flag varieties and B be the set of complete geometric digraphs,

there is a bijection

α : C −→ B

F ln(C) 7−→ Kn.

Theorem 2.7 Given a complete geometric digraph Kn, then fm is given by the coefficient of

Pn(t) =

n∑
|σ|=1

( n

|σ|

)
t|σ|.

Proof Given a complete geometric digraph, Kn with points indexed by [n], let σ ⊆ [n] and

|σ| = r. For r = 1, we have a point and the number of choice of selection is
(
n

1

)
and for r = 2

we have a line and the number of choice of selection is
(
n

2

)
. Continuing until r = n, we have(

n

n

)
. Then this can be generalised as

(
n

1

)
t+
(
n

2

)
t2 + · · ·+

(
n

r

)
tr + · · ·+

(
n

n

)
tn

where the power of t is |σ| and the coefficient of t is the number of such σ. �

Theorem 2.7 gives the size of Fm for 1 ≤ m ≤ n in Kn.

n f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

1 1

2 2 1

3 3 3 1

4 4 6 4 1

5 5 10 10 5 1

6 6 15 20 15 6 1

7 7 21 35 35 21 7 1

8 8 28 56 70 56 28 8 1

9 9 36 84 126 126 84 36 9 1

10 10 45 120 210 252 210 120 45 10 1

Table 1. Statistics of fm in Kn
Let Ω be the union of all Fm, we defined an ordering on Ω as follows:

Given σ, ρ ⊆ [n] such that σ = {a1 < · · · < am} and ρ = {b1 < · · · < br}. Let xσ ≤ xρ in

the poset P if m ≥ r and σi ≤ ρi for all i = 1, · · · , r.

Let O = {xσxτ + lower terms : 1 ≤ |σ| ≤ n− 2 and 2 ≤ |τ | ≤ n− 1} be the set of relations

between xσ’s and xτ ’s.
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Theorem 2.8 Given xσ in Kn such that |σ| = 3 (i.e xσ is a triangle), then xσ can be expressed

as a linear combination of xτi which sum to zero for |τi| = 2, τi ⊂ σ and
⋂
τi = ∅. Moreover,

the number of summands is |σ|.

Proof Given a complete geometric digraph, Kn with points indexed by [n]. Suppose σ ⊂ [n]

with |σ| > 2, xσ is a subgraph of Kn, there is a closed path in xσ (xσ are line segments), which

is the sum of xτi and
⋂
τi = ∅ and the number of such τi is |σ|. �

Remark 2.9 (i) The sign of xτi in Theorem 2.8 is negative if the distance of τ is |σ| − 1,

otherwise positive.

(ii) Theorem 2.8 gives the relation of the paths in xσ.

Example 2.10 Given the complete geometric digraph K3. Then triangle, x{1,2,3} with lines

x{1,2}, x{2,3} and x{1,3}, can be expressed as

x{1,2,3} = x{1,2} + x{2,3} − x{1,3} = 0.

Remark 2.11 From Example 2.10, x{1,3} is called the equivalent path and can be expressed

as x{1,3} = x{1,2} + x{2,3}.

Corollary 2.12 Every xτ such that |τ | > 3 can be expressed as a linear combination of xαi

such that |αi| = 3 and αi ⊂ τ .

Example 2.13 Given the complete geometric digraph K4. Then x{1,2,3,4} with lines x{1,2},

x{2,3}, x{3,4} and x{1,4}. Then we have x[4] = x{1,2} + x{2,3} + x{3,4} − x{1,4} = 0.

x[4] can be decompose into triangles as follows:

x[4] = x{1,2,3} − x{1,2,4} + x{1,3,4} − x{2,3,4}.

The branches (for |αi| = 2) in the spanning trees of Kn are related. The relation is given

by the theorem below which generalizes for |αi| ≥ 2.

Theorem 2.14 Given Kn and σ ⊂ [n] such that |σ| ≥ 3, then xτσ, the linear combination of

xαi
such that τ ⊂ αi ⊂ σ is given by

xτσ =

|σ|−1∑
i=1

(−1)i+1xαi

for 2 ≤ |αi| ≤ |σ| and 1 ≤ |τ | ≤ |σ| − 1.

Proof Given a complete geometric digraph, Kn with vertices indexed by [n]. Since σ
⋂
αi =

τ , then xτσ is the sum of all subgraphs of xσ containing the subgraph xτ . �

Remark 2.15 Theorem 2.14 gives the relation of the branches in the spanning trees of Kn.

Example 2.16 In a complete geometric digraph Kn with points indexed [4] = {1, 2, 3, 4}, then

x
{1}
[3] = x{1,2} − x{1,3}.
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§3. Computation of the Relations in Kn

In this section we give the procedure for computing the relations in a complete geometric

digraph Kn for n ≤ 6. Given a complete geometric digraph Kn, the order is n and size is rn
2 ,

where r is the rank of Kn. The relations in Kn is defined by its complete subgraphs, that is,

the cycle, C3 and the spanning trees in the complete subgraphs, Kn(n ≥ 4) of Kn. Since K1

and K2 has no cycles, they have no relation. So 3 ≤ n ≤ 6, given Kn and Λσ,τ ∈ O as follows:

(1) For |σ| = 2 and |τ | = 1, any cycle C3 in Kn contains three binary spanning trees and

each has exactly one chord. These chords are the paths in C3 which are linearly related as

defined by Theorem 2.8 and each chord in the relation is multiplied by the root of its tree.

(2) For |σ| = 2 and |τ | = 2, any complete geometric subgraph K4 of Kn contains four

3-valent spanning trees and each has three chords. The branches are linearly related as defined

by Theorem 2.14 and each branch in the relation is multiplied by the chord not adjacent to it.

Any of the four 3-valent spanning tree of a K4 gives the same relation.

(3) For |σ| = 3 and |τ | = 1, any complete geometric subgraph K4 of Kn contains four

3-valent spanning trees and each has three chords which formed a triangle. These triangle are

linearly related as defined by Theorem 2.8 and is multiplied by the root of its spanning tree.

(4) For |σ| = 3, |τ | = 2 and any branch in any 3-valent spanning tree of K4, there exist a

C3 formed by a chord and the other branches. The branches are linearly related as defined by

Theorem 2.14 and each is multiplied by its corresponding C3. This is repeated for each 3-valent

spanning tree.

(5) For integers n ≥ 5, consider all the complete geometric subgraphs, K5 of Kn. For any

branch in any 4-valent spanning tree of K5, there is exactly one C3 formed by the chords not

adjacent to the branch. Applying to Theorem 2.14 to the branches and multiplying each branch

by these C3, we realize the graph relation.

(6) For |σ| = 3 and |τ | = 3, consider all the complete geometric subgraphs, K5 of Kn. There

are six chords in any 4-valent spanning tree of K5 with three pairs of non-adjacent chords. For

any pair, we have two C3 formed by the chords with the branches. Applying to Theorem 2.14

to the C3 in each pair containing the branch highest leave (label-wise), we multiply each C3 in

the relation with it corresponding pair.

(7) For integers n ≥ 6, consider all the complete geometric subgraphs, K6 of Kn. For any

two branches in any 5-valent spanning tree of K6, there is exactly one C3(non-adjacent C3)

formed by the chords not adjacent to these branches. There are exactly five of such relations in

any of the 5-valent spanning tree, applying to Theorem 2.14 to the C3 formed by a chord with

these branches and multiplying each by the non-adjacent C3, we realize the graph relation.

(8) For |σ| = 4 and |τ | = 1, consider all the complete geometric subgraphs, K5 of Kn.

Taking root of each 4-valent spanning tree of K5 to multiply the C4 formed by the chords with

the leaves. The C4 in each 4-valent spanning tree are linearly related as defined by Theorem

2.8.

(9) For |σ| = 4 and |τ | = 2, consider all the complete geometric subgraphs, K5 of Kn. For

any branch in any 4-valent spanning tree of K5, there is a C4 formed by the chords with the

leaves. These branches are linearly related as defined by Theorem 2.14 and each is multiplied
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it corresponding C4. This is repeated for each 4-valent spanning tree.

(10) For integers n ≥ 6, consider all the complete geometric subgraphs, K6 of Kn. For

any branch in any 5-valent spanning tree of K5, there is exactly one C4 formed by the chords

not adjacent to the branch. Applying to Theorem 2.14 to the branches and multiplying each

branch by this C4, we realize the graph relation.

(11) For |σ| = 4 and |τ | = 3, consider all the complete geometric subgraphs, K5 of Kn.

For any branch in any 4-valent spanning tree of K5, we have three C3 containing that branch,

a chord and one other branch. For each C3, there is a C4 containing that branch, two chords

and one other branch These C3 are linearly related as defined by Theorem 2.14 and each C3

is multiplied by the corresponding C4. This is repeated for each branch in all the 4-valent

spanning tree.

(12) For integers n ≥ 6, consider all the complete geometric subgraphs, K6 of Kn. For any

branch in any 5-valent spanning tree of K6, we have four C3 containing that branch, a chord

and one other branch. For each C3, there is a C4 formed by four chords in the leave of that

branch and other three branches not in the C3. These triangles are linearly related as defined

by Theorem 2.14 and each C3 is multiplied by the corresponding C4. Also for each C3, there is

a C4 formed by two branches and two chords in the leave of other branches not in the triangle.

These C3 are linearly related as defined by Theorem 2.14 and each C3 is multiplied by the

corresponding C4. This is repeated for each branch in all the 5-valent spanning tree.

We also consider all the complete geometric subgraphs, K7 of Kn. For any branch in any

6-valent spanning tree of K7, we have five C3 containing that branch, a chord and one other

branch. For each C3, there is a C4 formed by four chords not adjacent to any of the branches

in the C3. These C3 are linearly related as defined by Theorem 2.14 and each C3 is multiplied

by the corresponding C4. This is repeated for each branch in all the 6-valent spanning tree.

Example 3.1 For n = 3, the relation is define by the points and lines of the graph in Figure

1. The relation is derived as follows:

Since K3 is a C3, then it contains three binary spanning trees and each has exactly one

chord. These chords are the paths in C3 which are linearly related as defined by Theorem 2.8.

x{1,3} = x{1,2} + x{2,3}

each chord in the relation is multiplied by the root of its tree, we have

x{1,2}x{3} − x{1,3}x{2} + x{2,3}x{1} = 0

The equations above give the relation for K3.

Example 3.2 For n = 4, the relations are define by the points, lines and triangles of the

graph in Figure 2. The set of points, F1 is {x{1}, x{2}, x{3}, x{4}}, the set of lines, F2 is

{x{1,2}, x{1,3}, x{1,4}, x{2,3}, x{2,4}, x{3,4}} and the set of C3, F3 is

{x{1,2,3}, x{1,2,4}, x{1,3,4}, x{2,3,4}}.



70 Musa Makanjuola and Praise Adeyemo

The relations are given below

x{1,2}x{3} − x{1,3}x{2} + x{2,3}x{1} = 0,

x{1,2}x{4} − x{1,4}x{2} + x{2,4}x{1} = 0,

x{1,3}x{4} − x{1,4}x{3} + x{3,4}x{1} = 0,

x{2,3}x{4} − x{2,4}x{3} + x{3,4}x{2} = 0,

x{2,3}x{1,4} − x{2,4}x{1,3} + x{3,4}x{1,2} = 0,

x{2,3,4}x{1} − x{1,3,4}x{2} + x{1,2,4}x{3} − x{1,2,3}x{4} = 0,

x{1,3,4}x{1,2} − x{1,2,4}x{1,3} + x{1,2,3}x{1,4} = 0,

x{2,3,4}x{1,2} − x{1,3,4}x{2,3} + x{1,2,3}x{2,4} = 0,

x{2,3,4}x{1,3} − x{1,3,4}x{2,3} + x{1,2,3}x{3,4} = 0,

x{2,3,4}x{1,4} − x{1,3,4}x{2,4} + x{1,2,4}x{3,4} = 0.

§4. Classifications of the Equations Defining Flag Varieties

In this section, we give the classifications of the relations in a complete geometric graphs.

Theorem 4.1 Given Λσ,τ ∈ O, if σ ∩ τ 6= ∅, then σ and τ have at most n − 3 points of

intersection and 3 ≤ |σ|+ |τ | ≤ 2n− 3.

Proof Given any relation in Λσ,τ such α, τ ⊂ [n] then 1 ≤ |σ| ≤ n− 2 and 2 ≤ |τ | ≤ n− 1.

If α ∩ τ 6= ∅ and τ * σ, then there is at least one point in σ not in τ . Therefore n− 3 possible

points of intersection. It also follows from the bound on |σ| and |τ | that 3 ≤ |σ|+ |τ | ≤ 2n− 3.

�

The number of terms in any relation in Kn is bounded below by the size of C3 and above by n,

which is capture in Theorem 4.2 following.

Theorem 4.2 In a complete geometric digraph Kn, there are at least three terms and at most

n terms in any relations.

Proof This follows from Theorems 2.8 and 2.14. �

K3 has one relation which contain three terms, K4 has ten relations out of which nine

relations have three terms each and one relation has four terms and K5 has sixty-six relations

out of which forty-five relations have three terms each, fifteen relation have four terms each and

one relation has five terms.

Theorem 4.3 In a complete geometric digraph Kn, if the elements of Fm form a relation then

fm ≥
(

n

n−2

)
.
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Proof Given a complete geometric digraph, Kn. Suppose the elements of Fm form relations

then by Theorem 4.1, m ≤ n− 2, which implies that

fm ≥
(

n

n−2

)
. �

Consider the complete geometric digraph, K3, it contains no relations between lines and

lines since f2 = 3 but K4 contains one relation between lines and lines since f2 = 6.

Suppose we wish to classify the relations in Kn as points and lines relations, lines and lines

relations, points and C3 relations, lines and C3 relations, and so on. For any Kn, the number

of relations in any of such classification is given by the following theorem.

Theorem 4.4 In a complete geometric digraph Kn, for any Eσ,τ ⊂ O, the cardinality of Eσ,τ

(Ei,j = #Eσ,τ ) is given by

Ei,j =


(

n

i−1

)( n

j+1

)
, if i < j

(
n

i−2

)( n

j+2

)
, if i = j

for |σ| = i and |τ | = j.

Proof Given Eσ,τ ⊂ O in Kn such that σ = {σ1, · · · , σi} and τ = {τ1, · · · , τi} for σ, τ ⊆ [n]

and σ * τ . Let Ei,j = #Eσ,τ , there exist two cases for Ei,j .

Case 1. If i < j, then either σ ∩ τ 6= ∅ or σ ∩ τ = ∅ . Suppose σ ∩ τ 6= ∅, then i + j ≥ n.

Since σ * τ , then there is a distinct element in σ not in τ . This element is moved to τ , thereby

increasing |τ | by 1 and reducing |σ| by 1. Then the choice of selection of στ is
(

n

i−1

)( n

j+1

)
.

But if σ ∩ τ = ∅, then i + j ≤ n. So a distinct element of σ is moved to τ , thereby increasing

|τ | by 1 and reducing |σ| by 1. Hence the choice of selection of στ is
(

n

i−1

)( n

j+1

)
.

Case 2. If i = j, then either σ ∩ τ 6= ∅ or σ ∩ τ = ∅ . Suppose σ ∩ τ 6= ∅, then i + j ≥ n.

Since σ * τ , then there are two distinct elements in σ not in τ . These elements are moved

to τ , thereby increasing |τ | by 2 and reducing |σ| by 2. Then the choice of selection of στ is(
n

i−2

)( n

j+2

)
. But if σ ∩ τ = ∅, then i + j ≤ n. So, the two distinct elements of σ are moved

to τ , thereby increasing |τ | by 2 and reducing |σ| by 2. Hence the choice of selection of στ is(
n

i−2

)( n

j+2

)
. This completes the proof. �

Example 4.5 Consider relations of K4, E{1,2} =
(

4

0

)(
4

3

)
= 4, E{2,2} =

(
4

0

)(
4

4

)
= 1,

E{1,3} =
(

4

0

)(
4

4

)
= 1 and E{2,3} =

(
4

1

)(
4

4

)
= 4.

Theorem 4.4 gives the number of relations in any class (Eσ,τ ). The following theorem gives

a generating functions classifying the relations in Kn.

Theorem 4.6 In a complete geometric digraph Kn, for any Eσ,τ ⊂ O such that |σ| = r and
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|τ | = m, then the cardinality of Eσ,τ in O for a fixed m is given by

γ{m}n (q) =

m−1∑
r=1

(
n

m+1

)(
n

r−1

)
q(r,m) +

(
n

m+2

)(
n

m−2

)
q(m,m)

for 2 ≤ m ≤ n− 1, n ≥ 3.

Proof Given a complete geometric digraph, Kn. For Eσ,τ ⊂ O such that |σ| = r and

|τ | = m. Then, either r < m or r = m in O. So, from Theorem 4.4, by fixing m and 1 ≤ r ≤ m
we can express the number of relation q(r,m) as a generating function γ

{m}
n (q) for integers

2 ≤ m ≤ n− 1. �

Example 4.7 In K3, n = 3, m = 2, then we have

γ
{2}
3 (q) = q(1,2).

In K4, n = 4, m = 2, 3, then we have

γ
{2}
4 (q) = 4q(1,2) + q(2,2),

γ
{3}
4 (q) = q(1,3) + 4q(2,3).

In K5, n = 5, m = 2, 3, 4, then we have

γ
{2}
5 (q) = 10q(1,2) + 5q(2,2),

γ
{3}
5 (q) = 5q(1,3) + 25q(2,3) + 5q(3,3),

γ
{4}
5 (q), = q(1,4) + 5q(2,4) + 10q(3,4).

Total number of relations in Kn, for n = 3, 4 and 5 are 1, 10 and 66 respectively.

Theorem 4.8 In a complete geometric digraph Kn, for any Eσ,τ ⊂ O such that |σ| = i and

|τ | = j, then the cardinality of Eσ,τ in O is given by

Mn(q) =

n−1∑
j=2

j−1∑
i=1

(
n

i−1

)( n

j+1

)
q(i,j) +

n−2∑
r=2

(
n

r−2

)(
n

r+2

)
q(r,r)

for n ≥ 3.

Proof Given a complete geometric digraph, Kn, for any Eσ,τ ⊂ O and n ≥ 3. By Theorem

4.6, the sum over all possible γ
{i}
n (q) equals Mn(q) for n ≥ 3. �

Example 4.9 In K3, n = 3,

M3(q) = q(1,2).

In K4, n = 4,

M4(q) = 4q(1,2) + q(1,3) + 4q(2,3) + q(2,2).
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In K5, n = 5,

M5(q) = 10q(1,2) + 5q(1,3) + 25q(2,3) + q(1,4) + 5q(2,4) + 10q(3,4) + 5q(2,2) + 5q(3,3).

Theorem 4.10 In a complete geometric digraph Kn, the number of classes in Kn is two less

than the size of Kn for n ≥ 3.

Proof Given Kn, from Theorem 4.8 the number of terms in Mn(q) gives the number of

classes in Kn. The number of terms is n(n−1)
2 − 2 which is less than the size of Kn. �

Remark 4.11 (i) The coefficient of q(k,k) equals q(k−1,k+1) for k ≥ 2. Also q(i+r,i+m) and

q(r,m) have equal coefficient for m+ r < n and 1 ≤ i ≤ n− 3.

(ii) The number of equations defining flag varieties F`n(C) is given by

Mn =

n−1∑
j=2

j−1∑
i=1

(
n

i−1

)( n

j+1

)
+

n−2∑
r=2

(
n

r−2

)(
n

r+2

)
with values for small number n in Table 2.

Order(n) Size Number of relations(Mn) Number of Classes

3 3 1 1

4 6 10 4

5 10 66 8

6 15 365 13

7 21 1835 19

8 28 8705 26

9 36 39748 34

10 45 176740 43

11 55 770914 53

12 66 3314601 64

13 78 14094822 76

14 91 59418623 89

15 105 248756927 103

16 120 1035577973 118

17 136 4291186292 134

18 153 17713099208 151

19 171 72878464142 169

20 190 299021980928 188

Table 2. Statistics of a complete geometric digraph
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