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Abstract: Let G(V,E) be a graph with order p and size q. A bijection f : V (G) →
{0, 1, 2, · · · , p− 1} is said to be a cube sum labeling if the induced function f∗ : E(G)→ N
defined by f∗(uv) = [f(u)]3 + [f(v)]3 is injective. Such a function f is said to be a cube

sum labeling and the graph G is a cube sum graph. In this paper we discuss some algebraic

properties and evaluate some families of cube sum graph.
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§1. Introduction

Labeling of graphs is one of the emerging topics in graph theory. The credit goes to Rosa [1]

to explore this innovative idea. If the vertices or edges or both of the graph are assigned values

subject to certain condition(s) then it is known as graph labeling. The idea of graph labeling

was originated in 1967. Till then graph labeling has attracted many researchers and due to

the wholehearted efforts for research in this field, more than 200 graph labeling techniques and

more than 2500 research papers are available. A dynamic survey on graph labeling is regularly

updated by Gallian [6] and it is published by The Electronic Journal of Combinatorics.

In this paper we consider simple, finite, undirected and connected graph. A graph G(V,E)

with p vertices and q edges is also denoted as G(p, q) graph. We refer to Bondy and Murty

[5] for the standard terminology and notations related to graph theory and Burton [2] for the

terms related to number theory. We denote an edge with end vertices u and v by uv.

A square sum labeling is one of the graph labeling techniques, where edge label is obtained

by sum of squares of labels of end vertices of the corresponding edge. The square sum labeling

was introduced by Ajitha, Arumugam and Germina.

Definition 1.1(Ajitha et al., [10]) A graph G = (V,E) with p vertices and q edges is said to

be a square sum graph, if there exists a bijection f : V (G) → {0, 1, 2, · · · , p − 1} such that the

induced function f∗ : E(G)→ N, defined by f∗(uv) = (f(u))2 + (f(v))2, is injective.
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Many interesting results are carried out for square sum labeling of graphs. The literature

on square sum labeling is accessible in electronic form in different research papers such as [3],

[4], [7], [10] etc.

A cube sum labeling was introduced by Vediyappan Govindan, Sandra Pinelas and S.Dhivya

[9] as follow and they proved that paths, cycle, stars, wheel graph, fan graphs are cube sum

graph.

Definition 1.2(Vediyappan Govindan et al., [9]) A graph G = (V,E) with p vertices and q

edges is said to be a cube sum graph, if there exists a bijection f : V (G) → {0, 1, 2, · · · , p − 1}
such that the induced function f∗ : E(G) → N, defined by f∗(uv) = (f(u))3 + (f(v))3, is

injective.

Notice that 1729 is the smallest natural number expressible as a sum of two cubes in

two different ways as 123 + 13 and 93 + 103. From the story of G.H. Hardy and Srinivasa

Ramanujan, 1729 is known as Ramanujan number or Taxi-cab number [2]. Other numbers which

can expressed as sum of two cubes in two different ways are 4104 = 23+163 = 93+153, 13832 =

23 + 243 = 183 + 203, 20683 = 103 + 273 = 193 + 243, etc. Taxi-cab number is related with sum

of cube of two numbers. So, we also refer cube sum labeling as Taxi-cab labeling as well.

In this paper we have used the Fermat’s Last Theorem [2] which states that No three

positive integers a, b and c satisfy the equation an + bn = cn for any integer value of n greater

than 2.

§2. Cube Sum Labeling

Definition 2.1 A bijective function f : V (G) → {0, 1, 2, · · · , p − 1} is said to be a cube sum

labeling if the induced function f∗ : E(G)→ N defined by f∗(uv) = [f(u)]3 +[f(v)]3 is injective.

Generally, let H ≺ G be a typical subgraph of G such as those of path, cycle. If such an

induced function f∗ is injective on E(G)\E(H) but not on E(G), such a labeling f is said to

be a Smarandachely cube sum H labeling. Particularly, if H = ∅, then such a Smarandachely

cube sum H labeling is nothing else but a cube sum labeling.

A graph G with cube sum labeling is called a cube sum graph.

Lemma 2.2(Burton, [2]) The cube of any integer is one of the form 9k, 9k + 1 or 9k + 8.

Theorem 2.3 Let G be a cube sum graph with cube sum labeling f . Then, for any edge

e ∈ E(G), f∗(e) 6≡ 3, 4, 5, 6(mod 9).

Proof Let u, v ∈ V (G), f(u) = a and f(v) = b. Then, for edge e = uv ∈ E(G), f∗(uv) =

a3 + b3.

Since a and b are integers, from Lemma 3.1, a3 ≡ 0, 1 or 8(mod 9) and b3 ≡ 0, 1 or 8(mod 9).

But then a3 + b3 ≡ 0, 1, 2, 7 or 8(mod 9). Hence, the result is proved. �

Lemma 2.4(Burton, [2]) The cube of any integer is one of the form 7k or 7k ± 1.
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Theorem 2.5 Let G be a cube sum graph with cube sum labeling f . Then for any edge e ∈ E(G),

f∗(e) 6≡ 3, 4(mod 7).

Proof Let f(u) = a and f(v) = b. Then, for edge e = uv ∈ E(G), f∗(uv) = a3 + b3. From

lemma 3.2, since a and b are integers, a3 ≡ 0, 1 or 6(mod 7), and b3 ≡ 0, 1 or 6(mod 7). But

then a3 + b3 ≡ 0, 1, 2, 5 or 6(mod 7). This completes the proof. �

Theorem 2.6 If G(p, q) is cube sum graph with cube sum labeling f , then∑
uv∈E(G)

f∗(uv) =
∑

v∈V (G)

[f(v)]3d(v)

where d(v) is the degree of vertex v in G.

Proof Let f : V (G)→ {0, 1, 2, · · · , p− 1} be a cube sum labeling of a graph G with each

edge uv is assigned the label f∗(uv) = [f(u)]3 + [f(v)]3.

Now every edge is incident with exactly two vertices and degree of a vertex is the number of

edges incident with that vertex. Then, while counting the total sum of edge labels, the number

of times of repetition (occurrence) of each vertex label is equal to the number of edges incident

to the corresponding vertex. Then the sum of f∗(e) count [f(v)]3 at total number of times an

edge is incident with a vertex v. So∑
uv∈E(G)

f∗(uv) =
∑

v∈V (G)

[f(v)]3d(v). �

Corollary 2.7 If G(p, q) is an r-regular cube sum graph, then

∑
uv∈E(G)

f∗(uv) =
r(p− 1)2p2

4
.

Proof From Theorem 3.3, we have∑
uv∈E(G)

f∗(uv) =
∑

v∈V (G)

[f(v)]3d(v). (1)

Here, G(p, q) is an r-regular cube sum graph, i.e. d(v) = r, ∀v ∈ V (G).∑
uv∈E(G)

f∗(uv) = r
∑

v∈V (G)

[f(v)]3 {from (1)}

= r
(
03 + 13 + · · ·+ (p− 1)3

)
=

r(p− 1)2p2

4
. �

§3. Some Cube Sum Graphs

Theorem 3.1 A complete graph Kn is a cube sum graph if and only if n ≤ 11.
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Proof Let V (Kn) = {v1, v2, · · · , vn} and E(Kn) = {vivj | 1 ≤ i, j ≤ n, i 6= j}. Here,

|V (Kn)| = n and |E(Kn)| = n(n−1)
2 .

Case 1. n ≤ 11.

Let us define a function f : V (Kn)→ {0, 1, 2, · · · , n− 1} as

f(vi) = i− 1 ; 1 ≤ i ≤ n.

It is obvious that f is bijective and the induced function f∗ : E(Kn)→ N defined by

f∗(uv) = (f(u))3 + (f(v))3,

for every uv ∈ E(Kn) is injective. Hence, Kn is a cube sum graph for n ≤ 11.

Case 2. n > 11.

Notice that every two vertices are adjacent to each other in a complete graph. So, defining

a mapping f : V (Kn)→ {0, 1, 2, · · · , n− 1} in any form, we have two edges ei and ej such that

f∗(ei) = 123 + 13 = 1729 and f∗(ej) = 93 + 103 = 1729. Thus, the induced function f∗ is not

injective. Hence, Kn is not a cube sum graph for n > 11. �

Theorem 3.2 A complete bipartite graph K2,n is a cube sum graph for any integer n ≥ 1.

Proof Let V1 = {v1, vn+2} and V2 = {v2, v3, · · · , vn+1} be bipartition of V (K1,n) =

{v1, v2, v3, · · · , vn+1, vn+2} and E(K1,n) = {vivj | i = 1, n + 2 and j = 2, 3, · · · , n + 1}. Here,

|V (K2,n)| = n+2 and |E(K2,n)| = 2n. Let us define a function f : V (K2,n)→ {0, 1, 2, · · · , n+1}
as

f(vi) = i− 1 ; 1 ≤ i ≤ n + 2.

It is obvious that f is bijective.

Furthermore, one can observe that

f∗(v1v2)(= 1) < f∗(v1v3)(= 23) < f∗(v1v4)(= 33)

< · · · < f∗(v1vn+1)(= n3) < f∗(vn+2v2)(= (n + 1)3 + 1)

< f∗(vn+2v3)(= (n + 1)3 + 23) < · · · < f∗(vn+2vn+1)(= (n + 1)3 + n3).

Then, the induced function f∗ : E(K2,n)→ N defined by

f∗(uv) = (f(u))3 + (f(v))3,

for every uv ∈ E(K2,n) is injective. Hence, K2,n is a cube sum graph. �

Theorem 3.3 Every tree is a cube sum graph.

Proof Let v0,0 be a vertex with maximum degree in a tree T . Choose v0,0 as a root vertex

of T (say zero level vertex). Let l be the height of T . Consider n0 = 0.



82 Mitesh J. Patel and G. V. Ghodasara

Let n1 be the number of vertices at distance one from v0,0 and let us denote these vertices

by v1,1, v1,2, · · · v1,n1
. These vertices are first level vertices. Let n2 be the number of vertices at

distance two from v0,0 which are denoted by v2,1, v2,2, · · · v2,n2
. These vertices are second level

vertices. We give priority as in ascending order.

Repeating this way, let nl be the number of vertices at distance l from v0,0 which are

denoted by vl,1, vl,2, · · · vl,nl
. These are lth level vertices.

The above process is possible because there is one and only one path between any pair of

vertices in any tree. Here, |V (T )| =
l∑

i=1

(ni) + 1 = n and |E(T )| =
l∑

i=1

(ni) = n− 1.

Let us define a function f : V (T )→ {0, 1, 2, 3, · · · , n− 1} as

f(vi,j) =

0; i = 0, j = 0.

f(vi−1,ni−1) + j; 1 ≤ i ≤ l, 1 ≤ j ≤ ni.

Here, vertex labels are in ascending order from zero level vertex to l level vertices. So, it is

obvious that f is bijective and for edge labels we have following arguments. We have following

two cases for edge labels. Without loss of generality, let e1 and e2 be any two arbitrary edges

of tree T .

Case 1. Let e1 and e2 be two incident edges. Then obviously f∗(e1) 6= f∗(e2).

Case 2. Let e1 = v1v2 and e2 = v3v4 be the edges such that e1 and e2 have no common ver-

tex. Here {f(v1), f(v2), f(v3), f(v4)} is non-empty subset of N. So, by well ordering principle,

{f(v1), f(v2), f(v3), f(v4)} has a least element, say f(v1).

Since T is a tree, at least one of the vertex v3 or v4 is not adjacent to v1. If v4 is not

adjacent to v1, then f(v4) > f(v2) and if v3 is not adjacent to v1 then f(v3) > f(v2). So,

f∗(e1) 6= f∗(e2). Thus, the induced function f∗ : E(G)→ N defined by

f∗(uv) = (f(u))3 + (f(v))3,

for every uv ∈ E(G) is injective. Hence, tree T is a cube sum graph. �

Theorem 3.4 A cycle Cn is a cube sum graph.

Proof Let V (Cn) = {v1, v2, · · · , vn} and E(Cn) = {vivi+1 | 1 ≤ i ≤ n− 1}
⋃
{vnv1}. Here,

|V (Cn)| = n and |E(Cn)| = n.

Let us define a function f : V (Cn)→ {0, 1, 2, · · · , n− 1} as per subsequent two cases.

Case 1. n is even.

In this case, define

f(vi) =


0; i = 1.

2i− 3; 2 ≤ i ≤ n+2
2 .

n− 2(i− n+2
2 ); n+2

2 < i ≤ n.



Cube Sum Labeling (Taxi-Cab Labeling) of Graphs 83

It is obvious that f is bijective and we can observe that

f∗(v1v2)(= 1) < f∗(v1vn)(= 23) < f∗(v2v3)(= 13 + 33)

< · · · < f∗(vn
2
vn+2

2
) < f∗(vn+4

2
vn+2

2
).

Case 2. n is odd.

In this case, define

f(vi) =


0; i = 1.

2i− 3; 2 ≤ i ≤ n+1
2 .

n + 1− 2(i− n+1
2 ); n+1

2 < i ≤ n.

It is obvious that f is bijective and we can observe that

f∗(v1v2)(= 1) < f∗(v1vn)(= 23) < f∗(v2v3)(= 13 + 33)

< · · · < f∗(vn
2
vn+2

2
) < f∗(vn+4

2
vn+2

2
).

So, in both the cases the induced function f∗ : E(Cn)→ N defined by

f∗(uv) = (f(u))3 + (f(v))3,

is injective. Hence, Cn is a cube sum graph. �

Theorem 3.5 A wheel Wn is a cube sum graph.

Proof Let V (Wn) = {v0, v1, · · · , vn} and E(Wn) = {v0vi | 1 ≤ i ≤ n}
⋃
{vivi+1 | 1 ≤

i ≤ n − 1}
⋃
{vnv1}, where v0 is apex and v1, v2, · · · , vn are rim vertices of Wn. Clearly,

|V (Wn)| = n + 1 and |E(Wn)| = 2n.

Let us define a function f : V (Wn)→ {0, 1 · · · , n} as follows.

f(vi) =


0 ; i = 0.

1 ; i = 1.

2(i− 1) ; 1 < i ≤ bn+2
2 c.

2n− 2i + 3 ; bn+2
2 c < i ≤ n.

It is obvious that f is bijective. We consider the following two cases for the edge labels.

Case 1. n is odd.

From above vertex labels, one can observe that labels of rim edges are in ascending order

as

f∗(v1v2)(= 13 + 23) < f∗(v1vn)(= 13 + 33) < f∗(v2v3)(= 23 + 43)

< f∗(vnvn−1)(= 33 + 53) < · · · < f∗(vn+1
2
vn+3

2
)(= (n− 1)3 + n3).
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From Fermat’s Last Theorem, f∗(v0vi) is never equal to any of above edge labels for

integers 1 ≤ i ≤ n.

Case 2. n is even.

From above vertex labels, one can observe that labels of rim edges are in ascending order

as

f∗(v1v2)(= 13 + 23) < f∗(v1vn)(= 13 + 33) < f∗(v2v3)(= 23 + 43)

< f∗(vnvn−1)(= 33 + 53) < · · · < f∗(vn+2
2
vn+4

2
)(= (n− 1)3 + n3).

From Fermat’s Last Theorem, f∗(v0vi) (1 ≤ i ≤ n) is never equal to any one of above edge

labels. So, in both the cases the induced function f∗ : E(Wn)→ N defined by

f∗(uv) = (f(u))3 + (f(v))3,

for every uv ∈ E(Wn) is injective. Hence, Wn is a cube sum graph. �

Corollary 3.6 A gear Gn is a cube sum graph.

Corollary 3.7 A shell Sn is a cube sum graph.

Theorem 3.8 A helm Hn is a cube sum graph.

Proof Let V (Hn) = {v0, vi, ui | 1 ≤ i ≤ n} and E(Hn) = {v0vi | 1 ≤ i ≤ n}
⋃
{viui | 1 ≤

i ≤ n}
⋃
{vivi+1 | 1 ≤ i ≤ n− 1}

⋃
{vnv1}, where v0 is apex, v1, v2, · · · , vn are rim vertices and

u1, u2 · · · , un are pendant vertices of helm Hn. Obviously, |V (Hn)| = 2n+1 and |E(Hn)| = 3n.

Let us define a function f : V (Hn)→ {0, 1 · · · , 2n} as follows.

Case 1. n is even.

In this case, define

f(vi) =


0 ; i = 0.

1 ; i = 1.

4i− 5 ; 2 ≤ i ≤ n+2
2 .

2n− 3− 4
(
i− n+4

2

)
; n+2

2 < i ≤ n.

f(ui) =

4i− 4 ; 2 ≤ i ≤ n+2
2 .

2n− 2− 4
(
i− n+4

2

)
; n+2

2 < i ≤ n.

It is obvious that f is bijective and for the edge labels in the graph there are three possi-

bilities as follows:
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(1) Edge labels on rim edges are

f∗(v1v2)(= 13 + 33) < f∗(v1vn)(= 13 + 53)

< f∗(v2v3)(= 33 + 73) < f∗(vnvn−1)(= 53 + 93)

< · · · < f∗(vn+2
2
vn+4

2
)(= (2n− 1)3 + (2n− 3)3).

They are in ascending order of the form 2k (k ∈ N) because the common end vertices of these

edges are labeled by odd numbers (naturally distinct).

(2) Edge labels on edges incident to pendant vertices are

f∗(v1u1)(= 13 + 23) < f∗(v2u2)(= 33 + 43)

< f∗(vnun)(= 53 + 63)

< · · · < f∗(vn+2
2
un+2

2
)(= (2n− 1)3 + (2n)3).

They are in ascending order of the form 2k + 1 (k ∈ N) because common end vertices of these

edges are labeled by consecutive numbers (naturally distinct).

(3) Edge labels on edges incident to apex are

f∗(v0v1)(= 13) < f∗(v0v2)(= 33) < f∗(v0vn)(= 53)

< · · · < f∗(v0vn+2
2

)(= (2n− 1)3).

They are in ascending order of the form 2k + 1 (k ∈ N) because common end vertices of these

edges are labeled by 0 and other end vertices by odd numbers (naturally distinct).

It is clear that the labels of possibilities (1) and (2) are distinct.

From Fermat’s Last Theorem, the edge labels in the possibilities (3) are distinct from the

edge labels in the possibilities (1) and (2). So, the labels of above all possibilities are internally

as well as externally distinct.

Case 2. n is odd.

In this case, define

f(vi) =


0 ; i = 0.

1 ; i = 1.

4i− 5 ; 2 ≤ i ≤ n+1
2 .

2n− 1− 4
(
i− n+3

2

)
; n+1

2 < i ≤ n.

f(ui) =

4i− 4 ; 2 ≤ i ≤ n+1
2 .

2n− 4
(
i− n+3

2

)
; n+1

2 < i ≤ n.

Using the arguments similar to the case 1, one can observe that in this case the function

f is bijective and for every uv ∈ E(G) the induced edge labels f∗(uv) = (f(u))3 + (f(v))3 are

all distinct.
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So, in both the cases the induced function f∗ : E(Hn)→ N defined by

f∗(uv) = (f(u))3 + (f(v))3,

is injective. Hence Hn is a cube sum graph. �

§4. Concluding Remarks

Labeling of discrete structure is a potential area of research. We have discussed some algebraic

properties of cube sum graph. We have also proved that the following graphs are cube sum

graphs: a complete graph Kn if and only if n ≤ 11, a complete bipartite graph K2,n for n ≥ 1,

every tree, cycle graph, wheel graph, gear graph, shell graph and helm graph. To investigate

more results for various graphs as well as in the context of different graph operations is an open

area of research.
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