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§1. Introduction

All the graphs considered here are loopless and finite. For a given graph G and an integer

λ ≥ 1, we use the notation G(λ) to represent the multigraph obtained from G by replacing each

of its edges with λ parallel edges. Similarly, λG denotes the graph consisting of λ edge-disjoint

copies of G. The notations Pt, Ct, Kt, and Kt represents the path, cycle, complete graph,

and complement of the complete graph, each with t vertices, respectively. Also, we denote

the induced subgraph H of G induced by S as 〈S〉. Consider a complete bipartite graph Kt,t

with bipartition (X,Y ), where X = {x0, x1, · · · , xt−1} and Y = {y0, y1, · · · , yt−1}. We define

the spanning subgraph Fi(X,Y ) of Kt,t as 〈{xjyj+i : 0 ≤ j ≤ t− 1}〉, where addition in the

subscripts are taken modulo t. It is clear that Fi(X,Y ) is a 1-factor of Kt,t with a distance

i from X to Y . Moreover, Kt,t =
t−1⊕
i=0

Fi(X,Y ), where ⊕ denotes the edge-disjoint union of

graphs, also called a Smarandache decomposition if Kt,t is labeled.

For two graphs G and H, their lexicographic product G ⊗ H has the vertex set V (G ⊗
H) = V (G) × V (H) and the edge set E(G ⊗ H) = {(g1, h1)(g2, h2) : g1g2 ∈ E(G) or g1 =

g2 and h1h2 ∈ E(H)}. Similarly, the tensor product G × H of two graphs G and H has the

vertex set V (G ×H) = V (G) × V (H) and the edge set E(G ×H) = {(g1, h1)(g2, h2) : g1g2 ∈
E(G) and h1h2 ∈ E(H)}. Note that, the tensor product is commutative and distributive over

edge-disjoint union of graphs, that is, if G = G1 ⊕ G2 ⊕ · · · ⊕ Gu, then G ×H = (G1 ×H) ⊕
· · · ⊕ (Gu×H). One can easily observe that (Ku⊗Kg)− gKu

∼= Ku×Kg, where gKu denotes

g disjoint copies of Ku.

For some integer r ≥ 1, we say that the graph G has a decomposition into the subgraphs
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G1, G2, · · · , Gr if G = ⊕r
i=1Gi, and G1, G2, · · · , Gr are pairwise edge-disjoint subgraphs of G.

For each i, 1 ≤ i ≤ r, if Gi
∼= H, then we say that G has an H-decomposition and we denote

such decomposition by H|G. A graph G is said to be unicyclic if it has exactly one cycle.

Decomposition of graphs into subgraphs has been an interesting research area in graph

theory since 1950s. Adams et al. [1] published an excellent survey on decomposing complete

graphs into subgraphs containing up to six vertices. Tian et al. [17] established the decomposi-

tion of complete graphs into unicyclic graphs with six vertices and seven edges, while Froncek et

al. [10] proved the decomposition of complete graphs into connected unicyclic bipartite graphs

with seven edges. In recent studies, Froncek et al. [11,12] proved the decomposition of complete

graphs into tri-cyclic and bi-cyclic graphs, each with eight edges. Furthermore, Fahnenstiel et

al. [5] established the necessary and sufficient conditions for the existence of a decomposition

of complete graphs into connected unicyclic bipartite graphs with eight edges. Huang et al.

[13] proved the decomposition of complete equipartite graphs into connected unicyclic graphs,

each having a size of five vertices. Similarly, Paulraja et al. [14] established the decomposition

of certain regular graphs into unicyclic graphs of order five. Sowndhariya et al. [15] proved the

decomposition of product graphs into sunlet graphs of order eight. Aspenson et al. [3], proved

the decomposition K18n and K18n+1 into connected unicyclic graphs with nine edges. Similarly,

Bonhert et al. [4], proved the decompositions of complete graphs into unicyclic disconnected

bipartite graphs with nine edges. Recently, we have proved the existence of decomposition of

λ-fold complete equipartite graphs into connected unicyclic bipartite graphs with eight edges

in [6] and the general problem is open for other classes of product of graphs. In this paper, we

show the existence of such decomposition in tensor product of complete graphs.

Let G1, G2, G3, G4 and G5 be the graphs shown in Figure 1. We assume that these graphs

have the vertex set {v1, v2, · · · , v8}. The edge set of the unicyclic graphs G1, G2, G3, G4, and G5

are denoted by (v1v2v3v4) [v1v5v6v7v8], (v1v2v3v4) [v1v5v7v8] [v5v6], (v1v2v3v4) [v2v6v7v8] [v1v5],

(v1v2v3v4) [v1v5v6] [v3v7v8], and (v1v2v3v4)[v1v5v6] [v4v7] [v3v8], respectively. Clearly, each

Gi, 1 ≤ i ≤ 5, is a connected unicyclic bipartite graph with eight edges.

Figure 1. Connected unicyclic bipartite graphs with eight edges

To prove our results we state the following:

Theorem 1.1([16]) There exists a Pm+1-decomposition of Ku(λ) if and only if λu(u−1) ≡ 0

(mod 2m), u ≥ m+ 1.

Theorem 1.2([2]) For all positive odd integers m and n with 3 ≤ m ≤ n, there exists a

Cm-decomposition of Kn if and only if n(n− 1) ≡ 0 (mod 2m).
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Theorem 1.3([6]) There exists a Gi-decomposition of K4x,4y, 1 ≤ i ≤ 5.

§2. Gi-Decomposition of Base Graphs

In this part, we have established some crucial lemmas to prove our main results.

Lemma 2.1 The graphs K4,2, K4,4 and K4,6 admits a P3-decomposition.

Proof Our proof is divided into two cases.

Case 1. P3|K4,4

Let V (K4,4) = (U, V ), where U = {u0, u1, u2, u3} and V = {v0, v1, v2, v3}. Let P j,1
3 =

[vjujvj+1] and P j,2
3 = [ujvj+2uj+3], j ∈ Z4 and additions in the subscripts of u and v are taken

modulo 4. When j varies, {P j,1
3 , P j,2

3 } gives a required P3-decomposition of K4,4.

Case 2. P3|K4,6

Let V (K4,4) = (U, V ), where U = {u0, u1, u2, u3} and V = {v0, v1, · · · , v5}. Let P j,1
3 =

[vjujvj+1], P j,2
3 = [ujvj+2uj+3], and P j,3

3 = [v4ujv5], j ∈ Z4 and additions in the subscripts of

u and v are taken modulo 4. When j varies, {P j,1
3 , P j,2

3 , P j,3
3 } gives a required P3-decomposition

of K4,6. �

Lemma 2.2 There exists a Gi-decomposition of P3 ×K5, 1 ≤ i ≤ 5.

Proof Let V (P3 × K5) = ∪i∈Z3
Xi, where X0 = {u0, u1, · · · , u4}, X1 = {v0, v1, · · · , v4}

and X2 = {w0, w1, · · · , w4}. The required Gi-decomposition of P3 ×K5 is shown below.

Let Gj
1 = (uj+1vj+3uj+4vj+2)[vj+2wj+3vj+4wj+2vj ],

Gj
2 = (uj+1vj+3uj+4vj+2)[vj+2wj+3vj+4wj+2][wj+3vj+1],

Gj
3 = (uj+1vj+3wj+1vj+2)[uj+1vjwj+2vj+1][vj+3uj ],

Gj
4 = (uj+1vj+3uj+4vj+2)[vj+3wjvj+1][vj+2wj+3vj ], and

Gj
5 = (uj+1vj+3wj+1vj+2)[wj+1vj+4wj ][vj+2uj+4][uj+1vj ], j ∈ Z5, where the additions

in the subscripts of u, v, and w are taken modulo 5. Clearly, Gj
i
∼= Gi, i = 1, 2, 3, 4, 5, j ∈ Z5

shown in Figure 1. When j varies we get the required decomposition of P3 ×K5. �

Lemma 2.3 There exists a Gi-decomposition of P3 ×K8, 1 ≤ i ≤ 5.

Proof Let V (P3 × K8) = ∪i∈Z3
Xi, where X0 = {u0, u1, · · · , u7}, X1 = {v0, v1, · · · , v7}

and X2 = {w0, w1, · · · , w7}. The required Gi-decomposition of P3 ×K8 is shown below.

Let Gj,1
1 = (uj+5v7wj+6vj+4)[wj+6vj+3uj+2vjw7],

Gj,2
1 = (ujvj+2wj+1vj+3)[ujvj+4wj+5vj+1u7],

Gj,1
2 = (uj+6v7wj+6vj+5)[vj+5wj+4vj+2u7][wj+4vj+1],

Gj,2
2 = (uj+5vjwj+5vj+1)[vj+1ujvj+5w7][ujvj+4],
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Gj,1
3 = (uj+6v7wj+6vj+5)[uj+6vj+4wj+3vj+1][vj+5u7],

Gj,2
3 = (uj+5vjwj+5vj+1)[vj+1ujvj+4w7][wj+5vj+2],

Gj,1
4 = (uj+6v7wj+6vj+5)[uj+6vj+4u7][wj+6vj+3w7],

Gj,2
4 = (ujvj+2wjvj+1)[ujvj+3uj+6][wjvj+5wj+2],

Gj,1
5 = (uj+6v7wj+6vj+5)[wj+6vj+4u7][vj+5w7][uj+6vj+3] and

Gj,2
5 = (ujvj+2wjvj+1)[ujvj+3uj+5][vj+1wj+5][wjvj+4], j ∈ Z7, where the additions in

the subscripts of u, v, and w are taken modulo 7. Clearly, Gj,l
i
∼= Gi, i = 1, 2, 3, 4, 5, j ∈ Z7, l ∈

{1, 2}.When j and l varies, we get the required decomposition of P3 ×K8. �

Lemma 2.4 There exists a G1-decomposition of P3 ×K12.

Proof Let V (P3 ×K12) = ∪i∈Z3
Xi, where X0 = {u0, u1, · · · , u11}, X1 = {v0, v1, · · · , v11}

and X2 = {w0, w1, · · · , w11}. The required G1-decomposition of P3 ×K12 is given below.

Let Gj,1
1 = (uj+10v11wj+10vj+9)[wj+10vj+8uj+7vj+5w11],

Gj,2
1 = (uj+10vj+6wj+10vj+7)[uj+10vj+5wj+4vj+10u11] and

Gj,3
1 = (ujvj+2wj+9vj+3)[ujvj+5wj+3vj+6uj+2], j ∈ Z11, where the additions in the

subscripts of u, v, and w are taken modulo 11. Clearly, Gj,l
1
∼= G1, j ∈ Z11, l ∈ {1, 2, 3}. When

j and l varies, we get the required decomposition of P3 ×K12. �

Lemma 2.5 There exists a Gi-decomposition of P5 ×K6, 1 ≤ i ≤ 5.

Proof Let V (P5×K6) = ∪i∈Z5Xi, whereX0 = {u0, u1, · · · , u5}, X1 = {v0, v1, · · · , v5}, X2 =

{w0, w1, · · · , w5}, X3 = {x0, x1, · · · , x5}, andX4 = {y0, y1, · · · , y5}. The requiredGi-decomposition

of P5 ×K6 is given below.

Let Gj,1
1 = (ujvj+1uj+3vj+2)[uj+3v5wj+4vj+3u5],

Gj,2
1 = (vjwj+3xj+1wj+2)[wj+3vj+4w5xj+4y5],

Gj,3
1 = (wj+4x5yj+4xj+1)[yj+4xjyj+1xj+4wj+3],

Gj,1
2 = (ujvj+1uj+3vj+2)[vj+2wj+3v5uj+4][wj+3xj+4],

Gj,2
2 = (vjwj+3xj+1wj+2)[wj+3vj+4w5xj+4][vj+4u5],

Gj,3
2 = (wj+4x5yj+4xj+1)[yj+4xjyj+1xj+4][xjy5],

Gj,1
3 = (ujvj+1uj+3vj+2)[uj+3v5wj+3xj+4][vj+1wj+2],

Gj,2
3 = (vjwj+3xj+1wj+2)[wj+3vj+4w5xj+4][vju5],

Gj,3
3 = (wj+4x5yj+4xj+1)[yj+4xjyj+1xj+4][xj+1y5],

Gj,1
4 = (uj+4v5wj+4vj+3)[uj+4vj+2u5][wj+4vj+1wj+3],

Gj,2
4 = (vj+4w5xj+4wj+3)[vj+4uj+3vj ][xj+4yj+3xj ],

Gj,3
4 = (wj+4x5yj+4xj+3)[wj+4xj+1wj+3][yj+4xj+2y5],

Gj,1
5 = (uj+4v5wj+4vj+3)[uj+4vj+2u5][vj+3wj ][wj+4vj+1],
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Gj,2
5 = (vj+4w5xj+4wj+3)[vj+4uj+3vj ][wj+3xj+1][xj+4yj+3] and

Gj,3
5 = (wj+4x5yj+4xj+3)[yj+4xj+2y5][xj+3yj+1][wj+4xj+1], j ∈ Z5, where the

additions in the subscripts of u, v, w, x, and y are taken modulo 5. Clearly, Gj,l
i
∼= Gi, i =

1, 2, 3, 4, 5, j ∈ Z5, l ∈ {1, 2, 3}. When j and l varies, we get the required decomposition of

P5 ×K6. �

Lemma 2.6 There exists a Gi-decomposition of K9 ×K2, 1 ≤ i ≤ 5.

Proof Let V (K9 × K2) = (U, V ), where U = {u0, u1, · · · , u8} and V = {v0, v1, · · · , v8}.
The required Gi-decomposition of K9 ×K2 is given below.

Let Gj
1 = (ujvj+1uj+3vj+2)[uj+3vj+6uj+2vj+7uj+1],

Gj
2 = (ujvj+1uj+3vj+2)[uj+3vj+6uj+2vj+8][vj+6uj+1],

Gj
3 = (ujvj+1uj+3vj+2)[uj+3vj+6uj+2vj+8][vj+2uj+6],

Gj
4 = (ujvj+1uj+3vj+2)[uj+3vj+6uj+2][ujvj+5uj+8], and

Gj
5 = (ujvj+1uj+3vj+2)[uj+3vj+6uj+2][vj+2uj+5][ujvj+5], j ∈ Z9, where the additions

in the subscripts of u and v are taken modulo 9. Clearly, Gj
i
∼= Gi, i = 1, 2, 3, 4, 5, j ∈ Z9.

When j varies, we get the required decomposition of K9 ×K2. �

Lemma 2.7 There exists a Gi-decomposition of C3 ×K8, 1 ≤ i ≤ 5.

Proof Let V (C3 × K8) = ∪i∈Z3Xi, where X0 = {u0, u1, · · · , u7}, X1 = {v0, v1, · · · , v7}
and X2 = {w0, w1, · · · , w7}. The required Gi-decomposition of C3 ×K8 is given below.

Let Gj,1
1 = (uj+5vj+6u7wj+6)[uj+5vjuj+4vj+1uj+3],

Gj,2
1 = (uj+6v7wj+6vj+5)[vj+5wjvj+4wj+1vj+3],

Gj,3
1 = (uj+6w7vj+6wj+5)[wj+5ujwj+4uj+1wj+3],

Gj,1
2 = (uj+5vj+6u7wj+6)[uj+5vjuj+4vj+1][vjuj+2],

Gj,2
2 = (uj+6v7wj+6vj+5)[vj+5wjvj+4wj+1][wjvj+2],

Gj,3
2 = (uj+6w7vj+6wj+5)[wj+5ujwj+4uj+1][ujwj+2],

Gj,1
3 = (uj+5vj+6u7wj+6)[uj+5vjuj+4vj+1][vj+6wj+4],

Gj,2
3 = (uj+6v7wj+6vj+5)[vj+5wjvj+4wj+1][wj+6uj+4],

Gj,3
3 = (uj+6w7vj+6wj+5)[wj+5ujwj+4uj+1][uj+6vj+4],

Gj,1
4 = (uj+5vj+6u7wj+6)[vj+6wj+1vj+5][wj+6uj+1wj+5],

Gj,2
4 = (uj+6v7wj+6vj+5)[uj+6vj+1uj+5][wj+6uj+4wj ],

Gj,3
4 = (uj+6w7vj+6wj+5)[uj+6vj+3uj+5][vj+6wj+3vj+5],

Gj,1
5 = (uj+5vj+6u7wj+6)[wj+6uj+3wj+5][uj+5vj ][vj+6wj+1],

Gj,2
5 = (uj+6v7wj+6vj+5)[uj+6vj+2uj+5][vj+5wj+1][wj+6uj+2] and

Gj,3
5 = (uj+6w7vj+6wj+5)[vj+6wj+2vj+5][wj+5uj ][uj+6vj+4], j ∈ Z7,
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where the additions in the subscripts of u, v, and w are taken modulo 7. Clearly, Gj,l
i
∼= Gi, i =

1, 2, 3, 4, 5, j ∈ Z7, l ∈ {1, 2, 3}. When j and l varies, we get the required decomposition of

C3 ×K8. �

Lemma 2.8 There exists a Gi-decomposition of K4 ×K4, 2 ≤ i ≤ 5.

Proof Let V (K4×K4) = ∪i∈Z4
Xi, where X0 = {u0, u1, u2, u3}, X1 = {v0, v1, v2, v3}, X2 =

{w0, w1, w2, w3}, and X3 = {x0, x1, x2, x3}. The required Gi-decomposition of K4×K4 is given

below.

Let Gj,1
2 = (u3vj+2w3xj+2)[u3wj+1x3uj+1][wj+1uj ],

Gj,2
2 = (ujvj+1wjxj+1)[wjuj+1v3wj+2][uj+1w3],

Gj,3
2 = (uj+1vjwj+1xj)[vjxj+1vj+2x3][xj+1v3],

Gj,1
3 = (u3vj+2w3xj+2)[vj+2x3wj+2v3][u3wj+1],

Gj,2
3 = (ujvj+1wjxj+1)[vj+1xj+2v3uj+2][ujw3],

Gj,3
3 = (uj+1vjwj+1xj)[uj+1wjuj+2x3][vjxj+2],

Gj,1
4 = (u3vj+2w3xj+2)[u3wj+1uj ][w3uj+1x3],

Gj,2
4 = (ujvj+1wjxj+1)[ujwj+2x3][wjv3uj+2],

Gj,3
4 = (uj+1vjwj+1xj)[vjxj+1v3][xjvj+1x3],

Gj,1
5 = (u3vj+2w3xj+2)[u3wj+1uj ][vj+2xj+1][w3uj+2],

Gj,2
5 = (ujvj+1wjxj+1)[wjx3uj+2][vj+1xj+2][ujv3] and

Gj,3
5 = (uj+1vjwj+1xj)[wj+1v3xj+2][vjx3][uj+1wj ], j ∈ Z3,

where the additions in the subscripts of u, v, w, and x are taken modulo 3. Clearly, Gj,l
i
∼=

Gi, i = 1, 2, 3, 4, 5, j ∈ Z3, l ∈ {1, 2, 3}. When j and l varies, we get the required decomposition

of K4 ×K4. �

Lemma 2.9 For g ≡ 0 (mod 8), there exists a Gi-decomposition of K6 ×Kg, 1 ≤ i ≤ 5.

Proof Let g = 8x, x ≥ 1. We can write K8x = (Kx⊗K8)⊕xK8 =
(
x
2

)
(K2⊗K8)⊕xK8

∼=(
x
2

)
K8,8 ⊕ xK8 and hence K8x × K6 =

(
x
2

)
(K8,8 × K6) ⊕ x(K8 × K6) = 15

(
x
2

)
(K8,8 × K2) ⊕

x(K8 ×K6). By Theorem 1.3, Gi|K8,8, since Gi is bipartite, Gi ×K2 = 2Gi. By Theorem 1.1,

P5|K8 and hence Gi|P5 × K6 by Lemma 2.5. Therefore, the graph K6 × K8x has a required

Gi-decomposition. �

Lemma 2.10 For g ≡ 0 (mod 8), there exists a Gi-decomposition of P3 ×Kg, 1 ≤ i ≤ 5.

Proof Let g = 8x, x ≥ 1. We can write P3 ×K8x = ((P3 ×Kx) ⊗K8) ⊕ x(P3 ×K8) =

((P3 ×
(
x
2

)
K2)⊗K8)⊕ x(P3 ×K8) =

((
x
2

)
(P3 ×K2)⊗K8

)
⊕ x(P3 ×K8) = 4

(
x
2

)
(K2 ⊗K8)⊕

x(P3 ×K8) = 4
(
x
2

)
K8,8 ⊕ x(P3 ×K8). By Theorem 1.3 and Lemma 2.3, the graph P3 ×K8x

has a required Gi-decomposition. �

Lemma 2.11 For u ≡ 0, 4 (mod 8) and g ≡ 0 (mod 4), G1-decomposition of Ku ×Kg exists.

Proof Let u = 8x + t, x ≥ 1 and t ∈ {0, 4}. We can write K8x+t = K8+t ⊕ (x − 1)K8 ⊕
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(x−1)K8,8+t⊕ (Kx−1⊗K8) = K8+t⊕ (x−1)K8⊕ (x−1)K8,8+t⊕ (
(
x−1
2

)
(K2⊗K8)) = K8+t⊕

(x− 1)K8⊕ (x− 1)K8,8+t⊕
(
x−1
2

)
K8,8. By Theorem 1.1, P3|Kg and G1|K8+t×P3, by Lemmas

2.3 and 2.4. By Theorem 1.3, G1|K8,8+t and hence G1 ×Kg = G1 × (
(
g
2

)
K2) =

(
g
2

)
(G1 ×K2),

since G1 is bipartite, G1 ×K2 = 2G1. Therefore, G1-decomposition of Ku ×Kg exists. �

§3. Gi-Decomposition of Ku ×Kg

Theorem 3.1 Let u, g ≥ 4. For 1 ≤ i ≤ 5, Gi|Ku ×Kg if and only if ug(u − 1)(g − 1) ≡ 0

(mod 16), except possibly (u, g,Gi) = (4, 4, G1).

Proof Necessity: The number of edges in Ku×Kg are
(
u
2

)
(g2− g) and Gi has 8 edges. If

Gi|Ku ×Kg, then 8|
(
u
2

)
(g2 − g). Hence ug(u− 1)(g − 1) ≡ 0 (mod 16).

Sufficiency: To prove the sufficiency, from the edge divisibility condition, it is enough to

discuss the following cases.

• u ≡ 0 (mod 4) and g ≡ 0 (mod 4); • u ≡ 0 (mod 4) and g ≡ 1 (mod 4);

• u ≡ 2 (mod 4) and g ≡ 0 (mod 8); • u ≡ 2 (mod 4) and g ≡ 1 (mod 8);

• u ≡ 3 (mod 4) and g ≡ 0 (mod 8); • u ≡ 3 (mod 4) and g ≡ 1 (mod 8);

• u ≡ 1 (mod 4) and g ≡ 1 (mod 4).

Case 1. u ≡ 0 (mod 4) and g ≡ 0 (mod 4)

By Lemma 2.11, G1|Ku×Kg exists and hence it is enough to prove Gi|Ku×Kg, 2 ≤ i ≤ 5.

Let u = 4x and g = 4y, x, y ≥ 1. We can write K4x = (Kx⊗K4)⊕xK4 =
(
x
2

)
(K2⊗K4)⊕xK4 =(

x
2

)
K4,4⊕xK4 andK4y =

(
y
2

)
K4,4⊕yK4. ThenK4x×K4y =

((
x
2

)
K4,4⊕xK4

)
×
((

y
2

)
K4,4⊕yK4

)
=(

x
2

)(
y
2

)
(K4,4 × K4,4) ⊕ y

(
x
2

)
(K4,4 × K4) ⊕ x

(
y
2

)
(K4,4 × K4) ⊕ xy(K4 × K4) = 16

(
x
2

)(
y
2

)
(K4,4 ×

K2)⊕ 6y
(
x
2

)
(K4,4 ×K2)⊕ 6x

(
y
2

)
⊕ (K4,4 ×K2)⊕ xy(K4 ×K4). By Theorem 1.3, Gi|K4,4 since

Gi is bipartite, Gi ×K2 = 2Gi. By Lemma 2.8, Gi|K4 ×K4, 2 ≤ i ≤ 5. Therefore, the graph

K4x ×K4y has a required Gi-decomposition.

Case 2. u ≡ 0, 1 (mod 4) and g ≡ 1 (mod 4)

Let g = 4x + 1, x ≥ 1. We can write K4x+1 = (Kx ⊗K4) ⊕ xK5 =
(
x
2

)
K4,4 ⊕ xK5 and

hence Ku ×K4x+1 =
(
x
2

)
(Ku ×K4,4) ⊕ x(Ku ×K5) =

(
u
2

)(
x
2

)
(K2 ×K4,4) ⊕ x(Ku ×K5). By

Theorem 1.3, Gi|K4,4, since Gi is bipartite, Gi×K2 = 2Gi. By Theorem 1.1, P3|Ku and hence

Gi|P3×K5 by Lemma 2.2. Therefore, the graph Ku×K4x+1 has a required Gi-decomposition.

Case 3. u ≡ 2 (mod 4) and g ≡ 0 (mod 8)

Let u = 4x+2, x ≥ 1. We can write K4x+2 = K6⊕(x−1)K4⊕(x−1)K4,6⊕(Kx−1⊗K4) =

K6 ⊕ (x− 1)K4 ⊕ (x− 1)K4,6 ⊕
(
x−1
2

)
K4,4 and hence K4x+2 ×Kg = (K6 ×Kg)⊕ (x− 1)(K4 ×

Kg) ⊕ (x − 1)(K4,6 × Kg) ⊕
(
x−1
2

)
(K4,4 × Kg). By Lemma 2.9, the graph K6 × Kg has a

Gi-decomposition. By Theorem 1.1 and Lemma 2.1, P3|K4, P3|K4,4, and P3|K4,6 and hence

Gi|P3×Kg by Lemma 2.10. Therefore, the graph K4x+2×Kg has a required Gi-decomposition.

Case 4. u ≡ 3 (mod 4) and g ≡ 0 (mod 8)
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Let u = 4x+3, x ≥ 1. We can write K4x+3 = K7⊕(x−1)K5⊕(x−1)K4,6⊕(Kx−1⊗K4) =

K7⊕(x−1)K5⊕(x−1)K4,6⊕
(
x−1
2

)
K4,4 and hence K4x+3×Kg = (K7×Kg)⊕(x−1)(K5×Kg)⊕

(x−1)(K4,6×Kg)⊕
(
x−1
2

)
(K4,4×Kg). By Theorem 1.2, C3|K7 and the graphs K5, K4,2, K4,4

has P3-decomposition by Theorem 1.1 and Lemma 2.1. Then by Lemmas 2.7 and 2.3, the

graphs C3 ×Kg and P3 ×Kg has Gi-decomposition. Therefore, the graph K4x+3 ×Kg has a

required Gi-decomposition.

Case 5. u ≡ 2, 3 (mod 4) and g ≡ 1 (mod 8)

Let g = 8x + 1, x ≥ 1. We can write K8x+1 = (Kx ⊗K8) ⊕ xK9 =
(
x
2

)
K8,8 ⊕ xK9 and

hence Ku × K8x+1 =
(
x
2

)
(Ku × K4,4) ⊕ x(Ku × K9) =

(
u
2

)(
x
2

)
(K2 × K8,8) ⊕ x

(
u
2

)
(K2 × K9).

By Theorem 1.3, Gi|K8,8, since Gi bipartite, Gi ×K2 = 2Gi and by Lemma 2.6, Gi|K9 ×K2.

Therefore, the graph Ku ×K8x+1 has a required Gi-decomposition. �
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