International J.Math. Combin. Vol.1(2024), 65-73

Decomposition of Tensor Product of Complete Graphs into Connected Unicyclic Bipartite Graphs with Eight Edges

S. Duraimurugan and A. Muthusamy

(Department of Mathematics, Periyar University, Salem, Tamil Nadu, India)

E-mail: duraipu93@gmail.com, appumuthusamy@gmail.com

Abstract: In this paper, we obtain necessary and sufficient conditions for decomposing tensor product of complete graphs into some connected unicyclic bipartite graphs with eight edges.

Key Words: Decomposition, Smarandache decomposition, wreath product, tensor product, unicyclic graph.

AMS(2010): 05C70, 05C76.

§1. Introduction

All the graphs considered here are loopless and finite. For a given graph G and an integer $\lambda \geq 1$, we use the notation $G(\lambda)$ to represent the multigraph obtained from G by replacing each of its edges with λ parallel edges. Similarly, λG denotes the graph consisting of λ edge-disjoint copies of G. The notations P_t , C_t , K_t , and \overline{K}_t represents the path, cycle, complete graph, and complement of the complete graph, each with t vertices, respectively. Also, we denote the induced subgraph H of G induced by S as $\langle S \rangle$. Consider a complete bipartite graph $K_{t,t}$ with bipartition (X, Y), where $X = \{x_0, x_1, \cdots, x_{t-1}\}$ and $Y = \{y_0, y_1, \cdots, y_{t-1}\}$. We define the spanning subgraph $F_i(X, Y)$ of $K_{t,t}$ as $\langle \{x_j y_{j+i} : 0 \leq j \leq t-1\} \rangle$, where addition in the subscripts are taken modulo t. It is clear that $F_i(X, Y)$ is a 1-factor of $K_{t,t}$ with a distance i from X to Y. Moreover, $K_{t,t} = \bigoplus_{i=0}^{t-1} F_i(X, Y)$, where \oplus denotes the edge-disjoint union of graphs, also called a Smarandache decomposition if $K_{t,t}$ is labeled.

For two graphs G and H, their lexicographic product $G \otimes H$ has the vertex set $V(G \otimes H) = V(G) \times V(H)$ and the edge set $E(G \otimes H) = \{(g_1, h_1)(g_2, h_2) : g_1g_2 \in E(G) \text{ or } g_1 = g_2$ and $h_1h_2 \in E(H)\}$. Similarly, the tensor product $G \times H$ of two graphs G and H has the vertex set $V(G \times H) = V(G) \times V(H)$ and the edge set $E(G \times H) = \{(g_1, h_1)(g_2, h_2) : g_1g_2 \in E(G) \text{ and } h_1h_2 \in E(H)\}$. Note that, the tensor product is commutative and distributive over edge-disjoint union of graphs, that is, if $G = G_1 \oplus G_2 \oplus \cdots \oplus G_u$, then $G \times H = (G_1 \times H) \oplus \cdots \oplus (G_u \times H)$. One can easily observe that $(K_u \otimes \overline{K}_g) - gK_u \cong K_u \times K_g$, where gK_u denotes g disjoint copies of K_u .

For some integer $r \ge 1$, we say that the graph G has a *decomposition* into the subgraphs

¹Received October 4, 2023, Accepted March 6,2024.

 G_1, G_2, \dots, G_r if $G = \bigoplus_{i=1}^r G_i$, and G_1, G_2, \dots, G_r are pairwise edge-disjoint subgraphs of G. For each $i, 1 \leq i \leq r$, if $G_i \cong H$, then we say that G has an *H*-decomposition and we denote such decomposition by H|G. A graph G is said to be *unicyclic* if it has exactly one cycle.

Decomposition of graphs into subgraphs has been an interesting research area in graph theory since 1950s. Adams et al. [1] published an excellent survey on decomposing complete graphs into subgraphs containing up to six vertices. Tian et al. [17] established the decomposition of complete graphs into unicyclic graphs with six vertices and seven edges, while Froncek et al. [10] proved the decomposition of complete graphs into connected unicyclic bipartite graphs with seven edges. In recent studies, Froncek et al. [11,12] proved the decomposition of complete graphs into tri-cyclic and bi-cyclic graphs, each with eight edges. Furthermore, Fahnenstiel et al. [5] established the necessary and sufficient conditions for the existence of a decomposition of complete graphs into connected unicyclic bipartite graphs with eight edges. Huang et al. [13] proved the decomposition of complete equipartite graphs into connected unicyclic graphs, each having a size of five vertices. Similarly, Paulraja et al. [14] established the decomposition of certain regular graphs into unicyclic graphs of order five. Sowndhariya et al. [15] proved the decomposition of product graphs into sunlet graphs of order eight. Aspenson et al. [3], proved the decomposition K_{18n} and K_{18n+1} into connected unicyclic graphs with nine edges. Similarly, Bonhert et al. [4], proved the decompositions of complete graphs into unicyclic disconnected bipartite graphs with nine edges. Recently, we have proved the existence of decomposition of λ -fold complete equipartite graphs into connected unicyclic bipartite graphs with eight edges in [6] and the general problem is open for other classes of product of graphs. In this paper, we show the existence of such decomposition in tensor product of complete graphs.

Let G_1, G_2, G_3, G_4 and G_5 be the graphs shown in Figure 1. We assume that these graphs have the vertex set $\{v_1, v_2, \dots, v_8\}$. The edge set of the unicyclic graphs G_1, G_2, G_3, G_4 , and G_5 are denoted by $(v_1v_2v_3v_4)$ $[v_1v_5v_6v_7v_8], (v_1v_2v_3v_4)$ $[v_1v_5v_7v_8]$ $[v_5v_6], (v_1v_2v_3v_4)$ $[v_2v_6v_7v_8]$ $[v_1v_5],$ $(v_1v_2v_3v_4)$ $[v_1v_5v_6]$ $[v_3v_7v_8],$ and $(v_1v_2v_3v_4)[v_1v_5v_6]$ $[v_4v_7]$ $[v_3v_8],$ respectively. Clearly, each $G_i, 1 \leq i \leq 5$, is a connected unicyclic bipartite graph with eight edges.

Figure 1. Connected unicyclic bipartite graphs with eight edges

To prove our results we state the following:

Theorem 1.1([16]) There exists a P_{m+1} -decomposition of $K_u(\lambda)$ if and only if $\lambda u(u-1) \equiv 0 \pmod{2m}$, $u \geq m+1$.

Theorem 1.2([2]) For all positive odd integers m and n with $3 \le m \le n$, there exists a C_m -decomposition of K_n if and only if $n(n-1) \equiv 0 \pmod{2m}$.

Theorem 1.3([6]) There exists a G_i -decomposition of $K_{4x,4y}$, $1 \le i \le 5$.

§2. G_i -Decomposition of Base Graphs

In this part, we have established some crucial lemmas to prove our main results.

Lemma 2.1 The graphs $K_{4,2}$, $K_{4,4}$ and $K_{4,6}$ admits a P_3 -decomposition.

Proof Our proof is divided into two cases.

Case 1. $P_3|K_{4,4}$

Let $V(K_{4,4}) = (U, V)$, where $U = \{u_0, u_1, u_2, u_3\}$ and $V = \{v_0, v_1, v_2, v_3\}$. Let $P_3^{j,1} = [v_j u_j v_{j+1}]$ and $P_3^{j,2} = [u_j v_{j+2} u_{j+3}]$, $j \in \mathbb{Z}_4$ and additions in the subscripts of u and v are taken modulo 4. When j varies, $\{P_3^{j,1}, P_3^{j,2}\}$ gives a required P_3 -decomposition of $K_{4,4}$.

Case 2. $P_3|K_{4,6}$

Let $V(K_{4,4}) = (U, V)$, where $U = \{u_0, u_1, u_2, u_3\}$ and $V = \{v_0, v_1, \dots, v_5\}$. Let $P_3^{j,1} = [v_j u_j v_{j+1}], P_3^{j,2} = [u_j v_{j+2} u_{j+3}]$, and $P_3^{j,3} = [v_4 u_j v_5], j \in \mathbb{Z}_4$ and additions in the subscripts of u and v are taken modulo 4. When j varies, $\{P_3^{j,1}, P_3^{j,2}, P_3^{j,3}\}$ gives a required P_3 -decomposition of $K_{4,6}$.

Lemma 2.2 There exists a G_i -decomposition of $P_3 \times K_5$, $1 \le i \le 5$.

Proof Let $V(P_3 \times K_5) = \bigcup_{i \in \mathbb{Z}_3} X_i$, where $X_0 = \{u_0, u_1, \cdots, u_4\}$, $X_1 = \{v_0, v_1, \cdots, v_4\}$ and $X_2 = \{w_0, w_1, \cdots, w_4\}$. The required G_i -decomposition of $P_3 \times K_5$ is shown below.

Let $\begin{aligned} G_1^j &= (u_{j+1}v_{j+3}u_{j+4}v_{j+2})[v_{j+2}w_{j+3}v_{j+4}w_{j+2}v_j],\\ G_2^j &= (u_{j+1}v_{j+3}u_{j+4}v_{j+2})[v_{j+2}w_{j+3}v_{j+4}w_{j+2}][w_{j+3}v_{j+1}],\\ G_3^j &= (u_{j+1}v_{j+3}w_{j+1}v_{j+2})[u_{j+1}v_jw_{j+2}v_{j+1}][v_{j+3}u_j],\\ G_4^j &= (u_{j+1}v_{j+3}u_{j+4}v_{j+2})[v_{j+3}w_jv_{j+1}][v_{j+2}w_{j+3}v_j], \text{ and }\\ G_5^j &= (u_{j+1}v_{j+3}w_{j+1}v_{j+2})[w_{j+1}v_{j+4}w_j][v_{j+2}u_{j+4}][u_{j+1}v_j], j \in \mathbb{Z}_5, \text{ where the additions} \end{aligned}$

in the subscripts of u, v, and w are taken modulo 5. Clearly, $G_i^j \cong G_i, i = 1, 2, 3, 4, 5, j \in \mathbb{Z}_5$ shown in Figure 1. When j varies we get the required decomposition of $P_3 \times K_5$.

Lemma 2.3 There exists a G_i -decomposition of $P_3 \times K_8$, $1 \le i \le 5$.

Proof Let $V(P_3 \times K_8) = \bigcup_{i \in \mathbb{Z}_3} X_i$, where $X_0 = \{u_0, u_1, \cdots, u_7\}$, $X_1 = \{v_0, v_1, \cdots, v_7\}$ and $X_2 = \{w_0, w_1, \cdots, w_7\}$. The required G_i -decomposition of $P_3 \times K_8$ is shown below.

Let $\begin{aligned} G_1^{j,1} &= (u_{j+5}v_7w_{j+6}v_{j+4})[w_{j+6}v_{j+3}u_{j+2}v_jw_7], \\ G_1^{j,2} &= (u_jv_{j+2}w_{j+1}v_{j+3})[u_jv_{j+4}w_{j+5}v_{j+1}u_7], \\ G_2^{j,1} &= (u_{j+6}v_7w_{j+6}v_{j+5})[v_{j+5}w_{j+4}v_{j+2}u_7][w_{j+4}v_{j+1}], \\ G_2^{j,2} &= (u_{j+5}v_jw_{j+5}v_{j+1})[v_{j+1}u_jv_{j+5}w_7][u_jv_{j+4}], \end{aligned}$

$$\begin{split} G_3^{j,1} &= (u_{j+6}v_7w_{j+6}v_{j+5})[u_{j+6}v_{j+4}w_{j+3}v_{j+1}][v_{j+5}u_7], \\ G_3^{j,2} &= (u_{j+5}v_jw_{j+5}v_{j+1})[v_{j+1}u_jv_{j+4}w_7][w_{j+5}v_{j+2}], \\ G_4^{j,1} &= (u_{j+6}v_7w_{j+6}v_{j+5})[u_{j+6}v_{j+4}u_7][w_{j+6}v_{j+3}w_7], \\ G_4^{j,2} &= (u_jv_{j+2}w_jv_{j+1})[u_jv_{j+3}u_{j+6}][w_jv_{j+5}w_{j+2}], \\ G_5^{j,1} &= (u_{j+6}v_7w_{j+6}v_{j+5})[w_{j+6}v_{j+4}u_7][v_{j+5}w_7][u_{j+6}v_{j+3}] \text{ and} \\ G_5^{j,2} &= (u_jv_{j+2}w_jv_{j+1})[u_jv_{j+3}u_{j+5}][v_{j+1}w_{j+5}][w_jv_{j+4}], \ j \in \mathbb{Z}_7, \text{ where the additions in} \end{split}$$

the subscripts of u, v, and w are taken modulo 7. Clearly, $G_i^{j,l} \cong G_i, i = 1, 2, 3, 4, 5, j \in \mathbb{Z}_7, l \in \{1, 2\}$. When j and l varies, we get the required decomposition of $P_3 \times K_8$.

Lemma 2.4 There exists a G_1 -decomposition of $P_3 \times K_{12}$.

Proof Let $V(P_3 \times K_{12}) = \bigcup_{i \in \mathbb{Z}_3} X_i$, where $X_0 = \{u_0, u_1, \cdots, u_{11}\}$, $X_1 = \{v_0, v_1, \cdots, v_{11}\}$ and $X_2 = \{w_0, w_1, \cdots, w_{11}\}$. The required G_1 -decomposition of $P_3 \times K_{12}$ is given below.

Let
$$\begin{aligned} G_1^{j,1} &= (u_{j+10}v_{11}w_{j+10}v_{j+9})[w_{j+10}v_{j+8}u_{j+7}v_{j+5}w_{11}], \\ G_1^{j,2} &= (u_{j+10}v_{j+6}w_{j+10}v_{j+7})[u_{j+10}v_{j+5}w_{j+4}v_{j+10}u_{11}] \text{ and} \\ G_1^{j,3} &= (u_jv_{j+2}w_{j+9}v_{j+3})[u_jv_{j+5}w_{j+3}v_{j+6}u_{j+2}], \ j \in \mathbb{Z}_{11}, \text{ where the additions in the} \end{aligned}$$

subscripts of u, v, and w are taken modulo 11. Clearly, $G_1^{j,l} \cong G_1, j \in \mathbb{Z}_{11}, l \in \{1, 2, 3\}$. When j and l varies, we get the required decomposition of $P_3 \times K_{12}$.

Lemma 2.5 There exists a G_i -decomposition of $P_5 \times K_6$, $1 \le i \le 5$.

Proof Let $V(P_5 \times K_6) = \bigcup_{i \in \mathbb{Z}_5} X_i$, where $X_0 = \{u_0, u_1, \cdots, u_5\}$, $X_1 = \{v_0, v_1, \cdots, v_5\}$, $X_2 = \{w_0, w_1, \cdots, w_5\}$, $X_3 = \{x_0, x_1, \cdots, x_5\}$, and $X_4 = \{y_0, y_1, \cdots, y_5\}$. The required G_i -decomposition of $P_5 \times K_6$ is given below.

$$\begin{split} G_5^{j,2} &= (v_{j+4}w_5x_{j+4}w_{j+3})[v_{j+4}u_{j+3}v_j][w_{j+3}x_{j+1}][x_{j+4}y_{j+3}] \text{ and} \\ G_5^{j,3} &= (w_{j+4}x_5y_{j+4}x_{j+3})[y_{j+4}x_{j+2}y_5][x_{j+3}y_{j+1}][w_{j+4}x_{j+1}], \ j \in \mathbb{Z}_5, \text{ where there} \end{split}$$

additions in the subscripts of u, v, w, x, and y are taken modulo 5. Clearly, $G_i^{j,l} \cong G_i, i = 1, 2, 3, 4, 5, j \in \mathbb{Z}_5, l \in \{1, 2, 3\}$. When j and l varies, we get the required decomposition of $P_5 \times K_6$.

Lemma 2.6 There exists a G_i -decomposition of $K_9 \times K_2$, $1 \le i \le 5$.

Proof Let $V(K_9 \times K_2) = (U, V)$, where $U = \{u_0, u_1, \dots, u_8\}$ and $V = \{v_0, v_1, \dots, v_8\}$. The required G_i -decomposition of $K_9 \times K_2$ is given below.

Let
$$\begin{aligned} G_1^j &= (u_j v_{j+1} u_{j+3} v_{j+2}) [u_{j+3} v_{j+6} u_{j+2} v_{j+7} u_{j+1}], \\ G_2^j &= (u_j v_{j+1} u_{j+3} v_{j+2}) [u_{j+3} v_{j+6} u_{j+2} v_{j+8}] [v_{j+6} u_{j+1}], \\ G_3^j &= (u_j v_{j+1} u_{j+3} v_{j+2}) [u_{j+3} v_{j+6} u_{j+2} v_{j+8}] [v_{j+2} u_{j+6}], \\ G_4^j &= (u_j v_{j+1} u_{j+3} v_{j+2}) [u_{j+3} v_{j+6} u_{j+2}] [u_j v_{j+5} u_{j+8}], \text{ and} \\ G_5^j &= (u_j v_{j+1} u_{j+3} v_{j+2}) [u_{j+3} v_{j+6} u_{j+2}] [v_{j+2} u_{j+5}], j \in \mathbb{Z}_9, \text{ where the additions} \end{aligned}$$

in the subscripts of u and v are taken modulo 9. Clearly, $G_i^j \cong G_i, i = 1, 2, 3, 4, 5, j \in \mathbb{Z}_9$. When j varies, we get the required decomposition of $K_9 \times K_2$.

Lemma 2.7 There exists a G_i -decomposition of $C_3 \times K_8$, $1 \le i \le 5$.

Proof Let $V(C_3 \times K_8) = \bigcup_{i \in \mathbb{Z}_3} X_i$, where $X_0 = \{u_0, u_1, \cdots, u_7\}$, $X_1 = \{v_0, v_1, \cdots, v_7\}$ and $X_2 = \{w_0, w_1, \cdots, w_7\}$. The required G_i -decomposition of $C_3 \times K_8$ is given below.

where the additions in the subscripts of u, v, and w are taken modulo 7. Clearly, $G_i^{j,l} \cong G_i, i = 1, 2, 3, 4, 5, j \in \mathbb{Z}_7, l \in \{1, 2, 3\}$. When j and l varies, we get the required decomposition of $C_3 \times K_8$.

Lemma 2.8 There exists a G_i -decomposition of $K_4 \times K_4$, $2 \le i \le 5$.

Proof Let $V(K_4 \times K_4) = \bigcup_{i \in \mathbb{Z}_4} X_i$, where $X_0 = \{u_0, u_1, u_2, u_3\}$, $X_1 = \{v_0, v_1, v_2, v_3\}$, $X_2 = \{w_0, w_1, w_2, w_3\}$, and $X_3 = \{x_0, x_1, x_2, x_3\}$. The required G_i -decomposition of $K_4 \times K_4$ is given below.

where the additions in the subscripts of u, v, w, and x are taken modulo 3. Clearly, $G_i^{j,l} \cong G_i, i = 1, 2, 3, 4, 5, j \in \mathbb{Z}_3, l \in \{1, 2, 3\}$. When j and l varies, we get the required decomposition of $K_4 \times K_4$.

Lemma 2.9 For $g \equiv 0 \pmod{8}$, there exists a G_i -decomposition of $K_6 \times K_g$, $1 \le i \le 5$.

Proof Let g = 8x, $x \ge 1$. We can write $K_{8x} = (K_x \otimes \overline{K}_8) \oplus xK_8 = \binom{x}{2}(K_2 \otimes \overline{K}_8) \oplus xK_8 \cong \binom{x}{2}K_{8,8} \oplus xK_8$ and hence $K_{8x} \times K_6 = \binom{x}{2}(K_{8,8} \times K_6) \oplus x(K_8 \times K_6) = 15\binom{x}{2}(K_{8,8} \times K_2) \oplus x(K_8 \times K_6)$. By Theorem 1.3, $G_i|K_{8,8}$, since G_i is bipartite, $G_i \times K_2 = 2G_i$. By Theorem 1.1, $P_5|K_8$ and hence $G_i|P_5 \times K_6$ by Lemma 2.5. Therefore, the graph $K_6 \times K_{8x}$ has a required G_i -decomposition.

Lemma 2.10 For $g \equiv 0 \pmod{8}$, there exists a G_i -decomposition of $P_3 \times K_g$, $1 \le i \le 5$.

Proof Let g = 8x, $x \ge 1$. We can write $P_3 \times K_{8x} = ((P_3 \times K_x) \otimes \overline{K}_8) \oplus x(P_3 \times K_8) = ((P_3 \times \binom{x}{2}K_2) \otimes \overline{K}_8) \oplus x(P_3 \times K_8) = (\binom{x}{2}(P_3 \times K_2) \otimes \overline{K}_8) \oplus x(P_3 \times K_8) = 4\binom{x}{2}(K_2 \otimes \overline{K}_8) \oplus x(P_3 \times K_8) = 4\binom{x}{2}K_{8,8} \oplus x(P_3 \times K_8)$. By Theorem 1.3 and Lemma 2.3, the graph $P_3 \times K_{8x}$ has a required G_i -decomposition.

Lemma 2.11 For $u \equiv 0, 4 \pmod{8}$ and $g \equiv 0 \pmod{4}$, G_1 -decomposition of $K_u \times K_g$ exists. Proof Let u = 8x + t, $x \ge 1$ and $t \in \{0, 4\}$. We can write $K_{8x+t} = K_{8+t} \oplus (x-1)K_8 \oplus$ $(x-1)K_{8,8+t} \oplus (K_{x-1} \otimes \overline{K}_8) = K_{8+t} \oplus (x-1)K_8 \oplus (x-1)K_{8,8+t} \oplus \binom{x-1}{2}(K_2 \otimes \overline{K}_8) = K_{8+t} \oplus (x-1)K_8 \oplus (x-1)K_{8,8+t} \oplus \binom{x-1}{2}K_{8,8}.$ By Theorem 1.1, $P_3|K_g$ and $G_1|K_{8+t} \times P_3$, by Lemmas 2.3 and 2.4. By Theorem 1.3, $G_1|K_{8,8+t}$ and hence $G_1 \times K_g = G_1 \times \binom{g}{2}K_2 = \binom{g}{2}(G_1 \times K_2),$ since G_1 is bipartite, $G_1 \times K_2 = 2G_1$. Therefore, G_1 -decomposition of $K_u \times K_g$ exists. \Box

§3. G_i -Decomposition of $K_u \times K_g$

Theorem 3.1 Let $u, g \ge 4$. For $1 \le i \le 5$, $G_i | K_u \times K_g$ if and only if $ug(u-1)(g-1) \equiv 0 \pmod{16}$, except possibly $(u, g, G_i) = (4, 4, G_1)$.

Proof Necessity: The number of edges in $K_u \times K_g$ are $\binom{u}{2}(g^2 - g)$ and G_i has 8 edges. If $G_i|K_u \times K_g$, then $8|\binom{u}{2}(g^2 - g)$. Hence $ug(u-1)(g-1) \equiv 0 \pmod{16}$.

Sufficiency: To prove the sufficiency, from the edge divisibility condition, it is enough to discuss the following cases.

u ≡ 0 (mod 4) and g ≡ 0 (mod 4);
u ≡ 0 (mod 4) and g ≡ 1 (mod 4);
u ≡ 2 (mod 4) and g ≡ 0 (mod 8);
u ≡ 3 (mod 4) and g ≡ 0 (mod 8);
u ≡ 3 (mod 4) and g ≡ 0 (mod 8);
u ≡ 3 (mod 4) and g ≡ 1 (mod 8);
u ≡ 1 (mod 4) and g ≡ 1 (mod 4).

Case 1. $u \equiv 0 \pmod{4}$ and $g \equiv 0 \pmod{4}$

By Lemma 2.11, $G_1|K_u \times K_g$ exists and hence it is enough to prove $G_i|K_u \times K_g$, $2 \le i \le 5$. Let u = 4x and g = 4y, $x, y \ge 1$. We can write $K_{4x} = (K_x \otimes \overline{K}_4) \oplus xK_4 = \binom{x}{2}(K_2 \otimes \overline{K}_4) \oplus xK_4 = \binom{x}{2}K_{4,4} \oplus xK_4$ and $K_{4y} = \binom{y}{2}K_{4,4} \oplus yK_4$. Then $K_{4x} \times K_{4y} = \binom{x}{2}K_{4,4} \oplus xK_4) \times \binom{y}{2}K_{4,4} \oplus yK_4 = \binom{x}{2}\binom{y}{2}(K_{4,4} \times K_{4,4}) \oplus y\binom{x}{2}(K_{4,4} \times K_4) \oplus x\binom{y}{2}(K_{4,4} \times K_4) \oplus x\binom{y}{2}(K_{4,4} \times K_4) = 16\binom{x}{2}\binom{y}{2}(K_{4,4} \times K_4) \oplus 6y\binom{x}{2}(K_{4,4} \times K_2) \oplus 6x\binom{y}{2} \oplus (K_{4,4} \times K_2) \oplus xy(K_4 \times K_4)$. By Theorem 1.3, $G_i|K_{4,4}$ since G_i is bipartite, $G_i \times K_2 = 2G_i$. By Lemma 2.8, $G_i|K_4 \times K_4$, $2 \le i \le 5$. Therefore, the graph $K_{4x} \times K_{4y}$ has a required G_i -decomposition.

Case 2. $u \equiv 0, 1 \pmod{4}$ and $g \equiv 1 \pmod{4}$

Let g = 4x + 1, $x \ge 1$. We can write $K_{4x+1} = (K_x \otimes \overline{K}_4) \oplus xK_5 = \binom{x}{2}K_{4,4} \oplus xK_5$ and hence $K_u \times K_{4x+1} = \binom{x}{2}(K_u \times K_{4,4}) \oplus x(K_u \times K_5) = \binom{u}{2}\binom{x}{2}(K_2 \times K_{4,4}) \oplus x(K_u \times K_5)$. By Theorem 1.3, $G_i | K_{4,4}$, since G_i is bipartite, $G_i \times K_2 = 2G_i$. By Theorem 1.1, $P_3 | K_u$ and hence $G_i | P_3 \times K_5$ by Lemma 2.2. Therefore, the graph $K_u \times K_{4x+1}$ has a required G_i -decomposition.

Case 3. $u \equiv 2 \pmod{4}$ and $g \equiv 0 \pmod{8}$

Let u = 4x+2, $x \ge 1$. We can write $K_{4x+2} = K_6 \oplus (x-1)K_4 \oplus (x-1)K_{4,6} \oplus (K_{x-1} \otimes \overline{K}_4) = K_6 \oplus (x-1)K_4 \oplus (x-1)K_{4,6} \oplus {\binom{x-1}{2}}K_{4,4}$ and hence $K_{4x+2} \times K_g = (K_6 \times K_g) \oplus (x-1)(K_4 \times K_g) \oplus (x-1)(K_{4,6} \times K_g) \oplus {\binom{x-1}{2}}(K_{4,4} \times K_g)$. By Lemma 2.9, the graph $K_6 \times K_g$ has a G_i -decomposition. By Theorem 1.1 and Lemma 2.1, $P_3|K_4$, $P_3|K_{4,4}$, and $P_3|K_{4,6}$ and hence $G_i|P_3 \times K_g$ by Lemma 2.10. Therefore, the graph $K_{4x+2} \times K_g$ has a required G_i -decomposition.

Case 4. $u \equiv 3 \pmod{4}$ and $g \equiv 0 \pmod{8}$

Let u = 4x+3, $x \ge 1$. We can write $K_{4x+3} = K_7 \oplus (x-1)K_5 \oplus (x-1)K_{4,6} \oplus (K_{x-1} \otimes \overline{K}_4) = K_7 \oplus (x-1)K_5 \oplus (x-1)K_{4,6} \oplus {\binom{x-1}{2}}K_{4,4}$ and hence $K_{4x+3} \times K_g = (K_7 \times K_g) \oplus (x-1)(K_5 \times K_g) \oplus (x-1)(K_5 \times K_g) \oplus (x-1)(K_{4,6} \times K_g) \oplus {\binom{x-1}{2}}(K_{4,4} \times K_g)$. By Theorem 1.2, $C_3 | K_7$ and the graphs K_5 , $K_{4,2}$, $K_{4,4}$ has P_3 -decomposition by Theorem 1.1 and Lemma 2.1. Then by Lemmas 2.7 and 2.3, the graphs $C_3 \times K_g$ and $P_3 \times K_g$ has G_i -decomposition. Therefore, the graph $K_{4x+3} \times K_g$ has a required G_i -decomposition.

Case 5. $u \equiv 2,3 \pmod{4}$ and $g \equiv 1 \pmod{8}$

Let g = 8x + 1, $x \ge 1$. We can write $K_{8x+1} = (K_x \otimes \overline{K}_8) \oplus xK_9 = \binom{x}{2}K_{8,8} \oplus xK_9$ and hence $K_u \times K_{8x+1} = \binom{x}{2}(K_u \times K_{4,4}) \oplus x(K_u \times K_9) = \binom{u}{2}\binom{x}{2}(K_2 \times K_{8,8}) \oplus x\binom{u}{2}(K_2 \times K_9)$. By Theorem 1.3, $G_i|K_{8,8}$, since G_i bipartite, $G_i \times K_2 = 2G_i$ and by Lemma 2.6, $G_i|K_9 \times K_2$. Therefore, the graph $K_u \times K_{8x+1}$ has a required G_i -decomposition.

References

- P. Adams, D. Bryant, and M. Buchanan, A Survey on the Existence of G-Designs, J. Combin. Des., 16 (2008), 373-410.
- [2] B. Alspach and H. Gavlas, Cycle decompositions of K_n and K_{n-I} , J. Combin. Theory Ser. B, 81(2001), 77-99.
- [3] G. Aspenson, D. Baker, B. Freyberg, and C. Schwieder, Decomposing K_{18n} and K_{18n+1} into connected unicyclic graphs with 9 edges, *Electron. J. Graph Theory Appl.* 11(1) (2023), 273 316.
- [4] A. Bonhert, L. Branson, and PJ. Otto, On decompositions of complete graphs into unicyclic disconnected bipartite graphs on nine edges, *Electron. J. Graph Theory Appl*, 11(1) (2023), 329-341.
- [5] J. Fahnenstiel and D. Froncek, Decomposition of complete graphs into connected unicyclic bipartite graphs with eight edges, *Electron. J. Graph Theory Appl*, 7(2)(2019), 235-250.
- [6] S. Duraimurugan, S. Ganesamurthy, and A. Muthusamy, Decomposition of λ -fold complete equipartite graphs into connected unicyclic bipartite graphs with eight edges (Submitted).
- [7] B. Freyberg and D. Froncek, Decomposition of complete graps into unicyclic graphs with eight edges, J. Combin. Math. Combin. Comput., 114 (2020), 113-132.
- [8] B. Freyberg and N. Tran, Decomposition of complete graps into unicyclic bipartite graphs with eight edges, J. Combin. Math. Combin. Comput., 114 (2020), 133-142.
- [9] D. Froncek, and O. Kingston, Decomposition of complete graphs into connected unicyclic graphs with eight edges and pentagon, *Indonesian J. Combin.*, 3(1) (2019), 24-33.
- [10] D. Froncek and M. Kubesa, Decomposition of complete graphs into connected unicyclic bipartite graphs with seven edges, *Bull. Inst. Combin. Appl.*, 93 (2021), 52-80.
- [11] D. Froncek and B. Kubik, Decomposition of complete graphs into tri-cyclic graphs with eight edges, J. Combin. Math. Combin. Comput., 114 (2020), 143-166.
- [12] D. Froncek and J. Lee, Decomposition of complete graphs into bi-cyclic graphs with eight edges, Bull. Inst. Combin. Appl., 88(2020), 30-49.
- [13] M. H. Huang, Decomposing complete equipartite graphs into connected unicyclic graphs

of size five, Util. Math., 97 (2015), 109-117.

- [14] P. Paulraja and T. Sivakaran, Decompositions of some regular graphs into unicyclic graphs of order five, *Discrete Math. Algorithms and Appl.*, 11(4) (2019), 1950042 (34 pages).
- [15] K. Sowndhariya and A. Muthusamy, Decomposition of product graphs into sunlet graphs of order eight, J. Algebra Comb. Discrete Appl., 8(1) (2021), 41-51.
- [16] M.Tarsi, Decomposition of a Complete Multigraph into Simple Paths: Nonbalanced Handcuffed Designs J. Combin. Theory Ser A., 34(1983), 60-70.
- [17] J. Tian, Y. Du, and Q. Kang, Decomposing complete graphs into graphs with six vertices and seven edges, Ars Combin., 81(2006), 257-279.