Decomposition of Tensor Product of Complete Graphs into Connected Unicyclic Bipartite Graphs with Eight Edges

S. Duraimurugan and A. Muthusamy
(Department of Mathematics, Periyar University, Salem, Tamil Nadu, India)

E-mail: duraipu93@gmail.com, appumuthusamy@gmail.com

Abstract

In this paper, we obtain necessary and sufficient conditions for decomposing tensor product of complete graphs into some connected unicyclic bipartite graphs with eight edges.

Key Words: Decomposition, Smarandache decomposition, wreath product, tensor product, unicyclic graph.
AMS(2010): 05C70, 05C76.

§1. Introduction

All the graphs considered here are loopless and finite. For a given graph G and an integer $\lambda \geq 1$, we use the notation $G(\lambda)$ to represent the multigraph obtained from G by replacing each of its edges with λ parallel edges. Similarly, λG denotes the graph consisting of λ edge-disjoint copies of G. The notations P_{t}, C_{t}, K_{t}, and \bar{K}_{t} represents the path, cycle, complete graph, and complement of the complete graph, each with t vertices, respectively. Also, we denote the induced subgraph H of G induced by S as $\langle S\rangle$. Consider a complete bipartite graph $K_{t, t}$ with bipartition (X, Y), where $X=\left\{x_{0}, x_{1}, \cdots, x_{t-1}\right\}$ and $Y=\left\{y_{0}, y_{1}, \cdots, y_{t-1}\right\}$. We define the spanning subgraph $F_{i}(X, Y)$ of $K_{t, t}$ as $\left\langle\left\{x_{j} y_{j+i}: 0 \leq j \leq t-1\right\}\right\rangle$, where addition in the subscripts are taken modulo t. It is clear that $F_{i}(X, Y)$ is a 1-factor of $K_{t, t}$ with a distance i from X to Y. Moreover, $K_{t, t}=\bigoplus_{i=0}^{t-1} F_{i}(X, Y)$, where \oplus denotes the edge-disjoint union of graphs, also called a Smarandache decomposition if $K_{t, t}$ is labeled.

For two graphs G and H, their lexicographic product $G \otimes H$ has the vertex set $V(G \otimes$ $H)=V(G) \times V(H)$ and the edge set $E(G \otimes H)=\left\{\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right): g_{1} g_{2} \in E(G)\right.$ or $g_{1}=$ g_{2} and $\left.h_{1} h_{2} \in E(H)\right\}$. Similarly, the tensor product $G \times H$ of two graphs G and H has the vertex set $V(G \times H)=V(G) \times V(H)$ and the edge set $E(G \times H)=\left\{\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right): g_{1} g_{2} \in\right.$ $E(G)$ and $\left.h_{1} h_{2} \in E(H)\right\}$. Note that, the tensor product is commutative and distributive over edge-disjoint union of graphs, that is, if $G=G_{1} \oplus G_{2} \oplus \cdots \oplus G_{u}$, then $G \times H=\left(G_{1} \times H\right) \oplus$ $\cdots \oplus\left(G_{u} \times H\right)$. One can easily observe that $\left(K_{u} \otimes \bar{K}_{g}\right)-g K_{u} \cong K_{u} \times K_{g}$, where $g K_{u}$ denotes g disjoint copies of K_{u}.

For some integer $r \geq 1$, we say that the graph G has a decomposition into the subgraphs

[^0]$G_{1}, G_{2}, \cdots, G_{r}$ if $G=\oplus_{i=1}^{r} G_{i}$, and $G_{1}, G_{2}, \cdots, G_{r}$ are pairwise edge-disjoint subgraphs of G. For each $i, 1 \leq i \leq r$, if $G_{i} \cong H$, then we say that G has an H-decomposition and we denote such decomposition by $H \mid G$. A graph G is said to be unicyclic if it has exactly one cycle.

Decomposition of graphs into subgraphs has been an interesting research area in graph theory since 1950s. Adams et al. [1] published an excellent survey on decomposing complete graphs into subgraphs containing up to six vertices. Tian et al. [17] established the decomposition of complete graphs into unicyclic graphs with six vertices and seven edges, while Froncek et al. [10] proved the decomposition of complete graphs into connected unicyclic bipartite graphs with seven edges. In recent studies, Froncek et al. [11,12] proved the decomposition of complete graphs into tri-cyclic and bi-cyclic graphs, each with eight edges. Furthermore, Fahnenstiel et al. [5] established the necessary and sufficient conditions for the existence of a decomposition of complete graphs into connected unicyclic bipartite graphs with eight edges. Huang et al. [13] proved the decomposition of complete equipartite graphs into connected unicyclic graphs, each having a size of five vertices. Similarly, Paulraja et al. [14] established the decomposition of certain regular graphs into unicyclic graphs of order five. Sowndhariya et al. [15] proved the decomposition of product graphs into sunlet graphs of order eight. Aspenson et al. [3], proved the decomposition $K_{18 n}$ and $K_{18 n+1}$ into connected unicyclic graphs with nine edges. Similarly, Bonhert et al. [4], proved the decompositions of complete graphs into unicyclic disconnected bipartite graphs with nine edges. Recently, we have proved the existence of decomposition of λ-fold complete equipartite graphs into connected unicyclic bipartite graphs with eight edges in [6] and the general problem is open for other classes of product of graphs. In this paper, we show the existence of such decomposition in tensor product of complete graphs.

Let $G_{1}, G_{2}, G_{3}, G_{4}$ and G_{5} be the graphs shown in Figure 1. We assume that these graphs have the vertex set $\left\{v_{1}, v_{2}, \cdots, v_{8}\right\}$. The edge set of the unicyclic graphs $G_{1}, G_{2}, G_{3}, G_{4}$, and G_{5} are denoted by $\left(v_{1} v_{2} v_{3} v_{4}\right)$ [$\left.v_{1} v_{5} v_{6} v_{7} v_{8}\right],\left(v_{1} v_{2} v_{3} v_{4}\right)$ [$v_{1} v_{5} v_{7} v_{8}$] [$v_{5} v_{6}$], $\left(v_{1} v_{2} v_{3} v_{4}\right)$ [$v_{2} v_{6} v_{7} v_{8}$] [$v_{1} v_{5}$], $\left(v_{1} v_{2} v_{3} v_{4}\right)$ [$\left.v_{1} v_{5} v_{6}\right]\left[v_{3} v_{7} v_{8}\right]$, and $\left(v_{1} v_{2} v_{3} v_{4}\right)\left[v_{1} v_{5} v_{6}\right]\left[v_{4} v_{7}\right]\left[v_{3} v_{8}\right]$, respectively. Clearly, each $G_{i}, 1 \leq i \leq 5$, is a connected unicyclic bipartite graph with eight edges.

Figure 1. Connected unicyclic bipartite graphs with eight edges
To prove our results we state the following:
Theorem 1.1([16]) There exists a P_{m+1}-decomposition of $K_{u}(\lambda)$ if and only if $\lambda u(u-1) \equiv 0$ $(\bmod 2 m), u \geq m+1$.

Theorem 1.2([2]) For all positive odd integers m and n with $3 \leq m \leq n$, there exists a C_{m}-decomposition of K_{n} if and only if $n(n-1) \equiv 0(\bmod 2 m)$.

Theorem 1.3([6]) There exists a G_{i}-decomposition of $K_{4 x, 4 y}, 1 \leq i \leq 5$.

§2. G_{i}-Decomposition of Base Graphs

In this part, we have established some crucial lemmas to prove our main results.
Lemma 2.1 The graphs $K_{4,2}, K_{4,4}$ and $K_{4,6}$ admits a P_{3}-decomposition.
Proof Our proof is divided into two cases.
Case 1. $P_{3} \mid K_{4,4}$
Let $V\left(K_{4,4}\right)=(U, V)$, where $U=\left\{u_{0}, u_{1}, u_{2}, u_{3}\right\}$ and $V=\left\{v_{0}, v_{1}, v_{2}, v_{3}\right\}$. Let $P_{3}^{j, 1}=$ $\left[v_{j} u_{j} v_{j+1}\right]$ and $P_{3}^{j, 2}=\left[u_{j} v_{j+2} u_{j+3}\right], j \in \mathbb{Z}_{4}$ and additions in the subscripts of u and v are taken modulo 4. When j varies, $\left\{P_{3}^{j, 1}, P_{3}^{j, 2}\right\}$ gives a required P_{3}-decomposition of $K_{4,4}$.

Case 2. $\quad P_{3} \mid K_{4,6}$
Let $V\left(K_{4,4}\right)=(U, V)$, where $U=\left\{u_{0}, u_{1}, u_{2}, u_{3}\right\}$ and $V=\left\{v_{0}, v_{1}, \cdots, v_{5}\right\}$. Let $P_{3}^{j, 1}=$ $\left[v_{j} u_{j} v_{j+1}\right], P_{3}^{j, 2}=\left[u_{j} v_{j+2} u_{j+3}\right]$, and $P_{3}^{j, 3}=\left[v_{4} u_{j} v_{5}\right], j \in \mathbb{Z}_{4}$ and additions in the subscripts of u and v are taken modulo 4. When j varies, $\left\{P_{3}^{j, 1}, P_{3}^{j, 2}, P_{3}^{j, 3}\right\}$ gives a required P_{3}-decomposition of $K_{4,6}$.

Lemma 2.2 There exists a G_{i}-decomposition of $P_{3} \times K_{5}, 1 \leq i \leq 5$.
Proof Let $V\left(P_{3} \times K_{5}\right)=\cup_{i \in \mathbb{Z}_{3}} X_{i}$, where $X_{0}=\left\{u_{0}, u_{1}, \cdots, u_{4}\right\}, X_{1}=\left\{v_{0}, v_{1}, \cdots, v_{4}\right\}$ and $X_{2}=\left\{w_{0}, w_{1}, \cdots, w_{4}\right\}$. The required G_{i}-decomposition of $P_{3} \times K_{5}$ is shown below.

Let

$$
\begin{aligned}
G_{1}^{j} & =\left(u_{j+1} v_{j+3} u_{j+4} v_{j+2}\right)\left[v_{j+2} w_{j+3} v_{j+4} w_{j+2} v_{j}\right] \\
G_{2}^{j} & =\left(u_{j+1} v_{j+3} u_{j+4} v_{j+2}\right)\left[v_{j+2} w_{j+3} v_{j+4} w_{j+2}\right]\left[w_{j+3} v_{j+1}\right] \\
G_{3}^{j} & =\left(u_{j+1} v_{j+3} w_{j+1} v_{j+2}\right)\left[u_{j+1} v_{j} w_{j+2} v_{j+1}\right]\left[v_{j+3} u_{j}\right], \\
G_{4}^{j} & =\left(u_{j+1} v_{j+3} u_{j+4} v_{j+2}\right)\left[v_{j+3} w_{j} v_{j+1}\right]\left[v_{j+2} w_{j+3} v_{j}\right], \text { and } \\
G_{5}^{j} & =\left(u_{j+1} v_{j+3} w_{j+1} v_{j+2}\right)\left[w_{j+1} v_{j+4} w_{j}\right]\left[v_{j+2} u_{j+4}\right]\left[u_{j+1} v_{j}\right], j \in \mathbb{Z}_{5}, \text { where the additions }
\end{aligned}
$$

in the subscripts of u, v, and w are taken modulo 5. Clearly, $G_{i}^{j} \cong G_{i}, i=1,2,3,4,5, j \in \mathbb{Z}_{5}$ shown in Figure 1. When j varies we get the required decomposition of $P_{3} \times K_{5}$.

Lemma 2.3 There exists a G_{i}-decomposition of $P_{3} \times K_{8}, 1 \leq i \leq 5$.
Proof Let $V\left(P_{3} \times K_{8}\right)=\cup_{i \in \mathbb{Z}_{3}} X_{i}$, where $X_{0}=\left\{u_{0}, u_{1}, \cdots, u_{7}\right\}, X_{1}=\left\{v_{0}, v_{1}, \cdots, v_{7}\right\}$ and $X_{2}=\left\{w_{0}, w_{1}, \cdots, w_{7}\right\}$. The required G_{i}-decomposition of $P_{3} \times K_{8}$ is shown below.

Let $\quad G_{1}^{j, 1}=\left(u_{j+5} v_{7} w_{j+6} v_{j+4}\right)\left[w_{j+6} v_{j+3} u_{j+2} v_{j} w_{7}\right]$,
$G_{1}^{j, 2}=\left(u_{j} v_{j+2} w_{j+1} v_{j+3}\right)\left[u_{j} v_{j+4} w_{j+5} v_{j+1} u_{7}\right]$,
$G_{2}^{j, 1}=\left(u_{j+6} v_{7} w_{j+6} v_{j+5}\right)\left[v_{j+5} w_{j+4} v_{j+2} u_{7}\right]\left[w_{j+4} v_{j+1}\right]$,
$G_{2}^{j, 2}=\left(u_{j+5} v_{j} w_{j+5} v_{j+1}\right)\left[v_{j+1} u_{j} v_{j+5} w_{7}\right]\left[u_{j} v_{j+4}\right]$,

$$
\begin{aligned}
& G_{3}^{j, 1}=\left(u_{j+6} v_{7} w_{j+6} v_{j+5}\right)\left[u_{j+6} v_{j+4} w_{j+3} v_{j+1}\right]\left[v_{j+5} u_{7}\right], \\
& G_{3}^{j, 2}=\left(u_{j+5} v_{j} w_{j+5} v_{j+1}\right)\left[v_{j+1} u_{j} v_{j+4} w_{7}\right]\left[w_{j+5} v_{j+2}\right], \\
& G_{4}^{j, 1}=\left(u_{j+6} v_{7} w_{j+6} v_{j+5}\right)\left[u_{j+6} v_{j+4} u_{7}\right]\left[w_{j+6} v_{j+3} w_{7}\right], \\
& G_{4}^{j, 2}=\left(u_{j} v_{j+2} w_{j} v_{j+1}\right)\left[u_{j} v_{j+3} u_{j+6}\right]\left[w_{j} v_{j+5} w_{j+2}\right], \\
& G_{5}^{j, 1}=\left(u_{j+6} v_{7} w_{j+6} v_{j+5}\right)\left[w_{j+6} v_{j+4} u_{7}\right]\left[v_{j+5} w_{7}\right]\left[u_{j+6} v_{j+3}\right] \text { and } \\
& G_{5}^{j, 2}=\left(u_{j} v_{j+2} w_{j} v_{j+1}\right)\left[u_{j} v_{j+3} u_{j+5}\right]\left[v_{j+1} w_{j+5}\right]\left[w_{j} v_{j+4}\right], j \in \mathbb{Z}_{7}, \text { where the additions in }
\end{aligned}
$$

the subscripts of u, v, and w are taken modulo 7. Clearly, $G_{i}^{j, l} \cong G_{i}, i=1,2,3,4,5, j \in \mathbb{Z}_{7}, l \in$ $\{1,2\}$.When j and l varies, we get the required decomposition of $P_{3} \times K_{8}$.

Lemma 2.4 There exists a G_{1}-decomposition of $P_{3} \times K_{12}$.
Proof Let $V\left(P_{3} \times K_{12}\right)=\cup_{i \in \mathbb{Z}_{3}} X_{i}$, where $X_{0}=\left\{u_{0}, u_{1}, \cdots, u_{11}\right\}, X_{1}=\left\{v_{0}, v_{1}, \cdots, v_{11}\right\}$ and $X_{2}=\left\{w_{0}, w_{1}, \cdots, w_{11}\right\}$. The required G_{1}-decomposition of $P_{3} \times K_{12}$ is given below.

Let $\quad G_{1}^{j, 1}=\left(u_{j+10} v_{11} w_{j+10} v_{j+9}\right)\left[w_{j+10} v_{j+8} u_{j+7} v_{j+5} w_{11}\right]$,

$$
G_{1}^{j, 2}=\left(u_{j+10} v_{j+6} w_{j+10} v_{j+7}\right)\left[u_{j+10} v_{j+5} w_{j+4} v_{j+10} u_{11}\right] \text { and }
$$

$$
G_{1}^{j, 3}=\left(u_{j} v_{j+2} w_{j+9} v_{j+3}\right)\left[u_{j} v_{j+5} w_{j+3} v_{j+6} u_{j+2}\right], j \in \mathbb{Z}_{11} \text {, where the additions in the }
$$

subscripts of u, v, and w are taken modulo 11. Clearly, $G_{1}^{j, l} \cong G_{1}, j \in \mathbb{Z}_{11}, l \in\{1,2,3\}$. When j and l varies, we get the required decomposition of $P_{3} \times K_{12}$.

Lemma 2.5 There exists a G_{i}-decomposition of $P_{5} \times K_{6}, 1 \leq i \leq 5$.
Proof Let $V\left(P_{5} \times K_{6}\right)=\cup_{i \in \mathbb{Z}_{5}} X_{i}$, where $X_{0}=\left\{u_{0}, u_{1}, \cdots, u_{5}\right\}, X_{1}=\left\{v_{0}, v_{1}, \cdots, v_{5}\right\}, X_{2}=$ $\left\{w_{0}, w_{1}, \cdots, w_{5}\right\}, X_{3}=\left\{x_{0}, x_{1}, \cdots, x_{5}\right\}$, and $X_{4}=\left\{y_{0}, y_{1}, \cdots, y_{5}\right\}$. The required G_{i}-decomposition of $P_{5} \times K_{6}$ is given below.

$$
\text { Let } \begin{aligned}
G_{1}^{j, 1} & =\left(u_{j} v_{j+1} u_{j+3} v_{j+2}\right)\left[u_{j+3} v_{5} w_{j+4} v_{j+3} u_{5}\right], \\
G_{1}^{j, 2} & =\left(v_{j} w_{j+3} x_{j+1} w_{j+2}\right)\left[w_{j+3} v_{j+4} w_{5} x_{j+4} y_{5}\right], \\
G_{1}^{j, 3} & =\left(w_{j+4} x_{5} y_{j+4} x_{j+1}\right)\left[y_{j+4} x_{j} y_{j+1} x_{j+4} w_{j+3}\right], \\
G_{2}^{j, 1} & =\left(u_{j} v_{j+1} u_{j+3} v_{j+2}\right)\left[v_{j+2} w_{j+3} v_{5} u_{j+4}\right]\left[w_{j+3} x_{j+4}\right], \\
G_{2}^{j, 2} & =\left(v_{j} w_{j+3} x_{j+1} w_{j+2}\right)\left[w_{j+3} v_{j+4} w_{5} x_{j+4}\right]\left[v_{j+4} u_{5}\right], \\
G_{2}^{j, 3} & =\left(w_{j+4} x_{5} y_{j+4} x_{j+1}\right)\left[y_{j+4} x_{j} y_{j+1} x_{j+4}\right]\left[x_{j} y_{5}\right], \\
G_{3}^{j, 1} & =\left(u_{j} v_{j+1} u_{j+3} v_{j+2}\right)\left[u_{j+3} v_{5} w_{j+3} x_{j+4}\right]\left[v_{j+1} w_{j+2}\right], \\
G_{3}^{j, 2} & =\left(v_{j} w_{j+3} x_{j+1} w_{j+2}\right)\left[w_{j+3} v_{j+4} w_{5} x_{j+4}\right]\left[v_{j} u_{5}\right], \\
G_{3}^{j, 3} & =\left(w_{j+4} x_{5} y_{j+4} x_{j+1}\right)\left[y_{j+4} x_{j} y_{j+1} x_{j+4}\right]\left[x_{j+1} y_{5}\right], \\
G_{4}^{j, 1} & =\left(u_{j+4} v_{5} w_{j+4} v_{j+3}\right)\left[u_{j+4} v_{j+2} u_{5}\right]\left[w_{j+4} v_{j+1} w_{j+3}\right], \\
G_{4}^{j, 2} & =\left(v_{j+4} w_{5} x_{j+4} w_{j+3}\right)\left[v_{j+4} u_{j+3} v_{j}\right]\left[x_{j+4} y_{j+3} x_{j}\right], \\
G_{4}^{j, 3} & =\left(w_{j+4} x_{5} y_{j+4} x_{j+3}\right)\left[w_{j+4} x_{j+1} w_{j+3}\right]\left[y_{j+4} x_{j+2} y_{5}\right], \\
G_{5}^{j, 1} & =\left(u_{j+4} v_{5} w_{j+4} v_{j+3}\right)\left[u_{j+4} v_{j+2} u_{5}\right]\left[v_{j+3} w_{j}\right]\left[w_{j+4} v_{j+1}\right],
\end{aligned}
$$

$$
\begin{aligned}
& G_{5}^{j, 2}=\left(v_{j+4} w_{5} x_{j+4} w_{j+3}\right)\left[v_{j+4} u_{j+3} v_{j}\right]\left[w_{j+3} x_{j+1}\right]\left[x_{j+4} y_{j+3}\right] \text { and } \\
& G_{5}^{j, 3}=\left(w_{j+4} x_{5} y_{j+4} x_{j+3}\right)\left[y_{j+4} x_{j+2} y_{5}\right]\left[x_{j+3} y_{j+1}\right]\left[w_{j+4} x_{j+1}\right], j \in \mathbb{Z}_{5}, \text { where the }
\end{aligned}
$$

additions in the subscripts of u, v, w, x, and y are taken modulo 5. Clearly, $G_{i}^{j, l} \cong G_{i}, i=$ $1,2,3,4,5, j \in \mathbb{Z}_{5}, l \in\{1,2,3\}$. When j and l varies, we get the required decomposition of $P_{5} \times K_{6}$.

Lemma 2.6 There exists a G_{i}-decomposition of $K_{9} \times K_{2}, 1 \leq i \leq 5$.
Proof Let $V\left(K_{9} \times K_{2}\right)=(U, V)$, where $U=\left\{u_{0}, u_{1}, \cdots, u_{8}\right\}$ and $V=\left\{v_{0}, v_{1}, \cdots, v_{8}\right\}$. The required G_{i}-decomposition of $K_{9} \times K_{2}$ is given below.

Let

$$
\begin{aligned}
G_{1}^{j} & =\left(u_{j} v_{j+1} u_{j+3} v_{j+2}\right)\left[u_{j+3} v_{j+6} u_{j+2} v_{j+7} u_{j+1}\right], \\
G_{2}^{j} & =\left(u_{j} v_{j+1} u_{j+3} v_{j+2}\right)\left[u_{j+3} v_{j+6} u_{j+2} v_{j+8}\right]\left[v_{j+6} u_{j+1}\right], \\
G_{3}^{j} & =\left(u_{j} v_{j+1} u_{j+3} v_{j+2}\right)\left[u_{j+3} v_{j+6} u_{j+2} v_{j+8}\right]\left[v_{j+2} u_{j+6}\right], \\
G_{4}^{j} & =\left(u_{j} v_{j+1} u_{j+3} v_{j+2}\right)\left[u_{j+3} v_{j+6} u_{j+2}\right]\left[u_{j} v_{j+5} u_{j+8}\right], \text { and } \\
G_{5}^{j} & =\left(u_{j} v_{j+1} u_{j+3} v_{j+2}\right)\left[u_{j+3} v_{j+6} u_{j+2}\right]\left[v_{j+2} u_{j+5}\right]\left[u_{j} v_{j+5}\right], j \in \mathbb{Z}_{9}, \text { where the additions }
\end{aligned}
$$

in the subscripts of u and v are taken modulo 9 . Clearly, $G_{i}^{j} \cong G_{i}, i=1,2,3,4,5, j \in \mathbb{Z}_{9}$. When j varies, we get the required decomposition of $K_{9} \times K_{2}$.

Lemma 2.7 There exists a G_{i}-decomposition of $C_{3} \times K_{8}, 1 \leq i \leq 5$.
Proof Let $V\left(C_{3} \times K_{8}\right)=\cup_{i \in \mathbb{Z}_{3}} X_{i}$, where $X_{0}=\left\{u_{0}, u_{1}, \cdots, u_{7}\right\}, X_{1}=\left\{v_{0}, v_{1}, \cdots, v_{7}\right\}$ and $X_{2}=\left\{w_{0}, w_{1}, \cdots, w_{7}\right\}$. The required G_{i}-decomposition of $C_{3} \times K_{8}$ is given below.

$$
\text { Let } \begin{aligned}
G_{1}^{j, 1} & =\left(u_{j+5} v_{j+6} u_{7} w_{j+6}\right)\left[u_{j+5} v_{j} u_{j+4} v_{j+1} u_{j+3}\right], \\
G_{1}^{j, 2} & =\left(u_{j+6} v_{7} w_{j+6} v_{j+5}\right)\left[v_{j+5} w_{j} v_{j+4} w_{j+1} v_{j+3}\right], \\
G_{1}^{j, 3} & =\left(u_{j+6} w_{7} v_{j+6} w_{j+5}\right)\left[w_{j+5} u_{j} w_{j+4} u_{j+1} w_{j+3}\right], \\
G_{2}^{j, 1} & =\left(u_{j+5} v_{j+6} u_{7} w_{j+6}\right)\left[u_{j+5} v_{j} u_{j+4} v_{j+1}\right]\left[v_{j} u_{j+2}\right], \\
G_{2}^{j, 2} & =\left(u_{j+6} v_{7} w_{j+6} v_{j+5}\right)\left[v_{j+5} w_{j} v_{j+4} w_{j+1}\right]\left[w_{j} v_{j+2}\right], \\
G_{2}^{j, 3} & =\left(u_{j+6} w_{7} v_{j+6} w_{j+5}\right)\left[w_{j+5} u_{j} w_{j+4} u_{j+1}\right]\left[u_{j} w_{j+2}\right], \\
G_{3}^{j, 1} & =\left(u_{j+5} v_{j+6} u_{7} w_{j+6}\right)\left[u_{j+5} v_{j} u_{j+4} v_{j+1}\right]\left[v_{j+6} w_{j+4}\right], \\
G_{3}^{j, 2} & =\left(u_{j+6} v_{7} w_{j+6} v_{j+5}\right)\left[v_{j+5} w_{j} v_{j+4} w_{j+1}\right]\left[w_{j+6} u_{j+4}\right], \\
G_{3}^{j, 3} & =\left(u_{j+6} w_{7} v_{j+6} w_{j+5}\right)\left[w_{j+5} u_{j} w_{j+4} u_{j+1}\right]\left[u_{j+6} v_{j+4}\right], \\
G_{4}^{j, 1} & =\left(u_{j+5} v_{j+6} u_{7} w_{j+6}\right)\left[v_{j+6} w_{j+1} v_{j+5}\right]\left[w_{j+6} u_{j+1} w_{j+5}\right], \\
G_{4}^{j, 2} & =\left(u_{j+6} v_{7} w_{j+6} v_{j+5}\right)\left[u_{j+6} v_{j+1} u_{j+5}\right]\left[w_{j+6} u_{j+4} w_{j}\right], \\
G_{4}^{j, 3} & =\left(u_{j+6} w_{7} v_{j+6} w_{j+5}\right)\left[u_{j+6} v_{j+3} u_{j+5}\right]\left[v_{j+6} w_{j+3} v_{j+5}\right], \\
G_{5}^{j, 1} & =\left(u_{j+5} v_{j+6} u_{7} w_{j+6}\right)\left[w_{j+6} u_{j+3} w_{j+5}\right]\left[u_{j+5} v_{j}\right]\left[v_{j+6} w_{j+1}\right], \\
G_{5}^{j, 2} & =\left(u_{j+6} v_{7} w_{j+6} v_{j+5}\right)\left[u_{j+6} v_{j+2} u_{j+5}\right]\left[v_{j+5} w_{j+1}\right]\left[w_{j+6} u_{j+2}\right] \text { and } \\
G_{5}^{j, 3} & =\left(u_{j+6} w_{7} v_{j+6} w_{j+5}\right)\left[v_{j+6} w_{j+2} v_{j+5}\right]\left[w_{j+5} u_{j}\right]\left[u_{j+6} v_{j+4}\right], j \in \mathbb{Z}_{7},
\end{aligned}
$$

where the additions in the subscripts of u, v, and w are taken modulo 7. Clearly, $G_{i}^{j, l} \cong G_{i}, i=$ $1,2,3,4,5, j \in \mathbb{Z}_{7}, l \in\{1,2,3\}$. When j and l varies, we get the required decomposition of $C_{3} \times K_{8}$.

Lemma 2.8 There exists a G_{i}-decomposition of $K_{4} \times K_{4}, 2 \leq i \leq 5$.
Proof Let $V\left(K_{4} \times K_{4}\right)=\cup_{i \in \mathbb{Z}_{4}} X_{i}$, where $X_{0}=\left\{u_{0}, u_{1}, u_{2}, u_{3}\right\}, X_{1}=\left\{v_{0}, v_{1}, v_{2}, v_{3}\right\}, X_{2}=$ $\left\{w_{0}, w_{1}, w_{2}, w_{3}\right\}$, and $X_{3}=\left\{x_{0}, x_{1}, x_{2}, x_{3}\right\}$. The required G_{i}-decomposition of $K_{4} \times K_{4}$ is given below.

$$
\text { Let } \begin{aligned}
G_{2}^{j, 1} & =\left(u_{3} v_{j+2} w_{3} x_{j+2}\right)\left[u_{3} w_{j+1} x_{3} u_{j+1}\right]\left[w_{j+1} u_{j}\right], \\
G_{2}^{j, 2} & =\left(u_{j} v_{j+1} w_{j} x_{j+1}\right)\left[w_{j} u_{j+1} v_{3} w_{j+2}\right]\left[u_{j+1} w_{3}\right], \\
G_{2}^{j, 3} & =\left(u_{j+1} v_{j} w_{j+1} x_{j}\right)\left[v_{j} x_{j+1} v_{j+2} x_{3}\right]\left[x_{j+1} v_{3}\right], \\
G_{3}^{j, 1} & =\left(u_{3} v_{j+2} w_{3} x_{j+2}\right)\left[v_{j+2} x_{3} w_{j+2} v_{3}\right]\left[u_{3} w_{j+1}\right], \\
G_{3}^{j, 2} & =\left(u_{j} v_{j+1} w_{j} x_{j+1}\right)\left[v_{j+1} x_{j+2} v_{3} u_{j+2}\right]\left[u_{j} w_{3}\right], \\
G_{3}^{j, 3} & =\left(u_{j+1} v_{j} w_{j+1} x_{j}\right)\left[u_{j+1} w_{j} u_{j+2} x_{3}\right]\left[v_{j} x_{j+2}\right], \\
G_{4}^{j, 1} & =\left(u_{3} v_{j+2} w_{3} x_{j+2}\right)\left[u_{3} w_{j+1} u_{j}\right]\left[w_{3} u_{j+1} x_{3}\right], \\
G_{4}^{j, 2} & =\left(u_{j} v_{j+1} w_{j} x_{j+1}\right)\left[u_{j} w_{j+2} x_{3}\right]\left[w_{j} v_{3} u_{j+2}\right], \\
G_{4}^{j, 3} & =\left(u_{j+1} v_{j} w_{j+1} x_{j}\right)\left[v_{j} x_{j+1} v_{3}\right]\left[x_{j} v_{j+1} x_{3}\right], \\
G_{5}^{j, 1} & =\left(u_{3} v_{j+2} w_{3} x_{j+2}\right)\left[u_{3} w_{j+1} u_{j}\right]\left[v_{j+2} x_{j+1}\right]\left[w_{3} u_{j+2}\right], \\
G_{5}^{j, 2} & =\left(u_{j} v_{j+1} w_{j} x_{j+1}\right)\left[w_{j} x_{3} u_{j+2}\right]\left[v_{j+1} x_{j+2}\right]\left[u_{j} v_{3}\right] \text { and } \\
G_{5}^{j, 3} & =\left(u_{j+1} v_{j} w_{j+1} x_{j}\right)\left[w_{j+1} v_{3} x_{j+2}\right]\left[v_{j} x_{3}\right]\left[u_{j+1} w_{j}\right], j \in \mathbb{Z}_{3},
\end{aligned}
$$

where the additions in the subscripts of u, v, w, and x are taken modulo 3 . Clearly, $G_{i}^{j, l} \cong$ $G_{i}, i=1,2,3,4,5, j \in \mathbb{Z}_{3}, l \in\{1,2,3\}$. When j and l varies, we get the required decomposition of $K_{4} \times K_{4}$.

Lemma 2.9 For $g \equiv 0(\bmod 8)$, there exists a G_{i}-decomposition of $K_{6} \times K_{g}, 1 \leq i \leq 5$.
Proof Let $g=8 x, x \geq 1$. We can write $K_{8 x}=\left(K_{x} \otimes \bar{K}_{8}\right) \oplus x K_{8}=\binom{x}{2}\left(K_{2} \otimes \bar{K}_{8}\right) \oplus x K_{8} \cong$ $\binom{x}{2} K_{8,8} \oplus x K_{8}$ and hence $K_{8 x} \times K_{6}=\binom{x}{2}\left(K_{8,8} \times K_{6}\right) \oplus x\left(K_{8} \times K_{6}\right)=15\binom{x}{2}\left(K_{8,8} \times K_{2}\right) \oplus$ $x\left(K_{8} \times K_{6}\right)$. By Theorem 1.3, $G_{i} \mid K_{8,8}$, since G_{i} is bipartite, $G_{i} \times K_{2}=2 G_{i}$. By Theorem 1.1, $P_{5} \mid K_{8}$ and hence $G_{i} \mid P_{5} \times K_{6}$ by Lemma 2.5. Therefore, the graph $K_{6} \times K_{8 x}$ has a required G_{i}-decomposition.

Lemma 2.10 For $g \equiv 0(\bmod 8)$, there exists a G_{i}-decomposition of $P_{3} \times K_{g}, 1 \leq i \leq 5$.
Proof Let $g=8 x, x \geq 1$. We can write $P_{3} \times K_{8 x}=\left(\left(P_{3} \times K_{x}\right) \otimes \bar{K}_{8}\right) \oplus x\left(P_{3} \times K_{8}\right)=$ $\left(\left(P_{3} \times\binom{ x}{2} K_{2}\right) \otimes \bar{K}_{8}\right) \oplus x\left(P_{3} \times K_{8}\right)=\left(\binom{x}{2}\left(P_{3} \times K_{2}\right) \otimes \bar{K}_{8}\right) \oplus x\left(P_{3} \times K_{8}\right)=4\binom{x}{2}\left(K_{2} \otimes \bar{K}_{8}\right) \oplus$ $x\left(P_{3} \times K_{8}\right)=4\binom{x}{2} K_{8,8} \oplus x\left(P_{3} \times K_{8}\right)$. By Theorem 1.3 and Lemma 2.3, the graph $P_{3} \times K_{8 x}$ has a required G_{i}-decomposition.

Lemma 2.11 For $u \equiv 0,4(\bmod 8)$ and $g \equiv 0(\bmod 4), G_{1}$-decomposition of $K_{u} \times K_{g}$ exists.
Proof Let $u=8 x+t, x \geq 1$ and $t \in\{0,4\}$. We can write $K_{8 x+t}=K_{8+t} \oplus(x-1) K_{8} \oplus$
$(x-1) K_{8,8+t} \oplus\left(K_{x-1} \otimes \bar{K}_{8}\right)=K_{8+t} \oplus(x-1) K_{8} \oplus(x-1) K_{8,8+t} \oplus\left(\binom{x-1}{2}\left(K_{2} \otimes \bar{K}_{8}\right)\right)=K_{8+t} \oplus$ $(x-1) K_{8} \oplus(x-1) K_{8,8+t} \oplus\binom{x-1}{2} K_{8,8}$. By Theorem 1.1, $P_{3} \mid K_{g}$ and $G_{1} \mid K_{8+t} \times P_{3}$, by Lemmas 2.3 and 2.4. By Theorem 1.3, $G_{1} \mid K_{8,8+t}$ and hence $\left.G_{1} \times K_{g}=G_{1} \times\binom{ g}{2} K_{2}\right)=\binom{g}{2}\left(G_{1} \times K_{2}\right)$, since G_{1} is bipartite, $G_{1} \times K_{2}=2 G_{1}$. Therefore, G_{1}-decomposition of $K_{u} \times K_{g}$ exists.

§3. G_{i}-Decomposition of $K_{u} \times K_{g}$

Theorem 3.1 Let $u, g \geq 4$. For $1 \leq i \leq 5, G_{i} \mid K_{u} \times K_{g}$ if and only if $u g(u-1)(g-1) \equiv 0$ $(\bmod 16)$, except possibly $\left(u, g, G_{i}\right)=\left(4,4, G_{1}\right)$.

Proof Necessity: The number of edges in $K_{u} \times K_{g}$ are $\binom{u}{2}\left(g^{2}-g\right)$ and G_{i} has 8 edges. If $G_{i} \mid K_{u} \times K_{g}$, then $8 \left\lvert\,\binom{ u}{2}\left(g^{2}-g\right)\right.$. Hence $u g(u-1)(g-1) \equiv 0(\bmod 16)$.

Sufficiency: To prove the sufficiency, from the edge divisibility condition, it is enough to discuss the following cases.

- $u \equiv 0(\bmod 4)$ and $g \equiv 0(\bmod 4) ;$
- $u \equiv 2(\bmod 4)$ and $g \equiv 0(\bmod 8)$;
- $u \equiv 3(\bmod 4)$ and $g \equiv 0(\bmod 8)$;

$$
\infty
$$

$$
\text { - } u \equiv 1(\bmod 4) \text { and } g \equiv 1(\bmod 4) \text {. }
$$

Case 1. $u \equiv 0(\bmod 4)$ and $g \equiv 0(\bmod 4)$
By Lemma 2.11, $G_{1} \mid K_{u} \times K_{g}$ exists and hence it is enough to prove $G_{i} \mid K_{u} \times K_{g}, 2 \leq i \leq 5$. Let $u=4 x$ and $g=4 y, x, y \geq 1$. We can write $K_{4 x}=\left(K_{x} \otimes \bar{K}_{4}\right) \oplus x K_{4}=\binom{x}{2}\left(K_{2} \otimes \bar{K}_{4}\right) \oplus x K_{4}=$ $\binom{x}{2} K_{4,4} \oplus x K_{4}$ and $K_{4 y}=\binom{y}{2} K_{4,4} \oplus y K_{4}$. Then $K_{4 x} \times K_{4 y}=\left(\binom{x}{2} K_{4,4} \oplus x K_{4}\right) \times\left(\binom{y}{2} K_{4,4} \oplus y K_{4}\right)=$ $\binom{x}{2}\binom{y}{2}\left(K_{4,4} \times K_{4,4}\right) \oplus y\binom{x}{2}\left(K_{4,4} \times K_{4}\right) \oplus x\binom{y}{2}\left(K_{4,4} \times K_{4}\right) \oplus x y\left(K_{4} \times K_{4}\right)=16\binom{x}{2}\binom{y}{2}\left(K_{4,4} \times\right.$ $\left.K_{2}\right) \oplus 6 y\binom{x}{2}\left(K_{4,4} \times K_{2}\right) \oplus 6 x\binom{y}{2} \oplus\left(K_{4,4} \times K_{2}\right) \oplus x y\left(K_{4} \times K_{4}\right)$. By Theorem 1.3, $G_{i} \mid K_{4,4}$ since G_{i} is bipartite, $G_{i} \times K_{2}=2 G_{i}$. By Lemma 2.8, $G_{i} \mid K_{4} \times K_{4}, 2 \leq i \leq 5$. Therefore, the graph $K_{4 x} \times K_{4 y}$ has a required G_{i}-decomposition.
Case 2. $u \equiv 0,1(\bmod 4)$ and $g \equiv 1(\bmod 4)$
Let $g=4 x+1, x \geq 1$. We can write $K_{4 x+1}=\left(K_{x} \otimes \bar{K}_{4}\right) \oplus x K_{5}=\binom{x}{2} K_{4,4} \oplus x K_{5}$ and hence $K_{u} \times K_{4 x+1}=\binom{x}{2}\left(K_{u} \times K_{4,4}\right) \oplus x\left(K_{u} \times K_{5}\right)=\binom{u}{2}\binom{x}{2}\left(K_{2} \times K_{4,4}\right) \oplus x\left(K_{u} \times K_{5}\right)$. By Theorem 1.3, $G_{i} \mid K_{4,4}$, since G_{i} is bipartite, $G_{i} \times K_{2}=2 G_{i}$. By Theorem 1.1, $P_{3} \mid K_{u}$ and hence $G_{i} \mid P_{3} \times K_{5}$ by Lemma 2.2. Therefore, the graph $K_{u} \times K_{4 x+1}$ has a required G_{i}-decomposition.
Case 3. $u \equiv 2(\bmod 4)$ and $g \equiv 0(\bmod 8)$
Let $u=4 x+2, x \geq 1$. We can write $K_{4 x+2}=K_{6} \oplus(x-1) K_{4} \oplus(x-1) K_{4,6} \oplus\left(K_{x-1} \otimes \bar{K}_{4}\right)=$ $K_{6} \oplus(x-1) K_{4} \oplus(x-1) K_{4,6} \oplus\binom{x-1}{2} K_{4,4}$ and hence $K_{4 x+2} \times K_{g}=\left(K_{6} \times K_{g}\right) \oplus(x-1)\left(K_{4} \times\right.$ $\left.K_{g}\right) \oplus(x-1)\left(K_{4,6} \times K_{g}\right) \oplus\binom{x-1}{2}\left(K_{4,4} \times K_{g}\right)$. By Lemma 2.9, the graph $K_{6} \times K_{g}$ has a G_{i}-decomposition. By Theorem 1.1 and Lemma 2.1, $P_{3}\left|K_{4}, P_{3}\right| K_{4,4}$, and $P_{3} \mid K_{4,6}$ and hence $G_{i} \mid P_{3} \times K_{g}$ by Lemma 2.10. Therefore, the graph $K_{4 x+2} \times K_{g}$ has a required G_{i}-decomposition.

Case 4. $u \equiv 3(\bmod 4)$ and $g \equiv 0(\bmod 8)$

Let $u=4 x+3, x \geq 1$. We can write $K_{4 x+3}=K_{7} \oplus(x-1) K_{5} \oplus(x-1) K_{4,6} \oplus\left(K_{x-1} \otimes \bar{K}_{4}\right)=$ $K_{7} \oplus(x-1) K_{5} \oplus(x-1) K_{4,6} \oplus\binom{x-1}{2} K_{4,4}$ and hence $K_{4 x+3} \times K_{g}=\left(K_{7} \times K_{g}\right) \oplus(x-1)\left(K_{5} \times K_{g}\right) \oplus$ $(x-1)\left(K_{4,6} \times K_{g}\right) \oplus\binom{x-1}{2}\left(K_{4,4} \times K_{g}\right)$. By Theorem 1.2, $C_{3} \mid K_{7}$ and the graphs $K_{5}, K_{4,2}, K_{4,4}$ has P_{3}-decomposition by Theorem 1.1 and Lemma 2.1. Then by Lemmas 2.7 and 2.3, the graphs $C_{3} \times K_{g}$ and $P_{3} \times K_{g}$ has G_{i}-decomposition. Therefore, the graph $K_{4 x+3} \times K_{g}$ has a required G_{i}-decomposition.

Case 5. $u \equiv 2,3(\bmod 4)$ and $g \equiv 1(\bmod 8)$
Let $g=8 x+1, x \geq 1$. We can write $K_{8 x+1}=\left(K_{x} \otimes \bar{K}_{8}\right) \oplus x K_{9}=\binom{x}{2} K_{8,8} \oplus x K_{9}$ and hence $K_{u} \times K_{8 x+1}=\binom{x}{2}\left(K_{u} \times K_{4,4}\right) \oplus x\left(K_{u} \times K_{9}\right)=\binom{u}{2}\binom{x}{2}\left(K_{2} \times K_{8,8}\right) \oplus x\binom{u}{2}\left(K_{2} \times K_{9}\right)$. By Theorem 1.3, $G_{i} \mid K_{8,8}$, since G_{i} bipartite, $G_{i} \times K_{2}=2 G_{i}$ and by Lemma 2.6, $G_{i} \mid K_{9} \times K_{2}$. Therefore, the graph $K_{u} \times K_{8 x+1}$ has a required G_{i}-decomposition.

References

[1] P. Adams, D. Bryant, and M. Buchanan, A Survey on the Existence of G-Designs, J. Combin. Des., 16 (2008), 373-410.
[2] B. Alspach and H. Gavlas, Cycle decompositions of K_{n} and K_{n-I}, J. Combin. Theory Ser. B, 81(2001), 77-99.
[3] G. Aspenson, D. Baker, B. Freyberg, and C. Schwieder, Decomposing $K_{18 n}$ and $K_{18 n+1}$ into connected unicyclic graphs with 9 edges, Electron. J. Graph Theory Appl. 11(1) (2023), 273 - 316.
[4] A. Bonhert, L. Branson, and PJ. Otto, On decompositions of complete graphs into unicyclic disconnected bipartite graphs on nine edges, Electron. J. Graph Theory Appl, 11(1) (2023), 329-341.
[5] J. Fahnenstiel and D. Froncek, Decomposition of complete graphs into connected unicyclic bipartite graphs with eight edges, Electron. J. Graph Theory Appl, 7(2)(2019), 235-250.
[6] S. Duraimurugan, S. Ganesamurthy, and A. Muthusamy, Decomposition of λ-fold complete equipartite graphs into connected unicyclic bipartite graphs with eight edges (Submitted).
[7] B. Freyberg and D. Froncek, Decomposition of complete graps into unicyclic graphs with eight edges, J. Combin. Math. Combin. Comput., 114 (2020), 113-132.
[8] B. Freyberg and N. Tran, Decomposition of complete graps into unicyclic bipartite graphs with eight edges, J. Combin. Math. Combin. Comput., 114 (2020), 133-142.
[9] D. Froncek, and O. Kingston, Decomposition of complete graphs into connected unicyclic graphs with eight edges and pentagon, Indonesian J. Combin., 3(1) (2019), 24-33.
[10] D. Froncek and M. Kubesa, Decomposition of complete graphs into connected unicyclic bipartite graphs with seven edges, Bull. Inst. Combin. Appl., 93 (2021), 52-80.
[11] D. Froncek and B. Kubik, Decomposition of complete graphs into tri-cyclic graphs with eight edges, J. Combin. Math. Combin. Comput., 114 (2020), 143-166.
[12] D. Froncek and J. Lee, Decomposition of complete graphs into bi-cyclic graphs with eight edges, Bull. Inst. Combin. Appl., 88(2020), 30-49.
[13] M. H. Huang, Decomposing complete equipartite graphs into connected unicyclic graphs
of size five, Util. Math., 97 (2015), 109-117.
[14] P. Paulraja and T. Sivakaran, Decompositions of some regular graphs into unicyclic graphs of order five, Discrete Math. Algorithms and Appl., 11(4) (2019), 1950042 (34 pages).
[15] K. Sowndhariya and A. Muthusamy, Decomposition of product graphs into sunlet graphs of order eight, J. Algebra Comb. Discrete Appl., 8(1) (2021), 41-51.
[16] M.Tarsi, Decomposition of a Complete Multigraph into Simple Paths: Nonbalanced Handcuffed Designs J. Combin. Theory Ser A., 34(1983), 60-70.
[17] J. Tian, Y. Du, and Q. Kang, Decomposing complete graphs into graphs with six vertices and seven edges, Ars Combin., 81(2006), 257-279.

[^0]: ${ }^{1}$ Received October 4, 2023, Accepted March 6,2024.

