Edge C_{k} Symmetric n-Sigraphs

P. Somashekar
(Department of Mathematics, Government First Grade College, Nanjangud-571 301, India)
S. Vijay
(Department of Mathematics, Government Science College, Hassan-573 201, India)
C. N. Harshavardhana
(Department of Mathematics, Government First Grade College for Women, Holenarasipur-573 211, India)
E-mail: somashekar2224@gmail.com, vijayshivanna82@gmail.com, cnhmaths@gmail.com

Abstract

An n-tuple $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ is symmetric if $a_{k}=a_{n-k+1}, 1 \leq k \leq n$. Let $H_{n}=\left\{\left(a_{1}, a_{2}, \cdots, a_{n}\right), a_{k} \in\{+,-\}, a_{k}=a_{n-k+1}, 1 \leq k \leq n\right\}$ be the set of all symmetric n-tuples. A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair $S_{n}=(G, \sigma)$ $\left(S_{n}=(G, \mu)\right)$, where $G=(V, E)$ is a graph called the underlying graph of S_{n} and $\sigma: E \rightarrow H_{n}$ $\left(\mu: V \rightarrow H_{n}\right)$ is a function. In this paper, we introduced a new notion edge C_{k} symmetric n-sigraph of a symmetric n-sigraph and its properties are obtained. Also, we obtained the structural characterization of edge C_{k} symmetric n-signed graphs.

Key Words: Symmetric n-sigraph, Smarandachely symmetric n-marked graph, symmetric n-marked graph, Smarandachely symmetric n-marked graph, balance, switching, edge C_{k} symmetric n-sigraph, complementation.

AMS(2010): 05C22.

§1. Introduction

Unless mentioned or defined otherwise, for all terminology and notion in graph theory the reader is refer to [1]. We consider only finite, simple graphs free from self-loops.

Let $n \geq 1$ be an integer. An n-tuple $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ is symmetric if $a_{k}=a_{n-k+1}, 1 \leq$ $k \leq n$. Let $H_{n}=\left\{\left(a_{1}, a_{2}, \cdots, a_{n}\right): a_{k} \in\{+,-\}, a_{k}=a_{n-k+1}, 1 \leq k \leq n\right\}$ be the set of all symmetric n-tuples. Note that H_{n} is a group under coordinate wise multiplication, and the order of H_{n} is 2^{m}, where $m=\left\lceil\frac{n}{2}\right\rceil$.

A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair $S_{n}=(G, \sigma)\left(S_{n}=\right.$ (G, μ)), where $G=(V, E)$ is a graph called the underlying graph of S_{n} and $\sigma: E \rightarrow H_{n}$ ($\mu: V \rightarrow H_{n}$) is a function. Generally, a Smarandachely symmetric n-sigraph (Smarandachely symmetric n-marked graph) for a subgraph $H \prec G$ is such a graph that $G-E(H)$ is symmetric n-sigraph (symmetric n-marked graph). For example, let H be an edge $e \in E(G)$, a path $P_{s} \succ G$

[^0]for an integer $s \geq 2$ or a claw $K_{1,3} \prec G$. Certainly, if $H=\emptyset$, a Smarandachely symmetric n-sigraph (or Smarandachely symmetric n-sigraph) is nothing else but a symmetric n-sigraph (or symmetric n-marked graph).

In this paper by an n-tuple/n-sigraph/n-marked graph we always mean a symmetric n tuple/symmetric n-sigraph/symmetric n-marked graph.

An n-tuple $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ is an identity n-tuple if $a_{k}=+$ for $1 \leq k \leq n$. Otherwise, it is a non-identity n-tuple. In an n-sigraph $S_{n}=(G, \sigma)$ an edge labelled with the identity n-tuple is called an identity edge, otherwise it is a non-identity edge. Further, in an n-sigraph $S_{n}=(G, \sigma)$, for any $A \subseteq E(G)$ the n-tuple $\sigma(A)$ is the product of the n-tuples on the edges of A.

In [9], the authors defined two notions of balance in n-sigraph $S_{n}=(G, \sigma)$ as follows (See also R. Rangarajan and P.S.K.Reddy [5]:

Definition 1.1 Let $S_{n}=(G, \sigma)$ be an n-sigraph. Then,
(i) S_{n} is identity balanced (or i-balanced), if product of n-tuples on each cycle of S_{n} is the identity n-tuple, and
(ii) S_{n} is balanced, if every cycle in S_{n} contains an even number of non-identity edges.

Note 1.1 An i-balanced n-sigraph need not be balanced and conversely.
The following characterization of i-balanced n-sigraphs is obtained in [9].
Theorem 1.1 (E. Sampathkumar et al. [9]) An n-sigraph $S_{n}=(G, \sigma)$ is i-balanced if, and only if, it is possible to assign n-tuples to its vertices such that the n-tuple of each edge uv is equal to the product of the n-tuples of u and v.

In [9], the authors also have defined switching and cycle isomorphism of an n-sigraph $S_{n}=(G, \sigma)$ (See also $\left.[2,6-8,11-20,22]\right)$ as follows:

Let $S_{n}=(G, \sigma)$ and $S_{n}^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$, be two n-sigraphs. Then S_{n} and S_{n}^{\prime} are said to be isomorphic, if there exists an isomorphism $\phi: G \rightarrow G^{\prime}$ such that if $u v$ is an edge in S_{n} with label $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ then $\phi(u) \phi(v)$ is an edge in S_{n}^{\prime} with label ($a_{1}, a_{2}, \cdots, a_{n}$).

Given an n-marking μ of an n-sigraph $S_{n}=(G, \sigma)$, switching S_{n} with respect to μ is the operation of changing the n-tuple of every edge $u v$ of S_{n} by $\mu(u) \sigma(u v) \mu(v)$. The n-sigraph obtained in this way is denoted by $\mathcal{S}_{\mu}\left(S_{n}\right)$ and is called the μ-switched n-sigraph or just switched n-sigraph. Further, an n-sigraph S_{n} switches to n-sigraph S_{n}^{\prime} (or that they are switching equivalent to each other), written as $S_{n} \sim S_{n}^{\prime}$, whenever there exists an n-marking of S_{n} such that $\mathcal{S}_{\mu}\left(S_{n}\right) \cong S_{n}^{\prime}$.

Two n-sigraphs $S_{n}=(G, \sigma)$ and $S_{n}^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$ are said to be cycle isomorphic, if there exists an isomorphism $\phi: G \rightarrow G^{\prime}$ such that the n-tuple $\sigma(C)$ of every cycle C in S_{n} equals to the n-tuple $\sigma(\phi(C))$ in S_{n}^{\prime}.

We make use of the following known result (see [9]).
Theorem 1.2 (E. Sampathkumar et al. [9]) Given a graph G, any two n-sigraphs with G as underlying graph are switching equivalent if, and only if, they are cycle isomorphic.

Let $S_{n}=(G, \sigma)$ be an n-sigraph. Consider the n-marking μ on vertices of S defined as follows: each vertex $v \in V, \mu(v)$ is the product of the n-tuples on the edges incident at v. Complement of S is an n-sigraph $\overline{S_{n}}=\left(\bar{G}, \sigma^{\prime}\right)$, where for any edge $e=u v \in \bar{G}$, $\sigma^{\prime}(u v)=\mu(u) \mu(v)$. Clearly, $\overline{S_{n}}$ as defined here is an i-balanced n-sigraph due to Theorem 1.1.

$\S 2$. Edge C_{k} Symmetric n-Sigraph of an n-Sigraph

The edge C_{k} graph $E_{k}(G)$ of a graph G is defined in [4] as follows:
The edge C_{k} graph of a graph $G=(V, E)$ is a graph $E_{k}(G)=\left(V^{\prime}, E^{\prime}\right)$, with vertex set $V^{\prime}=E(G)$ such that two vertices e and f are adjacent if, and only if, the corresponding edges in G either incident or opposite edges of some cycle C_{k}. In this paper, we extend the notion of $E_{k}(G)$ to realm of symmetric n-sigraphs: Given an n-sigraph $S_{n}=(G, \sigma)$ its edge $C_{k} n$-sigraph $E_{k}\left(S_{n}\right)=\left(E_{k}(G), \sigma^{\prime}\right)$ is that n-sigraph whose underlying graph is $E_{k}(G)$, the edge C_{k} graph of G, where for any edge $e_{1} e_{2}$ in $E_{k}\left(S_{n}\right), \sigma^{\prime}\left(e_{1} e_{2}\right)=\sigma\left(e_{1}\right) \sigma\left(e_{2}\right)$. When $k=3$, the definition coincides with triangular line n-sigraph of a graph [2], and when $k=4$, the definition coincides with the edge $E_{4} n$-sigraph of an n-sigraph [12].

Hence, we shall call a given n-sigraph an edge $C_{k} n$-sigraph if there exists an n-sigraph S_{n}^{\prime} such that $S_{n} \cong E_{k}\left(S_{n}^{\prime}\right)$. In the following subsection, we shall present a characterization of edge $C_{k} n$-sigraphs.

The following result indicates the limitations of the notion of edge $C_{k} n$-sigraphs as introduced above, since the entire class of i-unbalanced n-sigraphs is forbidden to be edge C_{k} n-sigraphs.

Theorem 2.1 For any n-sigraph $S_{n}=(G, \sigma)$, its edge $C_{k} n$-sigraph $E_{k}\left(S_{n}\right)$ is i-balanced.
Proof Since the n-tuple of any edge $u v$ in $E_{k}\left(S_{n}\right)$ is $\mu(u) \mu(v)$, where μ is the canonical n-marking of S_{n}, by Theorem 1, $E_{k}\left(S_{n}\right)$ is i-balanced.

When $k=3$ and $k=4$, we can deduce the following results.
Corollary 2.1 (Lokesha et al. [2]) For any n-sigraph $S_{n}=(G, \sigma)$, its triangular line n-sigraph $\mathcal{T}\left(S_{n}\right)$ is i-balanced.

Corollary 2.2 (P.S.K.Reddy et al. [12]) For any n-sigraph $S_{n}=(G, \sigma)$, its edge $C_{4} n$-sigraph $E_{4}\left(S_{n}\right)$ is i-balanced.

For any positive integer i, the $i^{\text {th }}$ iterated edge $C_{k} n$-sigraph, $E_{k}^{i}\left(S_{n}\right)$ of S_{n} is defined as follows:

$$
E_{k}^{0}\left(S_{n}\right)=S_{n}, E_{k}^{i}\left(S_{n}\right)=E_{k}\left(E_{k}^{i-1}\left(S_{n}\right)\right)
$$

Corollary 2.3 For any n-sigraph $S_{n}=(G, \sigma)$ and any positive integer m, $E_{k}^{m}\left(S_{n}\right)$ is i-balanced.
In [21], the authors obtained the characterizations for the edge C_{k} graph of a graph G is connected, complete, bipartite etc. The authors have also proved that the edge C_{k} graph has no
forbidden subgraph characterization. The dynamical behavior such as convergence, periodicity, mortality and touching number of $E_{k}(G)$ are also discussed.

Recall that, the edge C_{k} graph coincides with the line graph for any acyclic graph. As a case, for a connected graph $G, E_{k}(G)=G$ if, and only if $G=C_{n}, n \neq k([4])$.

We now characterize n-sigraphs that are switching equivalent to their the edge $C_{k} n$ sigraphs.

Theorem 2.2 For any n-sigraph $S_{n}=(G, \sigma), S_{n} \sim E_{k}\left(S_{n}\right)$ if and only if $G \cong C_{n}$, where $n \geq 5$ and S_{n} is i-balanced.

Proof Suppose $S_{n} \sim E_{k}\left(S_{n}\right)$. This implies, $G \cong E_{k}(G)$ and hence G is isomorphic to C_{n}, where $n \geq 5$, Theorem 3 implies that $E_{k}\left(S_{n}\right)$ is i-balanced and hence if S_{n} is i-unbalanced and its $E_{k}\left(S_{n}\right)$ being i-balanced can not be switching equivalent to S_{n} in accordance with Theorem 1.2. Therefore, S_{n} must be i-balanced.

Conversely, suppose that S_{n} is an i-balanced n-sigraph and its undrelying G is isomorphic to C_{n}, where $n \geq 5$. Then, since $E_{k}\left(S_{n}\right)$ is i-balanced as per Theorem 3 and since $G \cong E_{k}(G)$, the result follows from Theorem 1.2 again.

In [21], we obtained the following result.
Theorem 2.3 (P.S.K.Reddy et al. [21]) For a graph $G=(V, E), E_{k}(G) \cong L(G)$ if, and only if G is C_{k}-free.

In view of the above result, we have the following characterization.
Theorem 2.4 For any n-sigraph $S_{n}=(G, \sigma), E_{k}\left(S_{n}\right) \cong L\left(S_{n}\right)$ if, and only if G is C_{k}-free.
For any $m \in H_{n}$, the m-complement of $a=\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ is $a^{m}=a m$. For any $M \subseteq H_{n}$, and $m \in H_{n}$, the m-complement of M is $M^{m}=\left\{a^{m}: a \in M\right\}$.

For any $m \in H_{n}$, the m-complement of an n-sigraph $S_{n}=(G, \sigma)$, written $\left(S_{n}^{m}\right)$, is the same graph but with each edge label $a=\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ replaced by a^{m}.

For an n-sigraph $S_{n}=(G, \sigma)$, the $R\left(S_{n}\right)$ is i-balanced. We now examine, the condition under which m-complement of $E_{k}\left(S_{n}\right)$ is i-balanced, where for any $m \in H_{n}$.

Theorem 2.5 Let $S_{n}=(G, \sigma)$ be an n-sigraph. Then, for any $m \in H_{n}$, if $E_{k}(G)$ is bipartite then $\left(E_{k}\left(S_{n}\right)\right)^{m}$ is i-balanced.

Proof Since, by Theorem 2.1, $E_{k}\left(S_{n}\right)$ is i-balanced, for each $k, 1 \leq k \leq n$, the number of n-tuples on any cycle C in $E_{k}\left(S_{n}\right)$ whose $k^{t h}$ co-ordinate are - is even. Also, since $E_{k}(G)$ is bipartite, all cycles have even length; thus, for each $k, 1 \leq k \leq n$, the number of n-tuples on any cycle C in $E_{k}\left(S_{n}\right)$ whose $k^{t h}$ co-ordinate are + is also even. This implies that the same thing is true in any m-complement, where for any $m, \in H_{n}$. Hence $\left(E_{k}\left(S_{n}\right)\right)^{t}$ is i-balanced.

In [3], the authors proved that for a connected complete multipartite graph $G, E_{k}(G)$ is complete. The following result follows from the above observation and Theorem 2.1.

Theorem 2.6 For a connected n-sigraph $S_{n}=(G, \sigma), E_{k}\left(S_{n}\right)$ is complete i-balanced signed
graph if, and only if G is complete multipartite graph.
In [21], the authors proved that: For a connected graph $G=(V, E), E_{k}(G)$ is bipartite if, and only if, G is either a path or an even cycle of length $r \neq k$. The following result follows from the above result and Theorem 2.1.

Theorem 2.7 For a connected n-sigraph $S_{n}=(G, \sigma), E_{k}\left(S_{n}\right)$ is bipartite i-balanced signed graph if, and only if G is isomorphic to either path or $C_{2 n}$, where $n \geq 3$.

§3. Characterization of Edge C_{k} Signed Graphs

The following result characterize n-sigraphs which are edge $C_{k} n$-sigraphs.

Theorem 3.1 An n-sigraph $S_{n}=(G, \sigma)$ is an edge $C_{k} n$-sigraph if, and only if S_{n} is i-balanced n-sigraph and its underlying graph G is an edge C_{k} graph.

Proof Suppose that S_{n} is i-balanced and G is an edge C_{k} graph. Then there exists a graph Γ^{\prime} such that $E_{k}\left(G^{\prime}\right) \cong G$. Since S_{n} is i-balanced, by Theorem 1 , there exists an n-marking ζ of G such that each edge $u v$ in S_{n} satisfies $\sigma(u v)=\zeta(u) \zeta(v)$. Now consider the n-sigraph $S_{n}^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$, where for any edge e in $G^{\prime}, \sigma^{\prime}(e)$ is the marking of the corresponding vertex in G. Then clearly, $E_{k}\left(S_{n}^{\prime}\right) \cong S_{n}$. Hence S_{n} is an edge $C_{k} n$-sigraph.

Conversely, suppose that $S_{n}=(G, \sigma)$ is an edge $C_{k} n$-sigraph. Then there exists an n sigraph $S_{n}^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$ such that $E_{k}\left(S_{n}^{\prime}\right) \cong S_{n}$. Hence G is the edge C_{k} graph of G^{\prime} and by Theorem $3, S_{n}$ is i-balanced.

If we take $k=3$ and $k=4$ in $E_{k}\left(S_{n}\right)$, then we can deduce the triangular line n-sigraph and edge $C_{4} n$-sigraph respectively. In [2,12], the authors obtained structural characterizations of triangular line n-sigraphs and edge $C_{4} n$-sigraphs and clearly Theorem 2.7 is the generalization of above said notions.

Acknowledgements

The authors gratefully thank to the Referee for the constructive comments and recommendations which definitely help to improve the readability and quality of the paper.

References

[1] F. Harary, Graph Theory, Addison-Wesley Publishing Co., 1969.
[2] V. Lokesha, P.S.K.Reddy and S. Vijay, The triangular line n-sigraph of a symmetric n sigraph, Advn. Stud. Contemp. Math., 19(1) (2009), 123-129.
[3] Manju K Menon and A. Vijayakumar, The edge C_{4} graph of a graph, Proc. of ICDM (2006), Ramanujan Math. Soc., Lecture Notes Series, Number 7, (2008), 245-248.
[4] E. Prisner, Graph Dyanamics, Longman, 1995.
[5] R. Rangarajan and P.S.K.Reddy, Notions of balance in symmetric n-sigraphs, Proceedings
of the Jangjeon Math. Soc., 11(2) (2008), 145-151.
[6] R. Rangarajan, P.S.K.Reddy and M. S. Subramanya, Switching equivalence in symmetric n-sigraphs, Adv. Stud. Comtemp. Math., 18(1) (2009), 79-85.
[7] R. Rangarajan, P.S.K.Reddy and N. D. Soner, Switching equivalence in symmetric n -sigraphs-II, J. Orissa Math. Sco., 28 (1 \& 2) (2009), 1-12.
[8] R. Rangarajan, P.S.K.Reddy and N. D. Soner, $m^{t h}$ power symmetric n-sigraphs, Italian Journal of Pure $\xi^{\mathcal{G}}$ Applied Mathematics, 29(2012), 87-92.
[9] E. Sampathkumar, P.S.K.Reddy, and M. S. Subramanya, Jump symmetric n-sigraph, Proceedings of the Jangjeon Math. Soc., 11(1) (2008), 89-95.
[10] E. Sampathkumar, P.S.K.Reddy, and M. S. Subramanya, The Line n-sigraph of a symmetric n-sigraph, Southeast Asian Bull. Math., 34(5) (2010), 953-958.
[11] P.S.K.Reddy and B. Prashanth, Switching equivalence in symmetric n-sigraphs-I, Advances and Applications in Discrete Mathematics, 4(1) (2009), 25-32.
[12] P.S.K.Reddy, S. Vijay and B. Prashanth, The edge $C_{4} n$-sigraph of a symmetric n-sigraph, Int. Journal of Math. Sci. E Engg. Appls., 3(2) (2009), 21-27.
[13] P.S.K.Reddy, V. Lokesha and Gurunath Rao Vaidya, The Line n-sigraph of a symmetric n-sigraph-II, Proceedings of the Jangjeon Math. Soc., 13(3) (2010), 305-312.
[14] P.S.K.Reddy, V. Lokesha and Gurunath Rao Vaidya, The Line n-sigraph of a symmetric n-sigraph-III, Int. J. Open Problems in Computer Science and Mathematics, 3(5) (2010), 172-178.
[15] P.S.K.Reddy, V. Lokesha and Gurunath Rao Vaidya, Switching equivalence in symmetric n-sigraphs-III, Int. Journal of Math. Sci. EJ Engg. Appls., 5(1) (2011), 95-101.
[16] P.S.K.Reddy, B. Prashanth and Kavita. S. Permi, A Note on Switching in Symmetric n-Sigraphs, Notes on Number Theory and Discrete Mathematics, 17(3) (2011), 22-25.
[17] P.S.K.Reddy, M. C. Geetha and K. R. Rajanna, Switching Equivalence in Symmetric n -Sigraphs-IV, Scientia Magna, 7(3) (2011), 34-38.
[18] P.S.K.Reddy, K. M. Nagaraja and M. C. Geetha, The Line n-sigraph of a symmetric n -sigraph-IV, International J. Math. Combin., 1 (2012), 106-112.
[19] P.S.K.Reddy, M. C. Geetha and K. R. Rajanna, Switching equivalence in symmetric n -sigraphs-V, International J. Math. Combin., 3 (2012), 58-63.
[20] P.S.K.Reddy, K. M. Nagaraja and M. C. Geetha, The Line n-sigraph of a symmetric n -sigraph-V, Kyungpook Mathematical Journal, 54(1) (2014), 95-101.
[21] P.S.K.Reddy, K. M. Nagaraja and and V. M. Siddalingaswamy, The Edge C_{k} graph of a graph, Vladikavkaz Mathematical Journal, 16(4) (2014), 61-64.
[22] P.S.K.Reddy, R. Rajendra and M. C. Geetha, Boundary n-Signed Graphs, Int. Journal of Math. Sci. \& Engg. Appls., 10(2) (2016), 161-168.

[^0]: ${ }^{1}$ Received April 21, 2023, Accepted August 18, 2023.
 ${ }^{2}$ Corresponding author: somashekar2224@gmail.com

