Further Results on

Super (a, d) Edge-Antimagic Graceful Labeling of Graphs

P.Krishnaveni
(Department of Mathematics, Thiagarajar College, Madurai - 625009, Tamil Nadu, India)
E-mail: krishnaswetha82@gmail.com

Abstract

An (a, d)-edge-antimagic graceful labeling is a bijection g from $V(G) \cup E(G)$ into $\{1,2, \cdots,|V(G)|+|E(G)|\}$ such that for each edge $x y \in E(G),|g(x)+g(y)-g(x y)|$ form an arithmetic progression starting from a and having a common difference d. An (a, d) -edge-antimagic graceful labeling is called super (a, d)-edge-antimagic graceful if $g(V(G))=$ $\{1,2, \cdots,|V(G)|\}$. A graph that admits an super (a, d)-edge-antimagic graceful labeling is called a super (a, d)-edge-antimagic graceful graph. In this paper, we prove the super (a, d) edge antimagic gracefulness of regular graphs. Later, we study the non-regular graph is super ($a, 1$)-edge-antimagic graceful graph. Finally, we find super edge-antimagic graceful labeling of some classes of graphs.

Key Words: Labelling, (a, d)-edge-antimagic total labeling, Smarandachely edgeantimagic total labeling, (a, d)-edge-antimagic graceful labeling, super (a, d)-edge-antimagic graceful labeling.
AMS(2010): 05C78.

§1. Introduction

Throughout this paper, we only concern with connected, undirected simple graphs of order p and size q. We denote by $V(G)$ and $E(G)$ the set of vertices and the set of edges of a graph G, respectively.

Let $|V(G)|=p$ and $|E(G)|=q$ be the number of vertices and the number of edges of G , respectively. General references for graph-theoretic notions are [1,10].

A labeling of a graph is any map that carries some set of graph elements to numbers. Hartsfield and Ringel [4] introduced the concept of an antimagic labeling and they defined an antimagic labeling of a (p, q) graph G as a bijection f from $E(G)$ to the set $\{1,2, \cdots, q\}$ such that the sums of label of the edges incident with each vertex $v \in V(G)$ are distinct.

An (a, d)-edge-antimagic total labeling was introduced by Simanjuntak, Bertault and Miller in [9]. This labeling is the extension of the notions of edge-magic labeling, see [5,6].

For a graph $G=(V, E)$, a bijection g from $V(G) \cup E(G)$ into $\{1,2, \cdots,|V(G)|+|E(G)|\}$ is called an (a, d)-edge-antimagic total labeling of G if the edge-weights $w(x y)=g(x)+g(y)+$ $g(x y), x y \in E(G)$, form an arithmetic progression starting from a and having a common differ-

[^0]ence d. Generally, let $H \prec G$ be a typical subgraph of G with $|V(G-H)|=a^{\prime},|E(G-H)|=b^{\prime}$. If there is an $\left(a^{\prime}, d^{\prime}\right)$-edge-antimagic total labeling g^{\prime} on $G-H$, such a labeling g^{\prime} is called a Smarandachely edge-antimagic total labeling. Particularly, let $H=\emptyset$ or a typical graph in K_{2}, P_{3}, C_{3} or $S_{1,3}$. We get the (a, d)-edge-antimagic total labeling or nearly (a, d)-edge-antimagic total labeling of G.

The ($a, 0$)-edge-antimagic total labelings are usually called edge-magic in the literature. An (a, d)-edge antimagic total labeling is called super if the smallest possible labels appear on the vertices.

In [7] Marimuthu et al. introduced an edge magic graceful labeling of a graph. They presented some properties of super edge magic graceful graphs and proved some classes of graphs are super edge magic graceful. In [8] Marimuthu and Krishnaveni introduced super edge antimagic graceful labeling.

An (a, d)-edge-antimagic graceful labeling is defined as a one-to-one mapping from $V(G) \cup$ $E(G)$ into the set $\{1,2,3, \cdots, p+q\}$ so that the set of edge-weights of all edges in G is equal to $\{a, a+d, a+2 d, \cdots, a+(q-1) d\}$, for two integers $a \geq 0$ and $d>0$.

An (a, d)-edge-antimagic graceful labeling g is called super (a, d)-edge-antimagic graceful if $g(V(G))=\{1,2, \cdots, p\}$ and $g(E(G))=\{p+1, p+2, \cdots, p+q\}$. A graph G is called (a, d)-edgeantimagic graceful or super (a, d)-edge-antimagic graceful if there exists an (a, d)-edge-antimagic graceful or a super (a, d)-edge-antimagic graceful labeling of G.

Baca et al. [2] proved super ($a, 1$)-edge-antimagic total labeling of regular graphs. In [3] Baca et.al proved some classes of graphs like Frienship graphs, Fan graphs and Wheel graphs has super edge-antimagic graceful labeling. In this paper, we study super (a, d)-edge-antimagic graceful labeling of regular graphs. We also prove some classes of graphs, including friendship graphs, cycles and fan graphs has super (a, d)-edge-antimagic graceful labeling.

§2. Main Results

Theorem 2.1 If G is a connected super (a, d)-edge-antimagic graceful graph, then $d \leq 2$.

Proof Let G be a connected super (a, d)-edge-antimagic graceful graph. Suppose that $d \geq 3$. There exists a bijection $g: V(G) \cup E(G) \rightarrow\{1,2, \cdots, p+q\}$ which is a super (a, d)-edgeantimagic graceful labeling with the set of edge-weights.

$$
\begin{aligned}
W & =\{w(x y): w(x y)=|g(x)+g(y)-g(x y)|, x y \in E(G)\} \\
& =\{a, a+d, a+2 d, \cdots, a+(q-1) d\} .
\end{aligned}
$$

It is easy to see that the minimum possible edge-weight in a super (a, d)-edge-antimagic graceful labeling is at least $|1+p-(p+1)|=0$.

We observe that $a \geq 0$. On the other hand, the maximum edge-weight is no more than $|1+2-(p+q)|=p+q-3$. Therefore, $a+(q-1) d \leq p+q-3$. This shows that $(q-1) d \leq p+q-3$.

Hence,

$$
\begin{aligned}
& d \leq \frac{p+q-3}{q-1} \Rightarrow 3 \leq d \leq \frac{p+q-3}{q-1} \\
& \Rightarrow 3 \leq \frac{p+q-3}{q-1} \Rightarrow 3 \leq \frac{p-2}{q-1}+1 \Rightarrow 2 \leq \frac{p-2}{q-1} \\
& \Rightarrow 2 \leq \frac{p-2}{p-1-1}(\text { since the size of every connected graph of order } p \text { is at least } p-1) \\
& \Rightarrow 2 \leq 1
\end{aligned}
$$

a contradiction. Hence, $d \leq 2$.

Theorem 2.2 Let G be a connected (p, q)-graph which is not a tree. If G has a super (a, d) -edge-antimagic graceful labeling then $d=1$.

Proof Assume that G has a super (a, d-edge-antimagic graceful labeling $f: V(G) \cup$ $E(G) \longrightarrow\{1,2, \cdots, p+q\}$ and $\{w(u v): u v \in E(G)\}=\{a, a+d, a+2 d, \cdots, a+(q-1) d\}$ is the set of edge-weights. The minimum possible edge-weight $a \geq 0$. The maximum edge-weight is no more than $p+q-3$. Thus $a+(q-1) d \leq p+q-3$. and

$$
\begin{equation*}
d \leq \frac{p+q-3}{q-1} . \tag{2.1}
\end{equation*}
$$

But, $p \leq q$ (Since G is not a tree T). Then, (2.1) gives $d<2$.

§3. Super (a, d)-Edge-Antimagic Graceful Labeling of Regular Graphs

Proposition 3.1(Petersen theorem) Let G be a $2 r$-regular graph. Then there exists $a 2-$ factor in G.

Notice that after removing edges of the $2-f$ factor guaranteed by the Petersen theorem we have again an even regular graph. Thus, by induction, an even regular graph has a 2 -factorization.

The construction in the following theorem allows us to find a super ($a, 1$) - edge-antimagic graceful labeling of any even regular graph. Notice that the construction does not require the graph to be connected. In the following theorem we denote $[a, b]$ is the set of consecutive integers $\{a, a+1, \cdots, b\}$.

Theorem 3.2 Let G be a graph on p vertices that can be decomposed into two factors G_{1} and G_{2}. If G_{1} is edge-empty or if G_{1} is a super (0,1)-edge-antimagic graceful graph and G_{2} is a $2 r$-regular graph then G is super (0,1)-edge-antimagic graceful.

Proof First we start with the case when G_{1} is not edge-empty. Since G_{1} is a super (0,1)-edge-antimagic graceful graph with p vertices and q edges, there exists a total labeling f : $V\left(G_{1}\right) \cup E\left(G_{1}\right) \longrightarrow[1, p+q]$ such that $\{|f(x)+f(y)-f(x y)|: x y \in E(G)\}=\{0,1,2 \cdots, q-1\}$.

By the Petersen theorem there exists a 2 -factorization of G_{2}. We denote the 2 -factors by F_{j}, $j=1,2, \cdots, r$. Let $V(G)=V\left(G_{1}\right)=V\left(F_{j}\right)$ for all j and $E(G)=U_{j=1}^{r} E\left(F_{j}\right) \bigcup E\left(G_{1}\right)$. Each factor F_{j} is a collection of cycles. We order and orient the cycles arbitrarily. Now by the symbol $e_{j}^{\text {out }}\left(v_{i}\right)$ we denote the unique outgoing arc from the vertex v_{i} in the factor F_{j}. We define a total labeling g of G in the way that $g(v)=f(v)$ for $v \in V(G), g(e)=f(e)$ for $e \in E\left(G_{1}\right)$ and $g(e)=q+j p+f\left(v_{i}\right)$ for $e=e_{j}^{o u t}\left(v_{i}\right)$. Then, the vertices are labeled by the first p integers. The edges of G_{1} by the next q labels and the edges of G_{2} by consecutive integers starting at $p+q+1$. Thus g is a bijection $V(G) \cup E(G) \longrightarrow\{1,2 \cdots, p+q+p r\}$ Since $|E(G)|=q+p r$. It is not difficult to verify that g is a super $(0,1)$-edge-antimagic graceful labeling of G. The weights of the edges e in $E\left(G_{1}\right)$ is $w_{g}(e)=w_{f}(e)$. The weights form the progression $0,1,2, \cdots, q-1$. For convenience, we denote by v_{k} the unique vertex such that $v_{i} v_{k}=e_{j}^{o u t}\left(v_{i}\right)$ in F_{j}. The weights of the edges in $F_{j}, j=1,2, \cdots, r$ are

$$
\begin{aligned}
w_{g}\left(e_{j}^{\text {out }}\left(v_{i}\right)\right) & =w_{g}\left(v_{i} v_{k}\right)=\left|g\left(v_{i}\right)-\left(q+j p+f\left(v_{i}\right)\right)+g\left(v_{k}\right)\right| \\
& =\left|f\left(v_{i}\right)-\left(q+j p+f\left(v_{i}\right)\right)+f\left(v_{k}\right)\right|=\left|-q-j p+f\left(v_{k}\right)\right| \\
& =\left|-\left(q+j p-f\left(v_{k}\right)\right)\right|
\end{aligned}
$$

for all $i=1,2, \cdots, p$ and $j=1,2, \cdots, r$. Since F_{j} is a factor, the set $\left\{f\left(v_{k}\right): v_{k} \in F_{j}\right\}=$ $[1, p]$. Hence we have that the set of edge-weights in the factor F_{j} is $[q+(j-1) p, q+j p-1]$ and thus the set of all edge-weights in G is $[0, q+r p-1]$. If G_{1} is edge-empty it is enough to take $q=0$. and proceed with the labeling of factors F_{j}.

By taking an edge-empty graph G_{1} we have the following theorem.

Theorem 3.3 All even regular graphs of order p with at least one edge are super $(0,1)$-edgeantimagic graceful.

The disjoint union of $m \geq 1$ copies of a graph G is denoted by $m G$.

Theorem 3.4 Let k, m be positive integers. Then the graph $k P_{2} \cup m K_{1}$ is super $(0,1)$-edgeantimagic graceful.

Proof We denote the vertices of the graph $G \cong k P_{2} \cup m K_{1}$ by the symbols $v_{1}, v_{2}, \cdots, v_{2 k+m}$ in such a way that $E(G)=\left\{v_{i} v_{k+m+i}: i=1,2, \cdots, k\right\}$ and the remaining vertices are denoted arbitrarily by the unused symbols. We define the labeling $f: V(G) \cup E(G) \longrightarrow\{1,2, \cdots, 3 k+m\}$ in the following way $f\left(v_{j}\right)=j$ for $j=1,2, \cdots, 2 k+m, f\left(v_{i} v_{k+m+i}\right)=2 k+m+i$ for $i=$ $1,2, \cdots, k$. It is easy to see that f is a bijection and that the vertices of G are labeled by the smallest possible numbers. For the edge-weights we get $w_{f}\left(v_{i} v_{k+m+i}\right)=\mid f\left(v_{i}\right)+f\left(v_{k+m+i}\right)-$ $f\left(v_{i} v_{k+m+i}\right) \mid=\mathrm{k}$-i for $i=1,2, \cdots, k$. Thus, f is a super (0,1)-edge-antimagic graceful labeling of G.

Now by taking $m=0$ and observing that the number of vertices in $k P_{2}$ is $2 k$, then we immediately obtain the following corollary.

Corollary 3.5 If G is an odd regular graph on p vertices that has $a 1-$ factor then G is super
$(0,1)$-edge-antimagic graceful.

§4. Friendship Graphs

The friendship graph $\mathbf{F}_{\mathbf{n}}$ is a set of n triangles having a common center vertex and otherwise disjoint. Let c denote the center vertex. For the $i^{\text {th }}$ triangle, let x_{i} and y_{i} denote the other two vertices.

Theorem 4.1 Every friendship graph $\mathbf{F}_{\mathbf{n}}, n \geq 1$, has super (a,1)-edge-antimagic graceful labeling.

Proof Label the vertices and edges of $\mathbf{F}_{\mathbf{n}}$ by the following functions g_{1} and g_{2} respectively.

$$
\begin{aligned}
& g_{1}(c)=n+1, \quad g_{1}\left(x_{i}\right)=i, \quad g_{1}\left(y_{i}\right)=2 n+2-i \text { for } 1 \leq i \leq n \\
& g_{2}\left(x_{i} c\right)=3 n+2 i, \quad g_{2}\left(y_{i} c\right)=5 n+3-2 i, \quad g_{2}\left(x_{i} y_{i}\right)=2 n+1+i
\end{aligned}
$$

Notice that, in this labeling $a=0$. It is easy to verify that the set of edge-weights consists of the consecutive integers $\{0,1,2, \cdots, 3 n-1\}$ and we arrive at the desired result.

Figure 1 illustrates the proof of Theorem 4.1.

Figure 1. A $(0,1)$-super edge-antimagic graceful labeling of $\mathbf{F}_{\mathbf{4}}$.

§5. Cycles

Theorem 5.1 For $n \geq 3$, the cycle C_{n} has super ($a, 1$)-edge-antimagic graceful labeling.
Proof Let a cycle C_{n} be defined as follows:

$$
\begin{aligned}
& V\left(C_{n}\right)=\left\{p_{1}, p_{2}, \cdots, p_{n}\right\} \text { and } \\
& E\left(C_{n}\right)=\left\{p_{i} p_{i+1}: i=1,2, \cdots, n-1\right\} \cup\left\{p_{n} p_{1}\right\} .
\end{aligned}
$$

Also, define the vertex labeling $f_{1}: V\left(C_{n}\right) \rightarrow\{1,2, \cdots, n\}$ and the edge labeling f_{2} : $E(C n) \rightarrow\{n+1, n+2, \cdots, n+n\}$ in the following way.

$$
\begin{aligned}
f_{1}\left(v_{i}\right) & =i, \quad 1 \leq i \leq n \\
f_{2}\left(v_{i} v_{i+1}\right) & =n+1+i \text { for } 1 \leq i \leq n-1 \\
f_{2}\left(v_{n} v_{1}\right) & =n+1
\end{aligned}
$$

Combining the vertex labeling f_{1} and the edge labeling f_{2} given above, we obtain a total labeling. The set of edge-weights consists of the consecutive integers $\{0,1,2, \cdots, n-1\}$.

An illustration of Theorem 5.1 is given in Figure 2.

Figure 2. $\mathrm{A}(0,1)$-super edge-antimagic graceful labeling of C_{5}.

§6. Fans

A fan $\mathcal{F}_{n}, n \geq 2$ is a graph obtained by joining all vertices of path P_{n} to a further vertex called the center. Thus \mathcal{F}_{n} contains $n+1$ vertices, say, $c, x_{1}, x_{2}, \cdots, x_{n}$ and $2 n-1$ edges say $c x_{i}, 1 \leq i \leq n$ and $x_{i} x_{i+1}, 1 \leq i \leq n-1$.

Theorem 6.1 The fan \mathcal{F}_{n} is super $(a, 1)$-edge-antimagic graceful if $2 \leq n \leq 6$ and $d=1$.
Proof Label the vertices of \mathcal{F}_{n} by $g: V\left(\mathcal{F}_{n}\right) \rightarrow\{1,2, \cdots, n+1\}$ as follows:
If $n=2$, let the labels of vertices be $g\left(x_{1}\right)=1, g\left(x_{2}\right)=2$ and $g(c)=3$; If $n=3$, let the labels be $g\left(x_{1}\right)=1, g\left(x_{2}\right)=2, g\left(x_{3}\right)=4$ and $g(c)=3$; If $n=4$, let the labels be $g\left(x_{1}\right)=1, g\left(x_{2}\right)=2, g\left(x_{3}\right)=4, g\left(x_{4}\right)=5$ and $g(c)=3$; If $n=5$, let the labels be $g\left(x_{1}\right)=2, g\left(x_{2}\right)=1, g\left(x_{3}\right)=3, g\left(x_{4}\right)=5, g\left(x_{5}\right)=6$ and $g(c)=4$, and if $n=6$, let the labels be $g\left(x_{1}\right)=2, g\left(x_{2}\right)=1, g\left(x_{3}\right)=3, g\left(x_{4}\right)=5, g\left(x_{5}\right)=7, g\left(x_{6}\right)=6$ and $g(c)=4$. Generally, let $W_{g}=\left\{w_{g}\left(q_{i}\right)=2+i: 1 \leq i \leq 2 n-1\right\}$ be the set of edge-weights of edges $q_{i} \in \mathcal{F}_{n}$ and label the edges of \mathcal{F}_{n} by $g_{1}: E\left(\mathcal{F}_{n}\right) \rightarrow\{n+2, n+3, \cdots, 3 n\}$ where

$$
g_{1}\left(q_{i}\right)= \begin{cases}n+1+\frac{i+1}{2} & \text { if } i \text { is odd } \\ 2 n+1+\frac{i}{2} & \text { if } i \text { is even }\end{cases}
$$

Combining the vertex labeling g and the edge labeling g_{1} gives a super ($a, 1$)-edge-antimagic
graceful labeling where

$$
W=\left\{\left|w_{g}\left(q_{i}\right)-g_{1}\left(q_{i}\right)\right|: 1 \leq i \leq 2 n-1\right\}
$$

is the set of edge-weights.
A $(0,1)$-super edge-antimagic graceful labeling of the fan \mathcal{F}_{3} is given in Figure 3.

Figure 3. A $(0,1)$-super edge-antimagic graceful labeling of \mathcal{F}_{3}.

References

[1] M. Baca and M. Miller, Super Edge-Antimgic Graphs: A Wealth of Problems and Some Solutions, Brown Walker Press, Boca Raton, Fla, USA, 2008.
[2] M. Baca, P. Kovar, A. Semanicova-Fenovcikova and M. K. Shafiq, On super (a,1)-edgeantimagic total labeling of regular graphs, Discrete Math., 310 (2010), 1408-1412.
[3] M. Baca, Y. Lin, M. Miller and M. Z. Youssef, Edge-antimagic graphs, Discrete Math., 307 (2007), 1232-1244.
[4] N. Hartsfield and G. Ringel, Pearls in Graph Theory, Academic Press, Boston, San Diego, New York, London, 1990.
[5] A. Kotzig and A.Rosa, Magic Valuations of Complete Graphs, CRM Publisher, 1972.
[6] A. Kotzig and A.Rosa, Magic valuations of finite graphs, Canadian Mathematical Bulletin, 13 (1970), 451-461.
[7] G. Marimuthu and M. Balakrishnan, Super edge magic Graceful labeling of Graphs, Inf. Sci., 287 (2014), 140-151.
[8] G. Marimuthu and P.Krishnaveni, Super Edge-antimagic graceful graphs, Malaya J.Mat., 3(3) (2015), 312-317.
[9] R. Simanjuntak, F. Bertault and M. Miller, Two new (a, d)-antimagic graph labelings, in: Proc. of $11^{\text {th }}$ Australian Workshop of Combinatorial Algorithm, (2000), 179-189.
[10] D. B. West, An Introduction to Graph Theory, Prentice Hall, Engelwood Cliffs, NJ, 1996.

[^0]: ${ }^{1}$ Received June 12, 2023, Accepted December 10, 2023.

