International J.Math. Combin. Vol.4(2023), 75-81

Further Results on

Super (a, d) Edge-Antimagic Graceful Labeling of Graphs

P.Krishnaveni

(Department of Mathematics, Thiagarajar College, Madurai - 625009, Tamil Nadu, India)

E-mail: krishnaswetha 82@gmail.com

Abstract: An (a, d)-edge-antimagic graceful labeling is a bijection g from $V(G) \cup E(G)$ into $\{1, 2, \dots, |V(G)| + |E(G)|\}$ such that for each edge $xy \in E(G)$, |g(x) + g(y) - g(xy)|form an arithmetic progression starting from a and having a common difference d. An (a, d)edge-antimagic graceful labeling is called super (a, d)-edge-antimagic graceful if g(V(G)) = $\{1, 2, \dots, |V(G)|\}$. A graph that admits an super (a, d)-edge-antimagic graceful labeling is called a super (a, d)-edge-antimagic graceful graph. In this paper, we prove the super (a, d)edge antimagic gracefulness of regular graphs. Later, we study the non-regular graph is super (a, 1)-edge-antimagic graceful graph. Finally, we find super edge-antimagic graceful labeling of some classes of graphs.

Key Words: Labelling, (a, d)-edge-antimagic total labeling, Smarandachely edgeantimagic total labeling, (a, d)-edge-antimagic graceful labeling, super(a, d)-edge-antimagic graceful labeling.

AMS(2010): 05C78.

§1. Introduction

Throughout this paper, we only concern with connected, undirected simple graphs of order p and size q. We denote by V(G) and E(G) the set of vertices and the set of edges of a graph G, respectively.

Let |V(G)| = p and |E(G)| = q be the number of vertices and the number of edges of G, respectively. General references for graph-theoretic notions are [1,10].

A labeling of a graph is any map that carries some set of graph elements to numbers. Hartsfield and Ringel [4] introduced the concept of an antimagic labeling and they defined an antimagic labeling of a (p, q) graph G as a bijection f from E(G) to the set $\{1, 2, \dots, q\}$ such that the sums of label of the edges incident with each vertex $v \in V(G)$ are distinct.

An (a, d)-edge-antimagic total labeling was introduced by Simanjuntak, Bertault and Miller in [9]. This labeling is the extension of the notions of edge-magic labeling, see [5,6].

For a graph G = (V, E), a bijection g from $V(G) \cup E(G)$ into $\{1, 2, \dots, |V(G)| + |E(G)|\}$ is called an (a, d)-edge-antimagic total labeling of G if the edge-weights $w(xy) = g(x) + g(y) + g(xy), xy \in E(G)$, form an arithmetic progression starting from a and having a common differ-

¹Received June 12, 2023, Accepted December 10, 2023.

P.Krishnaveni

ence d. Generally, let $H \prec G$ be a typical subgraph of G with |V(G-H)| = a', |E(G-H)| = b'. If there is an (a', d')-edge-antimagic total labeling g' on G - H, such a labeling g' is called a Smarandachely edge-antimagic total labeling. Particularly, let $H = \emptyset$ or a typical graph in K_2 , P_3 , C_3 or $S_{1,3}$. We get the (a, d)-edge-antimagic total labeling or nearly (a, d)-edge-antimagic total labeling of G.

The (a, 0)-edge-antimagic total labelings are usually called edge-magic in the literature. An (a, d)-edge antimagic total labeling is called super if the smallest possible labels appear on the vertices.

In [7] Marimuthu et al. introduced an edge magic graceful labeling of a graph. They presented some properties of super edge magic graceful graphs and proved some classes of graphs are super edge magic graceful. In [8] Marimuthu and Krishnaveni introduced super edge antimagic graceful labeling.

An (a, d)-edge-antimagic graceful labeling is defined as a one-to-one mapping from $V(G) \cup E(G)$ into the set $\{1, 2, 3, \dots, p+q\}$ so that the set of edge-weights of all edges in G is equal to $\{a, a+d, a+2d, \dots, a+(q-1)d\}$, for two integers $a \ge 0$ and d > 0.

An (a, d)-edge-antimagic graceful labeling g is called super (a, d)-edge-antimagic graceful if $g(V(G)) = \{1, 2, \dots, p\}$ and $g(E(G)) = \{p+1, p+2, \dots, p+q\}$. A graph G is called (a, d)-edge-antimagic graceful or super (a, d)-edge-antimagic graceful if there exists an (a, d)-edge-antimagic graceful or a super (a, d)-edge-antimagic graceful labeling of G.

Baca et al. [2] proved super (a, 1)-edge-antimagic total labeling of regular graphs. In [3] Baca et.al proved some classes of graphs like Frienship graphs, Fan graphs and Wheel graphs has super edge-antimagic graceful labeling. In this paper, we study super (a, d)-edge-antimagic graceful labeling of regular graphs. We also prove some classes of graphs, including friendship graphs, cycles and fan graphs has super (a, d)-edge-antimagic graceful labeling.

§2. Main Results

Theorem 2.1 If G is a connected super (a, d)-edge-antimagic graceful graph, then $d \leq 2$.

Proof Let G be a connected super (a, d)-edge-antimagic graceful graph. Suppose that $d \ge 3$. There exists a bijection $g: V(G) \cup E(G) \rightarrow \{1, 2, \dots, p+q\}$ which is a super (a, d)-edge-antimagic graceful labeling with the set of edge-weights.

$$W = \{w(xy) : w(xy) = |g(x) + g(y) - g(xy)|, xy \in E(G)\}$$

= $\{a, a + d, a + 2d, \cdots, a + (q - 1)d\}.$

It is easy to see that the minimum possible edge-weight in a super (a, d)-edge-antimagic graceful labeling is at least |1 + p - (p + 1)| = 0.

We observe that $a \ge 0$. On the other hand, the maximum edge-weight is no more than |1+2-(p+q)| = p+q-3. Therefore, $a+(q-1)d \le p+q-3$. This shows that $(q-1)d \le p+q-3$.

Hence,

$$\begin{split} d &\leq \frac{p+q-3}{q-1} \Rightarrow 3 \leq d \leq \frac{p+q-3}{q-1} \\ \Rightarrow &3 \leq \frac{p+q-3}{q-1} \Rightarrow 3 \leq \frac{p-2}{q-1} + 1 \Rightarrow 2 \leq \frac{p-2}{q-1} \\ \Rightarrow &2 \leq \frac{p-2}{p-1-1} \text{ (since the size of every connected graph of order } p \text{ is at least } p-1) \\ \Rightarrow &2 \leq 1, \end{split}$$

a contradiction. Hence, $d \leq 2$.

Theorem 2.2 Let G be a connected (p,q)-graph which is not a tree. If G has a super (a,d)-edge-antimagic graceful labeling then d = 1.

Proof Assume that G has a super (a, d)-edge-antimagic graceful labeling $f : V(G) \cup E(G) \longrightarrow \{1, 2, \dots, p+q\}$ and $\{w(uv) : uv \in E(G)\} = \{a, a+d, a+2d, \dots, a+(q-1)d\}$ is the set of edge-weights. The minimum possible edge-weight $a \ge 0$. The maximum edge-weight is no more than p+q-3. Thus $a+(q-1)d \le p+q-3$. and

$$d \le \frac{p+q-3}{q-1}.\tag{2.1}$$

But, $p \leq q$ (Since G is not a tree T). Then, (2.1) gives d < 2.

§3. Super (a, d)-Edge-Antimagic Graceful Labeling of Regular Graphs

Proposition 3.1(Petersen theorem) Let G be a 2r-regular graph. Then there exists a 2-factor in G.

Notice that after removing edges of the 2 - factor guaranteed by the Petersen theorem we have again an even regular graph. Thus, by induction, an even regular graph has a 2-factorization.

The construction in the following theorem allows us to find a super (a, 1) – edge-antimagic graceful labeling of any even regular graph. Notice that the construction does not require the graph to be connected. In the following theorem we denote [a, b] is the set of consecutive integers $\{a, a + 1, \dots, b\}$.

Theorem 3.2 Let G be a graph on p vertices that can be decomposed into two factors G_1 and G_2 . If G_1 is edge-empty or if G_1 is a super (0,1)-edge-antimagic graceful graph and G_2 is a 2r-regular graph then G is super (0,1)-edge-antimagic graceful.

Proof First we start with the case when G_1 is not edge-empty. Since G_1 is a super (0,1)-edge-antimagic graceful graph with p vertices and q edges, there exists a total labeling f: $V(G_1) \cup E(G_1) \longrightarrow [1, p+q]$ such that $\{|f(x) + f(y) - f(xy)| : xy \in E(G)\} = \{0, 1, 2 \cdots, q-1\}.$

P.Krishnaveni

By the Petersen theorem there exists a 2-factorization of G_2 . We denote the 2-factors by F_j , $j = 1, 2, \dots, r$. Let $V(G) = V(G_1) = V(F_j)$ for all j and $E(G) = U_{j=1}^r E(F_j) \bigcup E(G_1)$. Each factor F_j is a collection of cycles. We order and orient the cycles arbitrarily. Now by the symbol $e_j^{out}(v_i)$ we denote the unique outgoing arc from the vertex v_i in the factor F_j . We define a total labeling g of G in the way that g(v) = f(v) for $v \in V(G)$, g(e) = f(e) for $e \in E(G_1)$ and $g(e) = q + jp + f(v_i)$ for $e = e_j^{out}(v_i)$. Then, the vertices are labeled by the first p integers. The edges of G_1 by the next q labels and the edges of G_2 by consecutive integers starting at p+q+1. Thus g is a bijection $V(G) \cup E(G) \longrightarrow \{1, 2 \cdots, p + q + pr\}$ Since |E(G)| = q + pr. It is not difficult to verify that g is a super (0, 1)-edge-antimagic graceful labeling of G. The weights of the edges e in $E(G_1)$ is $w_g(e) = w_f(e)$. The weights form the progression $0, 1, 2, \cdots, q - 1$. For convenience, we denote by v_k the unique vertex such that $v_i v_k = e_j^{out}(v_i)$ in F_j . The weights of the edges in F_j , $j = 1, 2, \cdots, r$ are

$$w_g(e_j^{out}(v_i)) = w_g(v_i v_k) = |g(v_i) - (q + jp + f(v_i)) + g(v_k)|$$

= $|f(v_i) - (q + jp + f(v_i)) + f(v_k)| = |-q - jp + f(v_k)|$
= $|-(q + jp - f(v_k))|$

for all $i = 1, 2, \dots, p$ and $j = 1, 2, \dots, r$. Since F_j is a factor, the set $\{f(v_k) : v_k \in F_j\} = [1, p]$. Hence we have that the set of edge-weights in the factor F_j is [q + (j - 1)p, q + jp - 1] and thus the set of all edge-weights in G is [0, q + rp - 1]. If G_1 is edge-empty it is enough to take q = 0 and proceed with the labeling of factors F_j .

By taking an edge-empty graph G_1 we have the following theorem.

Theorem 3.3 All even regular graphs of order p with at least one edge are super (0,1)-edgeantimagic graceful.

The disjoint union of $m \ge 1$ copies of a graph G is denoted by mG.

Theorem 3.4 Let k, m be positive integers. Then the graph $kP_2 \cup mK_1$ is super (0,1)-edgeantimagic graceful.

Proof We denote the vertices of the graph $G \cong kP_2 \cup mK_1$ by the symbols $v_1, v_2, \cdots, v_{2k+m}$ in such a way that $E(G) = \{v_i v_{k+m+i} : i = 1, 2, \cdots, k\}$ and the remaining vertices are denoted arbitrarily by the unused symbols. We define the labeling $f : V(G) \cup E(G) \longrightarrow \{1, 2, \cdots, 3k+m\}$ in the following way $f(v_j) = j$ for $j = 1, 2, \cdots, 2k + m$, $f(v_i v_{k+m+i}) = 2k + m + i$ for i = $1, 2, \cdots, k$. It is easy to see that f is a bijection and that the vertices of G are labeled by the smallest possible numbers. For the edge-weights we get $w_f(v_i v_{k+m+i}) = |f(v_i) + f(v_{k+m+i}) - f(v_i v_{k+m+i})| = k$ -i for $i = 1, 2, \cdots, k$. Thus, f is a super (0, 1)-edge-antimagic graceful labeling of G.

Now by taking m = 0 and observing that the number of vertices in kP_2 is 2k, then we immediately obtain the following corollary.

Corollary 3.5 If G is an odd regular graph on p vertices that has a 1 - factor then G is super

(0,1)-edge-antimagic graceful.

§4. Friendship Graphs

The friendship graph $\mathbf{F}_{\mathbf{n}}$ is a set of *n* triangles having a common center vertex and otherwise disjoint. Let *c* denote the center vertex. For the *i*th triangle, let x_i and y_i denote the other two vertices.

Theorem 4.1 Every friendship graph \mathbf{F}_n , $n \ge 1$, has super (a, 1)-edge-antimagic graceful labeling.

Proof Label the vertices and edges of $\mathbf{F}_{\mathbf{n}}$ by the following functions g_1 and g_2 respectively.

$$g_1(c) = n + 1, \quad g_1(x_i) = i, \quad g_1(y_i) = 2n + 2 - i \text{ for } 1 \le i \le n,$$

$$g_2(x_i c) = 3n + 2i, \quad g_2(y_i c) = 5n + 3 - 2i, \quad g_2(x_i y_i) = 2n + 1 + i$$

Notice that, in this labeling a = 0. It is easy to verify that the set of edge-weights consists of the consecutive integers $\{0, 1, 2, \dots, 3n - 1\}$ and we arrive at the desired result.

Figure 1 illustrates the proof of Theorem 4.1.

Figure 1. A (0, 1)-super edge-antimagic graceful labeling of \mathbf{F}_4 .

§5. Cycles

Theorem 5.1 For $n \ge 3$, the cycle C_n has super (a, 1)-edge-antimagic graceful labeling.

Proof Let a cycle C_n be defined as follows:

$$V(C_n) = \{p_1, p_2, \cdots, p_n\} \text{ and }$$
$$E(C_n) = \{p_i p_{i+1} : i = 1, 2, \cdots, n-1\} \cup \{p_n p_1\}.$$

Also, define the vertex labeling $f_1 : V(C_n) \to \{1, 2, \dots, n\}$ and the edge labeling $f_2 : E(C_n) \to \{n+1, n+2, \dots, n+n\}$ in the following way.

$$f_1(v_i) = i, \quad 1 \le i \le n;$$

$$f_2(v_i v_{i+1}) = n + 1 + i \text{ for } 1 \le i \le n - 1;$$

$$f_2(v_n v_1) = n + 1.$$

Combining the vertex labeling f_1 and the edge labeling f_2 given above, we obtain a total labeling. The set of edge-weights consists of the consecutive integers $\{0, 1, 2, \dots, n-1\}$.

An illustration of Theorem 5.1 is given in Figure 2.

Figure 2. A (0, 1)-super edge-antimagic graceful labeling of C_5 .

§6. Fans

A fan $\mathcal{F}_n, n \geq 2$ is a graph obtained by joining all vertices of path P_n to a further vertex called the center. Thus \mathcal{F}_n contains n + 1 vertices, say, c, x_1, x_2, \dots, x_n and 2n - 1 edges say $cx_i, 1 \leq i \leq n$ and $x_i x_{i+1}, 1 \leq i \leq n - 1$.

Theorem 6.1 The fan \mathcal{F}_n is super (a, 1)-edge-antimagic graceful if $2 \le n \le 6$ and d = 1.

Proof Label the vertices of \mathcal{F}_n by $g: V(\mathcal{F}_n) \to \{1, 2, \cdots, n+1\}$ as follows:

If n = 2, let the labels of vertices be $g(x_1) = 1, g(x_2) = 2$ and g(c) = 3; If n = 3, let the labels be $g(x_1) = 1, g(x_2) = 2, g(x_3) = 4$ and g(c) = 3; If n = 4, let the labels be $g(x_1) = 1, g(x_2) = 2, g(x_3) = 4, g(x_4) = 5$ and g(c) = 3; If n = 5, let the labels be $g(x_1) = 2, g(x_2) = 1, g(x_3) = 3, g(x_4) = 5, g(x_5) = 6$ and g(c) = 4, and if n = 6, let the labels be $g(x_1) = 2, g(x_2) = 1, g(x_3) = 3, g(x_4) = 5, g(x_5) = 7, g(x_6) = 6$ and g(c) = 4. Generally, let $W_g = \{w_g(q_i) = 2 + i : 1 \le i \le 2n - 1\}$ be the set of edge-weights of edges $q_i \in \mathcal{F}_n$ and label the edges of \mathcal{F}_n by $g_1 : E(\mathcal{F}_n) \to \{n+2, n+3, \cdots, 3n\}$ where

$$g_1(q_i) = \begin{cases} n+1+\frac{i+1}{2} & \text{if } i \text{ is odd,} \\ 2n+1+\frac{i}{2} & \text{if } i \text{ is even.} \end{cases}$$

Combining the vertex labeling g and the edge labeling g_1 gives a super (a, 1)-edge-antimagic

80

graceful labeling where

$$W = \{ |w_g(q_i) - g_1(q_i)| : 1 \le i \le 2n - 1 \}$$

is the set of edge-weights.

A (0, 1)-super edge-antimagic graceful labeling of the fan \mathcal{F}_3 is given in Figure 3.

Figure 3. A (0, 1)-super edge-antimagic graceful labeling of \mathcal{F}_3 .

References

- M. Baca and M. Miller, Super Edge-Antimgic Graphs: A Wealth of Problems and Some Solutions, Brown Walker Press, Boca Raton, Fla, USA, 2008.
- [2] M. Baca, P. Kovar, A. Semanicova-Fenovcikova and M. K. Shafiq, On super (a,1)-edgeantimagic total labeling of regular graphs, *Discrete Math.*, 310 (2010), 1408-1412.
- [3] M. Baca, Y. Lin, M. Miller and M. Z. Youssef, Edge-antimagic graphs, *Discrete Math.*, 307 (2007), 1232–1244.
- [4] N. Hartsfield and G. Ringel, *Pearls in Graph Theory*, Academic Press, Boston, San Diego, New York, London, 1990.
- [5] A. Kotzig and A.Rosa, Magic Valuations of Complete Graphs, CRM Publisher, 1972.
- [6] A. Kotzig and A.Rosa, Magic valuations of finite graphs, *Canadian Mathematical Bulletin*, 13 (1970), 451–461.
- [7] G. Marimuthu and M. Balakrishnan, Super edge magic Graceful labeling of Graphs, Inf. Sci., 287 (2014), 140-151.
- [8] G. Marimuthu and P.Krishnaveni, Super Edge-antimagic graceful graphs, Malaya J.Mat., 3(3) (2015), 312-317.
- [9] R. Simanjuntak, F. Bertault and M. Miller, Two new (a, d)-antimagic graph labelings, in: Proc. of 11th Australian Workshop of Combinatorial Algorithm, (2000), 179–189.
- [10] D. B. West, An Introduction to Graph Theory, Prentice Hall, Engelwood Cliffs, NJ, 1996.