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Abstract: An n-tuple (a1, a2, · · · , an) is symmetric, if ak = an−k+1, 1 ≤ k ≤ n. Let

Hn = {(a1, a2, · · · , an) : ak ∈ {+,−}, ak = an−k+1, 1 ≤ k ≤ n} be the set of all symmetric

n-tuples. A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair Sn = (G, σ)

(Sn = (G,µ)), where G = (V,E) is a graph called the underlying graph of Sn and σ : E → Hn

(µ : V → Hn) is a function. In this paper, we introduced a new notions Gallai and anti-

Gallai symmetric n-sigraph of a symmetric n-sigraph and its properties are obtained. Also we

give the relation between Gallai symmetric n-sigraphs and anti-Gallai symmetric n-sigraphs.

Further, we discuss structural characterizations of these notions.
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§1. Introduction

Unless mentioned or defined otherwise, for all terminology and notion in graph theory the

reader is refer to [3]. We consider only finite, simple graphs free from self-loops.

Let n ≥ 1 be an integer. An n-tuple (a1, a2, · · · , an) is symmetric, if ak = an−k+1, 1 ≤
k ≤ n. Let Hn = {(a1, a2, · · · , an) : ak ∈ {+,−}, ak = an−k+1, 1 ≤ k ≤ n} be the set of all

symmetric n-tuples. Note that Hn is a group under coordinate wise multiplication, and the

order of Hn is 2m, where m = dn2 e.
A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair Sn = (G, σ) (Sn =

(G,µ)), where G = (V,E) is a graph called the underlying graph of Sn and σ : E → Hn

(µ : V → Hn) is a function. Generally, a Smarandachely symmetric n-sigraph (Smarandachely
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symmetric n-marked graph) for a subgraphH ≺ G is such a graph thatG−E(H) is symmetric n-

sigraph (symmetric n-marked graph). For example, let H be a path P2 � G or a claw K1,3 ≺ G.

Certainly, if H = ∅, a Smarandachely symmetric n-sigraph (or Smarandachely symmetric n-

sigraph) is nothing else but a symmetric n-sigraph (or symmetric n-marked graph).

In this paper by an n-tuple/n-sigraph/n-marked graph we always mean a symmetric n-

tuple/symmetric n-sigraph/symmetric n-marked graph.

An n-tuple (a1, a2, · · · , an) is the identity n-tuple, if ak = +, for 1 ≤ k ≤ n, otherwise it is

a non-identity n-tuple. In an n-sigraph Sn = (G, σ) an edge labelled with the identity n-tuple

is called an identity edge, otherwise it is a non-identity edge.

Further, in an n-sigraph Sn = (G, σ), for any A ⊆ E(G) the n-tuple σ(A) is the product

of the n-tuples on the edges of A.

In [11], the authors defined two notions of balance in n-sigraph Sn = (G, σ) as follows (See

also R. Rangarajan and P.S.K.Reddy [7]):

Definition 1.1 Let Sn = (G, σ) be an n-sigraph. Then,

(i) Sn is identity balanced (or i-balanced), if product of n-tuples on each cycle of Sn is

the identity n-tuple, and

(ii) Sn is balanced, if every cycle in Sn contains an even number of non-identity edges.

Notice that an i-balanced n-sigraph need not be balanced and conversely. The following

characterization of i-balanced n-sigraphs is obtained in [11].

Proposition 1.1 (E. Sampathkumar et al. [11]) An n-sigraph Sn = (G, σ) is i-balanced if,

and only if, it is possible to assign n-tuples to its vertices such that the n-tuple of each edge uv

is equal to the product of the n-tuples of u and v.

Let Sn = (G, σ) be an n-sigraph. Consider the n-marking µ on vertices of Sn defined as

follows: each vertex v ∈ V , µ(v) is the n-tuple which is the product of the n-tuples on the

edges incident with v. Complement of Sn is an n-sigraph Sn = (G, σc), where for any edge

e = uv ∈ G, σc(uv) = µ(u)µ(v). Clearly, Sn as defined here is an i-balanced n-sigraph due to

Proposition 1 in [11].

In [11], the authors also have defined switching and cycle isomorphism of an n-sigraph

Sn = (G, σ) as follows: (See also [5, 8õ10, 13õ23]).

Let Sn = (G, σ) and S′n = (G′, σ′), be two n-sigraphs. Then Sn and S′n are said to be

isomorphic, if there exists an isomorphism φ : G → G′ such that if uv is an edge in Sn with

label (a1, a2, · · · , an) then φ(u)φ(v) is an edge in S′n with label (a1, a2, · · · , an).

Given an n-marking µ of an n-sigraph Sn = (G, σ), switching Sn with respect to µ is

the operation of changing the n-tuple of every edge uv of Sn by µ(u)σ(uv)µ(v). The n-sigraph

obtained in this way is denoted by Sµ(Sn) and is called the µ-switched n-sigraph or just switched

n-sigraph.

Further, an n-sigraph Sn switches to n-sigraph S′n (or that they are switching equivalent

to each other), written as Sn ∼ S′n, whenever there exists an n-marking of Sn such that

Sµ(Sn) ∼= S′n.

Two n-sigraphs Sn = (G, σ) and S′n = (G′, σ′) are said to be cycle isomorphic, if there
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exists an isomorphism φ : G→ G′ such that the n-tuple σ(C) of every cycle C in Sn equals to

the n-tuple σ(φ(C)) in S′n.

We make use of the following known result (see [11]).

Proposition 1.2 (E. Sampathkumar et al. [11]) Given a graph G, any two n-sigraphs with G

as underlying graph are switching equivalent if, and only if, they are cycle isomorphic.

§2. Gallai n-Sigraphs

The Gallai graph GL(G) of a graph G = (V,E) is the graph whose vertex-set V (GL(G)) = E(G)

and two distinct vertices e1 and e2 are adjacent in GL(G) if e1 and e2 are incident in G, but

do not span a triangle in G (see [4]). In fact, this concept was introduced by Gallai [2] in his

examination of comparability graphs and this notation was suggested by Sun [24]. The author

Sun wasted Gallai graphs GL(G) to characterize a nice class of perfect graphs. Gallai graphs

are also wasted in the polynomial time algorithm to determinate complete bipartite K1,3-free

perfect graphs by the authors Chvátal and Sbihi [1].

Motivated by the existing definition of complement of an n-sigraph, we extend the notion

of Gallai graphs to n-sigraphs as follows:

The Gallai n-sigraph GL(Sn) of an n-sigraph Sn = (G, σ) is an n-sigraph whose underlying

graph is GL(G) and the n-tuple of any edge uv in GL(Sn) is µ(u)µ(v), where µ is the canonical

n-marking of Sn and similarly, the Smarandachely Gallai symmetric n-sigraph on s subgraph

H ≺ G is the Gallai Smarandachely symmetric n-sigrpah on H. Further, an n-sigraph Sn =

(G, σ) is called Gallai n-sigraph if Sn ∼= GL(S′n) for some n-sigraph S′n. The following result

indicates the limitations of the notion GL(Sn) as introduced above, since the entire class of

i-unbalanced n-sigraphs is forbidden to be Gallai n-sigraphs.

Proposition 2.1 For any n-sigraph Sn = (G, σ), its Gallai n-sigraph GL(Sn) is i-balanced.

Proof Since the n-tuple of any edge uv in GL(Sn) is µ(u)µ(v), where µ is the canonical

n-marking of Sn, by Proposition 1.1, GL(Sn) is i-balanced. �

For any positive integer k, the kth iterated Gallai n-sigraph GL(Sn) of Sn is defined as

(GL)0(Sn) = Sn, (GL)k(Sn) = GL((GL)k−1(Sn)).

Corollary 2.1 For any n-sigraph Sn = (G, σ) and any positive integer k, (GL)k(Sn) is i-

balanced.

In [4], the author characterize the graphs for which GL(G) ∼= G.

Theorem 2.1 Let G = (V,E) be any graph, Gallai graph GL(G) is isomorphic to G if, and

only if, G ∼= Cn, where n ≥ 4.

In view of the above result, we now characterize the n-sigraphs for which Gallai n-sigraph
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GL(Sn) and Sn are switching equivalent.

Theorem 2.2 For any n-sigraph Sn = (G, σ), the Gallai n-sigraph GL(Sn) and Sn are switching

equivalent if, and only if, Sn is i-balanced n-sigraph and G is isomorphic to Cn, where n ≥ 4.

Proof Suppose Sn ∼ GL(Sn). This implies, G ∼= GL(G) and hence G is isomorphic

to Cn, where n ≥ 4. Now, if Sn is any n-sigraph with underlying graph as cycle Cn, where

n ≥ 4, Proposition 2.1 implies that GL(Sn) is i-balanced and hence if Sn is i-unbalanced and its

GL(Sn) being i-balanced can not be switching equivalent to Sn in accordance with Proposition

1.2. Therefore, Sn must be i-balanced.

Conversely, suppose that Sn is an i-balanced n-sigraph and G is isomorphic to Cn, where

n ≥ 4. Then, since GL(Sn) is i-balanced as per Proposition 2.1 and since G ∼= GL(G), the

result follows from Proposition 1.2 again. �

Proposition 2.2 For any two Sn and S′n with the same underlying graph, their Gallai n-

sigraphs are switching equivalent.

Now, we characterize Gallai n-sigraphs. The following result characterize n-sigraphs which

are Gallai n-sigraphs.

Theorem 2.3 An n-sigraph Sn = (G, σ) is a Gallai n-sigraph if, and only if, Sn is i-balanced

n-sigraph and its underlying graph G is a Gallai graph.

Proof Suppose that Sn is i-balanced and G is a GL(G). Then there exists a graph H

such that GL(H) ∼= G. Since Sn is i-balanced, by Proposition 1.1, there exists an n-marking

µ of G such that each edge uv in Sn satisfies σ(uv) = µ(u)µ(v). Now consider the n-sigraph

S′n = (H,σ′), where for any edge e in H, σ′(e) is the n-marking of the corresponding vertex in

G. Then clearly, GL(S′n) ∼= Sn. Hence Sn is a Gallai n-sigraph.

Conversely, suppose that Sn = (G, σ) is a Gallai n-sigraph. Then there exists an n-sigraph

S′n = (H,σ′) such that GL(S′n) ∼= Sn. Hence G is the GL(G) of H and by Proposition 2.1, Sn

is i-balanced. �

§3. Anti-Gallai n-Sigraph of a n-Sigraph

The anti-Gallai graphAGL(G) of a graphG = (V,E) is the graph whose vertex-set V (AGL(G)) =

E(G); two distinct vertices e1 and e2 are adjacent in AGL(G) if e1 and e2 are incident in G and

lie on a triangle in G (see [4]). Equivalently, the anti-Gallai graph AGL(G) is the complement

of Gallai graph GL(G) in the line graph L(G). We can easily observe that the Gallai graphs

GL(G) and anti-Gallai graphs AGL(G) are the spanning subgraphs of the line graph L(G) (See

[4] for details).

Motivated by the existing definition of complement of an n-sigraph, we extend the notion

of anti-Gallai graphs to n-sigraphs as follows:

The anti-Gallai n-sigraph AGL(Sn) of an n-sigraph Sn = (G, σ) is an n-sigraph whose
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underlying graph is AGL(G) and the n-tuple of any edge uv is AGL(Sn) is µ(u)µ(v), where

µ is the canonical n-marking of Sn. Similarly, the Smarandachely anti-Gallai n-sigraph of a

Smarandachely n-sigraph Sn = (G, σ) on H ≺ G is the anti-Gallai n-sigraph of the Smaran-

dachely n-sigraph on H. Further, an n-sigraph Sn = (G, σ) is called anti-Gallai n-sigraph, if

Sn ∼= AGL(S′n) for some n-sigraph S′n. The following result indicates the limitations of the no-

tion AGL(Sn) as introduced above, since the entire class of i-unbalanced n-sigraphs is forbidden

to be anti-Gallai n-sigraphs.

Proposition 3.1 For any n-sigraph Sn = (G, σ), its anti-Gallai n-sigraph AGL(Sn) is i-

balanced.

Proof Since the n-tuple of any edge uv in AGL(Sn) is µ(u)µ(v), where µ is the canonical

n-marking of Sn, by Proposition 1.1, AGL(Sn) is i-balanced. �

For any positive integer k, the kth iterated anti-Gallai n-sigraph AGL(Sn) of Sn is defined

to be

(AGL)0(Sn) = Sn, (AGL)k(Sn) = AGL((AGL)k−1(Sn)).

Corollary 3.1 For any n-sigraph Sn = (G, σ) and any positive integer k, (AGL)k(Sn) is

i-balanced.

In [4], the author characterize the graphs for which AGL(G) ∼= G.

Theorem 3.1 Let G = (V,E) be any graph, anti-Gallai graph AGL(G) is isomorphic to G if,

and only if G ∼= K3.

In view of the above result, we now characterize the n-sigraphs for which anti-Gallai n-

sigraph AGL(S) and S are switching equivalent.

Theorem 3.2 For any n-sigraph Sn = (G, σ), the anti-Gallai signed graph AGL(Sn) and S

are switching equivalent if, and only if, Sn is i-balanced and G is isomorphic to K3.

Proof Suppose Sn ∼ AGL(Sn). This implies, G ∼= AGL(G) and hence G is isomorphic

to K3. Now, if Sn is any n-sigraph with underlying graph as C3, Proposition 2.1 implies that

AGL(Sn) is i-balanced and hence if Sn is i-unbalanced and its AGL(Sn) being i-balanced can

not be switching equivalent to Sn in accordance with Proposition 1.2. Therefore, Sn must be

i-balanced.

Conversely, suppose that Sn is an i-balanced n-sigraph and G is isomorphic to C3. Then,

since AGL(Sn) is i-balanced as per Proposition 3 and since G ∼= AGL(G), the result follows

from Proposition 1.2 again. �

Proposition 3.2 For any two Sn and S′n with the same underlying graph, their anti-Gallai

n-sigraphs are switching equivalent.

Now, we characterize Gallai n-sigraphs. The following result characterize n-sigraphs which

are Gallai n-sigraphs.
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Theorem 3.3 An n-sigraph Sn = (G, σ) is an anti-Gallai n-sigraph if, and only if, Sn is

i-balanced n-sigraph and its underlying graph G is an anti-Gallai graph.

Proof Suppose that Sn is i-balanced and G is a AGL(G). Then there exists a graph H

such that AGL(H) ∼= G. Since Sn is i-balanced, by Proposition 1.1, there exists an n-marking

µ of G such that each edge uv in Sn satisfies σ(uv) = µ(u)µ(v). Now consider the n-sigraph

S′n = (H,σ′), where for any edge e in H, σ′(e) is the n-marking of the corresponding vertex in

G. Then clearly, AGL(S′n) ∼= Sn. Hence Sn is an anti-Gallai n-sigraph.

Conversely, suppose that Sn = (G, σ) is an anti-Gallai n-sigraph. Then there exists an

n-sigraph S′n = (H,σ′) such that AGL(S′n) ∼= Sn. Hence G is the AGL(G) of H and by

Proposition 2.1, Sn is i-balanced. �

We now characterize n-sigraphs whose Gallai n-sigraphs and anti-Gallai n-sigraphs are

switching equivalent. In case of graphs the following result is due to Palathingal and Aparna

Lakshmanan [6].

Theorem 3.4 For any graph G = (V,E), the graphs GL(G) and AGL(G) are isomorphic if,

and only if, G is nK3 ∪ nK1,3.

Theorem 3.5 For any n-sigraph Sn = (G, σ), GL(Sn) ∼ AGL(Sn) if, and only if, G is

nK3 ∪ nK1,3.

Proof Suppose GL(Sn) ∼ AGL(Sn). This implies, GL(G) ∼= AGL(G) and hence by

Theorem 3.4, we see that the graph G must be isomorphic to nK3 ∪ nK1,3.

Conversely, suppose that G is isomorphic to nK3 ∪ nK1,3. Then GL(G) ∼= AGL(G) by

Theorem 3.4. Now, if Sn is an n-sigraph with underlying graph as nK3∪nK1,3, by Propositions

2.1 and 3.1, GL(Sn) and GL(Sn) are i-balanced. The result follows from Proposition 1.2. �

§4. Complementation

In this section, we investigate the notion of complementation of a graph whose edges have signs

(a sigraph) in the more general context of graphs with multiple signs on their edges. We look

at two kinds of complementation: complementing some or all of the signs, and reversing the

order of the signs on each edge.

For any m ∈ Hn, the m-complement of a = (a1, a2, · · · , an) is: am = am. For any M ⊆ Hn,

and m ∈ Hn, the m-complement of M is Mm = {am : a ∈M}.
For any m ∈ Hn, the m-complement of an n-sigraph Sn = (G, σ), written (Smn ), is the

same graph but with each edge label a = (a1, a2, · · · , an) replaced by am.

For an n-sigraph Sn = (G, σ), the GL(Sn) (AGL(Sn)) is i-balanced. We now examine, the

condition under which m-complement of GL(Sn) is i-balanced, where for any m ∈ Hn.

Proposition 4.1 Let Sn = (G, σ) be an n-sigraph. Then, for any m ∈ Hn, if GL(G) (AGL(G))

is bipartite then (GL(Sn))m ((AGL(Sn))m) is i-balanced.

Proof Since, by Proposition 2.1 (Proposition 3.1), GL(Sn) (AGL(Sn)) is i-balanced, for each k,
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1 ≤ k ≤ n, the number of n-tuples on any cycle C in GL(Sn) (AGL(Sn)) whose kth co-ordinate

are − is even. Also, since GL(G) (AGL(G)) is bipartite, all cycles have even length; thus, for

each k, 1 ≤ k ≤ n, the number of n-tuples on any cycle C in GL(Sn) (AGL(Sn)) whose kth

co-ordinate are + is also even. This implies that the same thing is true in any m-complement,

where for any m,∈ Hn. Hence (GL(Sn))t ((AGL(Sn))t) is i-balanced. �
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