Gallai and Anti-Gallai Symmetric n-Sigraphs

S. Vijay
(Department of Mathematics, Government Science College, Hassan-573 201, India)
C. N. Harshavardhana
(Department of Mathematics, Government First Grade College for Women, Holenarasipur-573 211, India)
\section*{P. Somashekar}
(Department of Mathematics, Maharani's Science College for Women, Mysuru-570 005, India)
E-mail: vijayshivanna82@gmail.com, cnhmaths@gmail.com, somashekar2224@gmail.com

Abstract

An n-tuple $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ is symmetric, if $a_{k}=a_{n-k+1}, 1 \leq k \leq n$. Let $H_{n}=\left\{\left(a_{1}, a_{2}, \cdots, a_{n}\right): a_{k} \in\{+,-\}, a_{k}=a_{n-k+1}, 1 \leq k \leq n\right\}$ be the set of all symmetric n-tuples. A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair $S_{n}=(G, \sigma)$ $\left(S_{n}=(G, \mu)\right.$), where $G=(V, E)$ is a graph called the underlying graph of S_{n} and $\sigma: E \rightarrow H_{n}$ $\left(\mu: V \rightarrow H_{n}\right)$ is a function. In this paper, we introduced a new notions Gallai and antiGallai symmetric n-sigraph of a symmetric n-sigraph and its properties are obtained. Also we give the relation between Gallai symmetric n-sigraphs and anti-Gallai symmetric n-sigraphs. Further, we discuss structural characterizations of these notions.

Key Words: Symmetric n-sigraph, Smarandachely symmetric n-sigraph, symmetric n marked graph, Smarandachely symmetric n-marked graph, balance, switching, Gallai symmetric n-sigraphs, Smarandachely Gallai symmetric n-sigraph, anti-Gallai symmetric n sigraph, Smarandachely anti-Gallai n-sigraph, complementation.
AMS(2010): 05C22.

§1. Introduction

Unless mentioned or defined otherwise, for all terminology and notion in graph theory the reader is refer to [3]. We consider only finite, simple graphs free from self-loops.

Let $n \geq 1$ be an integer. An n-tuple $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ is symmetric, if $a_{k}=a_{n-k+1}, 1 \leq$ $k \leq n$. Let $H_{n}=\left\{\left(a_{1}, a_{2}, \cdots, a_{n}\right): a_{k} \in\{+,-\}, a_{k}=a_{n-k+1}, 1 \leq k \leq n\right\}$ be the set of all symmetric n-tuples. Note that H_{n} is a group under coordinate wise multiplication, and the order of H_{n} is 2^{m}, where $m=\left\lceil\frac{n}{2}\right\rceil$.

A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair $S_{n}=(G, \sigma)\left(S_{n}=\right.$ (G, μ)), where $G=(V, E)$ is a graph called the underlying graph of S_{n} and $\sigma: E \rightarrow H_{n}$ $\left(\mu: V \rightarrow H_{n}\right)$ is a function. Generally, a Smarandachely symmetric n-sigraph (Smarandachely

[^0]symmetric n-marked graph) for a subgraph $H \prec G$ is such a graph that $G-E(H)$ is symmetric n sigraph (symmetric n-marked graph). For example, let H be a path $P_{2} \succ G$ or a claw $K_{1,3} \prec G$. Certainly, if $H=\emptyset$, a Smarandachely symmetric n-sigraph (or Smarandachely symmetric n sigraph) is nothing else but a symmetric n-sigraph (or symmetric n-marked graph).

In this paper by an n-tuple/n-sigraph/n-marked graph we always mean a symmetric n tuple/symmetric n-sigraph/symmetric n-marked graph.

An n-tuple $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ is the identity n-tuple, if $a_{k}=+$, for $1 \leq k \leq n$, otherwise it is a non-identity n-tuple. In an n-sigraph $S_{n}=(G, \sigma)$ an edge labelled with the identity n-tuple is called an identity edge, otherwise it is a non-identity edge.

Further, in an n-sigraph $S_{n}=(G, \sigma)$, for any $A \subseteq E(G)$ the n-tuple $\sigma(A)$ is the product of the n-tuples on the edges of A.

In [11], the authors defined two notions of balance in n-sigraph $S_{n}=(G, \sigma)$ as follows (See also R. Rangarajan and P.S.K.Reddy [7]):

Definition 1.1 Let $S_{n}=(G, \sigma)$ be an n-sigraph. Then,
(i) S_{n} is identity balanced (or i-balanced), if product of n-tuples on each cycle of S_{n} is the identity n-tuple, and
(ii) S_{n} is balanced, if every cycle in S_{n} contains an even number of non-identity edges.

Notice that an i-balanced n-sigraph need not be balanced and conversely. The following characterization of i-balanced n-sigraphs is obtained in [11].

Proposition 1.1 (E. Sampathkumar et al. [11]) An n-sigraph $S_{n}=(G, \sigma)$ is i-balanced if, and only if, it is possible to assign n-tuples to its vertices such that the n-tuple of each edge uv is equal to the product of the n-tuples of u and v.

Let $S_{n}=(G, \sigma)$ be an n-sigraph. Consider the n-marking μ on vertices of S_{n} defined as follows: each vertex $v \in V, \mu(v)$ is the n-tuple which is the product of the n-tuples on the edges incident with v. Complement of S_{n} is an n-sigraph $\overline{S_{n}}=\left(\bar{G}, \sigma^{c}\right)$, where for any edge $e=u v \in \bar{G}, \sigma^{c}(u v)=\mu(u) \mu(v)$. Clearly, $\overline{S_{n}}$ as defined here is an i-balanced n-sigraph due to Proposition 1 in [11].

In [11], the authors also have defined switching and cycle isomorphism of an n-sigraph $S_{n}=(G, \sigma)$ as follows: (See also [5, 8-10, 13-23]).

Let $S_{n}=(G, \sigma)$ and $S_{n}^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$, be two n-sigraphs. Then S_{n} and S_{n}^{\prime} are said to be isomorphic, if there exists an isomorphism $\phi: G \rightarrow G^{\prime}$ such that if $u v$ is an edge in S_{n} with label $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ then $\phi(u) \phi(v)$ is an edge in S_{n}^{\prime} with label $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$.

Given an n-marking μ of an n-sigraph $S_{n}=(G, \sigma)$, switching S_{n} with respect to μ is the operation of changing the n-tuple of every edge $u v$ of S_{n} by $\mu(u) \sigma(u v) \mu(v)$. The n-sigraph obtained in this way is denoted by $\mathcal{S}_{\mu}\left(S_{n}\right)$ and is called the μ-switched n-sigraph or just switched n-sigraph.

Further, an n-sigraph S_{n} switches to n-sigraph S_{n}^{\prime} (or that they are switching equivalent to each other), written as $S_{n} \sim S_{n}^{\prime}$, whenever there exists an n-marking of S_{n} such that $\mathcal{S}_{\mu}\left(S_{n}\right) \cong S_{n}^{\prime}$.

Two n-sigraphs $S_{n}=(G, \sigma)$ and $S_{n}^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$ are said to be cycle isomorphic, if there
exists an isomorphism $\phi: G \rightarrow G^{\prime}$ such that the n-tuple $\sigma(C)$ of every cycle C in S_{n} equals to the n-tuple $\sigma(\phi(C))$ in S_{n}^{\prime}.

We make use of the following known result (see [11]).
Proposition 1.2 (E. Sampathkumar et al. [11]) Given a graph G, any two n-sigraphs with G as underlying graph are switching equivalent if, and only if, they are cycle isomorphic.

§2. Gallai n-Sigraphs

The Gallai graph $\mathcal{G} \mathcal{L}(G)$ of a graph $G=(V, E)$ is the graph whose vertex-set $V(\mathcal{G} \mathcal{L}(G))=E(G)$ and two distinct vertices e_{1} and e_{2} are adjacent in $\mathcal{G} \mathcal{L}(G)$ if e_{1} and e_{2} are incident in G, but do not span a triangle in G (see [4]). In fact, this concept was introduced by Gallai [2] in his examination of comparability graphs and this notation was suggested by Sun [24]. The author Sun wasted Gallai graphs $\mathcal{G} \mathcal{L}(G)$ to characterize a nice class of perfect graphs. Gallai graphs are also wasted in the polynomial time algorithm to determinate complete bipartite $K_{1,3}$-free perfect graphs by the authors Chvátal and Sbihi [1].

Motivated by the existing definition of complement of an n-sigraph, we extend the notion of Gallai graphs to n-sigraphs as follows:

The Gallai n-sigraph $\mathcal{G} \mathcal{L}\left(S_{n}\right)$ of an n-sigraph $S_{n}=(G, \sigma)$ is an n-sigraph whose underlying graph is $\mathcal{G} \mathcal{L}(G)$ and the n-tuple of any edge $u v$ in $\mathcal{G} \mathcal{L}\left(S_{n}\right)$ is $\mu(u) \mu(v)$, where μ is the canonical n-marking of S_{n} and similarly, the Smarandachely Gallai symmetric n-sigraph on s subgraph $H \prec G$ is the Gallai Smarandachely symmetric n-sigrpah on H. Further, an n-sigraph $S_{n}=$ (G, σ) is called Gallai n-sigraph if $S_{n} \cong \mathcal{G} \mathcal{L}\left(S_{n}^{\prime}\right)$ for some n-sigraph S_{n}^{\prime}. The following result indicates the limitations of the notion $\mathcal{G} \mathcal{L}\left(S_{n}\right)$ as introduced above, since the entire class of i-unbalanced n-sigraphs is forbidden to be Gallai n-sigraphs.

Proposition 2.1 For any n-sigraph $S_{n}=(G, \sigma)$, its Gallai n-sigraph $\mathcal{G} \mathcal{L}\left(S_{n}\right)$ is i-balanced.
Proof Since the n-tuple of any edge $u v$ in $\mathcal{G} \mathcal{L}\left(S_{n}\right)$ is $\mu(u) \mu(v)$, where μ is the canonical n-marking of S_{n}, by Proposition 1.1, $\mathcal{G} \mathcal{L}\left(S_{n}\right)$ is i-balanced.

For any positive integer k, the $k^{\text {th }}$ iterated Gallai n-sigraph $\mathcal{G} \mathcal{L}\left(S_{n}\right)$ of S_{n} is defined as

$$
(\mathcal{G \mathcal { L }})^{0}\left(S_{n}\right)=S_{n}, \quad(\mathcal{G \mathcal { L }})^{k}\left(S_{n}\right)=\mathcal{G} \mathcal{L}\left((\mathcal{G L})^{k-1}\left(S_{n}\right)\right)
$$

Corollary 2.1 For any n-sigraph $S_{n}=(G, \sigma)$ and any positive integer k, $(\mathcal{G L})^{k}\left(S_{n}\right)$ is i balanced.

In [4], the author characterize the graphs for which $\mathcal{G} \mathcal{L}(G) \cong G$.
Theorem 2.1 Let $G=(V, E)$ be any graph, Gallai graph $\mathcal{G} \mathcal{L}(G)$ is isomorphic to G if, and only if, $G \cong C_{n}$, where $n \geq 4$.

In view of the above result, we now characterize the n-sigraphs for which Gallai n-sigraph
$\mathcal{G L}\left(S_{n}\right)$ and S_{n} are switching equivalent.

Theorem 2.2 For any n-sigraph $S_{n}=(G, \sigma)$, the Gallain-sigraph $\mathcal{G} \mathcal{L}\left(S_{n}\right)$ and S_{n} are switching equivalent if, and only if, S_{n} is i-balanced n-sigraph and G is isomorphic to C_{n}, where $n \geq 4$.

Proof Suppose $S_{n} \sim \mathcal{G \mathcal { L }}\left(S_{n}\right)$. This implies, $G \cong \mathcal{G} \mathcal{L}(G)$ and hence G is isomorphic to C_{n}, where $n \geq 4$. Now, if S_{n} is any n-sigraph with underlying graph as cycle C_{n}, where $n \geq 4$, Proposition 2.1 implies that $\mathcal{G} \mathcal{L}\left(S_{n}\right)$ is i-balanced and hence if S_{n} is i-unbalanced and its $\mathcal{G} \mathcal{L}\left(S_{n}\right)$ being i-balanced can not be switching equivalent to S_{n} in accordance with Proposition 1.2. Therefore, S_{n} must be i-balanced.

Conversely, suppose that S_{n} is an i-balanced n-sigraph and G is isomorphic to C_{n}, where $n \geq 4$. Then, since $\mathcal{G} \mathcal{L}\left(S_{n}\right)$ is i-balanced as per Proposition 2.1 and since $G \cong \mathcal{G} \mathcal{L}(G)$, the result follows from Proposition 1.2 again.

Proposition 2.2 For any two S_{n} and S_{n}^{\prime} with the same underlying graph, their Gallai n sigraphs are switching equivalent.

Now, we characterize Gallai n-sigraphs. The following result characterize n-sigraphs which are Gallai n-sigraphs.

Theorem 2.3 An n-sigraph $S_{n}=(G, \sigma)$ is a Gallai n-sigraph if, and only if, S_{n} is i-balanced n-sigraph and its underlying graph G is a Gallai graph.

Proof Suppose that S_{n} is i-balanced and G is a $\mathcal{G} \mathcal{L}(G)$. Then there exists a graph H such that $\mathcal{G} \mathcal{L}(H) \cong G$. Since S_{n} is i-balanced, by Proposition 1.1, there exists an n-marking μ of G such that each edge $u v$ in S_{n} satisfies $\sigma(u v)=\mu(u) \mu(v)$. Now consider the n-sigraph $S_{n}^{\prime}=\left(H, \sigma^{\prime}\right)$, where for any edge e in $H, \sigma^{\prime}(e)$ is the n-marking of the corresponding vertex in G. Then clearly, $\mathcal{G} \mathcal{L}\left(S_{n}^{\prime}\right) \cong S_{n}$. Hence S_{n} is a Gallai n-sigraph.

Conversely, suppose that $S_{n}=(G, \sigma)$ is a Gallai n-sigraph. Then there exists an n-sigraph $S_{n}^{\prime}=\left(H, \sigma^{\prime}\right)$ such that $\mathcal{G} \mathcal{L}\left(S_{n}^{\prime}\right) \cong S_{n}$. Hence G is the $\mathcal{G} \mathcal{L}(G)$ of H and by Proposition 2.1, S_{n} is i-balanced.

§3. Anti-Gallai n-Sigraph of a n-Sigraph

The anti-Gallai graph $\mathcal{A G} \mathcal{L}(G)$ of a graph $G=(V, E)$ is the graph whose vertex-set $V(\mathcal{A G \mathcal { L }}(G))=$ $E(G)$; two distinct vertices e_{1} and e_{2} are adjacent in $\mathcal{A G \mathcal { L }}(G)$ if e_{1} and e_{2} are incident in G and lie on a triangle in G (see [4]). Equivalently, the anti-Gallai graph $\mathcal{A G \mathcal { L }}(G)$ is the complement of Gallai graph $\mathcal{G} \mathcal{L}(G)$ in the line graph $L(G)$. We can easily observe that the Gallai graphs $\mathcal{G} \mathcal{L}(G)$ and anti-Gallai graphs $\mathcal{A G \mathcal { L }}(G)$ are the spanning subgraphs of the line graph $L(G)$ (See [4] for details).

Motivated by the existing definition of complement of an n-sigraph, we extend the notion of anti-Gallai graphs to n-sigraphs as follows:

The anti-Gallai n-sigraph $\mathcal{A G \mathcal { L }}\left(S_{n}\right)$ of an n-sigraph $S_{n}=(G, \sigma)$ is an n-sigraph whose
underlying graph is $\mathcal{A G \mathcal { L }}(G)$ and the n-tuple of any edge $u v$ is $\mathcal{A G \mathcal { L }}\left(S_{n}\right)$ is $\mu(u) \mu(v)$, where μ is the canonical n-marking of S_{n}. Similarly, the Smarandachely anti-Gallai n-sigraph of a Smarandachely n-sigraph $S_{n}=(G, \sigma)$ on $H \prec G$ is the anti-Gallai n-sigraph of the Smarandachely n-sigraph on H. Further, an n-sigraph $S_{n}=(G, \sigma)$ is called anti-Gallai n-sigraph, if $S_{n} \cong \mathcal{A G L}\left(S_{n}^{\prime}\right)$ for some n-sigraph S_{n}^{\prime}. The following result indicates the limitations of the notion $\mathcal{A G \mathcal { L }}\left(S_{n}\right)$ as introduced above, since the entire class of i-unbalanced n-sigraphs is forbidden to be anti-Gallai n-sigraphs.

Proposition 3.1 For any n-sigraph $S_{n}=(G, \sigma)$, its anti-Gallai n-sigraph $\mathcal{A G \mathcal { L }}\left(S_{n}\right)$ is i balanced.

Proof Since the n-tuple of any edge $u v$ in $\mathcal{A G \mathcal { L }}\left(S_{n}\right)$ is $\mu(u) \mu(v)$, where μ is the canonical

For any positive integer k, the $k^{\text {th }}$ iterated anti-Gallai n-sigraph $\mathcal{A G \mathcal { L }}\left(S_{n}\right)$ of S_{n} is defined to be

$$
(\mathcal{A G L})^{0}\left(S_{n}\right)=S_{n}, \quad(\mathcal{A G L})^{k}\left(S_{n}\right)=\mathcal{A G \mathcal { L }}\left((\mathcal{A G \mathcal { L }})^{k-1}\left(S_{n}\right)\right)
$$

Corollary 3.1 For any n-sigraph $S_{n}=(G, \sigma)$ and any positive integer k, $(\mathcal{A G \mathcal { L }})^{k}\left(S_{n}\right)$ is i-balanced.

In [4], the author characterize the graphs for which $\mathcal{A G \mathcal { L }}(G) \cong G$.
Theorem 3.1 Let $G=(V, E)$ be any graph, anti-Gallai graph $\mathcal{A G \mathcal { L }}(G)$ is isomorphic to G if, and only if $G \cong K_{3}$.

In view of the above result, we now characterize the n-sigraphs for which anti-Gallai n sigraph $\mathcal{A G \mathcal { L }}(S)$ and S are switching equivalent.

Theorem 3.2 For any n-sigraph $S_{n}=(G, \sigma)$, the anti-Gallai signed graph $\mathcal{A G \mathcal { L }}\left(S_{n}\right)$ and S are switching equivalent if, and only if, S_{n} is i-balanced and G is isomorphic to K_{3}.

Proof Suppose $S_{n} \sim \mathcal{A G \mathcal { L }}\left(S_{n}\right)$. This implies, $G \cong \mathcal{A G \mathcal { L }}(G)$ and hence G is isomorphic to K_{3}. Now, if S_{n} is any n-sigraph with underlying graph as C_{3}, Proposition 2.1 implies that $\mathcal{A G} \mathcal{L}\left(S_{n}\right)$ is i-balanced and hence if S_{n} is i-unbalanced and its $\mathcal{A G \mathcal { L }}\left(S_{n}\right)$ being i-balanced can not be switching equivalent to S_{n} in accordance with Proposition 1.2. Therefore, S_{n} must be i-balanced.

Conversely, suppose that S_{n} is an i-balanced n-sigraph and G is isomorphic to C_{3}. Then, since $\mathcal{A G \mathcal { L }}\left(S_{n}\right)$ is i-balanced as per Proposition 3 and since $G \cong \mathcal{A G \mathcal { L }}(G)$, the result follows from Proposition 1.2 again.

Proposition 3.2 For any two S_{n} and S_{n}^{\prime} with the same underlying graph, their anti-Gallai n-sigraphs are switching equivalent.

Now, we characterize Gallai n-sigraphs. The following result characterize n-sigraphs which are Gallai n-sigraphs.

Theorem 3.3 An n-sigraph $S_{n}=(G, \sigma)$ is an anti-Gallai n-sigraph if, and only if, S_{n} is i-balanced n-sigraph and its underlying graph G is an anti-Gallai graph.

Proof Suppose that S_{n} is i-balanced and G is a $\mathcal{A G \mathcal { L }}(G)$. Then there exists a graph H such that $\mathcal{A G \mathcal { L }}(H) \cong G$. Since S_{n} is i-balanced, by Proposition 1.1, there exists an n-marking μ of G such that each edge $u v$ in S_{n} satisfies $\sigma(u v)=\mu(u) \mu(v)$. Now consider the n-sigraph $S_{n}^{\prime}=\left(H, \sigma^{\prime}\right)$, where for any edge e in $H, \sigma^{\prime}(e)$ is the n-marking of the corresponding vertex in G. Then clearly, $\mathcal{A G} \mathcal{L}\left(S_{n}^{\prime}\right) \cong S_{n}$. Hence S_{n} is an anti-Gallai n-sigraph.

Conversely, suppose that $S_{n}=(G, \sigma)$ is an anti-Gallai n-sigraph. Then there exists an n-sigraph $S_{n}^{\prime}=\left(H, \sigma^{\prime}\right)$ such that $\mathcal{A G \mathcal { L }}\left(S_{n}^{\prime}\right) \cong S_{n}$. Hence G is the $\mathcal{A G \mathcal { L }}(G)$ of H and by Proposition 2.1, S_{n} is i-balanced.

We now characterize n-sigraphs whose Gallai n-sigraphs and anti-Gallai n-sigraphs are switching equivalent. In case of graphs the following result is due to Palathingal and Aparna Lakshmanan [6].

Theorem 3.4 For any graph $G=(V, E)$, the graphs $\mathcal{G} \mathcal{L}(G)$ and $\mathcal{A G \mathcal { L }}(G)$ are isomorphic if, and only if, G is $n K_{3} \cup n K_{1,3}$.
Theorem 3.5 For any n-sigraph $S_{n}=(G, \sigma), \mathcal{G} \mathcal{L}\left(S_{n}\right) \sim \mathcal{A G \mathcal { L }}\left(S_{n}\right)$ if, and only if, G is $n K_{3} \cup n K_{1,3}$.

Proof Suppose $\mathcal{G} \mathcal{L}\left(S_{n}\right) \sim \mathcal{A G \mathcal { L }}\left(S_{n}\right)$. This implies, $\mathcal{G} \mathcal{L}(G) \cong \mathcal{A G \mathcal { L }}(G)$ and hence by Theorem 3.4, we see that the graph G must be isomorphic to $n K_{3} \cup n K_{1,3}$.

Conversely, suppose that G is isomorphic to $n K_{3} \cup n K_{1,3}$. Then $\mathcal{G} \mathcal{L}(G) \cong \mathcal{A G} \mathcal{L}(G)$ by Theorem 3.4. Now, if S_{n} is an n-sigraph with underlying graph as $n K_{3} \cup n K_{1,3}$, by Propositions 2.1 and 3.1, $\mathcal{G} \mathcal{L}\left(S_{n}\right)$ and $\mathcal{G} \mathcal{L}\left(S_{n}\right)$ are i-balanced. The result follows from Proposition 1.2.

§4. Complementation

In this section, we investigate the notion of complementation of a graph whose edges have signs (a sigraph) in the more general context of graphs with multiple signs on their edges. We look at two kinds of complementation: complementing some or all of the signs, and reversing the order of the signs on each edge.

For any $m \in H_{n}$, the m-complement of $a=\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ is: $a^{m}=a m$. For any $M \subseteq H_{n}$, and $m \in H_{n}$, the m-complement of M is $M^{m}=\left\{a^{m}: a \in M\right\}$.

For any $m \in H_{n}$, the m-complement of an n-sigraph $S_{n}=(G, \sigma)$, written $\left(S_{n}^{m}\right)$, is the same graph but with each edge label $a=\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ replaced by a^{m}.

For an n-sigraph $S_{n}=(G, \sigma)$, the $\mathcal{G} \mathcal{L}\left(S_{n}\right)\left(\mathcal{A G \mathcal { L }}\left(S_{n}\right)\right)$ is i-balanced. We now examine, the condition under which m-complement of $\mathcal{G} \mathcal{L}\left(S_{n}\right)$ is i-balanced, where for any $m \in H_{n}$.

Proposition 4.1 Let $S_{n}=(G, \sigma)$ be an n-sigraph. Then, for any $m \in H_{n}$, if $\mathcal{G L}(G)(\mathcal{A G \mathcal { L }}(G))$ is bipartite then $\left(\mathcal{G L}\left(S_{n}\right)\right)^{m}\left(\left(\mathcal{A G L}\left(S_{n}\right)\right)^{m}\right)$ is i-balanced.

Proof Since, by Proposition 2.1 (Proposition 3.1), $\mathcal{G} \mathcal{L}\left(S_{n}\right)\left(\mathcal{A G \mathcal { L }}\left(S_{n}\right)\right)$ is i-balanced, for each k,
$1 \leq k \leq n$, the number of n-tuples on any cycle C in $\mathcal{G} \mathcal{L}\left(S_{n}\right)\left(\mathcal{A G \mathcal { L }}\left(S_{n}\right)\right)$ whose $k^{\text {th }}$ co-ordinate are - is even. Also, since $\mathcal{G L}(G)(\mathcal{A G \mathcal { L }}(G))$ is bipartite, all cycles have even length; thus, for each $k, 1 \leq k \leq n$, the number of n-tuples on any cycle C in $\mathcal{G} \mathcal{L}\left(S_{n}\right)\left(\mathcal{A G} \mathcal{L}\left(S_{n}\right)\right)$ whose $k^{\text {th }}$ co-ordinate are + is also even. This implies that the same thing is true in any m-complement, where for any $m, \in H_{n}$. Hence $\left(\mathcal{G} \mathcal{L}\left(S_{n}\right)\right)^{t}\left(\left(\mathcal{A G} \mathcal{L}\left(S_{n}\right)\right)^{t}\right)$ is i-balanced.

Acknowledgement

The authors would like to thank the referees for their valuable comments which helped to improve the manuscript.

References

[1] V. Chvátal and N. Sbihi, Recognizing claw-free perfect graphs, J. Combin. Theory Ser. B, 44(1988), 154-176.
[2] T. Gallai, Transitiv orientierbare Graphen, Acta Math. Acad. Sci. Hung., 18(1967), 25-66.
[3] F. Harary, Graph Theory, Addison-Wesley Publishing Co., 1969.
[4] V. B. Le, Gallai graphs and anti-Gallai graphs, Discrete Math., 159(1996), 179-189.
[5] V. Lokesha, P.S.K.Reddy and S. Vijay, The triangular line n-sigraph of a symmetric n sigraph, Advn. Stud. Contemp. Math., 19(1) (2009), 123-129.
[6] J. J. Palathingal and S. Aparna Lakshmanan, Gallai and anti-Gallai graph operators, Electron. Notes Discrete Math., 63(2017), 447-453.
[7] R. Rangarajan and P.S.K.Reddy, Notions of balance in symmetric n-sigraphs, Proceedings of the Jangjeon Math. Soc., 11(2) (2008), 145-151.
[8] R. Rangarajan, P.S.K.Reddy and M. S. Subramanya, Switching equivalence in symmetric n-sigraphs, Adv. Stud. Comtemp. Math., 18(1) (2009), 79-85.
[9] R. Rangarajan, P.S.K.Reddy and N. D. Soner, Switching equivalence in symmetric n -sigraphs-II, J. Orissa Math. Sco., 28 (1 \& 2) (2009), 1-12.
[10] R. Rangarajan, P.S.K.Reddy and N. D. Soner, $m^{\text {th }}$ Power Symmetric n-Sigraphs, Italian Journal of Pure ξ^{3} Applied Mathematics, 29(2012), 87-92.
[11] E. Sampathkumar, P.S.K.Reddy, and M. S. Subramanya, Jump symmetric n-sigraph, Proceedings of the Jangjeon Math. Soc., 11(1) (2008), 89-95.
[12] E. Sampathkumar, P.S.K.Reddy, and M. S. Subramanya, The Line n-sigraph of a symmetric n-sigraph, Southeast Asian Bull. Math., 34(5) (2010), 953-958.
[13] P.S.K.Reddy and B. Prashanth, Switching equivalence in symmetric n-sigraphs-I, Advances and Applications in Discrete Mathematics, 4(1) (2009), 25-32.
[14] P.S.K.Reddy, S. Vijay and B. Prashanth, The edge $C_{4} n$-sigraph of a symmetric n-sigraph, Int. Journal of Math. Sci. \& Engg. Appls., 3(2) (2009), 21-27.
[15] P.S.K.Reddy, V. Lokesha and Gurunath Rao Vaidya, The Line n-sigraph of a symmetric n-sigraph-II, Proceedings of the Jangjeon Math. Soc., 13(3) (2010), 305-312.
[16] P.S.K.Reddy, V. Lokesha and Gurunath Rao Vaidya, The Line n-sigraph of a symmetric n-sigraph-III, Int. J. Open Problems in Computer Science and Mathematics, 3(5) (2010), 172-178.
[17] P.S.K.Reddy, V. Lokesha and Gurunath Rao Vaidya, Switching equivalence in symmetric n-sigraphs-III, Int. Journal of Math. Sci. \& Engg. Appls., 5(1) (2011), 95-101.
[18] P.S.K.Reddy, B. Prashanth and Kavita. S. Permi, A Note on Switching in Symmetric n-Sigraphs, Notes on Number Theory and Discrete Mathematics, 17(3) (2011), 22-25.
[19] P.S.K.Reddy, M. C. Geetha and K. R. Rajanna, Switching Equivalence in Symmetric n -Sigraphs-IV, Scientia Magna, 7(3) (2011), 34-38.
[20] P.S.K.Reddy, K. M. Nagaraja and M. C. Geetha, The Line n-sigraph of a symmetric n -sigraph-IV, International J. Math. Combin., 1 (2012), 106-112.
[21] P.S.K.Reddy, M. C. Geetha and K. R. Rajanna, Switching equivalence in symmetric n -sigraphs-V, International J. Math. Combin., 3 (2012), 58-63.
[22] P.S.K.Reddy, K. M. Nagaraja and M. C. Geetha, The Line n-sigraph of a symmetric n -sigraph-V, Kyungpook Mathematical Journal, 54(1) (2014), 95-101.
[23] P.S.K.Reddy, R. Rajendra and M. C. Geetha, Boundary n-Signed Graphs, Int. Journal of Math. Sci. \& Engg. Appls., 10(2) (2016), 161-168.
[24] L. Sun, Two classes of perfect graphs, J. Combin. Theory Ser. B, 53(1991), 273-292.

[^0]: ${ }^{1}$ Received April 16, 2023, Accepted August 29, 2023.
 ${ }^{2}$ Corresponding author: vijayshivanna82@gmail.com

