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§1. Introduction

Major part of this work leans on the work of [5]. There are some new results using isomorphism

theorems with some results in [5].

§2. Preliminaries

Definition 2.1 Let X be a non-empty set. A fuzzy subset µ of the set G is a function µ : G →
[0, 1].

Definition 2.2 Let G be a group and µ a fuzzy subset of G. Then µ is called a fuzzy subgroup

of G if

(i) µ(xy) ≥ min{µ(x), µ(y)};
(ii) µ(x−1) = µ(x);

(iii)µ is called a fuzzy normal subgroup if µ(xy) = µ(yx) for all x and y in G.

Definition 2.3 Let G be a group and µ a fuzzy subset of G. Then µ is called an anti fuzzy

subgroup of G if

(i) µ(xy) ≤ max{µ(x), µ(y)};
(ii) µ(x−1) = µ(x).

Definition 2.4 Let µ and λ be any two fuzzy subsets of a set X. Then

1Received November 28, 2013, Accepted February 6, 2014.
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(i) λ and µ are equal if µ(x) = λ(x) for every x in X;

(ii) λ and µ are disjoint if µ(x) 6= λ(x) for every x in X;

(iii) λ ⊆ µ if µ(x) ≥ λ(x).

Definition 2.5 Let µ be a fuzzy subset (subgroup) of X. Then, for some t in [0, 1], the set

µt = {x ∈ X : µ(x) ≥ t} is called a level subset (subgroup) of the fuzzy subset (subgroup) µ.

Remark 2.5.1 The set µt if it is group can be represented as Gt
µ.

Definition 2.6 Let µ be a fuzzy subgroup of a group G. The set H = {x ∈ G : µ(x) = µ(e)} is

such that o(µ) = o(H).

Definition 2.7 Let µ be a fuzzy subgroup of a group G. µ is said to be normal if sup µ(x) = 1

for all x in G. It is said to be normalized if there is an x in G such that µ(x) = 1.

Definition 2.8 Let G be a group and µ a fuzzy subset of G. Then µ is called an anti fuzzy

subgroup of G if and only if µ(xy−1) ≤ max{µ(x), µ(y)}, and µ is called an anti fuzzy normal

subgroup if µ(xy) = µ(yx) for all x and y.

Definition 2.9 Let µ be a fuzzy subset of X. Then, for t ∈ [1, 0], the set µt = {x ∈ X : µ(x) ≤
t} is called a lower level subset of the fuzzy subset µ.

Definition 2.10 Let µ be an anti fuzzy subgroup of X. Then, for t ∈ [1, 0], the set µt = {x ∈
X : µ(x) ≤ t} is called a lower level subgroup of µ.

Definition 2.11 Let µ be an anti fuzzy subgroup of a group G of finite order. Then, the image

of µ is Im(µ) = {ti ∈ I : µ(x) = ti for some x in G}, where I = [0, 1].

Definition 2.12 Let µ be an anti fuzzy subgroup of a group G. For a in G, the anti fuzzy coset

aµ of G determined by a and µ is defined by (aµ)(x) = µ(a−1x) for all x in G.

Definition 2.13 Let µ be an anti fuzzy subgroup of a group G. For a and b in G, the anti fuzzy

middle coset aµb of G is defined by (aµb)(x) = µ(a−1xb−1) for all x in G.

Definition 2.14 Let µ be an anti fuzzy subgroup of G and an element a in G. Then pseudo

anti fuzzy coset (aµ)p is defined by (aµ)p(x) = p(a)µ(x) for all x in G and p in P .

Definition 2.15 The Cartesian product λ × µ : X × Y → [0, 1] of two anti fuzzy subgroups

is defined by (λ × µ)(x, y) = max{λ(x), µ(y)} for all (x, y) in X × Y and Rλ is a binary anti

fuzzy relation defined by Rλ(x, y) = max{λ(x), λ(y)}. The anti fuzzy relation Rλ is said to be

a similarity relation if

(i) Rλ(x, x) = 1;

(ii) Rλ(x, y) = Rλ(y, x);

(iii) max{Rλ(x, y), Rλ(y, z)} ≤ Rλ(x, z).

Definition 2.16 Let G be a finite group of order n and µ a fuzzy subgroup of G. Then for

t1, t2 in [0, 1] such that t1 ≤ t2, µt2 ⊆ µt1 .
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Definition 2.17 Let G be a finite group of order n and µ an anti fuzzy subgroup of G. Then

for t1, t2 ∈ [0, 1] such that t1 ≤ t2, µt1 ⊆ µt2 .

Definition 2.18 Let f be a group homomorphism from a group G to H. Then there is an

isomorphism φ : f(G) → G/Kerf , where φ is the canonical isomorphism associated with f .

Definition 2.19 Let G be a group and H, K normal subgroups of G such that H ≤ K. Then

there is a natural isomorphism G/K ∼= (G/H)/(K/H).

Proposition 2.20 Let G be a group and µ a fuzzy subset of G. Then µ is a fuzzy subgroup of

G if and only if Gt
µ is a level subgroup of G for every t in [0, µ(e)], where e is the identity of G.

Proposition 2.21 H as described in 2.6 can be realized as a level subgroup.

Theorem 2.22 G is a Dedekind or Hamiltonian group if and only if every fuzzy subgroup of

G is fuzzy normal subgroup. (A Dedekind and Hamiltonian groups have all the subgroups to

be normal).

§3. Briefly on Properties of Anti Fuzzy Subgroup

Proposition 3.1 Any two pseudo cosets of an anti fuzzy subgroup of a group G are either

identical or disjoint.

Proof Assume that (aµ)p and (bµ)p are any two identical pseudo anti fuzzy cosets of µ

for any a and b in G. Then, (aµ)p(x) = (bµ)p(x) for all x in G. Assume also on the contrary

that they are disjoint. Then, there is no y in G such that (aµ)p(y) = (bµ)p(y) which implies

that p(a)µ(y) 6= p(b)µ(y). The consequence is that p(a) 6= p(b). This makes the assumption

(aµ)p(x) = (bµ)p(x) false.

Conversely, assume that (aµ)p and (bµ)p are disjoint, then p(a)µ(y) 6= p(b)µ(y) for every y

in G. But if it is assumed that this is also identical, then p(a)µ(y) = p(b)µ(y) and that means

p(a) = p(b) so that p(a)µ(y) 6= p(b)µ(y) cannot be true. 2
Proposition 3.2 Let µ be an anti fuzzy subgroup of any group G. Let {µi} be a partition of

µ. Then

(i) each µi is normal if µ is normalized;

(ii) each µi is normal if µ is normal.

Proof Note that for each i, µi ⊆ µ which implies that µi(x) ≤ µ(x) for all x in G.

(i) Since µ is normalized, there is an x0 in G such that µi(x) ≤ µ(x) ≤ µ(x0) = 1 for each

i. Whence, µi(x) ≤ 1. Then supµi(x) = 1.

(ii) Since µ is normal, supµ(x) = 1, then µ(x) ≤ 1. Note that µi(x) ≤ µ(x) ≤ 1. Then

µi(x) ≤ 1 and supµi(x) = 1. 2
Proposition 3.3 Let µ be an anti fuzzy subgroup of any group G. Then µ(e) ≤ 1 even if µ is
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normalized.

Proof Note that for all x in G, 0 ≤ µ(x) ≤ 1.

µ(e) = µ(xx−1) ≤ max{µ(x), µ(x−1)} = µ(x) since µ(x) = µ(x−1) for all x in G.

But since µ is normal, there is an x0 in G such that µ(e) ≤ µ(x) ≤ µ(x0) = 1. Hence

µ(e) ≤ 1. 2
Proposition 3.4 Let µ be an anti fuzzy subgroup of any group G and Rµ : G × G → [0, 1] be

given by Rµ(x, y) = µ(xy−1). Rµ is not a similarity relation.

Proof The reference [4] has shown that this is a similarity relation when µ is a fuzzy

subgroup of G. But

Rµ(x, x) = µ(xx−1) = µ(e) ≤ 1.

Rµ is not symmetric, hence not a similarity relation. 2
§4. Application of Isomorphism Theorems of Groups to Fuzzy Subgroups

Proposition 4.1 Let f be a group homomorphism between G and H. Let µ be a fuzzy subgroup

of H. Then G is isomorphic to a level subgroup of H.

Proof Since f is a homomorphism, it is defined on G.

Ker f = {x ∈ G : f(x) = eH} ⇔ {x ∈ G : µf(x) = µ(eH) ≤ 1}.

Hence, µf(x) ≤ 1 for all x in G since µ is a fuzzy subgroup of H and f(x) is in H .

Ker f = G so that µf(G) ≤ 1.

Also, note that

f(G) = {y = f(x) ∈ H : µf(x) = µ(y) = µ(eH)}.

By 2.21 and 2.6, f(G) is a level subgroup, say Ht
µ of H .

G/G = G ∼= Ht
µ

by Definition 2.18. 2
Remark 4.2 It can be said then that every group G is isomorphic to a level subgroup of a

group H if there is a group homomorphism between G and H and µ a fuzzy subgroup of H

exits.

Proposition 4.3 Let G be a Dedekind or an Hamiltonian group and µ a fuzzy subgroup of G.

For t1, t2 ∈ [0, 1] such that t1 < t2 and G/Gt
1µ

∼= (G/Gt
2µ)/(Gt

1µ/Gt
2µ).
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Proof By Proposition 2.20, Gt
1µ and Gt

2µ are subgroups of G and by Theorem 2.22, they

are normal subgroups. Also by Definition 2.16,

Gt
2µ ≤ Gt

1µ.

Then, f : G/Gt
2µ → G/Gt

1µ is a group homomorphism and

Im(f) = G/Gt
1µ if f(gGt

2µ) = gGt
1µ.

Also, it can be shown that Ker f = Gt
1µ/Gt

2µ.

Then apply Definition 2.19 so that G/Gt
1µ

∼= (G/Gt
2µ)/(tt1µ/Gt

2µ). 2
Remarks 4.4 It is equally of note that if µ is an anti fuzzy subgroup of a group G,

for t1 < t2, Gt
1µ ≤ Gt

2µ

by Definition 2.17.

Following the same argument as in Proposition 4.3,

G/Gt
2µ

∼= (G/Gt
1µ)/(Gt

2µ/Gt
1µ). 2
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1 are presented.

Key Words: Semi-Rieamannian Space, partially null curves, curves of constant breadth.
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§1. Introduction

The partially null curves, lying fully in the Minkowski space-time are defined in [1] as space-like

curves along which respectively the first binormal is null vector and second binormal is null

vector. The Frenet equations of a partially null curve, lying fully in the Minkowski space-time

are given in [14, 2], using those Frenet equations authors give some characterizations. Another

work, in [10], authors define Frenet equations of such curves and study some of characterizations

in Semi-Euclidean space.

Recently, a method has been developed by B.Y.Chen to classify curves with the solution

of differential equations with constant coefficients, see [3, 4, 11]. Furthermore, classifications

all space-like W curves are given in [11].

Curves of constant breadth were introduced by L. Euler,1870. Ö. Köse (1984) wrote some

geometric properties of plane curves of constant breadth. And, in another work Ö. Köse (1986)

extended these properties to the Euclidian3-space E3 [6]. Morever, M. Fujivara (1914) obtained

a problem to determine whether there exist space curve of constant breadth or not, and he

defined ”breadth” for space curves and obtained these curves on a surface of constant breadth

[5]. A. Mağden and Ö. Köse (1997) studied this kind curves in four dimensional Euclidean

space E4 [7]. S. Yılmaz and M. Turgut extended the notation of curves of constant breadth to

null curves in Semi-Rieamannian space E4
2 , see [13].

Inclined curves are well-known concept in the classical differential geometry [8].

1Received September 13, 2013, Accepted February 8, 2014.
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§2. Preliminaries

To meet the requirements in the next sections, here, the basic elements of the theory of curves

in the space E4
1 are briefly presented (A more complete elementary treatment can be found in

[9].) Minkowski space-time E4
1 is a Euclidean space E4

1 provided with the standard flat metric

given by

g = −dx2
1 + dx2

2 + dx2
3 + dx2

4

where (x1, x2, x3, x4) is rectangular coordinate system in E4
1 . Since g is an definite metric,

recall that a vector
−→
ϑ ∈ E4

1 can have one of the three causal characters; it can be space-like if

g(
−→
ϑ ,

−→
ϑ ) > 0 or

−→
ϑ = 0, timelike if g(

−→
ϑ ,

−→
ϑ ) < 0 and null (ligth-like) if g(

−→
ϑ ,

−→
ϑ ) = 0 and

−→
ϑ 6= 0.

Similarly, and arbitrary curve −→α = −→α (s) in E4
1 can be locally be space-like, time-like or null

(ligth-like) if all of its velocity vectors −→α p(s) are respectively space-like, time-like or null. Also

recall the norm of a vector
−→
ϑ is given by

∥∥∥
−→
ϑ
∥∥∥ =

√∣∣∣g(
−→
ϑ ,

−→
ϑ )
∣∣∣ . Therefore,

−→
ϑ is a unit vector

if g(
−→
ϑ ,

−→
ϑ ) = ±1. Next vectors

−→
ϑ , −→w in E4

1 are said to be orthogonal if g(
−→
ϑ ,−→w ) = 0. The

velocity of the curve α is given by‖−→α p‖. Thus, a space-like or a time-like curve −→α is said to

be parameterized by arc-length function s, if g(−→α p,−→α p) = ±1. The Lorentzian hypersphere of

center −→m = (m1, m2, m3, m4) and radius r ∈ R+ in the space E4
1 defined by

S3
1 =

{−→α = (α1, α2, α3, α4) ∈ E4
1 : g(−→α −−→m,−→α −−→m) = r2

}
.

Denoted by
{−→

T (s),
−→
N (s),

−→
B 1(s),

−→
B 2(s)

}
the moving Frenet frame along the curve −→α in the

space E4
1 .

Then
−→
T ,

−→
N,

−→
B 1,

−→
B 2 are, respectively, the tangent, the principal normal, the first binormal

and second binormal vector fields. Recall that a space-like curve with time-like principal normal−→
N and null first and second binormal is called a partially null curve in E4

1 [1]. For a partially

null unit speed curve −→α in E4
1 the following Frenet equations are given in [2, 14]




−→
T p

−→
N p

−→
B p

1−→
B p

2




=




0 κ 0 0

−κ 0 τ 0

0 0 σ 0

0 −τ 0 σ




.




−→
T
−→
N
−→
B 1

−→
B 2




where
−→
T ,

−→
N,

−→
B 1 and

−→
B 2 are mutually orthogonal vectors satisfying equations

g(
−→
T ,

−→
T ) = g(

−→
B 1,

−→
B 2) = 1, g(

−→
N,

−→
N ) = −1

g(
−→
B 1,

−→
B 1) = g(

−→
B 2,

−→
B 2) = 0.

And here, κ(s), τ(s) and σ(s) are first, second and third curvature of the curve −→α , respectively.

In the same space, the authors, in [2], expressed a characterizations of partially null curves

with the following theorem.
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Theorem 2.1 A partially null unit speed curve −→α = −→α (s), in E4
1 , with curvatures κ 6= 0, τ 6= 0

for each s ∈ I ⊂ R has σ = 0 for eachs.

In [13], S. Yılmaz and M. Turgut studied same characterizations of spherical and inclined

partially null curves.

§3. Partially Null Curves of Constant Breadth in E4
1

Let −→α = −→α (s) and −→α ∗ = −→α ∗(s) be simple closed partially null curves in the space E4
1 . These

curves will be denoted by C. Moreover let P and Q at points respectively curves α and α∗.

The normal plane at every point P on the curve meets the curve at a single point Q other than

P . We call the point Q the opposite point of P . We consider a partially null curve in the class

Γ as in M. Fujivara (1914) having parallel tangents
−→
T and

−→
T∗ in opposite directions at the

opposite points α and α∗ of the curve. A simple closed curve of constant breadth at opposite

points can be represented with respect to Frenet frame by the equation

−→α ∗ = −→α + m1
−→
T + m2

−→
N + m3

−→
B 1 + m4

−→
B 2 (3.1)

where mi(s), 1 ≤ i ≤ 4 arbitrary functions of s, −→α and −→α ∗ are opposite points. The vector

d = −→α ∗ − −→α is called ”the distance vector” of C. Differentiating both sides of (3.1) and

considering Frenet equations, we have

dα∗

ds
=
−→
T ∗ ds∗

ds
= (

dm1

ds
− m2κ+1)

−→
T +(

dm2

ds
− m4τ+m1κ)

−→
N

+(
dm3

ds
+m2τ+m3σ)

−→
B 1+(

dm4

ds
+m4σ)

−→
B 2

(3.2)

Since
−→
T ∗ = −−→

T , rewriting (3.2) we obtain following system of equations,

dm1

ds
− m2κ + 1 +

ds∗

ds
= 0

dm2

ds
+ m1κ − m4τ = 0

dm3

ds
+ m2τ = 0

dm4

ds
= 0

(3.3)

If we call θ as the angle between the tangent of the curve C at point −→α with a given fixed
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direction and s arc length parameter of −→α (s), consider
dθ

ds
= κ, we have (3.3) as following:

dm1

dθ
= m2 − f(θ)

dm2

dθ
= −m1 + m4ρτ

dm3

dθ
= −m2ρτ

dm4

dθ
= 0

(3.4)

where f(θ) = ρ + ρ∗, ρ =
1

κ
and ρ∗ =

1

κ∗
denote the radius of curvature at −→α and −→α ∗,

respectively. It is not difficult to see that m4 = c4 =constant. then, using system (3.4) we

easily have following differential equations with respect to m1 and m2 as

d2m1

dθ2
+ m1 +

df

dθ
− c4ρτ = 0

d2m2

dθ2
+ m2 − c4

d

dθ
(ρτ) − f(θ) = 0

(3.5)

These equations are characterizations for the curve −→α ∗. If the distance between opposite points

of C and C∗ is constant, then, due to null frame vectors, we can write that

‖−→α ∗ −−→α ‖2
= m2

1 + m2
2 + 2m3m4 = l2 = constant. (3.6)

Hence, by the differentiation we have

m1
dm1

dθ
+ m2

dm2

dθ
+ m3

dm4

dθ
+ m4

dm3

dθ
= 0 (3.7)

Considering system (3.4), we get

m1(
dm1

dθ
− m2) = 0 (3.8)

Since, we arrive m1 = 0 or
dm1

dθ
= m2. Therefore, we shall study in the following cases.

Case 1 m1 = 0. Moreover, let us suppose that c4 6= 0.

In this case (3.5)1 deduce other components, respectively

m2 = f(θ) = c4

θ∫

0

ρτdθ (3.9)
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and

m3 = −
θ∫

0

(ρ + ρ∗)ρτdθ (3.10)

If c4 = 0, we have f(θ) = c =constant. By this way, we know

m2 = c

m3 = −c
θ∫
0

ρτdθ

ρ + ρ∗ − c = 0

(3.11)

Case 2
dm1

dθ
= m2.

In this case, from (3.4), we know f(θ) = m2 = 0. And first let us suppose that c4 6= 0.

Thus the equation (3.5)1 has the form

d2m1

dθ2
+ m1 = c4ρτ (3.12)

By the method of variation of parameters, the solution of (3.12) yields that

m1 = cos θ



−
θ∫

0

c4ρτ sin θdθ + A



+ sin θ




θ∫

0

c4ρτ cos θdθ + B



 (3.13)

where A, B real numbers. From (3.4)3 and (3.4)4 we get

m3 = c3 (3.14)

and

m4 = c4 (3.15)

And if c4 = 0, we write that
d2m1

dθ2
+ m1 = 0 (3.16)

We write the solution of (3.16) as

m1 = l1 cos θ + l2 sin θ (3.17)

Considering (3.4), we have other components

m2 = −l1 sin θ + l2 cos θ (3.18)

and

m3 =

θ∫

0

(−l1 sin θ + l2 cos θ)ρτdθ. (3.19)



Contributions to Differential Geometry of Partially Null Curves in Semi-Euclidean Space E4
1 11

§4. The Inclined Partially Null Curves In E4
1

Theorem 4.1 Let α = α(s) be a unit speed partially null curve in E4
1 . α is an inclined curve,

if and only if
κ

τ
= constant (4.1)

Proof Let α = α(s) be a unit speed partially null curve is E4
1 and also be an inclined curve

from definition of inclined curves, we write that

g(
−→
T ,−→u ) = cosΨ (4.2)

where −→u is a constant space-like vector and Ψ is a constant angle. Differentiating (4.2) respect

s, we have

κg(
−→
N,−→u ) = 0 (4.3)

which implies that
−→
N ⊥ −→u . And therefore we compose constant vector −→u as

−→u = u1
−→
T + u2

−→
B 1 + u3

−→
B 2 (4.4)

Differentiating (4.4) and considering Frenet equations we have following equation system:

du1

ds
= 0

du2

ds
= 0

du3

ds
= 0

u1κ − u3τ = 0

(4.5)

Solution of (4.5) yields that
κ

τ
= constant (4.6)

Conversely, let us consider a vector given by

−→u =
{−→

T +
−→
B 1 +

κ

τ

−→
B 2

}
cosΨ (4.7)

Where Ψ is a constant angle. Differentiating (4.7), we have

d−→u
ds

= 0 (4.8)

(4.8) implies that −→u is a constant vector. And then considering a partially null curve α = α(s);

using inner product, we get

g(
−→
T ,−→u ) = cosΨ, (4.9)

which shows that α is a inclined curve in E4
1 .

In the same space, S.Yılmaz gave a formulation about inclined curves with following the-
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orem in [12]:

Let α = α(s) be a space-like curve in E4
1 parametrized by arclength. The curve α is an

inclined curve if and only if

κ

τ
= A cosh(

s∫

0

σds) + B sinh(

s∫

0

σds) (4.10)

where τ 6= 0 and σ 6= 0, A, B ∈ R.

Whence, we know that α is partially null curve, so σ = 0. Using (4.10) we have

κ

τ
= constant. (4.11)

This completes the proof. 2
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[11] M.Petroviç-Torgasev and E. Sucuroviç, W curves in Minkowski space-time, Novi Sad J.

Math., Vol.30, No.2, pp. 55-68, 2002.

[12] S.Yılmaz, Spherical Indicators of Curves and Characterizations of Some Special Curves in

Four Dimensional Lorentzian Space L4, Ph. D. Thesis, Dokuz Eylül Üniversity, 2001.
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§1. Introduction

The concept of 2-Banach space and some basic fixed point results in such spaces are initially

given by Gahler ([3], [4]) during 1960′s. Later on some fixed point results have been obtained in

such spaces by Iseki [5], Khan et al. [6], Rhoades [7] and many others extending the fixed point

results for non expansive mappings from Banach space to 2-Banach space. In 2011, Choudhury

and Som [2] (J. Indian Acad. Math. 33(2) (2011), 411-418) have established common fixed

point and coincidence fixed point results for a pair of non-linear mappings in 2-Banach space

which generalize the results of Som [8], Cho et al. [1] and Zhao [9] in turn. In this paper

we establish some fixed point theorems satisfying the contractive type condition in 2-Banach

spaces.

§2. Preliminaries

Here we give some preliminary definitions related to 2-Banach spaces which are needed in the

sequel.

Definition 2.1 (See [1]) Let X be a linear space and ‖., .‖ be a real valued function defined on

X satisfying the following conditions:

(i) ‖x, y‖ = 0 if and only if x and y are linearly dependent;

(ii) ‖x, y‖ = ‖y, x‖ for all x, y ∈ X;

(iii)‖x, ay‖ = |a| ‖x, y‖ for all x, y ∈ X and real a;

(iv) ‖x, y + z‖ = ‖x, y‖ + ‖x, z‖ for all x, y, z ∈ X.

1Received June 14, 2013, Accepted February 10, 2014.
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Then, ‖., .‖ is called a 2-norm and the pair (X, ‖., .‖) is called a linear 2-normed space.

Some of the basic properties of the 2-norms are that they are non negative and

‖x, y + ax‖ = ‖x, y‖

for all x, y ∈ X and all real number a.

Definition 2.2(See [1]) A sequence {xn} in a linear 2-normed space (X, ‖., .‖) is called a

Cauchy sequence if limm, n→∞ ‖xm − xn, y‖ = 0 for all y ∈ X.

Definition 2.3(See [1]) A sequence {xn} in a linear 2-normed space (X, ‖., .‖) is said to be

convergent to a point x in X if limn→∞ ‖xn − x, y‖ = 0 for all y ∈ X.

Definition 2.4(See [1]) A linear 2-normed space (X, ‖., .‖) in which every Cauchy sequence is

convergent is called a 2-Banach space.

Definition 2.5(See [1]) Let X be a 2-Banach space and T be a self mapping of X. T is said

to be continuous at x if for any sequence {xn} in X with xn → x implies that Txn → Tx.

Definition 2.6 Let (X, ‖., .‖) be a linear 2-normed space and T be a self mapping of X. A

mapping T is said to be 2-Banach contraction if there is a ∈ [0, 1) such that

‖Tx − Ty, u‖ ≤ a ‖x − y, u‖

for all x, y, u ∈ X.

Definition 2.7 Let (X, ‖., .‖) be a linear 2-normed space and T be a self mapping of X. A

mapping T is said to be 2-Kannan contraction if there is b ∈ [0, 1
2 ) such that

‖Tx − Ty, u‖ ≤ b
[
‖x − Tx, u‖ + ‖y − Ty, u‖

]

for all x, y, u ∈ X.

Definition 2.8 Let (X, ‖., .‖) be a linear 2-normed space and T be a self mapping of X. A

mapping T is said to be 2-Chatterjea contraction if there is c ∈ [0, 1
2 ) such that

‖Tx − Ty, u‖ ≤ c
[
‖x − Ty, u‖ + ‖y − Tx, u‖

]

for all x, y, u ∈ X.

Definition 2.9 Let (X, ‖., .‖) be a linear 2-normed space and T be a self mapping of X. A

mapping T is said to be 2-Zamfirescu operator if there are real numbers 0 ≤ a < 1, 0 ≤ b < 1/2,

0 ≤ c < 1/2 such that for all x, y, u ∈ X at least one of the conditions is true:

(z1) ‖Tx − Ty, u‖ ≤ a ‖x − y, u‖;
(z2) ‖Tx − Ty, u‖ ≤ b (‖x − Tx, u‖ + ‖y − Ty, u‖);
(z3) ‖Tx − Ty, u‖ ≤ c (‖x − Ty, u‖ + ‖y − Tx, u‖).
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Condition 2.1 Let X be a 2-Banach space (with dim X ≥ 2) and let T be a self mapping of

X such that for all x, y, u in X satisfying the condition:

‖Tx − Ty, u‖ ≤ h max
{
‖x − y, u‖ ,

(‖x − Tx, u‖ + ‖y − Ty, u‖)
2

,

(‖x − Ty, u‖ + ‖y − Tx, u‖)
2

}
(2.1)

where 0 < h < 1.

Remark 2.1 It is obvious that each of the conditions (z1) − (z3) implies (2.1).

§3. Main Results

In this section we shall prove a fixed point theorem using condition (2.1) in the setting of

2-Banach spaces.

Theorem 3.1 Let X be a 2-Banach space (with dim X ≥ 2) and let T be a continuous self

mapping of X satisfying the condition (2.1), then T has a unique fixed point in X.

Proof For given each x0 ∈ X and n ≥ 1, we choose x1, x2 ∈ X such that x1 = Tx0 and

x2 = Tx1. In general we define sequence of elements of X such that xn+1 = Txn = T n+1x0.

Now for all u ∈ X , using (2.1), we have

‖xn − xn+1, u‖ = ‖Txn−1 − Txn, u‖

≤ h max
{
‖xn−1 − xn, u‖ ,

(‖xn−1 − Txn−1, u‖ + ‖xn − Txn, u‖)
2

,

(‖xn−1 − Txn, u‖ + ‖xn − Txn−1, u‖)
2

}

= h max
{
‖xn−1 − xn, u‖ ,

(‖xn−1 − xn, u‖ + ‖xn − xn+1, u‖)
2

,

(‖xn−1 − xn+1, u‖ + ‖xn − xn, u‖)
2

}

= h max
{
‖xn−1 − xn, u‖ ,

(‖xn−1 − xn, u‖ + ‖xn − xn+1, u‖)
2

,

‖xn−1 − xn+1, u‖
2

}

≤ h max
{
‖xn−1 − xn, u‖ ,

(‖xn−1 − xn, u‖ + ‖xn − xn+1, u‖)
2

,

(‖xn−1 − xn, u‖ + ‖xn − xn+1, u‖)
2

}
. (3.1)

But

(‖xn−1 − xn, u‖ + ‖xn − xn+1, u‖)
2

≤ max
{
‖xn−1 − xn, u‖ , ‖xn − xn+1, u‖

}
(3.2)
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From (3.1) and (3.2), we get

‖xn − xn+1, u‖ ≤ h max
{
‖xn−1 − xn, u‖ , ‖xn−1 − xn, u‖ , ‖xn − xn+1, u‖ ,

‖xn−1 − xn, u‖ , ‖xn − xn+1, u‖
}

≤ h ‖xn−1 − xn, u‖ . (3.3)

Similarly, we have

‖xn−1 − xn, u‖ ≤ h ‖xn−2 − xn−1, u‖ . (3.4)

Hence form (3.3) and (3.4), we have

‖xn − xn+1, u‖ ≤ h2 ‖xn−2 − xn−1, u‖ . (3.5)

On continuing in this process, we get

‖xn − xn+1, u‖ ≤ hn ‖x0 − x1, u‖ . (3.6)

Also for n > m, we have

‖xn − xm, u‖ ≤ ‖xn − xn−1, u‖ + ‖xn−1 − xn−2, u‖ + . . .

+ ‖xm+1 − xm, u‖
≤

(
hn−1 + hn−2 + · · · + hm

)
‖x1 − x0, u‖

≤
( hm

1 − h

)
‖x1 − x0, u‖ . (3.7)

Since 0 < h < 1 by condition 2.1,
(

hm

1−h

)
→ 0 as m → ∞. Hence ‖xn − xm, u‖ → 0 as

n, m → ∞. This shows that {xn} is a Cauchy sequence in X . Hence there exist a point z in

X such that xn → z as n → ∞. It follows from the continuity of T that Tz = z. Thus z is a

fixed point of T .

For the uniqueness, let Tv = v be another fixed point of the mapping T . Then, we have

‖z − v, u‖ = ‖Tz − Tv, u‖

≤ h max
{
‖z − v, u‖ ,

(‖z − Tz, u‖ + ‖v − Tv, u‖)
2

,

(‖z − Tv, u‖ + ‖v − Tz, u‖)
2

}

≤ h max
{
‖z − v, u‖ , 0, ‖z − v, u‖

}

≤ h ‖z − v, u‖
< ‖z − v, u‖ , since 0 < h < 1, (3.8)

a contradiction. Hence z = v and for all u ∈ X . Thus z is a unique fixed point of T . This

completes the proof. 2
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Since Condition 2.1 includes the 2-Banach contraction condition, 2-Kannan contraction

condition, 2-Chatterjea contraction condition and 2-Zamfirescu operator. Thus from Theorem

3.1, we obtain the following results as corollaries.

Corollary 3.1 Let X be a 2-Banach space (with dim X ≥ 2) and let T be a self mapping of X

satisfying the condition:

‖Tx − Ty, u‖ ≤ a ‖x − y, u‖

for all x, y, u ∈ X, where a is a constant in (0, 1). Then T has a unique fixed point in X.

Corollary 3.2 Let X be a 2-Banach space (with dim X ≥ 2) and let T be a continuous self

mapping of X satisfying the condition:

‖Tx − Ty, u‖ ≤ b [‖x − Tx, u‖ + ‖y − Ty, u‖]

for all x, y, u ∈ X, where b is a constant in (0, 1
2 ). Then T has a unique fixed point in X.

Corollary 3.3 Let X be a 2-Banach space (with dim X ≥ 2) and let T be a continuous self

mapping of X satisfying the condition:

‖Tx − Ty, u‖ ≤ c [‖x − Ty, u‖ + ‖y − Tx, u‖]

for all x, y, u ∈ X, where c is a constant in (0, 1
2 ). Then T has a unique fixed point in X.

Corollary 3.4 Let X be a 2-Banach space (with dim X ≥ 2) and let T be a continuous self

mapping of X satisfying 2-Zamfirescu operator, that is, satisfying at least one of the conditions

in (z1) − (z3). Then T has a unique fixed point in X.

Remark 3.1 Our results extend the corresponding result of Zhao [9] (Acta Math. Sinica

22(1979), 459-470), Cho et al. [1] (Far East Jour. Math. Sci. 3(2)(1995), 125-133) and many

others from the existing literature.
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§1. Introduction

The graphs considered here are finite, connected, undirected without loops or multiple edges

and without isolated vertices. As usual ′p′ and ′q′ denote the number of vertices and edges of

a graph G. For any undefined term or notation in this paper can be found in Harary [1].

A set D ⊆ V of G is said to be a Smarandachely k-dominating set if each vertex of G is

dominated by at least k vertices of S and the Smarandachely k-domination number γk(G) of G

is the minimum cardinality of a Smarandachely k-dominating set of G. Particularly, if k = 1,

such a set is called a dominating set of G and the Smarandachely 1-domination number of G is

called the domination number of G and denoted by γ(G) in general.

The lict graph η(G) of a graph G is the graph whose vertex set is the union of the set

of edges and the set of cut vertices of G in which two vertices are adjacent if and only if the

corresponding edges are adjacent or the corresponding members of G are incident. A dominating

1Received September 22, 2013, Accepted February 12, 2014.
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set of a graph η(G), is a total lict dominating set if the dominating set does not contain any

isolates. The total lict dominating number γt(η(G)) of G is a minimum cardinality of total lict

dominating set of G.

The vertex independence number β0(G) is the maximum cardinality among the indepen-

dent set of vertices of G. L(G) is the line graph of G, γ
′

e(G) is the complementary edge domina-

tion number, γs(G) is the split dominating number, γ
′

t(G) is the total edge dominating number

, γns(G) is the non-split dominating number, χ(G)is the chromatic number and ω(G) is the

clique number of a graph G. The degree of an edge e = uv of G is deg(e) = deg(u)+deg(v)−2.

The minimum (maximum) degree of an edge in G is denoted by δ
′

(∆
′

). A subdivision of an

edge e = uv of a graph G is the replacement of an edge e by a path (u, v, w) where w ∋ E(G).

The graph obtained from G by subdividing each edge of G exactly once is called the subdivision

graph of G and is denoted by S(G). For any real number X ,⌈X⌉ denotes the smallest integer

not less than X and ⌊X⌋ denotes the greatest integer not greater than X .

In this paper we established the relationship of this concept with the other domination

parameters. We use the following theorems for our later results.

Theorem A([2]) For any graph G,γe(G) ≥
⌈

q

∆′ + 1

⌉
.

Theorem B([2]) For any graph G of order p ≥ 3,

(i) β1(G) + β1(Ḡ) 6 2
⌈p

2

⌉
.

(ii) β1(G) ∗ β1(Ḡ) 6

⌈p

2

⌉2
.

Theorem C([3]) For any graph G,

(i) γ
′

t(S(Kp)) = 2
⌈p

2

⌉
.

(ii) γ
′

t(S(Kp,q)) = 2q(p ≤q).

(iii) γ
′

t(S(G)) = 2(p − β1).

Theorem D([4]) For every graph G of order p,

(i) χ(G) ≥ ω(G).

(ii) χ(G) ≥ q

β0
(G).

Theorem E([5]) For any connected graph G with p ≥ 3 vertices, γ
′

t(G) ≤
⌈

2p

3

⌉
.

Theorem F([5]) If G is a connected graph G with p ≥ 4 vertices and q edges then
q

∆′
≤ γ

′

t(G),

further equality holds for every cycle Cp where p = 4n, n ≥ 1.

§2. Main Results

Theorem 1 First list out the exact values of γt(η(G)) for some standard graphs:
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(i) For any cycle Cp with p ≥ 3 vertices,

γt(η(Cp)) =





p/2 if p ≡ 0(mod4).⌊p

2

⌋
+ 1 otherwise.

(ii) For any path Pp with p ≥ 4 vertices,γt(η(Pp)) =

⌊
2q

3

⌋
.

(iii) For any star graph K1,p with p ≥ 3 vertices, γt(η(K1,p)) = 2.

(iv) For any wheel graph Wp with p ≥ 4 vertices, γt(η(Wp)) =
⌊p

2

⌋
.

(v) For any complete graph Kp with p ≥ 3 vertices, γt(η(Kp)) =

⌊
2p

3

⌋
.

(vi) For any friendship graph Fp with k blocks, γt(η(Fp)) = k.

Initially we obtain a lower bound of total lict domination number with edge and total edge

domination number.

Theorem 2 For any graph G,γt(η(G)) ≥ γe(G).

Proof Let D be a γe set of graph G, if D is a total lict dominating set of a graph G, then

for every edge e1 ∈ D there exists an edge e2 ∈ D, e1 6= e2 such that e1 is adjacent to e2. Hence

γt(η(G)) = γe(G). Otherwise for each isolated edge ei ∈ D, choose an edge ej ∈ N(ei). Let

E1 = {ej/ej ∈ N(ei)}, then D ∪ E1 is a total lict dominating set of G and |D ∪ E1| ≥ |D|.
Hence, γt(η(G)) ≥ γe(G). 2
Theorem 3 For any graph G γt(η(G)) ≥ γ

′

t(G), equality holds if G is non-separable.

Proof Let D be a γ
′

t set of G, if all the cut vertices of G are incident with at least one

edge of D, then γt(η(G)) = γ
′

t(G). Otherwise there exists at least one cut vertex vc of graph G

which is not incident with any edge of D, then γt(η(G)) ≥ |D ∪ e| ≥ γ
′

t(G) + 1, where e is an

edge incident with vc and e ∈ N(D). Thus, γt(η(G)) ≥ γ
′

t(G).

For the equality, note that if the graph G is non-separable, then η(G) = L(G). Thus

γt(η(G)) = γt(L(G)) = γ
′

t(G). 2
Next we obtain an inequality of total lict domination in terms of number of vertices, number

of edges and maximum edge degree of graph G.

Theorem 4 For any connected graph G with p ≥ 3 vertices, then γt(η(G)) ≤ 2
⌈q

3

⌉
.

Proof Let E(G) = {e1, e2, e3, · · · , el} and let D = {el/1 ≤ i ≤ l and i 6= 0(mod3)}∪{el−1}.
Then D is total lict dominating set of G and |D| = 2

⌈q

3

⌉
. Hence, γt(η(G)) ≤ 2

⌈q

3

⌉
. 2

Theorem 5 For any non-separable graph G,

(i) γt(η(G)) ≤
⌈

2p

3

⌉
, p ≥ 3.

(ii)
q

∆′
≤ γt(γ(G)), p ≥ 4 vertices, equality holds for every cycle Cp, where p = 4n, n ≥ 1.
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Proof Let G be a non-separable graph,then γt(η(G)) = γ
′

t(G). Using Theorems E and F,

the result follows. 2
Theorem 6 For any connected graph G,γt(η(G)) ≤ q − ∆

′

(G) + 1, where ∆
′

is a maximum

degree of an edge.

Proof Let e be an edge with degree ∆
′

and let S be a set of edges adjacent to e in G.

Then E(G) − S is the lict dominating set of graph G. We consider the following two cases.

Case 1 If 〈E(G)−S〉 contains at least one isolate in η(G) other than the vertex corresponding

to e in η(G).

Let E1 be the set of all such isolates, then for each isolate ei ∈ E1, let E2 = {ej/ej ∈
(N(ei) ∩ N(e)} , then F = [{(E(G) − S) − E1} ∪ E2] is a total lict dominating set of graph G.

Thus, γt(η(G)) ≤ q − ∆
′

(G).

Case 2 If 〈E(G) − S〉 contains only e as an isolate in η(G).

Then for an edge ei ∈ N(e), {(E(G) − S) ∪ ei} is a total lict dominating set of a graph G.

Thus, γt(η(G)) ≤ |(E(G) − S) ∪ ei| = q − ∆
′

(G) + 1.

From Cases 1 and 2, the result follows. 2
Theorem 7 For any connected graph G,γt(η(G)) ≥

⌈
q

∆′ + 1

⌉
.

Proof Using Theorem 2 and Theorem A, the result follows. 2
Theorem 8 For any connected graph G,γt(η(G)) ≤ p − 1.

Proof Let T be a spanning tree of a graph G. Let A = {e1, e2, e3, · · · , ek} be the set of edges

of spanning tree T , A covers all the vertices and cut vertices of a graph η(G). Hence,γt(η(G)) ≤
A = p − 1. 2

Now we obtain the relationship between total lict domination and total domination of a

line graph.

Theorem 9 For any graph G,with k number of cut vertices,

γt(η(G)) ≤ γt(L(G)) + k.

Proof We consider the following two cases.

Case 1 k = 0.

Then the graph G is non-separable, and in that case η(G) = L(G). Hence, γt(η(G)) =

γt(L(G)).

Case 2 k 6= 0.

Let D be a total dominating set of L(G) and let S be the set of cut vertices which is

not incident with any edge of D, then for each cut vertex vc ∈ S, choose exactly one edge in
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E1, where E1 = {ej ∈ E(G)/ej is incident with vc and ej ∈ N(D)} with |E1| = |vc|. Hence,

γt(η(G)) ≤ γt(L(G)) + |E1| = γt(L(G)) + |vc| = γt(L(G)) + k.

From Cases 1 and 2, the result follows. 2
In the following theorems we obtain total lict domination of any tree in terms of different

parameters of G.

Theorem 10 For any tree T with k number of cut vertices,γt(η(G)) ≤ k + 1, further equality

holds if T = K1,p, p ≥ 3.

Proof Let A = {v1, v2, v3, · · · , vk} ⊂ V (G) be the set of all cut vertices of a tree T with

|A| = k. Since every edge in T is incident with at least one element of A, A covers all the

edges and cut vertices of η(G), if for every cut vertex v ∈ A there exists a vertex u ∈ A,u 6= v,

such that v is adjacent to u. Otherwise let e1 ∈ E(G) such that e1 is incident with A, so that

γt(η(G)) ≤ {A ∪ e1} = |A| + 1 = k + 1.

To prove the equality, let K1,p be a star and C be the cut vertex and e be any edge of

K1,p. Then D = {C ∪ e} is the γt set of η(G) with cardinality k + 1. 2
Theorem 11 For any tree T ,γt(η(T )) ≥ χ(T ) and equality holds for all star graph K1,p.

Proof χ(T ) = 2 and 2 ≤ γt(T ) ≤ p. Hence, γt(η(T )) ≥ χ(T ). For T = K1,p, clearly

χ(T ) = 2. Using Theorem 1(iii), the equality follows. 2
Theorem 12 For any tree T ,γt(η(T )) ≥ ω(T ).

proof The result follows from Theorem 11 and Theorem D. 2
Theorem 13 For any tree T , γt(η(T )) ≥ q

β0(T )
.

Proof The result follows from Theorem 11 and Theorem D. 2
Theorem 14 For any tree T , γt(η(T )) ≤ γt(T ).

Proof Let T be a tree and D be γt of T . Let E1 denotes the edge set of the induced graph

〈D〉. Let F be the set of cut vertices which are not incident with any edge of E1. we consider

the following two cases.

Case 1 If F = Φ, and in η(T ) if E1 does not contains any isolates then E1 is a total lict

dominating set of T . Otherwise for each isolated edge ei ∈ E1, choose exactly one edge in E2,

where E2 = {ej ∈ E(T )/ej ∈ N(ei)}. Then D∗ = E1 ∪ E2 is a total lict dominating set of tree

T . Hence, γt(η(T )) ≤ |D∗| ≤ |D| = γt(T ).

Case 2 If F 6= Φ, then for each cut vertex vc ∈ F . Let E2 = {ej ∈ E(T )/ej ∈ N(ei)

and incident with vc}.Then D∗ = E1 ∪ E2 is a total lict dominating set of tree T . Hence,

γt(η(T )) ≤ |D∗| ≤ |D| = γt(T ).

From Cases 1 and 2, the result follows. 2
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Theorem 15 For any tree T with p ≥ 3, in which every non-end vertex is incident with an

end vertex, then γt(η(T )) ≤ β0(T ).

Proof We consider the following two cases.

Case 1 T=K1,p.

Noticing that β0(T ) = p − 1 ≥ 2 for p ≥ 3, and using Theorem 1(iii), the result follows.

Hence,γt(η(T )) ≤ β0(T ).

Case 2 T 6= K1,p.

Let B = {v1, v2, v3, · · · , vm} ⊂ V (G) such that |B| = β0(T ). Let S ⊆ B be the set of k

end vertices of T and N ⊆ B be the set of l non-end vertices of T such that S ∪ N = B. In

T , for each vertex vi ∈ S there exists cut vertex Ci ∈ N(vi). Then in η(T ) the cut vertex Ci

covers the edges incident with cut vertex Ci of T where i = 1, 2, 3, 4, 5, .............k and for each

vertex vi ∈ N in T , a vertex vj ∈ η(T ) which is a cut vertex of T covers all the edges incident

with vj where j = 1, 2, 3, 4, 5.......l. Thus {Ci}k
i=1 ∪ {vj}l

j=1 forms a total lict dominating set of

T . Hence γt(η(T )) ≤ |S ∪ N | ≤ |B| = β0(T ).

From case(1) and case(2) the result follows. 2
Theorem 16 Let T be any order p ≥ 3 and n be the number of pendent edges of T , then

n ≤ γt(η(S(T ))) ≤ 2(p − 1) − n and equality holds for all K1,p.

Proof Let u1v1, u2v2, u3v3, u4v4, · · · , unvn be the pendent edges of T . Let wi be the vertex

set of S(T ) that subdivides the edges uivi, i = 1, 2, 3, 4, · · · , n. Any total lict dominating

set of S(T ) contains the edges uiwi, i = 1, 2, 3, 4, · · · , n and hence γt(η(S(T ))) ≥ n. Further

E(S(T )) − S, where S is the set of all pendent edges of S(T ) forms a total lict dominating set

of S(T ). Hence,γt(η(S(T ))) ≤ 2(p − 1) − n.

Notice that the edges of D = {uiwi}, i = 1, 2, 3, · · · , n will forms a γt of η(S(T )) for K1,p.

Thus, the equality γt(η(S(T ))) = n. Similarly, the set {E(S(T )−S} will forms a γt of η(S(T ))

for K1,p. So γt(η(S(T ))) = 2(p − 1) − n. 2
Now we obtain the relation between total lict domination in terms of complimentary edge

domination, total domination and split domination and non-split domination.

Theorem 17 For any graph G if γe(G) = γ
′

e(G), then γt(η(G)) ≥ γ
′

e(G).

Proof Let us consider the graph G, with γe(G) = γ
′

e(G) and using Theorem 2.2, the result

follows. 2
Corollary 1 Let D be the γe set of a non-separable graph G then, γt(η(G)) ≥ γ

′

e(G).

Proof Since every complementary edge dominating set is an edge dominating set, the

follows from Theorem 2. 2
Theorem 18 For any non-separable graph G with p ≥ 3, then γt(G) ≤ γt(η(G)), equality holds

for all cycle Cp.
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Proof Let D = {v1, v2, v3, · · · , vk} be a γt set of a graph G. Let E∗ = {ei ∈ E(G)/ei is

incident with vi}, i = 1, 2, 3, 4, · · · , k. Then every edge in 〈E(G) − E∗〉 is adjacent to at least

one edge in E∗. Clearly E∗ covers all the vertices in η(G), and 〈E∗〉 does not contain any

isolates, E∗ is a total lict dominating set of graph G and |D| ≤ |E∗|. Hence,γt(G) ≤ γt(η(G)).

For any cycle Cp, η(G) = L(G),γt(L(G)) = γt(G). Hence,γt(G) = γt(η(G)). 2
Theorem 19 For any cycle Cp p ≥ 3, γs(Cp) ≤ γt(η(Cp)) ≤ γns(Cp).

Proof We consider the following two cases.

Case 1 γs(Cp) ≤ γt(η(Cp)).

Let A = {v1, v2, v3, · · · , vk} be a γs dominating set of cycle Cp. For any cycle Cp, η(G) =

L(G), the corresponding edges B = {e1, e2, e3, · · · , ek} will be a split dominating set of η(G).

Since 〈B〉 is disconnected, γt(η(Cp)) ≤ γs(Cp) + 1. Hence,γs(Cp) ≤ γt(η(Cp)).

Case 2 γt(η(Cp)) ≤ γns(Cp).

Let A = {v1, v2, v3, · · · , vk} be a γns dominating set of cycle Cp. For any cycle Cp, η(G) =

L(G), the corresponding edges B = {e1, e2, e3, · · · , ek} will be a split dominating set of η(G).

Since 〈B〉 is connected. Hence, γt(η(Cp)) ≤ γns(Cp).

The result follows from Cases 1 and 2. 2
Now we obtain the total lict dominating number in terms of independence number and

edge covering number.

Theorem 20 For any graph G,γt(η(G)) ≤ 2β1(G).

Proof Let S be a maximum independent edge set in a graph G. Then every edge in

E(G) − S is adjacent to at least one edge in S. Let D be the set of cut vertices that is not

incident with any edge of S and let E1 = {ei ∈ E(G)−S/ei ∈ N(S)}. We consider the following

two cases.

Case 1 If D = φ, then for each edge ej ∈ S, pick exactly one edge ei ∈ E1 , such that

ei ∈ N(ej). Let D1 be the set of all such edges with |D1| ≤ |S|. Then F = S ∪ D1 is a total

lict dominating set of G. Hence, γt(η(G)) ≤ |S ∪ D1| = |S| + |D1| ≤ |S| + |S| = 2β1(G).

Case 2 If D 6= φ, then for each cut vertex vc ∈ D. Let E2 = {ei ∈ E(G) − S/ej ∈ N(S) and

incident with vc}, E3 = {ek ∈ S/ek ∈ N(E2)} and D2 = S − E3. Now for each edge el ∈ D2,

pick exactly one edge in ei ∈ E1 , such that el is adjacent to ei. Let D3 be the set of all such

edges. Then F = D2 ∪ D3 ∪ E2 ∪ E3 is a total lict dominating set of G. Hence,

γt(η(G)) ≤ |F | = |D2 ∪ E3 ∪ D3 ∪ E2|
≤ |D2 ∪ E3| + |D3 ∪ E2|
= |S| + |S| = 2|S| = 2β0(G)

From Cases 1 and 2,the result follows. 2
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Theorem 21 For any graph G,γt(η(G)) ≤ 2α0(G).

Proof Let S = {v1, v2, v3, v4, · · · , vk} ⊂ V (G) such that |S| = α0(G). Then for each vertex

vi, choose exactly one edge in E1 where E1 = {ei ∈ E(G)/ei is incident with vi} such that

|E1| ≤ |S|. Let D be the set of cut vertices that is not incident with any edge of E1 and let

E2 = {ej ∈ E(G) − E1/ej ∈ N(E1)}. We consider the following two cases.

Case 1 If D = φ, then for each edge ei ∈ E1, pick exactly one edge ej ∈ E2 ,such that

ej ∈ N(ei). Let D1 be the set of all such edges with |D1| ≤ |E1| = |S|. Then F = E1 ∪D1 is a

total lict dominating set of G. Hence,γt(η(G)) ≤ |E1 ∪D1| = |E1|+ |D1| ≤ |S|+ |S| = 2α0(G).

Case 2 If D 6= φ, then for each cut vertex vc ∈ D. Let E3 = {el ∈ E(G)−E1/el ∈ N(E1) and

incident with vc},
E4 = {ek ∈ E1/ek ∈ N(E3)} and D3 = E1 − E4. Now for each edge er ∈ D2, pick exactly

one edge in ej ∈ E2, such that er is adjacent to ej . Let D3 be the set of all such edges. Then

F = D2 ∪ D3 ∪ E3 ∪ E4 is a total lict dominating set of G. Hence,

γt(η(G)) ≤ |F | = |D2 ∪ E4 ∪ D3 ∪ E3|
≤ |D2 ∪ E4| + |D2 ∪ E4|
= |E1| + |E1| = |S| = 2α0(G)

From Cases 1 and 2, the result follows. 2
Now we obtain the total lict dominating number of a subdivision graph of a graph G in

terms of edge independence number and number of vertices of a graph G.

Theorem 22 For any graph G, γt(η(S(G))) ≤ 2q−2β1+p0, where p0 is the number of vertices

that subdivides β1.

Proof Let A = {uivi/1 ≤ i ≤ n} be the edge set of a graph G. Let X = {uivi/1 ≤ i ≤ n}
be a maximum independent edge set of graph G. Then X is edge dominating set of a graph

G. Let wi be the vertex set of S(G) and let p0 ∈ wi be the set of vertices that subdivides X .

Then for each vertex p0, choose exactly one edge in E1,where E1 = {uiwi or wivi ∈ S(G)/uiwi

or wivi is incident with p0 and adjacent to A − X}. Let F = {{{A− {X}} − {E1}} covers all

the edges and cut vertices of S(G). Hence,γt(η(S(G))) ≤ F = |A − X − E1| = 2q − 2β1 + p0.2
Theorem 23 For any non-separable graph G,

(i) γt(η(S(Kp)) = 2⌈p
2⌉.

(ii) γt(η(S(Kp,q)) = 2q(p ≤ q).

(iii) γt(η(S(G)) = 2(p − β1).

Proof Using the definitions of total lict dominating set and total edge dominating set of a

graph, the result follows from Theorem C. 2
Next, we obtain the Nordhus-Gaddam results for a total domination number of a lict graph.
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Theorem 24 For any connected graph G of order p ≥ 3 vertices,

(i) γt(η(G)) + γt(η(Ḡ)) ≤ 4⌈p
2⌉.

(ii) γt(η(G)) ∗ γt(η(Ḡ)) ≤ 4⌈p
2⌉2.

Proof The result follows from Theorem B and Theorem 20. 2
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§1. Introduction

Let G = (V (G), E(G)) be a graph, where V (G) is a finite vertex set and E(G) is the edge set

which is the subset of {(u, v)|(u, v) is an unordered pair of V (G)}. Two vertices u and v are

adjacent if (u, v) ∈ E(G). A path, written as 〈v0, v1, v2, · · · , vm〉, is a sequence of adjacent

vertices, in which all the vertices v0, v1, v2, · · · , vm are distinct except possibly v0 = vm, the

path with v0 = vm is a cycle. The girth of a graph G is the length of the shortest cycle of G.

If |G| > 1 and G − F is connected for every set F ⊆ E(G) of fewer then l edges, then

G is called l-edge-connected. The greatest integer l such that G is l-edge-connected is the

edge-connectivity λ(G) of G.

A surface is a compact connected orientable 2-manifold which could be thought of as a

sphere on which has been placed a number of handles. The number of handles is referred to

as the genus of the surface. A drawing of graph G on a surface S is such a drawing with no

edge crosses itself, no adjacent edges cross each other, no two edges intersect more than once,

and no three edges have a common point. A Smarandache λS-drawing of G on S is a drawing

of G on S with minimal intersections λS . Particularly, a Smarandache 0-drawing of G on S if

existing, is called an embedding of G on S.

A region of a graph G embedded on a surface is the connected sections of the surface

bounded by a set of edges of G. This set of edges is called the boundary of the region, and

1Supported by the National Natural Science Foundation of China (11371052, 11271012, 11171020, 10901015).
2Received December 20, 2013, Accepted February 15, 2014.
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the number of edges is the length of the region. We will use (v0, v1, v2, · · · , vm), called a facial

cycle, to denote the region bounded by edges (v0, v1), (v1, v2), · · · , and (vm, v0). so a facial cycle

of a graph is a region of the graph. A region is a k-cycle if its length is k. A region is a 2-cell

if any simple closed curve within the region can be collapsed to a single point. An embedding

of a graph G on a surface S is a 2-cell embedding if all embedded regions are 2-cells.

An embedding of G into an oriented surface S induce a rotation system as follows: The

local rotation at a vertex v is the cyclic permutation corresponding to the order in which the

edge-ends are traversed in an orientation-preserving tour around v. A rotation system of the

given embedding of G in S is the collection of local rotations at all vertices of G. It is proved

[19] that every 2-cell embedding of a graph G in an orientable surface is uniquely determined,

up to homeomorphism, by its rotation system.

Let G be a graph and π be an embedding of G, the corresponding rotation system is

denoted by ρπ. For any v ∈ V , the local rotation at v determined by ρπ is denoted by ρπ(v). In

the following, we consider 2-cell embedding of simple undirected graphs on orientable surfaces,

the rotation at a vertex is clockwise. The readers are referred to [1] for undefined notations.

The genus γ(G) of a graph G is meant the minimum genus of all possible surfaces on

which G can be embedded with no edge crossings, similarly, the γM (G) is the maximum genus.

As a measure of the complexity of a network, the genus gives an indication of how efficiently

the network can be laid out. The smaller the genus, the more efficient the layout. The planer

graphs have genus zero since no handles are needed to prevent edge intersections.

Let G be a connected graph with a 2-cell embedding on an orientable surface of genus g,

having m vertices, q edges and r regions, then the well known Euler’s formula [16] is: m−q+r =

2 − 2g. For embedding, Duke’s interpolation theorem [5] is that a connected graph G has a

2-cell embedding on surface Sk if and only if γ(G) ≤ k ≤ γM (G), where k is the genus of surface

Sk.

Graph embeddings have been studied by many authors over years. Especially the study of

the maximum and minimum orientable genus γM (G) and γ(G) of a graph G, they have been

proved polynomial [7] and NP-complete [22], respectively. The embedding properties of a graph

and some results about surfaces are extensively treated in the books [3,4,8,19]. More results

about genera and embedding genus distributions are referred to see [9-11,13-15,17-18,20,23-

25,27] etc.. Although there are much results about maximal genera, but minimum genera for

most kinds of graphs are not known. The folded hypercube FQn is a variance of the hypercube

network and is superior to Qn in some properties such as diameters [6]. The genus γ(Qn) of

n-dimensional hypercube Qn were given by G. Ringel [21], the genus of n-cube is discussed by

Beineke and Harary [2].

In this paper, the genus γ(FQn) of FQn is discussed. That is, γ(FQn) = (n − 3)2n−3 + 1

for n is odd and (n − 3)2n−3 + 1 ≤ γ(FQn) ≤ (n − 2)2n−3 + 1 for n is even.

§2. Main Results

The n-dimensional hypercube, denoted by Qn, is a bipartite graph with 2n vertices, its any

vertex v is denoted by an n-bit binary string v = xnxn−1 · · ·x2x1 or (xnxn−1 · · ·x2x1), where
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xi ∈ {0, 1} for all i, 1 ≤ i ≤ n. Two vertices of Qn are adjacent if and only if their binary

strings differ in exactly one bit position. So Qn is an n-regular graph.

If x = xnxn−1 · · ·x2x1 and y = ynyn−1 · · · y2y1 are two vertices in Qn such that yi = 1−xi

for 1 ≤ i ≤ n, then we denote y = x, and we say that x and x have complementary addresses.

As a variance of the Qn, the n-dimensional folded hypercube, denoted by FQn, proposed first

by El-Amawy and Latifi[?], is defined as follows: FQn is an (n+1)-regular graph, its vertex set

is exactly V (Qn), and its edge set is E(Qn)
⋃

E0, where E0 = {xx|x ∈ V (Qn)}. In other words,

FQn is a graph obtained from Qn by adding edges, called complementary edges, between any

pair of vertices with complementary addresses. FQ2 and FQ3 are shown in Fig.1.
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Fig.1 FQ2 and FQ3

Lemma 2.1([2, 21]) Let Qn be an n-hypercube, then γ(Qn) = (n − 4)2n−3 + 1.

Lemma 2.1([6]) The edge-connectivity of n-folded hypercube λ(FQn) ≥ n + 1.

Lemma 2.3(Jungerman [12], Xuong [25]) If G is a 4-edge-connected graph with m vertices and

q edges, then γM (G) = ⌊q − m + 1

2
⌋.

Lemma 2.4 Let Qn be an n-dimensional hypercube. Then there exists an embedding πn of Qn

for n ≥ 3 on the surface S of genus (n− 4)2n−3 + 1, such that each of the following three kinds

of cycles for xi ∈ {0, 1}, 3 ≤ i ≤ n,

((xn · · ·x310), (xn · · ·x300), (xn · · ·x301), (xn · · ·x311));

((xn · · ·x310), (xn · · ·x300), (xnxn−1 · · ·x300), (xnxn−1 · · ·x310)) and

((xn · · ·x301), (xn · · ·x311), (xnxn−1 · · ·x311), (xnxn−1 · · ·x301))

is a facial 4-cycle of πn.

Proof It is true for Q3, shown in Fig.2. Assume it is true for Qn−1, n ≥ 4. There

exists an embedding πn−1 of Qn−1 on the surface S′ of genus (n − 5)2n−4 + 1, such that

each of three kinds of cycles ((xn−1 · · ·x310), (xn−1 · · ·x300), (xn−1 · · ·x301), (xn−1 · · ·x311));

((xn−1 · · ·x310), (xn−1 · · ·x300), (xn−1xn−2 · · ·x300), (xn−1xn−2 · · ·x310)) and ((xn−1 · · ·x301),

(xn−1 · · ·x311), (xn−1xn−2 · · ·x311), (xn−1xn−2 · · ·x301)) for xi ∈ {0, 1}, 3 ≤ i ≤ n− 1, is a fa-

cial cycle on embedding πn−1 of Qn−1. So the rotations of πn−1 are as follows:
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ρπn−1(xn−1 · · ·x310) = (A′(xn−1 · · ·x311)(xn−1 · · ·x300)),

ρπn−1(xn−1 · · ·x300) = (B′(xn−1 · · ·x310)(xn−1 · · ·x301)),

ρπn−1(xn−1 · · ·x301) = (C′(xn−1 · · ·x300)(xn−1 · · ·x311)),

ρπn−1(xn−1 · · ·x311) = (D′(xn−1 · · ·x301)(xn−1 · · ·x310))

because of ((xn−1 · · ·x310), (xn−1 · · ·x300), (xn−1 · · ·x301), (xn−1 · · ·x311)) being facial cycles

along counter-clockwise; or

ρπn−1(xn−1 · · ·x310) = (A′(xn−1 · · ·x300)(xn−1 · · ·x311)),

ρπn−1(xn−1 · · ·x300) = (B′(xn−1 · · ·x301)(xn−1 · · ·x310)),

ρπn−1(xn−1 · · ·x301) = (C′(xn−1 · · ·x311)(xn−1 · · ·x300)),

ρπn−1(xn−1 · · ·x311) = (D′(xn−1 · · ·x310)(xn−1 · · ·x301))

because of ((xn−1 · · ·x311), (xn−1 · · ·x301), (xn−1 · · ·x300), (xn−1 · · ·x310)) being facial cycles

along counter-clockwise, where A′, B′, C′, D′ are the ordered subsequences of vertices which

incident with (xn−1 · · ·x310), (xn−1 · · ·x300), (xn−1 · · ·x301) and (xn−1 · · ·x311), respectively.

By Euler’s formula, the boundary of every region in πn−1 of Qn−1 on S′ is a 4-cycle. Let

Qn−1 embed on another copy surface S′′ of genus (n − 5)2n−4 + 1 such that the embedding

of Qn−1 on S′′ is a ”mirror image” of the embedding of Qn−1 on S′. As a subgraph of Qn,

the vertices in embedding of Qn−1 on S′ and on S′′ are labeled by (0xn−1 · · ·x3x2x1) and

(1xn−1 · · ·x3x2x1) respectively, where xi ∈ {0, 1}, 1 ≤ i ≤ n− 1. For simplification, we also use

the signals of A′, B′, C′ and D′ in the following.

Based on πn−1, the rotation system of πn is given as follows:

ρπn
(xn · · ·x310) = ((xnxn−1 · · ·x310)A′(xn · · ·x311)(xn · · ·x300)),

ρπn
(xn · · ·x300) = (B′(xnxn−1 · · ·x300)(xn · · ·x310)(xn · · ·x301)),

ρπn
(xn · · ·x301) = ((xnxn−1 · · ·x301)C′(xn · · ·x300)(xn · · ·x311)),

ρπn
(xn · · ·x311) = (D′(xnxn−1 · · ·x311)(xn · · ·x301)(xn · · ·x310)); or

ρπn
(xnxn−1 · · ·x310) = (A′(xn · · ·x310)(xnxn−1 · · ·x300)(xnxn−1 · · ·x311)),

ρπn
(xnxn−1 · · ·x300) = ((xn · · ·x300)B′(xnxn−1 · · ·x301)(xnxn−1 · · ·x310)),

ρπn
(xnxn−1 · · ·x301) = (C′(xn · · ·x301)(xnxn−1 · · ·x311)(xnxn−1 · · ·x300)),

ρπn
(xnxn−1 · · ·x311) = ((xn · · ·x311)D′(xnxn−1 · · ·x310)(xnxn−1 · · ·x301)),

where xi = 1 − xi.

By using the method of researching regions of embedding from rotation system in [19], the

following four kinds of facial cycles on S′ or S′′

((00xn−2 · · ·x310), (00xn−2 · · ·x300), (01xn−2 · · ·x300), (01xn−2 · · ·x310));

((11xn−2 · · ·x310), (11xn−2 · · ·x300), (10xn−2 · · ·x300), (10xn−2 · · ·x310));

((00xn−2 · · ·x311), (00xn−2 · · ·x301), (01xn−2 · · ·x301), (01xn−2 · · ·x311));

((11xn−2 · · ·x311), (11xn−2 · · ·x301), (10xn−2 · · ·x301), (10xn−2 · · ·x311));

are replaced in πn by the following eight facial 4-cycles:

((00xn−2 · · ·x310), (00xn−2 · · ·x300), (10xn−2 · · ·x300), (10xn−2 · · ·x310));
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((00xn−2 · · ·x300), (01xn−2 · · ·x300), (11xn−2 · · ·x300), (10xn−2 · · ·x300));

((01xn−2 · · ·x300), (01xn−2 · · ·x310), (11xn−2 · · ·x310), (11xn−2 · · ·x300));

((01xn−2 · · ·x310), (00xn−2 · · ·x310), (10xn−2 · · ·x310), (11xn−2 · · ·x310));

((00xn−2 · · ·x311), (00xn−2 · · ·x301), (10xn−2 · · ·x301), (10xn−2 · · ·x311));

((00xn−2 · · ·x301), (01xn−2 · · ·x301), (11xn−2 · · ·x301), (10xn−2 · · ·x301));

((01xn−2 · · ·x301), (01xn−2 · · ·x311), (11xn−2 · · ·x311), (11xn−2 · · ·x301));

((01xn−2 · · ·x311), (00xn−2 · · ·x311), (10xn−2 · · ·x311), (11xn−2 · · ·x311))

and the other regions are not changed. As a result, each region of πn is a 4-cycle. By the Euler’s

formula, the genus of embedding πn of Qn is exactly 2((n−5)2n−4+1)+2n−3−1 = (n−4)2n−3+1.

Further more, it could be found that the following three kinds of 4-cycles

((xn · · ·x310), (xn · · ·x300), (xn · · ·x301), (xn · · ·x311));

((xn · · ·x310), (xn · · ·x300), (xnxn−1 · · ·x300), (xnxn−1 · · ·x310)) and

((xn · · ·x301), (xn · · ·x311), (xnxn−1 · · ·x311), (xnxn−1 · · ·x301))

for xi ∈ {0, 1} and 3 ≤ i ≤ n are facial 4-cycles on πn. 2
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Lemma 2.5([26])

(1) FQn is a bipartite graph if and only if n is odd.

(2) If n is even, then the length of any shortest odd cycle in FQn is n + 1.

Theorem 2.6 The genus of FQn(n ≥ 3) is given as γ(FQn) = (n − 3)2n−3 + 1 for n is odd

and (n − 3)2n−3 + 1 ≤ γ(FQn) ≤ (n − 2)2n−3 + 1 for n is even.

Proof FQn is embedded on the surface of genus γ(FQn) with m vertices, q edges and r

regions, where m = 2n and q = (n + 1)2n−1. From Lemma 2.5, the girth of FQn is 4 for n ≥ 3.

By Euler’s formula, 4r ≤ 2q, m − q + r = 2 − 2γ(FQn) ≤ m − q
2 , so 2γ(FQn) − 2 ≥ q

2 − m.

That implies γ(FQn) ≥ (n − 3)2n−3 + 1.

To finish the proving, we only need to give an embedding of FQn such that the genus of

embedded surface is (n− 3)2n−3 +1 if n is odd, and is (n− 2)2n−3 +1 if n is even, respectively.

First, Qn is embedded on the surface with rotation system σ which is the same as the

embedding πn in Lemma 2.4, then we have the following rotations:
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ρσ(xn · · ·x310) = (A(xn · · ·x311)(xn · · ·x300)),

ρσ(xn · · ·x300) = (B(xn · · ·x310)(xn · · ·x301)),

ρσ(xn · · ·x301) = (C(xn · · ·x300)(xn · · ·x311)),

ρσ(xn · · ·x311) = (D(xn · · ·x301)(xn · · ·x310)).

(2.1)

Or

ρσ(xn · · ·x310) = (A(xn · · ·x300)(xn · · ·x311)),

ρσ(xn · · ·x300) = (B(xn · · ·x301)(xn · · ·x310)),

ρσ(xn · · ·x301) = (C(xn · · ·x311)(xn · · ·x300)),

ρσ(xn · · ·x311) = (D(xn · · ·x310)(xn · · ·x301)),

(2.2)

where A, B, C, D are the ordered sequences of vertices which is incident with (xn · · ·x310),

(xn · · ·x300), (xn · · ·x301), (xn · · ·x311), respectively.

According to ρσ of formulae (2.1) and (2.2) respectively and the fact that graph FQn is

obtained from Qn by adding complementary edges, the rotation system, denoted by θ, of FQn

is gotten from rotation system σ as followings:

ρθ(xn · · ·x310) = (A(xn · · ·x311)(xn · · ·x301)(xn · · ·x300)),

ρθ(xn · · ·x300) = (B(xn · · ·x310)(xn · · ·x311)(xn · · ·x301)),

ρθ(xn · · ·x301) = (C(xn · · ·x300)(xn · · ·x310)(xn · · ·x311)),

ρθ(xn · · ·x311) = (D(xn · · ·x301)(xn · · ·x300)(xn · · ·x310)).

(2.3)

Or

ρθ(xn · · ·x310) = (A(xn · · ·x300)(xn · · ·x301)(xn · · ·x311)),

ρθ(xn · · ·x300) = (B(xn · · ·x301)(xn · · ·x311)(xn · · ·x310)),

ρθ(xn · · ·x301) = (C(xn · · ·x311)(xn · · ·x310)(xn · · ·x300)),

ρθ(xn · · ·x311) = (D(xn · · ·x310)(xn · · ·x300)(xn · · ·x301)),

(2.4)

where xi = 1 − xi.

If n is odd, by the embedding σ of Qn, the two kinds of 4-cycles

((xn · · ·x310), (xn · · ·x300), (xn · · ·x301), (xn · · ·x311));

((xn · · ·x310), (xn · · ·x311), (xn · · ·x301), (xn · · ·x300))
(2.5)

are facial cycles of this embedding of Qn on the clockwise direction (or counter-clockwise di-

rection). From the definition of θ of FQn, the following four kinds of complementary edges are
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added in the facial cycles (2.5) shown in (a)(b) of Fig.3.

((xn · · ·x310), (xn · · ·x301)); (xn · · ·x300), xn · · ·x311));

((xn · · ·x301), (xn · · ·x310)); (xn · · ·x311), xn · · ·x300)).
(2.6)

xn · · ·x301 xn · · ·x301

xn · · ·x311 xn · · ·x311

xn · · ·x300

xn · · ·x310

xn · · ·x300

xn · · ·x310

(a)

xn · · ·x301 xn · · ·x301

xn · · ·x300 xn · · ·x300

xn · · ·x311

xn · · ·x310

xn · · ·x300

xn · · ·x310

(b)

xn · · ·x301 xn · · ·x301

xn · · ·x300 xn · · ·x311

xn · · ·x311

xn · · ·x310

xn · · ·x300

xn · · ·x310

(c)

xn · · ·x301 xn · · ·x301

xn · · ·x311 xn · · ·x300

xn · · ·x300

xn · · ·x310

xn · · ·x311

xn · · ·x310

(d)

Fig.3 Two kinds of embedding depending on n being odd or even
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As a result, the regions (2.5) of σ are replaced by the following four kinds of 4-regions in

θ of FQn:

((xn · · ·x311), (xn · · ·x310), (xn · · ·x301), (xn · · ·x300));

((xn · · ·x301), (xn · · ·x311), (xn · · ·x300), (xn · · ·x310));

((xn · · ·x300), (xn · · ·x301), (xn · · ·x310), (xn · · ·x311));

((xn · · ·x310), (xn · · ·x300), (xn · · ·x311), (xn · · ·x301)).

(2.7)

The other regions are not changed, thus all regions of embedding θ of FQn are all 4-cycles,

and the number of regions is 2n−2(n + 1). Recalled that FQn have 2n vertices, 2n−1(n + 1)

edges. By Euler’s formula, the total genus of θ of FQn for n being odd is (n − 3)2n−3 + 1.

If n is even, by the embedding σ of Qn, the two kinds of 4-cycles

((xn · · ·x310), (xn · · ·x300), (xn · · ·x301), (xn · · ·x311));

((xn · · ·x310), (xn · · ·x300), (xn · · ·x301), (xn · · ·x311))
(2.8)

are facial cycles of this embedding of Qn on the clockwise direction (or counter-clockwise direc-

tion). From the definition of θ of FQn, By adding four kinds of complementary edges of (2.6)

in facial cycles (2.8) shown in (c) and (d) of Fig.3, the regions in (2.8) of σ are replaced by the

following two kinds of 8-cycles in θ of FQn:

((xn · · ·x310), (xn · · ·x311), (xn · · ·x300), (xn · · ·x310),

(xn · · ·x301), (xn · · ·x300), (xn · · ·x311), (xn · · ·x301));

((xn · · ·x310), (xn · · ·x300), (xn · · ·x311), (xn · · ·x310),

(xn · · ·x301), (xn · · ·x311), (xn · · ·x300), (xn · · ·x301)).

As a result, the number of regions in θ is less 2n−1 than regions in σ. By Euler’s formula

2n − 2n−1(n + 1) + (2n−2n − 2n−1) = 2 − 2h, the genus h of embedding θ of FQn for n being

even is (n − 2)2n−3 + 1. 2
From Lemmas 2.2 and 2.3, the following theorem is immediately obtained.

Theorem 2.7 The maximum genus of FQn is given by γM (FQn) = (n − 1)2n−2 for n ≥ 3.

Furthermore, γ(FQ2) = 0, γM (FQ2) = 1.
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§1. Introduction

A set D ⊆ V of G is said to be a Smarandachely k-dominating set if each vertex of G is

dominated by at least k vertices of S and the Smarandachely k-domination number γk(G) of G

is the minimum cardinality of a Smarandachely k-dominating set of G. Particularly, if k = 1,

such a set is called a dominating set of G and the Smarandachely 1-domination number of G is

called the domination number of G and denoted by γ(G) in general.

The concept of graph energy arose in theoretical chemistry where certain numerical quan-

tities, as the heat of formation of a hydrocarbon are related to total π electron energy that

can be calculated as the energy of corresponding molecular graph. The molecular graph is rep-

resentation of molecular structure of a hydrocarbon whose vertices are the position of carbon

atoms and two vertices are adjacent, if there is a bond connecting them.

Eigenvalues and eigenvectors provide insight into the geometry of the associated linear

transformation. The energy of a graph is the sum of the absolute values of the eigenvalues of its

adjacency matrix. From the pioneering work of Coulson [2] there exists a continuous interest

towards the general Mathematical properties of the total π electron energy ε as calculated

within the framework of the Huckel Molecular Orbital (HMO) model. These efforts enabled

one to get an insight into the dependence of ε on molecular structure. The properties of ε(G)

are discussed in detail in [7-10].

1Received September 28, 2013, Accepted February 16, 2014.
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The importance of eigenvalues is not only used in theoretical chemistry but also in analyze

structures, car designers analyze eigenvalues in order to damp out the noise to reduce the

vibration of the car due to music, eigenvalues can be used to test for cracks or deformities in

a solid, oil companies frequently use eigenvalue analysis to explore land for oil, eigenvalues are

also used to discover new and better designs for the future [23].

Representation of a set of vertices in a graph by means of a matrix was introduced by

Sampath Kumar [5]. Let G(V, E) be a graph and S ⊆ V be a set of vertices we can represent

the set S by means of a matrix as follows, in the adjacency matrix A(G) of G replace the aii

element by 1 if and only if vi ∈ S. The matrix thus obtained from the adjacency matrix can be

taken as the matrix of the set S, denoted by AS(G) and energy E(G) obtained from the matrix

AS(G) is called the set energy denoted by ES(G). In this paper we consider the special case

of a set S being a dominating set and the corresponding matrix is domination matrix denoted

by Aγ(G) of G and energy E(G) obtained from the domination matrix Aγ(G) is defined as

domination energy denoted by Eγ(G). For any undefined terms or notation in this paper, we

refer Harary [6]. In this paper we define set energy and find its properties and also study the

special case of set S being a dominating set and corresponding domination energy of some

special class of graphs.

Let the graph G be connected and let its vertices be labelled as v1, v2, v3, . . . , vn. The dom-

ination matrix of G is defined to be the square matrix Aγ(G) corresponding to the dominating

set of G. The eigenvalues of the dominating matrix are denoted by κ1, κ2, κ3, · · · , κn are said

to be Aγ eigenvalues of G. Since the Aγ matrix is symmetric, its eigenvalues are real and can

be ordered κ1 > κ2 > κ3 > · · · > κn.

Eγ = Eγ(G) =

n∑

i=1

|κi|. (1)

This equation has been chosen so as to be fully analogous to the definition of graph energy [7-9]

E = E(G) =
n∑

i=1

|λi| (2)

where λ1 > λ2 > λ3 > · · · > λn are the ordinary graph eigenvalues [7] that is, the eigenvalues

of the adjacency matrix A(G). Recall that in the few years, the graph energy E(G) has been

extensively studied in the mathematics [11-15] and mathematic-chemical literature [16-25].

§2. Main Results

Let G(V, E) be a graph, S ⊆ V and A(G) be the adjacency matrix of G. Replace the aii

element by 1 if and only if vi ∈ S. The matrix thus obtained from the adjacency matrix can

be taken as the matrix of the set S.

Definition 2.1(Minimal dominating energy) A dominating set D in G is minimal dominating

set, if no proper subset of D is a dominating set. The domination energy Eγ(G) obtained for
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minimal dominating set is called Minimal Dominating Energy denoted by Eγ−min(G).

Definition 2.2(Minimal dominating energy) A dominating set D in G is maximal dominating

set, if D contains all the vertices of G. The domination energy Eγ(G) obtained for maximal

dominating set is called Maximal Dominating Energy denoted by Eγ−max(G).

Observation 2.3 If A(G) is the adjacency matrix corresponds to the graph G(V, E), Aγ−min(G)

is the adjacency matrix corresponding to the minimal dominating set Smin and Aγ−max(G)

is the adjacency matrix corresponding to the maximum dominating set Smax. Cardinality

|Smin| 6 |S| 6 |Smax| where set S is the dominating set whose cardinality is in between minimal

and maximal dominating set. A graph G(V, E) 6= Kn, n > 3 then Eγ−min(G) ± ε 6 Eγ(G) 6

Eγ−max(G) ± ε, where ε is the error factor such that |ε| 6 1.

Corollary 2.4 A graph G(V, E) 6= Kn, n > 3 then E(G) 6 Eγ−min(G).

Observation 2.5 A graph G(V, E) = Kn, n > 3 then Eγ−min(G)±ε > Eγ(G) > Eγ−max(G)±ε,

where ε is the error factor such that |ε| 6 1.

Corollary 2.6 If graph G(V, E) = Kn, n > 3 then E(G) > Eγ−min(G). E (Kn) = 2(n − 1) >

Eγ−min (Kn) = (n − 2) +
√

n2 − 2n + 5 (Theorem 4.3).

Observation 2.7[Set Energy] Domination energy is the energy calculated w.r.t. the dominating

set, but in order to understand the spectra of dominating set we generalize the concept as set

energy. That is w.r.t. the set of different cardinality the energy were found. Energy for the

|S| = 0 is the energy of the Graph E(G). Similarly we find the energy for |S| = 1 to n. The

particular case of set energy is the domination energy.

1. P2 and C6 are the only graphs with set energy of |ϕ| = |2| and |ϕ| = |6|, |1| = |5|,
|2| = |4| respectively. Spectra are different but energy is same.

2. In energy of graph
∑n

i=1 λ2
i = 2m, m is the number of edges where as for Set energy∑n

i=1 κ2
i = 2m + |S|, |S| is the cardinality of set for which energy is calculated.

3. Set energies are symmetry in nature i.e., w.r.t. the shape of the graph (molecule). This

can be proved by showing the matrix for the respected set will be same with the corresponding

operationRi ↔ Rj , Ci ↔ Cj . Example in a cycle of order n, label the vertices as v1, v2, v3, . . . , vn

clockwise then ES (vi, vi+1) = ES (vi+1, vi+2) ES (vi, vi+2) = ES (vi+1, vi+3) etc. where i = 1

to n − 1 and j = 1 to n.

4. In energy of graph
∑

i<j λiλj = −m, m is the number of edges where as for Set energy,∑
i<j κiκj > −m, for |S| 6= 1,

∑
i<j κiκj > −m.

5. In energy of graph
∑n

i=1 λi = 0 where as for the set energy
∑n

i=1 λi = |S|, i = 1 to n.

6. It was found that there are same spectra for different sets of same cardinality (symmetry

w.r.t. shape). Different spectra for different sets of same cardinality. Different spectra with set

energy being same for the set with different cardinality.

7. If λ1 is the highest eigenvalue w.r.t. energy of graph then
√

∆ 6 λ1 6 ∆. If κ1 is the

highest eigenvalue w.r.t. set energy of graph then
√

∆ + 1 6 κ1 6 ∆ + 1.
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8. In energy of a graph, characteristic polynomial is given by ϕ(G : λ) = λn + a1λ
n−1 +

a2λ
n−2+. . .+an, a1 = 0, −a2 is number of edges, −a3 is twice the number of triangles in G. For

set energy the characteristic polynomial is given by ϕ(G : κ) = κn +a1κ
n−1 +a2κ

n−2 + . . .+an,

a1 and a2 are same for all characteristic polynomial with same cardinality of the set S, where

a1 = −|S|, but a2 varies w.r.t. the cardinality of the set, i.e., when |S| = 1, a2 = −e = u1,

e is the number of edges for a given graph. When |S| = 2, a2 = u1 + 1 = u2, when |S| = 3,

a2 = u2 + 2 = u3,. . . . When |S| = n, a2 = un−1 + (n − 1). Finding ai for i > 2 is difficult for

different cardinality of the set for the same graph.

§3. Preliminary Results

The following results comes from [22].

1. A graph G(V, E) with n > 3 and G 6= Kn then

√
2m + n(n − 1) (detA)

2/n
6 Eγ−min(G) 6

√
2mn,

where m is the number of edges and n is the number of vertices in G.

2. A graph G with n vertices without isolated vertices, with n > 3 and G 6= Kn then

Eγ−min(G) > 2
√

n + ε.

3. Kn,n is a Complete regular bipartite graph with n > 3, then

Eγ−min (Kn,n) 6 2 |V | − 2,

where |V | is the cardinality of vertices in G.

4. A graph G(V, E) with n > 3 then Eγ−min(G) 6
n

2

(√
n + 1

)
+ ε where n is the number

of vertices in G.

5. A graph G(V, E) is a complete graph with n > 3 then Eγ (Kn) 6
√

mn where m is the

number of edges and n is the number of vertices in G.

6. A graph G(V, E) with n > 3 then Eγ−min (K1,n−1) 6 Eγ−min (Tn) 6 Eγ−min (Pn)

where K1,n−1 is star graph with n vertices, Tn is tree with n vertices and Pn is path with n

vertices.

§4. Characterizing Graphs w.r.t. to the Unique Dominating Set

Case 1 γ(G) = 1.

The characteristic polynomial is found using the method of Souriau (Faddeev & Frame)

[21] which is also a modified method of Leverrier’s method.

Theorem 4.1 For any given star K1,n−1 with n > 3, the characteristic polynomial is given by
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κn + q1κ
n−1 + q2κ

n−2 = 0 with

Eγ−min (K1,n−1) =
√

4n − 3

E (K1,n−1) = 2
√

n − 1 6 Eγ−min (K1,n−1) =
√

4n − 3.

Proof Consider a star, K1,n−1. Label the vertices v1, v2, v3, . . . , vn such that v1 has

the maximum degree, hence in the domination matrix a11 = 1 and all other aii = 0, the

characteristic polynomial is found using the method of Souriau (Faddeev & Frame) [21] which

is also an modified method of Leverrier’s method. That is, the characteristic polynomial is

given by κn + q1κ
n−1 + q2κ

n−2 + · · · + qn−1κ + qn = 0 where,

A1 = A, q1 = −TraceA1, B1 = A1 + q1In,

where In is the unit matrix of order n.

A2 = AB1, q2 = −1

2
TraceA2, B2 = A2 + q2In,

A3 = AB2, q3 = −1

3
TraceA3, B3 = A3 + q3In

· · · · · ·

An = ABn−1, qn = − 1

n
TraceAn, Bn = An + qnIn.

Now consider an domination matrix of K1,n−1, whose γ(K1,n−1) = 1.

A =




1 1 1 1 − − 1

1 0 0 0 − − 0

1 0 0 0 − − 0

1 0 0 0 − − 0

− − − − − − −
− − − − − − −
1 0 0 0 − − 0




, A1 = A, q1 = −TraceA1 = −1.

B1 = A1 + q1In = A1 − In

=




0 1 1 1 − − 1

1 −1 0 0 − − 0

1 0 −1 0 − − 0

1 0 0 −1 − − 0

− − − − − − −
− − − − − − −
1 0 0 0 − − −1



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A2 = AB1

=




1 1 1 1 − − 1

1 0 0 0 − − 0

1 0 0 0 − − 0

1 0 0 0 − − 0

− − − − − − −
− − − − − − −
1 0 0 0 − − 0







0 1 1 1 − − 1

1 −1 0 0 − − 0

1 0 −1 0 − − 0

1 0 0 −1 − − 0

− − − − − − −
− − − − − − −
1 0 0 0 − − −1




=




n − 1 0 0 0 − − 0

0 1 1 1 − − 1

0 1 1 1 − − 1

0 1 1 1 − − 1

0 1 1 1 − − 1

0 − − − − − 1

0 1 1 1 − − 1




q2 = −1

2
TraceA2 = −1

2
(n − 1 + n − 1) = −1

2
(2n − 2) = − (n − 1) .

B2 = A2 + q2In = A2 − (n − 1)In.

=




n − 1 0 0 0 − − 0

0 1 1 1 − − 1

0 1 1 1 − − 1

0 1 1 1 − − 1

0 1 1 1 − − 1

0 − − − − − 1

0 1 1 1 − − 1




−




n − 1 0 0 0 − − 0

0 n − 1 0 0 0 −0 0

0 0 n − 1 0 − − 0

0 0 0 n − 1 0 − 0

− 0 − − − − 0

− − − − − − 0

0 0 0 0 − − n − 1




=




0 0 0 0 − − 0

0 −n + 2 1 1 − − 1

0 1 −n + 2 1 − − 1

0 1 1 −n + 2 − − 1

0 1 1 1 − − 1

0 − − − − − 1

0 1 1 1 − − −n + 2



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A3 = AB2

=




1 1 1 1 − − 1

1 0 0 0 − − 0

1 0 0 0 − − 0

1 0 0 0 − − 0

− − − − − − −
− − − − − − −
1 0 0 0 − − 0







0 0 0 0 − − 0

0 −n + 2 1 1 − − 1

0 1 −n + 2 1 − − 1

0 1 1 −n + 2 − − 1

0 1 1 1 − − 1

0 − − − − − 1

0 1 1 1 − − −n + 2




=




0 0 0 0 − − 0

0 0 0 0 − − 0

0 0 0 0 − − 0

0 0 0 0 − − 0

− − − − − − −
− − − − − − −
0 0 0 0 − − 0




,

q3 = −1

3
TraceA3 = 0

B3 = A3 + q3In = A3 + 0In = A3.

A4 = AB3 =




0 0 0 0 − − 0

0 0 0 0 − − 0

0 0 0 0 − − 0

0 0 0 0 − − 0

− − − − − − −
− − − − − − −
0 0 0 0 − − 0




,

q4 = −1

4
TraceA4 = 0

Similarly all the further Ai will have aii = 0 hence qi = 0, for i = 3 to n.

Hence the resultant characteristic polynomial is κn + q1κ
n−1 + q2κ

n−2 = 0 implies κn −
κn−1−(n − 1)κn−2 = 0. Solving this equation we get roots (eigenvalues). κn−2

(
κ2 − κ − (n − 1)

)
=

0.Whence,κn−2 = 0 or
(
κ2 − κ − (n − 1)

)
= 0.

Notice that κn−2 = 0 implies n− 2 roots are zero and solving κ2 − κ− (n − 1) = 0 enables

one knowing that

κ =
1 ±

√
1 − 4(1)(−n + 1)

2
=

1 ±
√

4n − 3

2
,



44 M.Kamal Kumar

where n > 3. Hence the roots are

κ1 =
1 +

√
4n − 3

2
and κ2 = −

(√
4n− 3 − 1

2

)
.

Thus, Eγ−min (K1,n−1) =

n∑

i=1

|κi| =
1 +

√
4n − 3 +

√
4n − 3 − 1

2
=

√
4n − 3

i.e., E (K1,n−1) = 2
√

n − 1 6 Eγ−min (K1,n−1) =
√

4n− 3. 2
Corollary 4.2 For any given thorn star Sk,t for k = 1, Sk,1 is a star with t vertices.

Theorem 4.3 For any given Complete Graph Kn with n > 3, the characteristic polynomial is

given by (κ − 1)
n−2 (

κ2 − (n − 1)κ − 1
)

= 0 and Eγ−min (Kn) =
√

n2 − 2n + 5 + (n − 2).

Proof Label the vertices v1, v2, v3, . . . , vn such that v1 is the dominating set, hence in the

domination matrix a11 = 1 and all other aii = 0, the characteristic polynomial is found using

the method of Souriau (Faddeev & Frame) [21] which is also an modified method of Leverrier’s

method similar to Theorem 1. That is, the characteristic polynomial is given by

κn + q1κ
n−1 + q2κ

n−2 + . . . + qn−1κ + qn = 0.

It can be shown that the characteristic polynomial of complete graph is given by

(κ − 1)
n−2 (

κ2 − (n − 1)κ − 1
)

= 0.

On solving the equation we get

(κ − 1)n−2 = 0 or
(
κ2 − (n − 1)κ − 1

)
= 0.

Notice that (κ − 1)
n−2

= 0 implies κ = −1,−1,−1, . . . ,−1(n − 2) times and

κ2 − (n − 1)κ − 1 = 0.

κ =
n − 1 ±

√
(n − 1)2 − 4(1)(−1)

2
=

n − 1 ±
√

n2 − 2n + 5

2

where n > 3. Hence the roots are

κ1 =
n − 1 +

√
n2 − 2n + 5

2
and κ2 = −

(√
n2 − 2n + 5 − (n − 1)

2

)
.

Thus, Eγ−min (Kn) =
n∑

i=1

|κi|

=
n − 1 +

√
n2 − 2n + 5 +

√
n2 − 2n + 5 − (n − 1)

2
+ n − 2

Eγ−min (Kn) =
√

n2 − 2n + 5 + (n − 2). 2
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Case 2 γ(G) = 2.

During the study of chemical graphs and its Weiner number, the Yugoslavian Chemist

Ivan Gutman introduced the concept of Thorn graphs. This idea was further extended to the

broader concept of generalized thorny graphs by Danail Bonchev and Douglas J Klein of USA.

This class of graphs gain importance in spectral theory as it represents the structural formula

of aliphatic and aromatic hydrocarbons [3].

Definition 4.4(Thorn Rod) A Thorn rod is a graph Pp,t which includes a linear chain (termed

as a rod) of p vertices and degree t terminal vertices at each of the two rod ends.

Definition 4.5(Thorn Star) A Thorn Stars are the graphs obtained from a k arm star by

attaching t − 1 terminal vertices to each of the star arms and are denoted as Sk,t.

Definition 4.6(Thorn Ring) A t Thorny Ring has a simple cycle as the parent, and t − 2

thorns at each cycle vertex.

C+
n consists of 2n vertices where n vertices on the cycle are degree three and remaining n

vertices are pendant vertices.

C∨
n consists of n(t−1) vertices of which n vertices are in cycle each of degree t and n(t−2)

pendant vertices.

Theorem 4.7 For any given thorn rod P2,t, the characteristic polynomial is given by κ2t−4(κ2−
(t − 1))(κ2 − 2κ − (t − 1)), where n being the order of G given by n = 2t and Eγ−min (P2,t) =

2
√

t − 1 + 2
√

t.

Proof The characteristic polynomial can be found using the method of Souriau (Faddeev

& Frame) [21] which is also an modified method of Leverrier’s method. Instead we generalize

the result obtained for few thorn rods. For t = 1, P2,1 is a path with 2 vertices, t = 2, P2,2

is a path with 4 vertices. The characteristic polynomial of P2,t for t > 2 is given by, for P2,3,

κ2(κ2 − 2)(κ2 − 2κ − 2), P2,4, κ4(κ2 − 3)(κ2 − 2κ − 3), P2,5, κ6(κ2 − 4)(κ2 − 2κ − 4), P2,6,

κ8(κ2−5)(κ2−2κ−5), hence for P2,t the characteristic polynomial is given by, κ2k−4(κ2− (t−
1))(κ2 − 2κ− (t− 1)), n = 2t. Solving the two quadratic equations and summing their absolute

eigenvalues we obtain Eγ−min (P2,t) = 2
√

t − 1 + 2
√

t. 2
Theorem 4.8 For any given thorn rod P3,t, the characteristic polynomial is given by κ2t−3(κ2−
κ − (t − 1))(κ2 − κ − (t + 1)), n = 2t + 1 and Eγ−min (P3,t) =

√
4t − 3 +

√
4t + 5.

Proof The proof is similar to the above theorem. For t = 1, P3,1 is a path with 3 vertices,

t = 2P3,2 is a path with 5 vertices. For t > 2 the characteristic polynomial is given by, for P3,3,

κ3(κ2 − κ − 2)(κ2 − κ − 4), P3,4, κ5(κ2 − κ − 3)(κ2 − κ − 5), P3,5, κ7(κ2 − κ − 4)(κ2 − κ − 6),

hence for P3,t, κ2k−3(κ2 −κ− (t− 1))(κ2 −κ− (t+1)), n = 2t+1. The corresponding minimal

domination energy is
√

4t − 3 +
√

4t + 5. 2
Theorem 4.9 For any given thorn rod P4,t, the characteristic polynomial is given by κ2t−4(κ3−
(t + 1)κ − (t − 1))(κ3 − 2κ2 − (t − 1)κ + (t − 1)), n = 2t + 2.
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Proof For t = 1, P4,1 is a path with 4 vertices, t = 2, P4,2 is a path with 6 vertices. For

t > 2 the characteristic polynomial is given by, for P4,3, κ2(κ3 − 4κ − 2)(κ3 − 2κ2 − 2κ + 2),

P4,4, κ4(κ3 − 5κ − 3)(κ3 − 2κ2 − 3κ + 3), P4,5, κ6(κ3 − 6κ − 4)(κ3 − 2κ2 − 4κ + 4), hence for

P4,t, κ2k−4(κ3 − (t + 1)κ − (t − 1))(κ3 − 2κ2 − (t − 1)κ + (t − 1)), n = 2t + 2. Solving a cubic

equation is quite difficult. 2
Corollary 4.10 For any given thorn star Sk,t for k = 2, S2,t is a P3,t.

Case 3 γ(G) = 3.

Theorem 4.11 For any given thorn star S3,t, the characteristic polynomial is given by,

κ3t−5(κ2 − κ− (t + 2))(κ2 − κ− (t− 1))2, n = 3t + 1 and Eγ−min (S3,t) =
√

4t + 9 + 2
√

4t − 3.

Proof Thorny star S3,t has 3 arm and t − 1 terminal vertices, hence γ(G) = 3. The

characteristic polynomial of S3,2, κ1(κ2 −κ− 4)(κ2 −κ− 1)2, S3,3, κ4(κ2 − κ− 5)(κ2 − κ− 2)2,

S3,4, κ7(κ2 − κ − 6)(κ2 − κ − 3)2, hence for S3,t, κ3k−5(κ2 − κ − (t + 2))(κ2 − κ − (t − 1))2,

n = 3t + 1. The corresponding minimal domination energy is
√

4t + 9 + 2
√

4t − 3. 2
Theorem 4.12 For a given thorn ring Ct

3, with three vertices on the cycle of degree t and

n(t−1) vertices, the characteristic polynomial is given by, κ3t−9(κ2− (t−2))2(κ2−3κ− (t−2))

and Eγ−min (Ct
3) = 4

√
t − 2 +

√
4t + 1.

Proof Thorn ring Ct
n, has n(t − 1) vertices, n vertices on the cycle and n (t-2) pendant

vertices, t is the degree of each vertex on the cycle. The characteristic polynomial of C3
3 ,

κ0(κ2 − 1)2(κ2 − 3κ − 1), C4
3 , κ3(κ2 − 2)2(κ2 − 3κ − 2), C5

3 , κ6(κ2 − 3)2(κ2 − 3κ − 3), C6
3 ,

κ9(κ2−4)2(κ2−3κ−4). Hence for Ct
3, κ3t−9(κ2−(t−2))2(κ2−3κ−(t−2)). The corresponding

minimal domination energy is 4
√

t − 2 +
√

4t + 1. 2
Case 4 γ(G) = 4.

Theorem 4.13 For any given thorn star S4,t, the characteristic polynomial is given by,

κ4t−7(κ2 − κ− (t + 3))(κ2 − κ− (t− 1))3, n = 4t + 1 and Eγ−min (S4,t) =
√

4t + 13 + 3
√

4t − 3.

Proof Thorny Star S4,t has 4 arm and t − 1 terminal vertices, hence γ(G) = 4. The

characteristic polynomial of S4,2, κ1(κ2 −κ− 5)(κ2 −κ− 1)3, S4,3, κ5(κ2 − κ− 6)(κ2 − κ− 2)3,

S4,4, κ9(κ2 − κ − 7)(κ2 − κ − 3)3, hence for S4,t, κ4k−7(κ2 − κ − (t + 3))(κ2 − κ − (t − 1))3,

n = 4t + 1. The corresponding minimal domination energy is
√

4t + 13 + 3
√

4t − 3. 2
Theorem 4.14 For any given thorn rod P5,t, the characteristic polynomial is given by, κ2t−3(κ2−
κ − t)(κ4 − 2κ3 − (t + 1)κ2 + (t + 2)κ + (2t − 2)), n = 2t + 3.

Proof For P5,t, γ(G) = 3, for t = 1, P5,1 is a path with 5 vertices, t = 2, P5,2 is a path

with 7 vertices. For t > 2 the characteristic polynomial is given by, for P5,3, κ3(κ2 − κ −
3)(κ4 − 2κ3 − 4κ2 + 5κ + 4), P5,4, κ5(κ2 − κ − 4)(κ4 − 2κ3 − 5κ2 + 6κ + 6), P5,5, κ7(κ2 − κ −
5)(κ4 − 2κ3 − 6κ2 + 7κ + 8), P5,6, κ9(κ2 − κ − 6)(κ4 − 2κ3 − 7κ2 + 8κ + 10), hence for P5,t,

κ2k−3(κ2 − κ − t)(κ4 − 2κ3 − (t + 1)κ2 + (t + 2)κ + (2t − 2)), n = 2t + 3. These result can
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be extended to P7,t which has a unique minimal dominating set where as P6,t has two minimal

dominating set. 2
Theorem 4.15 For any given thorn ring Ct

4, with four vertices on the cycle of degree t and

n(t − 1) vertices, the characteristic polynomial is given by, κ4t−12(κ2 + κ − (t − 2))(κ2 − κ −
(t − 2))2(κ2 − 3κ − (t − 2)) and Eγ−min (Ct

4) =
√

4t + 1 + 3
√

4t − 7.

Proof The characteristic polynomial of C3
4 , κ0(κ2 + κ− 1)(κ2 − κ − 1)2(κ2 − 3κ− 1), C4

4 ,

κ4(κ2 +κ− 2)(κ2 −κ− 2)2(κ2 − 3κ− 2), C5
4 , κ8(κ2 +κ− 3)(κ2−κ− 3)2(κ2 − 3κ− 3), hence for

Ct
4 κ4t−12(κ2 + κ − (t − 2))(κ2 − κ − (t − 2))2(κ2 − 3κ − (t − 2)). The corresponding minimal

domination energy is
√

4t + 1 + 3
√

4t − 7. 2
§5. Open Problems

1. Domination energy for other standard graphs can be explored.

2. The relation between these parameters can be extended to other classes of graphs and

other types of domination.

3. Application of Set and domination energy has to Explored.
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Abstract: An edge magic total labeling of a graph G(V, E) with p vertices and q edges is

a bijection f : V (G) ∪ E(G) → {1, 2, · · · , p + q} such that f(u) + f(v) + f(uv) is a constant

k for any edge uv ∈ E(G). If there exist two constants k1 and k2 such that the above sum

is either k1 or k2, it is said to be an edge bimagic total labeling. A total edge magic (edge

bimagic) graph is called a super edge magic (super edge bimagic) if f(V (G)) = {1, 2, · · · , p}

and it is called superior edge magic(bimagic) if f(E(G)) = {1, 2, · · · , q}. In this paper, we

investigate and exhibit super and superior edge bimagic labeling for some classes of graphs.

Key Words: Graph, labeling, bimagic labeling, bijective function.

AMS(2010): 05C78

§1. Introduction

All graphs considered in this article are finite, simple and undirected. A labeling of a graph G is

an assignment of labels to either the vertices or the edges, or both subject to certain conditions.

Labeled graphs are becoming an increasingly useful family of mathematical models from a

broad range of applications such as coding theory, X-ray, Crystallography, radar, astronomy,

circuit design, communication networks and data base management. Graph labeling was first

introduced in the late 1960s. A useful survey on graph labeling by Gallian (2012) can be found

in [4]. We follow the notation and terminology of [5].

A graph G = (V, E) with p vertices and q edges is called total edge magic if there is

a bijection f : V (G) ∪ E(G) → {1, 2, · · · , p + q} such that f(u) + f(v) + f(uv) = k for

any edge uv ∈ E(G). The original concept of total edge-magic graph is due to Kotzig and

Rosa [6] who called it magic graph. A total edge-magic graph is called a super edge-magic if

f(V (G)) = {1, 2, · · · , p}.
Wallis [7] called super edge-magic as strongly edge-magic. The notion of edge bimagic

labeling was introduced by Baskar Babujee [1]. A graph G with p vertices and q edges is called

total edge bimagic if there exists a bijection f : V (G) ∪ E(G) → {1, 2, · · · , p + q} and two

1Received February 18, 2013, Accepted February 18, 2014.
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constants k1 and k2 such that f(u)+ f(v)+ f(uv) is either k1 or k2 for any edge uv ∈ E(G). A

total edge-bimagic graph is called super edge-bimagic if f(V (G)) = {1, 2, · · · , p}and it is called

superior edge bimagic if f(E(G)) = {1, 2, · · · , q}. In this article, Cn ô C+
n , Cn ê C+

n , Cn ô Cn ,

Cn ê Cn, (K1,m + K1) ô C+
n and G ô (P2 + mK1) are shown to admit super and superior edge

bimagic labeling.

Definition 1.1([2]) A bijection f : V (G) ∪E(G) → {1, 2, 3, · · · , p + q} is said to be super edge

bimagic total labeling of G if there exist two constants k1 and k2 such that f(u) + f(v) + f(uv)

is either k1 or k2 for any edge uv ∈ E(G) and f(V (G)) = {1, 2, · · · , p}.

Definition 1.2([8]) A graph G with p vertices and q edges is called superior edge magic if there

is a bijection f : V (G)∪E(G) → {1, 2, 3, · · · , p+ q} such that f(u)+ f(v)+ f(uv) is a constant

for any edge uv ∈ E(G), where f(E(G) = {1, 2, · · · , q}. If f(u) + f(v) + f(uv) are all distinct

for all uv ∈ E(G), then the graph is called superior edge antimagic total labeling.

Definition 1.3([3]) If G1(p1, q1) and G2(p2, q2) are two connected graphs then the graph ob-

tained by superimposing any selected vertex of G2 on any selected vertex of G1 is denoted by

G1 ô G2. The resultant graph G = G1 ô G2 contains p1 +p2 - 1 vertices and q1 + q2 edges. In

general, there are p1p2 possibilities of getting from G1 and G2.

Definition 1.4 G1 ê G2 is obtained from G1 and G2 by introducing an edge between an

arbitrary vertex of G1 and an arbitrary vertex of G2. If G1(p1, q1) has p1 vertices and q1 edges

and G2(p2, q2) has p2 vertices and q2 edges then G1 ê G2 will have (p1 + p2) vertices and

(q1 + q2 + 1) edges. If G1 = K1,m, G2 = Pn.

Interesting graph structures K1,mêPn is obtained respectively using our operation defined

above and we prove the following results.

§2. Main Results

In this section, we obtain super and superior edge bimagic labeling from connected magic

graphs.

Theorem 2.1 There exists at least one graph G from the class CnôC+
n , (n ≥ 3) when n is odd

that admits super edge bimagic labeling.

Proof Let the graph G is obtained by superimposing a vertex of Cn on a pendant vertex

of C+
n is denoted by Cn ô C+

n . We define that the vertex set V (G) = {vj
1, v

j
2; 1 ≤ j ≤

n}∪ {uk
1; 1 ≤ k ≤ n− 1} and edge set E(G) = E1 ∪E2 ∪E3 ∪E4 where E1 = {vj

1v
j
2; 1 ≤ j ≤ n}

, E2 = {vj
2v

j+1
2 ; 1 ≤ j ≤ n − 1}, E3 = {uk

1u
k+1
1 ; 1 ≤ k ≤ n − 2}, E4 = {v1

2v
n
2 , v1

1u1
1, v

1
1u

n−1
1 }.

Define a bijective function f : V (G)
⋃

E(G) → {1, 2, 3, · · · , 6n − 1} is as follows:

For j = 1 to n, let f(vj
1) = n−1+j; For j = 1 to n, when j ≡ 1(mod 2), let f(vj

2) =
5n − j

2
,

f(vj
1v

j
2) =

10n − j − 1

2
and when j ≡ 0(mod 2), let f(vj

2) =
6n − j

2
, f(vj

2v
j+1
2 ) = 3n + j − 1.



On Variation of Edge Bimagic Total Labeling 51

For k = 1 to n − 2, let f(uk
1u

k+1
1 ) = 6n − k; For k = 1 to n-1 ; when k ≡ 1(mod 2), let

f(uk
1) =

n + k

2
and when k ≡ 0(mod 2), let f(uk

1) =
k

2
.

Let f(u1
1v

1
1) = 5n, f(v1

2v
n
2 ) = 4n− 1, f(v1

1u
n−1
1 ) = 5n + 1.

In the following cases, it is justified that the above assignment results in the required

labeling.

Case 1 For edges in E1, when j ≡ 1(mod 2), we have

f(vj
1) + f(vj

2) + f(vj
1v

j
2) = n − 1 + j +

5n− j

2
+

10n− j − 1

2

=
17n− 3

2
= k1

and when j ≡ 0(mod 2), we have

f(vj
1) + f(vj

2) + f(vj
1v

j
2) = n − 1 + j +

6n − j

2
+

9n− j − 1

2

=
17n− 3

2
= k1.

Case 2 For edges in E2, when j ≡ 1(mod 2), we have

f(vj
2) + f(vj+1

2 ) + f(vj
2v

j+1
2 ) =

5n − j

2
+

6n − j − 1

2
+ 3n − 1 + j

=
17n− 3

2
= k1

and when j ≡ 0(mod 2), we have

f(vj
2) + f(vj+1

2 ) + f(vj
2v

j+1
2 ) =

6n − j

2
+

5n − j − 1

2
+ 3n − 1 + j

=
17n− 3

2
= k1.

Case 3 For edges in E3, when k ≡ 1(mod 2), we have

f(uk
1) + f(uk+1

1 ) + f(uk
1u

k+1
1 ) =

n + k

2
+

k + 1

2
+ 6n − k

=
13n + 1

2
= k2

and when k ≡ 0(mod 2), we have

f(uk
1) + f(uk+1

1 ) + f(uk
1u

k+1
1 ) =

k

2
+

n + k + 1

2
+ 6n − k

=
13n + 1

2
= k2.



52 A.Amara Jothi, N.G.David and J.Baskar Babujee

Case 4 For the edges in E4, we have

f(vn
2 ) + f(v1

2) + f(v1
2vn

2 ) = 2n +
5n − 1

2
+ 4n− 1 =

17n− 3

2
= k1,

f(u1
1) + f(v1

1) + f(u1
1v

1
1) =

n + 1

2
+ n + 5n =

13n + 1

2
= k2,

f(v1
1) + f(vn−1

1 ) + f(v1
1un−1

1 ) = n +
n − 1

2
+ 5n + 1 =

13n + 1

2
= k2.

We observe that there are two constants k1 and k2 such that for each edge uv ∈ E(G),

f(u)+f(v)+f(uv) is either k1 or k2. From the above cases we have two constants k1 =
17n − 3

2

and k2 =
13n + 1

2
. Hence the resultant graph admits super edge bimagic labeling. 2

Illustration 1 The graph C9ôC
+
9 is given in Figure 1. It is super edge bimagic labelling is

also indicated in the same figure.
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Theorem 2.2 There exists at least one graph G from the class CnêC+
n , (n ≥ 3), when n is odd

that admits super edge bimagic total labeling.

Proof Let the graph G is obtained by introducing an edge between a vertex of Cn and

a pendant vertex of C+
n is denoted by Cn ê C+

n . We define that the vertex set V (G) =

{ui, vj , wj ; 1 ≤ i, j ≤ n} and edge set E(G) = E1 ∪ E2 ∪ E3 ∪ E4 where E1 = {uiui+1; 1 ≤ i ≤
n − 1} , E2 = {vjwj ; 1 ≤ j ≤ n}, E3 = {wjwj+1; 1 ≤ j ≤ n − 1}, E4 = {u1un, v1un, w1wn}.
Define a bijective function f : V (G)

⋃
E(G) → {1, 2, 3, · · · , 6n − 1} is as follows:

For i = 1 to n − 1, let f(uiui+1) = 6n − i + 1; For i = 1 to n, when i ≡ 1(mod 2),

let f(ui) =
i + 1

2
and when i ≡ 0(mod 2), let f(ui) =

n + i + 1

2
. For j = 1 to n − 1, let
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f(wjwj+1) = 3n + j; For j = 1 to n, when j ≡ 1(mod 2), let f(wj) =
5n − j + 2

2
and when

j ≡ 0(mod 2), let f(wj) =
6n − j + 2

2
. For j = 1 to n, when j ≡ 1(mod 2), let f(vj) = n + j ,

f(wjvj) =
10n − j + 1

2
and when j ≡ 0(mod 2), let f(vj) = n + j, f(wjvj) =

19n− j + 1

2
. Let

f(u1un) = 6n + 1, f(v1un) = 5n + 1 and f(w1wn) = 4n.

In the following cases, it is justified that the above assignment results in the required

labeling.

Case 1 For edges in E1, when i ≡ 1(mod 2), we obtain

f(ui) + f(ui+1) + f(uiui+1) =
i + 1

2
+

n + i + 2

2
+ 6n − i + 1

=
13n + 5

2
= k1

and when i ≡ 0(mod 2), we have

f(ui) + f(ui+1) + f(uiui+1) =
n + i + 1

2
+

i + 2

2
+ 6n − i + 1

=
13n + 5

2
= k1.

Case 2 For edges in E2, when j ≡ 1(mod 2), we obtain

f(vj) + f(wj) + f(vjwj) = n + j +
5n − j + 2

2
+

10n − j + 2

2
+

10n− j + 1

2

=
17n + 3

2
= k2

and when j ≡ 0(mod 2), we obtain

f(vj) + f(wj) + f(vjwj) = n + j +
6n− j + 2

2
+

9n − j + 1

2

=
17n + 3

2
= k2.

Case 3 For edges in E3, when j ≡ 1(mod 2), we obtain

f(wj) + f(wj+1) + f(wjwj+1) =
5n − j + 2

2
+

6n− j + 1

2
+ 3n + j

=
17n + 3

2
= k2

and when j ≡ 0(mod 2), we have

f(wj) + f(wj+1) + f(wjwj+1) =
6n − j + 2

2
+

5n− j + 1

2
+ 3n + j

=
17n + 3

2
= k2.



54 A.Amara Jothi, N.G.David and J.Baskar Babujee

Case 4 For the edges in E4, we have,

f(u1) + f(un) + f(u1un) = 1 +
n + i

2
+ 6n + 1 =

13n + 5

2
= k1,

f(v1) + f(un) + f(v1un) = n + 1 +
n + 1

2
+ 5n + 1 =

13n + 5

2
= k1,

f(w1) + f(wn) + f(w1wn) = 2n + 1 +
5n + 1

2
+ 4n =

17n + 3

2
= k2.

We observe that there are two constants k1 and k2 such that for each edge uv ∈ E(G),

f(u)+f(v)+f(uv) is either k1 or k2. From the above cases we have two constants k1 =
13n + 5

2

and k2 =
17n + 3

2
. Hence the graph CnêC+

n , (n ≥ 3) admits super edge bimagic labeling. 2
Illustration 2 The graph C11êC

+
11 is given in Figure 2. It is super edge bimagic labelling is

also indicated in the same figure.
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Theorem 2.3 There exists at least one graph G from the class CnôCn, (n ≥ 3) when n is odd

that admits superior edge bimagic total labeling.

Proof Let the graph G is obtained by superimposing a vertex of Cn on a vertex of the

same copy denoted by Cn ô Cn . Now, we define that the vertex set V (G) = {ui, vj ; 1 ≤
i ≤ n}, 1 ≤ j ≤ n − 1} and edge set E(G) = E1 ∪ E2 ∪ E3 where E1 = {uiui+1; 1 ≤ i ≤
n − 1} , E2 = {vjvj+1; 1 ≤ j ≤ n − 2}, E3 = {u1un, v1un, unvn−1}. A bijective function

f : V (G)
⋃

E(G) → {1, 2, 3, · · · , 4n− 1} is given bellow:

For i = 1 to n − 1, let f(uiui+1) = 6n − i + 1; For i = 1 to n, when i ≡ 1(mod 2),

let f(ui) =
i + 1

2
and when i ≡ 0(mod 2), let f(ui) =

n + i + 1

2
. For i = 1 to n − 1, let
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f(uiui+1) = i; For i = 1 to n, when i ≡ 1(mod 2), let f(ui) =
7n − i

2
and when i ≡ 0(mod 2),

let f(ui) =
8n − i

2
. For j = 1 to n − 2, let f(vjvj+1) = n + 2 + j; For j = 1 to n − 1,

when j ≡ 1(mod 2), let f(vj) =
5n − j

2
, when j ≡ 0(mod 2), let f(vj) =

6n − j

2
. Let

f(vn−1) =
5n + 1

2
, f(unvn−1) = n + 1, f(v1un) = n + 2, f(u1un) = n.

The above assigned labels are justified in the following cases.

Case 1 For edges in E1, when i ≡ 1(mod 2), we obtain

f(ui) + f(ui+1) + f(uiui+1) =
7n − i

2
+

8n − i − 1

2
+ i

=
15n − 1

2
= k1

and when i ≡ 0(mod 2), we obtain

f(ui) + f(ui+1) + f(uiui+1) =
8n − i

2
+

7n − i − 1

2
+ i

=
15n − 1

2
= k1.

Case 2 For edges in E2, when j ≡ 1(mod 2), we obtain

f(vj) + f(vj+1) + f(vjvj+1) =
5n − j

2
+

6n − j − 1

2
+ n + 2 + j

=
13n + 3

2
= k2;

when j ≡ 0(mod 2), we obtain

f(vj) + f(vj+1) + f(vjvj+1) =
6n − j

2
+

5n − j − 1

2
+ n + 2 + j

=
13n + 3

2
= k2.

Case 3 For the edges in E3, we have

f(u1) + f(un) + f(u1un) =
7n − 1

2
+ 3n + n =

15n− 1

2
= k1,

f(v1) + f(un) + f(v1un) =
5n − 1

2
+ 3n + n + 2 =

13n + 3

2
= k2,

f(un) + f(vn−1) + f(uuun−1) = 3n +
5n + 1

2
+ n + 1 =

13n + 3

2
= k2.

Therefore, when we observe from the above cases, we have the constant k1 =
15n− 1

2
and

k2 =
13n + 3

2
. Hence the graph G = Cn ô Cn, (n ≥ 3) admits superior edge bimagic total

labeling. 2
Theorem 2.4 There exists at least one graph G from the class Cn ê Cn, (n ≥ 3) when n is
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odd that admits super edge bimagic total labeling.

Proof Let the graph G is obtained by introducing an edge between a vertex of Cn and

a vertex of the same copy denoted by Cn ê Cn. Now, we define that the vertex set V (G) =

{ui, vj ; 1 ≤ i ≤ n}, 1 ≤ j ≤ n} and edge set E(G) = E1 ∪ E2 ∪ E3 where E1 = {uiui+1; 1 ≤
i ≤ n − 1} , E2 = {vjvj+1; 1 ≤ j ≤ n − 1}, E3 = {u1vn, u1un, v1vn}. A bijective function

f : V (G)
⋃

E(G) → {1, 2, 3, · · · , 4n + 1} is given bellow:

For i = 1 to n − 1, let f(uiui+1) = 3n − i; For i = 1 to n, when i ≡ 1(mod 2), let

f(ui) =
2n + i + 1

2
; when i ≡ 0(mod 2), let f(ui) =

3n + i + 1

2
. For j = 1 to n − 1, let

f(vjvj+1) = 4n + 1 + j; For j = 1 to n, when j ≡ 1(mod 2), let f(vj) =
j + 1

2
, when

j ≡ 0(mod 2), let f(vj) =
n + j + 1

2
. Let f(u1un) = 3n, f(u1vn = 3n + 1), f(v1vn = 4n + 1).

The above assigned labels are justified in the following cases.

Case 1 For edges in E1, when i ≡ 1(mod2), we obtain

f(ui) + f(ui+1) + f(uiui+1) =
2n + i + 1

2
+

3n + i + 2

2
+ 3n − i

=
11n + 3

2
= k1

and when i ≡ 0(mod 2), we obtain

f(ui) + f(ui+1) + f(uiui+1) =
3n + i + 1

2
+

2n + i + 2

2
+ 3n − i

=
11n + 3

2
= k1.

Case 2 For edges in E2, when j ≡ 1(mod 2), we obtain

f(vj) + f(vj+1) + f(vjvj+1) =
j + 1

2
+

n + j + 2

2
+ 4n + 1 − j

=
9n + 5

2
= k2.

When j ≡ 0(mod 2), we obtain

f(vj) + f(vj+1) + f(vjvj+1) =
n + j + 1

2
+

j + 2

2
+ 4n + 1 − j

=
9n + 5

2
= k2.

Case 3 For the dges in E3, we have

f(u1) + f(un) + f(u1un) = n + 1 +
3n + 1

2
+ 3n =

11n + 3

2
= k1,

f(v1) + f(un) + f(v1un) = 1 +
n + 1

2
+ 4n + 1 =

9n + 5

2
= k2,

f(u1) + f(vn) + f(u1vn) = n + 1 +
n + 1

2
+ 3n + 1 =

9n + 5

2
= k2.
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Therefore, k1 =
11n + 3

2
and k2 =

9n + 5

2
. Hence the graph G = CnêCn, (n ≥ 3) admits

super edge bimagic total labeling. 2
Theorem 2.5 There exists at least one graph G

′

from the class GôC+
n , (n ≥ 3) , (when n is odd)

that admits super edge bimagic total labeling, where G is any graph from K1,m + K1, (m ≥ 2).

Proof Let the graph G
′

is obtained by merging of two graphs with a vertex of above degree 2

in G and a pendant vertex of C+
n . We define the graph GôC+

n with vertex set V (G) = {ui, vi; 1 ≤
i ≤ n}∪{w1}∪{wj

2; 1 ≤ j ≤ m} and edge set E(G) = E1∪E2∪E3 where E1 = {uivi; 1 ≤ i ≤ n},
E2 = {vivi+1; 1 ≤ i ≤ n − 1}, E3 = {u1w

j
2; 1 ≤ j ≤ m} ∪ {w1w

j
2; 1 ≤ j ≤ m} ∪ {u1w1, v1vn}. A

bijective function f : V (G)
⋃

E(G) → {1, 2, 3, · · · , 4n + 3m + 2} is given bellow:

For i = 1 to n − 1, let f(vivi+1) = 2n + 1 + m + i; For i = 1 to n, when i ≡ 1(mod 2),

let f(vi) =
3n + 4 − i

2
+ m. When i ≡ 0(mod 2), let f(vi) =

4n − i + 4

2
+ m. For i = 1 to n,

let f(ui) = m + 1 + i; For i = 1 to n, when i ≡ 1(mod 2), let f(uivi) =
8n − i + 3

2
. When

i ≡ 0(mod 2), let f(uivi) =
7n + 3 − i

2
. For i = 1 to n, let f(v1vn) = 3n + m + 1 and for

j = 1 to m, let f(wj
2) = 1 + j, f(u1w

j
2) =

7n + 1

2
+ 3m − j, f(w1w

j
2) =

7n + 3

2
+ 4m − j. Let

f(w1) = 1, f(u1w1) =
7n + 1

2
+ 3m.

In the following cases, it is justified that the above assignment results in the required

labeling.

Case 1 For any edge uivi ∈ E1, when i ≡ 1(mod 2), we obtain

f(ui) + f(vi) + f(uivi) = m + 1 + i +
3n + 4 − i

2
+ m +

8n − i + 3

2
+ m

=
6m + 11n + 9

2
= k1.

When i ≡ 0(mod 2), we obtain

f(ui) + f(vi) + f(uivi) = m + 1 + i +
n − i + 3

2
+ m + 2n + m + 1 + i

=
6m + 11n + 9

2
= k1.

Case 2 For any edge vivi+1 ∈ E2, when i ≡ 1(mod 2), we obtain

f(vi) + f(vi+1) + f(vivi+1) =
3n + 4 − i

2
+ m +

4n − i − 3

2
+ m + 2n + m + 1 + i

=
6m + 11n + 9

2
= k1.
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When i ≡ 0(mod 2), we obtain

f(vi) + f(vi+1) + f(vivi+1) =
4n + 4 − i

2
+ m +

3n − i − 3

2
+ m + 2n + m + 1 + i

=
6m + 11n + 9

2
= k1.

Case 3 For the edges in E3, we have

f(u1) + f(wj
2) + f(u1w

j
2) = m + 2 + 1 + j +

7n + 1

2
+ 3m − j =

8m + 7n + 7

2
= k2,

f(w1) + f(wj
2) + f(w1w

j
2) = 1 + 1 + j +

7n + 3

2
+ 4m − j =

8m + 7n + 7

2
= k2,

f(v1) + f(vn) + f(v1vn) =
3n + 3

2
+ m + n + 2 + m + 3n + m + 1 =

6m + 11n + 9

2
= k1,

f(u1) + f(w1) + f(u1w1) = m + 2 + 1 +
7n + 1

2
+ 3m =

8m + 7n + 7

2
= k2.

We observe that there are two common counts k1 and k2 such that for each edge uv ∈
E(G), f(u) + f(v) + f(uv) is either k1 or k2. From the above cases we have two constants

k1 =
6m + 11n + 9

2
and k2 =

8m + 7n + 7

2
. Hence as per our construction G

′

admits super

edge bimagic labeling.

Illustration 3 The graph (K1,6+K1)ôC
+
9 is given in figure 3. It is super edge bimagic labelling

is also indicated in the same figure.
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Figure 3 k1 = 72 k2 = 59

Theorem 2.6 If G is an arbitrary graph that admits total edge magic labeling then there exists

at least one graph from the class Gô(P2 + mK1) admits edge bimagic total labeling.
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Proof Let G(p, q) be total edge magic graph with the bijective function f : V (G)∪E(G) →
{1, 2, 3, · · · , p + q} such that f(u) + f(v) + f(uv) = k1. Let w ∈ V (G) must be vertex whose

label f(w) = p + q is the maximum value. Consider the graph (P2 + mK1) with vertex set

{u0, v0, ui : 1 ≤ i ≤ m} and edge set E(G) = {u0ui, v0ui : 1 ≤ i ≤ m} ∪ {u0v0}. We

superimpose the vertex v0 is degree more than two of the (P2 + mK1) graph on the vertex

w ∈ V (G) of G. Now we define the new graph G
′

= G ô (P2 + mK1) : 1 ≤ i ≤ m and edge

set E
′

(G
′

) = E ∪ E1 ∪ E2 ∪ E3 where E1 = {u0ui : 1 ≤ i ≤ m}, E2 = {wui : 1 ≤ i ≤ m},
E3 = {u0w}. Consider the bijection g : V

′

(G
′

)∪E
′

(G
′

) = {1, 2, 3, · · · , p + q + 3m + 2} defined

by g(v) = f(v) for all v ∈ V (G) and g(uv) = f(uv) for all uv ∈ E(G).

From our construction of new graph G
′

, the labels are defined as follows:

f(w) = g(v0) = g(w) = p + q, g(ui) = p + q + i, for 1 ≤ i ≤ m;

g(wui) = p + q + 3m + 3 − i, for 1 ≤ i ≤ m;

g(u0ui) = p + q + 2m + 2 − i, for 1 ≤ i ≤ m;

g(u0) = p + q + m + 1 and g(u0w) = p + q + 2m + 2.

Since the graph G is total edge magic with constant k1 and implies that g(u)+g(uv)+g(v) =

k2 for all uv ∈ E
′

(G
′

).

Next, we have to prove that the remaining edges w and u0 joining with {ui : 1 ≤ i ≤ m}
have the constant k2.

For the edges in E1 ∪ E2 ∪ E3,

g(u0) + g(u0ui) + g(ui) = p + q + m + 1 + p + q + 2m + 2 − i + p + q + i

= 3(p + q + m + 1) = k2,

g(w) + g(ui) + g(wui) = p + q + p + q + i + p + q + 3m + 3 − i

= 3(p + q + m + 1) = k2 and

g(u0) + g(u0w) + g(w) = p + q + m + 1 + p + q + p + q + 2m + 2

= 3(p + q + m + 1) = k2.

Therefore, the resultant graph Gô(P2 + mK1) has two common counts k1 and k2. Hence

the graph admits edge bimagic total labeling. 2
Conclusion In our present study, we have investigated super and superior edge bimagic

labeling for some special graphs. Investigating super and superior edge bimagic total labeling

for the graph from the class G1ôG2 and G1êG2 for some arbitrary graph G1 and G2 with this

conditions. This is our future plan.
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§1. Introduction

All graphs considered in this paper are finite and simple. For standard terminology and notation

in graph theory, not specifically defined in this paper, the reader is referred to Harary [3]. The

operation of forming a graph valued function of a graph G is probably the most interesting

operation by which one graph is obtained from another. The concept of pathos of a graph G

was introduced by Harary [4], as a collection of minimum number of edge disjoint open paths

whose union is G. The path number of a graph G is the number of paths in any pathos. The

path number of a tree T is equal to k, where 2k is the number of odd degree vertices of T . Also,

the end vertices of every path of any pathos of a tree T are of odd degree [2]. The line graph

of a graph G, written L(G), is the graph whose vertices are the edges of G, with two vertices

of L(G) adjacent whenever the corresponding edges of G are adjacent.

A pathos vertex is a vertex corresponding to a path P in any pathos and a block vertex is

a vertex corresponding to a block(or an edge) of a tree T . The edge degree of an edge pq of a

tree T is the sum of the degrees of p and q.

The lict graph (Here “lict” indicates “line cut vertex”) of a graph G [6], written n(G), is

the graph whose vertices are the edges and cut vertices of G, with two vertices of n(G) adjacent

whenever the corresponding edges of G are adjacent or the corresponding members of G are

incident, where the edges and cut vertices of G are called its members. Let C be a block set of

G. A Smarandachely blict graph BC(G) is the graph whose vertices are the edges, cut vertices

1Received July 19, 2013, Accepted February 20, 2014.
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and blocks in C, with two vertices of Bn(G) adjacent whenever the corresponding members of

G are adjacent or incident, where the edges, cut vertices and blocks in C are called its members.

Particularly, if C is all blocks of G, such a BC(G) is called a blict graph (Here “blict” indicates

“block line cut vertex”) of a graph G [1], written by Bn(G).

The pathos line graph of a tree T [1], written PL(T ), is the graph whose vertices are the

edges and paths of pathos of T , with two vertices of PL(T ) adjacent whenever the corresponding

edges of T are adjacent and the edges that lie on the corresponding path Pi of pathos of T . The

pathos lict graph of a tree T [1], written Pn(T ), is the graph whose vertices are the edges,

cut vertices and paths of pathos of T , with two vertices of Pn(T ) adjacent whenever the

corresponding edges of T are adjacent, edges that lie on the corresponding path Pi of pathos

and the edges incident to the cut vertex of T .

A graph G is planar if it has a drawing without crossings. For a planar graph G, the inner

vertex number i(G) is the minimum number of vertices not belonging to the boundary of the

exterior region in any embedding of G in the plane. If a planar graph G is embeddable in the

plane so that all the vertices are on the boundary of the exterior region, then G is said to be an

outerplanar, i.e. i(G) = 0. An outerplanar graph G is maximal outerplanar if no edge can be

added without losing its outer planarity. A graph G is said to be minimally non-outerplanar if

i(G)=1 [5]. The least number of edge-crossings of a graph G, among all planar embeddings of

G, is called the crossing number of G and is denoted by cr(G).
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Figure 1 Tree T
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Figure 2 Pathos adjacency blict graph PBn(T ) of T
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Definition 1.1 The pathos adjacency blict graph of a tree T , written PBn(T ), is the graph

whose vertices are the edges, paths of pathos, cut vertices and blocks of T , with two vertices

of PBn(T ) adjacent whenever the corresponding edges of T are adjacent, edges that lie on the

corresponding path Pi of pathos, edges incident to cut vertex and edges that lie on the blocks of

T . Two distinct pathos vertices Pm and Pn are adjacent in PBn(T ) whenever the corresponding

paths of pathos Pm(vi, vj) and Pn(vk, vl) have a common vertex, say vc in T .

Since the pattern of pathos for a tree is not unique, the corresponding pathos adjacency

blict graph is also not unique. Figure 1 shows a tree T and Figure 2 is its corresponding

PBn(T ).

The following existing results are required to prove further results.

Theorem A([1]) The pathos line graph PL(T ) of a tree T is planar if and only if ∆(T ) ≤ 4.

Theorem B([1]) Let T be a tree on p vertices and q = p− 1 edges such that di and Cj are the

degrees of vertices and cut vertices C of T , respectively. Then the pathos lict graph Pn(T ) has

(q + k + C) vertices and
1

2

p∑

i=1

d2
i +

C∑

j=1

Cj edges, where k is the path number of T .

Theorem C([1]) The blict graph Bn(G) of a graph G is planar if and only if ∆(T ) ≤ 3 and

every vertex of degree three is a cut vertex.

Theorem D([3]) If G is a graph on p vertices and q edges, then L(G) has q vertices and

−q +
1

2

p∑

i=1

d2
i edges, where di is the degree of vertices of G.

Theorem E([6]) The lict graph n(G) of a graph G is planar if and only if G is planar and the

degree of each vertex is at most three.

§2. Preliminary Results

Remark 2.1 For any tree T with p ≥ 3 vertices, L(T ) ⊆ PL(T ) ⊆ PBn(T ), L(T ) ⊆ Bn(T ) ⊆
PBn(T ) and L(T ) ⊆ Pn(T ) ⊆ PBn(T ). Here ⊆ is the subgraph notation.

Remark 2.2 If the edge degree of an edge pq in a tree T is even(odd) and p and q are the cut

vertices, then the degree of the corresponding vertex pq in PBn(T ) is even(odd).

Remark 2.3 If the degree of an end edge(or pendant edge) in a tree T is even(odd), then the

degree of the corresponding vertex in PBn(T ) is odd(even).

Remark 2.4 For any tree T (except star graph), the number of edges in PBn(T ) whose end

vertices are the pathos vertices is given by (k − 1), where k is the path number of T .

Remark 2.5 If T is a star graph K1,n on n ≥ 3 vertices, then the number of edges in PBn(T )

whose end vertices are the pathos vertices is given by
k(k − 1)

2
, where k is the path number of

T . For example, edge P1P2 in Figure 2.
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Remark 2.6 Since every block vertex of PBn(T ) is an end vertex (For example, the block

vertices B1,B2 and B3 in Figure 2 ), PBn(T ) does not contain a spanning cycle. Hence it is

always non-Hamiltonian.

§3. Lemmas

Here we present two simple lemmas on the graph PBn(T ).

Lemma 3.1 Let T be a tree (except star graph) on p vertices and q edges such that di and

Cj are the degrees of vertices and cut vertices C of T , respectively. Then PBn(T ) contains

(2q + k + C) vertices and

1

2

p∑

i=1

d2
i +

C∑

j=1

Cj + q + (k − 1)

edges, where k is the path number of T .

Proof Let T be a tree (except star graph) on p vertices and q edges. By definition, the

number of vertices in PBn(T ) equals the sum of number of edges, paths of pathos, cut vertices

and the blocks of T . Since every edge of T is a block,PBn(T ) contains (2q + k + C) vertices.

By Theorem B, the number of edges in Pn(T ) is
1

2

p∑

i=1

d2
i +

C∑

j=1

Cj . The number of edges

in PBn(T ) equals the sum of edges of Pn(T ), edges that lie on the corresponding path Pi of

pathos of T and the number of edges whose end vertices are the pathos vertices.By Remark

2.4, the number of edges in PBn(T ) is given by

1

2

p∑

i=1

d2
i +

C∑

j=1

Cj + q + (k − 1). 2
Lemma 3.2 Let T be a star graph K1,n on n ≥ 3 vertices and m edges such that di and Cj are

the degrees of vertices and cut vertex C of T , respectively. Then PBn(T ) contains (2m+k+1)

vertices and
1

2

n∑

i=1

d2
i + 2m +

k(k − 1)

2
edges, where k is the path number of T.

Proof Let T be a star graph K1,n on n ≥ 3 vertices and m edges. Since T has exactly one

cut vertex C, PBn(T ) contains (2m + k + 1) vertices. For a star graph T , the number of edges

in PBn(T ) equals the sum of number of edges of L(T ), thrice the number of edges of T and

the number of edges whose end vertices are the pathos vertices.

By Theorem D and Remark 2.5, we know that

−m +
1

2

n∑

i=1

d2
i + 3m +

k(k − 1)

2
=

1

2

n∑

i=1

d2
i + 2m +

k(k − 1)

2
.

Whence, we get the conclusion. 2
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§4. Main Results

Theorem 4.1 The pathos adjacency blict graph PBn(T ) of a tree T is planar if and only if

∆(T ) ≤ 3, for every vertex v ∈ T .

Proof Suppose PBn(T ) is planar.Assume that ∆(T ) > 3. If there exists a vertex p of

degree 4 in T , by Theorem[A], PL(T ) is planar and contains K4 as an induced subgraph. In

Pn(T ), the vertex p is adjacent to every vertex of K4. This gives K5 as subgraph in PBn(T ).

Clearly, PBn(T ) is nonplanar, a contradiction.

For sufficiency, we consider the following two cases.

Case 1 If T is a path Pn on n ≥ 3 vertices, then each block of n(T ) is K3 and it has exactly

(n − 2) blocks. The path number of T is exactly one and the corresponding pathos vertex is

adjacent to at most two vertices of each block of n(T ). The pathos vertex together with each

block of of n(T ) gives (n−2) number of 〈K4−e〉 subgraphs in Pn(T ). Furthermore, every edge

of T is a block. Hence the adjacency of block vertices and the vertices of L(T ) gives (n − 2)

number of 〈K4− e〉 subgraphs in PBn(T ). Clearly, the crossing number of PBn(T ) is zero, i.e.

cr(PBn(T ))=0. Hence PBn(T ) is planar.

Case 2 Suppose that T is not a path such that ∆(T ) ≤ 3. By Theorem E, n(T ) is planar.

Moreover, each block of n(T ) is either K3 or K4. The path number of T is at least one and

the corresponding pathos vertices are adjacent to at most two vertices of each block of n(T ).

Hence Pn(T ) contains at least one copy of K3 and K4 as its subgraphs.Finally, on embedding

PBn(T ) in any plane for the adjacency of pathos vertices corresponding to paths of pathos

in T , the crossing number of PBn(T ) becomes zero, i.e., cr(PBn(T ))=0. Hence PBn(T ) is

planar. This completes the proof. 2
Theorem 4.2 The pathos adjacency blict graph PBn(T ) of a tree T is an outerplanar if and

only if T is a path on Pn on n ≥ 3 vertices.

Proof Suppose PBn(T ) is an outerplanar. Assume that T has a vertex p of degree

three. The edges incident to p and the cut vertex p gives K4 as subgraph in Pn(T ). By Remark

2.1, the inner vertex number of PBn(T ) is non-zero, i.e. i(PBn(T )) 6= 0, a contradiction.

Conversely, suppose that T is a path Pn on n ≥ 3 vertices. By Case 1 of Theorem 4.1,

PBn(T ) contains (n − 2) number of 〈K4 − e〉 as its subgraphs. Clearly, i.e. i(PBn(T ))=0.

Hence PBn(T ) is an outerplanar. This completes the proof. 2
Theorem 4.3 For any tree T , PBn(T ) is not maximal outerplanar.

Proof By Theorem 4.2, PBn(T ) is an outerplanar if and only if T is a path Pn on

n ≥ 3 vertices. Suppose that T is a path Pn on n ≥ 3 vertices with the edge set E(T ) =

{e1, e2, . . . , en−1}. By Case 1 of Theorem 4.1, Pn(T ) contains (n − 2) number of 〈K4 − e〉 as

its subgraphs. Moreover, each edge of T is a block. Hence by definition, block vertices and the

vertices of L(T ) are adjacent in PBn(T ), which in turn forms (n − 1) number of end edges in

PBn(T ). Finally, since the addition of an edge between the block vertices increases the inner
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vertex number of PBn(T ) by at least one, PBn(T ) is not maximal outerplanar. This completes

the proof. 2
Theorem 4.4 For any tree T , PBn(T ) is not minimally non-outerplanar.

Proof Proof by contradiction. Suppose that PBn(T ) of a tree T is minimally non-

outerplanar.We consider the following cases.

Case 1 Suppose that ∆(T ) ≤ 2. By Theorem 4.2, PBn(T ) is an outerplanar, a contradiction.

Case 2 Suppose that ∆(T ) ≥ 3.

We consider the following subcases of Case 2.

Subcase 2.1 Suppose that ∆(T ) > 3. By Theorem 4.1, PBn(T ) is nonplanar, a contradiction.

Subcase 2.2 Suppose that ∆(T ) = 3. Let p be a vertex of degree 3 in T . By Case 2 of Theorem

4.1, cr(PBn(T ))=0, but it is easy to observe that (For example, the graph PBn(T ) in Figure

2) on embedding PBn(T ) in any plane for the adjacency of pathos vertices corresponding to

paths of pathos in T , the inner vertex number of PBn(T ) is at least two, i.e. i(PBn(T )) ≥ 2.

Hence PBn(T ) is not minimally non-outerplanar.This completes the proof. 2
Theorem 4.5 For any tree T with p ≥ 3 vertices, PBn(T ) is non-Eulerian.

Proof Suppose that T is a tree with p ≥ 3 vertices. Then there exists at least one cut

vertex C of T which is incident to at least one end edge q or at least one block B. We consider

the following two cases.

Case 1 If the degree of cut vertex C is odd, then the edge degree of q in T is even. By Remark

2.3, PBn(T ) contains odd degree vertex. Hence PBn(T ) is non-Eulerian.

Case 2 If the degree of cutvertex C is even, then the edge degree of q in T is odd. By Remark

2.3, PBn(T ) contains even degree vertex. But, since every edge of T is a block, degree of the

corresponding block vertex in PBn(T ) is exactly one.Hence PBn(T ) is non-Eulerian. This

completes the proof. 2
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Abstract: By geometric element transformation method (GETMe) always we get a new

element. It is based on geometric transformations, which, if applied iteratively, lead to

the regularization of a pyramid (under conditions). Energy function is a cost function for

pentahedra which is applicable also for hexahedra, octahedra, decahera etc. is defined by a

particular process, which we call as base diagonal apex method (BDAMe). Here, we try to

investigate the characterization of different cost functions using BDAMe when we transform

a pyramid by GETMe.

Key Words: Mesh quality, iterative element regularization, finite element mesh, objective

function, cost function.
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§1. Introduction

In many finite element applications unstructured tessellations of the geometry under considera-

tion play a fundamental role. Therefore, the generation of quality meshes are essential steps of

the simulation process, since mesh quality has an impact on solution accuracy and the efficiency

of the computational methods involved [1,2].

In [4] the geometric element transformation method (GETMe) has been introduced as

new type of geometry-based mesh smoothing for triangular surface meshes. Based on a simple

geometric element transformation, which iteratively transforms low quality elements to regular,

hence perfect elements, mesh improvement is accomplished by sequentially improving the worst

element of the mesh. In [5] this approach has been generalized to a simultaneous approach for

triangular or quadrilateral mixed surface meshes in which all mesh elements are transformed

simultaneously and node updates are obtained by transformed node averaging. As has been

shown in [6,7] such regularizing transformations exist for polygons with an arbitrary number

of nodes. Furthermore, the sequential as well as the simultaneous GETMe approach naturally

extend to tetrahedral meshes [8].

In finite element simulation the mesh quality is a crucial aspect for good numerical be-
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haviour of the method. In a first stage, some automatic 3-D mesh generators construct meshes

with poor quality and in special cases, for example when node movement is required, inverted

elements may appear. So, it is necessary to develop a procedure that optimises the pre-existing

mesh. This process must be able to smooth and untangle the mesh.

The most usual technique to improve the quality of a valid mesh, that is, one that does

not have inverted elements, are based upon local smoothing. In short, these technique consists

of finding the new positions that the mesh nodes must hold, in such a way that they optimize

an objective function. Usually, objective functions are appropriate to improve the quality of

a valid mesh, but they do not work properly when there are inverted elements. To avoid this

problem we can proceed as Freitag et al in [9,10,11].

In this paper, we have defined the characterization of energy function of a pyramid using

base diagonal apex method (BDAMe). Then we have proved that the energy function always lies

between 0 and 1 and discussed regularization properties of a pyramid and tried to regularize

by using geometric element transformation method (GETMe). Finally we have studied the

characterization of energy function of a particular type of pentahedron using GETMe and

BDAMe.

§2. Characterization of Energy Function of a Pyramid

For 3-simplex the cost function which referred to as energy function, which is also discussed in

[3]. But we can not estimate energy function for all 3-D shapes. In this paper, we shall try to

estimate the energy function of a pentahedron by a particular method, which we have defined

as base diagonal apex method (BDAMe).

2.1 Base Diagonal Apex Method (BDAMe)

In this method, we add the two diagonal of the base of the pyramid and then add between the

intersection point of the diagonal and the apex of the pyramid. This line (from apex to the

intersection point of the diagonals) may be the height of the pyramid or may not be the height

of the pyramid, totally depend upon the type of pyramid we choose. If we follow this method,

we get four 3-simplex, that is, four tetrahedra. Now each tetrahedron has a cost function or

energy function. Therefore, we get four cost functions and then we can easily define the cost

function of a pyramid, and to define cost function of 3-D shapes except 3-simplex, we introduce

the function h(vi, σ
n), the signed distance from c(σn) to aff(σn−1

i ) with the convention that

h(vi, σ
n) ≥ 0 when c(σn) and vi are on the same side of aff(σn−1

i ). Here σn are the n-simplex,

c(σn) the circumcenter of the n-simplex, facet aff(σn−1
i ) and vertex vi. We work on basically

all 3-D figures, so in that case n = 3. The magnitude of h(vi, σ
n) can be computed as the

distance between c(σn) and c(σn−1
i ), and its sign can be computed by testing whether c(σn)

and vi have the same orientation with respect to aff(σn−1
i ). Now by BDAMe, the pentahedron

is the sum of the maximum number of four 3-simplexes. Here we divide the quantity h(vi, σ
n)

by the circumradius R(σn) to get a quantity called cost function or energy function. Note that

−1 < h(vi, σ
n)/R(σn) < 1 for finite σn, because R(σn)2 = h(vi, σ

n)2 + R(σn−1
i )2.
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We consider the energy function

fp(σ
n) =

1

4
Σ4

j=1maxv∈σn |
h(v, σn

j )

R(σn
j )

| (1)

Now we prove the following theorem.

Theorem 2.1 The energy function (using BDAMe) fp(σ
n) = 1

N ΣN
j=1maxv∈σn |

h(v, σn
j )

R(σn
j )

|, where

N is maximum total number of tetrahedron, of a 3D-figure (pentahedron, hexahedron, decahe-

dron, octahedron,· · · , etc) always lies between 0 and 1 that is, 0 < fp(σ
n) < 1.

Proof First we break (using BDAMe) the 3D-figure with maximum number of tetrahedra

(pairwise disjoint) which can cover the hole 3D-figure. If it is not possible, then we have to break

it in maximum number of pentahedra (pairwise disjoint) which can cover the hole 3D-figure

and then use BDAMe in pentahedron. Therefore, we can get the cost function (using BDAMe)

of any regular 3D-figure. Therefore, overall the total number of tetrahedra gives the value of

N . Note that −1 < h(vi, σ
n)/R(σn) < 1 for finite σn, because R(σn)2 = h(vi, σ

n)2 +R(σn−1
i )2

and when we consider energy function, we take the maximum ratio (h/R) with positive value

of each tetrahedron. Therefore, the value fp(σ
n) is always greater than zero and we divide

ΣN
j=1maxv∈σn |

h(v, σn
j )

R(σn
j )

| by N (total number of tetrahedra), hence it is always less than one.

Therefore we can write, 0 < fp(σ
n) < 1. 2

For instance, if we consider a hexahedron, which is six pentahedra. After using BDAMe

we get 24 tetrahedra. Therefore the energy function

fH(σn) =
1

24
Σ24

j=1maxv∈σn |
h(v, σn

j )

R(σn
j )

|,

where H for hexahedron.

§3. Methods of Transformation

Here we use several methods of transformation to regularize the 3-D figure, like pentahedra.

By this, regularizing means that if the transformation is applied iteratively to a single element,

it becomes regular. Consequently, this section focuses on the properties of the transformations

applied to a single pentahedron.

3.1 Transformation of a pentahedron using GETMe

Let P := (p1, p2, p3, p4, p5)
t denote a pentahedron with five pairwise disjoint nodes pi ∈ R3,

i ∈ {1, · · · , 5}, which are positively oriented. Let

n1 := (p5 − p2) × (p3 − p2),
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n2 := (p5 − p3) × (p4 − p3),

n3 := (p4 − p5) × (p1 − p5),

n4 := (p1 − p5) × (p2 − p5),

n5 := (p4 − p3) × (p2 − p3)

denote the inside oriented face normal of P . A new pentahedron P ′ with nodes p′i is derived

from P by constructing on each node pi the opposing face normal ni scaled by σ/
√
|ni|, where

σ ∈ R+
0 . That is

P ′ =




p′1

p′2

p′3

p′4

p′5




:=




p1

p2

p3

p4

p5




+ σ




1√
|n1|

n1

1√
|n2|

n2

1√
|n3|

n3

1√
|n4|

n4

1√
|n5|

n5




(2)

It is clear that if σ = 0 then P ′ and P are same.

3.2 Apex transformation of a pentahedron using GETMe

Apex transformation means, we transform the apex (top vertex) of the pentahedron (pyramid)

using geometric element transformation method (GETMe) as discussed in the article (3.1).

So, we transform p5 (apex) to p′5 using only the inside oriented face normal n5, n5 := (p4 −
p3) × (p2 − p3) of P . In that case, a new pentahedron P ′ with nodes p′i is derived from P by

constructing the node p5 the opposing face normal n5 scaled by σ/
√
|n5|, where σ ∈ R+

0 . That

is

P ′ =




p′1

p′2

p′3

p′4

p′5




:=




p1

p2

p3

p4

p5




+ σ




0

0

0

0
1√
|n5|

n5




(3)

It is also clear that if σ = 0 then P ′ and P are same.

3.3 New pentahedron derived from centroid transformation of a pentahedron

using GETMe

Let P denote a pentahedron with nodes pk and σ ∈ R+ an arbitrary scaling factor. The nodes

p′k of the transformed pentahedron P ′ are given by

p′k := ck +
σ√
|nk|

nk, k ∈ {1, ..., 5}. (4)

That is p′k is obtained by adding the centroid ck of the kth pentahedron face with the associated
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normal nk scaled by σ/
√
|nk|.

3.4 Apex transformation (one step) of the pentahedron using centroid transforma-

tion

In this case, we only transform the apex (top vertex) of the pentahedron using method (4). So,

we only transform p5 to p′5 and the transformed pentahedron is given by

P ′ =




p′1

p′2

p′3

p′4

p′5




:=




c1

c2

c3

c4

c5




+ σ




0

0

0

0

1√
|n5|

n5




(5)

Here ck is the centroid of kth pentahedron face where the associated normal nk scaled by

σ/
√
|nk|, k ∈ {1, ..., 5} and n5 := (p4 − p3) × (p2 − p3) of P .

§4. Procedure of Transformations of a Pentahedron

Now it is very important to note the procedure of transformations of a pentahedron. When we

consider the 3-D figure like pentahedron, the three points of each four faces must be coplanar.

In this paper the construction of pentahedron is in such a way that the four vertices of the

pentahedron lie on a plane which means they are coplanar and this plane forms the base of the

pentahedron. That means in Fig 1, Fig 2, Fig 3 and Fig 4, one must verify that the points p1,

p2, p3, p4 are coplanar or not. From [15], we can check whether those points are coplanar or

not.

Next we discuss about the procedure of first method given by (2). In [8] when the authors

transformed a tetrahedron, they took the face normals n1, n2, n3, n4 opposite to the points

p1, p2, p3, p4 respectively but our case is not exactly the same as in [8]. So, in this case, if

we consider Fig 1, let p1 be any vertices of the pentahedron. Here we find that there are two

opposite faces namely face{p2, p3, p5} and face{p3, p4, p5}. In this method we consider the face

which is first when we start from p1 in the anti-clockwise sense. In Fig 1, face{p2, p3, p5} is the

opposite face of the point p1. But when we transform p5 (apex of the pyramid), for this case,

the opposite face always forms the base of the pyramid. In Fig.1, the base is face{p1, p2, p3, p4}
of the pyramid P := (p1, p2, p3, p4, p5)

t which is the opposite face of the p5. We follow the same

procedure in method (3). Now it is important to note that when we use method (3) then it

will be necessary to check that after the transformation, the base points of the pentahedron are

coplanar or not.

Now for method (4), the procedure is not the same as in [12]. For this case, we consider the

face which is first when we start from p1 in the anti clockwise sense and take the centroid of the

face. In Fig.3 let p1 be any vertices of the pentahedron, here we see that there are two opposite

faces namely face{p2, p3, p5} and face{p3, p4, p5}, but in this case we take face{p2, p3, p5} and
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then consider the centroid of the face{p2, p3, p5}. But when we transform p5, for this case the

opposite face is always base of the pyramid. particularly, for Fig.3 c1 = {p2 + p3 + p5}/3,

c2 = {p3 + p4 + p5}/3, c3 = {p4 + p1 + p5}/3, c4 = {p2 + p1 + p5}/3, c5 = {p1 + p2 + p3 + p4}/4.

So, in this way we get new element (pyramid) using method (4). But here, in that case, the new

elements are not linearly formed that means, when new elements form after transformation, the

base of this new element is opposite the original element. It happens according to the iteration.

For this procedure it will be necessary to check that after the transformation, the base points

of the pentahedron are coplanar or not.

p2

p3
p4

p5

p

p1

Fig.1 Transformation of a pentahedron using method (2)

p1 p2

p3
p4

p5

p5`

Fig.2 Transformation of a pentahedron using method (3)
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p1

p2

p3

p4

p5

c1

c2c3

c4

p5`

p1`

p2`
p3`

p4`

p

Fig.3 Transformation of a pentahedron using method (4)

p1
p2

p3p4

p5

p'5

c5

Fig.4 Transformation of a pentahedron using method (5)

§5. Properties of the Transformations

In this section, we discuss the basic properties of the above three transformations.

5.1 The transformations are scale invariant

The transformations given by (2), (3), (4) and (5) are scale invariant that means for s > 0,
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(sP )′ = sP ′. Since the normals ni are scaled by 1/
√
|ni|, therefore the transformations are scale

invariant. To check this property we shall consider some examples where we choose σ = 0.1.

Example 1 In this example, we use the transformation (2) and then investigate the property

of (sP )′ = sP ′. Let P := (p1, p2, p3, p4, p5)
t denote a pentahedron with p1 ≡ (0.8, 0, 0.6),

p2 ≡ (0,−0.8, 0.6), p3 ≡ (−0.8, 0, 0.6), p4 ≡ (0, 0.8, 0.6) and p5 ≡ (0, 0, 1). Let s = 0.5 and

applying the transformation (1) both on (sP )′ and sP ′ after that we get the following table.

Vertex Coordinates of (sP )′

x y z

(sp1)
′ 0.38 -0.02 0.34

(sp2)
′ -0.02 -0.38 0.34

(sp3)
′ -0.42 -0.02 0.26

(sp4)
′ -0.02 0.42 0.26

(sp5)
′ 0 0 0.44

Vertex Coordinates of sP ′

x y z

sp′1 0.38 -0.02 0.34

sp′2 -0.02 -0.38 0.34

sp′3 -0.42 -0.02 0.26

sp′4 -0.02 0.42 0.26

sp′5 0 0 0.45

Hence for this pentahedron the transformation is scale invariant. Now, if we use the

method of apex transformation (3) on a pentahedron then one can verify from the above table

that the transformation is scale invariant. Next we give an example using the method of centroid

transformation of a pentahedron.

Example 2 In this example, we use the transformation (4) and then try to investigate the

property of (sP )′ = sP ′. We use the same pentahedron which is used in example (1) with

s = 0.5 and then applying the transformation (4) both on (sP )′ and sP ′ and after calculations

we get the following table.

Vertex Coordinates of (sP )′

x y z

(sp1)
′ -0.15 -0.15 0.403

(sp2)
′ -0.15 0.15 0.403

(sp3)
′ 0.12 0.12 0.33

(sp4)
′ 0.12 -0.12 0.33

(sp5)
′ 0 0 0.357

Vertex Coordinates of sP ′

x y z

sp′1 -0.15 -0.15 0.403

sp′2 -0.15 0.15 0.403

sp′3 0.12 0.12 0.33

sp′4 0.12 -0.12 0.33

sp′5 0 0 0.356

One can also show that the transformation (5) is scale invariant.

5.2 Transformations (2), (3), (4) and (5) do not preserve the centroid of

the pentahedron

It should be noted, that the transformations given by (2), (3), (4) and (5) do not preserve

the centroid of the pentahedron, that is
1

5
Σ5

i=1pi 6=
1

5
Σ5

i=1p
′
i, where p1, p2, p3, p4, p5 are the

vertex coordinates of original pentahedron and p′1, p′2, p′3, p′4, p′5 are the vertex coordinates of

the transformed pentahedron. As the scale normals ni/
√
|ni| have been used to ensure the
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scale invariance of the transformation, so the transformations (2) and (3) does not preserve the

centroid of the pentahedron. We verify it by an example.

Example 3 Let P := (p1, p2, p3, p4, p5)
t denote a pentahedron with p1 ≡ (1, 0, 0), p2 ≡ (1, 1, 0),

p3 ≡ (0, 1, 0), p4 ≡ (0, 0, 0) and p5 ≡ (0, 0, 2). Then using the transformation (3) we get

p′1 ≡ (1, 0, 0), p′2 ≡ (1, 1, 0), p′3 ≡ (0, 1, 0), p′4 ≡ (0, 0, 0) and p′5 ≡ (0, 0, 2.10).

Centroid of the pentahedron

Before transformation (1
5Σ5

i=1pi) After transformation (1
5Σ5

i=1p
′
i)

(0.4,0.4,0.4) (0.4,0.4,0.42)

Hence from the above we can say that the transformations (3) does not preserve the

centroid of the pentahedron. Now, if we use transformation (2), then we can show that it also

does not preserve the centroid of the pentahedron, provided after transformation the base of

the pentahedron must also be coplanar.

Example 4 In this example, we have shown that after using transformation (4) on a penta-

hedron, it does not satisfy the preserving property of centroid of the pentahedron. Although

in [12], the transformation given by (4) preserve the centroid of the initial hexahedron. In this

case, we use the same pentahedron as used in the above example 1. Then using the trans-

formation (4) we get p′1 ≡ (0.33, 0.53, 0.60), p′2 ≡ (0.14, 0.33, 0.67), p′3 ≡ (0.33,−0.14, 0.67),

p′4 ≡ (0.80, 0.33, 0.73) and p′5 ≡ (0.50, 0.50, 0.10).

Centroid of the pentahedron

Before transformation (1
5Σ5

i=1pi) After transformation (1
5Σ5

i=1p
′
i)

(0.4,0.4,0.4) (0.42,0.31,0.55)

Hence from the above we can say that the transformations (4) does not preserve the centroid

of the pentahedron. One can also easily see that the transformation (5) also does not preserve

the centroid of the pentahedron.

5.3 Characterization of mean ratio quality of a pentahedron

To define mean ratio quality for pentahedron, first we use BDAMe to get four tetrahedra and

then choose any tetrahedron. Let T := (p1, p2, p3, p4) denote a tetrahedron with the four

pairwise disjoint nodes pi ∈ R3, i ∈ {1, · · · , 4}, which is positively oriented. That is det(A) > 0

with A := (p2 − p1, p3 − p1, p4 − p1) representing the (3 × 3) Jacobian matrix of the difference

vectors, which span the tetrahedron. In [8,11,12,13] authors have discussed how to get mean

ratio quality of a tetrahedron and using this procedure we define the mean ratio quality for

pentahedron, as

q(P ) :=
1

4

4∑

k=1

3det(Sk)2/3

‖S‖F
,
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with ‖S‖ :=
√

trace(StS) denoting the Frobenius norm of the matrix Sk := AkW−1 where

W =




1 1/2 1/2

0
√

3/2
√

3/6

0 0
√

2/
√

3




denotes the difference matrix of a regular reference tetrahedron. Now in the case of pentahedron,

the criterion of q(P ) is not same as in [8,12]. In that case, if P is regular then q(P ) ∈ [0, 1],

where very small values indicate nearly degenerated elements and large values element good

quality. Now, if the transformation is applied iteratively, the resulting pentahedron became

more and more regular. In order to assess the regularity of a pentahedron P numerically, the

mean ratio quality criterion will be used. Now, next we give an example of a pentahedron which

is regular square pyramid but q(P ) 6= 1.

Example 5 Let P := (p1, p2, p3, p4, p5)
t denote a pentahedron with p1 ≡ (0, 0, 0), p2 ≡ (1, 0, 0),

p3 ≡ (1, 1, 0), p4 ≡ (0, 1, 0) and p5 ≡ (0.5, 0.5, 1). Here, q(p) = 0.797.

5.4 Significance of the scaling factor σ

The resulting iteration numbers are totally depended upon the scaling factor σ. This can be

used in order to control the regularization speed by a quality depended choice of the scaling

factor. For a given pentahedron, there is most important thing to choice the scaling factor

when we try to regularize it. For this, if the transformation is applied iteratively, the resulting

pentahedron more and more regular. Now, depending upon the choice of the scaling factor σ,

the size of the pentahedron might also change significantly.

Also the important fact is that there is no specific choice of σ, for which the transformation

given exactly once to any arbitrary pentahedron results a regular one. To show this, we give

an example.

Example 6 Let us choose the pentahedron with the same coordinate as given in article (5.2)

Example 1. According to (2), the nodes of the transformed pentahedron P ′ are given by

p′1 ≡ (1+σ(0), 0+σ(−1.3), 0+σ(−0.7)), p′2 ≡ (1+σ(1.4), 1+σ(0), 0+σ(0)), p′3 ≡ (0+σ(0), 1+

σ(−1.4), 0+σ(0)), p′4 ≡ (0+σ(1.3), 0+σ(0), 0+σ(0.7)) and p′5 ≡ (0+σ(0), 0+σ(0), 0+σ(−1))

using an arbitrary scaling factor σ ∈ R+
0 . In order to be regular, all edge lengths of the base

of the transformed pentahedron have to be equal if the base is square and in that case our

example is square base pyramid but not regular. Since the equation |p′2 − p′3| = |p′3 − p′4| has

only valid solution σ = 25.45 and on the other way |p′1−p′2| = |p′2−p′3| has only valid solution if

σ = 0.91. Therefore there is a contradiction that there is no σ ∈ R+
0 for which the pentahedron

P ′ obtained by one step of the transformation is regular.

5.5 Uniqueness of the circumsphere and volume of the pentahedron

Now for any 3-simplex, we can always draw a sphere through the four vertices of the 3-simplex,

but for pentahedron and other 3D-figures we always do not get a sphere through the all vertices

of the 3D-figure except tetrahedron. But if we choose a pentahedron so that its all vertices
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satisfy some particular sphere equation and then we use the transformation (2), (3), (4) and

(5) we can show that after transformation the transformed pentahedron may not satisfy some

particular sphere equation. Let us give an example using transformation (2) and (3) and one

can also verify show using transformation (4) and (5).

Example 7 Let P := (p1, p2, p3, p4, p5)
t denote a pentahedron with p1 ≡ (−0.8, 0, 0.6), p2 ≡

(0,−0.8, 0.6), p3 ≡ (−0.8, 0, 0.6), p4 ≡ (0, 0.8, 0.6) and p5 ≡ (0, 0, 1). Here all vertices of

the pentahedron P satisfy the sphere equation x2 + y2 + z2 = 1. After transformation using

formula (2) the transformed pentahedron does not satisfy any sphere equation. If we use apex

transformation then after transformation always we get a pentahedron and this pentahedron

does not satisfy any particular sphere equation. For the given example after one step (using

method (3)) we get, p′1 ≡ (−0.8, 0, 0.6), p′2 ≡ (0,−0.8, 0.6), p′3 ≡ (−0.8, 0, 0.6), p′4 ≡ (0, 0.8, 0.6)

and p′5 ≡ (0, 0, 2.13) and p′i’s do not satisfy any sphere equation.

On the other hand the volume of the pentahedron will also be changed and does not depend

on whether the pentahedron is regular or not. The volume of the transformed pentahedron will

decrease or increase that depends upon the choice of the pentahedron.

Example 8 Let P := (p1, p2, p3, p4, p5)
t denote a pentahedron with p1 ≡ (4, 3, 0), p2 ≡ (4, 7, 0),

p3 ≡ (0, 7, 0), p4 ≡ (0, 3, 0) and p5 ≡ (3, 6, 10). Now the volume of the pentahedron is 73.34

cube unit and using the formula (3) to the pentahedron P we get the volume of the transformed

pentahedron 76.26 cube unit.

§6. Regularization of a Pyramid (Pentahedron)

Here we shall consider a process to regularize a pentahedron. In the case of pentahedron

regular means that the base of the pentahedron is regular (square, rectangle, · · · , etc.) and the

upper all edge lengths are equal. So, when we consider an arbitrary pentahedron it is quite

difficult to regularize the pentahedron, but if we take the base of the pentahedron is regular

and upper portion of the pentahedron is irregular then we can regularize the pentahedron using

apex transformations (3) and (5). One can also use transformations (2) and (4) provided after

transformations the base points are coplanar. Here we furnish an example where transformation

(3) and transformation (5) are used to regularize the pentahedron whose base is regular.

Example 9 Let P := (p1, p2, p3, p4, p5)
t denote a pentahedron with p1 ≡ (4, 3, 4), p2 ≡ (4, 7, 4),

p3 ≡ (0, 7, 4), p4 ≡ (0, 3, 4) and p5 ≡ (3, 8, 10). This is square based pyramid but not regular

because the base edges length p1p2 = p2p3 = p3p4 = p4p1 = 4 and for the upper portion length

of the edges are p1p5 = 7.87, p2p5 = 6.16, p3p5 = 6.78, p4p5 = 8.37 which all are not equal.

Now, if we use the transformation (3) on the given pentahedron, then in first step, length of the

edges (upper portion) are p1p
′
5 = 8.18, p2p

′
5 = 6.44, p3p

′
5 = 7.14, p4p

′
5 = 8.66 and in third step,

length of the edges are p1p
′′
5 = 8.50, p2p

′′
5 = 6.95, p3p

′′
5 = 7.50, p4p

′′
5 = 8.96. Here we observe

that the pyramid tends to regularize but slow. The speed of the regularization depends upon

the choice of the scaling factor σ. In this case we take the scaling factor σ = 0.1.

Next we use the apex transformation (5) to the given pentahedron and we get p′5 ≡
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(2, 5, 4.40). After calculations we see that length of the edges (upper portion) are p1p
′
5 =

p2p
′
5 = p3p

′
5 = p4p

′
5 = 2.86. Hence the given pyramid converge to regularize and it turns to a

regular square pyramid.

§7. Characterization of Energy Function of a Particular Type of Pentahedron

Using GETMe and BDAMe

The changing cost function, after transforming the pentahedron by GETMe, is given by

f(σp) = |fpk
(σn) ∼ fpk+1

(σn)|.

Now using BDAMe we find the numerical values of changing cost function. We can calculate

the changing cost function of the pyramid provided after transformation the base points are

coplanar. Let us consider p1(4, 3, 0), p2(4, 7, 0), p3(0, 7, 0), and p4(0, 3, 0) are the base points

and p5(2, 5, 10) be the apex of the pyramid and p(2, 5, 0) be the intersection point of the base

diagonals. In this case, it is regular square base pyramid.

After calculation, we get

Apex Transformations

Initial Step 2nd Step 3rd Step 4th step

fp(σ
n) 0.944 0.934 0.939 0.941

Now, this example is similar to the example of section (6) and it can be regularized by

using the method (3). Here we see that the values of the changing cost function f(σp) are 0.01,

0.005 and 0.002. Therefore for this example we see that when it converges to regularize the

changing cost function also decreases. One can also calculate the changing cost function for

any arbitrary pyramid (using the method (2) and (4)) provided after transformations the base

points are coplanar.
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Abstract: A dominating set of a graph η(G), is a total lict dominating set if the dominating

set does not contain any isolates. The total lict dominating number γt(η(G)) of G is a

minimum cardinality of total lict dominating set of G. The current paper studies total lict

domination in graph from an algorithmic point of view. In particular we had obtained the

algorithm for a total lict domination number of any graph. Also we had obtained the time

complexity of a proposed algorithm. Further we discuss the NP-Completeness of a total lict

domination number of the split graph, bipartite graph and chordal graph.
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§1. Introduction

All graphs considered here are finite, connected, undirected without loops or multiple edges

and without isolated vertices. As usual ‘p‘ and ‘q‘ denotes the number of vertices and edges of

a graph G.

The concept of domination in graph theory is a natural model for many location problems

in operations research. In a graph G, a vertex is said to dominate itself and all of its neighbors.

A set D ⊆ V of G is said to be a Smarandachely k-dominating set if each vertex of G is

dominated by at least k vertices of S and the Smarandachely k-domination number γk(G) of G

is the minimum cardinality of a Smarandachely k-dominating set of G. Particularly, if k = 1,

such a set is called a dominating set of G and the Smarandachely 1-domination number of G is

called the domination number of G and denoted by γ(G) in general.

A dominating set D of a graph G is a total dominating set if the dominating set D does

not contain any isolates. The total domination number γt(G) of a graph G is the minimum

cardinality of total dominating set.

The lict graph η(G) of a graph G is the graph whose vertex set is the union of the set

1Received September 24, 2013, Accepted February 26, 2014.
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of edges and the set of cut vertices of G in which two vertices are adjacent if and only if the

corresponding edges are adjacent or the corresponding members of G are incident. A dominating

set of a graph η(G), is a total lict dominating set if the dominating set does not contain any

isolates. The total lict dominating number γt(η(G) of G is the minimum cardinality of total

lict dominating set of G.

A vertex cover C of a graph G = (V, E) is a subset C ⊆ V such that for every edge uv ∈ E,

we have u ∈ C or v ∈ C. A cut-vertex of a connected graph G is a vertex v such that G − {v}
is disconnected.

A stable set in a graph G is a pair-wise non-adjacent vertices subset of V (G), and a clique is

a pairwise adjacent vertices subset of V (G). A graph is split if its vertex set can be partitioned

into a stable set and a clique. A graph is bipartite if its vertex set can be partitioned into two

stable sets. A graph is chordal if every cycle of length at least 4 has at least one chord, which

is an edge joining two non-consecutive vertices in the cycle.

In this paper, we obtain the algorithm for a total lict domination number of any graph.

Also, we had obtained the time complexity of a proposed algorithm. Further we discuss the

NP-Completeness of a total lict domination number of a graph with respect to split graph,

bipartite graph and chordal graph.

§2. Algorithm

To find the algorithm for the minimum total lict domination set of a graph we use initially,

the DFS algorithm to the find the cut vertices of a given graph [1], the VSA algorithm [2] to

find the minimum vertex cover of a graph and shortest path algorithm [3] to find the shortest

path in a graph. The edges in the shortest path gives a total lict domination set of graph G.

Then we reduce this to a minimum set which gives the minimum total lict domination set of

any graph G.

Algorithm to find the minimum total lict domination set of a given graph:

Input: A graph G = (V, E).

Output: A minimum total lict domination set D of a graph G = (V, E).

Step 1: Initialize D = φ.

Step 2: Label the vertices of a graph G as {vi/i = 1, 2, 3, 4, 5, · · · , n} and label the edges

of a graph G as {ej/j = 1, 2, 3, 4, 5, · · · , m}.
Step 3: Let A={vi/vi is a cut vertex of a graph G(V, E)}.
Step 4: Compute the set C of all minimal vertex covers in G, such that C does not

contain vertex of degree one.

Step 5: FOR the minimal vertex cover set c ∈ C, DO

Step 6: IF |V (c)| = 1.

GOTO Step 7.

ELSE
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IF |V (c)| = 2 and they are adjacent

GOTO Step 8.

ELSE

GOTO Step 9.

END IF.

Step 7: D = D ∪ { any two adjacent edges of E(G)}.
GOTO Step 13.

Step 8: D = D ∪ {(ei, ej), ei is a common edge incident with V (c) and ej ∈ N(ei)}
GOTO Step 13.

Step 9: Let E1 = {eq/eq ∈ E(G), where eq is the set of edges in the shortest path

connecting all the vertices of V (c) and 〈E1〉 6= K1,n if there is any other shortest

path }.
K = {el/el is an end edge ∈ E1}.
R = {ej/ej ∈ E(G) − E1/ej is adjacent to K}
FOR |E1| 6=1 or 0 DO,

Let two edges E2 = (ei, ej) ∈ E1 such that ej ∈ N(ei).

IF ei ∈ N(ej) and ei ∈ N(ek), where ek or ej is and end edge.

Then E2 = (ei,an end edge)

ELSE IF ei ∈ N(ej, ek) and ej ∈ N(el, em), (el, em) 6= ei

Then E2=(ei, ek)

END IF

END IF

D = D ∪ E2.

B = {ep/ep ∈ N(ei, ej) in E1}.
C1 = {er/er ∈ N(B)∩E1−(D∪B), er is not incident with A, er 6= (vi, vj), vi, vj ∈
C}.
E1 = E1 − (B ∪ C1).

END FOR.

Step 10: IF |E(E1)| = 0 then

GOTO Step 11.

ELSE

D = D ∪ {E1 ∪ ei, ei ∈ E1 and ei ∈ N(D)}.
GOTO Step 11.

END IF.

Step 11: FOR R 6= φ DO,

Let any edge in R

D = D ∪ {ek, ek ∈ E1 and ek ∈ N(ei)}.
R = R − {ei} ∪ {es/es ∈ N(D)}.
END FOR

Step 12: END FOR (from Step 4)

Step 13: RETURN D, a minimum total lict domination set of a graph G.

Step 14: STOP.



Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph 83

§3. Time Complexity

The worst case time complexity of finding the solution of the minimum total lict domination

problem of a graph using the proposed algorithm can be obtained as follows:

Assume that there are n vertices and m edges in the proposed algorithm.

(i) DFS algorithm [1] to find the cut vertices of a given graph which requires a running

time of O(mn).

(ii) VSA algorithm [2] to find the minimum vertex cover of a given graph which requires

the running time of 0(mn2).

(iii) Shortest path algorithm [3] to find the shortest path connecting the vertices of V (c)

which requires the worst case of running time of O(m + n).

(iv) For a FOR loop in step 9 requires the worst case running time of 0
(

m−1
3

)
.

(v) For a FOR loop in step 11 requires the worst case running time of 0
(

2n
3 − 2

)
.

(vi) So the overall time is

O(mn) + 0(mn2) + O(m + n) + 0

(
m − 1

3

)
+ 0

(
2n

3
− 2

)
= 0(mn2).

§4. NP-Completeness of total lict domination number of a graph

This section establishes NP-Complete results for the total lict domination problem in bipartite

graph, split graph and in chrodal graph. The transformation is from the vertex cover problem,

which is known to be NP-Complete.

a

cb

d e

a

b

c

d

e

a1

b1

d1

e1

c1
y

x

Fig.1 A constructed bipartite graph G′ from the graph G

Theorem 4.1 The total lict domination number problem is NP-Complete for bipartite graph.

Proof The total lict domination number problem for bipartite graph is NP-Complete as we

can transform the vertex cover problem to it as follows. Given a non-trivial graph G = (V, E),
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construct the graph G
′

= (V
′

, E
′

) with the vertex set V
′

consists of two copies of V denoted

by V and V
′

, together with two special vertices x and y and whose edges E
′

consists of

(i) edges uv
′

and u
′

v for each edge uv ∈ E(G).

(ii) edges of the form uu
′

for each vertex u ∈ V .

(iii) edges of the form u
′

x for every vertex u ∈ V .

(iv) the one additional edge xy.

We claim that G = (V, E) has a vertex cover of size k if and only if G
′

= (V
′

, E
′

) has a

minimal total lict domination set of size k + (p − k). Let C be the vertex cover of G of size k.

Let B = {u′

x/u ∈ V } such that |B| = k. Let D = B ∪ R, where R = {u′

x/u ∈ V − C} with

|R| = p−k. Then it is clear that, D is a total lict dominating number of a bipartite graph with

cardinality k + (p − k).

On the other hand suppose D is a minimal total lict domination set of the graph G
′

with

cardinality k + (p − k). Let A = {vi/vi ∈ V
′

, vi is incident with ei ∈ D} with |A| = |D|. The

vertex set A in G
′

is V (G), such that A consists of copies of V and V − C and whose vertices

are adjacent to atleast one vertex of C. So, the graph G has a vertex cover of size k. 2
Theorem 4.2 The total lict domination number problem is NP-Complete for split graph.

Proof The total lict domination number problem for split graph is NP-Complete as we

can transform the vertex cover problem to it as follows.

Given a non-trivial graph G = (V, E) construct the graph G
′

= (V
′

, E
′

) with the vertex

set V
′

= V ∪ Eand E
′

= {uv : u 6= v, u, v ∈ V } ∪ {ve : v ∈ V, e ∈ E, v ∈ e}.

b

c

d

a

e

f

g

e

f

g

b

c

d

a

G G′

Fig.2 A constructed split graph G1 from a graph G

We claim that G = (V, E) has a vertex cover of size k if and only if G
′

= (V
′

, E
′

) has a

total lict domination set of size k + (p − k) − 1. Let C be the vertex cover of G of size k. Let

B = {ei/ei ∈ E(G
′

)∩E(G), ei is incident with V
′ ∈ C and V

′ ∈ V −C in G}. Then it is clear

that B is a total lict dominating set of a split graph with cardinality k + (p − k) − 1.

On the other hand, suppose D is the total lict domination number of the graph G
′

with
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cardinality k + (p − k) − 1. Let A = {vi/vi ∈ V
′

, vi is incident with ei ∈ D ∩ E(G)} with

cardinality equal to |D|+ 1 = k + (p− k). The vertex set A in G
′

is V (G) such that A consists

copies of V and V −C whose vertices are adjacent to at least to one vertex of C. So, the graph

Ghas a vertex cover of size k. 2
Theorem 4.3 The total lict domination number problem is NP-Complete for chordal graph.

Proof we shall transform the vertex cover problem in general graph to the total lict

domination in chordal graph. Therefore, the NP-Completeness of the total lict domination

problem in chordal graph follows from that of the vertex cover problem in general graph. For any

graph G consider the chordal graph G
′

= (V
′

, E
′

) with vertex set V
′

= {v1, v2, v3, v4/v ∈ V }
and the edge set E

′

= {v1v2, v2v3, v3v4/v ∈ V } ∪ {u3v4/uv ∈ E} ∪ {u4v4/uv ∈ V, u 6= v}.

b

d

a

G

c

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3

c4

d1 d2 d3 d4

G′

Fig.3 A constructed chordal graph G1 from a graph G

We claim that G = (V, E) has vertex cover of size k if and only if G
′

= (V
′

, E
′

) has a

minimal total lict domination set of size 2(k + (p − k)). Let C be the vertex cover of G of size

k. Let B = {v2v3, v3v4/v ∈ V }. Then it is clear that B is a minimal total lict dominating set

of a chordal graph with cardinality 2(k + (p − k)).

On the other hand suppose D is the minimal total lict domination number of the graph

G
′

with cardinality 2(k + (p − k)). Let A = {v3/v3 ∈ V
′

, v3 is incident with v2v3, v3v4 ∈ D}
with |A| = D

2 =k + (p − k). The vertex set A in G
′

is V (G) such that A consists copies of V

and V − C whose vertices are adjacent to at least to one vertex of C. So, the graph G has a

vertex cover of size k. 2
§4. Conclusion

The main purpose of this paper is to establish an algorithm for the total lict domination problem

in general graph. NP-Complete results for the problem are also shown for split graph, chordal

graph and for bipartite graphs.
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Abstract: A function f : V (G) → {−1, 1} defined on the vertices of a graph G is a signed

dominating function (SDF) if f(N [v]) ≥ 1, ∀ v ∈ V , where N [v] is the closed neighborhood

of v. A SDF f is minimal if there does not exists signed dominating function g, g 6= f

such that g(v) ≤ f(v) for each v ∈ V . The signed domination number of a graph G is

the minimum weight of a minimal SDF on G and upper signed domination number of G is

the maximum weight of a minimal SDF on G. In this paper, we obtain the upper signed

domination number of path, cycle and complete bipartite graph.

Key Words: Signed (minus) dominating function, signed (minus) dominating function.
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§1. Introduction

For all terminology and notation in graph theory we refer the reader to [2]. However, unless

mentioned otherwise, we shall consider here only connected simple graphs.

Let G = (V, E) be a simple graph, the open neighborhood of a vertex v is N(v) = {u : uv ∈
E(G)} and closed neighborhood of v is N [v] = N(v)∪{v}. For any real valued function f : V → R

and S ⊆ V , let f(S) =
∑

∀u∈S

f(u) and then the weight of f is defined as wt(f) := f(V ).

A function f : V → {−1, 0, 1}, is said to be a minus dominating function (MDF) if

f(N [v]) ≥ 1, ∀ v ∈ V and the function f : V → {−1, 1} is called a signed dominating function

(SDF) of G if f(N [v]) ≥ 1, ∀ v ∈ V . A SDF (MDF) f on a graph G is minimal if there does

not exist an SDF (MDF) g (g 6= f) for which g(v) ≤ f(v) for every v ∈ V .

The minus domination number for a graph G, denoted by γ−(G) and defined as γ−(G) =

min{wt(f) : f is a minus dominating function on G}. Likewise, the upper minus domination

1Received November 20, 2013, Accepted February 28, 2014.
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number for a graph G, denoted by Γ−(G) and defined as

Γ−(G) = max{wt(f) : f is a minimal minus dominating functionon G}.

The sign domination number for a graph G, denoted by γs(G) and defined as γs(G) =

min{wt(f) : f is a sign dominating function on G}. Likewise, the upper sign domination

number for a graph G, denoted by Γs(G) and defined as

Γs(G) = max{wt(f) : f is a minimal minus dominating function onG}.

In [4], Dunbar et.al. characterized the minimal signed dominating function which is as

follows:

Proposition 1.1(Dunbar et.al.[4]) A SDF g on a graph G is minimal if and only if for every

vertex v ∈ V with g(v) = 1, there exist a vertex u ∈ N [v] with g(N [u]) ∈ {1, 2}.

In [5], Henning and Slater posed an open problem to find the good bound for upper signed

domination number. Towards solving this problem Favaron [6] found the following sharp bound

for the regular graphs.

Theorem 1.2(Favaron [6]) If G is a k-regular graph, k ≥ 1 of order n, then

Γs(G) ≤





n(k + 1)

k + 3
if k is even;

n(k + 1)2

k2 + 4k − 1
if k is odd.

In 2001, Wang and Mao [1] gave upper bound for nearly regular graphs.

Theorem 1.3(Wang and Mao [1]) If G is a nealy (k + 1)-regular graph of order n, then

Γs(G) ≤






n(k + 2)2

k2 + 6k + 4
if k is even;

n(k2 + 3k + 4)

k2 + 5k + 2
if k is odd

and this bound is sharp.

The next result which was stated in [3] provides the best possible bound for a graph in

terms of minimum degree δ and maximum degree ∆ of the graph.

Theorem 1.4(Tang and Chen [3]) If G is a graph of order n, then Γs(G) ≤ (δ∆ + 4∆ − δ)n

δ∆ + 4∆ + δ

for δ even and Γs(G) ≤ (δ∆ + 3∆ − δ + 1)n

δ∆ + 3∆ + δ − 1
for δ odd. Furthermore, if G is an Eulerian graph

then Γs(G) ≤ (δ∆ + 2∆ − δ)n

δ∆ + 2∆ + δ
.

It is easy to observe that if a graph has a pendent vertex then by Theorems 1.3 and 1.4,

Γs ≤ n which is not a good bound, however, from a survey of literature and to the best of our
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knowledge, the upper signed domination number of basic graphs like path, cycle, caterpillar and

bipartite graphs are not known. Thus, in this paper we have find the upper signed domination

number of path, cycle and complete bipartite graph.

§2. Upper Singed Domination Number of Path and Cycle

In this section we give the upper signed domination number of path and cycle.

Theorem 2.1 For every path Pn of order n, Γs(Pn) = n − 2
⌊n

5

⌋
.

Proof If f is a minimal SDF of Pn with weight Γs, then

Γs = |Pf | − |Mf |,

where Pf = {u ∈ V (Pn) : f(u) = +1} and Mf = {u ∈ V (Pn) : f(u) = −1}. Therefore,

Γs = n − 2|Mf |.

In order to prove the result it is suffices to show that |Mf | =
⌊n

5

⌋
. Let n = 5k + l for some

non negative integers k and l. Let g : V (Pn) → {−1, 1} be a function such that,

Mg =





{v5i} ∪ {vn−2} ∀, 1 ≤ i ≤ k − 1 if k = 0, 1;

{v5i} ∀, 1 ≤ i ≤ k if k = 2, 3, 4,

and Pf = V (Pn)\Mg. One can check that given function G is a minimal SDF with |Mg| =
⌊n

5

⌋
.

Therefore,

|Mf | ≤ |Mg| =
⌊n

5

⌋
. (1)

If vi and vj are two vertices in Mf such that there is no other vertices between vi and

vj in Mf . Now, suppose that the distance between vi and vj is less than or equal to two

i.e., d(vi, vj) ≤ 2. Then there exists a vertex vx adjacent to vi and vj . Since f(vi) = f(vj) = −1,

f(N [vx]) = f(vi) + f(vx) + f(vj) = −1 + 1 − 1 < 0,

which is a contradiction to the assumption that f is an SDF. Therefore, d(vi, vj) ≥ 3.

On the other hand, if the distance between vi and vj is greater than or equal to six

i.e., d(vi, vj) ≥ 6 then there exist a sub path Pi = {vi, vi+1, vi+2, vi+3, vi+4, vi+5, · · · , vi+t, vj}
for every t ≥ 5, such that all the vertices {vi+1, vi+2, vi+3, vi+4, vi+5, · · · , vi+t} are positive and

f(vi) = f(vj) = −1. By Proposition 1.1 a SDF g on a graph G is minimal if and only if for

every vertex v ∈ V with g(v) = 1, there exist a vertex u ∈ N [v] with g(N [u]) ∈ {1, 2}, but

f(vi+3) = 1 and f(N [vi+2]) = f(N [vi+3]) = f(N [vi+4]) = 3 (see Figure 1) therefore Proposition

1.1 implies that f can not be minimal SDF, this contradicts the assumption that f is a minimal

SDF. Therefore d(vi, vj) ≤ 5.
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vi vi+1 vi+2 vi+3 vi+4 vi+5 vi+6 vi+t vj

-1 +1 +1 +1 +1 +1 +1 +1 -1

Figure 1

Hence

3 ≤ d(vi, vj) ≤ 5,

from this one can conclude that

|Mf | ≥
⌊n

5

⌋
. (2)

From (1) and (2)

|Mf | =
⌊n

5

⌋
.

Hence,

Γs(Pn) = n − 2|Mf | = n − 2
⌊n

5

⌋
. 2

Corollary 2.2 For every cycle Cn of order n, Γs(Cn) = n − 2⌈n

5
⌉.

Proof The proof of this corollary can be given by the arguments analogues to those used

in the above Theorem 2.1. 2
§3. Upper Signed Domination Number of Complete Bipartite Graphs

Theorem 3.1 If Km,n, the complete bipartite graph with m ≤ n, then Γs = (m + n) − 2
⌊m

2

⌋
.

Proof Consider Km,n = (U, W ) the complete bipartite graph with partite sets U and W

having |U | = m ≤ n = |W | (m, n ≥ 2) and f be a minimal SDF with weight Γs(Km,n), then

Γs(Km,n) = |Pf | − |Mf | = (m + n) − 2|Mf |.

Where Pf and Mf are as defined in Theorem 2.1. In order to establish the desired result, it is

sufficient to show that |Mf | =
⌊m

2

⌋
.

Let |U ∩ Mf | = m− and |W ∩ Mf | = n−. Since Km,n is a complete bipartite graph with

m ≤ n, then m− ≤
⌊m

2

⌋
and n− ≤ ⌊n

2
⌋. This gives,

|Mf | ≤
⌊m

2

⌋
.

Suppose |Mf | <
⌊m

2

⌋
, then there exists a positive integer k such that

|Mf | =
⌊m

2

⌋
− k

m− + n− =
⌊m

2

⌋
− k. (3)
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Consider,

f(N [wi]) =
∑

ui∈U

f(ui) + f(wi)

=
∑

ui /∈Mf

f(ui) +
∑

ui∈Mf

f(ui) + f(wi)

= m − m− − m− + f(wi)

= m − 2m− + f(wi)

= m − 2
⌊m

2

⌋
+ 2k + 2n− + f(wi) by equation (3),

≥ 3 ∀, wi ∈ W.

Following the above procedure, we calculate the value of f(N [ui])

f(N [ui]) =
∑

wi∈W

f(wi) + f(ui)

=
∑

wi /∈Mf

f(wi) +
∑

wi∈Mf

f(wi) + f(ui)

= n − n− − n− + f(ui)

= n − 2n− + f(ui)

= n − 2
⌊m

2

⌋
+ 2k + 2m− + f(ui) by equation (3),

≥ 3 ∀, ui ∈ U.

This implies that, if |Mf | <
⌊m

2

⌋
then f(N [v]) ≥ 3 for all v ∈ V (Km,n) and by Proposition

1.1 a SDF g on a graph G is minimal if and only if for every vertex v ∈ V with g(v) = 1, there

exist a vertex u ∈ N [v] with g(N [u]) ∈ {1, 2}, but f(N [v]) ≥ 3 for all v ∈ V (Km,n) hence f

is not a minimal SDF, which is a contradiction to the assumption that f is an minimal SDF.

Therefore,

|Mf | =
⌊m

2

⌋
.

This implies

Γs(Km,n) = (m + n) − 2|Mf |

= (m + n) − 2
⌊m

2

⌋
.

Hence the result. 2
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Abstract: Let u and v be adjacent vertices in G. If we assign colors to N [v] and N [u] such

that the assignment colors to N [v] are different with the assignment colors to N [u], then this

colorings is said to be vertex star colorings. In this paper we initiate the study of the star

chromatic number and star defining number.
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§1. Introduction

In the whole paper, G is a simple graph with vertex set V (G) and edge set E(G) (briefly V

and E). For every vertex v ∈ V , the open neighborhood N(v) is the set {u ∈ V | uv ∈ E} and

its closed neighborhood is the set N [v] = N(v) ∪ {v}. The open neighborhood of a set S ⊆ V is

the set N(S) = ∪v∈SN(v), and the closed neighborhood of S is the set N [S] = N(S) ∪ S. We

use [9] for terminology and notation which are not defined here.

Let Λ be a subgraph of a graph G. A Smarandachely Λ-coloring ϕΛ|V (G) : C → V (G) of

a graph G by colors in C is a mapping ϕΛ : C → V (G) ∪ E(G) such that ϕ(u) 6= ϕ(v) if u

and v are vertices of a subgraph isomorphic to Λ in G. Particularly, if Λ = G, such a coloring

is called a k-coloring of G. A graph is k-colorable if it has a proper k-coloring. The chromatic

number χ(G) is the least k such that G is k-colorable. Let χ(G) ≤ k ≤ |V (G)|. A set S ⊆ V (G)

with an assignment of colors to them is called a defining set of the vertex coloring of G if there

exists a unique extension of S to a k-coloring of G. A defining set with minimum cardinality is

called a minimum defining set and its cardinality is the defining number, denoted by d(G, k),

for more see [1, 3, 4, 5, 6, 7].

In this note we introduce vertex star coloring of graphs as follows:

If u and v are arbitrary adjacent vertices in G, then the set of colors that we assign to

N [v] is different with the set of colors that assign to N [u]. We call this vertex coloring as vertex

star coloring. It is obvious that vertex star coloring does not include the family of graphs with

1Received October 28, 2013, Accepted March 6, 2014.
2Corresponding author: H.A.Ahangar
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following property:

∃u, v ∈ V (G) with N [v] = N [u], for which uv ∈ E(G).

The chromatic number and defining number of vertex star coloring are called the star

chromatic number (χ∗) and star defining number (d∗), respectively.

We make the following observations:

Observation 1 For every connected graph G of order n > 3, χ∗(G) ≥ 3.

Observation 2 If χ∗(G) = 3, then |f(N [v])| = 2, |f(N [u])| = 3 for every two adjacent vertices

u, v ∈ V (G) for which f is a star coloring function.

Our purpose in this paper is to initiate the study of the star chromatic number and the

star defining number (d∗) of cycles, paths and complete bipartite, hyper cube and Cartesian

product Pn × Pm graphs.

§2. Star Chromatic Numbers

In this section the star chromatic number of cycle, path, complete bipartite and Cartesian

product Pn × Pm graphs are studied.

First, we present a general result as follows:

Proposition 3 Let G be a graph. Then χ∗(G) > χ(G).

Proof On the one hand, χ∗(G) ≥ χ(G). On the other hand, it is enough to show that

χ∗(G) 6= χ(G). Suppose to the contrary. First, we increasingly order vertices of G and color

the vertex with the least index by 1. Now, we color the remaining vertices by this manner, i.e:

for the next uncolored vertex, we assign an unused color on its neighbors or a new color if be

necessary (Greedy algorithm). Hence, a vertex color by χ(G) such that its neighbors colored

by {1, 2, · · · , χ(G) − 1}. And a vertex color by χ(G) − 1 such that its neighbors colored by

{1, 2, · · · , χ(G) − 2}. Without loss of generality, we may assume that u and v are two vertices

which colored by χ(G) − 1 and χ(G). It follows that the set {1, 2, . . . , χ(G)} is the used colors

on u and its neighbors, and on the vertex v and its neighbors, a contradiction. 2
Proposition 4 (i) χ∗(Cn) = 3 where n = 4m.

(ii) χ∗(Cn) = 4 where n = 4m + 2.

Proof (i) Consider the star coloring function f as follows:

f(vi) =





2 i is odd,

1 i = 4t + 2,

3 i = 4t.

It implies that χ∗(G) ≤ 3. Hence, by Proposition 3 the desired result follows.

(ii) Define the star coloring function f as follows:
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f(vi) =





2 i is odd and i 6= 4m + 1,

3 i = 4t + 2 and i ≤ 4m,

1 i = 4t, 4m + 2,

4 i = 4m + 1.

It follows that χ∗(G) ≤ 4. Now, we show that χ∗(G) ≥ 4. It is easy to check that for any

four consecutive vertices in Cn, namely vi, vi+1, vi+2, vi+3, we have f(vi) 6= f(vi+3). Otherwise,

a contradiction. Moreover, we must use 3 different colors on any four consecutive vertices.

Using the star coloring function f in the proof of Part (i), which implies that the vertex vn−1

cannot be colored by 2. The set of the colors of v4m+1 and its neighbors will be the same as

the ones of v4m+2 and its neighbors. Thus, it can be colored by 4. Hence the desired result

follows. 2
Now, we continue the study of the star chromatic numbers on odd cycle.

Proposition 5 χ∗(Cn) = 4 where n(6= 5, 7) is an odd integer.

Proof For n = 5, the star coloring function of C5 can be defined as follows: f(v1) = 1,

f(v2) = 3, f(v3) = 2, f(v4) = 4, f(v5) = 5.

For n = 7, the star coloring function of C7 can be defined as follows: f(v1) = 1, f(v2) = 2,

f(v3) = 1, f(v4) = 3, f(v5) = 4, f(v6) = 3, f(v7) = 5.

Let n − 1 = 6t + 4. Consider the star coloring function f as follows:

f(vi) =






3 i = 6t + 2, t ≥ 1 and i = 1, 3,

4 i = 6t + 4,

2 i = 6t, 2,

1 i = n and i is odd and i 6= 1, 3.

Let n − 1 = 6t. Consider the star coloring function f as follows:

f(vi) =






3 i = 6t + 2, n,

4 i = 6t + 4, n − 1,

2 i = 6t and i = 1, n− 3,

1 i is odd and i 6= 1, n.

Let n − 1 = 6t + 2, n > 9. Consider the star coloring function f as follows:

f(vi) =





3 i = 6t + 2, t ≥ 1 and i = 1, 3

4 i = 6t + 4, n − 1,

2 i = 6t and i = 6t, 2,

1 i is odd and i 6= 1, 3.

Hence, by Proposition 3 and the fact that χ(Cn) = 3 for which n is an odd integer, we get

that χ∗(G) = 4. 2
Proposition 6 (i) χ∗(Pn) = 3 where n is an odd integer.



96 D.A.Mojdeh, H.Abdollahzadeh Ahangar, F.Choopani and F.Zeinali

(ii) χ∗(Pn) = 4 where n > 4 is an even integer.

Proof (i) Define the the star coloring function f as follows:

f(vi) =





2 i = 2t,

1 i = 4t + 1,

3 i = 4t + 3.

This completes the proof.

(ii) Using a same fashion star coloring function f in Part (i), but f(vn=2m) = 4. It follows

that χ∗(Pn=2m) ≤ 4. Now, we consider two cases as follows.

Case 1 If m = 2t, then, according to the star coloring function f , let f(v2m−1) = 3. It follows

that the vertex v2m cannot be colored by 2 or 3. Color the vertex vn−1 by 3, so the vertex vn

cannot be colored by 1, 2 and 3. Thus, it can be colored by 4. Hence the result holds.

Case 2 If m = 2t + 1, In the same manner in Case 1 settle this case. 2
Proposition 7 χ∗(Km,n) = 3.

Proof Let X = {x1, . . . , xm} and Y = {y1, . . . , yn} be partite sets of Km,n. On the

one hand, we may define the star coloring function f as follows: f(vi) = 1(1 ≤ i ≤ m),

f(uj) = 2 (1 ≤ j ≤ n − 1), f(un) = 3. Thus χ∗(Km,n) ≤ 3. On the other hand, if we use

two colors on vertices of complete bipartite graphs, we imply that N [u] = N [v] for every vertex

u ∈ X and v ∈ Y . So χ∗(Km,n) ≥ 3. Hence the result holds. 2
Theorem 8 χ∗(Pn × Pm) = 3.

Proof Let vij be the vertex in ith row and jth column. Define the star coloring function

c∗ as follows:

c∗(vij) =





2 j ≡ 2 (mod 4) and i is odd or j ≡ 3 (mod 4) and i is even,

3 j ≡ 0 (mod 4) and i is odd or j ≡ 1 (mod 4) and i is even,

1 o.w.

Hence the result holds. 2
The following observation has straightforward proof.

Observation 9 χ∗(Qk) = 3.

§3. Star Defining Numbers

Proposition 10 d∗(Cn, χ∗) = 2 where n = 4m.

Proof Let S = {v1, v3} and define the star coloring function f on S as follows: f(v1) = 1,

f(v3) = 3. It is easy to check that the remaining vertices are forced to get one color which

implies that d∗(Cn=4m, χ∗) ≤ 2.
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On the other side, it is well-known that d∗(Cn=4k, χ∗) ≥ χ∗(G) − 1 = 2. This completes

the proof. 2
Now, the star defining numbers of odd paths are studied.

Proposition 11 (i) d∗(Pn, χ∗) ≤ m − 1 where n = 2m.

(ii) d∗(Pn, χ∗) = 2 where n = 2m + 1.

Proof (i) We define S = {vi|i = 3t + 1 and t(> 0) t is even} ∪ {vi|i = 3t, t = 1 and t(>

3) is odd} ∪ {vi|i = 3t + 2 and t is odd} with

f(vi) =





2 i = 3t and t = 1 and t ≥ 3 and t is odd,

4 i = 3t + 1 and t > 0 and t is even,

3 i = 3t + 2 and t is odd.

(ii) Define S = {v1, v2} with f(v1) = 1, f(v2) = 2. The rest of vertices orderly get colors

from v3, v4, · · · , v2n+1. We know that for every graph G, d∗(G, χ∗) ≥ χ∗ − 1. Therefore

d∗(Pn, χ∗) = 2 where n = 2m + 1. 2
Proposition 12 d∗(K1,n, χ∗) = n.

Proof Let X = {x1} and Y = {y1, · · · , yn} be partite sets of K1,n. Define S = Y with

f(yi) = 2 (1 ≤ i ≤ n − 1), f(yn) = 3. So f(x1) = 1. Thus, d∗(K1,n, χ∗) ≤ n.

Now, we show that d∗(K1,n, χ∗) ≥ n. It is easy to check that if we use two colors on n− 1

vertices of Y , thus one can obtain two different colorings. Hence, d∗(K1,n, χ∗) = n. 2
Proposition 13 d∗(Km,n, χ∗) = m where 1 < m ≤ n.

Proof Let X = {x1, . . . , xm} and Y = {y1, . . . , yn} be partite sets of Km,n. We define

S = {x1, x2, . . . , xm} with f(xi) = 2 (1 ≤ i ≤ m − 1), f(xm) = 3 and get the result f(yj) =

1 (1 ≤ j ≤ n).

Now, we show that d∗(Km,n, χ∗ = 3) ≥ m. Suppose that we color m − 1 vertices of

X by two colors, then the remaining vertex of X can be colored by two different colors, a

contradiction. Hence the result. 2
Proposition 14 If G = Km,n, m ≤ n and m > 1 then

d∗(Km,n, c ≥ χ∗ + 1) =






m c ≤ m,

m + n c > max{m, n},
n m < c ≤ n.

Proof The same used manner in Propositions 12 and 13 settles the stated result. 2
Proposition 15 (i) d∗(P3 × P3) = d∗(P3 × P4) = d∗(P3 × P5) = 2.

(ii) d∗(P2 × P3) = d∗(P2 × P4) = d∗(P2 × P5) = 2.

Proof We know that d∗(Pn × Pm) ≥ χ∗(Pn × Pm) − 1 = 3 − 1 = 2. It is enough to
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present a star defining set of size 2 for each of these graphs. Define the star defining sets of

P2 × P3, P2 × P4, P2 × P5, P3 × P3, P3 × P4, P3 × P5, as follows:

 ∗ 2 ∗

3 ∗ ∗


,


 ∗ ∗ ∗ ∗

2 ∗ 3 ∗


,


 ∗ ∗ ∗ ∗ ∗

∗ ∗ 2 ∗ 3


,




∗ 2 ∗
3 ∗ ∗
∗ ∗ ∗


,




∗ ∗ ∗ ∗
∗ 3 ∗ 2

∗ ∗ ∗ ∗


,




∗ ∗ ∗ ∗ ∗
3 ∗ 2 ∗ ∗
∗ ∗ ∗ ∗ ∗


. 2

Theorem 16 If n is an even integer and n/2× ⌊m/2⌋ 6= 1, then d∗(Pn ×Pm) ≤ n/2× ⌊m/2⌋.

Proof In the following table, a star defining set of size n/2 × ⌊m/2⌋ is presented.




∗ 2 ∗ 2 ∗ . . .

∗ ∗ ∗ ∗ ∗ . . .

∗ 3 ∗ 3 ∗ . . .

∗ ∗ ∗ ∗ ∗ . . .

∗ 2 ∗ 2 ∗ . . .
...

...
...

...
...

...

∗ a ∗ a ∗ . . .

∗ ∗ ∗ ∗ ∗ . . .




if n = 4k + 2, then a = 2, and if n = 4k, then a = 3. 2
Conjecture 17 If n is an even number and n/2×⌊m/2⌋ 6= 1, then d∗(Pn×Pm) = n/2×⌊m/2⌋.

Theorem 18 If m(k + 1) ≥ 4, then d∗(P2k+1 × P2m+1, χ
∗) ≤ m(k + 1) − 2.

Proof In the following table, a star defining set of size m(k + 1) − 2 is shown.




∗ 2 ∗ 2 ∗ . . . 2 ∗ 2 ∗
∗ ∗ ∗ ∗ ∗ . . . ∗ ∗ ∗ ∗
∗ 3 ∗ 3 ∗ . . . 3 ∗ 3 ∗
∗ ∗ ∗ ∗ ∗ . . . ∗ ∗ ∗ ∗
...

...
...

...
...

...
...

...
...

...

∗ ∗ ∗ 3 ∗ . . . 3 ∗ ∗ ∗




So, the star defining number is less or equal to this value. 2
Conjecture 19 If m(k + 1) ≥ 4 and k ≤ m, then d∗(P2k+1 × P2m+1, χ

∗) = m(k + 1) − 2.
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Theorem 20 If k ≥ 2, then d∗(Qk, 3) = 2k−2 + 1.

Proof First, we show that d∗(Qk, χ∗) ≤ 2k−2 + 1. It is well-known that each Qk is 2k−3

copies of Q3. We label the vertices of Q3 as the following figure:

x1

x4

x5

x8

x2

x3

x6

x7

We define the star defining set as the following matrix for which ith row is dependent to

the vertices of ith copy of Q3 in Qk. Note that at the defining set of Qk, just one vertex gets

color i and the remaining vertices get color j.

For Q3 :
[

i ∗ j ∗ ∗ .j ∗ ∗
]
.

For Q4 :



 i ∗ j ∗ ∗ j ∗ ∗
∗ j ∗ ∗ ∗ ∗ j ∗



 .

For Q5 :




i ∗ j ∗ ∗ j ∗ ∗
∗ j ∗ ∗ ∗ ∗ j ∗
∗ j ∗ ∗ ∗ ∗ j ∗
∗ ∗ j ∗ ∗ j ∗ ∗




.

For Q6 :




i ∗ j ∗ ∗ j ∗ ∗
∗ j ∗ ∗ ∗ ∗ j ∗
∗ j ∗ ∗ ∗ ∗ j ∗
∗ ∗ j ∗ ∗ j ∗ ∗
∗ j ∗ ∗ ∗ ∗ j ∗
∗ ∗ j ∗ ∗ j ∗ ∗
∗ ∗ j ∗ ∗ j ∗ ∗
∗ j ∗ ∗ ∗ ∗ j ∗




.
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We know that Qk is constructed by two copies of Qk−1. Therefore, we may give a star

defining set in general form for the graph as follows: We assign for the first copy as above.

For the next copy; if in a row of the first copy we define ∗ ∗ j ∗ ∗ j ∗ ∗, we may define

in the symmetric row of the new copy as ∗ j ∗ ∗ ∗ ∗ j ∗, and if in the first copy we define

∗ j ∗ ∗ ∗ ∗ j ∗, we may define in the symmetric row of the next copy we define ∗ ∗ j ∗ ∗ j ∗ ∗.
Note that in the first row we have i ∗ j ∗ ∗ j ∗ ∗ but for the its symmetric row in the new

copy we define as ∗ j ∗ ∗ ∗ ∗ j ∗.

Now, we show that d∗(Qk, χ∗) ≥ 2k−2 + 1. If k = 2, it is obvious. For completing of the

proof, first we show that in each Q3 of Qk which colored by three colors i, j, k. Then we have

just one way to color of each Q3. Let c(i) be the set of vertices with color i. It is easy to check

that |c(i)| = 1, |c(j)| = 1 or |c(k)| = 1 is not possible. Because, we cannot find a proper star

coloring for Qk. Now, let |c(i)| = 2. We have two cases: (a): |c(j)| = |c(k)| = 3. By simple

verification one can see that this cases also cannot be holden. (b): |c(j)| = 2 and |c(k)| = 4 (or

symmetrically |c(k)| = 2 and |c(j)| = 4 ). Hence, we may color the graphs Q3, Q4, Q5 and Q6

as follows, respectively.

Q3 :
[

i k j k k j k i
]
.

Q4 :


 i k j k k j k i

k j k i i k j k


 .

Q5 :




i k j k k j k i

k j k i i k j k

k j k i i k j k

i k j k k j k i




.

Q6 :




i k j k k j k i

k j k i i k j k

k j k i i k j k

i k j k k j k i

k j k i i k j k

i k j k k j k i

i k j k k j k i

k j k i i k j k




.

To color of the graph Qk with k > 5, we should color it by the above method, otherwise

we cannot find a proper star coloring for the graph. We may also replace color 2 with 3, and

conversely to find a new proper star coloring of Qk. Let S be a defining set of Qk. It is so easy

that |S| > 3 for Q3. It is well-known that the graph Qk with k > 3 containing of 2k−3 copies

of Q3. Simple verification shows that there exist no copy Q3 of Qk such that S ∩ V (Q3) = 1.

Because, it is possible to assign at least two star coloring functions. It follows that S∩V (Qi
3) > 2

where 2 6 i 6 2k−3. Hence, the desired result follows. 2
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§1. Introduction

The first paper on harmonious graph coloring was published in 1982 by Frank Harary and

M.J.Plantholt [2]. However, the proper definition of this notion is due to J.E.Hopcroft and

M.S. Krishnamoorthy [5] in 1983. It was shown by Hopcroft and Krishnamoorthy that the

problem of determining the harmonious chromatic number of a graph is NP-hard.

A harmonious coloring [1, 2, 3, 5, 6, 9] of a simple graph G is proper vertex coloring such

that each pair of colors appears together on at most one edge. The harmonious chromatic

number χH(G) is the least number of colors in such a coloring.

The concept of harmonious coloring of graphs has been studied extensively by several

authors; see [8, 11] for surveys. If G has m edges and G has a harmonious coloring with k

colors, then clearly,

(
k

2

)
≥ m. Let k(G) be the smallest integer satisfying the inequality. This

number can be expressed as a function of m, namely

k(G) =

⌈
1 +

√
8m + 1

2

⌉
.

Paths are among the first graphs whose harmonious chromatic numbers have been estab-

lished. Let Pn denote the path of order n. The following fact has been proved [2].

If k(Pn) is odd or if k(Pn) is even and n − 1 = k(k − 1)/2− j, j = k/2− 1, k/2, · · · , k − 2,

where k = k(Pn), then χH(Pn) = k(Pn). Otherwise, χH(Pn) = k(Pn) + 1.

In this present paper, we find the harmonious chromatic number on Mycielskian graph of

cycle, path, complete graph and complete bipartite graph.

1Received November 21, 2013, Accepted March 8, 2014.
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§2. Mycielskian Graph

We consider only finite, loopless graphs without multiple edges. For a given graph G on the

vertex set V (G) = {v1, . . . , vn}, we define its Mycielskian µ(G) [4, 7, 10] as follows:

The vertex set of µ(G) is V (µ(G)) = {X, Y, z} = {x1, · · · , xn, y1, · · · , yn, z} for a total of

2n + 1 vertices. As for adjacency, we put

• xi ∼ xj in µ(G) if and only if vi ∼ vj in G,

• xi ∼ yj in µ(G) if and only if vi ∼ vj in G,

• and yi ∼ z in µ(G) for all i ∈ {1, 2, · · · , n}.

§3. Harmonious Coloring on Myceilskian Graph of Cycles

Theorem 3.1 Let n be a positive integer, then

χH(µ(Cn)) = 2n + 1.

Proof For any cycle Cn with the vertex set V (Cn) = {v1, . . . , vn}, we define its Mycielskian

µ(Cn) as follows. The vertex set of µ(Cn) is V (µ(Cn)) = {X, Y, z} = {x1, . . . , xn, y1, . . . , yn, z}
for a total of 2n + 1 vertices. As for adjacency, we put

• xi ∼ xj in µ(Cn) if and only if vi ∼ vj in Cn,

• xi ∼ yj in µ(Cn) if and only if vi ∼ vj in Cn,

• and yi ∼ z in µ(Cn) for all i ∈ {1, 2, . . . , n}.
The number of edges in µ(Cn) is 4n and all the vertices z, xi, yi are mutually at a distance

at least 2 and deg(z) = n, deg(xi) = 4, deg(yi) = 3, and so all must have distinct colors. Thus

we have, χH(µ(Cn)) ≥ 2n + 1.

Now consider the vertex set V (µ(Cn)) and assign a proper harmonious coloring to V (µ(Cn))

as follows:

For (1 ≤ i ≤ n), assign the color ci+1 for yi and assign the color c1 to z. For (1 ≤ i ≤ n),

assign the color cn+1+i for xi. Therefore, χH(µ(Cn)) ≤ 2n +1. Hence, χH(µ(Cn)) = 2n +1. 2

b

z
1

Figure 1 Mycielskian graph of C5 with χH(µ(C5)) = 11
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§4. Harmonious Coloring on Myceilskian Graph of Paths

Theorem 4.1 Let n be a positive integer, then

χH(µ(Pn)) = 2n − 1, ∀n > 2.

Proof For any path Pn with the vertex set V (Pn) = {v1, . . . , vn}, we define its Mycielskian

µ(Pn) as follows. The vertex set of µ(Pn) is V (µ(Pn)) = {X, Y, z} = {x1, . . . , xn, y1, . . . , yn, z}
for a total of 2n + 1 vertices. As for adjacency, we put

• xi ∼ xj in µ(Pn) if and only if vi ∼ vj in Pn,

• xi ∼ yj in µ(Pn) if and only if vi ∼ vj in Pn,

• and yi ∼ z in µ(Pn) for all i ∈ {1, 2, . . . , n}.
The number of edges in µ(Pn) is 4n − 3 and all the vertices z, xi, yi are mutually at a

distance at least 2 and deg(z) = n, 2 ≤ deg(xi) ≤ 4, deg(yi) = 3, and so all must have distinct

colors. Thus we have, χH(µ(Pn)) ≥ 2n− 1, ∀n > 2.

Now consider the vertex set V (µ(Pn)) and assign a proper harmonious coloring to V (µ(Pn))

as follows:

For (1 ≤ i ≤ n), assign the color ci+1 for yi and assign the color c1 to z. For (1 ≤ i ≤ n),

assign the color cn+i for xi. Therefore, χH(µ(Pn)) ≤ 2n − 1, ∀n > 2. Hence, χH(µ(Pn)) =

2n − 1, ∀n > 2. 2

b

z
1

Figure 2 Mycielskian graph of P5 with χH(µ(P5)) = 9
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§5. Harmonious Coloring on Myceilskian Graph of Complete Graphs

Theorem 5.1 Let n be a positive integer, then

χH(µ(Kn)) = 2n + 1 for n 6= 2.
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Proof For any complete graph Kn with the vertex set V (Kn) = {v1, . . . , vn}, we de-

fine its Mycielskian µ(Kn) as follows. The vertex set of µ(Kn) is V (µ(Kn)) = {X, Y, z} =

{x1, . . . , xn, y1, . . . , yn, z} for a total of 2n + 1 vertices. As for adjacency, we put

• xi ∼ xj in µ(Kn) if and only if vi ∼ vj in Kn,

• xi ∼ yj in µ(Kn) if and only if vi ∼ vj in Kn,

• and yi ∼ z in µ(Kn) for all i ∈ {1, 2, . . . , n}.

The number of edges in µ(Kn) is
3n2 − n

2
and all the vertices z, xi, yi are mutually at a

distance at least 2 and deg(z) = n, deg(xi) = n + 1, deg(yi) = 3, and so all must have distinct

colors. Thus we have, χH(µ(Kn)) ≥ 2n + 1, for n 6= 2.

Now consider the vertex set V (µ(Kn)) and assign a proper harmonious coloring to V (µ(Kn))

as follows:

For (1 ≤ i ≤ n), assign the color ci+1 for yi and assign the color c1 to z. For (1 ≤ i ≤ n),

assign the color cn+1+i for xi. Therefore, χH(µ(Kn)) ≤ 2n+1, for n 6= 2. Hence, χH(µ(Kn)) =

2n + 1, for n 6= 2. 2
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Figure 3 Mycielskian graph of K5 with χH(µ(K5)) = 11
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§6. Harmonious Coloring on Myceilskian Graph of Complete Bipartite Graphs

Theorem 6.1 Let n and m be a positive integers, then

χH(µ(Km,n)) = 2(m + n) + 1.

Proof For any complete bipartite graph Km,n with the vertex set V (Km,n) = {v1, . . . , vn}∪
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{u1, · · · , un}, we define its Mycielskian µ(Km,n) as follows. The vertex set of µ(Km,n) is

V (µ(Km,n)) = {X, X ′, Y, Y ′, z} = {x1, . . . , xn, x′
1, · · · , x′

m, y1, . . . , yn, y′
1, · · · , y′

m, z}

for a total of 2n + 2m + 1 vertices. As for adjacency, we put

• xi ∼ xj in µ(Km,n) if and only if vi ∼ vj in Km,n,

• x′
i ∼ x′

j in µ(Km,n) if and only if ui ∼ uj in Km,n,

• xi ∼ yj in µ(Km,n) if and only if vi ∼ vj in Km,n,

• x′
i ∼ y′

j in µ(Km,n) if and only if ui ∼ uj in Km,n,

• and yi ∼ z in µ(Km,n) for all i ∈ {1, 2, . . . , n}.
The number of edges in µ(Km,n) is m2 +n2 +mn+m+n and all the vertices z, xi, x

′
i, yi, y

′
i

are mutually at a distance at least 2 and deg(z) = n, deg(xi) = 2m,deg(x′
i) = 2n, deg(yi) =

4,deg(y′
i) = 4 and so all must have distinct colors. Thus we have χH(µ(Km,n)) ≥ 2(m + n)+ 1.

Now consider the vertex set V (µ(Km,n)) and assign a proper harmonious coloring to

V (µ(Km,n)) as follows: For (1 ≤ i ≤ n), assign the color ci+1 for yi and assign the color c1 to z.

For (1 ≤ i ≤ m), assign the color cn+1+i for y′
i. For (1 ≤ i ≤ m), assign the color cn+m+1+i for

y′
i. For (1 ≤ i ≤ n), assign the color c2m+n+1+i for xi Therefore, χH(µ(Km,n)) ≤ 2(m +n) + 1.

Hence, χH(µ(Km,n)) = 2(m + n) + 1. 2
Case 1
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Figure 4 Mycielskian Graph of K3,3 with χH(µ(K3,3)) = 13
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Case 2
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Figure 5 Mycielskian Graph of K2,3 with χH(µ(K2,3)) = 11
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§7. Main Theorem

Theorem 7.1 Let G be any graph without pendant vertices, then

χH(µ(G)) = 2(V (µ(G))) + 1.
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Abstract: An ecologically industrial system is such an industrial system in harmony with

its environment, especially the natural environment. The main purpose of this paper is to

show how to establish a mathematical model for such systems by combinatorics, and find

its topological characteristics, which are useful in industrial ecology and the environment

protection.
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§1. Introduction

Usually, the entirely life cycle of a product consists of mining, smelting, production, storage,

transporting, use and then finally go to the waste, · · · , etc.. In this process, a lot of waste gas,

water or solid waste are produced. Such as those shown in Fig.1 for a producing cell following.

produce- products-?materials

wastes

6
Fig.1

In old times, these wastes produced in industry are directly discarded to the nature without

disposal, which brings about an serious problem to human beings, i.e., environment pollution

and harmful to our survival. For minimizing the effects of these waste to our survival, the growth

of industry should be in coordinated with the nature and the 3R rule: reduces its amounts, reuses

it and furthermore, into recycling, i.e., use these waste into produce again after disposal, or let

1Received November 25, 2013, Accepted March 10, 2014.
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them be the materials of other products and then reduce the total amounts of waste to our life

environment. An ecologically industrial system is such a system consisting of industrial cells in

accordance with the 3R rule by setting up one or more waste disposal centers. Such a system

is opened. Certainly, it can be transferred to a closed one by letting the environment as an

additional cell. For example, series produces such as those shown in Fig.2 following.

produce1-
waste

materials produce2 produce3-?
disposal- 6-product1 product2?

.........................
..
..
..
..
..
..
..
.6 - product3

Fig.2

Generally, we can assume that there are P1, P2, · · · , Pm products (including by-products)

and W1, W2, · · · , Ws wastes after a produce process. Some of them will be used, and some will

be the materials of another produce process. In view of cyclic economy, such an ecologically

industrial system is nothing else but a Smarandachely multi-system. Furthermore, it is a

combinatorial system defined following.

Definition 1.1([1],[2] and [9]) A rule in a mathematical system (Σ;R) is said to be Smaran-

dachely denied if it behaves in at least two different ways within the same set Σ, i.e., validated

and invalided, or only invalided but in multiple distinct ways.

A Smarandachely system (Σ;R) is a mathematical system which has at least one Smaran-

dachely denied rule in R.

Definition 1.2([1],[2] and [9]) For an integer m ≥ 2, let (Σ1;R1), (Σ2;R2), · · · , (Σm;Rm)

be m mathematical systems different two by two. A Smarandache multi-space is a pair (Σ̃; R̃)

with

Σ̃ =

m⋃

i=1

Σi, and R̃ =

m⋃

i=1

Ri.

Definition 1.3([1],[2] and [9]) A combinatorial system CG is a union of mathematical systems

(Σ1;R1),(Σ2;R2), · · · , (Σm;Rm) for an integer m, i.e.,

CG = (

m⋃

i=1

Σi;

m⋃

i=1

Ri)

with an underlying connected graph structure G, where

V (G) = {Σ1, Σ2, · · · , Σm},

E(G) = { (Σi, Σj) | Σi

⋂
Σj 6= ∅, 1 ≤ i, j ≤ m}.
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The main purpose of this paper is to show how to establish a mathematical model for

such systems by combinatorics, and find its topological characteristics with label equations. In

fact, such a system of equations is non-solvable. As we discussed in references [3]-[8], such a

non-solvable system of equations has significance also for things in our world and its global

behavior can be handed by its G-solutions, where G is a topological graph inherited by this

non-solvable system.

§2. A Generalization of Input-Output Analysis

The 3R rule on an ecologically industrial system implies that such a system is optimal both in

its economical and environmental results.

2.1 An Input-Output Model

The input-output model is a linear model in macro-economic analysis, established by a economist

Leontief as follows, who won the Nobel economic prize in 1973.

Assume these are n departments D1, D2, · · · , Dn in a macro-economic system L satisfy

conditions following:

(1) The total output value of department Di is xi. Among them, there are xij output

values for the department Dj and di for the social demand, such as those shown in Fig.1.

(2) A unit output value of department Dj consumes tij input values coming from depart-

ment Di. Such numbers tij , 1 ≤ i, j ≤ n are called consuming coefficients.

Di

D1>*
-

D2

Dn

xi1

xi2

xin

Social
Demand6
di

Fig.2

Therefore, such an overall balance macro-economic system L satisfies n linear equations

xi =

n∑

j=1

xij + di (1)
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for integers 1 ≤ i ≤ n. Furthermore, substitute tij = xij/xj into equation (10-1), we get that

xi =

n∑

j=1

tijxj + di (2)

for any integer i. Let T = [tij ]n×n, A = In×n − T . Then

Ax = d, (3)

from (2), where x = (x1, x2, · · · , xn)T , d = (d1, d2, · · · , dn)T are the output vector or demand

vectors, respectively.

For example, let L consists of 3 departments D1, D2, D3, where D1=agriculture, D2=

manufacture industry, D3=service with an input-output data in Table 1.

Department D1 D2 D3 Social demand Total value

D1 15 20 30 35 100

D2 30 10 45 115 200

D3 20 60 / 70 150

Table 1

This table can be turned to a consuming coefficient table by tij = xij/xj following.

Department D1 D2 D3

D1 0.15 0.10 0.20

D2 0.30 0.05 0.30

D3 0.20 0.30 0.00

Table 2

Thus

T =




0.15 0.10 0.20

0.30 0.05 0.30

0.20 0.30 0.00


 , A = I3×3 − T =




0.85 −0.10 −0.20

−0.30 0.95 −0.30

−0.20 −0.30 1.00




and the input-output equation system is





0.85x1 − 0.10x2 − 0.20x3 = d1

−0.30x1 + 0.95x2 − 0.30x3 = d2

−0.20x1 − 0.30x2 + x − 3 = d3

Solving this linear system of equations enables one to find the input and output data for

economy management.
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2.2 A Generalized Input-Output Model

Notice that our WORLD is not linear in general, i.e., the assumption tij = xij/xj does not hold

in general. A non-linear input-output model is shown in Fig.3, where x = (x1i, x2i, · · · , xni),

D1, D2, · · · , Dn are n departments, SD=social demand. Usually, the function F (x) is called

the producing function.

Fi(x)

D1

D2

Dn

6?-
x1i

x2i

xni

D1

D2

Dn

--
-

xi1

xi2

xin

SD6
di

Fig.3

In this case, an overall balance input-output model is characterized by equations

Fi(x) =

n∑

j=1

xij + di (4)

for integers 1 ≤ i ≤ n, where Fi(x) may be linear or non-linear and determined by a system of

equations such as those of ordinary differential equations

1 ≤ i ≤ n





F

(n)
i + a1F

(n−1)
i + · · · + an−1Fi + an = 0

Fi|t=0 = ϕ0, F
(1)
i

∣∣∣
t=0

= ϕ1, · · · , F
(n−1)
i

∣∣∣
t=0

= ϕn−1

(OESn)

or

1 ≤ i ≤ n






∂Fi

∂t
= H1(t, x1, · · · , xn−1, p1, · · · , pn−1)

Fi|t=t0
= ϕ0(x1, x2, · · · , xn−1)

, (PES1)

which can be solved by classical mathematics. However, the input-output model with its gener-

alized only consider the consuming and producing, neglected the waste and its affection to our

environment. So it can be not immediately applied to ecologically industrial systems. However,

we can generalize such a system for this objective by introducing environment factors, which

are discussed in the next section.
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$3. A Topological Model for Ecologically Industrial Systems

The essence of input-output model is in the output is equal to the input, i.e., a simple case of the

law of conservation of mass: a matter can be changed from one form into another, mixtures

can be separated or made, and pure substances can be decomposed, but the total amount of

mass remains constant. Applying this law, it needs the environment as an additional cell for

ecologically industrial systems and replaces the departments Di, 1 ≤ i ≤ n by input materials

Mi, 1 ≤ i ≤ n or products Pk, 1 ≤ k ≤ m, and SD by Wi, 1 ≤ i ≤ s = wastes, such as those

shown in Fig.4 following.

Fi(x)

M1

M2

Mn

6?-
x1i

x2i

xni

P1

P2

Pm

--
-

xi1

xi2

xin

W1 W2 Ws

? ? ?
Fig.4

In this case, the balance input-output model is characterized by equations

Fi(x) =

n∑

j=1

xij −
s∑

i=1

Wi (5)

for integers 1 ≤ i ≤ n. We construct a topological graphs following.

Construction 3.1 Let J (t) be an ecologically industrial system consisting of cells C1(t), C2(t),

· · · , Cl(t), R the environment of J . Define a topological graph G[J ] of J following:

V (G[J ]) = {C1(t), C2(t), · · · , Cl(t), R};
E(G[J ]) = {(Ci(t), Cj(t)) if there is an input from Ci(t) to Cj(t), 1 ≤ i, j ≤ l}

⋃
{(Ci(t), R) if there are wastes from Ci(t) to R, 1 ≤ i ≤ l}.

Clearly, G[J ] is an inherited graph for an ecologically industrial system J . By the

3R rule, any producing process Xi1 of an ecologically industrial system is on a directed cycle−→
C = (Xi1 , Xi2 , · · · , Xik

), where Xij
∈ {Ci, 1 ≤ j ≤ l; R}, such as those shown in Fig.5.
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-/ oXi1(t)

Xi2(t) Xik
(t)

Fig.5

Such structure of cycles naturally determined the topological structure of an ecologically indus-

trial system following.

Theorem 3.2 Let J (t) be an ecologically industrial system consisting of producing cells

C1(t), C2(t), · · · , Cl(t) underlying a graph G [J (t)]. Then there is a cycle-decomposition

G [J (t)] =

t⋃

i=1

−→
C ki

for the directed graph G [J (t)] such that each producing process Ci(t), 1 ≤ i ≤ l is on a directed

circuit
−→
C ki

for an integer 1 ≤ i ≤ t. Particularly, G [J (t)] is 2-edge connectness.

Proof By definition, each producing process Ci(t) is on a directed cycle, which enables us

to get a cycle-decomposition

GG [J (t)] =
t⋃

i=1

−→
C ki

. 2
Thus, any ecologically industrial system underlying a topological 2-edge connect graph

with vertices consisting of these producing process. Whence, we can always call G-system for

an ecologically industrial system. Clearly, the global effects of G1-system and G2-system are

different if G1 6≃ G2 by definition. Certainly, we can also characterize these G-systems with

graphs by equations (5) following.

Theorem 3.3 Let consisting of producing cells C1(t), C2(t), · · · , Cl(t) underlying a graph

G [J (t)]. Then

Fv(xuv, u ∈ N−
G[J (t)](v)) =

∑

w∈N+
G[J (t)]

(v)

(−1)δ(v,w)xvw

with δ(v, w) = 1 if xvw=product, and −1 if xvw=waste, where N−
G[J (t)], N

+
G[J (t)] are the in or

our-neighborhoods of vertex v in G [J (t)].

Notice that the system of equations in Theorem 3.3 is non-solvable in R
∆+1 with ∆ the

maximum valency of vertices in G [J (t)]. However, we can also find its G [J (t)]-solution in
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R
∆+1 (See [4]-[6] for details), which can be also applied for holding the global behavior of such

G-systems. Such a G [J (t)]-solution is not constant for ∀e ∈ E(G [J (t)]). For example, let a

G-system with G=circuit be shown in Fig.4.> - ~6=�} xv1

xv2

xv3

xv4

xv5

xv6

C6

v1 v2

v3

v4v5

v6

Fig.5

Then there are no wastes to environment with equations

Fv(xvi
) = xvi+1 , 1 ≤ i ≤ 6, where i mod6, i.e.,

Fvi
Fvi+1 · · ·Fvi+6 = 1 for any integer 1 ≤ i ≤ 6.

If Fvi
is given, then solutions xvi

, 1 ≤ i ≤ 6 dependent on an initial value, for example,

xv1 |t=0, i.e., one needs the choice criterions for determining the initial values xvi
|t=0. Notice

that an industrial system should harmonizes with its environment. The only criterion for its

choice must be

optimal in economy with minimum affection to the environment, or approximately, maxi-

mum output with minimum input.

According to this criterion, there are 2 types of G-systems approximating to an ecologically

industrial system:

(1) Optimal in economy with all inputs (wastes) Wr1 , Wr2 , · · · , Wrs
licenced to R;

(2) Minimal wastes to the environment, i.e., minimal used materials but supporting the

survival of human beings.

For a G-system, let

c−v =
∑

uıN−

G[J (t)]
(v)

c(xuv) and c+
v =

∑

w∈N+
G[J (t)]

(v)

(−1)δ(v,w)c(xvw)

be respectively the producing costs and product income at vertex v ∈ V (G). Then the optimal

function is
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Λ(G) =
∑

v∈V (G)

(
c+
v − c−v

)

=
∑

v∈V (G)




∑

w∈N+
G[J (t)]

(v)

(−1)δ(v,w)c(xvw) −
∑

uıN−

G[J (t)]
(v)

c(xuv)


 .

Then, a G-system of Types 1 is a mathematical programming

max
∑

v∈V (G)

Λ(G) but
∑

v∈V (G)

Wri ≤ WU
ri ,

where WU
ri is the permitted value for waste Wri to the nature for integers 1 ≤ i ≤ s. Similarly,

a G-system of Types 2 is a mathematical programming

min
∑

v∈V (G)

Wri but all prodcuts P ≥ PL,

where PL is the minimum needs of product P in an area or a country. Particularly, if WU
ri = 0,

i.e., an ecologically industrial system, such a system can be also characterized by a non-solvable

system of equations

Fv(xuv, u ∈ N−
G[J (t)](v)) =

∑

w∈N+
G[J (t)]

(v)

xvw for ∀v ∈ V (G).
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