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Abstract: A remarkable connection between the cohomology ring H∗(Gr(d, d + r),Z) of

the Grasssmannian Gr(d, d + r) and the lattice points of the dilation r∆d of the standard

d-simplex is investigated. The natural grading on the cohomology induces different gradings

of the lattice points of r∆d. This leads to different refinements of the Ehrhart polynomial

L∆d(r) of the standard d-simplex. We study two of these refinements which are defined by

the weights (1, 1, · · · , 1) and (1, 2, · · · , d). One of the refinements interprets the Poincaré

polynomial P(Gr(d, d + r), z) as the counting of the lattice points which lie on the slicing

hyperplanes of the dilation r∆d. Therefore, on the combinatorial level the Poincaré polyno-

mial of the Grassmannian Gr(d, d+ r) is a refinement of the Ehrhart polynomial L∆d(r) of

the standard d-simplex ∆d.

Key Words: Cohomology ring, Grassmannian, partition, lattice polytope, simplex.
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§1. Introduction

Consider the diagonal sequence Dd of natural numbers realized from Pascal triangle below:

D
1 :

1

D
2 :

1 1

D
3 :

1 2 1

D
4 :

1 3 3 1

D
5 :

1 4 6 4 1

D
6 :

1 5 10 10 5 1

... 1 6 15 20 15 6 1

. . .
. . .

. . .
. . .

. . .
. . .

. . .

Pascal Triangle
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One of the combinatorial interpretations of the terms of the sequence Dd :=
(
r+d
d

)
r=0

,

d ∈ N, has to do with the counting of the lattice points associated with the dilations r∆d of

the standard d-simplex ∆d. By the standard d-simplex ∆d we mean the convex hull of the set

{0, e1, · · · , ed} where e′is, 1 ≤ i ≤ d are the standard vectors in Rd and 0 is the origin. That is,

∆d := conv(0, e1, . . . , ed) = {x ∈ Rd : x · ei ≥ 0,

d∑
i=1

x · ei ≤ 1} (1.1)

and the dilation r∆d, is given by

r∆d = {x ∈ Rd : x · ei ≥ 0,

d∑
i=1

x · ei ≤ r, r ∈ N}. (1.2)

Lattice points are the points whose coordinates are integers. Asking for the lattice points

on r∆d is tantamount to counting the integer solutions for the inequality

d∑
i=1

x · ei ≤ r. (1.3)

The number of lattice points on any given lattice polytope is well known. This is central

theme of Ehrhart polynomials, [3], [6], [10], [11] and [16]. In fact the number of the lattice

points on r∆d is given by

|r∆d ∩ Zd≥0| =
(
r + d

d

)
(1.4)

and its generating function by

P(r∆d, z) =

∞∑
r=0

Arz
r =

1

(1− z)d+1
, where Ar =

(
r + d

d

)
. (1.5)

On the other hand, Grassmannians are ubiquitous in nature and they constitute one of

the best understood algebraic varieties. They admit algebraic, combinatorial and geometric

structures which are very elegant. Their classical cohomology theory has taken the center stage

in algebraic combinatorics in recent years, see [4], [5], [7] , [8], [9], [10] and [12]. It turns out

that the lattice points on r∆d encode some vital information about the indexing partitions of

the Schubert varieties contained in the Grassmannian Gr(d, d + r). This sheds more light on

the cohomology ring of the Grassmannian. It is well known that the multiplicative generators

of the cohomology of the Grassmannian Gr(d, d+r) are given by the special Schubert cycles σλ,

see [3]. These cycles are indexed by one-row partitions λ = (k), 1 ≤ k ≤ r and they constitute

the total Chern class of the quotient bundle Q, that is,

c(Q) = 1 + σ + σ + · · ·+ σ ··· 1×r
.

We study the monomials identified with the semi standard tableaux of these one-row Young

diagrams and realize a natural graded polynomial Tr(t) called dilation polynomial. This is our
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first refinement of the Ehrhart polynomial L∆(r) of the standard d-simplex ∆d. It comes

with the natural weight (1, 1, · · · , 1). The second refinement is the the Poincaré polynomial

P(Gr(d, d + r), z) of the Grassmannian Gr(d, d + r) interpreted as the slicing of r∆d with

hyperplanes with respect to the weight (1, 2, . . . , d). It is interesting to note that the natural

grading on the cohomology of the Grassmannian Gr(d, d+ r) induces different gradings of the

lattice points of the dilation r∆d which give various refinements of the Ehrhart polynomial

L∆(r). The paper is a generalisation of the previous studies in [1] and [2]. In section 2,

we introduce a technique of counting lattice points by grading with respect to the weight

a = (1, 1, . . . , 1). This is just the slicing of the dilation r∆d into parallel regular (d − 1)-

simplices. The The polynomial

T (1,...,1)
r (t) =

r∑
k=0

(
k + d− 1

d− 1

)
tk (1.6)

refines the Ehrhart polynomial L∆(r). We give a generating function for such polynomials as r

grows. This grading allows us to establish in Section 3, a bijection between the lattice points of

the dilation r∆d and the semi standard tableaux of row Young diagrams indexing the special

Schubert cycles of the Grassmanninan Gr(d, d + r). By using another weight h = (1, 2, . . . , d)

which gives a different slicing of the simplex, we construct a polynomial

P
(1,2,··· ,d)
r∆d

(z) =

[(
k + d

d

)]
z

for 0 ≤ k ≤ r (1.7)

which is a z-binomial coefficient. This gives a bijection between the lattice points in r∆d and

partitions fitting into an r×d rectangle, and establishes that the grading given here to a lattice

point eventually identifies this polynomial with the Poincaré polynomial of the Grassmannian

Gr(d, d+ r).

§2. The Dilation Polynomial Tr∆d
, r ≥ 1

We define the lexicographical order <lex on the set r∆d ∩ Zd≥0 of lattice points on r∆d as

follows: Let a = (a1, · · · , ad) and b = (b1, · · · , bd) be any two lattice points in r∆d ∩ Zd≥0. We

say a <lex b if, in the integer coordinate difference a − b ∈ Zd, the leftmost nonzero entry is

negative. As noted earlier, the set r∆d ∩ Zd≥0 of lattice points on r∆d is the integer solution

set of the inequality (1.3). It turns out that the upper bound r in (1.3) defines a relation on

the lattice points of the solution set which brings about the disjoint subdivisions of the integer

solution set.

Proposition 2.1 Let a and b be two lattice points in r∆d ∩ Zd≥0 such that a <lex b. The

relation a ∼ b defined by
∑d
i=1(ai − bi) = 0 is an equivalence relation.

The relation partitions the set r∆d ∩Zd≥0 into disjoint equivalence classes. Notice that the

integer solution set is complete with respect to the bound r in the sense that the sum of integer

coordinates of the lattice points in r∆d ∩ Zd≥0 takes all the values of the integers in the closed
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interval [0, r]. Completeness is one of the beautiful properties of the standard d-simplex not all

the lattice polytopes enjoy this feature.

Corollary 2.2 Any two lattice points in r∆d ∩Zd≥0 belong to the same class if and only if they

share the same sum of their respective integer coordinates.

Corollary 2.3 |r∆d ∩ Zd≥0/ ∼ | = r + 1.

Proof This follows corollary 2 and the fact that r∆d ∩ Zd≥0 is complete

r∆d ∩ Zd≥0/ ∼:= {Xk :

d∑
i=1

xi = k, 0 ≤ k ≤ r, ∀x = (x1, · · · , xd) ∈ Xk} (2.1)

and hence, |r∆d ∩ Zd≥0/ ∼ | = r + 1. �

Corollary 2.4 The class of the origin 0 ∈ r∆d ∩ Zd≥0 is a singleton set.

Proof The class of the origin denoted by X0 is given by

X0 = {x = (x1, · · · , xd) ∈ r∆d ∩ Zd≥0 :

d∑
i=1

xi = 0}. (2.2)

Suppose that there is a lattice point a which belongs to X0 such that a is not the origin.

Since the origin 0 is <lex than every lattice point a ∈ r∆d ∩ Zd≥0, so, 0 ∼ a implies that∑d
i=1(0−ai) < 0, This integer value is not in [0, r], therefore, there is no lattice point r∆d∩Zd≥0

which is equivalent to the origin apart from itself hence |X0| = 1. �

We now compute the size of each of the equivalence classes Xk such that 0 ≤ k ≤ r.

Theorem 2.5 Let A = r∆d ∩ Zd≥0 denote the set of lattice points on r∆d and let Xk ⊂ A be

the collection of lattice points whose sum of their integer coordinates is k such that 0 ≤ k ≤ r.

Then |Xk| =
(
k+d−1
d−1

)
.

Proof Notice that the chain of the following inclusions

{(0, · · · , 0)} ⊂ ∆d ∩ Zd≥0 ⊂ 2∆d ∩ Zd≥0 · · · ⊂ r∆d ∩ Zd≥0

implies the following chain

∆d ∩ Zd>0 ⊂ 2∆d ∩ Zd>0 ⊂ · · · ⊂ r∆d ∩ Zd>0.

The subcollection Xk is given by

Xk = {x = (x1, · · · , xd) ∈ A :

d∑
i=1

xi = k, 0 ≤ k ≤ r},
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X0 = {(0, · · · , 0)} and so |Xk| = 1. Observe that

Xk = k∆d ∩ Zd≥0/(k − 1)∆d ∩ Zd≥0, 2 ≤ k ≤ r

In fact, X ′ks define a partition of the set r∆d ∩ Zd≥0 of the lattice points on r∆d, that is,

r⋂
k=0

Xk = ∅,
r⋃

k=0

Xk = A

From Ehrhart theory, using (1.4),

|∆d ∩ Zd≥0| =
(

1 + d

d

)
= |X0 ∪X1|.

This implies that |X1| = d. Similarly,

|2∆d ∩ Zd≥0| =
(

2 + d

d

)
= |X0 ∪X1 ∪X2|,

which gives

|X2| =
(

2 + d

d

)
− d− 1 =

(
1 + d

d− 1

)
.

Continuing this way,

|Xk| =
(
k + d

d

)
−

k∑
j=1

(
k + d− j

d

)
=

(
k + d− 1

d− 1

)
. �

The disjoint union ∪Xk of subcollections Xk, 0 ≤ k ≤ r of the set r∆d ∩ Zd≥0 of lattice

points on r∆d defines a polynomial Tr(t) of degree r in variable t given by

Tr(t) =

r∑
k=0

(
k + d− 1

d− 1

)
tk. (2.3)

Figure 1 T4(t) = 1 + 3t+ 6t2 + 10t3 + 15t4
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We call Tr(t) the dilation polynomial of degree r identified with the dilation r∆d. This is

precisely the slicing of r∆d with hyperplanes perpendicular to the direction a := (1, · · · , 1) and

enumerate all the lattice points in the different layers. That is,(
k + d− 1

d− 1

)
= #{v ∈ r∆d ∩ Zd≥0 : v · a = k, 0 ≤ k ≤ r}. (2.4)

The dilation polynomial T4(t) for the 4th dilation of the standard 3-simplex is illustrated

in Figure 1.

Remark 2.6 Dilation polynomials identified with r∆2 and r∆3 are called triangular and

tetrahedral polynomials respectively.

Theorem 2.7 Let M = {Tr(t)}r=0 be the sequence of dilation polynomials of lattice points

counting on r∆d for r ≥ 0. Then its generating series G(t, z) =
∑
r=0 Tr(t)z

r is given by

G(t, z) =
z

(1− z)(1− tz)d
.

Proof Notice from the equation (2.3) that

Tr(t) = Tr−1(t) +
(r + 1) · · · (r + d− 1)

(d− 1)!
tr and

∑
r≥0

(r + 1) · · · (r + d− 1)

(d− 1)!
zr =

1

(1− z)d
.

G(t, z) =
∑
r≥0

Tr(t)z
r =

∑
r≥0

[
Tr−1(t) + (r+1)···(r+d−2)

(d−1)! tr−1
]
zr.

G(t, z) = zG(t, z) +
∑
r≥1

[
(r+1)···(r+d−1)

(d−1)! tr−1
]
zr,

and so

G(t, z) =
z

(1− z)(1− tz)d
. �

§3. The Cohomology ring of Grassmannian Gr(d, d+ r)

Let V be an n-dimensional complex vector space. The set of all maximal chains of subspaces

in V is called the flag variety F`n(C) of dimension n(n−1)
2 . That is,

F`n(C) := {V• := {0} ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn = V such that dimVi = i}.

The Grassmannian Gr(d, n) is the spacial case of the flag variety being the set of all d-

dimensional subspaces in V. Its dimension is d(n− d). There is a projection

π : F`n(C) −→ Gr(d, n)

from the full flag variety F`n(C) to the Grassmannian Gr(d, n) with π−1(Xλ(F•)) = Xw(λ)(F•),
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where Xλ(F•) is a Schubert variety in the Grassmannian Gr(d, n) defined as the closure of the

Schubert cell Cλ(F•) given by

Cλ(F•) = {Vd ∈ Gr(d, n) : dimVd ∩ Fn+i−λi = i, 1 ≤ i ≤ d},

with respect to the fixed flag F•:

F• := {0} ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn = V such that dimFi = i

The partition λ is called fitted in the sense that it has at most length d and each part cannot

exceed n− d. The permutation w(λ) identified with the partition λ = (λ1, · · · , λd) is given by

wi = i+ λd+1−i, 1 ≤ i ≤ d and wj < wj+1, d+ 1 ≤ j ≤ n. (3.1)

This permutation is called Grassmannian in that it has a unique descent by definition.

Every such permutation has the code c(w(λ)) of the form (w1 − 1, w2 − 2, · · · , wd − d, 0, . . . , 0)

which can be represented by (m1,m2, · · · ,md) by disregarding the string of zeros at the right

hand. It turns out that the partition λ indexing the Schubert variety Xλ can be recovered from

this code as λ = (mi1 ,mi2 , · · · ,mid) where mi1 ≥ mi2 ≥ · · · ≥ mid and mip 6= 0, 1 ≤ ip ≤ d.

Recall that for any permutation w in the symmetric group Sn, the code c(w) of w is the

sequence (c1(w), · · · , cn(w)) where ci(w) =| {j : 1 ≤ i < j ≤ n and w(i) > w(j)} |. For

instance the code c(w) of the permutation w = 315426 ∈ S6 is (2, 0, 2, 1, 0, 0). The string of

zeros at the right hand may be discarded. Notice that ci(w) ≤ n − i. The length `(w) of

w is #{(i, j) : w(i) > w(j), 1 ≤ i < j ≤ n}, the number of inversions in w, that is, the

sum of integer coordinates of the code of w. It is well known that the cohomology ring of the

Grassmannian Gr(d, n) is generated by the Schubert cycles σλ. These are Poincaré dual of the

fundamental classes in the homology of Schubert varieties. The Grassmannian Gr(d, n) admits

many important vector bundles, most importantly there is a universal short exact sequence:

0 −→ S −→ Cn×Gr(d, n) −→ Q −→ 0 of bundles on Gr(d, n) which makes it easy to compute

the Chern class c(Q) of the quotient bundle Q on the Grassmannian Gr(d, n). Recall that Q
is a globally generated vector bundle of rank r := n − d and all its global sections are from

the trivial bundle Cd+r × Gr(d, d + r). The total Chern class is the sum over all the one-row

partitions inside the rectangle �r×d. That is,

c(Q) = 1 + σ + σ + · · ·+ σ ··· 1×r
. (3.2)

It turns out that the set of all one-row Young diagrams indexing the multiplicative gener-

ators of the cohomology of the Grassmannian Gr(d, d+ r) is deeply connected with the lattice

points of r∆d. Let Cd,r be the set of row Young diagrams with at most r boxes and adjoin the

empty set φ. That is,

Cd,r = {�1×k : 1 ≤ k ≤ r} ∪ ∅.

The filling of the boxes of the row Young diagrams in Cd,r using the numbers in [d] :=

{1, · · · , d} is semi standard, that is, the numbers weakly increase from the left to the right. We
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denote the collection of all such fillings by Cdd,r and call it the d-filling set of the dilation r∆d.

For instance, the 3-filling set C3
3,3 associated the second dilation 3∆3 of the standard 3-simplex

is the following collection

.
,

1
,

2
,

3
,

1 1
,

1 2
,

2 2
,

1 3
,

2 3
,

3 3
,

1 1 1
,

1 1 2
,

1 2 2
,

2 2 2
,

1 1 3
,

1 3 3
,

3 3 3
,

2 2 3
,

2 3 3
,

1 2 3 .

These 20 semi standard Young tableaux can be organized in terms of their defining Young

diagrams. It turns out that this arrangement can be expressed as a polynomial, given by

T3(t) = 1 + 3t+ 6t2 + 10t3. This is the graded semi-standard polynomial of degree 3 illustrated

in Figure 2.

2 3

.

1

1 1

2 3

1 2
1 3

2 2

3 3

1 1 1

3 3 3

2 2 2

1 1 2

1 2 2

2 2 3
2 3 3

1 1 3

1 3 3
1 2 3

Figure 2. T3(t) = P3(t) = 1 + 3t+ 6t2 + 10t3

Theorem 3.1 (i) The size Ld(r) of the d-filling set Cdd,r is
(
r+d
d

)
and the sequence (Ld(r))∞r=0

of cardinalities as r grows is recorded by the generating function

P (Cd(d,r), z) =
1

(1− z)d+1
.

(ii) More is true, there is a graded counting polynomial of the semi standard tableaux in

Cdd,r given by

Pr(t) =

r∑
k=0

(
k + d− 1

d− 1

)
tk
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that is, a k-box row diagram gives
(
k+d−1
d−1

)
semi standard Young tableaux. This has a generating

function

G(t, z) =
z

(1− z)(1− tz)d
.

Theorem 3.2 There is a bijection T 7→ v(T ) between the set Cdd,r and the set r∆d ∩Zd≥0 of the

lattice points of the dilation r∆d. Furthermore, the semi-standard polynomial Pr(t) is precisely

the dilation polynomial Tr(t) identified with r∆d.

Proof To each semi standard tableau T ∈ Cd(d,r) there exists a unique exponent vector

v(T ) := (v(T )1, · · · , v(T )d) in which the coordinate v(T )j is the number of appearances of j in

T , 1 ≤ j ≤ d. This is a bijection.

The number of semi standard fillings of each of the row diagram with shape λ = (k), 0 ≤
k ≤ r using the elements of the set {1, . . . , d} has a well known closed formula. Notice that for

a fixed point a = (1, · · · , 1) the following identity holds

∏
1≤i<j≤d

λi − λj + j − i
j − i

=

(
k + d− 1

d− 1

)
= #{v ∈ r∆d ∩ Zd≥0 : v · a = k, 0 ≤ k ≤ r}

Therefore, the semi-standard polynomial Pr(t) can be viewed as the dilation polynomial Tr(t).

The bijection is a polynomial preserving map, see Figure 2. �

§4. Grassmannian Monomials

It is clear from the Theorem 3.1 that every standard tableau T ∈ Cd(d,r) defines a monomial

tv(T ) where v(T ) := (v(T )1, · · · , v(T )d), that is,

tv(T ) :=

d∏
j=1

t# times j appears in T
j , where v(T ) ∈ r∆d ∩ Zd≥0. (4.1)

For instance, the monomial defined by T = 1 1 2 3 3 ∈ C4
(4,5) is given by ta =

t21t2t
2
3 where a = (2, 1, 2, 0). We call such monomials in Cd(d,r) Grassmannian because they

encode the data of indexing partitions of Schubert varieties in the Grassmannian Gr(d, d+ r).

We denote these monomials by W r
d , that is,

W r
d := {ta11 · · · t

ad
d :

d∑
i=1

ai ≤ r, 0 ≤ ai ≤ r}

Proposition 4.1 Let W r
d and W r′

d be two Grassmannian monomial sets such that r ≤ r′. Then

W r
d ⊆W r′

d .

Proposition 4.2 Every monomial ta ∈ Z[t1, · · · , td] is Grassmannian.

Proof It suffices to produce a Grassmannian set W r
d containing ta. By (4.1) there is a
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semi-standard tableau T which encodes the exponent vector a and this implies that there exists

r ∈ N such that T is an element of the d- filling set Cd(d,r), so ta belongs to the Grassmannian

monomial set W r
d . �

Corollary 4.3 If r =
∑d
i=1 ai, where ai is an integer coordinate of a then the Grassmannian

set W r
d is the smallest set containing the monomial ta.

It is important to quickly point out that the sum Pr(t1, . . . , td) of all the monomials in

W r
d , that is,

Pr(t1, · · · , td) =
∑

T∈Cd
(d,r)

d∏
j=1

t# times j appears in T
j (4.2)

is deeply connected with a polynomial representation (V, ρ) of the general linear group GLd(C)

where V :=
⊕r

k=0 Symk(Cd) is the space of the direct sum of homogeneous symmetric poly-

nomials of degree k in d variables. Let C[X] := C[x11, x12 · · · , xdd] be the ring of polynomial

functions on d × d matrices. There is an action of G = GLd(C) on C[X] by conjugation. The

character of the polynomial representation (V, ρ) is the polynomial χρ ∈ C[X] given by the trace

of the matrix ρ(X). Recall that the character χρ of every polynomial representation (V, ρ) lies

in the invariant ring C[X]G. Interested reader can consult [15] and [17].

Theorem 4.4 The character χV of V :=
⊕r

k=0 Symk(Cd) as a polynomial representation ρ of

the general linear group GLd(C) is Pr(t1, · · · , td), that is,

χV =
∑

T∈Cd
(d,r)

d∏
j=1

t# times j appears in T
j

The sum ranging over all the semi standard fillings of the row diagrams with at most r boxes.

Proof Let t1, · · · , td be eigenvalues of a generic d × d matrix X. The map C[X]G −→
C[t1, t2, · · · , td]Sn defined byf 7→ f(diag(t1, . . . , td)) is an isomorphism. Set λ = (k) since k′s

define the rows diagrams with at most r boxes, so the image of the character fρ(X) is

r∑
k=0

det(tλi+d−ji )1≤i,j≤d

det(td−ji )1≤i,j≤d
. �

Corollary 4.5 The dimension of the vector space V :=
⊕r

k=0 Symk(Cd) is χV (1, 1, · · · , 1) :=

|r∆d ∩ Z≥0|, the number of lattice points of the dilation r∆d.

Proof The Grassmannian set W r
d spans the vector space V :=

⊕r
k=0 Symk(Cd). �

Now to every monomial ta ∈ Z[t1, · · · , td] we associate a weight wa defined by

wa =

d∑
k=1

kak. (4.3)
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It turns out that wa admits two important partitions λ, λ∗ ` wa which can be identified with the

monomial ta . These partitions, λ and λ∗ are called α-partition and β-partition respectively. A

partition λ ` wa is said to be the α-partition of the monomial ta11 · · · t
ad
d if the number of parts

of size i in λ is ai, 1 ≤ i ≤ d. The length `(λ) of α-partition is a1 + · · ·+ ad. The β partition

λ∗ = (λ∗1, · · · , λ∗d) of wa is such that λ∗k =
∑d
i≥k ai, 1 ≤ k ≤ d and its length is d. For instance,

the α-partition associated with the monomial t31t
2
2t

3
3t

2
4 ∈ Z[t1, t2, t3, t4] is (4,4,3,3,3,2,2,1,1,1)

while its β partition i λ∗ is (10, 7, 5, 2). In fact, α and β partitions identified with the monomial

ta can be realized in terms of the sum of the entries of the d × d upper triangular matrix Ma

associated with the exponent vector a = (a1, · · · , ad) of the monomial, that is,

Ma =



a1 a2 a3 · · · ad

a2 a3 · · · ad

a3 · · · ad
...

ad


(4.4)

The sum of the entries in the column k divided by k is the number of parts of size k in the

α- partition λ of wa. The β partition λ∗ = (λ∗1 · · ·λ∗d) of wa is such that λ∗k is the sum of the

entries in the row k where 1 ≤ k ≤ d. For instance, the 4× 4 matrix Ma corresponding to the

monomial t31t
2
2t

3
3t

2
4 ∈ Z[t1, t2, t3, t4] is

Ma =


3 2 3 2

2 3 2

3 2

2


so the α-partition λ and the β-partition λ∗ identified with the matrix Ma are 13223342 and

(10, 7, 5, 2) respectively.

Proposition 4.6 Let λ be the α-partition of wa associated with the monomial ta = ta11 · · · t
ad
d ∈

Z[t1, · · · , td]. Then its corresponding β-partition λ∗ is the transpose of λ and vice versa.

Proof Let λ = (λ1, · · · , λa1+···+ad) and λ∗ = (λ∗1, · · · , λ∗d). It is obvious that these parti-

tions satisfy the following identity

a1+···+ad∑
k=1

(2k − 1)λk =

d∑
k=1

λ∗2k . �

It would be interesting to characterize and study all the monomials for which α-partition

and β-partition coincide. This amounts to the characterization of all self conjugate partitions.

Recall that for all n ∈ N such that n > 2 there is a bijection between the set of self conjugate

partitions of n and the set of all distinct odd parts partitions of n. For instance, a square free
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monomial of the form t1t2 · · · td admits the stair case partition (d, d − 1, · · · , 1), this is deeply

connected with the distribution of triangular numbers in the set N of natural numbers. We give

a few other examples of such monomials.

Example 4.7 Some monomials following for which α and β-partitions coincide:

(i) All monomials of the form t
d
2
d
2

t
d
2

d ∈ Z[t1, t2, · · · , td] for even d;

(ii) All monomials of the form t1t
d−2td ∈ Z[t1, t2, · · · , td];

(iii) All monomials of the form td−1
1 td ∈ Z[t1, t2, · · · , td];

(iv) All monomials of the form td−2td−1t
d−2
d ∈ Z[t1, t2, · · · , td].

Lemma 4.8 Let λ∗ = (λ1, · · · , λd) be the β-partition identified with the monomial ta11 · · · t
ad
d ∈

Z[t1, t2, · · · , td]. Then the exponent vector (a1, · · · , ad) is equivalent to (λ1−λ2, λ2−λ3, · · · , λd−1−
λd, λd).

Proof It follows from the construction of the β partition λ∗ from the exponent vector

(a1, · · · , ad). �

Theorem 4.9 Let ta ∈ W r
d be a Grassmannian monomial associated with exponent vector

a ∈ r∆d ∩ Zd≥0. If a partition λ∗ is the β-partition identified with ta then the length `(w(λ∗))

of the Grassmannian permutation w(λ∗) is the weight wa.

Proof The code c(w(λ∗)) of Grassmannian permutation w(λ∗) is of the form (m1,m2, · · · ,
md, 0, 0, · · · , 0). The rearrangement of m1,m2, · · · ,md in weakly decreasing order yields the fit-

ted partition λ∗ = (λ∗1, · · · , λ∗d). The sum of entries of the code c(w) = (c1(w), c2(w), · · · , cn(w))

of any permutation w is the length `(w) of the partition, since each entry ci(w) is the number

of inversions associated to the value wi in the position i. Hence the length `(w(λ∗)) of w(λ∗)

is the size |λ∗| of λ∗. Next we show that the weight wa of the exponent vector a = (a1, · · · , ad)
of the Grassmannian monomial ta = ta11 · · · t

ad
d is |λ∗|. From Lemma 3.12 ai = λ∗i − λ∗i+1, 1 ≤

i ≤ d− 1, ad = λ∗d. Therefore, the weight wa =
∑d−1
i=1 i(λ

∗
i − λ∗i+1) + dλ∗d = |λ∗|. �

Corollary 4.10 Every β-partition λ∗ identified with each of the monomials ta ∈ W r
d fits into

the r × d rectangle �r×d.

Proof It is sufficient to establish that the parts of λ∗ cannot exceed r and the length

`(λ∗) of λ∗ is d. Notice that the exponent vector a is a lattice point of r∆d and by definition

a1 + · · · + ad ≤ r. Therefore each part λ∗k of λ∗ is at most r and length `(λ∗) is d by the

definition of λ∗. �

Corollary 4.11 The set of β-partitions λ∗ identified with monomials in W r
d index the Schubert

varieties in the Grassmannian Gr(d, d+ r), giving a bijection between lattice points in r∆d and

partitions fitting into an r × d rectangle.

The weight wa defined in the equation (3.2) gives another refinement Phr∆d
(z) of the Ehrhart
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polynomial of r∆d with respect to a fixed point h = (1, 2, · · · d).

Phr∆d
(z) =

dr∑
m=0

Amz
m. (4.5)

where Am = #{a ∈ r∆d ∩ Zd≥0 : a · h = m, 0 ≤ m ≤ dr}, that is, the number of exponent

vectors a which share the weight m. We call Phr∆d
(z) the weighted polynomial associated with

the dilation r∆d.

Lemma 4.12 The polynomial Phr∆d
(z) =

∑dr
m=0Amz

m specializes at z = 1 to the Ehrhart

polynomial L∆d
(r).

Remark 4.13 Notice that Am is precisely the number of lattice points in the intersection of

the dilation r∆d with the hyperplane Hm perpendicular to the direction h := (1, 2, · · · , d). It

is also interesting to note that the grading given here to a lattice point eventually identifies the

weighted polynomial Phr∆d
(z) with the Poincaré polynomial of the Grassmannian Gr(d, d+ r).

Theorem 4.14 Let Phr∆2
(z) be the weighted polynomial of the lattice points of the dilation r∆d

. Then the Poincaré polynomial P (Gr(d, d+ r), t) of the Grassmannian Gr(d, d+ r) coincides

with the weighted polynomial Phr∆d
(z).

Proof It is well known from the Borel presentation of the cohomology ring H∗(Gr(d, d +

r),Z) of the Grassmannian Gr(d, d+ r) that the Poincaré polynomial P(Gr(d, d+ r), t) is given

by the following Gaussian polynomial

(1− t)(1− t2) · · · (1− td+r)

(1− t) · · · (1− td)(1− t) · · · (1− tr)
.

This is combinatorially simplified as ∑
λ⊆�d×r

t|λ|

where |λ| is the number of boxes in the Young diagram of shape λ. The size |λ| coincides with

the length `(w(λ)) (the number of inversions) of the Grassmannian permutation w(λ) identified

with λ in the equation (3.1). Notice that |λ| ≤ dr, therefore, It follows from the Theorem 4.9

that |λ| is the weight wa of the monomial ta ∈ W r
d , a ∈ r∆ ∩ Zd≥0, therefore,

∑
λ⊆�2×r

t|λ| is

precisely the polynomial
∑dr
m=0Amz

m. �

Question 4.15 Does the set r∆d ∩ Zd≥0 encode some data about the degree and the Hilbert

polynomial of Gr(d, d+ r)?

The goal of this paper is the general study of some combinatorial geometry of the lattice

points r∆d ∩ Zd≥0 associated with r∆d. That is, we evoke some geometric information about

these lattice points. In particular, we answer the following questions:

(i) What kind of geometric information can be extracted from these integral solutions to

(1.4)?
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(ii) What kind of combinatorial object parameterizes this solution set?

(iii) Is there an interesting polynomial Pr which keeps track of the integral points? In other

words, Is there a generic polynomial of degree r whose exponents of its monomials with nonzero

coefficients satisfy (1.3)?

Theorem 4.16 Every linear polynomial function of the form y = ax + 1 such that a ∈ N is

the fundamental polynomial of a certain standard d-simplex whose dimension is the slope of the

polynomial function.

Proof Consider the family G of‘Cartesian graphs of all linear functions of the form y = ax+1

such that a ∈ N. It is obvious that these graphs are parametrized by the x-intercepts since

they all share the same y-intercept (0, 1). Consider the sequence E = (− 1
a )a=1 of x-intercepts.

E is strictly monotone decreasing and lies in the interval [−1, 0). There is a bijection a 7→ − 1
a ,

between the sequence K = (∆a)a=1 of standard a-simplices and the sequence E of x-intercepts

of G. As K diverges, E converges. �

νf1

f2

f3

Figure 3. 3-Simplex

The sum of all the monomials in W r
d is called the symbolic polynomial corresponding to

the d-filling set Cd(d,r). That is,

Pr(t1, · · · , td) =
∑

T∈Cd
(d,r)

twt(T ). (4.6)

For every lattice point a ∈ r∆2 ∩ Z2
≥0, there is a corresponding monomial ta in the poly-

nomial ring Z[t1, t2] given by ta := ta11 ta22 . We call these monomials Grassmannian and denote

their collection by W r
2 ,that is,

W r
2 = {ta11 ta22 ∈ Z[t1, t2] : (a1, a2) ∈ r∆2 ∩ Z2

≥0}. (4.7)

To every monomial ta ∈W r
2 we associate a weight wa defined by

wa =

d∑
k=1

kak. (4.8)
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It turns out that wa admits two important partitions λ, λ∗ ` wa which can be identified with

the monomial ta . These partitions, λ and λ∗ are called α-partition and β-partition respectively.

A partition λ ` wa is said to be the α-partition of the monomial ta11 ta22 ∈ W r
2 if the number

of parts of size i in λ is ai, 1 ≤ i ≤ 2, while the β partition λ∗ = (λ∗1, λ
∗
2) of wa is such that

λ∗k =
∑2
i≥k ai, 1 ≤ k ≤ 2. This is not exclusively for only Grassmannian monomial, it is true

for all monomials. For instance, given a monomial t21t
3
2. The corresponding alpha-partition λ

and β-partition λ∗ are (2,2,2,1,1) and (5,3) respectively.

Corollary 4.17 The triangular polynomial Tr(t) =
∑r
c=0(c + 1)tc specialises at t = 1 to the

Ehrhart polynomial
(
r+2

2

)
.

We now give a combinatorial construction of a certain discrete object Cdd,r identified with

the lattice points of r∆d which we call the 3-filling set of the dilation. It describes certain

fillings of a row Young diagram with the numbers from the set [d] := {1, · · · , d}.

Theorem 4.18 The size Ld(r) of the d-filling set Cdd,r associated with the lattice points of the

rth dilation r∆d of the standard d-simplex is
(
r+d
d

)
. Moreover, the sequence (Ld(r))∞r=0 as r

grows is recorded by the generating function

P (Cd(d,r), z) =
1

(1− z)d+1

Proof The size is given by
∑r
k=0

∏
1≤i<j≤d

λi−λj+j−i
j−i since these are the semi standard

fillings of the Young diagrams of shapes λ = (k) 0 ≤ k ≤ r using the numbers from the set

{1, · · · , d} and hence
(
r+d
d

)
. The sequence (Ld(r))∞r=0 is given by triangular numbers which is

well known. It is obvious that the generating series is in the coefficient of the polynomial
(
r+d
d

)
,

that is, the general term of the sequence. Therefore, it is given by

∑
r≥0

(
r + d

d

)
zr =

1

(1− z)d+1
. �

Corollary 4.19 There is a bijection between the set Cdd,r of semi standard fillings of the row

Young diagrams with at most r boxes using the numbers from [d] and the set r∆d ∩ Zd≥0 of the

lattice points in the rth dilation of the standard d-simplex.

This bijection can be clearly understood in the language of monomials. This is the subject

of discussion in what follows.

The symbolic polynomial Pr(t1, · · · , td) is deeply connected with a polynomial represen-

tation (V, ρ) of the general linear group GLd(C) where V :=
⊕r

k=0 Symk(Cd). The space of

homogeneous symmetric polynomials of degree k in d variables is denoted by Symk(Cd). Let

C[X] := C[x11, x12 · · · , xdd] be the ring of polynomial functions on d× d matrices. There is an

action of G = GLd(C) on C[X] by conjugation. The character of a polynomial representation

(V, ρ) is the polynomial χρ ∈ C[X] given by the trace of the matrix ρ(X). Recall that the

character χρ of every polynomial representation (V, ρ) lies in the invariant ring C[X]G.
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Theorem 4.20 The character χV of V :=
⊕r

k=0 Symk(Cd) as a polynomial representation ρ

of the general linear group GLd(C) is the symbolic polynomial

χV =
∑

T∈Cd
(d,r)

d∏
j=1

t# times j appears in T
j

The sum ranging over all the semi standard fillings of the row diagrams with at most r boxes.

Proof Let t1, · · · , td be eigenvalues of a generic d × d matrix X. The map C[X]G −→
C[t1, t2, · · · , td]Sn defined byf 7→ f(diag(t1, · · · , td)) is an isomorphism. Set λ = (k) since k′s

define the rows diagrams with at most r boxes, so the image of the character fρ(X) is

r∑
k=0

det(tλi+d−ji )1≤i,j≤d

det(td−ji )1≤i,j≤d
. �

Corollary 4.21 The dimension of the vector space V :=
⊕r

k=0 Symk(Cd) given by the value

of χV (1, 1, · · · , 1) is the number of lattice points of the dilation r∆d.

Proof The number of semi standard tableaux T ∈ Cd(d,r) defined by the set of k-box row

diagrams with at most r boxes. That is,

r∑
k=0

∏
1≤i<j≤d

λi − λj + j − i
j − i

where λ = (k) 0 ≤ k ≤ r. This is precisely the number of monomials which constitute the

character χV of each of these has coefficient 1. The value of χV (1, 1, · · · , 1) is
(
r+d
d

)
. �

1

t1
t2

t3

t21
t1t2

t22

t2t3

t23
t1t3

t31
t21t2 t1t

2
2 t32

t22t3

t2t
2
3

t33t1t
2
3t21t3

t1t2t3

t41
t31t2 t21t

2
2 t1t

3
2 t42

t32t2

t22t
2
3

t2t
3
3

t43t1t
3
3

t21t
2
3t31t3

t1t
2
2t3t21t2t3

t1t2t
2
3

Figure 4. The monomial basis elements of W 4
3

The elements of W r
d which span the vector space V :=

⊕r
k=0 Symk(Cd) encode the index-
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ing partitions of the Schubert cycles of the cohomology ring of the Grassmanian Gr(d, d + r)

and therefore they are called Grassmannian monomials. This will dominate the discussion

in what follows but we shall first describe in general how a monomial encodes information

about partitions in the next section. Recall that partition λ of n ∈ N denoted λ ` n is a list

λ = (λ1 ≥ λ2 ≥ · · · ≥ λk) such that λ1 + λ2 + · · · + λk = n. The length k of the partition λ

is denoted by `(λ) and each λi is called a part of the partition λ. Associated to every parti-

tion λ ` n is its conjugate partition, λt = (λt1, · · · , λtm), which is also a partition of n where

λti counts the parts of λ which are at least i. For example, the conjugate λt of the partition

λ = (4, 4, 3, 3, 3, 2, 2, 1, 1, 1) is given by λt = (10, 7, 5, 2). A partition is said to be self conjugate

if it coincides with its conjugate.

§5. The α and β Partitions of Monomial ta11 · · · t
ad
d

Let Z[t] := Z[t1, · · · , td] be the polynomial ring over Z in the variables t1, · · · , td. We recall that

by associating a monomial ta = ta11 · · · t
ad
d with its d-tuple exponent vector a = (a1, · · · , ad) ∈

Zd≥0, a bijection between monomials in Z[t1, · · · , td] and exponent vectors in Zd≥0 is realized.

We now construct the weighted polynomial ΓPr parameterized by the exponent vectors of

the monomials the symbolic polynomial Pr(t1, . . . , td) identified with the d-filling set Cd(d,r) .

Recall that this is the character χV of the vector space V :=
⊕r

k=0 Symk(Cd) as a polynomial

representation of the general linear group GLd(C) and notice that these exponent vectors are

precisely r∆d ∩ Zd≥0. Let the weight wa defined in 5.1 be identified with each of the vectors.

The identification realizes the weighted polynomial ΩPr

ΩPr (z) =

dr∑
m=0

Amz
m, (5.1)

where Am is number of exponent vectors of the monomials of Pr(t1, · · · , td which share the

same weight m. For instance, the weighted polynomial ΩP3
parameterized by the exponent

vectors of the symbolic polynomial P3(t1, t2, t3) corresponding to C3
(3,3) is given by

ΓP3
(z) = 1 + z + 2z2 + 3z3 + 3z4 + 3z5 + 3z6 + 2z7 + z8 + z9.

This combinatorially defined polynomial from the lattice points of the dilation r∆d of the

standard d-simplex ∆d has an interesting interpretation in the cohomology of the Grassmannian

Gr(d, d+ r).

The projection π induces a monomorphism π∗ at the level of cohomology.

π∗ : H∗(Gr(d, n),Z) −→ H∗(F`n(C),Z)

which takes cycle σλ to the cycle σw(λ). The cohomology ring of the Grassmannian Gr(d, n)

is generated by the Schubert cycles σλ. These are Poincaré dual of the fundamental classes in

the homology of Schubert varieties. Denote by Γ, the Q-algebra of homogeneous symmetric

functions in n variables x1, x2, · · · , xn. It well known that Γ is generated by Schur polynomials
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sλ among others, see [5], [8], [9] and [14]. By specializing xi = 0 for d+ 1 ≤ i ≤ n, let Γd be the

space of homogenous symmetric polynomials in variables x1, · · · , xd, so Γd has the following

presentation

Γd ∼= Γ/〈sλ : λ ( �d×n−d〉

The cohomology ring H∗(Gr(d, n),Z) of the Grassmannian Gr(d, n) by Borel presentation

is given by

H∗(Gr(d, n),Z) ∼= Γ/〈sλ : λ ( �d×n−d〉.

The interested readers may consult the following references [2], [4],[6],[7] and [12].

Recall that the Poincaré polynomial P (X, t) associated with a given n-dimensional real

manifold X is defined as

P (X, t) =

n∑
i=0

bi(X)ti

where bi(X) = dimRH
i(X,R) is the i-th Betti number of X. This polynomial carries a lot of

information about the topological and geometric invariants of X. It is well known that the

cohomology ring H∗(Gr(d, d+ r),Z) has a polynomial description, that is,

H∗(Gr(d, d+ r),Z) ∼= Z[e′1, · · · , e′d, e′′1 , . . . , e′′r ]/〈e1, · · · , ed+r〉

where e′i and e′′i are the i-th elementary symmetric functions in x1, · · · , xd and xd+1, · · · , xd+r

respectively and each xi is the Chern class for the canonical bundle, so the Poncaré polynomial

P (Gr(d, d+ r), t) is the following Gaussian polynomial

(1− t)(1− t2) · · · (1− td+r)

(1− t) · · · (1− td)(1− t) · · · (1− tr)

Theorem 5.1 Let Pw(z) be the weighted polynomial of the lattice points of the dilation r∆d of

the standard d-simplex. Then the Poincaré polynomial P (Gr(d, d+ r), t) of the Grassmannian

Gr(d, d+ r) coincides with the weighted polynomial Pw(z).

Example 5.2 The lattice points (0, 0, 0), (1, 0, 0), (0, 1, 0), (2, 0, 0), (1, 1, 0), (0, 0, 1), (1, 0, 1)(0, 1, 1),

(0, 0, 2)(0, 2, 0), (3, 0, 0), (2, 0, 1), (1, 2, 0), (0, 3, 0), (0, 2, 1), (0, 1, 2), (0, 0, 3), (1, 0, 2), (2, 0, 1), (1, 1, 1)

of 3∆3 graded by weights give the polynomial

1 + t+ 3t2 + 3t3 + 3t4 + 3t5 + 3t6 + 3t7 + t8 + t9,

which is the Poincaré polynomial of the Grassmannian Gr(3, 6) so 3∆3∩Z3
≥0 encodes the Young

poset of Gr(3, 6) shown in Figure 5.

Corollary 5.3 Let λ∗ be the β-partition identified with the monomial ta ∈ W r
d then the

length `(w(λ∗)) of the Grassmannian permutation w(λ∗) is the weight wa of the exponent vector

a ∈ r∆d ∩ Zd≥0.
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§1. Introduction

Ramanujan [43] recorded 17 hypergeometric series like representations for 1/π in which he gave

the brief proof of first three series which are belong to the classical theory of elliptic functions.

J. M. Borwein and P. B. Borwein were first proved all the 17 identities in 1987 [17]. Further they

derived more series for 1/π [18], [19], [22]. Also many authors derived several new Ramanujan

type series for 1/π as well as proved the existing identities in the subsequent years.

B. C. Berndt and H. H. Chan used Eisenstein series identities to prove Ramanujan type

series for 1/π in their papers [12] and [13, where the latter one is coauthored with Wen-Chin

Liaw. On the basis of the idea of above two papers and with the guidance of Chan, Baruah

and Berndt used Eisenstein series identities of the form

−P (q2) + nP (q2n) and P (q2) + nP (q2n)

for n = 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 17, 18, 22 and 25, to prove series of Ramanujan type

series for 1/π in [3] and [4], by invoking the hints of Ramanujan. Further, Baruah and N. Nayak

worked on Ramanujan type series for 1/π using Eisenstein series identities of the form −P (−q)+

nP (−qn) and P (−q) +nP (−qn) for n = 3, 5, 7, 9, and 25. Motivated by this, using Clausen’s

formulas and Eisenstein series representations of the form −P (q) + nP (qn) and P (q) + nP (qn)

for n = 2, 3, 4, 5, 6, 7, 8, 9 and 10, we proved 9 series out of 17 series that are recorded by

Ramanujan in his famous paper [43] and some other existing series. Besides, we have recorded

some new Ramanujan type series for 1/π. A brief details of the existing identities which are

1Supported by Grant No. 191620127010/(CSIR-UGC NET DEC.2019) by the funding agency University
Grants Commission, Government of India under Joint CSIR-UGC JRF scheme.

2Received February 8, 2022, Accepted March 16, 2023.
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proved in the Sections 3-11 is given in the below table.

Sl.

No.
Authors Equations

1. S. Ramanujan [43], [41]
(3.2), (4.3), (5.4), (6.1), (6.5), (8.4), (9.1),

(9.6),(10.4)

2. G. Bauer [7] (3.2)

3. J. Guillera [36] (7.2)

4. G. H. Hardy [39], [45] (3.2)

5. W. N. Bailey [2] (3.2)

6.
J. M. Borwein and P. B. Bor-

wein [17], [18]
(3.4), (7.5)

7.
B. C. Berndt, H. H. Chan and

W. -C. Liaw [13]
(7.4), (9.5)

8.
N.D.Baruah and B.C.Berndt

[3]

(3.1), (3.2), (3.3), (3.4), (4.1), (4.2), (4.4), (5.3),

(5.4), (6.1), (6.2), (6.3), (6.4), (6.5), (7.1), (7.2),

(7.4), (7.5), (8.3), (8.4), (9.1), (9.2), (9.3), (9.4),

(9.5), (9.6), (10.2), (10.4)

The Section 2 contains preliminary definitions and results, in which (2.10) and (2.18) plays an

important role in proving our results in the Sections 3-11, where (2.18) seems to be new.

§2. Preliminaries

Throughout the sequel, we use the following notation:

(a; q)∞ :=

∞∏
n=0

(1− aqn),

where a and q are complex numbers with |q| < 1. For |ab| < 1, Ramanujan’s general theta

function is defined by

f(a, b) :=

∞∑
n=−∞

a
n(n+1)

2 b
n(n−1)

2 = (−a; ab)∞(−b; ab)∞(ab; ab)∞.

Further, Ramanujan [9, p36] considers following three special cases of f(a, b):

ϕ(q) := f(q, q) = 1 + 2

∞∑
n=1

qn
2

=
(−q; q2)∞(q2; q2)∞
(q; q2)∞(−q2; q2)∞

,
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ψ(q) := f(q, q3) =

∞∑
n=0

q
n(n+1)

2 =
(q2; q2)∞
(q; q2)∞

,

and

f(−q) := f(−q,−q2) =

∞∑
n=−∞

(−1)nq
n(3n−1)

2 .

After Ramanujan, we define

χ(q) := (−q; q2)∞.

The generalized hypergeometric functions pFp−1, p ≥ 1, are defined by

pFp−1[a1, a2, · · · , ap; b1, b2, · · · , bp−1; x] :=
∞∑
n=0

(a1)n(a2)n · · · (ap)n
(b1)n(b2)n · · · (bp−1)n

xn

n!
,

where |x| < 1, (a)n := a(a + 1) · · · (a + n − 1) and (a)0 := 1. Ramanujan recorded the

following identities in his Second Notebook [44] which give the relationship between hyperge-

ometric series and theta functions. Moreover these identities are frequently used to derive our

results. A proof of the below identities can be seen in [9, pp 120-124].

Lemma 2.1 If

q = e−y, y = −π 2F1[ 1
2 ,

1
2 ; 1 ; 1− x ]

2F1[ 1
2 ,

1
2 ; 1 ; x ]

and z = 2F1

[
1

2
,

1

2
; 1 ; x

]
, (2.1)

then

ϕ(q) =
√
z, (2.2)

ϕ(−q) =
√
z(1− x)1/4, (2.3)

ψ(q) =

√
z

2

(
x

q

)1/8

, (2.4)

ψ(q2) =

√
z

2

(
x

q

)1/4

, (2.5)

ψ(−q) =

√
z

2

(
x(1− x)

q

)1/8

, (2.6)
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f(−q) =

√
z

21/6
(1− x)1/6

(
x

q

)1/24

, (2.7)

f(−q2) =

√
z

21/3

(
x(1− x)

q

)1/12

, (2.8)

χ(−q) = 21/6(1− x)1/12
( q
x

)1/24

, (2.9)

and

dy

dx
= − 1

x(1− x)z2
. (2.10)

Let P (q) denote Ramanujan’s Eisenstein series defined by

P (q) := 1− 24

∞∑
k=1

kqk

1− qk
, |q| < 1. (2.11)

Further, Ramanujan [9, p.129] gave the representation for P (q) in terms of x, y and z:

P (q) := P (e−y) = (1− 5x)z2 + 12x(1− x)z
dz

dx
. (2.12)

In the sequel, set

q := e−π/
√
n, xn := x(e−π

√
n) and zn := z(e−π

√
n). (2.13)

From (2.2), (2.3), (2.5), (2.13) and [44, Entry 27, Chapter 16], we obtain that

x1/n := x(e−π/
√
n) = 1− xn and z1/n := z(e−π/

√
n) =

√
nzn. (2.14)

The number xn is called classical singular modulus. We often used the values of these

numbers recorded by Ramanujan in [44]. For sometimes we borrow from [11] and [42]. Now

employing (2.13) and (2.14) in (2.12) to obtain the following identities:

P (q) := P (e−π/
√
n) = (1− 5x1/n)z2

1/n + 12x1/n(1− x1/n)z1/n

dz1/n

dx1/n
. (2.15)

and

P (qn) := P (e−π
√
n) = (1− 5xn)z2

n + 12xn(1− xn)zn
dzn
dxn

. (2.16)

The following theorem seems to be new and it produces the representations of the form

P (q) + nP (qn), and with the help of Eisenstein series identities of the form −P (q) + nP (qn)

[44, 47], we are able to derive some new Ramanujan-type series for 1/π as well as an alternate
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proof for the existing identities.

Theorem 2.2 we have

z1/n

dz1/n

dx1/n
= −nzn

dzn
dxn

+

√
n

πxn(1− xn)
(2.17)

and

P (e−π/
√
n) + nP (e−π

√
n) =

12
√
n

π
− 3nz2

n. (2.18)

Proof of (2.17) From (2.14), we have

z2
1/n = nz2

n. (2.19)

Differentiating (2.19) with respect to x1/n and using chain rule, we deduce that

2z1/n

dz1/n

dx1/n
= 2nzn

dzn
dxn

dxn
dx1/n

+ z2
n

dn

dy

dy

dx1/n
. (2.20)

From (2.14), we obtain that

dxn
dx1/n

= −1. (2.21)

From (2.1) and (2.13), we easily seen that

y =
π√
n
. (2.22)

Differentiating (2.22) with respect to n, we find that

dn

dy
=
−2n
√
n

π
. (2.23)

Employing (2.14) in (2.10) to obtain

dy

dx1/n
= − 1

xn(1− xn)nz2
n

. (2.24)

Substituting (2.21), (2.23) and (2.24) into (2.20), we arrive at (2.17). �

Proof of (2.18) By employing (2.14) and (2.17) in (2.15), we find that

P (e−π/
√
n) = n(−4 + 5xn)z2

n − 12xn(1− xn)zn
dzn
dxn

+
12
√
n

π
. (2.25)

Then (2.18) follows from (2.16) and (2.25). �
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Now our task is to obtain the relationship between Eisenstein series and 3F2 hypergeometric

series. To achieve this let us recall Clausen’s formulas and Borwein’s proofs [17, pp. 180-181].

Throughout the sequel, set

Ak :=
( 1

2 )3
k

k!3
, Bk :=

( 1
4 )k( 1

2 )k( 3
4 )k

k!3
and Ck :=

( 1
6 )k( 1

2 )k( 5
6 )k

k!3
. (2.26)

If

X := 4x(1− x), Y :=
4x

(1− x)2
, U :=

x2

4(1− x)
, V :=

4
√
x(1− x)

(1 + x)2
,

W :=
2
√
X

1−X
, L :=

27X2

(4−X)3
, and M :=

27X

(1− 4X)3
,

then

z2 = 3F2

[
1

2
,

1

2
,

1

2
; 1, 1;X

]
=

∞∑
k=0

AkX
k , 0 ≤ x ≤ 1

2
, (2.27)

=
1

1− x 3F2

[
1

2
,

1

2
,

1

2
; 1, 1;−Y

]
=

1

1− x

∞∑
k=0

(−1)kAkY
k , 0 ≤ x ≤ 3− 2

√
2, (2.28)

=
1√

1− x 3

F2

[
1

2
,

1

2
,

1

2
; 1, 1;−U

]
=

1√
1− x

∞∑
k=0

(−1)kAkU
k, 0 ≤ x ≤ 2

√
2− 2, (2.29)

=
1

1 + x
3F2

[
1

4
,

1

2
,

3

4
; 1, 1;V 2

]
=

1

1 + x

∞∑
k=0

BkV
2k, 0 ≤ x ≤ 3− 2

√
2, (2.30)

=
1

1− 2x
3F2

[
1

4
,

1

2
,

3

4
; 1, 1;−W 2

]
=

1

1− 2x

∞∑
k=0

(−1)kBkW
2k,

0 ≤ x ≤ 1

2

(
1− 21/4

√
2−
√

2

)
, (2.31)

=
2√

4−X 3F2

[
1

6
,

1

2
,

5

6
; 1, 1;L

]
=

2√
4−X

∞∑
k=0

CkL
k , 0 ≤ x ≤ 1

2
, (2.32)

=
1√

1− 4X
3F2

[
1

6
,

1

2
,

5

6
; 1, 1;−M

]
=

1√
1− 4X

∞∑
k=0

(−1)kCkM
k , 0 ≤ x ≤ 1

2
. (2.33)
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Differentiating (2.27) with respect to x, we find that

2z
dz

dx
=

∞∑
k=0

AkkX
k−1 · 4(1− 2x). (2.34)

Substituting (2.34) into (2.12) and using (2.27), we deduce that

P (q) =

∞∑
k=0

{6k(1− 2x) + (1− 5x)}AkXk. (2.35)

Setting q = e−π
√
n in (2.35), we obtain that

P (e−π
√
n) =

∞∑
k=0

{
6k(1 + xn) + xn

1− xn
+ (1− 5xn)

}
AkX

k
n, (2.36)

where Xn = 4xn(1− xn). Similarly, differentiating each of (2.28)-(2.33) with respect to x, and

proceeding as above, we deduce that

P (e−π
√
n) =

1 + xn
1− xn

∞∑
k=0

(6k + 1) (−1)kAkY
k
n , (2.37)

=
1√

1− xn

∞∑
k=0

{6k(2− xn) + 1− 2xn} (−1)kAkU
k
n , (2.38)

=
1

(1 + xn)2

∞∑
k=0

{
6k(x2

n − 6xn + 1) + x2 − 10xn + 1
}

(−1)kBkV
2k
n , (2.39)

=
−1

(1− 2xn)2

∞∑
k=0

{
6k(4x2

n − 4xn − 1) + 2x2
n − 5xn − 1

}
(−1)kBkW

2k
n , (2.40)

=

∞∑
k=0

{
2(1− 5xn)√

4−Xn

+
3k(4x3

n − 6x2
n − 6xn + 4) + 6x3

n − 9x2
n + 3xn

(1− xn + x2
n)

3
2

}
CkL

k
n, (2.41)

=

∞∑
k=0

{
1− 5xn√
1− 4Xn

+
6k(64x3

n − 9x2
n + 30xn + 1) + 96x3

n − 144x2
n + 48xn

(1− 16xn + 16x2
n)

3
2

}

×(−1)kCkM
k
n , (2.42)

where Xn := 4xn(1 − xn), Yn :=
4xn

(1− xn)2
, Un :=

x2
n

4(1− xn)
, V :=

4
√
xn(1− xn)

(1 + xn)2
, Wn :=
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2
√
Xn

1−Xn
, Ln :=

27X2
n

(4−Xn)3
and Mn :=

27Xn

(1− 4Xn)3
. Put n = 1 in (2.18), we obtain that

P (e−π) =
6

π
− 3

2
z2

1 ,

Employing (2.27), we find that

6

π
= P (e−π) +

3

2

∞∑
k=0

Ak, (2.43)

where x1 = 1
2 and X1 = 1. The series (2.43) seems to be new and this is similar to the series

recorded by Ramanujan in [8, p. 256].

§3. Example: n = 2

Theorem 3.1 We have

1

π
=

∞∑
k=0

{
(8− 5

√
2)k + 3− 2

√
2
}
Ak(2

√
2− 2)3k, (3.1)

2

π
=

∞∑
k=0

(−1)k(4k + 1)Ak, (3.2)

2
√√

2− 1

π
=

∞∑
k=0

{
(4
√

2− 2)k +
√

2− 1
}

(−1)kAk

(√
2− 1

2

)3k

, (3.3)

5
√

5

π
=

∞∑
k=0

(28k + 3)Ck

(
3

5

)3k

. (3.4)

Proof From Entry 13(viii) in Chapter 17 of Ramanujan’s second notebook [44] (Also [9,

p.127]), we see that

−P (q) + 2P (q2) = (1 + x)z2. (3.5)

Setting q = e−π/
√

2 in (3.5), then using (2.14) and the value of the singular modulus

x2 = (
√

2− 1)2 [11, p. 281], we find that

−P (e−π/
√

2) + 2P (e−π
√

2) = 2(−1 + 2
√

2)z2
2 . (3.6)
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Setting n = 2 in (2.18), we obtain that

P (e−π/
√

2) + 2P (e−π
√

2) =
12
√

2

π
− 6z2

2 . (3.7)

Adding (3.6) and (3.7), we immediately deduce that

P (e−π
√

2) =
3
√

2

π
− (2−

√
2)z2

2 . (3.8)

By employing (2.27) in (3.8), one can rewrite (3.8) as

P (e−π
√

2) =
3
√

2

π
− (2−

√
2)

∞∑
k=0

AkX
k
2 , (3.9)

where X2 = (2
√

2− 2). Now, setting n = 2 in (2.36), then with the aid of (2.27) and the value

of the singular modulus x2 = (
√

2− 1)2 [44, p. 214], [11, p. 281], we easily obtain that

P (e−π
√

2) =

∞∑
k=0

(−14 + 10
√

(2) + (−30 + 24
√

(2))k)AkX
k
2 , (3.10)

From (3.9) and (3.10), we arrive at (3.1). Similarly the proofs of (3.2), (3.3) and (3.4) are

follows, by employing (2.28), (2.29) and (2.32) in (3.8) and setting n = 2 in (2.37), (2.38) and

(2.41), respectively. �

§4. Example: n = 6

Theorem 4.1 We have

√
6 +
√

2 + 1

π
=

∞∑
k=0

{(
6
√

3 + 3
√

6− 6
)
k + 2

√
3 +
√

6− 3−
√

2
}

(−1)kAk

×
(

8(
√

2 + 1)2(
√

3−
√

2)3(2−
√

3)3
)k
, (4.1)

2

π
=

∞∑
k=0

(−1)k
{

(12
√

2− 12)k + 4
√

4− 5
}
Ak(
√

2− 1)4k, (4.2)

2
√

3

π
=

∞∑
k=0

(8k + 1)Bk
1

9k
. (4.3)
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Proof From [47], we have

−P (q) + 6P (q6) = f1f2f3f6

(
5χ6(−q3)

χ6(−q)
− qχ6(−q)
χ6(−q3)

)
. (4.4)

This is

−P (q) + 6P (q6) =
χ9(−q)χ(−q3)

χ8(−q2)

f2(q6)

f2(q2)

(
5χ6(−q3)

χ6(−q)
− qχ6(−q)
χ6(−q3)

)
ϕ4(q). (4.5)

If q = e−π/
√

6, then we obtain from [6, Theorem 4.1] that

f2(e−π
√

6)

f2(e−2π/
√

6)
=

(
√

2 + 1)1/3

√
3

. (4.6)

Setting q = e−π/
√

6 in (4.5), using (2.9), (4.6), (2.14) and the values of the singular moduli

x3/2 = 2
(
−3− 2

√
2 + 2

√
3 +
√

6
) (√

2− 1
)2 (√

3 +
√

2
)2

[42] and x6 =
(
2−
√

3
)2 (√

3−
√

2
)2

[11, p. 282], we deduce that

−P (e−π/
√

6) + 6P (e−π
√

6) = 6(15 + 12
√

2− 8
√

3− 6
√

6)z2
6 . (4.7)

Setting n = 2 in (2.18), we see that

P (e−π/
√

6) + 6P (e−π
√

6) =
12
√

6

π
− 18z2

6 . (4.8)

It follows from (4.7) and (4.8) that

P (e−π
√

6) = (6 + 6
√

2− 4
√

3− 6
√

6)z2
6 . (4.9)

As in the previous Section, by employing (2.27), (2.28) and (2.30) in (4.9) and setting n = 6

in (2.36), (2.37) and (2.39), we easily deduce the identities (4.1), (4.2) and (4.3), respectively.�

§5. Example: n = 9

Theorem 5.1 We have

2

(3
√

3− 5)aπ
=

∞∑
k=0

(
12k + 3−

√
3
)
Ak

(
2−
√

3
)4k

, (5.1)

1 + (6
√

3− 10)a

π
=

∞∑
k=0

(−1)k
[{

9 + (30− 18
√

3)a
}
k + 3 + (6− 4

√
3)a
]
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×Ak
2k(
√

3− 1)4k(a− 1−
√

3)2k

{1 + (6
√

3− 10)a}k
, (5.2)

2
√

2 + (12
√

3− 20)a

π
=

∞∑
k=0

(−1)k
[{

18 + (36
√

3− 60)a
}
k + 3 + (10

√
3− 18)a

]

×Ak

(
(
√

3 + 1)(
√

2− 31/4)3

4

)2k

, (5.3)

16

π
√

3
=

∞∑
k=0

(−1)k(28k + 3)Bk
1

48k
, (5.4)

where a =
√

3 + 2
√

3.

Proof On page 475 and page 345 of [9], we have

−P (q) + 9P (q9) =
8f6

3

f2
1 f

2
9

{
f6

1 + 9qf3
1 f

3
9 + 27q2f6

9

}1/3
(5.5)

and

1 + 9q
f3

9

f3
1

=

{
1 + 27q

f12
3

f12
1

}1/3

. (5.6)

The above identity can be written as

f6
3 =

f6
1√

27q

{(
1 + 9q

f3
9

f3
1

)3

− 1

}1/2

. (5.7)

Setting q = e−π/3 in (5.5), then using (2.7), (5.7), (2.14) and the value of the singular

modulus x9 = 1
2

(√
3−1√

2

)4 (√
4 + 2

√
3−

√
3 + 2

√
3
)2

[11, p. 290], we find that

−P (e−π/3) + 9P (e−3π) = 18

√
3 + 2

√
3(
√

3− 1)Z2
9 . (5.8)

Setting n = 9 in (2.18), we see that

P (e−π/3) + 9P (e−3π) =
36

π
− 27z2

9 . (5.9)

From (5.8) and (5.9), we obtain that

P (e−3π) =
2

π

{√
3 + 2

√
3(
√

3− 1)− 3

2

}
z2

9 . (5.10)

Now, employing (2.27), (2.28), (2.29) and (2.31) in (5.10) and setting n = 9 in (2.36),
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(2.37), (2.38) and (2.40), we arrive at (5.1), (5.2), (5.3) and (5.4), respectively. �

The proofs of the Sections 6-11 follow along the similar lines as those in previous sections,

so we do not record the proofs.

§6. Example: n = 3

Theorem 6.1 We have

4

π
=

∞∑
k=0

(6k + 1)Ak
1

4k
, (6.1)

1

π
=

∞∑
k=0

(−1)k
{

(15
√

3− 24)k + 6
√

3− 10
}
Ak2k(

√
3− 1)6k, (6.2)

4
√

2

π
=

∞∑
k=0

(−1)k
{

(30− 6
√

3)k + 7− 3
√

3
}
Ak

(2−
√

3)3k

24k
, (6.3)

8
√

2

π
=

∞∑
k=0

{
(85
√

3− 135)k + 8
√

3− 12
}
Bk

(
8
√

2

51
√

3− 75

)2k+1

, (6.4)

5
√

5

2
√

3π
=

∞∑
k=0

(11k + 1)Ck

(
4

125

)k
. (6.5)

We note that −P (e−π/
√

3) + 3P (e−π
√

3) = 9
√

3
2 z2

3 and x3 = 2−
√

3
4 .

§7. Example: n = 4

Theorem 7.1 We have

1

π
=

∞∑
k=0

{
(48
√

2− 66)k + 20
√

2− 28
}
Ak(1584

√
2− 2240)k, (7.1)

2
√

2

π
=

∞∑
k=0

(−1)k(6k + 1)Ak
1

8k
, (7.2)
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2
√

3
√

2− 4

π
=

∞∑
k=0

(−1)k
{

(24
√

2− 30)k + 8
√

2− 11
}
Ak

(
(
√

2− 1)6

16
√

2

)k
, (7.3)

9

2π
=

∞∑
k=0

(7k + 1)Bk

(
32

81

)k
, (7.4)

√
33

π
=

∞∑
k=0

(126k + 10)Ck

(
2

11

)3k+1

. (7.5)

We note that −P (e−π/2) + 3P (e−2π) = 12z2
4 and x4 = (

√
2− 1)4.

§8. Example: n = 5

Theorem 8.1 We have

√
2

bπ
=

∞∑
k=0

{
(5 +

√
5)k + 1

}
Ak(
√

5− 2)2k, (8.1)

1

π
=

∞∑
k=0

[{
80 + 35

√
5− (30

√
2 + 14

√
10)b

}
k + 34 + 15

√
5− (13

√
2 + 6

√
10)b

]
× (−1)kAk8k

{
617 + 276

√
5− (485 + 217

√
5)

b√
2

}k
, (8.2)

8

π
=

∞∑
k=0

[
2
{

(15 + 5
√

5)b− 7
√

10− 5
√

2
}
k + (9 + 3

√
5)b− 7

√
2− 5

√
10
]

(−1)k

×Ak

(√
5− 1

4

)3k (
b2

2
− b√

2

)6k

, (8.3)

8

π
=

∞∑
k=0

(−1)k(20k + 3)Bk
1

4k
, (8.4)

2(−5 + 4
√

5)3/2

b
√

10π
=

∞∑
k=0

{
(142− 58

√
5)k + 21− 9

√
5
}
Ck

(
27(−9875 + 4420

√
5)

553

)k
, (8.5)

where b =
√√

5 + 1.
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We note that −P (e−π/
√

5) + 5P (e−π
√

5) =
b(15−

√
5)√

2
z2

5 and the singular modulus for

n = 5 is x5 =
1

2

(√
5− 1

2

)3(
b2

2
− b√

2

)2

.

§9. Example: n = 7

Theorem 9.1 We have

16

π
=

∞∑
k=0

(42k + 5)Ak
1

26k
, (9.1)

1

π
=

∞∑
k=0

(−1)k
{

(255
√

7− 672)k + 112
√

7− 296
}
Ak(32− 12

√
7)3k, (9.2)

8
√

2

π
=

∞∑
k=0

(−1)k
{

(255
√

7− 672)k + 112
√

7− 296
}
Ak

(
8− 3

√
7

4

)3k

, (9.3)

29241

π
=

∞∑
k=0

{
(76160− 455

√
7)k + 6728− 784

√
7
}
Bk

(
8
√

2(325 + 119
√

7)

29241

)2k

, (9.4)

9
√

7

π
=

∞∑
k=0

(65k + 8)(−1)kBk

(
16

63

)2k

, (9.5)

85
√

85

18π
√

3
=

∞∑
k=0

(133k + 8)Ck

(
4

85

)3k

. (9.6)

We note that −P (e−π/
√

7) + 7P (e−π
√

7) =
75
√

7

8
z2

7 and x7 =
8− 3

√
7

16
.

§10. Example: n = 10

Theorem 10.1 We have

310

(680− 480
√

2 + 304
√

5− 215
√

10)π
=

∞∑
k=0

(
930 + 220k − 50

√
2 + 16

√
5− 29

√
10
)
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×Ak
{

(3 +
√

5)(2 +
√

5)(3
√

2−
√

5− 2)
}3k

, (10.1)

2

π
=

∞∑
k=0

(−1)k
{

(60− 24
√

5)k + 23− 10
√

5
}
Ak(
√

5− 2)4k, (10.2)

√
10
√

102
√

10− 144
√

5 + 228
√

2− 322

π

=

∞∑
k=0

{(
1020

√
10− 1440

√
5 + 2280

√
2− 3210

)
k + 407

√
10− 576

√
5 + 910

√
2− 1285

}

× (−1)kAk

(
207
√

10− 288
√

5 + 450
√

2− 647

8

)k
, (10.3)

9

2
√

2π
=

∞∑
k=0

(10k + 1)Bk
1

92k
. (10.4)

We note that x10 = 323− 228
√

2 + 144
√

5− 102
√

10 and −P (e−π/
√

10) + 10P (e−π
√

10) =(
2550− 1800

√
2 + 1152

√
5− 804

√
10
)
z2

10.

§11. Example: n = 8

Theorem 11.1 We have

7

2
√

2π
=

∞∑
k=0

[{
(560 + 392

√
2)c− 1575− 1120

√
2
}
k + (248 + 174

√
2)c− 700− 497

√
2
]

×Ak16k
{

(4490 + 3175
√

2)c− 12756− 9020
√

2
}k

, (11.1)

14

cπ
=

∞∑
k=0

(−1)k
(

14k + 3−
√

2
)
Ak

(
5
√

2− 7

8

)k
, (11.2)

7
√

2
√

(10 + 7
√

2)c− 28− 20
√

2

π

=

∞∑
k=0

[{
(560 + 392

√
2)c− 1554− 1120

√
2
}
k + (216 + 152

√
2)c− 609− 434

√
2
]

× (−1)kAk

(
(320 + 225

√
2)c− 908− 640

√
2

32

)k
, (11.3)
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343

π(32− 13
√

2)
=

∞∑
k=0

(70k + 12− 3
√

2)Bk
25k(325

√
2− 457)k

74k
, (11.4)

where c =
√

1 + 5
√

2.

We note that x8 = 113 + 80
√

2− 4c(7
√

2− 10) and

−P (e−π/
√

8) + 10P (e−π
√

8) =

{
600− 416

√
2−

(
1408 + 1024

√
2

7

)
c

}
z2

8 .
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Abstract: In this study, we first prove an identity for the integrable functions involving

weighted area balance function. Then, using this equality, some generalized inequalities

for mappings of bounded variation are obtained. Moreover, some generalized inequalities

for Lipschitzian functions are given. The results in this paper generalize the inequalities
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§1. Introduction

Let P : κ1 = κ0 < κ1 < · · · < κn = κ2 be any partition of [κ1, κ2] and let ∆ω(κi) =

ω(κi+1)− ω(κi). Then ω is said to be of bounded variation if the sum

m∑
i=1

|∆ω(κi)|

is bounded for all such partitions [4].

Let ω be of bounded variation on [κ1, κ2], and
∑

∆ω (P ) denote the sum
∑n
i=1 |∆ω(κi)|

corresponding to the partition P of [κ1, κ2]. The number

κ2∨
κ1

(ω) := sup
{∑

∆z (P ) : P ∈ P([κ1, κ2])
}
,

is called the total variation of ω on [κ1, κ2] . Here P([κ1, κ2]) denotes the family of partitions

of [κ1, κ2] [4]. For a function of bounded variation ω : [κ1, κ2] → C we define the cumulative

variation function CV F : [κ1, κ2]→ [0,∞) by

CV F (ξ) :=

ξ∨
κ1

(ω)

1Received December 10, 2022, Accepted March 16, 2023.
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the total variation ω on the interval [κ1, ξ] . It is known that the CV F is monotonic nondecreas-

ing on [κ1, κ2] and is continuous in a point c ∈ [κ1, κ2] if and only if the generating function ω

is continuing in that point.

Integral inequalities for functions of bounded variation have potential applications in math-

ematical sciences. They have applications in numerical integration, probability and optimiza-

tion theory, stochastic, statistics, information and integral operator theory. In the past, many

authors have worked on some inequalities for functions of bounded variation. see for example

([1]-[12], [14]-[21]).

In [18], Dragomir give the following lemma which will be used frequently in our paper.

Lemma 1.1 Let z, ω : [κ1, κ2] → C. If z is a continuous on [κ1, κ2] and ω is of bounded

variation on [κ1, κ2] , then∣∣∣∣∣∣
κ2∫
κ1

z(ξ)dω(ξ)

∣∣∣∣∣∣ ≤
κ2∫
κ1

|z(ξ)| d

(
ξ∨
κ1

(ω)

)
≤ max
ξ∈[κ1,κ2]

|z(ξ)|
κ2∨
κ1

(ω). (1.1)

In [19], Dragomir introduce the following area balance function:

Let z : [κ1, κ2] → C be Lebesgue integrable function. Then we define the function

ABz (κ1, κ2, .) : [κ1, κ2]→ C by

ABz (κ1, κ2,κ) =
1

2

 κ2∫
κ

z(ξ)dξ −
κ∫

κ1

z(ξ)dξ

 . (1.2)

Moreover, Dragomir proved the following inequalities involving area balance function.

Theorem 1.1 Let z : [κ1, κ2]→ C be a function of bounded variation on [κ1, κ2] . Then∣∣∣∣ABz (κ1, κ2,κ)−
(
κ1 + κ2

2
− κ

)
z(κ)

∣∣∣∣
≤ AB∨.

κ1
(z) (κ1, κ2,κ)−

(
κ1 + κ2

2
− κ

) κ∨
κ1

(z)

=
1

2

 κ∫
κ1

 κ∨
ξ

(z)

 dξ +

κ2∫
κ

(
ξ∨
κ

(z)

)
dξ


≤ 1

2

[
(κ − κ1)

κ∨
κ1

(z) + (κ2 − κ)

κ2∨
κ

(z)

]

≤ 1

2
×


[

1
2 (κ2 − κ1) + 1

2

∣∣κ − κ1+κ2

2

∣∣] κ2∨
κ1

(z)[
1
2

κ2∨
κ1

(z)ξ + 1
2

∣∣∣∣κ∨
κ1

(z)−
κ2∨
κ

(z)

∣∣∣∣] (κ2 − κ1)
(1.3)

for any κ ∈ [κ1, κ2] .
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Moreover, Dragomir prove some inequalities for the area balance of absolutely continuous

functions in [20]. Delevar and Dragomir give some weighted trapezoidal inequalities related to

the area balance of a function in [13]. On the other hand, in [10] Budak and Pehlivan establish

some generalizations of the results in [19]. In this paper we obtain some new generalized

weighted inequalities by the weighted area balance functions.

§2. Main Results

First we recall the following weighted area functions given in [10]:

Let $ : [κ1, κ2] → [0,∞) be Lebesgue integrable and let z : [κ1, κ2] → R be a func-

tion of bounded variation on [κ1, κ2]. Then we define the weighted area balance function

WABz (κ1, κ2, .;$) : [κ1, κ2]→ R by

WABz (κ1, κ2,κ;$) :=
1

2

 κ2∫
κ

z(ξ)$(ξ)dξ −
κ∫

κ1

z(ξ)$(ξ)dξ

 .
Throughout the paper, we denote the weighted area balance function ABz (κ1, κ2,κ;$)

by WABz (κ1, κ2,κ) . First we prove the following generalized identity involving the weighted

area balance function.

Lemma 2.1 Let z : [κ1, κ2]→ R be a function of bounded variation on [κ1, κ2] . Then we have

the following identity

WABz(κ1, κ2,κ)− λAB$(κ1, κ2,κ)z(κ)

− (1− λ)

2

 κ2∫
κ

$(η)dη

z(κ2)−

 κ∫
κ1

$(η)dη

z(κ1)


=

1

2

κ2∫
κ1

Kλ
$(ξ,κ)dz(ξ) (2.1)

for all κ ∈ [κ1, κ2] and λ ∈ [0, 1] where Kλ
$(ξ,κ) : [κ1, κ2]× [κ1, κ2]→ R is defined by

Kλ
$(ξ,κ) =



λ

ξ∫
κ1

$(η)dη + (1− λ)

κ∫
ξ

$(η)dη, κ1 ≤ ξ < κ

λ

κ2∫
ξ

$(η)dη + (1− λ)

ξ∫
κ

$(η)dη, κ ≤ ξ ≤ κ2

and the integrals in the right hand side are taken in the Riemann-Stieltjes sense.
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Proof From the definition of Kλ
$(ξ,κ), we have

κ2∫
κ1

Kλ
$(ξ,κ)dz(ξ)

=

κ∫
κ1

λ ξ∫
κ1

$(η)dη + (1− λ)

κ∫
ξ

$(η)dη

 dz(ξ)

+

κ2∫
κ

λ κ2∫
ξ

$(η)dη + (1− λ)

ξ∫
κ

$(η)dη

 dz(ξ)

= λ

κ∫
κ1

 ξ∫
κ1

$(η)dη

 dz(ξ) + (1− λ)

κ∫
κ1

 κ∫
ξ

$(η)dη

 dz(ξ)

+λ

κ2∫
κ

 κ2∫
ξ

$(η)dη

 dz(ξ) + (1− λ)

κ2∫
κ

 ξ∫
κ

$(η)dη

 dz(ξ). (2.2)

Using the integration by parts for Riemann-Stieltjes integrals, we get

κ∫
κ1

 ξ∫
κ1

$(η)dη

 dz(ξ)

=

 ξ∫
κ1

$(η)dη

z(ξ)

∣∣∣∣∣∣
κ

κ1

−
κ∫

κ1

z(ξ)d

 ξ∫
κ1

$(η)dη


=

 κ∫
κ1

$(η)dη

z(κ)−
κ∫

κ1

z(ξ)$(ξ)dξ. (2.3)

Similarly, we have

κ∫
κ1

 κ∫
ξ

$(η)dη

 dz(ξ) =

 κ∫
κ1

$(η)dη

z(κ1)−
κ∫

κ1

z(ξ)$(ξ)dξ, (2.4)

κ2∫
κ

 κ2∫
ξ

$(η)dη

 dz(ξ) =

 κ2∫
κ

$(η)dη

z(κ) +

κ2∫
κ

z(ξ)$(ξ)dξ (2.5)

and
κ2∫
κ

 ξ∫
κ

$(η)dη

 dz(ξ) =

 κ2∫
κ

$(η)dη

z(κ2) +

κ2∫
κ

z(ξ)$(ξ)dξ. (2.6)
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If we substitute the equalities (2.3)− (2.6) in (2.2), then we obtain

κ2∫
κ1

Kλ
$(ξ,κ)dz(ξ)

= λ

 κ∫
κ1

$(η)dη

z(κ)− λ
κ∫

κ1

z(ξ)$(ξ)dξ

+(1− λ)

 κ∫
κ1

$(η)dη

z(κ1)− (1− λ)

κ∫
κ1

z(ξ)$(ξ)dξ

−λ

 κ2∫
κ

$(η)dη

z(κ) + λ

κ2∫
κ

z(ξ)$(ξ)dξ

−(1− λ)

 κ2∫
κ

$(η)dη

z(κ2) + (1− λ)

κ2∫
κ

z(ξ)$(ξ)dξ

= −λf(κ)

 κ2∫
κ

$(η)dη −
κ∫

κ1

$(η)dη

+ λ

 κ2∫
κ

z(ξ)$(ξ)dξ −
κ∫

κ1

z(ξ)$(ξ)dξ


+(1− λ)

 κ2∫
κ

z(ξ)$(ξ)dξ −
κ∫

κ1

z(ξ)$(ξ)dξ


−(1− λ)

 κ2∫
κ

$(η)dη

z(κ2)−

 κ∫
κ1

$(η)dη

z(κ1)


= 2WABz(κ1, κ2,κ)− 2λAB$(κ1, κ2,κ)z(κ)

−(1− λ)

 κ2∫
κ

$(η)dη

z(κ2)−

 κ∫
κ1

$(η)dη

z(κ1)


which completes the proof. �

Remark 2.1 If we take λ = 1 and λ = 0 in Lemma 2.1, then Lemma 2.1 reduces to Lemma 2

and Lemma 3 in [10], respectively.

Corollary 2.1 If we choose $(κ) = 1 for all κ ∈ [κ1, κ2] in Lemma 2.1, then we have the

following identity

WABz(κ1, κ2,κ)− λ
(
κ1 + κ2

2
− κ

)
z(κ)

− (1− λ)

2

[
κ2f(κ2) + κ1f(κ1)

2
− z(κ1) + z(κ2)

2
κ
]

=
1

2

κ2∫
κ1

[λp(κ, ξ) + (1− λ) |κ − ξ|] dz(ξ) (2.7)
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for all κ ∈ [κ1, κ2] and λ ∈ [0, 1] where p(ξ,κ) : [κ1, κ2]× [κ1, κ2]→ R is defined by

p(ξ,κ) =


ξ − κ1 κ1 ≤ ξ < κ

κ2 − ξ κ ≤ ξ ≤ κ2.

Remark 2.2 If we take λ = 1 and λ = 0 in Corollary 2.1, then the equality (2.7) reduces to

the equalities (2.1) and (2.2) of Theorem 1 in [19], respectively.

Theorem 2.2 If z : [κ1, κ2]→ R is a function of bounded variation on [κ1, κ2] , then we have

|WABz(κ1, κ2,κ)− λAB$(κ1, κ2,κ)z(κ)

− (1− λ)

2

 κ2∫
κ

$(η)dη

z(κ2)−

 κ∫
κ1

$(η)dη

z(κ1)

∣∣∣∣∣∣
≤ 1

2
λ

κ∫
κ1

 κ∨
ξ

(z)

$(ξ)dξ +
1

2
λ

κ2∫
κ

(
ξ∨
κ

(z)

)
$(ξ)dξ

+
1

2
(1− λ)

κ∫
κ1

$(ξ)

(
ξ∨
κ1

(z)

)
dξ +

1

2
(1− λ)

κ2∫
κ

$(ξ)

κ2∨
ξ

(z)

 dξ

≤ 1

2

 κ∨
κ1

(z)

κ∫
κ1

$(ξ)dξ +

κ2∨
κ

(z)

κ2∫
κ

$(ξ)dξ



≤ 1

2


[

1
2

κ2∫
κ1

$(ξ)dξ + 1
2

∣∣∣∣∣ κ∫κ1

$(ξ)dξ −
κ2∫
κ
$(ξ)dξ

∣∣∣∣∣
]
κ2∨
κ1

(z),[
1
2

κ2∨
κ1

(z)ξ +

∣∣∣∣κ∨
κ1

(z)−
κ2∨
κ

(z)

∣∣∣∣] κ2∫
κ1

$(ξ)dξ

(2.8)

for all κ ∈ [κ1, κ2] and λ ∈ [0, 1] .

Proof Taking the modulus identity (2.1), we have

|WABz(κ1, κ2,κ)− λAB$(κ1, κ2,κ)z(κ)

− (1− λ)

2

 κ2∫
κ

$(η)dη

z(κ2)−

 κ∫
κ1

$(η)dη

z(κ1)

∣∣∣∣∣∣
=

1

2

∣∣∣∣∣∣
κ2∫
κ1

Kλ
$(ξ,κ)dz(ξ)

∣∣∣∣∣∣
=

1

2

∣∣∣∣∣∣∣
κ∫

κ1

λ ξ∫
κ1

$(η)dη + (1− λ)

κ∫
ξ

$(η)dη

 dz(ξ)
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+

κ2∫
κ

λ κ2∫
ξ

$(η)dη + (1− λ)

ξ∫
κ

$(η)dη

 dz(ξ)

∣∣∣∣∣∣∣
≤ 1

2

∣∣∣∣∣∣∣
κ∫

κ1

λ ξ∫
κ1

$(η)dη + (1− λ)

κ∫
ξ

$(η)dη

 dz(ξ)

∣∣∣∣∣∣∣
+

1

2

∣∣∣∣∣∣∣
κ2∫
κ

λ κ2∫
ξ

$(η)dη + (1− λ)

ξ∫
κ

$(η)dη

 dz(ξ)

∣∣∣∣∣∣∣ .
Using Lemma 1.1, we get

|WABz(κ1, κ2,κ)− λAB$(κ1, κ2,κ)z(κ)

− (1− λ)

2

 κ2∫
κ

$(η)dη

z(κ2)−

 κ∫
κ1

$(η)dη

z(κ1)

∣∣∣∣∣∣
≤ 1

2

 κ∫
κ1

∣∣∣∣∣∣∣λ
ξ∫

κ1

$(η)dη + (1− λ)

κ∫
ξ

$(η)dη

∣∣∣∣∣∣∣ d
(

ξ∨
κ1

(z)

)
+

1

2

 κ2∫
κ

∣∣∣∣∣∣∣λ
κ2∫
ξ

$(η)dη + (1− λ)

ξ∫
κ

$(η)dη

∣∣∣∣∣∣∣ d
κ2∨

ξ

(z)




=
1

2

 κ∫
κ1

λ ξ∫
κ1

$(η)dη + (1− λ)

κ∫
ξ

$(η)dη

 d

(
ξ∨
κ1

(z)

)
+

1

2

 κ2∫
κ

λ κ2∫
ξ

$(η)dη + (1− λ)

ξ∫
κ

$(η)dη

 d

κ2∨
ξ

(z)




=
1

2

λ κ∫
κ1

 ξ∫
κ1

$(η)dη

 d

(
ξ∨
κ1

(z)

)
+ (1− λ)

κ∫
κ1

 κ∫
ξ

$(η)dη

 d

(
ξ∨
κ1

(z)

)
+

1

2

λ κ2∫
κ

 κ2∫
ξ

$(η)dη

 d

(
κ2∨
κ

(z)

)
+ (1− λ)

κ2∫
κ

 ξ∫
κ

$(η)dη

 d

(
κ2∨
κ

(z)

) . (2.9)

By utilizing the integration by parts for Riemann-Stieltjes integrals, we obtain

κ∫
κ1

 ξ∫
κ1

$(η)dη

 d

(
ξ∨
κ1

(z)

)
=

 ξ∫
κ1

$(η)dη

 ξ∨
κ1

(z)

∣∣∣∣∣∣
κ

κ1

−
κ∫

κ1

(
ξ∨
κ1

(z)

)
d

 ξ∫
κ1

$(η)dη





46 Hüseyin Budak

=

 κ∫
κ1

$(η)dη

 κ∨
κ1

(z)−
κ∫

κ1

(
ξ∨
κ1

(z)

)
$(ξ)dξ

=

κ∫
κ1

[ κ∨
κ1

(z)−
ξ∨
κ1

(z)

]
$(ξ)dξ =

κ∫
κ1

 κ∨
ξ

(z)

$(ξ)dξ, (2.10)

κ∫
κ1

 κ∫
ξ

$(η)dη

 d

(
ξ∨
κ1

(z)

)
=

 κ∫
ξ

($(η)dη

 ξ∨
κ1

(z)

∣∣∣∣∣∣∣
κ

κ1

−
κ∫

κ1

(
ξ∨
κ1

(z)

)
d

 κ∫
ξ

$(η)dη


=

 κ∫
κ1

$(η)dη

 κ∨
κ1

(z) +

κ∫
κ1

(
ξ∨
κ1

(z)

)
d

 κ∫
κ1

$(η)dη


=

 $∫
κ1

$(η)dη

 κ∨
κ1

(z) +

κ∫
κ1

(
ξ∨
κ1

(z)

)
$(ξ)dξ

=

κ∫
κ1

$(ξ)

ξ∨
κ1

(z)dξ, (2.11)

κ2∫
κ

 κ2∫
ξ

$(η)dη

 d

κ2∨
ξ

(z)

 =

 κ2∫
ξ

$(η)dη

 κ2∨
ξ

(z)

∣∣∣∣∣∣∣
κ2

κ

−
κ2∫
κ

κ2∨
ξ

(z)

 d

 κ2∫
ξ

$(η)dη


= −

 κ2∫
κ

$(η)dη

 κ2∨
κ

(z) +

κ2∫
κ

κ2∨
ξ

(z)

$(ξ)dξ

=

κ2∫
κ

κ2∨
ξ

(z)−
κ2∨
κ

(z)

$(ξ)dξ =

κ2∫
κ

(
ξ∨
κ

(z)

)
$(ξ)dξ (2.12)

and

κ2∫
κ

 ξ∫
κ

$(η)dη

 d

κ2∨
ξ

(z)

 =

 ξ∫
κ

$(η)dη

 κ2∨
ξ

(z)

∣∣∣∣∣∣
κ2

κ

−
κ2∫
κ

κ2∨
ξ

(z)

 d

 ξ∫
κ

$(η)dη


=

 κ2∫
κ

$(η)dη

 κ2∨
κ

(z)−
κ2∫
κ

$(ξ)

κ2∨
ξ

(z)

 dξ

=

κ2∫
κ

$(ξ)

κ2∨
κ

(z)−
κ2∨
ξ

(z)

 dξ =

κ2∫
κ

$(ξ)

κ2∨
ξ

(z)dξ. (2.13)
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By substituting the equalities (2.10)-(2.13) in (2.9), we establish∣∣∣∣∣∣WABz(κ1, κ2,κ)− λABz(κ1, κ2,κ)− (1− λ)

2

 κ2∫
κ

$(η)dη

z(κ2)−

 κ∫
κ1

$(η)dη

z(κ1)

∣∣∣∣∣∣
≤ 1

2

λ κ∫
κ1

 κ∨
ξ

(z)

$(ξ)dξ + (1− λ)

κ∫
κ1

$(ξ)

(
ξ∨
κ1

(z)

)
dξ


+

1

2

λ κ2∫
κ

(
ξ∨
κ

(z)

)
$(ξ)dξ + (1− λ)

κ2∫
κ

$(ξ)

κ2∨
ξ

(z)

 dξ


which gives first inequality in (2.8). By using the facts that

κ∨
ξ

(z) ≤
κ∨
κ1

(z),

ξ∨
κ1

(z) ≤
κ∨
κ1

(z), ξ ∈ [κ1,κ] ,

ξ∨
κ

(z) ≤
κ2∨
κ

(z),

κ2∨
ξ

(z) ≤
κ2∨
κ

(z), ξ ∈ [κ, κ2]

we obtain

1

2

λ κ∫
κ1

 κ∨
ξ

(z)

$(ξ)dξ + (1− λ)

κ∫
κ1

$(ξ)

(
ξ∨
κ1

(z)

)
dξ


+

1

2

λ κ2∫
κ

(
ξ∨
κ

(z)

)
$(ξ)dξ + (1− λ)

κ2∫
κ

$(ξ)

(
κ2∨
κ

(z)

)
dξ


≤ 1

2

λ κ∫
κ1

( κ∨
κ1

(z)

)
$(ξ)dξ + (1− λ)

κ∫
κ1

$(ξ)
κ∨
κ1

(z)dξ


+

1

2

λ κ2∫
κ

(
κ2∨
κ

(z)

)
$(ξ)dξ + (1− λ)

κ2∫
κ

$(ξ)

κ2∨
κ

(z)dξ


=

1

2

λ κ∨
κ1

(z)

κ∫
κ1

$(ξ)dξ + (1− λ)

κ∨
κ1

(z)

κ2∫
κ

$(ξ)dξ


+

1

2

λ κ2∨
κ

(z)

κ2∫
κ

$(ξ)dξ + (1− λ)

κ2∨
κ

(z)

κ2∫
κ

$(ξ)dξ


=

κ∨
κ1

(z)

κ∫
κ1

$(ξ)dξ +

κ2∨
κ

(z)

κ2∫
κ

$(ξ)dξ.

This proves the second inequality in (2.8).
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Notice that the last inequality in (2.8) is obvious from the fact that

max {p, q} =
p+ q

2
+

1

2
|p− q|

for p, q ∈ R. �

Remark 2.3 If we take λ = 1 and λ = 0 in Theorem 2.2, then we have the following inequalities,

respectively

|ABz(κ1, κ2,κ)− λAB$(κ1, κ2,κ)z(κ)|

≤ 1

2

κ∫
κ1

 κ∨
ξ

(z)

$(ξ)dξ +
1

2

κ2∫
κ

(
ξ∨
κ

(z)

)
$(ξ)dξ

≤ 1

2

 κ∨
κ1

(z)

κ∫
κ1

$(ξ)dξ +

κ2∨
κ

(z)

κ2∫
κ

$(ξ)dξ



≤ 1

2



[
1
2

κ2∫
κ1

$(ξ)dξ + 1
2

∣∣∣∣∣ κ∫κ1

$(ξ)dξ −
κ2∫
κ
$(ξ)dξ

∣∣∣∣∣
]
κ2∨
κ1

(z),

[
1
2

κ2∨
κ1

(z)ξ +

∣∣∣∣κ∨
κ1

(z)−
κ2∨
κ

(z)

∣∣∣∣] κ2∫
κ1

$(ξ)dξ

and ∣∣∣∣∣∣ABz(κ1, κ2,κ)− 1

2

 κ2∫
κ

$(η)dη

z(κ2)−

 κ∫
κ1

$(η)dη

z(κ1)

∣∣∣∣∣∣
≤ 1

2

κ∫
κ1

$(ξ)

(
ξ∨
κ1

(z)

)
dξ +

1

2

κ2∫
κ

$(ξ)

κ2∨
ξ

(z)

 dξ

≤ 1

2

 κ∨
κ1

(z)

κ∫
κ1

$(ξ)dξ +

κ2∨
κ

(z)

κ2∫
κ

$(ξ)dξ



≤ 1

2



[
1
2

κ2∫
κ1

$(ξ)dξ + 1
2

∣∣∣∣∣ κ∫κ1

$(ξ)dξ −
κ2∫
κ
$(ξ)dξ

∣∣∣∣∣
]
κ2∨
κ1

(z),

[
1
2

κ2∨
κ1

(z)ξ +

∣∣∣∣κ∨
κ1

(z)−
κ2∨
κ

(z)

∣∣∣∣] κ2∫
κ1

$(ξ)dξ

which are proved by Budak and Pehlivan in [10].

Corollary 2.2 If we choose $(κ) = 1 for all κ ∈ [κ1, κ2] in Theorem 2.2, then we have the
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following inequality ∣∣∣∣WABz(κ1, κ2,κ)− λ
(
κ1 + κ2

2
− κ

)
z(κ)

− (1− λ)

2

[
κ2f(κ2) + κ1f(κ1)

2
− z(κ1) + z(κ2)

2
κ
]∣∣∣∣

≤ λ

2

 κ∫
κ1

 κ∨
ξ

(z)

 dξ +

κ2∫
κ

(
ξ∨
κ

(z)

)
dξ


+

(1− λ)

2

 κ∫
κ1

(
ξ∨
κ1

(z)

)
dξ +

κ2∫
κ

κ2∨
ξ

(z)

 dξ


≤ 1

2

 κ∨
κ1

(z)

κ∫
κ1

$(ξ)dξ +

κ2∨
κ

(z)

κ2∫
κ

$(ξ)dξ



≤ 1

2



[
1
2 (κ2 − κ1) +

∣∣κ − κ1+κ2

2

∣∣] κ2∨
κ1

(z),

[
1
2

κ2∨
κ1

(z)ξ +

∣∣∣∣κ∨
κ1

(z)−
κ2∨
κ

(z)

∣∣∣∣] (κ2 − κ1)

for all κ ∈ [κ1, κ2] and λ ∈ [0, 1].

Remark 2.4 If λ = 1 in Corollary 2.2, the inequalities (2.7) reduce to the inequalities (1.3).

Remark 2.5 If we take λ = 0 in Corollary 2.2, then the inequality (2.7) reduces to the equalities

(3.9) of Theorem 3.4 in [19].

§3. Inequalities for Lipschitzian Functions

In this section, we obtain some inequalities for Lipschitzian functions. First we give the following

important fact:

If ω is Lipschitzian with the constant L > 0; i.e.

|ω(ξ)− ω(η)| ≤ L |ξ − η| for any ξ, η ∈ (κ1, κ2)

then, it is well known that for any Riemann integrable function g : [κ1, κ2]→ R the Riemann-

Stieltjes integral
∫ κ2

κ1
g(ξ)dω(ξ) exist and∣∣∣∣∣∣

κ2∫
κ1

g(ξ)dω(ξ)

∣∣∣∣∣∣ ≤ L
κ2∫
κ1

|g(ξ)| dξ. (3.1)
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Theorem 3.1 If $ is bounded on [κ1, κ2], i.e.

‖$‖∞ = sup
ξ∈[κ1,κ2]

|$(ξ)| <∞,

and if : [κ1, κ2]→ R is a Lipschitzian with the constant L > 0 on [κ1, κ2] , then we have

|WABz(κ1, κ2,κ)− λAB$(κ1, κ2,κ)z(κ)

− (1− λ)

2

 κ2∫
κ

$(η)dη

z(κ2)−

 κ∫
κ1

$(η)dη

z(κ1)

∣∣∣∣∣∣
≤
L ‖$‖∞

2

[
(κ2 − κ1)2

4
+

(
κ − κ1 + κ2

2

)2
]

(3.2)

for all κ ∈ [κ1, κ2] .

Proof By taking modulus in the inequality (2.1) and by using the inequality (3.1), we

obtain

|WABz(κ1, κ2,κ)− λAB$(κ1, κ2,κ)z(κ)

− (1− λ)

2

 κ2∫
κ

$(η)dη

z(κ2)−

 κ∫
κ1

$(η)dη

z(κ1)

∣∣∣∣∣∣
≤ 1

2

λ
∣∣∣∣∣∣

κ∫
κ1

 ξ∫
κ1

$(η)dη

 dz(ξ)

∣∣∣∣∣∣+ (1− λ)

∣∣∣∣∣∣∣
κ∫

κ1

 κ∫
ξ

$(η)dη

 dz(ξ)

∣∣∣∣∣∣∣


+
1

2

λ
∣∣∣∣∣∣∣
κ2∫
κ

 κ2∫
ξ

$(η)dη

 dz(ξ)

∣∣∣∣∣∣∣+ (1− λ)

∣∣∣∣∣∣
κ2∫
κ

 ξ∫
κ

$(η)dη

 dz(ξ)

∣∣∣∣∣∣


≤ L

2

λ κ∫
κ1

∣∣∣∣∣∣
ξ∫

κ1

$(η)dη

∣∣∣∣∣∣ dξ + (1− λ)

κ∫
κ1

∣∣∣∣∣∣∣
κ∫
ξ

$(η)dη

∣∣∣∣∣∣∣ dξ


+
L

2

λ κ2∫
κ

∣∣∣∣∣∣∣
κ2∫
ξ

$(η)dη

∣∣∣∣∣∣∣ dξ + (1− λ)

κ2∫
κ

∣∣∣∣∣∣
ξ∫

κ

$(η)dη

∣∣∣∣∣∣ dξ
 .

Since $ is bounded on [κ1, κ2] , we have

|WABz(κ1, κ2,κ)− λAB$(κ1, κ2,κ)z(κ)

− (1− λ)

2

 κ2∫
κ

$(η)dη

z(κ2)−

 κ∫
κ1

$(η)dη

z(κ1)

∣∣∣∣∣∣
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≤ L

2

λ ‖$‖∞,[κ1,κ]

κ∫
κ1

(ξ − κ1) dξ + (1− λ) ‖$‖∞,[κ1,κ]

κ∫
κ1

(κ − ξ) dξ


+
L

2

λ ‖$‖∞,[κ,κ2]

κ2∫
κ

(κ2 − ξ) dξ + (1− λ) ‖$‖∞,[κ,κ2]

κ2∫
κ

(ξ − κ) dξ


=
L

4

[
‖$‖∞,[κ1,κ] (κ − κ1)

2
+ ‖$‖∞,[κ,κ2] (κ2 − κ)

2
]
.

Using the facts that

‖$‖∞,[κ1,κ] ≤ ‖$‖∞ and ‖$‖∞,[κ,κ2] ≤ ‖$‖∞

for all κ ∈ [κ1, κ2] , we obtain

|WABz(κ1, κ2,κ)− λAB$(κ1, κ2,κ)z(κ)

− (1− λ)

2

 κ2∫
κ

$(η)dη

z(κ2)−

 κ∫
κ1

$(η)dη

z(κ1)

∣∣∣∣∣∣
=
L ‖$‖∞

4

[
(κ − κ1)

2
+ (κ2 − κ)

2
]

=
L ‖$‖∞

2

[
(κ2 − κ1)2

4
+

(
κ − κ1 + κ2

2

)2
]

which completes the proof. �

Remark 3.1 If λ = 1 or λ = 0 in Theorem 3.1, we have respectively the following inequalities,

|ABz(κ1, κ2,κ)− λAB$(κ1, κ2,κ)z(κ)|

≤
L ‖$‖∞

2

[
(κ2 − κ1)2

4
+

(
κ − κ1 + κ2

2

)2
]

and ∣∣∣∣∣∣ABz(κ1, κ2,κ)− 1

2

 κ2∫
κ

$(η)dη

z(κ2)−

 κ∫
κ1

$(η)dη

z(κ1)

∣∣∣∣∣∣
≤
L ‖$‖∞

2

[
(κ2 − κ1)2

4
+

(
κ − κ1 + κ2

2

)2
]

which are proved by Budak and Pehlivan in [10].

Corollary 3.1 Under assumptions of Theorem 3.1 with $(κ) = 1 for all κ ∈ [κ1, κ2] , we have
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the following inequality ∣∣∣∣WABz(κ1, κ2,κ)− λ
(
κ1 + κ2

2
− κ

)
z(κ)

− (1− λ)

2

[
κ2z(κ2) + κ1z(κ1)

2
− z(κ1) + z(κ2)

2
κ
]∣∣∣∣

≤ L

2

[
(κ2 − κ1)2

4
+

(
κ − κ1 + κ2

2

)2
]
. (3.3)

Remark 3.2 Ifcλ = 1 or λ = 0 in Corollary 3.3, then the inequality (3.3) reduces to the

equalities (4.2) of Theorem 4.1 and 4.5 of Theorem 4.2 in [19], respectively.

Corollary 3.2 Let κ = κ1+κ2

2 and let $ : [κ1, κ2] → [0,∞) be symmetric about κ = κ1+κ2

2

(i.e. $(κ) = $(κ1 + κ2 − κ)) in Theorem 3.1. Then we have∣∣∣∣∣∣WABz

(
κ1, κ2,

κ1 + κ2

2

)
− (1− λ)

z(κ2)−z(κ1)

4

κ2∫
κ1

$(η)dη

∣∣∣∣∣∣ ≤ L

8
(κ2 − κ1)2 ‖$‖∞ .
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Abstract: A chord of a path P is an edge joining two non-adjacent vertices of P . A path

P is called a monophonic path if it is a chordless path. A monophonic graphoidal cover of

a graph G is a collection ψm of monophonic paths in G such that every vertex of G is an

internal vertex of at most one monophonic path in ψm and every edge of G is in exactly one

monophonic path in ψm. The minimum cardinality of a monophonic graphoidal cover of G

is called the monophonic graphoidal covering number of G and is denoted by ηm(G). In this

paper, we find the monophonic graphoidal covering number of corona product of wheel with

some standard graphs.

Key Words: Graphoidal cover, Smarandachely graphoidal cover, monophonic path, mono-

phonic graphoidal cover, monophonic graphoidal covering number.

AMS(2010): 05C70.

§1. Introduction

By a graph G = (V,E) we mean a finite, undirected connected graph without loops or multiple

edges. The order and size of G are denoted by p and q respectively. For basic graph theoretic

terminology we refer to Harary [6]. The concept of graphoidal cover was introduced by Acharya

and Sampathkumar [2] and further studied in [1, 3, 7, 8].

A graphoidal cover of a graph G is a collection ψ of (not necessarily open) paths in G

satisfying the following conditions:

(i) Every path in ψ has at least two vertices;

(ii) Every vertex of G is an internal vertex of at most one path in ψ;

(iii) Every edge of G is in exactly one path in ψ.

The minimum cardinality of a graphoidal cover of G is called the graphoidal covering

number of G and is denoted by η(G).

The collection ψ is called an acyclic graphoidal cover of G if no member of ψ is cycle; it

1Received February 16, 2022, Accepted March 17, 2023.
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is called a geodesic graphoidal cover if every member of ψ is a shortest path in G. The mini-

mum cardinality of an acyclic (geodesic) graphoidal cover of G is called the acyclic (geodesic)

graphoidal covering number of G and is denoted by ηa(ηg). The acyclic graphoidal covering

number and geodesic graphoidal covering number are studied in [4,5]. Generally, a Smaran-

dachely graphoidal cover C (G, k,P) of graph G is the union of subgraphs with property P,

hold with every vertex v ∈ V (G) is in at most k subgraphs and every edge is in exactly one

subgraph with property P. Certainly, let P = {path, cycle} or P = {path} and k = 1.

Then, a Smarandachely graphoidal cover C (G, 1,P) is respectively the graphoidal cover of G

or acyclic graphoidal cover of G.

A chord of a path P is an edge joining any two non-adjacent vertices of P . A path P is

called a monophonic path if it is a chordless path. For any two vertices u and v in a connected

graph G, the monophonic distance dm(u, v) from u to v is defined as the length of a longest

u− v monophonic path in G. The monophonic eccentricity em(v) of a vertex v in G is em(v) =

max{dm(v, u) : u ∈ V (G)}. The monophonic radius is radm(G) = min{em(v) : v ∈ V (G)} and

the monophonic diameter is diamm(G) = max{em(v) : v ∈ V (G)}. The monophonic distance

was introduced and studied in [10, 11].

A monophonic graphoidal cover of a graph G is a collection ψm of monophonic paths in

G such that every vertex of G is an internal vertex of at most one monophonic path in ψm

and every edge of G is in exactly one monophonic path in ψm. The minimum cardinality of a

monophonic graphoidal cover of G is called the monophonic graphoidal covering number of G

and is denoted by ηm(G). The monophonic graphoidal covering number was introduced [12]

and studied in [13,14].

Product graphs have been used to generate mathematical models of complex networks

which inherits properties of real networks. By using basic graphs, corona graphs are defined by

taking corona product of the basic graphs.

Definition 1.1 The corona of two graphs G and H is the graph G ◦H formed from one copy

of G and |V (G)| copies of H, where the ith vertex of G is adjacent to every vertex in the ith

copy of H.

§2. Monophonic Graphoidal Covering Number on Corona Product of Wheel with

Some Standard Graphs

Theorem 2.1 For the wheel Wn = K1 + Cn−1 (n ≥ 5), ηm(Wn) = n.

Proof LetWn = K1+Cn−1 be a wheel with V (K1) = {v} and V (Cn−1) = {u1, u2, · · · , un−1}
and let P1 : u1, u2, · · · , un−2, P2 : u1, un−1, un−2, P3 : u1, v, un−2 and Pi+2 : v, ui (2 ≤ i ≤
n− 3 and i = n− 1). It is clear that ψm = {P1, P2, · · · , Pn−1, Pn+1} is a minimum monophonic

graphoidal cover of Wn. Hence ηm(Wn) = n. �

Theorem 2.2 (i) If G = Pr ◦Wn, then ηm(G) = 2nr − 1;

(ii) If G = Wn ◦ Pr, then ηm(G) = n(r + 2)− 2.
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Proof Let P : u1, u2, · · · , ur be a path of order r and let Wn = K1 +Cn−1 be a wheel with

V (K1) = {v1} and V (Cn−1) = {v2, v3, · · · , vn}.

(i) Let G be the corona product of Pr and Wn. The graph G is shown in Figure 1. Let

M1 : v1,1, u1, u2, · · · , ur, vr,1; Mi+1 : vi,2, vi,3, · · · , vi,n−1 (1 ≤ i ≤ r); M ′i : vi,2, vi,n, vi,n−1 (1 ≤
i ≤ r); M ′′i : vi,2, vi,1, vi,n−1 (1 ≤ i ≤ r) and S1 =

⋃r
i=1

⋃n
j=1 {(ui, vi,j)}−{(u1, v1,1), (ur, vr,1)},

S2 =
⋃r
i=1(

⋃n
j=3 {(vi,1, vi,j)} − {(vi,1, vi,n−1)}).

Figure 1

It is clear that ψm = S1 ∪ S2 ∪ {M1,M2, . . . ,Mr+1,M
′
1,M

′
2, . . . ,M

′
r,M

′′
1 ,M

′′
2 , · · · ,M ′′r } is

a minimum monophonic graphoidal cover of G and so ηm(G) = (nr− 2) + r(n− 3) + (3r+ 1) =

2nr − 1.

(ii) Let G be the corona product of Wn and Pr. The graph G is shown in Figure 2.

Figure 2

LetM1 : u2,1, v2, v3, · · · , vn−1, un−1,1; M2 : v2, vn, vn−1; M3 : v2, v1, vn−1; Mi+1 : v1, vi (3 ≤
i ≤ n − 2); Mn : v1, vn; M ′i : ui,1, ui,2, · · · , ui,r (1 ≤ i ≤ n) and S =

⋃n
i=1

⋃r
j=1(vi, ui,j) −

{(v2, u2,1), (vn−1, un−1,1)}.
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It is clear that ψm = S ∪ {M1,M2, . . . ,Mn,M
′
1,M

′
2, . . . ,M

′
n} is a minimum monophonic

graphoidal cover of G and so ηm(G) = (nr − 2) + 2n = n(r + 2)− 2. �

Theorem 2.3 (i) If G = Cr ◦Wn, then ηm(G) = 2rn;

(ii) If G = Wn ◦ Cr, then ηm(G) = n(r + 3)− 2.

Proof Let Cr : u1, u2, · · · , ur, u1 be a cycle of order r and let Wn = K1 +Cn−1 be a wheel

with V (K1) = {v1} and V (Cn−1) = {v2, v3, · · · , vn}.

(i) Let G be the corona product of Cr and Pn.

Case 1. r = 3.

The graph G in this case is shown in Figure 3.

Figure 3

Let M1 : v1,1, u1, u2; M2 : v2,1, u2, u3; M3 : v3,1, u3, u1; Mi+3 : vi,2, vi,3, · · · , vi,n−1 (1 ≤
i ≤ 3); M ′i : vi,2, vi,n, vi,n−1 (1 ≤ i ≤ 3); M ′i+3 : vi,2, vi,1, vi,n−1 (1 ≤ i ≤ 3) and S1 =⋃3
i=1(

⋃n
j=1{(ui, vi,j)} − {(ui, vi,1)}), S2 =

⋃3
i=1(

⋃n
j=3{(vi,1, vi,j)} − {(vi,1, vi,n−1)}).

It is clear that every Mi (1 ≤ i ≤ 6) and M ′i (1 ≤ i ≤ 6) are monophonic paths and every el-

ement in S1∪S2 is a monophonic path. Hence ψm = S1∪S2∪{M1,M2, · · · ,M6,M
′
1,M

′
2, . . . ,M

′
6}

is a minimum monophonic graphoidal cover of G and so ηm(G) = 3n− 3 + 3(n− 3) + 12 = 6n.

Case 2. r > 3.

Let M1 : vi,1, u1, u2, . . . , ur−1, vr−1,1; M2 : u1, ur, ur−1; Mi+2 : vi,2, vi,3, · · · , vi,n−1 (1 ≤
i ≤ r); M ′i : vi,2, vi,n, vi,n−1 (1 ≤ i ≤ r); M ′′i : vi,2, vi,1, vi,n−1 (1 ≤ i ≤ r) and S1 =

(
⋃r
i=1

⋃n
j=1(ui, vi,j))− {(u1, v1,1), (ur−1, vr−1,1)}, S2 =

⋃r
i=1(

⋃n
j=3(vi,1, vi,j)− {(vi,1, vi,n−1)}).
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It is clear that every Mi (1 ≤ i ≤ r + 2), M ′i (1 ≤ i ≤ r) and M ′′i (1 ≤ i ≤ r) is a

monophonic path and every element in S1 ∪ S2 is a monophonic path. Hence ψm = S1 ∪ S2 ∪
{M1,M2, · · · ,Mr+2,M

′
1,M

′
2, . . . ,M

′
r,M

′′
1 ,M

′′
2 , · · · ,M ′′r } is a minimum monophonic graphoidal

cover of G and so ηm(G) = (rn− 2) + r(n− 3) + (3r + 2) = 2rn.

(ii) Let G be the corona product of Wn and Cr. The graph G in this case is shown in

Figure 4. Let M1 : u2,1, v2, v3, · · · , vn−1, un−1,1; M2 : v2, vn, vn−1; M3 : v2, v1, vn−1; M ′i :

ui,1, ui,2, · · · , ui,r−1 (1 ≤ i ≤ n); M ′′i : ui,1, ui,r, ui,r−1 (1 ≤ i ≤ n) and S1 =
⋃n
i=3(v1, vi) −

{(v1, vn−1)}, S2 =
⋃n
i=1

⋃r
j=1(vi, ui,j)− {(v2, u2,1)(vn−1, un−1,1)}.

Figure 4

It is clear that every Mi (1 ≤ i ≤ 3), M ′i (1 ≤ i ≤ n) and M ′′i (1 ≤ i ≤ n) are monophonic

paths and every element in S1 ∪ S2 is a monophonic path in G. Hence ψm = S1 ∪ S2 ∪
{M1,M2,M3,M

′
1,M

′
2,M

′
3, · · · ,M ′n,M ′′1 ,M ′′2 , · · · ,M ′′n} is a minimum monophonic graphoidal

cover of G and so ηm(G) = (n− 3) + (nr − 2) + (2n+ 3) = n(r + 3)− 2. �

Theorem 2.4 (i) If G = Kr ◦Wn, then ηm(G) = r
2 (r + 4n− 11);

(ii) If G = Wn ◦Kr, then ηm(G) = n(r2 + r + 2)− 10.

Proof Let Kr be the complete graph of order r with the vertex set {u1, u2, · · · , ur} and

let Wn = K1 + Cn−1 be a wheel with V (K1) = {v1} and V (Cn−1) = {v2, v3, . . . , vn}.

(i) Let G be the corona product of Kr and Wn. The graph G is shown in Figure 5. Let

Mi : vi,1, ui, ui+1 (1 ≤ i ≤ r − 1); Mr : vr,1, ur, u1; Ni : vi,2, vi,3, · · · , vi,n−1 (1 ≤ i ≤ r);

N ′i : vi,2, vi,n, vi,n−1 (1 ≤ i ≤ r); N ′′i : vi,2, vi,1, ui,n−1 (1 ≤ i ≤ r) and

S1 =

r⋃
i=1

n⋃
j=2

(ui, vi,j),

S2 =

r⋃
i=1

(

n⋃
j=3

(vi,1, vi,j)− {(vi,1, vi,n−1)} ,
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S3 = E(Kr)− {(u1, u2), (u2, u3), · · · , (ur−1, ur), (ur, u1)} .

It is clear that every Mi, Ni, N
′
i , N

′′
i , for 1 ≤ i ≤ r, are monophonic paths and every element

in S1 ∪ S2 ∪ S3 is a monophonic path. Hence,

ψm = S1

⋃
S2

⋃
S3

⋃
{M1,M2, · · · ,Mr, N1, N2, · · · , Nr, N ′1, N ′2, · · · , N ′r, N ′′1 , N ′′2 , · · · , N ′′r }

is a minimum monophonic graphoidal cover of G and hence

ηm(G) = r(n− 1) + r(n− 3) +
r(r − 1)

2
− r + 4r =

r

2
(r + 4n− 11).

Figure 5

(ii) Let G be the corona product of Wn and Kr, which is shown in Figure 6.

Figure 6
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Let M1 : u2,1, v2, v3, . . . , vn−1, un−1,1; M2 : v2, vn, vn−1; M3 : v2, v1, vn−1 and

S1 =

n⋃
i=3

(v1, vi)− {(v1, vn−1)} ,

S2 =

n⋃
i=1

r⋃
j=1

(vi, ui,j)− {(v2, u2,1), (vn−1, un−1,1)} ,

S3 =

n⋃
i=1

E(Ki
r).

It is clear that every M1,M2 and M3 are monophonic paths and every element in S1∪S2∪S3

is a monophonic path. Hence ψm = S1 ∪ S2 ∪ S3 ∪ {M1,M2,M3} is a minimum monophonic

graphoidal cover of G and hence

ηm(G) = (n− 3) + (nr − 2) + n(
r(r − 1)

2
) = n(r2 + r + 2)− 10. �

Theorem 2.5 If G = Wr ◦Ws, then ηm(G) = r(2s+ 4)− 2.

Proof Let Wr = K1+Cr−1 be a wheel with V (K1) = {u1} and V (Cr−1) = {u1, u2, · · · , ur}
and let Ws = K1 + Cs−1 be a wheel with V (K1) = {v1} and V (Cs−1) = {v1, v2, · · · , vs}.
The graph G is shown in Figure 7. Let M1 : v2,1, u2, u3, · · · , ur−1, vr−1,1; M2 : u2, ur, ur−1;

M3 : u2, u1, ur−1; M ′i : vi,2, vi,3, · · · , vi,s−1 (1 ≤ i ≤ r); M ′′i : vi,2, vi,s, vi,s−1 (1 ≤ i ≤ r); M ′′′i :

vi,2, vi,1, vi,s−1 (1 ≤ i ≤ r) and S1 =
⋃r
i=3(u1, ui) − {(u1, ur−1)}, S2 =

⋃r
i=1(

⋃s
j=3(vi,1, vi,j) −

{(vi,1, vi,s−1)}), S3 =
⋃r
i=1

⋃s
j=1(ui, vi,j)− {(u2, v2,1), (ur−1, vr−1,1)}.

Figure 7

It is clear that ψm = S1 ∪S2 ∪S3 ∪{M1,M2,M3,M
′
1,M

′
2, · · · ,M ′r,M ′′1 ,M ′′2 , · · · ,M ′′r ,M ′′′1 ,

M ′′′2 , · · · ,M ′′′r } is a minimum monophonic graphoidal cover of G and so

ηm(G) = (3r + 3) + (r − 3) + r(s− 3) + (rs− 2) = r(2s+ 4)− 2. �
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§1. Introduction

In [1], we have introduced the Randić sum eccentricity energy of a simple graph G as follows.

The Randić sum eccentricity energy adjacency matrix of G is a n × n matrix Arse = (aij),

where

aij =


0, if i = j,

1√
e(vi)+e(vj)

, if the vertices vi and vj are adjacent,

0, if the vertices vi and vj are not adjacent,

where e(vi) is the eccentricity of the vertex vi. The Randić sum eccentricity energy of G is

defined as the sum of absolute values of the eigenvalues of the Randić sum eccentricity energy

adjacency matrix of G. Generally, a Smarandachely sum eccentricity energy adjacency matrix

of G is a n× n matrix Asrse = (asij) with

asij =


0, if i = j,

1
d+1
√
ed(vi)+ed(vj)

, if the distance of vertices vi and vj is d,

0, if the vertices vi and vj are not connected

which characterizes the non-homogeneity of vertices on a graph by eccentricity. Certainly, the

matrix Arse characterizes vertices of G in case of homogeneity which is a submatrix of Asrse.

In 2010, Adiga, Balakrishnan and Wasin So [5] introduced the skew energy of a digraph

1Received December 02, 2022, Accepted March 18, 2023.
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as follows. Let D be a digraph of order n with vertex set V (D) = {v1, v2, · · · , vn} and arc set

Γ(D) ⊂ V (D)×V (D) where (vi, vi) 6∈ Γ(D) for all i and (vi, vj) ∈ Γ(D) implies (vj , vi) 6∈ Γ(D).

The skew-adjacency matrix of D is the n × n matrix S(D) = (sij) where sij = 1 whenever

(vi, vj) ∈ Γ(D), sij = −1 whenever (vj , vi) ∈ Γ(D) and sij = 0 otherwise. Hence S(D) is a

skew symmetric matrix of order n and all its eigenvalues are of the form iλ where i =
√
−1 and

λ is a real number. The skew energy of G is the sum of the absolute values of eigenvalues of

S(D).

Motivated by these works, we introduce the concept of skew Randić sum eccentricity energy

of a digraph as follows. Let D be a digraph of order n with vertex set V (D) = {v1, v2, · · · , vn}
and arc set Γ(D) ⊂ V (D) × V (D) where (vi, vi) 6∈ Γ(D) for all i and (vi, vj) ∈ Γ(D) implies

(vj , vi) 6∈ Γ(D). Then the skew Randić sum eccentricity adjacency matrix of D is the n × n
matrix Asrse = (aij) where

aij =


1√

e(vi)+e(vj)
, if (vi, vj) ∈ Γ(D),

− 1√
e(vi)+e(vj)

, if (vj , vi) ∈ Γ(D),

0, otherwise.

Then, the skew Randić sum eccentricity energy Esrse(D) of D is defined as the sum of the

absolute values of eigenvalues of Asrse.

For example LetD be the directed circle on 4 vertices with the arc set {(1, 2), (2, 3), (3, 4), (4, 1)}.
Then

Asrse =


0 1

2 0 − 1
2

− 1
2 0 1

2 0

0 − 1
2 0 1

2

1
2 0 − 1

2 0

 .

Then, the characteristic equation is given by λ4 + λ2. The eigenvalues are i, 0, 0, −i and skew

Randić sum eccentricity energy of D is 2.

In Section 2 of this paper we obtain the upper and lower bounds for skew Randić sum

eccentricity energy of digraphs. In Section 3 we compute the skew Randić sum eccentricity

energy of some directed graphs such as complete bipartite digraph, star digraph, the (Sm ∧P2)

digraph and a crown digraph.

§2. Upper and Lower Bounds for Skew Randić Sum Eccentricity Energy

Theorem 2.1 Let D be a simple digraph of order n. Then

Esrse(D) ≤

√√√√2n
∑
j∼k

(
1

e(vi) + e(vj)

)
.

Proof Let iλ1, iλ2, iλ3, · · · , iλn, be the eigenvalues of Asrse, where λ1 ≥ λ2 ≥ λ3 ≥ λ4 ≥



64 H. E. Ravi

· · · ≥ λn. Since

n∑
j=1

(iλj)
2 = tr(A2

srse) = −
n∑
j=1

n∑
k=1

a2
jk = −2

∑
j∼k

(
1

e(vi) + e(vj)

)
,

we have
n∑
j=1

|λj |2 = 2
∑
j∼k

(
1

e(vi) + e(vj)

)
. (1)

Applying the Cauchy-Schwartz inequality n∑
j=1

ajbj

2

≤

 n∑
j=1

a2
j

 .

 n∑
j=1

b2j


with aj = 1, bj =| λj |, we obtain

Esrse(D) =

n∑
j=1

|λj | =

√√√√(

n∑
j=1

|λj |)2 ≤

√√√√n

n∑
j=1

|λj |2 =

√√√√2n
∑
j∼k

(
1

e(vi) + e(vj)

)
.

This completes the proof. �

Theorem 2.2 Let D be a simple digraph of order n. Then

Esrse(D) ≥

√√√√2
∑
j∼k

(
1

e(vi) + e(vj)

)
+ n(n− 1)p

2
n , where p = |detAsrse| =

n∏
j=1

|λj |. (2)

Proof Notice that

(Esrse(D))
2

=

 n∑
j=1

|λj |

2

=

n∑
j=1

|λj |2 +
∑

1≤j 6=k≤n

|λj ||λk|.

By arithmetic-geometric mean inequality, we get∑
1≤j 6=k≤n

|λj ||λk| = |λ1|(|λ2|+ |λ3|+ · · ·+ |λn|)

+|λ2|(|λ1|+ |λ3|+ · · ·+ |λn|) + · · ·

+|λn|(|λ1|+ |λ2|+ · · ·+ |λn−1|)

≥ n(n− 1)(|λ1||λ2|...|λn|)
1
n (|λ1|n−1|λ2|n−1...|λn|n−1)

1
n(n−1)

= n(n− 1)(

n∏
j=1

|λj |)
1
n (

n∏
j=1

|λj |)
1
n = n(n− 1)

 n∏
j=1

|λj |

 2
n

.
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Thus,

(Esrse(D))
2 ≥

n∑
j=1

|λj |2 + n(n− 1)

 n∏
j=1

|λj |

 2
n

.

From the equation (1), we get

(Esrse(D))
2 ≥ 2

∑
j∼k

(
1

e(vi) + e(vj)

)
+ n(n− 1)p

2
n ,

which gives (2). �

§3. Skew Randić Sum Eccentricity Energies of Some Families of Graphs

We begin with some basic definitions and notations.

Definition 3.1([3]) A graph G is said to be complete if every pair of its distinct vertices are

adjacent. A complete graph on n vertices is denoted by Kn.

Definition 3.2([3]) A bigraph or bipartite graph G is a graph whose vertex set V (G) can be

partitioned into two subsets V1 and V2 such that every line of G joins V1 with V2. (V1, V2) is a

bipartition of G. If G contains every line joining V1 and V2, then G is a complete bigraph. If

V1 and V2 have m and n points, we write G = Km,n. A star is a complete bigraph K1,n.

Definition 3.3([2]) The crown graph S0
n for an integer n ≥ 3 is the graph with vertex set

{u1, u2, · · · , un, v1, v2, · · · , vn} and edge set {uivj ; 1 ≤ i, j ≤ n, i 6= j}. S0
n is therefore S0

n

coincides with complete bipartite graph Kn,n with the horizontal edges removed.

Definition 3.4([4]) The conjunction (Sm∧P2) of Sm = Km+K1 and P2 is the graph having the

vertex set V (Sm)×V (P2) and edge set {(vi, vj)(vk, vl)|vivk ∈ E(Sm) and vjvl ∈ E(P2) and 1 ≤
i, k ≤ m+ 1, 1 ≤ j, l ≤ 2}.

Now we compute skew Randić sum eccentricity energies of some directed graphs such as

complete bipartite digraph, star digraph, the (Sm ∧ P2) and a crown digraph.

Theorem 3.5 Let the vertex set V (D) and arc set Γ(D) of Km,n complete bipartite digraph be

respectively given by

V (D) = {u1, u2, · · · , um, v1, v2, · · · , vn},

Γ(D) = {(ui, vj) | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

Then, the skew Randić sum eccentricity energy of the complete bipartite digraph is
√
mn.
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Proof The skew Randić sum eccentricity matrix of complete bipartite digraph is given by

Asrse =



0 · · · 0 1
2 · · · 1

2

...
. . .

...
...

. . .
...

0 · · · 0 1
2 · · · 1

2

− 1
2 · · · − 1

2 0 · · · 0
...

. . .
...

...
. . .

...

− 1
2 · · · − 1

2 0 · · · 0


with a characteristic polynomial

|λI −Asrse| =

∣∣∣∣∣∣λIm − 1
2J

T

1
2J λIn

∣∣∣∣∣∣ ,
where J is an n×m matrix with all the entries are equal to 1. Hence the characteristic equation

is given by ∣∣∣∣∣∣λIm − 1
2J

T

1
2J λIn

∣∣∣∣∣∣ = 0,

which can be written as

|λIm|
∣∣∣∣λIn − (1

2
J

)
Im
λ

(
−1

2
JT
)∣∣∣∣ = 0.

On simplification, we obtain

λm−n

(4)n
∣∣(4)λ2In + JJT

∣∣ = 0,

which can be written as

λm−n

(4)n
PJJT (4λ2) = 0,

where PJJT (λ) is the characteristic polynomial of the matrix JJT . Thus, we have

λm−n

(4)n
(4λ2 +mn)(4λ2)n−1 = 0,

which is same as

λm+n−2(λ2 +
mn

4
) = 0.

Therefore, the spectrum of Km,n is given by

Spec (Km,n) =

 0 i
√

mn
4 −i

√
mn
4

m+ n− 2 1 1

 .
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Hence, the skew Randić sum eccentricity energy of complete bipartite digraph is

Esrse(Km,n) =
√
mn,

as desired. �

Theorem 3.6 Let the vertex set V (D) and arc set Γ(D) of Sn star digraph be respectively given

by

V (D) = {v1, v2, · · · , vn}, Γ(D) = {(v1, vj) | 2 ≤ j ≤ n}

Then, the skew Randić sum eccentricity energy of D is

Esrse(Sn) = 2

√
n− 1

3
.

Proof The skew Randić sum eccentricity matrix of the star digraph D is given by

Asrse =



0 1√
3

1√
3
· · · 1√

3
1√
3

− 1√
3

0 0 · · · 0 0

− 1√
3

0 0 · · · 0 0
...

...
...

. . .
...

...

− 1√
3

0 0 · · · 0 0

− 1√
3

0 0 · · · 0 0


with a characteristic polynomial

|λI −Asrse| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ − 1√
3
− 1√

3
· · · − 1√

3

1√
3

λ 0 · · · 0

1√
3

0 λ · · · 0
...

...
...

. . .
...

1√
3

0 0 · · · λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

(
1√
3

)n
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ −1 −1 · · · −1 −1

1 µ 0 · · · 0 0

1 0 µ · · · 0 0
...

...
...

. . .
...

...

1 0 0 · · · µ 0

1 0 0 · · · 0 µ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,
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where µ = λ
√

3. Then

|λI −Asrse| = φn(µ)

(
1√
3

)n
,

where

φn(µ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ −1 −1 · · · −1 −1

1 µ 0 · · · 0 0

1 0 µ · · · 0 0
...

...
...

. . .
...

...

1 0 0 · · · µ 0

1 0 0 · · · 0 µ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Using the properties of the determinants, we obtain

φn(µ) = (µφn−1(µ) + µn−2)

after some simplifications. Iterating this, we obtain

φn(µ) = µn−2(µ2 + (n− 1)).

Therefore

|λI −Asrse| =
(

1√
3

)n [(
(3)λ2 + (n− 1)

)
(λ
√

3)n−2
]
.

Thus, the characteristic equation is given by

λn−2

(
λ2 +

n− 1

3

)
= 0.

Hence,

Spec (Sn) =

 0 i
√

n−1
3 −i

√
n−1

3

n− 2 1 1


and the skew Randić sum eccentricity energy of Sn is

Esrse(Sn) = 2

√
n− 1

3
. �

Theorem 3.7 Let the vertex set V (D) and arc set Γ(D) of (Sm ∧ P2)(m > 1) digraph be

respectively given by

V (D) = {v1, v2, · · · , v2m+2},

Γ(D) = {(v1, vj), (vm+2, vk) | 2 ≤ k ≤ m+ 1,m+ 3 ≤ j ≤ 2m+ 2}.

Then, the skew Randić sum eccentricity energy of D is
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Esrse(D) = 4

√
n− 1

3
.

Proof The skew Randić sum eccentricity matrix of (Sm ∧ P2) digraph is given by

Asrse =



0 0 · · · 0 0 γ · · · γ

0 0 · · · 0 −γ 0 · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · 0 −γ 0 · · · 0

0 γ · · · γ 0 0 · · · 0

−γ 0 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...

−γ 0 · · · 0 0 0 · · · 0


2n×2n

,

where m+ 1 = n and γ = 1√
3
. Then, its characteristic polynomial is given by

|λI −Asrse| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ 0 · · · 0 0 −γ · · · −γ

0 λ · · · 0 γ 0 · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · λ γ 0 · · · 0

0 −γ · · · −γ λ 0 · · · 0

γ 0 · · · 0 0 λ · · · 0
...

...
. . .

...
...

...
. . .

...

γ 0 · · · 0 0 0 · · · λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2n×2n

.

Hence, the characteristic equation is given by

(
1√
3

)2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Λ 0 · · · 0 0 −1 · · · −1

0 Λ · · · 0 1 0 · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · Λ 1 0 · · · 0

0 −1 · · · −1 Λ 0 · · · 0

1 0 · · · 0 0 Λ · · · 0
...

...
. . .

...
...

...
. . .

...

1 0 · · · 0 0 0 · · · Λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2n×2n

= 0,

where Λ =
√

3λ.
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Let

φ2n(Λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Λ 0 0 · · · 0 0 −1 −1 · · · −1

0 Λ 0 · · · 0 1 0 0 · · · 0

0 0 Λ · · · 0 1 0 0 · · · 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 0 · · · Λ 1 0 0 · · · 0

0 −1 −1 · · · −1 Λ 0 0 · · · 0

1 0 0 · · · 0 0 Λ 0 · · · 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

1 0 0 · · · 0 0 0 0 · · · Λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2n×2n

= (−1)
2n+2n

Λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Λ 0 0 · · · 0 0 −1 −1 · · · −1

0 Λ 0 · · · 0 1 0 0 · · · 0

0 0 Λ · · · 0 1 0 0 · · · 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 0 · · · Λ 1 0 0 · · · 0

0 −1 −1 · · · −1 Λ 0 0 · · · 0

1 0 0 · · · 0 0 Λ 0 · · · 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

1 0 0 · · · 0 0 0 0 · · · Λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2n−1)×(2n−1)

+(−1)
2n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 · · · 0 0 −1 · · · −1 −1

Λ 0 0 · · · 0 1 0 · · · 0 0

0 Λ 0 · · · 0 1 0 · · · 0 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 0 · · · Λ 1 0 · · · 0 0

−1 −1 −1 · · · −1 Λ 0 · · · 0 0

0 0 0 · · · 0 0 Λ · · · 0 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 0 · · · 0 0 0 · · · Λ 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2n−1)×(2n−1)

.

Let

Ψ2n−1(Λ) = (−1)
2n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 · · · 0 0 −1 · · · −1 −1

Λ 0 0 · · · 0 1 0 · · · 0 0

0 Λ 0 · · · 0 1 0 · · · 0 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 0 · · · Λ 1 0 · · · 0 0

−1 −1 −1 · · · −1 Λ 0 · · · 0 0

0 0 0 · · · 0 0 Λ · · · 0 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 0 · · · 0 0 0 · · · Λ 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2n−1)×(2n−1)

Using the properties of the determinants, we obtain

Ψ2n−1(Λ) = Λn−2Θn(Λ)



On Skew Randić Sum Eccentricity Energy of Digraphs 71

after some simplifications, where

Θn(Λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Λ 0 0 · · · 1

0 Λ 0 · · · 1

0 0 Λ · · · 1
...

...
...

. . .
...

−1 −1 −1 · · · Λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

.

Then,

φ2n(Λ) = Λn−2Θn(Λ) + Λφ2n−1(Λ).

Now, proceeding as above, we obtain

φ2n−1(Λ) = (−1)(2n−1)+1Ψ2n−2(Λ) + (−1)(2n−1)+(2n−1)Λφ2n−2(Λ)

= Λn−3Θn(Λ) + Λφ2n−2(Λ).

Proceeding like this, we obtain at the (n− 1)th step

φ2n(Λ) = (n− 1)Λn−2Θn(Λ) + Λ(n−1)ξn+1(Λ),

where,

ξn+1(Λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Λ 0 0 · · · 0

0 Λ 0 · · · 1

0 0 Λ · · · 1
...

...
...

. . .
...

0 −1 −1 · · · Λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n+1)×(n+1)

.

φ2n(Λ) = (n− 1)Λn−2Θn(Λ) + Λn−1ΛΘn(Λ)

= (n− 1)Λn−2Θn(Λ) + ΛnΘn(Λ)

= ((n− 1)Λn−2 + Λn)Θn(Λ).

Using the properties of the determinants, we obtain

Θn(Λ) = (n− 1)Λn−2 + Λn.

Therefore

φ2n(Λ) = ((n− 1)Λn−2 + Λn)2.

Hence characteristic equation becomes(
1√
3

)2n

φ2n(Λ) = 0,
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which is same as (
1√
3

)2n

((n− 1)Λn−2 + Λn)2 = 0

and can be reduced to

λ2n−4((n− 1) + (3)λ2)2 = 0.

Therefore

Spec (D) =

 0 i
√

n−1
3 −i

√
n−1

3

2n− 4 2 2

 .

Hence, the skew Randić sum eccentricity energy of (Sm ∧ P2) digraph is

Esrse(D) = 4

√
n− 1

3
. �

Theorem 3.8 Let the vertex set V (D) and arc set Γ(D) of S0
n(n > 2) crown digraph be

respectively given by

V (D) = {u1, u2, · · · , un, v1, v2, · · · , vn}, Γ(D) = {(ui, vj) | 1 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j}.

Then, the skew Randić sum eccentricity energy of the crown digraph is 2(n− 1).

Proof The skew Randić sum eccentricity matrix of crown digraph is given by

Asrse =



0 0 · · · 0 0 X · · · X

0 0 · · · 0 X 0 · · · X
...

...
. . .

...
...

...
. . .

...

0 0 · · · 0 X X · · · 0

0 −X · · · −X 0 0 · · · 0

−X 0 · · · −X 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...

−X −X · · · 0 0 0 · · · 0



,

where X = 1√
4
. Its characteristic polynomial is

|λI −Asrse| =

∣∣∣∣∣∣ λIn − 1√
4
KT

1√
4
K λIn

∣∣∣∣∣∣ ,
where K is an n× n matrix. Hence, the characteristic equation is given by∣∣∣∣∣∣ λIn − 1√

4
KT

1√
4
K λIn.

∣∣∣∣∣∣ = 0,
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which is the same as

|λIn|
∣∣∣∣λIn − ( K√

4

)
In
λ

(
−K

T

√
4

)∣∣∣∣ = 0

and can be written as
1

(4)n
PKKT ((4)λ2) = 0,

where PKKT (λ) is the characteristic polynomial of the matrix KKT . Thus, we have

1

(4)n
[4λ2 + (n− 1)2][4λ2 + 1]n−1 = 0,

which is same as (
λ2 +

(n− 1)2

4

)(
λ2 +

1

4

)n−1

= 0.

Therefore

Spec (S0
n) =

 i
√

(n−1)2

4 −i
√

(n−1)2

4 i 1√
4
−i 1√

4

1 1 n− 1 n− 1

 .

Hence, the skew Randić sum-eccentricity energy of crown digraph is

Esrse(S
0
n) = 2(n− 1)

as desired. �
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Abstract: In this paper, we introduced the new notions full signed graph and full line

signed graph of a signed graph and its properties are obtained. Also, we obtained the struc-

tural characterizations of these notions. Further, we presented some interesting switching

equivalent characterizations.
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§1. Introduction

For standard terminology and notion in graph theory, we refer the reader to the text-book of

Harary [1]. The non-standard will be given in this paper as and when required.

To model individuals’ preferences towards each other in a group, Harary [2] introduced the

concept of signed graphs in 1953. A signed graph S = (G, σ) is a graph G = (V,E) whose

edges are labeled with positive and negative signs (i.e., σ : E(G) → {+,−}). The vertices

of a graph represent people and an edge connecting two nodes signifies a relationship between

individuals. The signed graph captures the attitudes between people, where a positive (negative

edge) represents liking (disliking). A neutrosophic signed graph SN = (G, σ,H) for a subgraph

H ⊂ G with property P is such a graph that G\H is a signed graph but H is indefinite for

those of uncertainties in reality. Certainly, if there are no indefinite subgraph in G, it must be

a signed graph. An unsigned graph is a signed graph with the signs removed. Similar to an

unsigned graph, there are many active areas of research for signed graphs.

The sign of a cycle (this is the edge set of a simple cycle) is defined to be the product of the

signs of its edges; in other words, a cycle is positive if it contains an even number of negative

edges and negative if it contains an odd number of negative edges. A signed graph S is said

to be balanced if every cycle in it is positive. A signed graph S is called totally unbalanced if

every cycle in S is negative. A chord is an edge joining two non adjacent vertices in a cycle.

A marking of S is a function ζ : V (G) → {+,−}. Given a signed graph S one can easily

1Received November 11, 2022, Accepted March 18, 2023.
2Corresponding author: somashekar2224@gmail.com
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define a marking ζ of S as follows: For any vertex v ∈ V (S),

ζ(v) =
∏

uv∈E(S)

σ(uv),

the marking ζ of S is called canonical marking of S. For more new notions on signed graphs

refer the papers (see [6, 8, 9, 13-17, 17-26]).

The following are the fundamental results about balance, the second being a more advanced

form of the first. Note that in a bipartition of a set, V = V1 ∪ V2, the disjoint subsets may be

empty.

Theorem 1.1 A signed graph S is balanced if and only if either of the following equivalent

conditions is satisfied:

(i) Its vertex set has a bipartition V = V1 ∪ V2 such that every positive edge joins vertices

in V1 or in V2, and every negative edge joins a vertex in V1 and a vertex in V2 (Harary [2]).

(ii) There exists a marking µ of its vertices such that each edge uv in Γ satisfies σ(uv) =

ζ(u)ζ(v) (Sampathkumar [6]).

Switching S with respect to a marking ζ is the operation of changing the sign of every edge

of S to its opposite whenever its end vertices are of opposite signs.

Two signed graphs S1 = (G1, σ1) and S2 = (G2, σ2) are said to be weakly isomorphic (see

[28]) or cycle isomorphic (see [29]) if there exists an isomorphism φ : G1 → G2 such that the

sign of every cycle Z in S1 equals to the sign of φ(Z) in S2. The following result is well known.

Theorem 1.2(T. Zaslavsky [29]) Given a graph G, any two signed graphs in ψ(G), where ψ(G)

denotes the set of all the signed graphs possible for a graph G, are switching equivalent if and

only if they are cycle isomorphic.

§2. Full Signed Graph of a Signed Graph

Let G = (V,E) be a graph and the full graph FG(G) of G is a graph whose vertex is the union of

vertices, edges and blocks of G in which two vertices are adjacent if the corresponding members

of G are adjacent or incident (see [4]). Let G = (V,E) be a graph. Then G is a connected

graph if and only if FG(G) is connected.

Motivated by the existing definition of complement of a signed graph, we now extend the

notion of full graphs to signed graphs as follows: The full signed graph FS(S) = (FG(G), σ′) of

a signed graph S = (G, σ) is a signed graph whose underlying graph is FG(G) and sign of any

edge uv is FS(S) is ζ(u)ζ(v), where ζ is the canonical marking of S. Further, a signed graph

S = (G, σ) is called a full signed graph, if S ∼= FS(S′) for some signed graph S′. The following

result restricts the class of full signed graphs.

Theorem 2.1 For any signed graph S = (G, σ), its full signed graph FS(S) is balanced.
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Proof Since sign of any edge e = uv in FS(S) is ζ(u)ζ(v), where ζ is the canonical marking

of S, by Theorem 1.1, FS(S) is balanced. �

For any positive integer k, the kth iterated full signed graph, FSk(S) of S is defined as

follows:

FS0(S) = S, FSk(S) = FS(FSk−1(S)).

Corollary 2.2 For any signed graph S = (G, σ) and for any positive integer k, FSk(S) is

balanced.

Corollary 2.3 For any two signed graphs S1 and S2 with the same underlying graph, FS(S1) ∼
FS(S2).

The following result characterize signed graphs which are full signed graphs.

Theorem 2.4 A signed graph S = (G, σ) is a full signed graph if, and only if, S is balanced

signed graph and its underlying graph G is a full graph.

Proof Suppose that S is balanced and G is a full graph. Then there exists a graph G′ such

that FG(G′) ∼= G. Since S is balanced, by Theorem 1.1, there exists a marking ζ of G such

that each edge uv in S satisfies σ(uv) = ζ(u)ζ(v). Now consider the signed graph S′ = (G′, σ′),

where for any edge e in G′, σ′(e) is the marking of the corresponding vertex in G. Then clearly,

FS(S′) ∼= S. Hence S is a full signed graph.

Conversely, suppose that S = (G, σ) is a full signed graph. Then there exists a signed

graph S′ = (G′, σ′) such that

FS(S′) ∼= S.

Hence, G is the full graph of G′ and by Theorem 2.1, S is balanced. �

The notion of negation η(S) of a given signed graph S defined in [3] as follows:

η(S) has the same underlying graph as that of S with the sign of each edge opposite to

that given to it in S. However, this definition does not say anything about what to do with

nonadjacent pairs of vertices in S while applying the unary operator η(.) of taking the negation

of S.

For a signed graph S = (G, σ), the FS(S) is balanced (Theorem 2.1). We now examine,

the conditions under which negation η(S) of FS(S) is balanced.

Proposition 2.5 Let S = (G, σ) be a signed graph. If FG(G) is bipartite then η(FS(S)) is

balanced.

Proof Since, by Theorem 2.1, FS(S) is balanced, it follows that each cycle C in FS(S)

contains even number of negative edges. Also, since FG(G) is bipartite, all cycles have even

length; thus, the number of positive edges on any cycle C in FS(S) is also even. Hence η(FS(S))

is balanced. �



Note on Full Signed Graphs and Full Line Signed Graphs 77

§3. Full Line Signed Graph of a Signed Graph

Let G = (V,E) be a graph and the full line graph FLG(G) of a graph G is a graph and

V (FLG(G)) is the union of the set of vertices, edges and blocks of G in which two vertices are

joined by an edge in SFL(G) if the corresponding vertices and edges of G are adjacent or the

corresponding members of G are incident (See [5]).

Motivated by the existing definition of complement of a signed graph, we now extend

the notion of full line graphs to signed graphs as follows: The full line signed graph FLS(S) =

(FLG(G), σ′) of a signed graph S = (G, σ) is a signed graph whose underlying graph is FLG(G)

and sign of any edge uv is FLS(S) is ζ(u)ζ(v), where ζ is the canonical marking of S. Further,

a signed graph S = (G, σ) is called a full line signed graph, if S ∼= FLS(S′) for some signed

graph S′. The following result restricts the class of full line signed graphs.

Theorem 3.1 For any signed graph S = (G, σ), its full line signed graph FLS(S) is balanced.

Proof Since sign of any edge e = uv in FLS(S) is ζ(u)ζ(v), where ζ is the canonical

marking of S, by Theorem 1.1, FLS(S) is balanced. �

For any positive integer k, the kth iterated full line signed graph, FLSk(S) of S is defined

as follows:

FLS0(S) = S, FLSk(S) = FLS(FLSk−1(S)).

Corollary 3.2 For any signed graph S = (G, σ) and for any positive integer k, FLSk(S) is

balanced.

Corollary 3.3 For any two signed graphs S1 and S2 with the same underlying graph, FLS(S1) ∼
FLS(S2).

The following result characterize signed graphs which are full line signed graphs.

Theorem 3.4 A signed graph S = (G, σ) is a full line signed graph if, and only if, S is balanced

signed graph and its underlying graph G is a full line graph.

Proof Suppose that S is balanced and G is a full line graph. Then there exists a graph

G′ such that FLG(G′) ∼= G. Since S is balanced, by Theorem 1.1, there exists a marking ζ

of G such that each edge uv in S satisfies σ(uv) = ζ(u)ζ(v). Now consider the signed graph

S′ = (G′, σ′), where for any edge e in G′, σ′(e) is the marking of the corresponding vertex in

G. Then clearly, FLS(S′) ∼= S. Hence S is a full line signed graph.

Conversely, suppose that S = (G, σ) is a full line signed graph. Then there exists a signed

graph S′ = (G′, σ′) such that FLS(S′) ∼= S. Hence, G is the full line graph of G′ and by

Theorem 2.1, S is balanced. �

For a signed graph S = (G, σ), the FLS(S) is balanced (Theorem 3.1). We now examine,

the conditions under which negation η(S) of FLS(S) is balanced.
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Proposition 3.5 Let S = (G, σ) be a signed graph. If FLG(G) is bipartite then η(FLS(S))

is balanced.

Proof Since, by Theorem 3.1, FLS(S) is balanced, it follows that each cycle C in FLS(S)

contains even number of negative edges. Also, since FLG(G) is bipartite, all cycles have even

length; thus, the number of positive edges on any cycle C in FLS(S) is also even. Hence

η(FLS(S)) is balanced. �

§4. Switching Equivalence of Full Signed Graphs and Full Line Signed Graphs

In [5], the authors remarked that FLG(G) and FG(G) are isomorphic if and only if G is a

block. We now give a characterization of signed graphs whose full signed graphs are switching

equivalent to their full line signed graphs.

Theorem 4.1 For any connected signed graph S = (G, σ), FS(S) ∼ FLS(S) if and only if G

is a block.

Proof Suppose FS(S) ∼ FLS(S). This implies that FG(G) ∼= FLG(G) and hence, G is a

block. Conversely, suppose that G is a block. Then

FG(G) ∼= FLG(G).

Now, if S any signed graph with G is a block, by Theorems 2.1 and 3.1, FS(S) and FLS(S)

are balanced and hence, the result follows from Theorem 1.2. This completes the proof. �

In view of the negation operator introduced by Harary [3], we have the following cycle

isomorphic characterizations.

Corollary 4.2 For any two signed graphs S1 = (G1, σ) and S2 = (G2, σ), η(FS(S1)) ∼
η(FS(S2)) if G1 and G2 are isomorphic.

Corollary 4.3 For any two signed graphs S1 = (G1, σ) and S2 = (G2, σ), η(FLS(S1)) ∼
η(FLS(S2)) if G1 and G2 are isomorphic.

Corollary 4.4 For any two signed graphs S1 = (G1, σ) and S2 = (G2, σ), FS(η(S1)) and

FS(η(S2)) are cycle isomorphic if G1 and G2 are isomorphic.

Corollary 4.5 For any two signed graphs S1 = (G1, σ) and S2 = (G2, σ), FLS(η(S1)) and

FLS(η(S2)) are cycle isomorphic if G1 and G2 are isomorphic.

Corollary 4.6 For any connected signed graph S = (G, σ), FS(η(S)) ∼ FLS(S) if and only

if G is a block.

Corollary 4.7 For any connected signed graph S = (G, σ), FS(S) ∼ FLS(η(S)) if and only

if G is a block.

Corollary 4.8 For any connected signed graph S = (G, σ), FS(η(S)) ∼ FLS(η(S)) if and

only if G is a block.
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§1. Introduction

In 1991, Balachandran [1] et.al, introduced and studied the notations of generalized continuous

functions. Different types of generalizations of continuous functions were studied by various

authors in the recent development of topology. Continous function is one of the main functions

in topology. Lellis Thivagar [4] introduced Nano topological space with respect to a subset X

of a universe which is defined in terms of lower and upper approximations of X. The elements

of Nano topological space are called Nano open sets. He has also defined Nano closed sets,

Nano-interior and Nano closure of a set. He also introduced the weak forms of Nano open sets,

namely Nano-open sets, Nano semi open sets and Nano preopen sets. He also defined Nano

continuous functions, Nano open mapping, Nano closed mapping and Nano Homeomorphism.

M.K.R.S.Veerakumar [10] was introduced the notion of ψ closed sets in topological spaces. Maki

[6] introduced the notion of Λ-sets in topological spaces in 1986. Λ-set is a set A which is equal

to its kernel, i.e., to the intersection of all open supersets of A. N.R.Santhi Maheswari and

P.Subbulakshmi [7], [8], [10] introduced Nano Λψ(A) sets, nano Λ∗ψ(A) sets, nano Λψ-set and

nano Λ∗ψ-set in nano topological spaces and we also introduce Nano (Λ, ψ)-closed sets , Nano

(Λ, ψ)-Open sets and Nano λψ generalized Closed sets and Nano λψg-continuous functions in

nano topological spaces. In this paper we introduce Nano λψg-irresolute functions and discussed

some of their properties. Also we investigate the relationships between the other existing Nano

irresolute functions.

1Received December 11, 2022, Accepted March 19, 2023.
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§2. Preliminaries

Definition 2.1([7]) Let U be a non-empty finite set of objects called the universe and R be

an equivalence relation on U named as the indiscernibility relation. Then U is divided into

disjoint equivalence classes. Elements belonging to the same equivalence class are said to be in

discernible with one another. The pair (U,R) is said to be the approximation space. Let X ⊆ U

(1) The lower approximation of X with respect to R is the set of all objects, which can be

for certain classified as X with respect to R and it is denoted by LR(X). That is LR(X) =

Ux∈U{R(X) : R(X) ⊆ X}, where R(X) denotes the equivalence class determined by X ∈ U ;

(2) The upper approximation of X with respect to R is the set of all objects, which can

be for certain classified as X with respect to R and it is denoted by UR(X).That is UR(X) =

Ux∈U{R(X) : R(X) ∩X = φ};
(3) The boundary of the region of X with respect to R is the set of all objects, which can

be classified neither as X nor as not X with respect to R and it is denoted by BR(X). That is

BR(X) = UR(X)− LR(X).

Lemma 2.2([4]) If (U,R) is an approximation space and X,Y ⊆ U , then

(1) LR(X) ⊆ X ⊆ UR(X);

(2) LR(φ) = UR(φ) = φ;

(3) LR(U) = UR(U) = U ;

(4) UR(X ∪ Y ) = UR(X) ∪ UR(Y );

(5) UR(X ∩ Y ) ⊆ UR(X) ∩ UR(Y );

(6) LR(X ∪ Y ) ⊇ LR(X) ∪ LR(Y );

(7) LR(X ∩ Y ) = LR(X) ∩ LR(Y );

(8) LR(X) ⊆ LR(Y )and UR(X) ⊆ UR(Y ) whenever X ⊆ Y ;

(9) UR(Xc) = [LR(X)]c and LR(Xc) = [UR(X)]c;

(10) UR(UR(X)) = LR(UR(X)) = UR(X);

(11) LR(LR(X)) = UR(LR(X)) = LR(X)

Definition 2.3([4]) Let U be the Universe and R be an equivalence relation on U and τR(X) =

{U, φ, LR(X), UR(X), BR(X)} where X ⊆ U . τR(X) satisfies the following axioms:

(1) U and φ ∈ τR(X);

(2) The union of elements of any subcollection of τR(X) is in τR(X);

(3) The intersection of the elements of any finite subcollection of τR(X) is in τR(X).

We call (U, τR(X)) is a Nano topological space. The elements of τR(X) are called a open

sets and the complement of a Nano open set is called Nano closed sets.

Throughout this paper (U, τR(X)) is a nano topological space with respect to X where X ⊆
U , R is an equivalence relation on U , U/R denotes the family of equivalence classes of U by R.

Definition 2.4([4]) If (U, τR(X)) is a nano topological space with respect to X. Where X ⊆ G
and if A ⊆ G, then
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(1) The Nano interior of the set A is defined as the union of all Nano open subsets contained

in A and is denoted by Nint(A), Nint(A) is the largest Nano open subset of A;

(2) The Nano closure of the set A is defined as the intersection of all Nano closed sets

containing A and is denoted by Ncl(A). Ncl(A) is the smallest Nano closed set containing A.

Definition 2.5([4]) Let (U, τR(X)) be a Nano topological space and A ⊆ G. Then, A is said

to be

(i) Nano semi-open (briefly Ns-open) if A ⊆ Ncl(Nint(A);

(ii) Nano α-open (briefly Nα-open) if A ⊆ Nint(Ncl(Nint(A));

(iii) Nano regular-open (briefly Nr-open) if A = Nint(Ncl(A).

The complements of the above mentioned open sets are called their respective closed sets.

Definition 2.6([8]) Let A be a subset of a Nano topological space (U, τR(X)). A subset NΛψ(A)

is defined as NΛψ(A) = ∩{H/A ⊆ H and H ∈ NψO(U, τR(X)}.

Definition 2.7([8]) A subset A of a Nano topological space (U, τR(X)) is called a NΛψ-set if

A = NΛψ(A). The set of all NΛψ -sets is denoted by NΛψ(U, τR(X)).

Definition 2.8([9]) Let A be a subset of a Nano topological space (U, τR(X)). A subset N(Λ, ψ)

closed if A = B ∩ C, where B is NΛψ set and C is a Nψ closed set.

Definition 2.9 Let (U, τR(X)) be a Nano topological space and A ⊆ G. Then A is said to be

(1) Nano sg-closed (briefly Nsg-closed) [2] if Nscl(A) ⊆ G whenever A ⊆ G and G is

Nano-semi open in U ;

(2) Nano ψ-closed (briefly Nψ-closed) [10] if Nscl(A) ⊆ G whenever A ⊆ G and G is

Nano-sg open in U ;

(3) Nano λψ generalized closed (briefly Nλψg-closed ) [8] if Nψcl(A) ⊆ G, whenever

A ⊆ G and G is N(Λ, ψ)- open in U .

Remark 2.10([9]) We have known the conclusions following:

(1) Every Nano closed set is Nλψg-closed;

(2) Every Ns-closed set is Nλψg-closed;

(3) Every Nr-closed set is Nλψg-closed;

(4) Every Nα-closed set is Nλψg-closed;

(5) Every Nψ-closed set is Nλψg-closed.

Definition 2.11 The function f : (U, τR(X))→ (V, τ ′R(Y )) is said to be

(1) Nr-continuous [3] if the inverse image of every Nano closed set in (V, τ ′R(Y )) is Nr-

closed in (U, τR(X));

(2) Nano-continuous [5] if the inverse image of every Nano closed set in (V, τ ′R(Y )) is Nano

closed in (U, τR(X));

(3) Ns-continuous [2] if the inverse image of every nano closed set in (V, τ ′R(Y )) is Ns-

closed in (U, τR(X));
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(4) Nα-continuous [3] if the inverse image of every Nano closed set in (V, τ ′R(Y )) is Nα-

closed in (U, τR(X));

(5) Nψ-continuous [9] if the inverse image of every Nano closed set in (V, τ ′R(Y )) is Nψ-

closed in (U, τR(X));

(6) Nλψg-continuous [8] if the inverse image of every Nano closed set in (V, τ ′R(Y )) is

Nλψg-closed in (U, τR(X)).

Definition 2.12 The function f : (U, τR(X))→ (V, τ ′R(Y )) is said to be

(1) Nr-irresolute [3] if the inverse image of every Nr-closed set in (V, τ ′R(Y )) is Nr-closed

in (U, τR(X));

(2) Ns-irresolute [2] if the inverse image of every Ns-closed set in (V, τ ′R(Y )) is Ns-closed

in (U, τR(X));

(3) Nα-irresolute [3] if the inverse image of every Nα-closed set in (V, τ ′R(Y )) is Nα-closed

in (U, τR(X));

(4) Nψ-irresolute [2] if the inverse image of every Nψ-closed set in (V, τ ′R(Y )) is Nψ-closed

in (U, τR(X)).

§3. Nλψg -Irresolute Functions

In this section, we introduce and study a new concept of Nλψg-irresolute functions in Nano

topological spaces.

Definition 3.1 A function f : (U, τR(X))→ (V, τ ′R(Y )) is said to be Nλψg-irresolute if f−1(G)

is a Nλψg-open set in (U, τR(X)) for every Nλψg-open set G in (V, τ ′R(Y )).

Example 3.2 Let U = {a, b, c, d} with U/R = {{a}, {b, c, d}} and X = {b, c}.Then τR(X) =

{U, φ, {b, c, d}}. Let V = {a, b, c, d} with V/R′ = {{b}, {d}, {a, c}} and Y = {a, b}. Then

τ ′R(Y ) = {V, φ, {b}, {a, c}, {a, b, c}}. Define a mapping f : (U, τR(X))→ (V, τ ′R(Y )) as, f(a) =

a, f(b) = b, f(c) = d, f(d) = c. Here the inverse image of every Nλψg- closed set in (V, τ ′R(Y ))

is Nλψg-closed set in (U, τR(X)). Hence f : (U, τR(X))→ (V, τ ′R(Y )) is Nλψg-irresolute.

Theorem 3.3 Let (U, τR(X)), (V, τ ′R(Y )) and (W, τ ′R(Z)) be Nano topological spaces. If f :

(U, τR(X)) → (V, τ ′R(Y )) and g : (V, τ ′R(Y )) → (W, τ ′R(Z)) are two functions. If f is Nλψg-

irresolute and g is Nλψg-continuous then g ◦ f is Nλψg-continuous.

Proof Let G be a Nano closed set in (W, τ ′R(Z)). Since g is Nλψg-continuous, g−1(G) is

a Nλψg-closed set in (V, τ ′R(Y )). Since f is Nλψg-irresolute, f−1(g−1(G)) is a Nλψg-closed

set in (U, τR(X)). Thus (g ◦ f)−1(G) is Nλψg-closed in U , for every Nλψg closed set G in

(W, τ ′R(Z)). Hence the composition g ◦ f : (U, τR(X))→ (W, τ ′R(Z)) is Nλψg-continuous. �

Theorem 3.4 Let f : (U, τR(X))→ (V, τ ′R(Y )) and g : (V, τ ′R(Y ))→ (W, τ ′′R(Z)) be two maps.

If f and g are both Nλψg-irresolute then g ◦ f is Nλψg-continuous.

Proof Let G be Nano closed in (W, τ ′′R(Z)). Since every Nano closed sets is Nλψg-closed.

Since g is Nλψg-irresolute, g−1(G) is Nλψg-open in Nλψg-closed (W, τ ′′R(Z)). Since f is
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Nλψg-irresolute, f−1(g−1(G)) is Nλψg-closed in U . Thus (g ◦ f)−1(G) = f−1(g−1(G)) is a

Nλψg-closed set in (U, τR(X)), for every Nano closed set G in (W, τ ′′RZ)). Hence g ◦ f is Nλψg

- continuous. �

Theorem 3.5 Let (U, τR(X)), (V, τ ′R(Y )) and (W, τ”R(Z)) be Nano topological spaces. If

f : (U, τR(X))→ (V, τ ′R(Y )) and g : (V, τ ′R(Y ))→ (W, τ ′′R(Z)) be two functions. If f and g are

both Nλψg-irresolute then g ◦ f is Nλψg - irresolute.

Proof Let G be Nλψg-closed in (W, τ ′′RZ)). Since g is Nλψg-irresolute, g−1(G) is Nλψg-

closed in (W, τ ′′R(Z)). Since f is Nλψg-irresolute, f−1(g−1(G)) is Nλψg-closed in (U, τR(X)).

Thus (g ◦ f)−1(G) = f−1(g−1(G)) is Nλψg-closed set in (U, τR(X)), for every Nλψg-closed set

in (W, τ ′′R(Z)). Hence g ◦ f is Nλψg-irresolute. �

Theorem 3.6 A function f : (U, τR(X)) → (V, τ ′R(Y )) is Nλψg-irresolute if and only if

the inverse image f−1(G) is Nλψg-closed set in (U, τR(X)), for every Nλψg-closed set in

(V, τ ′R(Y )).

Proof Let G be Nλψg-closed in (V, τ ′R(Y )). Then V −G is Nλψg-open in (V, τ ′R(Y )). Since

f is Nλψg-irresolute, f−1(V −G) is Nλψg-open in (U, τR(X)). But f−1(V −G) = U−f−1(G).

Hence f−1(G) is Nλψg-closed in (U, τR(X)).

Conversely, assume that inverse image f−1(G) is Nλψg-closed in (U, τR(X)), for every

Nλψg-closed set G in (V, τ ′R(Y )). Let F be Nλψg-open in (V, τ ′R(Y )). Then V − F is Nλψg-

closed in (V, τ ′R(Y )). By assumption, f−1(V −F ) is Nλψg-closed in (U, τR(X)). But f−1(V −
F ) = U − f−1(F ). Then f−1(F ) is Nλψg-open in (U, τR(X)). Hence f is Nλψg - irresolute.�

Theorem 3.7 A function f : (U, τR(X)) → (V, τ ′R(Y )) is Nλψg-irresolute if and only if

f(Nλψgcl(F )) ⊆ Nλψgcl(f(F )) for every subset F of (U, τR(X)).

Proof Suppose f is Nλψg-irresolute. Let F ⊆ U . Then f(F ) ⊆ V . Hence Nλψgcl(f(F ))

is Nλψg-closed in V . Since f is Nλψg-irresolute, f−1(Nλψgcl(f(F ))) is Nλψg-closed in

(U, τR(X)). Since f(F ) ⊆ Nλψgcl(f(F )), which implies F ⊆ f−1(Nλψgcl(f(F ))). Since

Nλψgcl(F ) is the smallest Nλψg-closed set containing F , Nλψgcl(F ) ⊆ f−1(Nλψgcl(f(F ))).

Hence f(Nλψgcl(F )) ⊆ Nλψgcl(f(F )).

Conversely, assume that f(Nλψgcl(F )) ⊆ Nλψgcl(f(F )), for every subset F of U . Let G

be Nλψg-closed in V . Now, f−1(G) ⊆ U . Hence f(Nλψgcl(f−1(G))) ⊆ Nλψgcl(f(f−1(G))) =

Nλψgcl(G), which implies Nλψgcl(f−1(G)) ⊆ f−1(Nλψgcl(G)) = f−1(G) that implies f−1(G)

is Nλψg-closed in U , for every Nλψg-closed set G in V . Hence f is Nλψg-irresolute. �

Theorem 3.8 A function f : (U, τR(X)) → (V, τ ′R(Y )) is Nλψg-irresolute if and only if

f−1(Nλψgint(G)) ⊆ Nλψgint(f−1(G)), for every subset G of (V, τ ′R(Y )).

Proof Let f be Nλψg-irresolute. Let G ⊆ V . Then Nλψgint(G) is Nλψg-open

in V . Since f is Nλψg-irresolute, f−1(Nλψgint(G)) is Nλψg-open in (U, τR(X)). Hence

Nλψgint(f−1(Nλψgint(G))) = f−1(Nλψgint(G)). Since G ⊆ V , Nλψgint(G) ⊆ G al-

ways. Hence f−1(Nλψgint(G)) = Nλψgint(f−1(Nλψgint(G))) ⊆ Nλψgint(f−1(G)). Thus

f−1(Nλψgint(G)) ⊆ Nλψgint(f−1(G)).
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Conversely, let f−1(Nλψgint(G)) ⊆ Nλψgint(f−1(G)), for every subset G of V . Let F be

Nλψg-open in V and henceNλψgint(F ) = F . By our assumption, f−1(F ) ⊆ Nλψgint(f−1(F )).

But Nλψgint(f−1(F )) ⊆ f−1(F ). Hence f−1(F ) = Nλψgint(f−1(F )). Then f−1(F ) is Nλψg-

open in U , for every subset F of V . Hence f is Nλψg-irresolute. �

Theorem 3.9 A function f : (U, τR(X)) → (V, τ ′R(Y )) is Nλψg-irresolute if and only if

Nλψgcl(f−1(G)) ⊆ f−1(Nλψgcl(G)), for every subset G of V .

Proof Suppose f is Nλψg-irresolute. Let G ⊆ V , then Nλψgcl(G) is Nλψg-closed in V .

Since f is irresolute, f−1(Nλψgcl(G)) is Nλψg-closed in U . Thus Nλψgcl(f−1(Nλψgcl(G))) =

f−1(Nλψgcl(G)). SinceG ⊆ Nλψgcl(G), then f−1(G) ⊆ f−1(Nλψgcl(G)). Now, Nλψgcl(f−1(G)) ⊆
Nλψgcl(f−1(Nλψgcl(G))) = f−1(Nλψgcl(G)) which impliesNλψgcl(f−1(G)) ⊆ f−1(Nλψgcl(G)),

for every subset G of V .

Conversely, let Nλψgcl(f−1(G)) ⊆ f−1(Nλψgcl(G)), for every subset G of V . Let F be

Nλψg-closed in V and hence Nλψgcl(F ) = F . By our assumption, Nλψgcl(f−1(F )) ⊆ f−1(F ).

But f−1(F ) ⊆ Nλψgcl(f−1(F )). Hence f−1(F ) = Nλψgcl(f−1(F )). Then f−1(F ) is Nλψg-

closed in U , for every subset F of V . Hence f is Nλψg-irresolute. �
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Abstract: A stacked-book graph Gm,n is obtained from the Cartesian product of a star

graph Sm and a path Pn, where m and s are the orders of the star graph and the path

respectively. Obtaining the radio number of a graph is a rigorous process, which is dependent

on diameter of G and positive difference of non-negative integer labels f(u) and f(v) assigned

to any two u, v in the vertex set V (G) of G. This paper obtains tight upper and lower bounds

of the radio number of Gm,n where the path Pn has an odd order. The case where Pn has

an even order has been investigated.

Key Words: Radio labeling, Smarandachely radio labeling, direct product of graphs, cross

product of graphs, star, path.

AMS(2010): 05C35.

§1. Introduction

All graphs mentioned in this work are simple and undirected. The vertex and edge sets of a

graphG are designated as V (G) and E(G) respectively and e = uv ∈ E(G) connects u, v ∈ V (G)

while d(u, v) denotes the shortest distance between u, v ∈ V (G). We represent the diameter of

G as diam(G).

The radio labeling, which often aims to solve signal interference problems in a wireless

network, was first suggested in 1980 by Hale [7] and it is described as follows: Suppose that

f is a non negative integer function on V (G) and that f satisfies the radio labeling condition,

|f(u)− f(v)| ≥ diam(G) + 1− d(u, v) for every pair u, v ∈ V (G). The spanf of f is fmax(G)−
fmin(G), where fmax and fmin are largest and lowest labels, respectively, assigned on V (G)

and the lowest value of spanf is the radio number, rn(G), of G. Generally, let V1 ⊂ V (G) be a

subset of vertices in G with property P. If a labeling f satisfying the radio labeling condition

for vertices in V (G)\V1 but |f(u)− f(v)| < diam(G) + 1− d(u, v) for every pair u, v ∈ V1, then

f is called a Smarandachely radio labeling of G and spanf of f is denoted by spanSf . Clearly,

1Received December 13, 2022, Accepted March 20, 2023.
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spanSf=spanf if V1 = ∅, i.e., the case of radio labeling on G. It is established that to obtain

the radio numbers of graphs is hard. However, for certain graphs, the radio numbers have been

obtained. Recent results on radio number include those on middle graph of path [3], trees, [4]

and edge-joint graphs [12]. Liu and Zhu [11] showed that for path, Pn, n ≥ 3,

rn(Pn) =

 2k(k − 1) + 1 if n = 2k;

2k2 + 2 if n = 2k + 1.

Liu and Zhu’s results compliment those obtained by Chatrand et. al. in [5] and [6] about the

same graph. Liu and Xie worked on square graphs. In [9], they obtained rn(P 2
n) of square of

path as follows:

rn(P 2
n) =

 k2 + 2 if n ≡ 1(mod 4),n ≥ 9;

k2 + 1 if otherwise.

Other results on squares of graphs include those obtained for C2
n in [10], where Cn is a cycle of

order n. On Cartesian products graphs, Jiang [8] solved the radio number problem for (Pm�Pn),

where for m,n > 2, and obtains rn(Pm�Pn) = mn2+nm2−n
2 −mn−m+2, for m odd and n even.

Saha and Panigrahi [13] worked on Cartesian products of Cycles while Ajayi and Adefokun in

[1] and [2] probe on the radio number of the Cartesian product of path and star graph called the

stacked-book graph G = Sm�Pn. They observed in [1] that rn(Sm�Pn) ≤ n2m + 1, a result

the authors noted, citing a existing result in [8], is not a tight bound.) In [1], they obtained

improve the results for path Pn, where n is even.

In this paper, we investigate further on the radio number of stacked-book graphs, Sm�Pn,

in the case where n is odd and combined with [2], we improve the weak bounds obtained in [1].

§2. Preliminaries

Let Sm be a star of order m ≥ 3 and let v1 be the center vertex of Sm and v2, v3, · · · , vm are

adjacent to v1 and let Pn be a path containing n vertices starting from u1 to un. Furthermore,

P = u
a−→ v

b−→ w represents a path of length a + b, for which d(u, v) = a and d(u,w) = b,

where a and b are positive integers. If a stacked-book graph is obtained from the Cartesian

product Gm,n = Sm�Pn of Sm and Pn, then V (Gm,n) is the Cartesian product of V (Sm) and

V (Pn), for which if uivj ∈ V (Gm,n), then ui ∈ V (Sm), vj ∈ E(Pn), while, if uivjukvi forms an

edge in E(Gm,n), then ui = uk and vjvl ∈ E(Pn) or vj = vl and uiuk ∈ E(Sm).

Some of the following are adopted from [2].

Definition 2.1 Where it is convenient, we denote uivj as uij and edge uivjukvl as uijukl.

Remark 2.1 Stacked-book graph Gm,n contains n number of Sm stars, which can be expressed

as the set
{
Sm(i) : 0 ≤ i ≤ n

}
.

Definition 2.2 For Gm,n = Sm�Pn, V(i) ⊂ V (Gm,n) is the set of vertices on Sm(i) stated as

V(i) = u1vi, u2vi, · · · , umvi.
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Remark 2.2 We must mention that u1vi in the set in the last definition is the center vertex

of Sm(i).

Definition 2.3 Let Gm,n = Sm�Pn, n odd, the pair Sm(i), Sm(i+n−1
2 ) is a subgraph G′′(i) ⊆

Gm,n, which is induced by Vi and Vi+n−1
2

, where i /∈ {1, n+1
2 , n}.

Remark 2.3 It can be seen that with n odd, every Gm,n contains n−2
3 number of G′′(i)

subgraphs and the diameter diam(G′′(i)) of G′′(i) is n+3
3 .

Next, we introduce the following definitions:

Definition 2.4 Let Gm,n = Sm�Pn. Then, Ḡm,n ⊆ Gm,n is a subgraph of Gm,n induced by

the stars Sm(1), Sm(n+1
2 ), Sn.

We now define a class of paths P ′(i).

Definition 2.5 Let {P ′(t)}mt=1 be a class of paths in Gm,n, where P ′(t) := vj(1)
α−→ vk(n+1

2 )

β−→
vl(n), such that j 6= k 6= l, vj(1) ∈ V(i), vk(n+1

2 ) ∈ V(n+1
2 ) and vl(n) ∈ V(n) and 1 ≤ j, k, l ≤ m.

It can be verified that {P ′(t)}mt=1 contains two other sub-classes defined without loss of

generality as follows:

P ′1(t) = {v1(1)

n+1
2−→ v3(n+1

2 )

n+3
2−→ v2(n), v2(1)

n+1
2−→ v1(n+1

2 )

n+1
2−→ v3(n), v3(1)

n+3
2−→ v2(n+1

2 )

n+1
2−→

v1(n)}

P ′2(t) = va(1)

n+3
2−→ vb(n+1

2 )

n+3
2−→ vc(n), a 6= b 6= c, 4 ≤ a, b, c ≤ m. Clearly, |P ′1(t)| = 3 and

|P ′2(t)| = m− 2.

§3. Results

In the next results, we establish a lower bound of the radio number rn(Gm,n) of a stacked-book

graph Gm,n.

Lemma 3.1 Let f be the radio labeling function on Gm,n, n odd, and let

V(n+1
2 ) =

{
v1(n+1

2 ), v2(n+1
2 ), v3(n+1

2 ),
{
vd(n+1

2 ):4≤d≤m

}}
be the vertex set of the mid vertices in P (t) ⊆ {P ′(t)}mt=1. Now, let v ∈ Vn+1

2
be some vertex in

Vn+1
2

. If f(v) is fmax on V (P (t)), then

f(v) =


n+5

2 if v ∈
{
v1(n+1

2 ), v2(n+1
2 ), v3(n+1

2 )

}
;

n+3
2 otherwise.

Proof Since P (t) ⊂ Gm,n, then, radio labeling of any vertex on V (P (t)) is based on

diam(Gm,n) and for u, v ∈ V (P (t)), d(u, v) = k, where k is the distance between u and v in
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Gm,n. We consider the three paths in P ′1(t) next.

Case 1(a) For P ′1(1) := v1(1)

n+1
2−→ v3(n+1

2 )

n+3
2−→ v2(n), let f(v1(1)) = 0. Now d(v1(1), v2(n)) = n.

Therefore f(v2(n)) ≥ f(v1(1)) + diam(Gm,n) + 1 − n=2. Also, d(v2(n), v3(n+1
2 )) = n+3

2 and

thus, f(v3(n+1
2 )) ≥ f(v2(n)) + dim(Gm,n) + 1 − n+3

2 ≥ n+5
2 . (It should be note that if we set

f(v2(n)) = 0, then, f(v3(n+1
2 )) ≥

n+7
2 .)

Case 1(b) For P ′1(2) := v2(1)

n+1
2−→ v1(n+1

2 )

n+1
2−→ v3(n), let f(v2(1)) = 0, then d(v2(1), v3(n)) = n+1

and thus, f(v3(n)) ≥ n + 2 − (n + 1) = 1. Likewise, d(v3(n), v1(n+1
2 )) = n+2

2 and therefore,

f(v3(n)) ≥ n+ 3− (n+1
2 ) = n+5

2 .

1

0 5

0 2

5

Figure 1 Illustration of Case 1(a) and (b) in a G5,5 stacked-book graph

Case 1(c) Now for P ′1(3) := v3(1)

n+3
2−→ v2(n+1

2 )

n+1
2−→ v1(n), we assume f(v1(n)) = 0. Also,

d(v3(1), v1(n)) = n + 1 in Gm,n. Thus, f(v3(1)) ≥ 2 and since d(v3(1), v2n+1
2

) ≥ n+3
2 , then,

f(v2(n+1
2 )) ≥ 2 + n+ 2− (n+3

2 ) ≥ n+5
2 .

Next we consider the paths in P ′2(t).

Case 2. Every path in P ′2(t) are geometrically similar and are of the form P ′2(4) = va(1)

n+3
2−→

vb(n+1
2 )

n+3
2−→ vn(n), such that d(va(1), vc(n)) = n + 1 and d(vc(n), vb(

n+1
2 )) = n+3

2 , in Gm,n and

for all a 6= b 6= c 6= m, without loss of generality. Thus, suppose that f(va(1)) = 0, then

f(vc(n)) ≥ 1 and f(vb(n+1
2 )) ≥

n+3
2 . �

0

0 1

5

4

1

Figure 2 Illustration of Case 1(c) and Case 2 in a G5,5 stacked-book graph
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Remark 3.1 In (a) and (c) of Case 1, if the respective center vertices v1(1) and v1(n) of stars

S(1) and S(n) are labeled f(v1(1)) = f(v1(n)) = 0, the radio labels on the mid vertices of their

paths would be at least n+7
2 .

Remark 3.2 For the m paths in {P ′t}mt=1, the sum of all the radio labels on the center vertices

(span(f) of f on P ′(t) is 3(n+5
2 ) + (m− 3)(n+3

2 ) = 1
2 (mn+ 3m+ 6).

Next, we obtained a lower bound for {P (t)}mt=1.

Remark 3.3 From Remark 3.2, we notice that for optimum labeling of the three vertices on

each of the paths in {P (t)}mt=1, the end vertex, which closest to the mid vertex is most suitable

to be labeled first. These are v1(1) ∈ P ′1(1), v1(n) ∈ P ′1(3) and any end vertex in the remaining

paths. We refer to each of these ends vertices as initial label vertex.

Lemma 3.2 Let G(∗) be a subgraph of Gm,n, induced by all the end point vertices and the

midpoint vertices of {P ′1(t)}mt=1 i.e Sm(1), Sm(n+1
2 ), Sm(n). Then rn(G(∗)) ≥ 1

2 (2mn+4m−n+5)

in Gm,n.

Proof Let v1 and v2 be center vertices on Sm(1) and Sm(n) respectively. There exist vertices

uα, uβ ∈ Sm(n+1
2 ), α 6= β, uα, uβ not center vertices of Sm(n+1

2 ) such that d(v1, uα) = d(v2, uβ) =
n+1

2 . Also, there exists a subset A = {ωr} in Sm(1), (or Sm(n)) such that |A| = m − 3, and

B = {xs} in Sm(n+1
2 ), |B| = m − 1, such that for r 6= s, d(ωr, xs) = n+3

2 . Now, the sum of

span(f) of f for all the pair (ωr, xs) will be (m− 1)(n+1
2 ) = 1

2 (mn+m− n− 1) and thus,

rn(G(∗)) ≥ 1

2
(mn+m− n− 1) +

1

2
mn+ 3m+ 6]

≥ 1

2
(2mn+ 4m− n+ 5).

This completes the proof. �

We extend the result in Lemma 3.2 in other to obtain a lower bound for the radio number

of stacked book graph Gm,n, with off n ≥ 5.

Definition 3.1 Let Gm,n be a stacked-book graph with odd n, n ≥ 5, and m ≥ 4. Also, let

G(∗) as defined earlier. A subgraph G(∗∗) of Gm,n as G(∗∗) = Gm,n\G(∗).

Remark 3.4 We can see that G(∗∗) is a subgraph of Gm,n, induced by
{
Sm(i)

}n−1

i=2
, i 6= n+1

2 .

Definition 3.2 The subgraph of G(∗∗), induced by Sm(t) and Sm(t+n−1
2 ) is denoted by G′′(t).

Remark 3.5 It should be noted that G(∗∗) ⊂ Gm,n contains exactly n−3
2 G′′(t) subgraphs.

Remark 3.6 Let G′′(t) be induced by Sm(t) and Sm(t+n−1
2 ) and let V (Sm(t)) = {u1, u2, · · · , um}

and V (Sm(t+n−1
2 )) = {v1, v2, · · · , vm} be the vertex sets of Sm(t) and Sm(t+n−1

2 ) where u1 and

v1 are the respective center vertices. It can be seen that, d(ui, vj) ∈
{
n+1

2 , n+3
2

}
, where i 6= j.

Remark 3.7 For i 6= j, d(u1, vj) = d(uj , v1) = n+1
2 and for i 6= j, i, j 6= 1, d(ui, vj) = n+3

2 .

Now we obtain a lower bound value for the radio number labeling of G′′(t) in Gm,n.
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Lemma 3.3 Let G′′(t) ⊂ Gm,n, with m ≥ 4 and n ≥ 5, n odd, be a subgraph of Gm,n. Then

rn(G′′(t)) ≥ mn+m− 1

2
(n− 3).

Proof Let u1 and v1 be center vertices of Sm(t) and Sm(t+n−1
2 ). By Remark 3.7 above,

d(u1, vi) = d(ui, v1) = n+1
2 , is the shortest distance between the center vertex of a star in

G′′(t) and a non-center vertex in the other star in G′′(t). It is optimal, therefore to label the

center vertices as fmin and fmax. Now, without loss of generality, set fmin = f(v1) = 0. Since

d(v1, ui) = n+1
2 , i ∈ {2, 3, · · · ,m}. Therefore

f(ui) ≥ f(v1) + diam(Gm,n) + 1− d(ui, v1).

Let i = 2. Thus,

f(u2) ≥ 0 + n+ 2− n+ 1

2

≥ n+ 3

2
.

Now d(u2, v3) = n+3
2 and therefore,

f(v3) ≥ n+ 3

2
+ n+ 2− n+ 3

2

≥ n+ 3

2
+
n+ 1

2
.

Also, for d(v3, u4) = n+3
2 , f(v4) ≥ n+3

2 + 2(n+1
2 ). By continuing the iteration, we have

f(vm) ≥ n+ 3

2
+ 2m− 3(

n+ 1

2
).

Lastly,

fmax = f(u1) ≥ 2(
n+ 3

2
) + (2m− 3)(

n+ 1

2
)

= mn+m− 1

2
(n− 3). �

Next we extend the last result to obtain a lower bound for G(∗∗).

Lemma 3.4 For G(∗∗) ⊂ Gm,n, rn(G(∗∗)) ≥ 1
2 (mn2 − 2mn− 3m+ 2n− 12).

Proof From Lemma 3.3, the span(f) of f on G′′(t) = mn + m − 1
2 (n − 3). For G′′(t),

fmax = mn + m − 1
2 (n − 3). Let t = 2 and let u1 = vm(2) ∈ Sm(2) and v′1 = vm(2+n+1

2 ) ∈
Sm(2+n+1

2 ), be center vertices of Sm(2) and Sm(2+n+1
2 ). Now, d(ui, v

′
1) = n+1

2 . Thus,

f(v′1) ≥ f(u1) + n+ 2− n+ 1

2
= f(u1) +

n+ 3

2
.
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This implies that for G′′(3), induced by Sm(3) and Sm(2+n+1
2 ), fmin = f(u1)+ n+3

2 , and fmax =

f(v′′1 ), where v′′ is the center vertex of Sm(3). From the precedure in Lemma 3.3, there are n−3
2

G′′(t) subgraphs in Gm,n. Therefore, fmax of G(∗∗) is f(v
(k)
1 ) ∈ S(m(n−1

2 )), where f(v
(k)
1 ) is the

center vertex of Sm(n−1
2 ). Following the iteration,

f(v
(k)
1 ) ≥ n− 3

2
[mn+m− 1

2
(n− 3)] +

n− 5

2

(
n+ 3

2

)
≥ 1

2
(mn2 − 2mn− 3m+ 2n− 12).

This completes the proof. �

Now we establish a lower bound for the radio number of Gm,n.

Theorem 3.1 Let Gm,n be a stacked-book graph with m ≥ 4 and n ≥ 5. Then,

rn(Gm,n) ≥ mn2 +m+ 2n− 4

2
.

Proof From Lemmas 3.3 and 3.4,

rn(G(∗)) ≥ m(n+ 2)− 1

2
(n− 5) and rn(G(∗∗)) ≥ 1

2
(mn2 − 2mn− 3n+ 2n− 12).

Now, since Gm,n = G(∗) ∪ G(∗∗), suppose that u1 is the center vertex of Sm(n−1
2 ) and

v1 ∈ Sm(n) is the center vertex of Sm(n). Clearly d(u1, vi) = n+1
2 . Now, f(u1) = fmax of G(∗∗)

and

f(u1) ≥ 1

2
(mn2 − 2mn− 3m+ 2n− 12).

Therefore,

f(v1) ≥ f(ui) + n+ 2− (n+ 1)

2

≥ 1

2
(mn2 − 2mn− 3m+ 2n− 12) + n+ 2− (n+ 1)

2

≥ 1

2
(mn2 − 2mn− 3m+ n− 13) + n+ 2.

For G(∗), set f(v1) = fmin. Thus, rn(Gm,n) ≥ f(v1) + rn(G(∗)) and hence,

rn(Gm,n) ≥ 1

2
(mn2 − 2mn− 3m+ n− 13) + n+ 2 +m(n+ 2)− 1

2
(n− 5)

≥ mn2 +m+ 2n− 4

2
.

This completes the proof. �

Next, we investigate the upper bound of a stacked-book graph. The technique involves

manual radio labeling of subgraphs G(∗) and G(∗∗) and merging the results.
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Lemma 3.5 Let G(∗∗) ⊂ Gm,n, with n-odd. Then, rn(G(∗∗)) ≤ 1
2 (mn2−2mn+2n−3m−12).

Proof From earlier definition, if n is odd, then, Gm,n = G(∗) ∪ G(∗∗), where G(∗∗)
contains n−3

2 G′′(t) graphs. Let G′′(n−1
2 ) be induced by Sm(n−1

2 ) and Sm(n−1), n-odd. Let

V (Sm(n+1
2 )) =

{
vn−1

1 (i)

}m
i=1

, V (Sm(n−1)) = {vn−1}mi=1, where vn−1
2 (1), vn−1(1) are center ver-

tices and d(vn−1
2 (j), vn−1(j)) = n−1

2 , for all 1 ≤ j ≤ m, d(vn−1
2 (1)), vn−1(j) = d(vn−1(1), vn−1

2 (j)) =
n+1

2 and d(vn−1
2 (j), vn−1(k)) = n+3

2 . Now, let f(vn−1
2 (1)) = 0. Since d(vn−1

2 (1), vn−1(2)) = n+1
2 ,

then set f(vn−1(k)) = n+3
2 . Let f(vn−1

2 (1)) = 0. Since d(vn−1
2 (1),vn−1(2)

) = n+1
2 , then set

f(vn−1(2)) = n+3
2 , d(vn−1(2), vn−1

2 (3)) = n+3
2 and thus,

f(vn−1(4)) =
n+ 3

2
+ 2

n+ 1

2
.

Thus, by continuously alternating the process, it gets to the case where d(vn−1
2 (m), d(vn−1(m−1))) =

n+3
2 . Thus,

f(
n− 1

2
(m)) =

n+ 3

2
+m− 2(

n+ 1

2
)

and since d(vn−1
2 (m), vn−1(3)) = n+3

2 ,

f(vn−1(3)) =
n+ 3

2
+ (m− 1)(

n+ 1

2
), f(vn−1

2 (2)) =
n+ 3

2
+m(

n+ 1

2
).

Depending on the size of m, the labeling continues until

f(vn−1
2

) =
n+ 3

2
+ 2m− 3

(n+ 3)

2
+ 2(2m− 3)(

n+ 1

2
)

is attained and finally, d(vn−1
2 (m−1), vn−1(1)) = n+1

2 and thus, f(vn−1(1)) = 2(n+3)
2 + 2m− 3 +

n+1
2 . (By following the same argument, it is easy to obtain similar result for m-even.) Now,

d(vn−1(1), vn−3
2 (1)) = n+1

2 , where vn−3
2 (1) is the center vertex of G′′

m(n−3
2 )

. Therefore,

fmin(G′′(
n− 3

2
)) = f(vn−3

2 (1)) = f(vn−1(1)) + n+ 2− n+ 2

2

= f(vn−1(1)) +
n+ 3

2
=

3(n+ 3)

2
+ 2m− 3(

n+ 1

2
)

and

fmax(G′′(
n− 3

2
) = f(vn−2(1)) = f(vn−3

2 (1)) +
2(n+ 3)

2
+

(2m− 3)(n+ 1)

2

=
5(n+ 3)

2
+ 2(2m− 3)

(n+ 1)

2
,

which is fmax(G′′(n−3
2 )). Now, the process is extended to G′′(2), for which

f(
n+ 3

2
) =

(n− 5)(n+ 3)

4
+

(n− 3)(n+ 3)

2
+

(n− 2)(2m− 3)(n+ 1)

4

=
1

2
(mn2 − 2mn+ 2n− 3m− 12). �
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Remark 3.8 It can be observed that for the optimal radio labeling of G(∗), fmax(G(∗)) is

f(vn+1
2 (1)), the label on the center vertex of Sm(n+1

2 ). Since for vα, vβ in Sm(1) and Sm(n)

respectively, α, β 6= 1, d(vn+1
2 (1), vα) = d(vn+1

2 (1), vβ) = n+1
2 , which is less than n+3

2 , the value

of d(vn+1
2 (k), vα), where k 6= α, k, α 6= 1, and vα either belongs to Sm(1) or Sm(n). Thus, we

manually label G(∗), such that vn+1
2 (1) gets the last label and thus, f(vn+1

2 (1)) = fmax(G(∗)).

Next, we consider some necessary conditions for establishing the upper bound of G(∗).

Lemma 3.6 Let G(∗) ⊂ Gm,n be a subset of Gm,n, induced by Sm(1), Sm(n+1
2 ) and Sm(n). If

v1(1) (or vn(1)) and vn+2
2 (1) are the center vertices of Sm(1) (or Sm(n)) and Sm(n+1

2 ) respectively,

and fmin(G(∗)) 6= f(v1(1)) (or f(vn(1))), and fmax(G(∗)) 6= f(vn+1
2

) (or vice versa), then,

|fmin(G(∗))− fmax(G(∗))| 6= rn(G(∗)).

Proof Without loss of generality, select v1(1) over vn(1). Suppose that f(v1,1) and f(vn+1
2 (1))

are not fmin(G(∗)) and fmax(G(∗)) respectively. Let vα ∈ V (Sm(1)), vβ ∈ V (Sm(n+1
2 )), and vγ ∈

V (Sm(n)) be non-center vertices, and let the set of the following vertices, {vα, vβ , vγ , v1(1), vn+1
2 (1)}

be X, and let H = V (G(∗))\X be the subgraph of G(∗) induced by V (G(∗)) − X, and such

that the radio number of H is positive integer p. Without loss of generality, let there be some

vk ∈ V (H), where vk = vn(i) ∈ Sm(n), γ 6= i and d(vk, vβ) = n+3
2 , there exist a radio numbering

sequence vk → vβ ,→ v1(1) → vγ → vn+1
2 (1) → vα. Suppose that f(vk) is the fmax(H), that is,

f(vk) = p. Since d(vk, vβ) = n+3
2 , then f(vβ) = p+ n+1

2 and likewise, it is observed that the ra-

dio labeling sequence yields fmax(G(∗)) = p+2n+7. Now, suppose on the contrary, that f(v1(1))

and f(vn+1
2 (1)) are fmin(G(∗)) and fmax(G(∗)) respectively. Let vk(0) be the vertex in H, which

holds the least radio label. Obviously vk(0) 6= vk and since |V (G(∗))| − |V (H)| ≡ 3mod 1, then

vk(0) is a is also a vertex on the same star as vk, this time, Sm(n). Thus,if vk(0) is also not

a center vertex, then, d(v1(1), vk(0)) = n. Let f(v1(1)) = 0. Now, we have the radio labeling

sequence: v1(1) → (vk(0) → · · · → vk) → vβ → vα → vγ → vn+1
2 (1). Since d(vk(0), v1(1)) = n,

then, f(vk(0)) = 2 and since |fmin(H) − fmax(H)| = p, then f(vk) = 2 + p. Labeling the

sequence, afterwards, we have

fmax(G(∗)) = f(vn+1
2 (1)) = p+

3n+ 11

2
,

which is less than p+ 2n+ 7. �

Remark 3.9 It is noted that v1(1) (or vn(1)(1)) and vn+1
2

can be fmin(G(∗)) and fmaxG(∗)
interchangeably. However, they both will have to be used for these roles. It is trivial to show

that optimal radio labeling will not be attained if just one of them is used.

Next we obtain an upper bound for G(∗), based on Lemma 3.6.

Theorem 3.2 For G(∗) ⊂ Gm,n, m ≥ 5, rn(G(∗)) ≤ 1
2 (2mn+ 4m− n+ 7).

Proof From Lemma 3.6, for v1(1) ∈ Sm(1), let f(v1(1)) = 0. There exist m − 1 vertices

of Sm(n), such that for each vn(i) ∈ V (Sm(n)), i 6= 1, d(v1(1), vn(i)) = n. Thus, without loss

of generality, let the first vertex be vn(2). Then, f(vn(2)) = 2. Likewise, there exists m − 1,
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non-center vertex on Sm(n+1
2 ), and for each vn+1

2 (j), j 6= 1, d(vn(2), vn+1
2 (j)) = n+3

2 , where j 6= 2.

So, now, let j = 3, then,

f(vn+1
2 (3)) = 2 + n+ 2− n+ 3

2
= 2 +

n+ 1

2
.

In similar way,

f(v1(4)) = 2 +
n+ 1

2
+
n+ 1

2
.

Now, we label vn(1), which is at distance n from v1(4) as f(vn(1)) = 4 + n+1
2 + n+1

2 . Now, two

of the center vertices are labeled. For, say, vn+1
2 (5),

f(vn+1
2 (5)) = 4 +

n+ 1

2
+
n+ 1

2
+
n+ 3

2
.

It can be seen that for each of Sm(1), Sm(n+1
2 ) and Sm(n), there are m − 2 vertices left to be

labeled. This is now done by adding (n+1)
2 and 1 in alternating manner to the cumulative label

values, such that we have

f(v1(6)) = 4 + 3(
n+ 1

2
) +

n+ 3

2
and f(vn(7)) = 5 + 3(

n+ 1

2
) +

n+ 3

2
.

Thus by continuing the iteration until it gets to

f(vn+1
2 (1)) = (m+ 2) + (2m− 3)(

n+ 1

2
) + 2(

n+ 3

2
) =

1

2
(2mn+ 4m− n+ 7). �

Next, we merged the last results to obtain an upper bound for the radio number of a

stacked-book graph Gm,n, where m ≥ 5.

Theorem 3.3 Let m ≥ 5. Then, rn(Gm,n) ≤ 1
2 (mn2 + 2n+m− 2).

Proof Recall that G = G(∗) ∪ G(∗∗). From Lemma 3.5, where G(∗∗) is labeled, we

see that for G(∗∗), fmax(G(∗∗)) = f(vn+3
2 (1)). For G(∗) ∈ Gm,n, we see in Lemma 3.2 that

f(v1(1)) = fmin. Clearly, d(vn+3
2 (1), v1(1)) = n+1

2 . Thus, for v1(1) ∈ Gm,n,

f(v1(1)) = f(vn+3
2 (1))+

n+ 3

2
=

1

2
(mn2−2mn+2n−3m−12)+

n+ 3

2
=

1

2
(mn2−2mn+3n−3m−9).

Thus by Lemma 3.2,

fmax(Gm,n) = f(v1(1)) + fmax(G(∗∗)) =
1

2
(mn2 + 2n+m− 2). �

Remark 3.10 We observe that the result in Theorem 3.3 that the there is just a difference

of of 1 between this upper bound and the lower bound established earlier in the work. It is

believed that the lower bound can be improved to coincide with the upper bound.

A radio labeling of G5,5 is shown in Figure 3, where it is demonstrated that rn(G5,5) ≤ 69.
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64 13 54 22 35

41 19 61 10 51

33 0 69 29 43

57 7 47 16 65

50 25 38 4 58

Figure 3 A G5,5 stacked-book graph

§4. Conclusion

This work has greatly improved results obtained in [1] and extended the outcomes of [1] to the

odd-path factor of the stacked-book graph class. It is safe now to say that this work and [2] have

provided a tight bounds for the radio number of the general stacked-book graph. Further work

to obtain the exact value of the radio number for stacked-book graph should be considered.
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skew-quotient of Randić and sum-connectivity energy of some graphs such as star digraph,

complete bipartite digraph, the (Sm ∧ P2) digraph and a crown digraph.

Key Words: Laplacian, Skew-quotient of Randić sum-connectivity energy, Smarandachely
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§1. Introduction

In [3], we introduce the concept of skew-quotient of Randić and sum-connectivity energy of a

digraph as follows. Let a and b be two nonnegative real numbers with a 6= 0 and D be a digraph

of order n with vertex set V (D) = {v1, v2, · · · , vn} and arc set Γ(D) ⊂ V (D) × V (D) where

(vi, vi) 6∈ Γ(D) for all i and (vi, vj) ∈ Γ(D) implies (vj , vi) 6∈ Γ(D). Then, the skew-quotient of

Randić and sum-connectivity adjacency matrix of D is the n× n matrix Asqrs = (aij) where

aij =



1√
a(di+dj)
b(didj)

, if (vi, vj) ∈ Γ(D),

− 1√
a(di+dj)
b(didj)

, if (vj , vi) ∈ Γ(D),

0, otherwise.

Then, the skew-quotient of Randić and sum-connectivity energy Esqrs(D) of D is defined as the

sum of the absolute values of eigenvalues of Asqrs. Generally, a skew-quotient of Smarandachely

sum-connectivity adjacency matrix of D is a n× n matrix ASsqrs = (aSij) with entries

1Received December 11, 2022, Accepted March 21, 2023.



On Laplacian of Skew-Quotient of Randić and Sum-Connectivity Energy of Digraphs 99

aSij =



1

ρ+1

√
a(dρi+dρj )

b(dρi d
ρ
j )

, if the directed distacne from vi to vj is ρ,

− 1

ρ+1

√
a(dρi+dρj )

b(dρi d
ρ
j )

, if the directed distacne from vj to vi is ρ,

0, otherwise

which characterizes the non-homogeneity of vertices on a digraph by directed distance. Cer-

tainly, the matrix Asqrs characterizes vertices of G in case of homogeneity which is a submatrix

of ASsqrs.

In 2004, D. Vukic̆ević and Gutman [6] have defined the Laplacian matrix of the graph G,

denoted by L = (Lij), as a square matrix of order n whose elements are defined by

Lij =


δi, if i = j,

−1, if i 6= j and the vertices vi, vj are adjacent,

0, if i 6= j and the vertices vi, vj are not adjacent,

where δi is the degree of vertex vi. The eigenvalues µ1, µ2, · · · , µn of L, where µ1 ≥ µ2 ≥ · · · ≥
µn are called the Laplacian eigenvalues of G. In 2006, Gutman and B. Zhou [2] have defined

the Laplacian energy of LE(G) of G as

LE(G) =

n∑
i=1

∣∣∣∣µi − 2m

n

∣∣∣∣ ,
where m is number of edges and n is number of vertices of G.

Motivated by these works, we introduce the Laplacian of skew Quotient of Randić and

sum-connectivity energy of a digraph G as follows. Let a and b be two nonnegative real number

with a 6= 0. The Laplacian of skew quotient of Randić and sum-connectivity adjacency matrix

of G is the n× n matrix Alsqrs = (aij) where

aij =



δi, if i = j,

1√
a(di+dj)
b(didj)

, if (vi, vj) ∈ Γ(D),

− 1√
a(di+dj)
b(didj)

, if (vj , vi) ∈ Γ(D),

0, if the vertices vi and vj are not adjacent.

where δi is the degree of vertex vi. Where µ1 ≥ µ2 ≥ · · · ≥ µn are called the eigenvalues of

Alsqrs. Then, the Laplacian of quotient of Randić and sum-connectivity energy of G is

Elsqrs(G) =

n∑
i=1

∣∣∣∣µi − 2m

n

∣∣∣∣ ,
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where m is number of edges and n is number of vertices of G.

In Section 2 we compute the laplacian of skew-quotient of Randić and sum-connectivity

energy of some directed graphs such as complete bipartite digraph, star digraph, the (Sm ∧P2)

digraph and a crown digraph.

§2. Laplacian of Skew-Quotient of Randić and Sum-Connectivity Energies of Some

Families of Graphs

We begin with some basic definitions and notations.

Definition 2.1([4]) A graph G is said to be complete if every pair of its distinct vertices are

adjacent. A complete graph on n vertices is denoted by Kn.

Definition 2.2([4]) A bigraph or bipartite graph G is a graph whose vertex set V (G) can be

partitioned into two subsets V1 and V2 such that every line of G joins V1 with V2. (V1, V2) is a

bipartition of G. If G contains every line joining V1 and V2, then G is a complete bigraph. If

V1 and V2 have m and n points, we write G = Km,n. A star is a complete bigraph K1,n.

Definition 2.3([1]) The Crown graph S0
n for an integer n ≥ 3 is the graph with vertex set

{u1, u2, · · · , un, v1, v2, · · · , vn} and edge set {uivj ; 1 ≤ i, j ≤ n, i 6= j}. S0
n is therefore S0

n

coincides with complete bipartite graph Kn,n with the horizontal edges removed.

Definition 2.4([5]) The conjunction (Sm∧P2) of Sm = Km+K1 and P2 is the graph having the

vertex set V (Sm)×V (P2) and edge set {(vi, vj)(vk, vl)|vivk ∈ E(Sm) and vjvl ∈ E(P2) and 1 ≤
i, k ≤ m+ 1, 1 ≤ j, l ≤ 2}.

Now we compute Laplacian of skew- quotient of Randić and sum-connectivity energies of

some directed graphs such as complete bipartite digraph, star digraph, the (Sm ∧ P2) digraph

and a crown digraph.

Theorem 2.5 Let the vertex set V (D) and arc set Γ(D) of Kn,n complete bipartite digraph be

respectively given by

V (D) = {u1, u2, · · · , um, v1, v2, · · · , vn} and Γ(D) = {(ui, vj) | 1 ≤ i ≤ n, 1 ≤ j ≤ n}.

Then, the Laplacian of skew-quotient of Randić and sum-connectivity energy of the complete

bipartite digraph is

2

√
(n2)2

a(n+ n)
.

Proof The Laplacian of skew-quotient of Randić and sum-connectivity matrix of complete
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bipartite digraph is given by

Alsqrs =



n 0 · · · 0 γ γ · · · γ

0 n · · · 0 γ γ · · · γ
...

...
. . .

...
...

...
. . .

...

0 0 · · · n γ γ · · · γ

−γ −γ · · · −γ n 0 · · · 0

−γ −γ · · · −γ 0 n · · · 0
...

...
. . .

...
...

...
. . .

...

−γ −γ · · · −γ 0 0 · · · n



,

where γ =
1√

a(n+n)
b(n2)

. Then its characteristic polynomial is

|λI −Alsqrs| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− n 0 · · · 0 −γ −γ · · · −γ

0 λ− n · · · 0 −γ −γ · · · −γ
...

...
. . .

...
...

...
. . .

...

0 0 · · · λ− n −γ −γ · · · −γ

γ γ · · · γ λ− n 0 · · · 0

γ γ · · · γ 0 λ− n · · · 0
...

...
. . .

...
...

...
. . .

...

γ γ · · · γ 0 0 · · · λ− n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣
ΛIn − 1√

a(n+n)

b(n2)

JT

1√
a(n+n)

b(n2)

J ΛIn

∣∣∣∣∣∣∣∣∣ ,
where Λ = λ−n, J is an n×n matrix with all the entries are equal to 1. Hence the characteristic

equation is given by

∣∣∣∣∣∣∣∣∣
ΛIm − 1√

a(n+n)

b(n2)

JT

1√
a(n+n)

b(n2)

J ΛIn

∣∣∣∣∣∣∣∣∣ = 0.

This can be written as

|ΛIn|

∣∣∣∣∣∣ΛIn −
 1√

a(n+n)
b(n2)

J

 In
Λ

− 1√
a(n+n)
b(n2)

JT

∣∣∣∣∣∣ = 0.
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On simplification, we obtain

Λn−n

a(n+n)
b(n2)

∣∣∣∣(a(n+ n)

b(n2)

)
Λ2In + JJT

∣∣∣∣ = 0,

which can be written as

Λn−n

a(n+n)
b(n2)

PJJT

(
−
(
a(n+ n)

b(n2)

)
Λ2

)
= 0,

where PJJT (Λ) is the characteristic polynomial of the matrix nJn. Thus, we have

Λn−n

a(n+n)
b(n2)

(
a(n+ n)

b(n2)
Λ2 + n2

)(
a(n+ n)

b(n2)
Λ2

)n−1

= 0,

which is same as

Λn+n−2

Λ2 +
n2

a(n+n)
b(n2)

 = 0.

Hence,

Spec (D) =

 n n+ i
√

n2

a(n+n)

b(n2)

n− i
√

n2

a(n+n)

b(n2)

n+ n− 2 1 1

 .

Hence, the Laplacian of skew-quotient of Randić and sum-connectivity energy of the com-

plete bipartite digraph is

Elsqrs(D) = 2

√
b(n2)2

a(n+ n)
,

as desired. �

Theorem 2.6 Let the vertex set V (D) and arc set Γ(D) of Sn star digraph be respectively given

by

V (D) = {v1, v2, · · · , vn},

Γ(D) = {(v1, vj) | 2 ≤ j ≤ n}.

Then, the laplacian of skew-quotient of Randić and sum-connectivity energy of D is

Elsqrs(Sn) =
(n− 2)2

n
+

∣∣∣∣∣n2 − 2(n− 1)

n
+ i

√
n3a− 4(n− 1)(an− b(n− 1))

2na

∣∣∣∣∣
+

∣∣∣∣∣n2 − 2(n− 1)

n
− i
√
n3a− 4(n− 1)(an− b(n− 1))

2na

∣∣∣∣∣ .
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Proof The Laplacian of skew-quotient of Randić and sum-connectivity matrix of the star

digraph D is given by

Alsqrs =



n− 1 1√
an

b(n−1)

1√
an

b(n−1)

· · · 1√
an

b(n−1)

1√
an

b(n−1)

− 1√
an

b(n−1)

1 0 · · · 0 0

− 1√
an

b(n−1)

0 1 · · · 0 0

...
...

...
. . .

...
...

− 1
an

b(n−1)
0 0 · · · 1 0

− 1
an

b(n−1)
0 0 · · · 0 1


.

Hence the characteristic polynomial is given by

|λI −Alsqrs| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− (n− 1) − 1√
an

b(n−1)

− 1√
an

b(n−1)

· · · − 1√
an

b(n−1)

1√
an

b(n−1)

λ− 1 0 · · · 0

1√
an

b(n−1)

0 λ− 1 · · · 0

...
...

...
. . .

...

1√
an

b(n−1)

0 0 · · · λ− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

 1√
an

b(n−1)

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γ −1 −1 · · · −1 −1

1 µ 0 · · · 0 0

1 0 µ · · · 0 0

...
...

...
. . .

...
...

1 0 0 · · · µ 0

1 0 0 · · · 0 µ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where µ = (λ− 1)
√

an
b(n−1) , γ = (λ− (n− 1))

√
an

b(n−1) . Then,

|λI −Alsqrs| = φn(µ)

(√
b(n− 1)

a(n)

)n

where

φn(µ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γ −1 −1 · · · −1 −1

1 µ 0 · · · 0 0

1 0 µ · · · 0 0

...
...

...
. . .

...
...

1 0 0 · · · µ 0

1 0 0 · · · 0 µ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.



104 Puttaswamy and R. Poojitha

Using the properties of the determinants, we obtain after some simplifications

φn(µ) = (µφn−1(µ) + µn−2).

Iterating this, we obtain

φn(µ) = µn−2(µγ + (n− 1)).

Therefore

|λI −Alsqrs| =

(√
b(n− 1)

an

)n [((
an

b(n− 1)

)
(λ− 1)(λ− (n− 1)) + (n− 1)

)

×

(
(λ− 1)

√
b(n− 1)

an

)n−2
 .

Thus the characteristic equation is given by

(λ− 1)n−2

(
(λ− 1)(λ− (n− 1)) +

b(n− 1)2

an

)
= 0.

Hence

Spec (D) =

 1 n+ i
√

n3a−4(n−1)(an−b(n−1))
2na n− i

√
n3a−4(n−1)(an−b(n−1))

2na

n− 2 1 1

 .

Hence the Laplacian of the quotient of Randić and sum-connectivity energy of Sn is

Elsqrs(Sn) =
(n− 2)2

n

+

∣∣∣∣∣n2 − 2(n− 1)

n
+ i

√
n3a− 4(n− 1)(an− b(n− 1)

2na

∣∣∣∣∣
+

∣∣∣∣∣n2 − 2(n− 1)

n
− i
√
n3a− 4(n− 1)(an− b(n− 1)

2na

∣∣∣∣∣ .
This completes the proof. �

Theorem 2.7 Let the vertex set V (D) and arc set Γ(D) of S0
n crown digraph be respectively

given by V (D) = {u1, u2, · · · , un, v1, v2, · · · , vn}, Γ(D) = {(ui, vj) | 1 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j}.
Then the Laplacian of skew-quotient of Randić and sum-connectivity energy of the crown digraph

is

4(n− 1)

√
(n− 1)b

a2
.

Proof The Laplacian of skew-quotient of Randić and sum-connectivity matrix of crown

digraph is given by
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Alsqrs =



n− 1 0 · · · 0 0

√
b((n−1)2)
a(2(n−1))

· · ·
√
b((n−1)2)
a(2(n−1))

0 n− 1 · · · 0

√
b((n−1)2)
a(2(n−1))

0 · · ·
√
b((n−1)2)
a(2(n−1))

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · n− 1

√
b((n−1)2)
a(2(n−1))

√
b((n−1)2)
a(2(n−1))

· · · 0

0 −
√
b((n−1)2)
a(2(n−1))

· · · −
√
b((n−1)2)
a(2(n−1))

n− 1 0 · · · 0

−
√
b((n−1)2)
a(2(n−1))

0 · · · −
√
b((n−1)2)
a(2(n−1))

0 n− 1 · · · 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

−
√
b((n−1)2)
a(2(n−1))

−
√
b((n−1)2)
a(2(n−1))

· · · 0 0 0 · · · n− 1



.

Its characteristic polynomial is

|λI −Alsqrs| =

∣∣∣∣∣∣ (λ− (n− 1))In −
√

b((n−1)2)
a(2(n−1))K

T√
b((n−1)2)
a(2(n−1))K (λ− (n− 1)In

∣∣∣∣∣∣ ,
where K is an n× n matrix. Hence the characteristic equation is given by∣∣∣∣∣∣ ΛIn −

√
b((n−1)2)
a(2(n−1))K

T√
b((n−1)2)
a(2(n−1))K ΛIn.

∣∣∣∣∣∣ = 0,

where Λ = (λ− (n− 1), this is same as

|ΛIn|

∣∣∣∣∣ΛIn −
(√

b((n− 1)2)

a(2(n− 1))
K

)
In
Λ

(
−

√
b((n− 1)2)

a(2(n− 1))
KT

)∣∣∣∣∣ = 0,

which can be written as(
b((n− 1)2)

a(2(n− 1))

)n
PKKT ((

a(2(n− 1))

b((n− 1)2)
)Λ2) = 0,

where PKKT (Λ) is the characteristic polynomial of the matrix KKT . Thus we have(
b((n− 1)2)

a(2(n− 1))

)n
[
a(2(n− 1))

b((n− 1)2)
)Λ2 + (n− 1)2][

a(2(n− 1))

b((n− 1)2)
)Λ2 + 1]n−1 = 0,

which is same as (
Λ2 +

b(n− 1)3

2a

)(
Λ2 +

b(n− 1)

a2

)n−1

= 0.

Therefore

Spec (S
0
n) =

 i

√
b(n−1)3

2a + (n− 1) −i
√
b(n−1)3

2a + (n− 1) i

√
b(n−1)

2a + (n− 1) −i
√
b(n−1)

2a + (n− 1)

1 1 n− 1 n− 1

 .
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Hence the Laplacian of the quotient of Randić and sum-connectivity energy of crown graph is

Elqrs(S
0
n) = 4(n− 1)

√
(n− 1)b

a2
,

as desired. �

Theorem 2.8 Let the vertex set V (D) and arc set Γ(D) of (Sm ∧ P2) digraph be respectively

given by

V (D) = {v1, v2, · · · , v2m+2},

Γ(D) = {(v1, vj), (vm+2, vk) | 2 ≤ k ≤ m+ 1,m+ 3 ≤ j ≤ 2m+ 2}.

Then the laplacian of skew-quotient of Randić and sum-connectivity energy of D is

(2n− 4)(2− n)

n
+ 2

∣∣∣∣∣n2 − 2(n− 1)

n
+ i

√
n3a− 4(n− 1)(an− b(n− 1))

2na

∣∣∣∣∣
+ 2

∣∣∣∣∣n2 − 2(n− 1)

n
− i
√
n3a− 4(n− 1)(an− b(n− 1))

2na

∣∣∣∣∣ .
Proof The Laplacian of skew-quotient of Randić and sum-connectivity matrix of (Sm∧P2)

digraph is given by

Alsqrs =



n− 1 0 · · · 0 0
√

b(n−1)
an

· · ·
√

b(n−1)
an

0 1 · · · 0 −
√

b(n−1)
an

0 · · · 0

...
...

. . .
...

...
...

. . .
...

0 0 · · · 1 −
√

b(n−1)
an

0 · · · 0

0
√

b(n−1)
an

· · ·
√

b(n−1)
an

n− 1 0 · · · 0

−
√

b(n−1)
an

0 · · · 0 0 1 · · · 0

...
...

. . .
...

...
...

. . .
...

−
√

b(n−1)
an

0 · · · 0 0 1 · · · 1


2n×2n

,

where m+ 1 = n. Its characteristic polynomial is given by

|λI − Alsqrs| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− (n− 1) 0 · · · 0 0 −
√
b(n−1)
an · · · −

√
b(n−1)
an

0 λ− 1 · · · 0

√
b(n−1)
an 0 · · · 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · λ− 1

√
b(n−1)
an 0 · · · 0

0 −
√
b(n−1)
an · · · −

√
b(n−1)
an λ− (n− 1) 0 · · · 0√

b(n−1)
an 0 · · · 0 0 λ− 1 · · · 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.√

b(n−1)
an 0 · · · 0 0 0 · · · λ− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2n×2n

.
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Hence the characteristic equation is given by

(√
b(n− 1)

an

)2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γ 0 · · · 0 0 −1 · · · −1

0 Λ · · · 0 1 0 · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · Λ 1 0 · · · 0

0 −1 · · · −1 γ 0 · · · 0

1 0 · · · 0 0 Λ · · · 0
...

...
. . .

...
...

...
. . .

...

1 0 · · · 0 0 0 · · · Λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2n×2n

= 0,

where

Λ =

√
na

(n− 1)b
(λ− 1) and γ =

√
na

(n− 1)b
(λ− (n− 1)).

Let

φ2n(Λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γ 0 0 · · · 0 0 −1 −1 · · · −1

0 Λ 0 · · · 0 1 0 0 · · · 0

0 0 Λ · · · 0 1 0 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...

0 0 0 · · · Λ 1 0 0 · · · 0

0 −1 −1 · · · −1 γ 0 0 · · · 0

1 0 0 · · · 0 0 Λ 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...

1 0 0 · · · 0 0 0 0 · · · Λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2n×2n

.

= (−1)2n+2nΛ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γ 0 0 · · · 0 0 −1 −1 · · · −1

0 Λ 0 · · · 0 1 0 0 · · · 0

0 0 Λ · · · 0 1 0 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...

0 0 0 · · · Λ 1 0 0 · · · 0

0 −1 −1 · · · −1 γ 0 0 · · · 0

1 0 0 · · · 0 0 Λ 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...

1 0 0 · · · 0 0 0 0 · · · Λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2n−1)×(2n−1)



108 Puttaswamy and R. Poojitha

+(−1)2n+2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 · · · 0 0 −1 · · · −1 −1

Λ 0 0 · · · 0 1 0 · · · 0 0

0 Λ 0 · · · 0 1 0 · · · 0 0
...

...
...

. . .
...

...
...

. . .
...

...

0 0 0 · · · Λ 1 0 · · · 0 0

−1 −1 −1 · · · −1 γ 0 · · · 0 0

0 0 0 · · · 0 0 Λ · · · 0 0
...

...
...

. . .
...

...
...

. . .
...

...

0 0 0 · · · 0 0 0 · · · Λ 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2n−1)×(2n−1)

.

Let

Ψ2n−1(Λ) = (−1)2n+2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 · · · 0 0 −1 · · · −1 −1

Λ 0 0 · · · 0 1 0 · · · 0 0

0 Λ 0 · · · 0 1 0 · · · 0 0
...

...
...

. . .
...

...
...

. . .
...

...

0 0 0 · · · Λ 1 0 · · · 0 0

−1 −1 −1 · · · −1 γ 0 · · · 0 0

0 0 0 · · · 0 0 Λ · · · 0 0
...

...
...

. . .
...

...
...

. . .
...

...

0 0 0 · · · 0 0 0 · · · Λ 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2n−1)×(2n−1)

Using the properties of the determinants, we obtain

Ψ2n−1(Λ) = Λn−2Θn(Λ)

after some simplifications, where

Θn(Λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Λ 0 0 · · · 1

0 Λ 0 · · · 1

0 0 Λ · · · 1
...

...
...

. . .
...

−1 −1 −1 · · · γ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

.

Then

φ2n(Λ) = Λn−2Θn(Λ) + Λφ2n−1(Λ).
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Now, proceeding as above, we obtain

φ2n−1(Λ) = (−1)(2n−1)+2Ψ2n−2(Λ) + (−1)(2n−1)+(2n−1)Λφ2n−2(Λ)

= Λn−3Θn(Λ) + Λφ2n−2(Λ).

Proceeding like this, we obtain at the (n− 1)th step

φ2n(Λ) = (n− 1)Λn−2Θn(Λ) + Λ(n−1)ξn+1(Λ),

where

ξn+1(Λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γ 0 0 · · · 0

0 Λ 0 · · · 1

0 0 Λ · · · 1
...

...
...

. . .
...

0 −1 −1 · · · Λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n+1)×(n+1)

.

φ2n(Λ) = (n− 1)Λn−2Θn(Λ) + Λn−1γΘn(Λ)

= (n− 1)Λn−2Θn(Λ) + Λn−1γΘn(Λ)

= (Λn−1γ + (n− 1)Λn−2)Θn(Λ).

Using the properties of the determinants, we obtain

Θn(Λ) = Λn−1γ + (n− 1)Λn−2.

Therefore

φ2n(Λ) = (Λn−1γ + (n− 1)Λn−2)2.

Hence, the characteristic equation becomes(√
b(n− 1)

an

)2n

φ2n(Λ) = 0,

which is same as (√
b(n− 1)

an

)2n

(Λn−1γ + (n− 1)Λn−2)2 = 0

and can be reduced to

λ2n−4((
na

b(n− 1)
(λ− 1)(λ− (n− 1)) + (n− 1))2 = 0.



110 Puttaswamy and R. Poojitha

Therefore

Spec ((Sm∧P2)) =

 1 n+ i
√

n3a−i4(n−1)(an−b(n−1))
2na n− i

√
n3a−i4(n−1)(an−b(n−1))

2na

2n− 4 2 2

 .

Hence the Laplacian of skew Quotient of Randić and sum-connectivity energy of (Sm ∧ P2)

graph is

Elsqrs((Sm ∧ P2)) =

n∑
i=1

∣∣∣∣µi − 2m

n

∣∣∣∣
=

(2n− 4)(2− n)

n

+2

∣∣∣∣∣n2 − 2(n− 1)

n
+ i

√
n3a− 4(n− 1)(an− b(n− 1))

2na

∣∣∣∣∣
+2

∣∣∣∣∣n2 − 2(n− 1)

n
− i
√
n3a− 4(n− 1)(an− b(n− 1)))

2na

∣∣∣∣∣ .
This completes the proof. �
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§1. Introduction

For standard terminology and notion in graph theory, we refer the reader to the text-book of

Harary [1]. The non-standard will be given in this paper as and when required.

Given a graph G = (V,E), the line-block graph of G = (V,E), denoted LBG(G), is defined

to be that graph with V (LBG(G)) = E(G) ∪ B, where B is set of blocks of G and any two

vertices in V (LBG(G)) are joined by an edge if, and only if, the corresponding blocks are

adjacent or one corresponds to a block of G and other to a line incident with it (see [4]).

To model individuals’ preferences towards each other in a group, Harary [2] introduced the

concept of signed graphs in 1953. A signed graph S = (G, σ) is a graph G = (V,E) whose

edges are labeled with positive and negative signs (i.e., σ : E(G) → {+,−}). The vertices

of a graph represent people and an edge connecting two nodes signifies a relationship between

individuals. The signed graph captures the attitudes between people, where a positive (negative

edge) represents liking (disliking). A neutrosophic signed graph SN = (G, σ,H) for a subgraph

H ⊂ G with property P is such a graph that G\H is a signed graph but H is indefinite for

those of uncertainties in reality. Certainly, if there are no indefinite subgraph in G, it must be

a signed graph. An unsigned graph is a signed graph with the signs removed. Similar to an

unsigned graph, there are many active areas of research for signed graphs.

The sign of a cycle (this is the edge set of a simple cycle) is defined to be the product of the

signs of its edges; in other words, a cycle is positive if it contains an even number of negative

edges and negative if it contains an odd number of negative edges. A signed graph S is said

to be balanced if every cycle in it is positive. A signed graph S is called totally unbalanced if

1Received December 10, 2022, Accepted March 22, 2023.
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every cycle in S is negative. A chord is an edge joining two non adjacent vertices in a cycle.

A marking of S is a function ζ : V (G) → {+,−}. Given a signed graph S one can easily

define a marking ζ of S as follows: For any vertex v ∈ V (S),

ζ(v) =
∏

uv∈E(S)

σ(uv),

the marking ζ of S is called canonical marking of S. For more new notions on signed graphs

refer the papers (see [5, 9-13, 13-22]).

The following are the fundamental results about balance, the second being a more advanced

form of the first. Note that in a bipartition of a set, V = V1 ∪ V2, the disjoint subsets may be

empty.

Theorem 1.1 A signed graph S is balanced if and only if either of the following equivalent

conditions is satisfied:

(i) Its vertex set has a bipartition V = V1 ∪ V2 such that every positive edge joins vertices

in V1 or in V2, and every negative edge joins a vertex in V1 and a vertex in V2 (Harary [2]).

(ii) There exists a marking µ of its vertices such that each edge uv in Γ satisfies σ(uv) =

ζ(u)ζ(v) (Sampathkumar [6]).

Switching S with respect to a marking ζ is the operation of changing the sign of every edge

of S to its opposite whenever its end vertices are of opposite signs.

Two signed graphs S1 = (G1, σ1) and S2 = (G2, σ2) are said to be weakly isomorphic (see

[]23) or cycle isomorphic (see [24]) if there exists an isomorphism φ : G1 → G2 such that the

sign of every cycle Z in S1 equals to the sign of φ(Z) in S2. The following result is well known

(see [24]).

Theorem 1.2(T. Zaslavsky [24]) Given a graph G, any two signed graphs in ψ(G), where ψ(G)

denotes the set of all the signed graphs possible for a graph G, are switching equivalent if and

only if they are cycle isomorphic.

§2. Line-Block Signed Graph of a Signed Graph

Motivated by the existing definition of complement of a signed graph, we now extend the

notion of line-block graphs to signed graphs as follows: The line-block signed graph LBS(S) =

(LBG(G), σ′) of a signed graph S = (G, σ) is a signed graph whose underlying graph is LBG(G)

and sign of any edge uv is LBS(S) is ζ(u)ζ(v), where ζ is the canonical marking of S. Further,

a signed graph S = (G, σ) is called a line-block signed graph, if S ∼= LBS(S′) for some signed

graph S′. The following result restricts the class of line-block signed graphs.

Theorem 2.1 For any signed graph S = (G, σ), its line-block signed graph LBS(S) is balanced.

Proof Since sign of any edge e = uv in LBS(S) is ζ(u)ζ(v), where ζ is the canonical
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marking of S, by Theorem 1.1, LBS(S) is balanced. �

For any positive integer k, the kth iterated line-block signed graph, LBSk(S) of S is defined

as follows:

LBS0(S) = S, LBSk(S) = LBS(LBSk−1(S)).

Corollary 2.2 For any signed graph S = (G, σ) and for any positive integer k, LBSk(S) is

balanced.

In [4], the authors remarked that LBG(G) and G are isomorphic if and only if G is K2.

We now characterize the signed graphs and its line block signed graphs are cycle isomorphic.

Theorem 2.3 For any signed graph S = (G, σ), the line-block signed graph LBS(S) and S are

cycle isomorphic if and only if the underlying of S is is isomorphic to K2 and S is balanced.

Proof Suppose LBS(S) ∼ S. This implies, LBG(G) ∼= G and hence G is isomorphic to

K2. Then LBS(S) is balanced and hence if S is unbalanced and its line-block signed graph

LBS(S) being balanced can not be switching equivalent to S in accordance with Theorem 1.2.

Therefore, S must be balanced.

Conversely, suppose that S balanced signed graph with the underlying graph G is isomor-

phic to K2. Then, since LBS(S) is balanced as per Theorem 2.1 and since LBG(G) ∼= G, the

result follows from Theorem 1.2 again. �

Corollary 2.4 Let S = (G, σ) be a connected signed graph. Then the nth-iterated line-block

signed graph LBSn(S), n ≥ 1 and S are cycle isomorphic if and only if the underlying of S is

isomorphic to K2 and S is balanced.

Corollary 2.5 Let S = (G, σ) be any signed graph with no isolated vertices, the nth-iterated

line-block signed graph LBSn(S), n ≥ 1 and S are cycle isomorphic if and only if the underlying

of S is isomorphic to mK2, m ≥ 1 and S is balanced.

The following result characterize signed graphs which are line-block signed graphs.

Theorem 2.6 A signed graph S = (G, σ) is a line-block signed graph if, and only if, S is

balanced signed graph and its underlying graph G is a line-block graph.

Proof Suppose that S is balanced and G is a line-block graph. Then there exists a graph

G′ such that LBG(G′) ∼= G. Since S is balanced, by Theorem 1.1, there exists a marking ζ

of G such that each edge uv in S satisfies σ(uv) = ζ(u)ζ(v). Now consider the signed graph

S′ = (G′, σ′), where for any edge e in G′, σ′(e) is the marking of the corresponding vertex in

G. Then clearly, LBS(S′) ∼= S. Hence S is a line-block signed graph.

Conversely, suppose that S = (G, σ) is a line-block signed graph. Then there exists a

signed graph S′ = (G′, σ′) such that LBS(S′) ∼= S. Hence, G is the line-block graph of G′ and

by Theorem 2.1, S is balanced. �
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The notion of negation η(S) of a given signed graph S defined in [3] as follows: η(S) has

the same underlying graph as that of S with the sign of each edge opposite to that given to it

in S. However, this definition does not say anything about what to do with nonadjacent pairs

of vertices in S while applying the unary operator η(.) of taking the negation of S.

For a signed graph S = (G, σ), the LBS(S) is balanced (Theorem 2.1). We now examine,

the conditions under which negation η(S) of LBS(S) is balanced.

Proposition 2.7 Let S = (G, σ) be a signed graph. If LBG(G) is bipartite then η(LBS(S)) is

balanced.

Proof Since, by Theorem 2.1, LBS(S) is balanced, it follows that each cycle C in LBS(S)

contains even number of negative edges. Also, since LBG(G) is bipartite, all cycles have even

length; thus, the number of positive edges on any cycle C in LBS(S) is also even. Hence

η(LBS(S)) is balanced. �
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§1. Introduction

We consider only finite, undirected and simple graphs. The notion of pair difference cordial

labeling of graphs was introduced in [4]. Pair difference cordial labeling behaviour of several

graphs like path, cycle, star, Mirror graph, Shadow graph,double fan, mangolian tent, grid

etc have been investigated in [4-10]. In this we investigate the pair difference cordial labeling

behaviour of subdivision of wheel and comb graphs. Terms not defined here follow from Harary

[2,3].

§2. Preliminaries

Definition 2.1([7]) A subdivision graph S(G) of a graph G is obtained by replacing each edge

uv by a path uvw.

Definition 2.2([4]) Let G = (V,E) be a (p, q) graph. Define

ρ =

p
2 , if p is even

p−1
2 , if p is odd

and L = {±1,±2,±3, · · · ,±ρ} called the set of labels. Consider a mapping f : V −→ L

1Received December 30, 2022, Accepted March 22, 2023.
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by assigning different labels in L to the different elements of V when p is even and different

labels in L to p-1 elements of V and repeating a label for the remaining one vertex when p

is odd.The labeling as defined above is said to be a pair difference cordial labeling if for each

edge uv of G there exists a labeling |f(u)− f(v)| such that
∣∣∆f1 −∆fc1

∣∣ ≤ 1. Otherwise, it is

called a Smarandachely pair difference cordial labeling if
∣∣∆f1 −∆fc1

∣∣ ≥ 2, where ∆f1 and ∆fc1

respectively denote the number of edges labeled with 1 and number of edges not labeled with 1.

A graph G for which there exists a pair difference cordial labeling or Smarandachely pair

difference cordial labeling is called a pair difference cordial graph or Smarandachely pair differ-

ence cordial graph.

Theorem 2.3([7]) A wheel Wn is pair difference cordial if and only if n is even.

§3. Main Results

Theorem 3.1 A subdivision of the wheel Wn, S(Wn) is pair difference cordial for all values of

n ≥ 3.

Proof Let us take the vertex set and edge set of S(Wn) as follows: V (S(Wn)) = {a, ai, bi, ui :

1 ≤ i ≤ n} and E(S(Wn)) = {aai, aibi, biui : 1 ≤ i ≤ n}∪{uibi+1 : 1 ≤ i ≤ n − 1} ∪ {bnu1}.
This graph has 3n+ 1 vertices and 4n edges.

Case 1. n is even.

Assign the labels 1, 4, 7, · · · , 3n−4
2 respectively to the vertices a1, a2, a3, · · · , an2 and assign

the labels 2, 5, 8, · · · , 3n−2
2 to the vertices b1, b2, b3, · · · , bn2 respectively. Next assign the la-

bels −1,−4,−7, · · · ,−( 3n−4
2 ) to the vertices an+2

2
, an+4

2
, an+6

2
, · · · , an respectively and assign

the labels −2,−5,−8, · · · ,−( 3n−2
2 ) to the vertices bn+2

2
, bn+4

2
, bn+6

2
, · · · , bn . Now we assign

the labels 3, 6, 9, · · · , 3n
2 respectively to the vertices u1, u2, u3, · · · , un2 and assign the labels

−3,−6,−9, · · · ,−( 3n
2 ) to the vertices un+2

2
, un+4

2
, un+6

2
, · · · , un respectively. Finally assign the

label 1 to the vertex a. Clearly in this case ∆fc1
= ∆f1 = 2n.

Case 2. n is odd.

Assign the labels 1, 4, 7, · · · , 3n−7
2 respectively to the vertices a1, a2, a3, · · · , an−1

2
and assign

the labels 2, 5, 8, · · · , 3n−5
2 to the vertices b1, b2, b3, · · · , bn−1

2
respectively. Next assign the labels

−1,−4,−7, · · · ,−( 3n−7
2 ) to the vertices an+1

2
, an+3

2
, an+5

2
, · · · , an−1 respectively and assign the

labels −2,−5,−8, · · · ,−( 3n−5
2 ) to the vertices bn+1

2
, bn+3

2
, bn+5

2
, · · · , bn−1 . Now we assign the

labels 3, 6, 9, · · · , 3n−3
2 respectively to the vertices u1, u2, u3, · · · , un−1

2
and assign the labels

−3,−6,−9, · · · ,−( 3n−3
2 ) to the vertices un+1

2
, un+3

2
, un+5

2
, · · · , un−1 respectively. Finally assign

the label 3n−1
2 ,−( 3n+1

2 ),−( 3n−1
2 ), 3n+1

2 to the vertices a, an, bn, un . Clearly in this case ∆fc1
=

∆f1 = 2n. �

Theorem 3.2 A subdivision of the spokes of wheel Wn is pair difference cordial for all values

of n ≥ 3.

Proof Let Gs be the subdivision of the spokes of the wheel Wn with the vertex set V (Gs) =
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{a, ai, bi : 1 ≤ i ≤ n} and edge set E(Gs) = {aai, aibi : 1 ≤ i ≤ n} ∪ {bibi+1 : 1 ≤ i ≤
n− 1} ∪ {bna1}. Here the graph Gs has 2n+ 1 vertices and 3n edges.

Case 1. n ≡ 0(mod4).

Assign the labels 2, 6, 10, · · · , n − 2 respectively to the vertices a1, a3, a5, · · · , an−2
2

and

assign the labels 5, 9, 13, · · · , n− 3 to the vertices a2, a4, a6, · · · , an−4
2

respectively. Next assign

the labels −1,−5,−9, · · · ,−(n − 3) to the vertices an+2
2
, an+6

2
, an+10

2
, · · · , an−1 respectively

and assign the labels −4,−8,−12, · · · ,−n to the vertices an+4
2
, an+8

2
, an+12

2
, · · · , an. Now we

assign the labels 3, 7, 11, · · · , n − 1 respectively to the vertices b1, b3, b5, · · · , bn−2
2

and assign

the labels 4, 8, 12, · · · , n to the vertices b2, b4, b6, · · · , bn−4
2

respectively. Next assign the labels

−2,−6,−10, · · · ,−(n − 2) to the vertices bn+2
2
, bn+6

2
, bn+10

2
, · · · , bn−1 respectively and assign

the labels −3,−7,−11, · · · ,−(n − 1) to the vertices bn+4
2
, bn+8

2
, bn+12

2
, · · · , bn. Finally assign

the labels 1, n− 1, n to the vertices a, an
2
, bn

2
.

Case 2. n ≡ 1(mod4).

Assign the labels 2, 6, 10, · · · , n − 3 respectively to the vertices a1, a3, a5, · · · , an−3
2

and

assign the labels 5, 9, 13, · · · , n to the vertices a2, a4, a6, · · · , an−1
2

respectively. Next assign

the labels −1,−5,−9, · · · ,−(n− 4) to the vertices an+1
2
, an+5

2
, an+9

2
, · · · , an−2 respectively and

assign the labels −4,−8,−12, · · · ,−(n−1) to the vertices an+3
2
, an+7

2
, an+11

2
, · · · , an−1. Now we

assign the labels 3, 7, 11, · · · , n−2 respectively to the vertices b1, b3, b5, · · · , bn−3
2

and assign the

labels 4, 8, 12, · · · , n − 1 to the vertices b2, b4, b6, · · · , bn−1
2

respectively. Next assign the labels

−2,−6,−10, · · · ,−(n−3) to the vertices bn+1
2
, bn+5

2
, bn+9

2
, · · · , bn−2 respectively and assign the

labels −3,−7,−11, · · · ,−(n− 2) to the vertices bn+3
2
, bn+7

2
, bn+11

2
, · · · , bn−1. Finally assign the

labels 1,−(n− 1),−n to the vertices a, an, bn.

Case 3. n ≡ 2(mod4).

Assign the labels 2, 6, 10, · · · , n − 4 respectively to the vertices a1, a3, a5, · · · , an−4
2

and

assign the labels 5, 9, 13, · · · , n− 1 to the vertices a2, a4, a6, · · · , an−2
2

respectively. Next assign

the labels −1,−5,−9, · · · ,−(n − 1) to the vertices an+2
2
, an+6

2
, an+10

2
, · · · , an respectively and

assign the labels −4,−8,−12, · · · ,−(n−2) to the vertices an+4
2
, an+8

2
, an+12

2
, · · · , an−1. Now we

assign the labels 3, 7, 11, · · · , n−3 respectively to the vertices b1, b3, b5, · · · , bn−4
2

and assign the

labels 4, 8, 12, · · · , n − 2 to the vertices b2, b4, b6, · · · , bn−2
2

respectively. Next assign the labels

−2,−6,−10, · · · ,−n to the vertices bn+2
2
, bn+6

2
, bn+10

2
, · · · , bn respectively and assign the labels

−3,−7,−11, · · · ,−(n− 3) to the vertices bn+4
2
, bn+8

2
, bn+12

2
, · · · , bn−1. Finally assign the labels

1, n− 1, n to the vertices a, an
2
, bn

2
.

Case 4. n ≡ 3(mod4).

Assign the labels 2, 6, 10, · · · , n − 5 respectively to the vertices a1, a3, a5, · · · , an−5
2

and

assign the labels 5, 9, 13, · · · , n− 2 to the vertices a2, a4, a6, · · · , an−3
2

respectively. Next assign

the labels −1,−5,−9, · · · ,−(n− 2) to the vertices an+1
2
, an+5

2
, an+9

2
, · · · , an−1 respectively and

assign the labels −4,−8,−12, · · · ,−(n−3) to the vertices an+3
2
, an+7

2
, an+11

2
, · · · , an−2. Now we

assign the labels 3, 7, 11, · · · , n−4 respectively to the vertices b1, b3, b5, · · · , bn−5
2

and assign the

labels 4, 8, 12, · · · , n − 3 to the vertices b2, b4, b6, · · · , bn−3
2

respectively. Next assign the labels
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−2,−6,−10, · · · ,−(n−1) to the vertices bn+1
2
, bn+5

2
, bn+9

2
, · · · , bn−1 respectively and assign the

labels −3,−7,−11, · · · ,−(n− 4) to the vertices bn+3
2
, bn+7

2
, bn+11

2
, · · · , bn−2. Finally assign the

labels 1,−n, ,−(n− 1) respectively to the vertices a, an, bn and assign the labels n, n− 1 to the

vertices an−1
2
, bn−1

2
respectively.

Table 1 given below establishes that this vertex labeling gives subdivision of spoke of the

wheel is pair difference cordial.

Nature of n ∆fc1
∆f1

n ≡ 0 (mod 4) 3n
2

3n
2

n ≡ 1 (mod 4) 3n−1
2

3n+1
2

n ≡ 2 (mod 4) 3n
2

3n
2

n ≡ 3 (mod 4) 3n−1
2

3n+1
2

Table 1

This completes the proof. �

Theorem 3.3 A subdivision of the rim edges of the wheel Wn is pair difference cordial for all

values of n ≥ 3.

Proof Let Gr be the subdivision of rim edges of the wheel graph with the vertex set

V (Gr) = {a, ai, bi : 1 ≤ i ≤ n} and edge set

E(Gr) = {aai : 1 ≤ i ≤ n} ∪ {aibi, ai+1bi : 1 ≤ i ≤ n− 1} ∪ {bna1}.

Certainly, the graph Gr has 2n+ 1 vertices and 3n edges.

Case 1. 3 ≤ n ≤ 11.

Tables 2 and 3 shows that subdivision of rim edges of the wheel is pair difference cordial

for all values of 3 ≤ n ≤ 11. Assign the label 1 to the vertex a.

n a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a

3 2 4 −2 1

4 2 4 −1 -3 1

5 2 4 −1 -3 -5 1

6 2 4 6 -2 -4 -5 1

7 2 4 6 -1 -3 -5 -6 1

8 2 4 6 8 -2 -4 -7 -8 1

9 2 4 6 8 -1 -3 -5 -8 -9 1

10 2 4 6 8 10 -2 -4 -6 -10 -7 1

11 2 4 6 8 10 -1 -3 -5 -7 -11 -8 1

Table 2
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n b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11

3 3 −1 −3

4 3 4 −2 -4

5 3 5 −2 -4 4

6 3 5 −1 -3 -6

7 3 5 7 -2 -4 -7 -8

8 3 5 7 -1 -3 -5 -6 8

9 3 5 7 9 -2 -4 -6 -7 9

10 3 5 7 9 -1 -3 -5 -8 -9 10

11 3 5 7 9 11 -2 -4 -6 -9 -10 11

Table 3

Case 2. n ≡ 0(mod4), n ≥ 12.

Assign the labels 2, 4, 6, · · · , n respectively to the vertices a1, a2, a3, · · · , an2 and assign the

labels −2,−4,−6, · · · ,−(n+4
2 ) to the vertices an+22, an+4

2
, an+6

2
, · · · , a 3n+4

4
respectively and as-

sign the labels −(n+6
2 ),−(n+8

2 ),−(n+10
2 ), · · · ,−( 3n+4

4 ) respectively to the vertices a 3n+8
4

, a 3n+12
4

,

a 3n+16
4

, · · · , an. Now we assign the labels 3, 5, 7, · · · , n− 1 respectively to the vertices b1, b2, b3,

· · · , bn−2
2

. Next assign the labels−1,−3,−5, · · · ,−(n+2
2 ) to the vertices bn2, bn+2

2
, bn+4

2
, · · · , b 3n

4

respectively and assign the labels −( 3n+8
4 ),−( 3n+12

4 ),−( 3n+16
4 ), · · · ,−n respectively to the ver-

tices b 3n+4
4

, b 3n+8
4

, b 3n+12
4

, · · · , bn−1. Next assign the labels 1, n respectively to the vertices

a, bn.

Case 3. n ≡ 1(mod4), n ≥ 13.

Assign the labels 2, 4, 6, · · · , n − 1 respectively to the vertices a1, a2, a3, · · · , an−1
2

and

assign the labels −1,−3,−5, · · · ,−(n+5
2 ) to the vertices an+12, an+3

2
, an+5

2
, · · · , a 3n+5

4
respec-

tively and assign the labels −(n+7
2 ),−(n+9

2 ),−(n+11
2 ), · · · ,−( 3n+5

4 ) respectively to the ver-

tices a 3n+9
4

, a 3n+13
4

, a 3n+17
4

, · · · , an . Now we assign the labels 3, 5, 7, · · · , n respectively to

the vertices b1, b2, b3, · · · , bn−1
2

. Next assign the labels −2,−4,−6, · · · ,−(n+3
2 ) to the vertices

bn+12, bn+3
2
, bn+5

2
, · · · , b 3n+1

4
respectively and assign the labels−( 3n+9

4 ),−( 3n+13
4 ),−( 3n+17

4 ), · · · ,
−n respectively to the vertices b 3n+5

4
, b 3n+9

4
, b 3n+13

4
, · · · , bn−1. Next assign the labels 1, n re-

spectively to the vertices a, bn.

Case 4. n ≡ 2(mod4), n ≥ 14.

Assign the labels 2, 4, 6, · · · , n respectively to the vertices a1, a2, a3, · · · , an2 and assign the

labels −2,−4,−6, · · · ,−(n+2
2 ) to the vertices an+22, an+4

2
, an+6

2
, · · · , a 3n+2

4
respectively and as-

sign the labels −(n+4
2 ),−(n+6

2 ),−(n+8
2 ), · · · ,−( 3n+2

4 ) respectively to the vertices a 3n+6
4

, a 3n+10
4

,

a 3n+14
4

, · · · , an . Now we assign the labels 3, 5, 7, · · · , n− 1 respectively to the vertices b1, b2, b3,

· · · , bn−2
2

. Next assign the labels−1,−3,−5, · · · ,−(n+2
2 ) to the vertices bn2, bn+2

2
, bn+4

2
, · · · , b 3n

4

respectively and assign the labels −( 3n+2
4 ),−( 3n+6

4 ),−( 3n+10
4 ), · · · ,−n respectively to the ver-

tices b 3n+2
4

, b 3n+6
4

, b 3n+10
4

, · · · , bn−1. Next assign the labels 1, 1 respectively to the vertices

a, bn.
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Case 5. n ≡ 3(mod4), n ≥ 15.

Assign the labels 2, 4, 6, · · · , n − 1 respectively to the vertices a1, a2, a3, · · · , an−1
2

and

assign the labels −1,−3,−5, · · · ,−(n+3
2 ) to the vertices an+12, an+3

2
, an+5

2
, · · · , a 3n+3

4
respec-

tively and assign the labels −(n+5
2 ),−(n+7

2 ),−(n+9
2 ), · · · ,−( 3n+3

4 ) respectively to the vertices

a 3n+7
4

, a 3n+11
4

, a 3n+15
4

, · · · , an . Now we assign the labels 3, 5, 7, · · · , n respectively to the

vertices b1, b2, b3, · · · , bn−1
2

. Next assign the labels −2,−4,−6, · · · ,−(n+1
2 ) to the vertices

bn+12, bn+3
2
, bn+5

2
, · · · , b 3n−1

4
respectively and assign the labels−( 3n+7

4 ),−( 3n+11
4 ),−( 3n+15

4 ), · · · ,
−n respectively to the vertices b 3n+3

4
, b 3n+7

4
, b 3n+11

4
, · · · , bn−1. Next assign the labels 1, n re-

spectively to the vertices a, bn.

Table 4 given below establishes that this vertex labeling gives subdivision of rim edges of

the wheel is pair difference cordial.

Nature of n ∆fc1
∆f1

n ≡ 0 (mod 4) 3n
2

3n
2

n ≡ 1 (mod 4) 3n−1
2

3n+1
2

n ≡ 2 (mod 4) 3n
2

3n
2

n ≡ 3 (mod 4) 3n−1
2

3n+1
2

Table 4

A pair difference cordial labeling on subdivision of rim edges of the wheel W5 is shown in

Figure 1.

Figure 1

This completes the proof. �

Theorem 3.4 A subdivision of comb Pn �K1 is pair difference cordial for all values of n ≥ 2.

Proof Let the vertex set and edge set be V (Pn �K1) = {ai, bi, ci : 1 ≤ i ≤ n} ∪ {di : 1 ≤
i ≤ n− 1} and E(Pn �K1) = {aibi, bici : 1 ≤ i ≤ n} ∪ {aidi, diai+1 : 1 ≤ i ≤ n− 1}. There are

4n− 1 vertices and 4n− 2 edges.

There are four cases arises.
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Case 1. n is even.

Assign the labels 3, 6, 9, · · · , 3n
2 to the vertices a1, a2, a3, · · · , an2 respectively and assign

the labels 2, 5, 8, · · · , 3n−2
2 respectively to the vertices b1, b2, b3, · · · , bn2 . Next assign the labels

1, 4, 7, · · · , 3n−4
2 to the vertices c1, c2, c3, · · · , cn2 respectively and assign the labels −3,−6,−9,

· · · ,−( 3n−6
2 ) respectively to the vertices an+2

2
, an+4

2
, an+6

2
, · · · , an−1. Now we assign the la-

bels −2,−5,−8, · · · ,−( 3n−8
2 ) to the vertices bn+2

2
, bn+4

2
,bn+6

2
, · · · , bn−1 and assign the label-

s −1,−4, −7, · · · ,−( 3n−4
2 ) to the vertices cn+2

2
, cn+4

2
, cn+6

2
, · · · , cn. Next assign the labels

3n+2
2 , 3n+4

2 , 3n+6
2 , · · · , 2n−1 respectively to the vertices d1, d2, d3, · · · , dn−2

2
and assign the labels

−( 3n+2
2 ),−( 3n+4

2 ), −( 3n+6
2 ), · · · ,−(2n−1) to the vertices dn

2
, dn+2

2
,dn+4

2
, · · · , dn−2 respectively.

Finally assign the labels −( 3n
2 ),−( 3n−2

2 ), 1 respectively to the vertices bn, an, un−1.

Case 2. n = 3.

Assign the labels 1, 2, 3,−1,−2,−3, 4,−4,−4 respectively to the vertices c1, b1, a1, c2, b2, a2,

c3, b3, a3 and assign the labels 5,−5 to the vertices d1, d2 respectively.

Case 3. n = 5.

Assign the labels 1, 2, 3, 4, 5, 6 respectively to the vertices c1, b1, a1, c2, b2, a2 and assign the

labels −1,−2,−3,−4,−5,−6 to the vertices c3, b3, a3, c4, b4, a4 respectively. Next assign the

labels 7,−7, 8,−8 respectively to the vertices d1, d2, d3, d4 and assign the labels −9,−9, 9 to the

vertices a5, b5, c5 respectively.

Case 4. n is odd n ≥ 7.

Assign the labels 3, 6, 9, · · · , 3n−3
2 to the vertices a1, a2, a3, · · · , an−1

2
respectively and as-

sign the labels 2, 5, 8, · · · , 3n−9
2 respectively to the vertices b1, b2, b3, · · · , bn−1

2
. Next assign

the labels 1, 4, 7, · · · , 3n−4
2 to the vertices c1, c2, c3, · · · , cn2 respectively and assign the labels

−3,−6,−9, · · · ,−( 3n−6
2 ) respectively to the vertices an+2

2
, an+4

2
,an+6

2
, · · · , an−1. Now we as-

sign the labels −2,−5,−8, · · · ,−( 3n−8
2 ) to the vertices bn+2

2
, bn+4

2
,bn+6

2
, · · · , bn−1 and assign the

labels −1,−4,−7, · · · ,−( 3n−4
2 ) to the vertices cn+2

2
, cn+4

2
,cn+6

2
, · · · , cn. Next assign the labels

3n+2
2 , 3n+4

2 , 3n+6
2 , · · · ,2n−1 respectively to the vertices d1, d2, d3, · · · , dn−2

2
and assign the labels

−( 3n+2
2 ), −( 3n+4

2 ),−( 3n+6
2 ), · · · ,−(2n−1) to the vertices dn

2
, dn+2

2
,dn+4

2
, · · · , dn−2 respectively.

Finally assign the labels −( 3n
2 ),−( 3n−2

2 ), 1 respectively to the vertices bn, an, un−1.

In all the cases, we have ∆f1 = ∆fc1
= 2n− 1. �

Theorem 3.5 A subdivision of the edges of the path Pn in the comb Pn�K1 is pair difference

cordial for all values of n ≥ 2.

Proof Let G be subdivision of the edges of the path Pn in the comb graph Pn � K1.

Let the vertex set and edge set be V (G) = {ai, bi : 1 ≤ i ≤ n} ∪ {ci : 1 ≤ i ≤ n − 1} and

E(G) = {aibi : 1 ≤ i ≤ n} ∪ {aici, ciai+1 : 1 ≤ i ≤ n− 1}, which has 3n− 1 vertices and 3n− 2

edges. There are two cases arises.

Case 1. n is even.

Subcase 1.1 n = 2.
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Assign the labels 1, 2, 1,−2,−1 respectively to the vertices b1, a1, c1, a2, b2 respectively.

Subcase 1.2 n ≥ 4.

Assign the labels 3, 6, 9, · · · , 3n−6
2 to the vertices b2, b3, b4, · · · , bn2 respectively and as-

sign the labels 1, 4, 7, · · · , 3n−4
2 respectively to the vertices a1, a2, a3, · · · , an2 . Next assign the

labels 5, 8, 11, · · · , 3n−2
2 to the vertices c1, c2, c3, · · · , cn−2

2
respectively and assign the label-

s −1,−3,−5, · · · ,−n + 1 respectively to the vertices an+2
2
, an+4

2
,an+6

2
, · · · , an. Now we as-

sign the labels −2,−4,−6, · · · ,−n to the vertices bn+2
2
, bn+4

2
,bn+6

2
, · · · , bn and assign the labels

−(n+1),−(n+2),−(n+3) · · · ,−( 3n−2
2 ) to the vertices cn

2
, cn+2

2
,cn+4

2
, · · · , cn−2. Finally assign

the labels 2,−( 3n−2
2 ) respectively to the vertices b1, cn−1.

Case 2. n is odd.

Subcase 2.1 n = 3.

Assign the labels 1, 2,−1,−2, 3,−3, 4,−4 respectively to the vertices b1, a1, b2, a2, b3, a3, c1, c2.

Subcase 2.2 n ≥ 5.

Assign the labels 3, 6, 9, · · · , 3n−3
2 to the vertices c1, c2, c3, · · · , cn−3

2
respectively and assign

the labels 1, 4, 7, · · · , 3n−7
2 respectively to the vertices b1, b2, b3, · · · , bn−1

2
. Next assign the

labels 2, 5, 8, · · · , 3n−5
2 to the vertices a1, a2, a3, · · · , an−1

2
respectively and assign the labels

−1,−3,−5, · · · ,−n respectively to the vertices an+1
2
, an+3

2
, an+5

2
, · · · , an. Now we assign the

labels −2,−4,−6, · · · ,−n−1 to the vertices bn+1
2
, bn+3

2
,bn+5

2
, · · · , bn and assign the labels −(n+

2),−(n + 3),−(n + 4), · · · ,−( 3n−1
2 ) to the vertices cn+1

2
, cn+3

2
,cn+5

2
, · · · , cn−1. Finally assign

the labels 3n−11
2 to the vertex cn−1

2
.

Table 5 given below establishes that this vertex labeling gives subdivision of the edges of

the path Pn in the comb graph is pair difference cordial.

Nature of n ∆fc1
∆f1

n is odd 3n−4
2

3n
2

n is even 3n−2
2

3n−2
2

Table 5

This completes the proof. �

Theorem 3.6 A subdivision of the pendant edges of the comb Pn � K1 in the comb is pair

difference cordial for all values of n ≥ 2.

Proof Let G be subdivision of the pendant edges of the path Pn in the comb Pn�K1. Let

the vertex set and edge set be V (G) = {ai, bi, ci : 1 ≤ i ≤ n} and E(G) = {aibi, bici : 1 ≤ i ≤ n},
which has 3n− 1 vertices and 3n− 2 edges.

Case 1. n is even.

Subcase 1.1 n = 2.

Assign the labels 1, 2, 1,−2,−1 respectively to the vertices b1, a1, c1, a2, b2 respectively.
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Subcase 1.2 n ≥ 4.

Assign the labels 3, 6, 9, · · · , 3n−6
2 to the vertices b2, b3, b4, · · · , bn2 respectively and as-

sign the labels 1, 4, 7, · · · , 3n−4
2 respectively to the vertices a1, a2, a3, · · · , an2 . Next assign the

labels 5, 8, 11, · · · , 3n−2
2 to the vertices c1, c2, c3, · · · , cn−2

2
respectively and assign the label-

s −1,−3,−5, · · · ,−n + 1 respectively to the vertices an+2
2
, an+4

2
,an+6

2
, · · · , an. Now we as-

sign the labels −2,−4,−6, · · · ,−n to the vertices bn+2
2
, bn+4

2
,bn+6

2
, · · · , bn and assign the labels

−(n+1),−(n+2),−(n+3) · · · ,−( 3n−2
2 ) to the vertices cn

2
, cn+2

2
,cn+4

2
, · · · , cn−2. Finally assign

the labels 2,−( 3n−2
2 ) respectively to the vertices b1, cn−1.

Case 2. n is odd.

Subcase 2.1 n = 3.

Assign the labels 1, 2,−1,−2, 3,−3, 4,−4 respectively to the vertices b1, a1, b2, a2, b3, a3, c1, c2.

Subcase 2.2 n ≥ 5.

Assign the labels 3, 6, 9, · · · , 3n−3
2 to the vertices c1, c2, c3, · · · , cn−3

2
respectively and assign

the labels 1, 4, 7, · · · , 3n−7
2 respectively to the vertices b1, b2, b3, · · · , bn−1

2
. Next assign the

labels 2, 5, 8, · · · , 3n−5
2 to the vertices a1, a2, a3, · · · , an−1

2
respectively and assign the labels

−1,−3,−5, · · · ,−n respectively to the vertices an+1
2
, an+3

2
, an+5

2
, · · · , an. Now we assign the

labels −2,−4,−6, · · · ,−n−1 to the vertices bn+1
2
, bn+3

2
,bn+5

2
, · · · , bn and assign the labels −(n+

2),−(n + 3),−(n + 4), · · · ,−( 3n−1
2 ) to the vertices cn+1

2
, cn+3

2
,cn+5

2
, · · · , cn−1. Finally assign

the labels 3n−11
2 to the vertex cn−1

2
.

Table 6 given below establishes that this vertex labeling gives subdivision of the edges of

the path Pn in the comb graph is pair difference cordial.

Nature of n ∆fc1
∆f1

n is odd 3n−4
2

3n
2

n is even 3n−2
2

3n−2
2

Table 6

A subdivision of the pendant edges of the comb P7�K1 is pair difference cordial is shown

in Figure 2.

Figure 2

This completes the proof. �
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Famous Words

The branch developing of science is easy to achieve local achievements on scientific subjects

which created really the western industries but only now, it has left the nature with many

worldwide problems in the passed more than 300 years, also affecting the human survival. Dif-

ferent from the developing of western science, Chinese science has its own distinctive characters.

It emphasizes the unity of humans with the nature and holds the law of thing evolving with the

whole life cycle of thing. Certainly, it is not easy to achieve local scientific achievements and

can not bring the industrial revolution into being but it will not also bring the crisis to human

existence. — Extracted from Combinatorial Theory on the Universe, a book of Dr.Linfan Mao

on mathematics with philosophy of science, which systematically discusses the recognition of

humans from the local to the whole, published by Global Knowledge-Publishing House in 2023.
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