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Abstract: Mathematical science is the human recognition on the evolution laws of things

that we can understand with the principle of logical consistency by mathematics, i.e., math-

ematical reality. So, is the mathematical reality equal to the reality of thing? The answer is

not because there always exists contradiction between things in the eyes of human, which

is only a local or conditional conclusion. Such a situation enables us to extend the mathe-

matics further by combinatorics for the reality of thing from the local reality and then, to

get a combinatorial reality of thing. This is the combinatorial conjecture for mathematical

science, i.e., CC conjecture that I put forward in my postdoctoral report for Chinese Acade-

my of Sciences in 2005, namely any mathematical science can be reconstructed from or made

by combinatorialization. After discovering its relation with Smarandache multi-spaces, it is

then be applied to generalize mathematics over 1-dimensional topological graphs, namely

the mathematical combinatorics that I promoted on science internationally for more than 20

years. This paper surveys how I proposed this conjecture from combinatorial topology, how

to use it for characterizing the non-uniform groups or contradictory systems and furthermore,

why I introduce the continuity flow GL as a mathematical element, i.e., vectors in Banach

space over topological graphs with operations and then, how to apply it to generalize a few

of important conclusions in functional analysis for providing the human recognition on the

reality of things, including the subdivision of substance into elementary particles or quarks

in theoretical physics with a mathematical supporting.

Key Words: Science’s limitation, CC conjecture, Smarandachely denied axiom, Smaran-

dache mutispace, non-harmonious group, non-solvable equation system, continuity flow, com-

binatorial notion, neutrosophic set, recognitive philosophy.

AMS(2010): 05C10, 05C21, 34A12, 34D06, 35A08, 46B25, 51D20,51H20, 51P05.

§1. Introduction

Science is the recognition of human on the law of things in the universe under conditions by

the “six sense organs” of human, i.e., the eyes, ears, nose, tongue, body and mind, including

their extension using by the scientific instruments or facilities, and mathematics is the formal

1Received October 5, 2023, Accepted March 2,2024.
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system of symbols in accordance with the principle of logical consistency in order to describe

the evolution of thing by abstract symbols, i.e, the mathematical reality TM holds on thing T ,

which is a recognitive process from non-being to being of human and greatly depends on the

human recognition from the known to the unknown, including the characteristics, indicators

and methods of recognition on nature of thing. For example, let the observable characteristics

of thing T be χ1, χ2, · · · such as the spatial location, geometry, color, state, odor, rate and

direction of change, melting point, boiling point, hardness, density, structure, acidity, alkalinity,

oxidation, reducibility, thermal stability, metabolism, growth, reproduction and development,

heredity and variation, etc. Then, T is recognized on its characteristics of {χ1, χ2, · · · } by

humans. Notice that the recognition on characteristics of χ1, χ2, · · · of thing T is a gradual

process in general. That is why it needs to constantly improve, modify or extend our theory on

thing T so as to approach to the reality of thing T infinitely. For example, the six blind men

touched the elephant’s teeth, trunk, ears, stomach, legs and the tail in fable of the blind men

with an elephant and then, an elephant was characterized respectively by the blind men as a

big radish, pipe, a leaf fan, a wall, a pillar or a rope, such as those shown in Figure 1.

Figure 1 An elephant’s shape recognized by blind men

In this case, why did the blind men argue for the shape of an elephant? The answer

is because each of them touched different parts of the elephant’s body, which results in the

recognitions on the elephant different. Similarly, the human recognition on a thing T by its

characteristics of χ1, χ2, · · · is similar to that of the case of a blind man. It is also in local

recognition on T one by one characterizes of χ1, χ2, · · · . However, can such a recognition really

equal to the reality of thing T and realize TM = T? The answer is not because it is the human in

recognizing things T and it mainly depends on the sense and reason of human, which has been

asserted TM 6= T in the discussion of sages. For example, “Tao told is not the eternal Tao; Name

named is not the eternal Name” in Chapter 1 of Lao Zi’s Tao Te Ching, “Color is not different

from the Empty, Empty is not different from the Color and the Color is the Empty, the Empty

is the Color” in Heart Sutra and also Kant’s Critique of Pure Reason or “what can I know? ”

and so on. All of their discussions show that the human recognition is relative or conditional

reality TM, not equivalent to the reality of thing T but only a gradual process, i.e., TM → T .

Furthermore, can the mathematical reality of things be realized TM → T by human under

the principle of logical consistency? The answer is also not because the mathematical system
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follows the logical consistency but a contradiction exists everywhere in human recognition. It

is impossible to completely describe the evolution of thing T with a logical consistency system

of symbols. In this case, it is necessary to recognize that such a contradiction is caused by

human’s describing on the evolution, not the truth colour of thing T with mathematics. Thus,

there are 3 questions need further to discuss at least in recognition of thing T by characteristics

of χ1, χ2, · · · and then, we realize the thing T , including the blind men with the radish, pipe,

fan, wall, pillar, rope and others for characterizing the shape of an elephant, respectively.

(Q1) For an integer i ≥ 1, is it complete for understanding thing T only by the characteristic

χi? The answer is certainly not because χi is only one characteristic of thing T , not the whole.

In the fable of blind men with an elephant, although the sophist told the blind men that “you

are all right about the elephant”, he also said that “the reason why you think the elephant’s shape

different is because each of you touches the different part of the elephant’s body. In fact, an

elephant has those all characteristics that you are talking about”, namely the sophist pointed out

that each recognition of them is local also. Similarly, knowing thing T in terms of characteristic

χi is necessarily incomplete but it is the normal case of human recognition. And so, all human

activities led by the incomplete scientific recognitions are bound to be constrained by their

application field, scope and achieving conditions.

(Q2) How to recognize the characteristics of χ1, χ2, · · · of thing T? In fact, there are many

methods for the recognition on characteristics of χ1, χ2, · · · of thing T in science, including

mathematical, physical, chemical and biological methods such as a radish can be eaten, a pillar

can support others and a rope is soft but can tie others, etc. But as long as its characteristics

are quantitatively described by data χi, i ≥ 1, it must be assumed that the characteristic χi

follows a mathematical system S, namely the characteristic χi is described in accordance with

the principle of logical consistency in mathematics. Now, the question is whether it is correct

in assuming that the characteristic χi follows the rules of mathematical system S, and whether

the change of characteristic χi of thing T can be fully described?

(Q3) Are any combination of characteristics of χ1, χ2, · · · necessarily the thing T? For

example, in fable of the blind men with an elephant, is any combination of 2 big radishes, 1

pipe, 2 leaf fans, 1 wall, 4 pillars and 1 rope be the shape of an elephant recognized by the blind

men? The answer is not because these six known objects can be combined to create a variety

of geometrical objects, they do not necessarily be the shape of an elephant. In other words,

the shape of an elephant made from 2 big radishes, 1 pipe, 2 leaf fans, 1 wall, 4 pillars and 1

rope is combined on a 1-dimensional topology or topological graph GL, and this 1-dimensional

topology GL is accompanied by human recognition of things T , which is inevitable.

Different understandings on the previous 3 questions will inevitably lead to different de-

veloping ways of science. Most researchers are at the first level, namely acknowledging tacitly

that a local characteristic of thing T is equal to thing T and so, the thing T is subdivided into

microscopic particles, including cells and genes in biology to reduce the effect of thing T to

cause of the behavior of microscopic particles, which is to recognize the whole in a partial one.

Unlike the ordinary scholars, Prof.Smarandache introduced the neutrosophic set for describing

thing T with characteristics of χ1, χ2, · · · , lead a lot of mathematicians researching it deeply

and obtained many academic achievements. So, what is a neutrosophic set? A neutrosophic
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set is such a set that associates each element x ∈ χi of a recognitive set with a ternary array

(T , I,F), where T , I,F ⊆ [0, 1], are respectively the confident set T , indefinite set I and fail

set F , see [36] for details. However, I believe personally that the human recognition of thing

T should follow the rule of extending the known to the unknown, from the local to the whole

because humans are bound to be unable to give definite recognition for an uncertain or unrec-

ognizable thing that appear in recognition. Thus, it is undoubtedly a useable or feasible way

that extends mathematics over the topological structure GL inherited in human recognition by

reduction on thing T and then, apply it to the recognition of unknown things.

I was working on compact 2-dimensional manifolds without boundary, namely the partition

of a closed surface into regular polygons and counted the non-isomorphic ways of partition

during my doctoral and postdoctoral periods. For this work, there is a classical conclusion in

algebraic topology, namely ([33]) there exists a finite triangulation {T1, T2, · · · , Tn} on a closed

surface S, where for any integer 1 ≤ i ≤ n, Ti is homeomorphic to a triangle 4, i.e., an open

disk {(x, y)|x2 + y2 < 1} on Euclideian plane R2, called a 2-cell. That is, a closed surface can

be obtained by adhering triangles. For example, the partitions (a) and (b) in Figure 2 are

triangulation of the projective plane and the torus, respectively.

(a) Projective plane (b) Torus

Figure 2 Triangulation of surface

Notice that the 1-dimensional skeleton in a 2-cell partition of closed surface corresponds

to a topological graph GL. Conversely, a 2-cell embedded of graph GL on surface S is noth-

ing else but a 2-cell partition of surface S ([7]), called also a combinatorial map ([10],[11]),

which is adhering a closed surface with regular polygons. Similarly, the assembling objects of

space by tetrahedrons, hexahedrons, octahedrons, dodecahedrons and icosahedrons, and the

algebraic systems such as those of rings, fields consisted of commutative groups is also such a

combinatorial one. Working on combinatorial topology years motivated me realized suddenly

that the essence of this way is a combinatorial notion which can be applied for generalizing

mathematical science in general. After thinking for a long time, I proposed the notion that of

applying combinatorics for generalizing mathematical sciences, namely the words of “a good idea

is pullback measures on combinatorial objects again, ignored by the classical combinatorics and

reconstructed or make combinatorial generalization for the classical mathematics such as the

algebra, differential geometry, Riemann geometry, · · · and the mechanics, theoretical physics,

· · · ” in Introduction of Chapter 5 of my post-doctoral report “On the Automorphisms of Maps
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& Klein Surface” ([11] 1st edition) for Chinese Academy of Sciences in 2005. And then, I

formally proposed the combinatorial conjecture for mathematical science in my report “Combi-

natorial speculations and combinatorial conjecture for mathematics” at the 2nd Conference on

Combinatorics and Graph Theory of China (August 16-19, 2006, Tianjin), namely

Combinatorial Conjecture for Mathematics([14]) Any mathematical science can be recon-

structed from or made by combinatorialization.

The combinatorial conjecture for mathematics, abbreviated to CC conjecture is not so

much as a mathematical conjecture but a generalization of mathematical science for extending

the local recognition of human on thing by a combinatorial approach, which implies that one

can select a limited number of combinatorial rules and axioms to reconstruct or generalize

mathematics so that classical mathematics is its special or partial. And meanwhile, different

branches of mathematics can be combined into a union one and then, applied to generalize other

mathematics and sciences, which is the mathematical combination. Even so, how to generalize

mathematical science by mathematical combinations? For this objective, an effective way is to

establish the Smarandache multi-space or continuity flow theory ([31]) by vectors in a Banach

space over 1-dimensional topological structures GL for extending mathematics, including the

contradiction avoided in mathematics for the recognition of reality of thing T . This is nothing

else but the recognitive way explained by the sophist to the blind men in fable of the blind

men with an elephant. In this way, the human recognition of reality of thing T should be a

combined one or combinatorial reality. Essentially, the complex network obtained by reduction

in the human recognition of thing T happens to be such a 1-dimensional topological structure

GL but we are short of a mathematical theory that regards it as an element, which is also the

reason in the previous assertion that mathematical reality can not induce TM → T .

The main purpose of this paper is to summarize the contribution of CC conjecture to the

generalization of classical algebraic systems, topology and geometry, analyze its relationship

with Smarandachely denied axiom, multi-spaces and the philosophy of mathematical combina-

tional GL for recognizing the combinatorial reality of thing, show its contribution to scientific

recognition. All terminologies and notations not defined in this paper are standard such as

those of the algebra, topology, complex systems, functional analysis and topological graph are

respectively referred to [4]-[7], and terminologies in Smarandache geometry and multi-space are

referred to [11]-[12],[15] and [36]-[38].

§2. Smarandachely Denied Axiom

Generally, it is believed that the application of mathematics to describe the reality of thing T

depends on the closed algebraic operation system such as groups, rings and fields for describing

the evolving rule of thing T , regular geometrical bodies approaching the appearance of thing T

and the combinatorial relations between elements of thing T in mathematics. In the early of

2005, I completed my post-doctoral report “On the Automorphisms of Maps & Klein Surface”

([11] 1st edition). Also in the year earlier, I received an email from Dr.Preze Mihn, the editor

of American Research Press. He told me that they would fund me to publish a book in USA if
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it contains Smarandache geometry. I personally appreciate the notion that recognizes things by

combinatorics proposed in my post-doctoral report and thought I should let more ones know

this notion for developing science. So, I reorganized my post-doctoral report and emailed it

to this publishing company in USA, told them that a lots of classical mathematical problems

such as Riemannian surfaces, Riemannian geometry and algebraic curves were discussed by

combinatorics in my book. Dr.Preze Mihn emailed me a few of documents after reading it

and told me that Smarandache geometry is more extensive than Riemannian geometry. He

suggested me to increase the content of Smarandache geometry in my book, which motivated

me to turn my research on Smarandachely denied axiom and Smarandache geometry.

2.1.Smarandache Geometry So, what is Smarandachely denied axiom, what is Smarandache

geometry, and what things that can be described by them? Surprisingly, a Smarandache geometry

no longer complies with the principle of logical consistency but includes contradictions.

Definition 2.1([37],[38]) An axiom is said Smarandachely denied if the axiom behaves in at

least two different ways within the same space, i.e., validated and invalided, or only invalided

but in multiple distinct ways. A Smarandache geometry is a geometry which has at least one

Smarandachely denied axiom.

What really interests me on Smarandache geometry is that it is different from the classical

one, namely it includes contradictions, and I always believe that this is the most important

question in human recognition of thing. For example, the Euclidean geometry is a geometry

without contradiction, based on five axioms but the fifth axiom, i.e., “given a line and a point

exterior this line, there is one line parallel to this line” is always felt to be less obvious than

the other axioms. And then, the Lobachevshy-Bolyai-Gauss geometry replaces it by “there are

infinitely many line parallels to a given line passing through an exterior point” and the Rieman-

nian geometry replaces it by “there is no parallel to a given line passing through an exterior

point”. All of them are complied with the principle of logical consistency, but a Smarandache

geometry can be partly Euclidean geometry or Riemannian geometry and partly Lobachevshy-

Bolyai-Gauss geometry ([9]), which is probably the natural state of thing because it is always

evolving non-harmoniously.

Usually, the research object in Riemannian geometry is the n-dimensional Riemannian

manifolds for integers n ≥ 2, which is endowed on n-dimensional topological manifold with

smooth nature, establish further its vector field, tensors and connections with geometrical

behaviors. So, what is an n-dimensional topological manifold? By definition, an n-dimensional

topological manifold is a Hausdoff space M holds with the separation axiom, namely for two

distinct points p1, p2 ∈ M there are neighborhoods U(p1), U(p2) ∈ M of p1, p2 such that

U(p1)
⋂
U(p2) = ∅ and for any point p ∈ M there exists a neighborhood U(p) homeomorphic

to n-dimensional Euclidean space Rn, called also the locally Euclidean space M . After my

post-doctoral report ([11] 1st edition) published in USA, I further studied Iseri’s book [8] on

Smarandache manifolds and found an easier way for constructing 2-dimensional Smarandache

manifolds than that of [8], i.e., by the 2-cell embeddings M of graphs on surfaces, namely

endowed with a real number µ(u), µ(u)ρM (u) (mod2π) on any vertex u ∈ V (M), ρM (u) ≥ 3

of 2-cell embedding M to get a 2-dimensional Smarandache manifold (M,µ), is said to be map
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geometry and points of (M,µ) are classified into elliptic, Euclidean or hyperbolic if ρ(u)µ(u) <

2π, ρ(u)µ(u) = 2π or ρ(u)µ(u) > 2π, where ρM (u) is the valency of vertex u in M and

µ : u ∈ V (M)→ (0, π) is said to be an angle factor, see [12] for details.

Notice that the generalization of this way can be applied to Euclidean space Rn for con-

structing n-dimensional pseudo-Euclidean space and then, to get n-dimensional Smarandache

manifolds ([15]). Generally, let Rn be an n-dimensional Euclidean space with normal basis

ε1 = (1, 0, · · · , 0), ε2 = (0, 1, · · · , 0), · · · , εn = (0, 0, · · · , 1). Then, an n-dimensional pseudo-

Euclidean space is defined to be a 2-tuple (Rn, ω|−→
O

), where ω|−→
O

: Rn → O is such a continuous

function that a straight line of orientation
−→
O passing through point u ∈ Rn will turn its ori-

entation to
−→
O + ω|−→

O
(u). Certainly, an n-dimensional pseudo-Euclidean space (Rn, ω|−→

O
) = Rn

if and only if ω|−→
O

(u) = 0 for any point u ∈ Rn, i.e., a flat space. And then, an n-dimensional

Smarandache manifold is defined to be a local n-dimensional pseudo-Euclidean space (Mn,Aω),

namely for any point p ∈Mn there exists a neighborhood Up homeomorphic to n-dimensional

pseudo-Euclidean space (Rn, ω|−→
O

), where (Up, ϕ
ω
p ) is a chart at point p with a homeomorphism

ϕωp : Up → (Rn, ω|−→
O

) and A = {(Up, ϕωp )|p ∈Mn} is an atlas on manifold Mn.

Generally, the six sense organs of human can not feel the distortion of space but thinks

that the space is flat priorly. This is why the Euclidean spaces Rn of n ≥ 3 are often used to

be the reference of thing, but it is not necessarily the nature of thing in universe. For example,

one of Einstein’s contributions to the gravitational field is to show that the substance field of

universe is not flat but a curved one under gravitation, not even with the light, namely the

nature of substance field of universe is a 3-dimensional Smarandache manifold rather than a

Euclidean space R3, which should be the proper contribution of rational thinking of human.

2.2.Smarandache Multi-Space. Unlike the classical geometry, an axiom of Smarandache

geometry behaves simultaneously validated and invalided, or only invalided but in multiple

ways, which is not easy to find by the geometrical intuition of human but it is easy to construct

Smarandache systems on algebra such as the combination of two non-isomorphic groups or

rings defined on a set and then, the resulting system must be Smarandachely denied, which is

essentially the application of CC conjecture to that of algebraic systems. I emailed this thing

to Dr.Preze Mihn and told him that I was going to generalize algebra systems along this way.

He wrote back that this way had been proposed by Smarandache a few years ago, i.e., the

Smarandache multi-space and encouraged me to follow this thinking on mathematics.

Definition 2.2([12],[36]) For an integer n ≥ 1, let (S1,O1) , (S2,O2) , · · · , (Sn,On) be n distinct

mathematical systems or spaces, namely for any integer 1 ≤ i 6= j ≤ n, Oi ⊂ Si×Si and Si 6= Sj
or Si = Sj but Oi 6= Oj1 ≤ i, j ≤ n. Then, a Smarandache multi-space is defined to be

(S ; O) =

n⋃
i=1

(Si,Oi) , (2.1)

i.e., S =
n⋃
i=1

Si and O =
n⋃
i=1

Oi, where Si is a set and Oi is operations on Si for integers

1 ≤ i ≤ n.

Now, how to understand each characteristic of χ1, χ2, · · · in the human recognition of
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thing T? Usually, these characteristics of χ1, χ2, · · · in human recognition of thing T are not

only numerical values or data but a family of sets S1,S2, · · · with respective characteristics of

χ1, χ2, · · · , where χ(T ) is a kind of nature of thing T , i.e.,

TM =

∞⋃
i=1

(Si;Oi) , (2.2)

where Oi is the evolving rule of elements in Si and TM is nothing else but a Smarandache

multi-space (2.1). For example, the sophist told the blind men that the shape of elephant is

An Elephant = { 2 Big Radish}
⋃
{1 Pipe}

⋃
{2 Leaf Fans}⋃

{1 Wall}
⋃
{4 Pillars}

⋃
{1 Rope}.

in fable of the blind men with an elephant, which is a Smarandache multi-space. Notice that dif-

ferent characteristics χi corresponds to different evolving systems Si if n ≥ 2, namely a Smaran-

dache multi-space (S ; O) holds with Smarandachely denied axiom. Conversely, all elements

in a Smarandachely denied system S can be classified into systems by each of Smarandachely

denied axiom A validated or invalided, or each invalided case to get a mathematical system or

space (Si;A), namely a Smarandachely denied system S is nothing else but a Smarandache

multi-space (S ; O). Whence, a Smarandachely denied system is equivalent to a Smarandache

multi-space. Then, how to determine evolving rules in set Si for an integer i ≥ 1? Usually, we

assume that all elements with characteristic χi comply with the mathematical operations in Oi
and then, describe the evolution of things in Si by mathematics.

Thus, if we do not consider the combinatorial structure GL inherited in recognitive sets

S1,S2, · · · , we can apply CC conjecture to generalize algebraic multi-systems, including group,

ring and field, geometrical multi-spaces, compact n-dimensional manifolds in topology, etc.,

which already appears for a few of simple cases in classical mathematics. For example, the

continuous groups, Lie groups are both Smarandache multi-space of n = 2 in (2.1). By the

Smarandache multi-space, Kandasamy, Smarandache and others extensively generalized alge-

braic systems such as those groups, rings and algebraic properties ([39]-[41]). For example, let

(G1; ◦), (G2; •) be 2 different groups. Then, (G1

⋃
G2; {◦, •}) is said to be a bigroup. Particu-

larly, if (G1

⋃
G2; ◦) is an Abelian group with unit 0, (G1

⋃
G2 \ {0}; •) is a group and for any

elements x, y, z ∈ G1

⋃
G2, there is

x • (y ◦ z) = (x • y) ◦ (x • z), (y ◦ z) • x = (y • x) ◦ (z • x), (2.3)

then the bigroup (G1

⋃
G2; {◦, •}) is a skew field. Furthermore, if (G1

⋃
G2 \ {0}; •) is also

an Abelian group, then the bigroup (G1

⋃
G2; {◦, •}) is nothing else but a field. Generally, for

an integer n ≥ 1, let (S1,O1) , (S2,O2) , · · · , (Sn,On) be n groups, rings or modules. Then,

a Smarandache multi-space defined by (2.1) on (S1,O1) , (S2,O2) , · · · , (Sn,On) is said to be

respectively the n-group, n-ring or n-module, and we can determine their multi-subgroups,

multi-subrings, multi-subideals with a homomorphic theorem on associative systems following,

and the decomposition structure of n-module, see [15] for details.

Theorem 2.3([15]) Let ω be an onto homomorphism from an associative multi-system (H1; Õ1)
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to (H2; Õ2) and let (I(Õ2); Õ2) be a multi-system with unit 1◦− for ∀◦− ∈ Õ2 and inverse x−1

for ∀x ∈ I(Õ2) in ((I(Õ2); ◦−). Then there are representation pairs (R1, P̃1) and (R2, P̃2) with

P̃1 ⊂ Õ, P̃2 ⊂ Õ2 such that

(H1; Õ1)

(K̃erω; Õ1)

∣∣∣∣∣
(R1,P̃1)

∼=
(H2; Õ2)

(I(Õ2); Õ2)

∣∣∣∣∣
(R2,P̃2)

(2.4)

if each element of K̃erω has an inverse in (H1; ◦) for ◦ ∈ Õ1, where I(Õ2) denotes the set

consisting of all units 1◦, ◦ ∈ Õ2 in multi-system (H2; Õ2), K̃erω = {a|ω(a) = 1◦, a ∈ H1, ◦ ∈
Õ1}, a multi-system (H ; Õ) is associative if for ∀a, b, c ∈H , ∀◦1, ◦2 ∈ Õ, (a◦1b)◦2c = a◦1(b◦2
c) and (R1, P̃1), (R2, P̃2) denotes the pairs of H1 =

⋃
a∈R1,◦∈P̃1

a◦K̃erω, H2 =
⋃

a∈R2,◦∈P̃2

a◦K̃erω.

Particularly, let (H1; Õ1) and (H2; Õ2) be n-groups. Then,

Corollary 2.4([12]) If homomorphism ω : (H1; Õ1)→ (H2; Õ2) is onto then H1/Kerω ' Imω.

Now, if (S1, ρ1) , (S2, ρ2) , · · · , (Sn, ρn) are n metric spaces, then a Smarandache multi-

space determined by (2.1) is said to be a n-metric space and we can introduce also the Cauchy

sequence, complete space and the contraction mapping on such a space to generalize Banach

fixed-point theorem.

Theorem 2.5([12]) Let M̃ =
m⋃
i=1

Mi be a completed multi-metric space. For an ε-disk sequence

{B(εn, xn)} with εn > 0 for n = 1, 2, 3, · · · , if B(ε1, x1) ⊃ B(ε2, x2) ⊃ · · · ⊃ B(εn, xn) ⊃ · · ·

and lim
n→+∞

εn = 0, then
+∞⋂
n=1

B(εn, xn) has only one point.

Theorem 2.6([12]) If M̃ =
m⋃
i=1

Mi is a completed multi-metric space and T a contraction on

M̃ then 1 ≤ |Tfix| ≤ m, where |Tfix| is the cardinality of fixed point set of T .

Notice that a Smarandache multi-space defined by (2.1) with S =
n⋃
i=1

Si and O =
n⋃
i=1

Oi
is the union of elements in Si with operations in Oi, 1 ≤ i ≤ n. However, any thing does not

exist in isolation. We can determine the combinatorial structure GL inherited in systems or

spaces (S1,R1) , 1 ≤ i ≤ n by CC conjecture further.

Definition 2.7 For an integer n ≥ 1, let (S ; O) = (
n⋃
i=1

Si;
n⋃
i=1

Oi) be a Smarandache multi-space

with an inherited combinatorial structure or vertex-edge labeled graph GL[S ,O] determined by

V (GL[S ,O]) = {S1,S2, · · · ,Sn},

E(GL[S ,O]) = {(Si,Sj)|Si
⋂
Sj 6= ∅, 1 ≤ i 6= j ≤ n}

and label mapping

L : Si → L(Si) = Si, (Si,Sj)→ L(Si,Sj) = Si
⋂
Sj , 1 ≤ i 6= j ≤ n.

Thus, there is a bijection

(S ; O)
1−1←→ GL[S ,O] (2.5)
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between Smarandache multi-space (S ; O) and the labeled graph GL[S ,O]. For example, let

G1 = 〈α, β〉, G2 = 〈α, γ, θ〉, G3 = 〈β, γ〉, G4 = 〈β, δ, θ〉 be freely Abelian groups generated by

elements α, β, γ, δ and θ with α 6= β 6= γ 6= δ 6= θ. Calculation shows that G1

⋂
G2 = 〈α〉,

G2

⋂
G3 = 〈γ〉, G3

⋂
G4 = 〈δ〉, G1

⋂
G4 = 〈β〉 and G2

⋂
G4 = 〈θ〉. So, the vertex-edge labeled

graph GL[S ,O] determined by Smarandache multi-group (S ; O) is shown in Figure 3.

2.3.Combinatorial Manifold. A generalization of

manifolds in geometry by combinatorics is the com-

binatorial manifolds. By definition, a combinatori-

al manifold M̃ is the combination of finite manifolds

M1,M2, · · · ,Mm over a topological graph GL, namely

the space (Si,Oi) is a manifold Mi for any integer 1 ≤
i ≤ m in Definition 2.7 ([14],[15]). Such a Smarandache

multi-space (S ; O) is denoted by M̃(n1, n2, · · · , nm).

It should be noted that a topological graph GL is inhe- Figure 3. A labeled graph

rited in the combinatorial manifold M̃ , namely

V
(
GL
)

= {M1,M2, · · · ,Mm} ,

E
(
GL
)

=
{

(Mi,Mj)|Mi

⋂
Mj 6= ∅, 1 ≤ i, j ≤ m

}
and

L : Mi → L(Si) = Mi, (Mi,Mj)→ L(Mi,Mj) = Mi

⋂
Mj , 1 ≤ i 6= j ≤ m,

such as those shown in Figure 4, where M3 is a 3-dimensional manifold, B1 and T 2 are respec-

tively a bouquet and a torus.

Figure 4. Examples of combinatorial manifolds

Locally, for any integer sequence 0 < n1 < n2 < · · · < nm, a combinatorial manifold can

be geometrically defined also to be a Hausdoff space M̃ holds with the separation axiom and

there always is a neighborhood Up with a homeomorphism ϕp : Up → R̃(n1(p), n2(p), · · · , ns(p))
for point p ∈ M̃ , where R̃(n1(p), n2(p), · · · , ns(p)) is a combinatorial Euclidean space by s(p)

Euclidean spaces Rn1 ,Rn2 , · · · ,Rns(p) , is said to be a combinatorial Euclidean fan-space, i.e.,

for integers 1 ≤ i 6= j ≤ s(p), Rni
⋂
Rnj =

s(p)⋂
k=1

Rnk and

⋃
p∈M̃

{
n1(p), n2(p), · · · , ns(p)(p)

}
= {n1, n2, · · · , nm} . (2.6)
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Now, is a combinatorial manifold a topological manifold or Smarandache manifold? By

the definition in topology, the intersection Mi

⋂
Mj of two n-dimensional manifolds Mi and

Mj is also an n-dimensional manifold, which is consistent with the visual perception of hu-

man. Whence, if the intersection of manifolds M1,M2, · · · ,Mm in same dimension complies

with the intersection rule of topology in a combinatorial manifold M̃ , M̃ is a manifold also.

Otherwise, if the dimensions dim(M1) = n1,dim(M2) = n2, · · · ,dim(Mn) = nm of manifolds

M1,M2, · · · ,Mm in combinatorial manifold M̃ are not all the same, or not complies with the

intersection rule of topology, i.e., for integers 1 ≤ i 6= j ≤ m, the intersection Mi

⋂
Mj satisfies

dim(Mi

⋂
Mj) < min{dim(Mi),dim(Mj)} (2.7)

then, the combinatorial manifold M̃ is no longer a topological manifold but a Smarandache

manifold. In this way, the combinatorial manifold includes both the case of topological manifold

and Smarandache manifold.

A typical nature of combinatorial manifold is that it simultaneously displays both the

nature of manifold and topological graph, and so it can be characterized by the natures of

manifolds and topological graphs. For example, let the combinatorial manifolds M̃1 and M̃2 be

respectively consisted of manifolds M1
i , 1 ≤ i ≤ m and M2

k , 1 ≤ k ≤ s. If there is such an iso-

morphism ϕ : V (GL[M̃2])→ V (GL[M̃2]) between labeled graphs GL[M̃1] and GL[M̃2] that for

any integers 1 ≤ i, j ≤ m, if ϕ : M1
i →M2

j then there is a homeomorphism hM1
i

: ϕ
(
M1
i

)
→M2

j

such that ϕ(M1
i ) homeomorphic to M2

j , then h ◦ϕ is a homeomorphism between combinatorial

manifold M̃1 and M̃2. We can therefore characterize the connectivity, d-dimensional fundamen-

tal group, homology group of combinatorial manifold M̃ by topological graph GL[M̃ ], and also

the main objects in Riemannian geometry such as those of vector field, tensor field with local

coordinates, Riemannian tenor with connection ([14]). Among them, what can reflect the most

of CC conjecture is to establish the |Γ|-multiple covering space of combinatorial manifold M̃

by voltage graph ([6]), where Γ is the finite group in voltage graph GL[M̃ ].

(1)Regular covering space. Let GL be a topological graph and let (Γ; ◦) be a finite

group. So, what is a voltage graph and what is the lifting of a voltage graph? Firstly, let

e = (v, u) ∈ E(GL) be an edge of GL. Its plus and minus orientations e+, e− on e are defined to

be v → u and u→ v, respectively. And then, a voltage assignment α : E(GL)→ Γ is a mapping

from the plus-edges e+ to Γ for e ∈ E(GL), i.e., α(e) is an element in group (Γ; ◦) holding with

α(e−) = α−1(e). A topological graph GL with voltage α(e) for any edge e ∈ E(GL) is said to

be a voltage graph on group (Γ; ◦), denoted by (GL;α).

Notice that the voltage graph (GL;α) is only a labeled graph with edge labels in a finite

group (Γ, ◦). Certainly, it is also a Smarandache multi-space of a topological graph GL with

a finite group (Γ, ◦). However, the most interesting of voltage graph (GL;α) is its lifting GL
α

defined by (see [7] for details)

V
(
GL

α
)

=
{

(v, a) = va ∈ V
(
GL
)
× Γ

}
,

E
(
GL

α
)

=
{

(va, ua◦b)|e+ = (v, u) ∈ E
(
GL
)
, α
(
e+
)

= b
}
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for regular covering of GL. For example, let GL = KL
3 , Γ = Z2 be respectively a topological

graph and a finite group. Then, (a) is a voltage graph (KL
3 ;α) and (b) is the lifting KLα

3 of

voltage graph (KL
3 ;α) of (a) in Figure 5.

Figure 5. A voltage graph with lifting

There is a natural projection π : GL
α → GL from the lifting GL

α

of voltage graph (GL;α)

on the topological graph GL, namely for any vertices v, u,∈ V (GL) and edge (v, u) ∈ E(GL)

with α(v, u) = h, define π(vg) = v, π(ug) = u and π(vg, ug◦h) = (v, u). So, all vertices in the

lifting GL
α

projected on v ∈ V (GL) consists of vertices vg, g ∈ Γ and edges that projected on

edge (v, u) consists of edges (vg, ug◦h), denoted by π−1(v) and π−1(v, u), respectively.

Notice that the lifting GL
α

of voltage graph (GL;α) is a regular covering of topological

graph GL ([33]), i.e., a |Γ|-multiple covering on topological space GL of dimension 1, and this

method can be generalized for constructing regular covering space of combinatorial manifold M̃

by the inherited topological structureGL[M̃ ] of M̃ . That is, to assign voltages α : e ∈ E(GL[M̃ ])

on edges of GL[M̃ ] to get a voltage graph (GL;α) with its lifting combinatorial manifold M̃∗,

where for any vertex vg ∈ V (GL[M̃∗]), the labeling mapping Lα(vg) = M∗ is a covering space

of M at vertex vM ∈ V (GL[M̃ ]). In this case, for any manifold M ∈ V (GL[M̃ ]), let hM be

a covering mapping hM : M∗ → M , ςM : x ∈ M → M and define π∗ = hM ◦ (ς−1
M ◦ π ◦ ςM ).

Then, the mapping π∗ : M̃∗ → M̃ is a |Γ|-multiple covering mapping, which shows that the

combinatorial manifold M̃∗ is a regular covering space of combinatorial manifold M̃ .

Figure 6. Principal fiber bundle on manifold

(2)Principal fiber bundle. Now, we turn our attention to differentiable manifolds.

Firstly, a Lie group (G; ◦) is a Smarandache multi-space that all elements in G both have

algebraic and geometrical nature, namely for any x, y ∈ G, x ◦ y and x−1 both are C∞-

mapping, where G is a differentiable manifold in geometry and each point is an element in group
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(G; ◦) also. So, what is a principal fiber bundle on a differentiable manifold M? A principal

fiber bundle is essentially a covering space on a differentiable manifold M . By definition, the

principal fiber bundle on a differentiable manifold M is a 3-tuple {P,M ; G } with covering space

P , manifold M , a projection π and a mapping Tu such as those shown in Figure 6, where

π : P →M is a projection, G is a Lie group acting on P such that (g, h)→ g ◦ h is C∞ for any

g, h ∈ G and holding with 3 conditions following:

(C1) The right action of Lie group G acting on P is free, namely for any g ∈ G there is

a diffeomorphism Rg : P → P such that Rg(p) = pg for any p ∈ P , p(g1g2) = (pg1)g2 for any

g1, g2 ∈ G , and pe = p for any e ∈ G if and only if e is the identity of Lie group G ;

(C2) The mapping π : P →M is onto, and π−1(π(p)) = {pg|g ∈ G };
(C3) For any point x ∈ M there is an opened set U such that x ∈ U and there is a

diffeomorphism TU : π−1(U) → U × G , i.e., TU (p) = (π(p), sU (p)), where sU : π−1(U) → G

holds with sU (pg) = sU (p)g for any g ∈ G , p ∈ π−1(U).

Now, if a combinatorial manifold M̃ consisted of differentiable manifolds M1,M2, · · · ,Mm

is differentiable and 3-tuples {P1,M1; G1}, {P2,M2; G2}, · · · , {Pm,Mm; Gm} are respectively

the principal fiber bundles on manifolds M1,M2, · · · ,Mm with projections πi : Pi → Mi for

integers 1 ≤ i ≤ m, then

P̃ =

m⋃
i=1

Pi,
(
G̃ ; O

)
=

m⋃
i=1

(Gi; ◦i) (2.8)

are respectively the covering spaces and Lie multi-groups on combinatorial manifold M̃ , namely

G̃ is a Lie multi-group in algebra and a differentially combinatorial manifold in geometry. Then,

{P̃ , M̃ ; G̃ } is a principal fiber bundle on M̃ .

Furthermore, let (Γ; ◦) be a finite group, α : E(GL[M̃ ]) → Γ is a voltage assignment on

topological graph GL[M̃ ]. Then, by the lifting of voltage graph (GL[M̃ ];α), we can obtain

the principal fiber bundles {P̃α, M̃ ; G̃ } on differentiable manifold M̃ in general, namely let

Lα(vg) = P for any vertex vg ∈ V (GL
α

[M̃ ]) for a projection π : GL[P̃ ] → GL[M̃ ], i.e., for

any label M ∈ V (GL[M̃ ]) if π(PM ) = M then π−1(M) = {P 1
M , P

2
M , · · · , PmM}, where P iM is

differentially homeomorphic to PM for integers 1 ≤ i ≤ m such as those shown in Figure 7.

Figure 7. A principal fiber bundle on combinatorial manifold

Now, let {P̃α, M̃ ; G̃ } be a principal fiber bundles constructed in this way. Then, we can
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introduce the connection on differentially combinatorial manifold M̃ and get the general form

of curvature for characterizing differentially combinatorial manifolds. For example, a local and

global connection on a principal fiber bundle {P̃α, M̃ ; G̃ } are respectively a local linear mapping
iΓu : Tx(M̃) → Tu(P̃ ), u ∈ Π−1

i (x) = iFx, x ∈ Mi for an integer 1 ≤ i ≤ l and a global linear

mapping Γu : Tx(M̃)→ Tu(P̃ ) for u ∈ Π−1(x) = Fx, x ∈ M̃ holding with (i) (dΠi)
iΓu =identity

and (dΠ)Γu = identity mapping on Tx(M̃); (ii) iΓiRg◦iu = diRg ◦i iΓu and ΓRg◦u = dRg ◦ Γu

for ∀g ∈ LG, ∀◦ ∈ O(LG), where iRg, Rg are the right translation respectively on PMi
and

P̃ ; (iii) the mappings u → iΓu and u → Γu both are C∞, and a curvature form of a local or

global connection is a Y(H◦i , ◦i) or Y(LG)-valued 2-form iΩ = (d iω)h or Ω = (dω)h, where

(diω)h(X,Y ) = diω(hX, hY ) and (dω)h(X,Y ) = dω(hX, hY ) for X,Y ∈ X (PMi) or X,Y ∈
X (P̃ ). Then, the generalizations of Cartan’s theorem and Bianchi identity on differentially

combinatorial manifolds are obtained in the following.

Theorem 2.8([15]) Let iω, 1 ≤ i ≤ l and ω be respectively a local or global connection forms

on a principal fiber bundle {P̃α, M̃ ; G̃ }. Then (diω)(X,Y ) = −[iω(X),i ω(Y )] +i Ω(X,Y ) and

dω(X,Y ) = −[ω(X), ω(Y )]+Ω(X,Y ) for vector fields X,Y ∈X (PMi
) and X (P̃ ), respectively.

Theorem 2.9([15]) Let iω, 1 ≤ i ≤ l and ω be respectively a local or global connection forms

on a principal fiber bundle {P̃α, M̃ ; G̃ }. Then, (diΩ)h = 0 and (dΩ)h = 0.

§3. Non-Harmonious Groups

There is an implicit assumption in human recognition by the reduction when subdividing a

thing T into microscopic particles, cells or genes, namely the evolving behavior of microscopic

particles, cells or genes are all match in step and a solvable equation can be applied to describe

its behavior, predict its evolution further. However, this assumption is not true in general unless

the evolution of all microscopic particles, cells or genes that constitute thing T is synchronous.

Otherwise, it is wrong even in the macroscopic world. For example, let A = {H1, H2, H3, H4}
and B = {H ′1, H ′2, H ′3, H ′4} be 2 families consisting of 4 horses that run respectively along 4

lines (LESN ) or (LESS) on Euclidean plane R2 in Figure 8.

-

6

�
��

-

6

r
O

r
O

x+ y = 2

x+ y = −2

x− y = −2

x− y = 2

x = 2

y = 2

x = y

x+ y = 4

(LESN4 ) (LESS4 )

Figure 8. Horses running on 4 straight lines
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So, we are easily know the systems of linear equations

(LESN4 )


x+ y = 2

x+ y = −2

x− y = −2

x− y = 2

(LESS4 )


x = y

x+ y = 4

x = 2

y = 2

that each horse in families A or B runs along 4 lines (LESN ) or (LESS) such as those shown

in Figure 8.

Now, how to characterize the running behavior of horses in families A or B? Generally,

we use to the solution of equation systems (LESN4 ) or (LESS4 ) for characterizing the horse

behaviors in families A or B. However, the equation system (LESN4 ) is non-solvable and the

solution of equation system (LESS4 ) is x = 2, y = 2, which is only a point (2, 2) on Euclidean

plan R2, and both of them can not be used to characterize the horse behavior in families A or

B, even their running orbits. Here, a central question is the horses in families A or B are all

conscious, not necessarily in synchronization or consistence in their respective running.

Similarly, there are also the biological populations, communities and the self-organizing or

self-regulating system of cells, genes etc., whose evolution can not be characterized by a solvable

equation. Whence, it is impossible to describe the evolution of groups in nature such as the self-

organizing or self-regulating systems without an extending of mathematical elements, including

the unified field by a solvable equation that of Einstein, which is the essence for discussing the

non-harmonious groups.

The original thinking on non-harmonious groups came from my characterizing Smaran-

dachely denied axiom on equations for reality of thing. In the first half of year 2012, I finished

paper [16] on systems of linear equations. It is so happen that I went on a business trip to

Guangzhou during the time that Prof.Smarandache’s visiting Guangdong University of Tech-

nology in 2012. I visited him and introduced my thinking on Smarandachely denied axiom with

the combinatorial characterizing of non-solvable systems of linear equations [16] that I just fin-

ished to him, which shows the necessity for the suitable form of Smarandachely denied axiom

by non-solvable equations because a physical law is always described by differential equations

on the evolution of thing. I got his greatly approval for this thinking.

Definition 3.1([29],[31]) A non-harmonious group is such a group T consisting of elements

Pi, 1 ≤ i ≤ p, p ≥ 2 with internal relations that Pi is constrained on an equation Fi(x,y) = 0

on time t in space, namely its system state equation in n-dimensional Euclidean space Rn is

T 4
=


F1(x,y) = 0

F2(x,y) = 0

· · · · · · · · · · · ·

Fm(x,y) = 0

(3.1)

where Fi(x
0,y0) = 0 and Fi holds at a neighborhood U of point (x0,y0) with the condition of
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implicit function theorem, i.e., each equation Fi(x,y) = 0 is solvable for integers 1 ≤ i ≤ m.

So, how to characterize the evolution of a non-harmonious group T ? Notice that each

equation Fi(x,y) = 0 holds with the condition of implicit function theorem for any integer

1 ≤ i ≤ m. It must exist a solution manifold SFi ⊂ Rn with Fi : SFi → 0 for any integer

1 ≤ i ≤ m. Then, the condition for system (3.1) of equations having no solution or having a

solution geometrically is
p⋂
i=1

SFi
= ∅ or

p⋂
i=1

SFi
6= ∅. (3.2)

In this case, how to explain that system (3.1) has or has no solution? Notice that the

solution of system (3.1) represents only the overlap state of elements P1, P2, · · · , Pm at time t,

not the state of elements P1, P2, · · · , Pm because the state of element Pi is the solution manifold

SFi
, 1 ≤ i ≤ m. Correspondingly, the non-solvable case of system (3.1) indicates only that there

are no overlap state in system elements, not that the they do not exist because the states of

elements P1, P2, · · · , Pp are described by the solution manifold SFi
for integers 1 ≤ i ≤ m.

And so, the system state of a non-harmonious group T should be described by Smarandache

multi-space
m⋃
i=1

SFi
, not

m⋂
i=1

SFi
as the usual, namely the system solution of equation (3.1) of

a non-harmonious group T should be characterized by a combinatorial manifold GL[S̃].

Theorem 3.2([29][31]) For any integer m ≥ 1, the combinatorial solution or G-solution to

system (3.1) of a non-harmonious group T is a combinatorial manifold S̃ inherited a topological

graph GL[S̃] with

V
(
GL[S̃]

)
= {SFi

, 1 ≤ i ≤ m} ;

E
(
GL[S̃]

)
=

{
(SFi

, SFj
)|SFi

⋂
SFj

6= ∅, 1 ≤ i, j ≤ m
}

with a labelling

L : SFi → SFi , (SFi , SFj )→ SFi

⋂
SFj , 1 ≤ i, j ≤ m.

For example, let the orbit of a horse in families A or B running on a straight line ax+by = c

be a point set La,b,c = {(x, y)|ax + by = c, ab 6= 0}. Then, the system states of horse families

A and B can be characterized respectively by the combinatorial solutions CL4 [LESN4 ] and

KL
4 [LESS4 ] of equation systems (LESN4 ) and (LESS4 ), such as those shown in Figure 9,

r q

r q

r q

r q

L1,−1,−2 L1,1,2

L1,−1,2L1,1,−2

L1,0,2 L1,−1,0

L0,1,2L1,1,4

u1

u2

u3

u4 v

v

v

v

v v

CL4 [LESN4 ] KL
4 [LESS4 ]

Figure 9. Combinatorial solutions of systems (LESN4 ) and (LESS4 )
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where

u1 = L1,−1,−1

⋂
L1,1,2, u2 = L1,1,2

⋂
L1,−1,2,

u3 = L1,−1,2

⋂
L1,1,−2, u4 = L1,1,−2

⋂
L1,−1,−2.

Generally, we can apply Theorem 3.2, i.e., a combinatorial approach to discuss the non-

solvable systems of algebraic equation, ordinary differential equations or partial differential

equation for describing the system states of non-harmonious groups with the stability of systems,

including biological systems that they correspond, respectively. Furthermore, the non-solvable

systems of homogeneous algebraic equations in 3-variables can be used to determine the genus

g(S̃) of combinatorial surfaces S̃ and normalization of complex non-singular curves, etc., see

[17]-[18],[21],[23],[25] for details. Let us take the systems (LDES1
m) and (LDEnm) of non-solvable

ordinary differential equations

(LDES1
m)


Ẋ = A1X

Ẋ = A2X

· · · · · · · · ·

Ẋ = AmX

, (LDEnm)


x(n) + a

[0]
11x

(n−1) + · · ·+ a
[0]
1nx = 0

x(n) + a
[0]
21x

(n−1) + · · ·+ a
[0]
2nx = 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

x(n) + a
[0]
m1x

(n−1) + · · ·+ a
[0]
mnx = 0

as examples, which are a system of 1-order of linear ordinary differential equations and an

n-order of linear differential equations with constant coefficients respectively, where a
[k]
ij is a

real number for integers 0 ≤ k ≤ m, 1 ≤ i ≤ n, 1 ≤ j ≤ s, Ak =
(
akij
)
n×s is a matrix

and X = (x1, x2, · · · , xn)T . Notice that the solution manifolds of (LDES1
m) and (LDEnm)

are both linear spaces spanned by their basic solutions. We can therefore replace labels SFi
,

SFj
, 1 ≤ i, j ≤ m in Theorem 3.2 by basic solutions and then, obtain their uniquely basic graphs

GL[LDES1
m] and GL[LDEnm] of systems (LDES1

m) and (LDEnm), respectively. For example,

let m = 6 with a system of linear ordinary differential equations

(LDES1
6)



ẍ− 3ẋ+ 2x = 0 (1)

ẍ− 5ẋ+ 6x = 0 (2)

ẍ− 7ẋ+ 12x = 0 (3)

ẍ− 9ẋ+ 20x = 0 (4)

ẍ− 11ẋ+ 30x = 0 (5)

ẍ− 7ẋ+ 6x = 0 (6)

Then, the basic solutions of differential equations
Figure 10. A basic graph

(1)− (6) are respectively

{et, e2t}, {e2t, e3t}, {e3t, e4t}, {e4t, e5t}, {e5t, e6t}, {e6t, et},

with a combinatorial solution or basic graph GL[LDES1
6 ] shown in Figure 10.

Notice that there always exists a combinatorial solution GL[S̃] of a non-harmonious group
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(3.1) by Theorem 3.2, which enables us to introduce the system stability of non-harmonious

group. For example, a combinatorial solution G[LDES1
m] or GL[LDEnm] is said to be prod-stable

or asymptotically prod-stable if∥∥∥∥∥∥
∏

v∈V (H)

Yv(t)−
∏

v∈V (H)

Xv(t)

∥∥∥∥∥∥ < ε or lim
t→0

∥∥∥∥∥∥
∏

v∈V (H)

Yv(t)−
∏

v∈V (H)

Xv(t)

∥∥∥∥∥∥ = 0. (3.3)

holds with all solutions Yv(t), v ∈ V (GL) of G[LDES1
m] or GL[LDEnm] with ‖Yv(0)−Xv(0)‖ <

δv exists for all t ≥ 0. In this case, we have

Theorem 3.3([18]) A combinatorial zero-solution, i.e., all labels on basic graphs GL[LDES1
m]

and GL[LDEnm] are 0 of systems (LDES1
m) and (LDESnm) of linear homogeneous differential

equations is asymptotically prod-stable if and only if∑
v∈V (GL[LDES1

m])

Reαv < 0 or
∑

v∈V (GL[LDEnm])

Reλv < 0 (3.4)

for any basic solutions βv(t)e
αvt ∈ Bv of (LDES1

m) or tlveλvt ∈ Cv of (LDEnm).

In classical meaning, all systems correspondent to non-harmonious groups (3.1) are non-

mathematical systems in general, namely they do not comply with the principle of logical consis-

tency. So, how to transform a non-mathematical system into a mathematical system and charac-

terize the evolution of thing? The answer is to transform a system of non-mathematics to math-

ematics by combinatorial approach discussed profitably in [19], including those of non-groups,

non-rings, non-fields, non-solvable equations in algebra, non-solvable differential equations in

calculus, non-spaces, non-manifolds, non-differentiable manifolds in geometry and others, which

are all decomposing into mathematical systems over topological graphs GL. This is exactly the

application of my CC conjecture, i.e., mathematical combinatorics on non-mathematical groups.

§4. Continuity Flows

In the human recognition, the essence of subdividing a substance T into microscopic particles

such as those of elementary particles, cells or genes by reduction is holding on the reality of thing

T by the combinatorial solution GL[S̃] on the behavior of microscopic particles. Notice that an

edge (SFi
, SFi

) ∈ V (GL[S̃]) if and only if SFi

⋂
SFi
6= ∅ by definition, namely the action SFi

and SFi
in system S̃ is symmetric. However, the interaction between particles or in general,

the energy, information transmission are mostly not symmetric but a unidirectional one. For

example, the transformation of energy with conservation. According to the uncertainty principle

of microscopic particle, the random evolution of particle is introduced and then, the microscopic

particle is described by complex networks ([5]). For example, Barabaśi and Albert described the

growth of nodes of complex network by randomness in [2],[3]. But, is the mechanism of natural

evolution really random? If so, how can it be possible to describe the evolution of thing by random

models established by humans? Among them, a necessary way should be to understand the non-

harmonious groups S̃ by the recognizability of thing rather than infinitely subdividing a thing
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T into microscopic particles or recognizing a thing T by randomness because the randomness

is a by-product of the limitation of human recognition for lacking of information, may not the

truth colour of thing T .

I reflected deeply the previous questions on the combinatorial solutions GL[S̃] of non-

harmonious groups in 2014. After finishing the paper [19], I began to think about how a

combinational notion should correctly describe the evolution of thing T by reduction in human

recognition and then, vectors v in a Banach space B were used for labelling the edge of topo-

logical graph or network GL following with the conservation law at each vertex of GL ([20]), i.e.,

the
−→
G-flow, a generalization of network with operations. Subsequently, I proposed the action

flow
−→
GL in my plenary report at the “National Conference on Emerging Trends in Mathematics

and Mathematical Sciences” (December 17-19, 2015, Kolkata) invited by the Calcutta Mathe-

matical Society as an honorary guest, which is an extension from the conservation of vertices

in
−→
G -flow to the conservation of action flows by edge operators ([22]) and then, the continuity

flow
−→
GL([24]) was put forward in my J.C.& K.L.Saha memorial lecture at the “International

Conference on Geometry and Mathematical Models in Complex Phenomena” (December 5-7,

2017, Kolkata), which can be viewed also as a mathematical element with algebraic, differential

and integral operations. In this way, the Banach and Hilbert flow spaces are established for

providing theories of human recognition, especially for the reduction step by step.

So, what is a continuity flow? A continuity flow (
−→
G ;L,A ) is essentially a Banach space

over a topological graph GL, a generalization of mathematics by applying my CC conjecture.

Definition 4.1([24]) A continuity flow
(−→
G ;L,A

)
is an oriented topological graph

−→
GL in space

S associated with a mapping L : v → L(v), (v, u)→ L(v, u), 2 end-operators A+
vu : L(v, u)→

LA
+
vu(v, u) and A+

uv : L(u, v) → LA
+
uv (u, v) on a Banach space B over a field F such as those

shown in Figure 11 with L(v, u) = −L(u, v), A+
vu(−L(v, u)) = −LA+

vu(v, u) for ∀(v, u) ∈ E
(
GL
)

and meanwhile, holding with the continuity equation∑
u∈N−G (v)

LA
+
uv (u, v)−

∑
u∈N+

G (v)

LA
+
uv (u, v) = L(v) (4.1)

at any vertex v ∈ V (GL) of topological graph GL, where N−G (v), N+
G (v) are respectively the in-

neighborhood and out-neighborhood of vertex v ∈ V (GL), namely all vertices in N−G (v) ⊂ NG(v)

or N+
G (v) ⊂ NG(v) flow into or out of the vertex v and N−G (v) ∪N+

G (v) = NG(v).

-��
��

��
��

L(v, u)A+
uv A+

vu

L(v) L(u)

v u

Figure 11. Flow with end-operators on an edge

Now, why is the continuity flow important to human? The answer is that the continuity

flow provides us with a mathematical support for reduction on thing T , also answer the 3

questions in Section 1 because the result of human recognition by reduction to a thing T is such

a continuity flow GL. However, all existing sciences, including the mathematics can be only used

for describing the evolution of a particle or particles of a system evolving all in synchronization,
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namely there are few evolutionary theory that regards a thing T as a self-organized or self-

adjusted system by mathematics.

4.1.Continuity Flow Space. All operations on continuity flows are the composition of the

union of topological graphs with composition of mappings. Generally, let GL, G′
L′

be continuity

flows on Banach space B over field F , λ ∈ F . Then, the addition, multiplication and scalar

multiplication on continuity flows are defined by

GL +G′
L′

= (G \G′)L
⋃(

G
⋂
G′
)L+L′⋃

(G′ \G)
L′
, (4.2)

GL · G′L
′

= (G \G′)L
⋃(

G
⋂
G′
)L·L′⋃

(G′ \G)
L′
, (4.3)

λ · GL = Gλ·L (4.4)

where L(v), L′(v), L(v, u), L′(v, u) ∈ B for any vertex v ∈ V (G) and edge (v, u) ∈ E(G) with

L+ L′ : v → L(v) + L′(v), (v, u)→ L(v, u) + L′(v, u),

L · L′ : v → L(v) · L′(v), (v, u)→ L(v, u) · L′(v, u),

λ · L : v → λ · L(v), (v, u)→ λ · L(v, u),

and L(v) · L′(v), L(v, u) · L′(v, u) denote the operation of Hadamard product on vectors in

Banach space B, namely

(x1, x2, · · · , xn) · (y1, y2, · · · , yn) = (x1y1, x2y2, · · · , xnyn) . (4.5)

Generally, let G = {G1, G2, · · · , Gm} be a closed family under the union operation of topo-

logical graphs and let B be a Banach space. All continuity flows with vectors in B over topolog-

ical graph GL ∈ G are denoted by GB =
{
GL|G ∈ G , L : v → L(v) ∈ B, (v, u)→ L(v, u) ∈ B,

v ∈ V (G), (v, u) ∈ E(G)}. Then, (GB; +, ·) is a bigroup under operations of addition “+” and

Hadamard product “·”. Furthermore, if (B; +, ·) is a field and all end-operators are 1B on any

continuity flow GL ∈ GB, then the bigroup (GB; +, ·) is also a field. In addition, (GB; F ) is

always a linear space under operations of addition and scalar multiplication.

In this case, if each end-operator on a continuity flow GL ∈ GB is linearly continuous on

B, then the norm of continuity flow GL is defined by∥∥GL∥∥ =
∑

(v,u)∈E(G)

∥∥∥LA+
vu(v, u)

∥∥∥ , (4.6)

where ‖ · ‖ denotes the norm on Banach space B. And then, the continuity flow space (GB; F )

is a normed space. Furthermore, for any GL, G′
L′ ∈ GB define the metric of continuity flows

GL, G′
L′

to be

ρ
(
GL, G′

L′
)

=
∥∥∥GL −G′L′∥∥∥ . (4.7)

Then, each Cauchy sequence in continuity flow space (GB; F ) is complete, and if the linear

space (B; F ) is a Banach or Hilbert space, then (GB; F ) is a Banach or Hilbert space ([24]).
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4.2.G-Isomorphic Operator. By functional analysis, an operator on Banach space B maps

one vector to another one. As a Banach space, an operator on continuity flow space (GB; F ) can

be also defined to be a mapping that maps one continuity flow GL to another G′
L′

. However,

such a definition does not reflect the topological nature in continuous flow GL. So, it is of little

significance. Whence, it is necessary to define a typical operator that leaves the topological

structure of continuity flow GL unchanged, which is nothing else but the G-isomorphic operator.

Definition 4.2([29],[31]) Let GL1
1 , GL2

2 ∈ GB be continuity flows. A mapping f : GL1
1 → GL2

2 is

said to be a G-isomorphic operator between continuity flows GL1
1 , GL2

2 and the continuity flow

GL1
1 is said to be G-isomorphic to GL2

2 if

(1) G1, G2 are isomorphic in graphs, i.e., there is an isomorphism ϕ : G1 → G2 of graph;

(2) L2 = f ◦ ϕ ◦ L1 for ∀(v, u) ∈ E (G1).

Notice that Definition 4.2 can be applicable only if GL1
1 , G2L2 are isomorphic in labeled

graphs, which should be extended to the general case. Usually, it is conventionalized that

ĜL̂ = GL for a topological graph Ĝ ⊃ G if L̂(x) = L(x) for x ∈ V (G) ∪ E(G) and L̂(x) = 0

for x 6∈ V (G) ∪ E(G), which reflects the essence of continuity flow. And by this convention,

a Ĝ-isomorphism between continuity flows GL1
1 , GL2

2 can be generally defined even if GL1
1 , GL2

2

are non-isomorphic but with a supergraph Ĝ as Ĝ ⊇ G1

⋃
G2.

Definition 4.3([29],[31]) A mapping f : GL1
1 → GL2

2 is said to be a G-isomorphic operator

between continuity flows GL1
1 and GL2

2 if

(1) there is an isomorphism ϕ : Ĝ→ Ĝ with Ĝ ⊃ G1, G2 in graph;

(2) for ∀(v, u) ∈ E (G1) there is L2 = f ◦ ϕ ◦ L1 but for ∀(v, u) ∈ E (G2 \G1), f : 0 →
L2(v, u) and for ∀(v, u) ∈ E(G1\G2) and ∀(v, u) ∈ E(Ĝ\(G1

⋃
G2)), f : L(v, u)→ 0.

Particularly, let ϕ = idG, i.e., the identity mapping on topological graph G. Then, a

G-isomorphic operator f is determined by the equation

L2(v, u) = f ◦ L1(v, u), ∀(v, u) ∈ E(G) (4.8)

and the linearity of G-isomorphic operator with its nature such as the continuous, bounded,

image and others can be introduced similar to the usual Banach space, and generalize a few of

well-known results such as those of a G-isomorphic linear operator f : GB → GB is continuous

if and only if it is bounded and if f : GB → GB is closed then f is continuous, etc. Furthermore,

if the Banach space B is a function field on variable x then the G-isomorphic equation (4.8) is

equivalent to

f
(
GL[x]

)
= Gf(L[x]). (4.9)

For example, let B be a real number field. We can construct the power GaL[x] and

exponent aG
L[x] of a continuity flow GL[x], define the limitation of continuity flow sequence,

differential and integral operations, i.e., the theory of calculus on continuity flows GL[x] and

obtain the fundamental theorem ([29])

b∫
a

f
d

dt

(−→
GL[t]

)
dt = f

(−→
GL[t]

)∣∣∣
t=b
− f

(−→
GL[t]

)∣∣∣
t=a

(4.10)
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similar to that of calculus.

In this case, assume the mapping L : (v, u) ∈ E (G) → L [L(t,x(t), ẋ(t))(v, u)] is differ-

entiable and commutative with all end-operators A+
vu, then the action J

[
GL [t]

]
and variation

δJ
[
GL [t]

]
on a continuity flow GL [t] are respectively defined by

J
[
GL [t]

]
=

∣∣∣∣∣∣
t2∫
t1

GL [L(t,x(t),ẋ(t))]dt

∣∣∣∣∣∣ , δJ
[
GL [t]

]
=

∣∣∣∣∣∣δ
t2∫
t1

GL [L(t,q(t),q̇(t))]dt

∣∣∣∣∣∣ , (4.10)

where the variation δ : GB → GB is a G-isomorphic operator. Then, by the least action principle

δJ
[
GL [t]

]
(v, u) = 0 for ∀(v, u) ∈ E

(
GL [t]

)
and the norm property in Banach flow space GB,

we can induce Euler-Lagrange equations on continuity flow GL [t] to be

∂GL

∂qi
− d

dt

∂GL

∂q̇i
= O, 1 ≤ i ≤ n. (4.11)

and the 3 interesting exponential identities ([29]) following

ex = 1 +
x

1!
+
x2]

2!
+ · · ·+ xn

n!
+ · · · , (4.12)

etA = I +
tA

1!
+
t2A2

2!
+ · · ·+ tnAn

n!
+ · · · , (4.13)

eG
L[x] = I +

GL[x]

1!
+
G2L[x]

2!
+ · · ·+ GnL[x]

n!
+ · · · , (4.14)

where for an integer n ≥ 1, A is an n × n matrix, GL[x] is a continuity flow that continuous

in variable x, namely the formula (4.12) is the exponential identity in calculus, (4.13) is the

exponential identity on matrix A which is a generalization of the exponential identity (4.12)

and (4.14) is the exponential identity on continuity flow GL[x], which is a generalization of the

exponential identity (4.13) on matrix A.

Notice that a linear functional f : B → R or C is a linear operator on a Banach space

by definition. So, how to extend a linear functional on a Banach space to the Banach flow

space GB? If there really exists such a G-isomorphic linear operator f : GB → R or C, f is

referred to a functional on GB. And so, a fundamental question is to determine whether there

exists a continuously linear functional on the Banach flow space GB? The answer is certainly

yes because we can generalize the functional extension theorem, i.e., Hahn-Banach theorem on

Banach space to the Banach flow space GB.

Theorem 4.4([26]) Let HB be a subspace of Banach flow space GB, F : HB → C is a

continuously linear G-isomorphic functional on HB. Then, there is a continuously linear G-

isomorphic functional F̃ : GB → C holding with (i) if GL ∈ HB then F̃
(
GL
)

= F
(
GL
)

and

(ii)
∥∥F̃∥∥ = ‖F‖.
Particularly, if O 6= GL0

0 ∈ GB, there is a continuously linear G-isomorphic functional F

such that ‖F‖ = 1 and ‖F (GL0
0 )‖ = ‖GL0

0 ‖, where GL0
0 is the continuity flow O, i.e., L : v → 0

and (v, u)→ 0 for ∀ ∈ V (GL0
0 ) and ∀(v, u) ∈ E(GL0

0 ).

Furthermore, by Theorem 4.4 of the functional extension theorem on GB we have
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Corollary 4.5 For a continuity flow GL ∈ GB if F
(
GL
)

= 0 holds with all linear functionals

F , there must be
−→
GL = O.

Figure 12. Hadron’s quark model with continuity flow

Notice that there are 3 assumptions in quantum mechanics with a Hilbert space as the

model of quantum states ([35]), i.e., (i) A pure state of quantum can be characterized in

terms of a normalized vector |ψ〉 in Hilbert space H with 〈ψ|ψ〉 = 1; (ii) For a physical

quantity a of quantum, an observation on a in state |ψ〉 is the eigenvalue λj of an Hermitian

operator A acting on H that exists, i.e., A |λj〉 = λj |λj〉; (iii) The evolution of quantum state is

governed by Schrödinger equation i~d |ψ〉/dt = H |ψ〉, where ~ is the Planck’s constant and H

denotes a Hermitian operator corresponding to the energy of system. However, if we describe a

microscopic particle such as a hadron, i.e., a proton, neutron or a meson by quarks, its model

is no longer a particle but a continuity flow GL ([31],[35]) shown in Figure 12.

In this case, are there any reason to conclude there is a Hermitian operator A holding with

the 3 assumptions in quantum mechanics? Certainly, there are no such an affirmatively answer

unless we priorly assume that all quarks u, d, d are evolving in synchronization. However, this

assumption is incorrect on a self-organizing or self-regulating system such as a biological system

consisting of cells. But its correctness can be verified by Theorem 4.4, i.e., let f : GB → C
be a continuously linear G-isomorphism on continuity flows GL. Then, there exists a uniquely

continuity flow ĜL̂ ∈ GB holding with f
(
GL
)

=
〈
GL, ĜL̂

〉
for a continuity flow GL ∈ GB by

Theorem 4.4, i.e., no matter how we subdivide a particle into a continuity flow GL, there always

exists a Hermitian operator A which holds with the 3 assumptions in quantum mechanics.

4.4.Example. A typical example of continuity flow GL is the twelve meridians on human body

([31]), which consist of the lung meridian of Hand-Taiyin (LU) belongs to the lung and connects

with the large intestine, the heart meridian of Hand-Shaoyin (HT) belongs to the heart and

connects with the small intestine, the pericardium meridian of Hand-Jueyin (PC) is belongs to

the pericardium and connects with the Sanjiao, the spleen meridian of Foot-Taiyin (SP) belongs

to the spleen and connects with the stomach, the kidney meridian of Foot-Shaoyin (KI) belongs

to the kidney and connects with the bladder, the liver meridian of Foot-Jueyin (LR) belongs

to the liver and connects with gallbladder; the large intestine meridian of Hand-Yangming
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(LI) belongs to the large intestine and connects with the lung, the small intestine meridian

of Hand-Taiyang (SI) belongs to the small intestine and connects with the heart, the Sanjiao

meridian of Hand-Shaoyang (SJ) belongs to the Sanjiao and connects with the pericardium,

the stomach meridian of Foot-Yangming (ST) belongs to the stomach and connects with the

spleen, the bladder meridian of Foot-Taiyang (BL) belongs to the bladder and connects with

the kidney, and the gallbladder meridian of Foot-Shaoyang (GB) belongs to the gallbladder and

connects with the liver of human body. All of the meridians on the way are shown in Figure 13

with 310 acupoints in the national standard of China, i.e., Body Model for Both Meridian and

Extraordinary Points of China (GB 12346-90) for details.

Figure 13. Twelve meridians on human body

Now, how to construct a continuity flow GL on 12 meridians of human body? Certainly,

we are easily to construct a continuity flow GL of human body, namely let all vertices v of

continuity flow GL be all acupoints on the twelve meridians of human body and let all edges

(v, u) be paths between two successive acupoints v, u on one of the twelve meridians with a

labelling L : V → internal organs of human body and L : (v, u) → vital energy flow L(v, u)

on (v, u) of human meridians. Notice that the flow of vital energy between two successive

acupoints varies at different times of the day and depends on the state of human body. And so,

the traditional Chinese medicine classifies L(v, u) into two parts, i.e., Yin Y− and Yang Y+,

which can be regarded as a pair of interacting vectors and believes that the essence of normal

operating of human body lies in the balance of Yin and Yang following the natural law, i.e., for

∀v ∈ V (GL) and any direction
−→
O on v in space, there must be

Y−(v) + Y+(v) = C
(
v,
−→
O
)

(4.13)

which is a general ruler for determining whether the human body is operating normally, where

C
(
v,
−→
O
)

is a constant vector at the point v in direction
−→
O . Thus, an illness of human body is

abstractly equivalent to the imbalance of Yin Y− and Yang Y+ on some meridians of human

body, and it is necessary to adjust the flows of vital energy on human meridians by “reducing

the excess with supply the insufficient” to recover the balance of Yin Y− and Yang Y+, i.e.,

the natural law of vital energy operating on human body.
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§5. Conclusion

Clearly, the original motivation of CC conjecture is to apply the combinatorial approach for

extending mathematical sciences in order to improve human’s ability for recognizing the nature.

But since it is a conjecture, it is necessary to give a proof on its correctness. So, how to prove

its correctness of CC conjecture? In fact, the CC conjecture is not so much as a mathematical

conjecture but a recognitive thought. Its correctness lies in the fact that humans extend their

local recognitions of thing T to the whole, i.e., by characteristics of χ1, χ2, · · · of thing T

showing up in front of human. Certainly, the recognitive conclusion must be a combination

of local recognitive outcomes on characteristics of χ1, χ2, · · · over an inherited 1-dimensional

topological structure GL of thing T , namely the human recognition on reality of thing T can only

be a combinatorial one ([31]), including the science and technology ([1],[32]). This is exactly

what the sophist told the blind men in fable of the blind men with an elephant. Surely, the

mathematics follows the principle of logical consistency in human recognition, which inevitably

leads to the limitation of effect in human recognition by mathematics, namely the mathematical

reality TM is only a local recognitive or conditional conclusion. My CC conjecture is only

consistent with the extension of human recognition from the local to the whole. That is, the

combinatorial approach on reality TM of thing T is prior to human recognition, including science

and mathematics, which is a philosophy of human recognition, no proof further is required,

namely the combinatorial notion implied by the human recognition of reduction is on the first

and the recognition or science is followed, only on the second, i.e., the essence of mathematical

combinatorics following.

Mathematical Combinatorics. All mathematical sciences should be generalized or recon-

structed over topological graph GL which is consistent with the 1-dimensional topological graph

GL inherited in human recognition of thing by reduction.

Notice that the “reduction” here is subdivided thing T into the recognizable elements that

humans understand the reality of thing T , not an infinitely subdividing of thing T and there

is essentially no need to subdivide any thing T → molecule → atom → elementary particle or

any living T → biological macromolecule → cell → gene. Otherwise, it will artificially cause

the complexity in the recognition with no benefits for recognizing the truth colour of thing. For

example, the number of cells of an adult is about 4× 1014 − 6× 1014. So, does an analysis on

the behavior of an adult need to subdivide it into cells? The answer is certainly not because the

essence of reducing of thing T into elementary particles, cells and genes is to treat thing T as

a complex network, which simultaneously increases the complexity in recognition. In contrast,

the Chinese science established on the interaction of Yin Y− and Yang Y+, the promoting and

restraining potentials of five elements, i.e., the metal, wood, water, fire, earth is more suitable

for leading the developing of humans, which is essentially a system science for the harmonious

coexistence of humans with nature on the human recognition in today’s terms.

In 2003, Prof.Tagmark of Massachusetts Institute of Technology proposed a mathematical

universe hypothesis ([42]) which claims that the natural reality outside of human is a mathe-

matical structure, namely the universe can not only be characterized by mathematics but the

universe itself is a mathematical structure. Of course, this is an encouraging hypothesis that
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excites most researchers because it allows mathematics to describe and model the evolution of

everything in the universe. However, can the mathematics that follows the principle of logical

consistency be applied already to describe the reality of everything in the universe? The answer

is certainly not because the mathematical reality is still a local or conditional one. It is essen-

tially not equivalent to the reality of thing. And meanwhile, this hypothesis can not be verified

because humans have not yet been able to arrive at each corner in the universe. In this case,

it is necessary to extend mathematics including contradictions, i.e., Smarandache multi-spaces

over the 1-dimensional topological graphs GL inherited in things in order to understand the

nature of things. This is my philosophy of mathematical combinatorics, which includes also the

mathematical universe hypothesis of Prof.Tagmark as a deduction.
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§1. Introduction

The torsion tensor T of a linear connection ∇ on a Riemannian manifold M is given by

T (X,Y ) = ∇XY −∇YX − [X,Y ], X, Y ∈ χ(M). (1.1)

The connection ∇ is symmetric if its torsion tensor T vanishes identically, otherwise it is

non-symmetric. Again a linear connection ∇ is said to be a semi-symmetric connection if, the

torsion T of the connection ∇ satisfies

T (X,Y ) = η(Y )X − η(X)Y, (1.2)

where η is a 1-form and φ is a tensor field of type (1, 1). Further, a connection ∇ is called

metric connection on a Riemannian manifold M if

(∇Xg)(Y,Z) = 0. (1.3)

Otherwise, it is non-metric. The connection ∇ is said to be semi-symmetric metric connection

1Received November 24, 2023, Accepted March 4,2024.
2Corresponding author: M.S. Siddesha, E-mail: mssiddesha@gmail.com.
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if it satisfies (1.1)-(1.3). In 1924, Friedmann and Schouten [8] were the pioneers who unveiled

the notion of a semisymmetric linear connection on a Riemannian manifold. The subsequent

introduction of the concept of a metric connection came about through the work of Hayden [9]

in 1932.

In 1981, Bejancu and Papaghiuc introduced the idea of semi-invariant submanifolds, as

a generalization of invariant and anti-invariant submanifolds of contact metric manifolds. On

the other hand in 1995, Blair, Koufogiorgos and Papantoniou [5] introduced the new class of

contact metric manifolds with ξ belonging to (k, µ)-nullity distributions which are known as

(k, µ)-contact metric manifolds. In our previous work [12]-[17], we have investigated various

categories of submanifolds, such as invariant, slant, and semi-slant submanifolds within these

manifolds.

Recently, a noteworthy contribution was made by Avijit Sarkar et al. [10], who engaged in

a study focused on semi-invariant submanifolds within the context of (k, µ)-contact manifolds.

Moreover, an exploration of semi-invariant submanifolds extended to various classes of almost

contact manifolds has attracted attention from several geometers such as [1, 2, 7, 11, 20] and

other researchers.

Building upon the insights from the aforementioned research endeavors, this present paper

embarks on an investigation into semi-invariant submanifolds within the realm of (k, µ)-contact

manifolds with a semi-symmetric metric connection. The paper’s structure unfolds as follows:

In Section 2, a concise introduction to (k, µ)-contact manifolds sets the stage for the ensuing

exploration. Moving into Section 3, the analysis demonstrates that the connection induced

on semi-invariant submanifolds of a (k, µ)-contact manifold, endowed with a semi-symmetric

metric connection, retains both the attributes of being semi-symmetric and metric. Section 4

is dedicated to laying the groundwork by presenting fundamental outcomes pertinent to semi-

invariant submanifolds of (k, µ)-contact manifolds with a semi-symmetric metric connection.

Concluding the paper, the final section delves into a comprehensive discussion regarding the

integrability conditions governing distributions on semi-invariant submanifolds of (k, µ)-contact

manifolds with semi-symmetric metric connection comes into play.

§2. (k, µ)-Contact Manifolds

A contact manifold is a C∞ − (2n+ 1) manifold M̃2n+1 equipped with a global 1-form η such

that η ∧ (dη)n 6= 0 everywhere on M̃2n+1. Given a contact form η it is well known that there

exists a unique vector field ξ, called the characteristic vector field of η, such that η(ξ) = 1 and

dη(X, ξ) = 0 for every vector field X on M̃2n+1. A Riemannian metric is said to be associated

metric if there exists a tensor field φ of type (1, 1) such that

φ2 = −I + η ⊗ ξ, η(ξ) = 1, φξ = 0, η · φ = 0, (2.1)

g(φX, φY ) = g(X,Y )− η(X)η(Y ), g(X, ξ) = η(X), (2.2)

for all vector fields X,Y ∈ TM̃ . Then the structure (φ, ξ, η, g) on M̃2n+1 is called a contact

metric structure and the manifold M̃2n+1 equipped with such a structure is called a contact
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metric manifold [4].

Given a contact metric manifold M̃2n+1(φ, ξ, η, g), we define a (1, 1) tensor field h by

h = 1
2Lξφ, where L denotes Lie differentiation. Then h is symmetric and satisfies hφ = −φh.

Thus, if λ is an eigenvalue of h with eigenvector X, −λ is also an eigenvalue with eigenvector

φX. Also we have Tr · h = Tr · φh = 0 and hξ = 0. Moreover, if ∇̃ denotes the Riemannian

connection of g, then the following relation holds:

∇̃Xξ = −φX − φhX. (2.3)

It is seen that the vector field ξ is a Killing vector with respect to g if and only if h = 0. In

this case the manifold becomes a K-contact manifold. A K-contact structure on M̃ gives rise

to an almost complex structure on the product M̃2n+1×R. If this almost complex structure is

integrable, the contact metric manifold is said to be Sasakian. Equivalently, a contact metric

manifold is Sasakian if and only if

R̃(X,Y )ξ = η(Y )X − η(X)Y,

holds for all X,Y, where R̃ denotes the curvature tensor of the manifold M̃ .

The (k, µ)-nullity distribution of a contact metric manifold M̃2n+1(φ, ξ, η, g) is a distribu-

tion [5]

N(k, µ) : p→ Np(k, µ) = {Z ∈ TpM :

R(X,Y )Z = k[g(Y,Z)X − g(X,Z)Y ] + µ[g(Y,Z)hX − g(X,Z)hY ]}.

for any X,Y ∈ TpM̃ . Hence if the characteristic vector field ξ belongs to the (k, µ)-nullity

distribution, then we have

R(X,Y )ξ = k[η(Y )X − η(X)Y + µ[η(Y )hX − η(X)hY ]. (2.4)

Thus a contact metric manifold satisfying the relation (2.4) is called a (k, µ)-contact metric

manifold. In particular, if µ = 0, then the notion of (k, µ)-nullity distribution reduces to the

notion of k-nullity distribution, introduced by Tanno [19]. A (k, µ)-contact metric manifold is

Sasakian if k = 1. In a (k, µ)-contact metric manifold the following relations hold [5]:

h2 = (k − 1)φ2, k ≤ 1, (2.5)

(∇̃Xφ)(Y ) = g(X + hX, Y )ξ − η(Y )(X + hX). (2.6)

§3. Semi-Invariant Submanifolds

In this section, we introduce the notion of semi-invariant submanifold of a (k, µ)-contact man-

ifold which generalizes the notion of both invariant and anti-invariant submanifolds.

A non degenerated submanifold M of a (k, µ)-contact manifold is called a semi-invariant
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submanifold, if there exists a pair of orthogonal distributions {D,D⊥} on M such that

(i) TM = D ⊕D⊥⊕ < ξ >;

(ii) The distribution D is invariant under φ, that is φDx = Dx, for each x ∈M ;

(iii) The distribution D⊥ is anti-invariant under φ, that is φD⊥x ⊂ T⊥x M , for each x ∈M .

A semi-invariant submanifold becomes invariant (resp. anti-invariant) submanifold if D⊥x =

0 (resp. Dx = 0) for all x ∈ M . Further, a submanifold which is neither invariant nor anti-

invariant is called a proper semi-invariant submanifold.

We denote by ∇̃ the Levi-Civita connection on M̃ with respect to induced metric g. Then

the Gauss and Weingarten formulas are given by

∇̃XY = ∇XY + σ(X,Y ), (3.1)

∇̃XN = −ANX +∇⊥XN, (3.2)

for any tangent vector fields X, Y and the normal vector field N on M , where σ, A, ∇ and

∇⊥ are the second fundamental form, the shape operator, induced connection on M and the

normal connection respectively. If the second fundamental form σ is identically zero, then the

manifold is said to be totally geodesic. The second fundamental form σ and the shape operator

AN are related by

g(σ(X,Y ), N) = g(ANX,Y ).

Now, we define a semi-symmetric metric connection ¯̃∇ in a (k, µ)-contact manifold M̃ by

¯̃∇XY = ∇̃XY + η(Y )X − g(X,Y )ξ. (3.3)

for all X,Y ∈ TM̃ .

Proposition 3.1 Let M be a semi-invariant submanifold of a (k, µ)-contact manifold M̃ with

a semi-symmetric metric connection. Then

( ¯̃∇Xφ)Y = g(X + hX, Y )ξ − η(Y )(X + hX) + g(φX, Y )ξ − η(Y )φX, (3.4)

∀ X,Y ∈ Γ(TM).

Proof By virtue of (2.6) and (3.3), the proposition follows after having done similar com-

putations as in the proof of Theorem 3 in [20]. �

Proposition 3.2 Let M be a semi-invariant submanifold of a (k, µ)-contact manifold M̃ with

a semi-symmetric metric connection. Then

¯̃∇Xξ = −φX − φhX +X − η(X)ξ, (3.5)

∀ X,Y ∈ Γ(TM).

Proof By virtue of (3.3) and (2.3), the proposition follows after having done similar com-

putations as in the proof of Theorem 4 in [20]. �
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Theorem 3.3 The connection induced on a semi-invariant submanifold of a (k, µ)-contact

manifold that admits a semi-symmetric metric connection also admits a semi-symmetric metric

connection.

Proof Let ∇̄ be the induced connection with respect to the unit normal N on semi-invariant

submanifold M of a (k, µ)-contact manifold with semi-symmetric metric connection ¯̃∇. Then,

¯̃∇XY = ∇̄XY +m(X,Y ), (3.6)

where m is a tensor field of type (0, 2) on semi-invariant submanifold M .

Using (3.1) and (3.3), we have

∇̄XY +m(X,Y ) = ∇XY + σ(X,Y ) + η(Y )X − g(X,Y )ξ.

Equating tangential and normal components of the above equation, we get

m(X,Y ) = σ(X,Y ).

∇XY = ∇∗XY + η(Y )X − g(X,Y )ξ. (3.7)

Thus, ∇̄ is also semi-symmetric metric connection. �

Now, the Gauss and Weingarten formulae for semi-invariant submanifolds of a (k, µ)-

contact manifold with a semi-symmetric metric connection are given by

¯̃∇XY = ∇̄XY + σ(X,Y ), (3.8)

¯̃∇XN = (−AN + η(N))X + ∇̄⊥XN, (3.9)

for all X,Y ∈ Γ(TM) and N ∈ Γ(T⊥M), where σ and AN are the second fundamental form

and Weingarten endomorphism associated with N , and are related by

g(σ(X,Y ), N) = g((−AN + η(N))X,Y ).

For X ∈ Γ(TM), N ∈ Γ(T⊥M), we can write

X = PX +QX + η(X)ξ, (3.10)

φN = BN + CN, (3.11)

where P and Q are the projection operators of TM to D and D⊥ respectively, and BN (resp.

CN) denote the tangential (resp. normal) component of φN .

§4. Basic Results

Lemma 4.1 Let M be a semi-invariant submanifold of a (k, µ)-contact manifold M̃ with a
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semi-symmetric metric connection, then we have

( ¯̃∇Xφ)Y = (∇̄XP )Y + σ(X,PY )−AQYX + η(N)X

+(∇̄XQ)Y −Bσ(X,Y )− Cσ(X,Y ), (4.1)

( ¯̃∇Xφ)N = (∇̄XB)N + σ(X,BN)−ACNX + P (−AN )X +Q(−AN )X

+(∇̄XC)N + Pη(N)X +Qη(N)X. (4.2)

Proof Using (3.10), (3.11), the Gauss and Weingarten formulae, necessary arrangements

are made to obtain the desired. �

We state the next Lemma whose proof is straightforwardly deduced by applying (3.4) in

(4.1) and (4.2), hence omitted.

Lemma 4.2 Let M be a semi-invariant submanifold of a (k, µ)-contact manifold M̃ with a

semi-symmetric metric connection, then we have

(∇̄XP )Y −AQYX + η(N)X −Bσ(X,Y ) = g(X + hX, Y )ξ

−η(Y )(X + hX)− η(Y )PX, (4.3)

(∇̄XQ)Y + σ(X,PY )− Cσ(X,Y ) = −η(Y )QX, (4.4)

(∇̄XB)N −ACNXσ(X,PY )− Cσ(X,Y ) = 0, (4.5)

(∇̄XC)N + σ(X,BN) +Q(−ANX + η(N)X) = 0, (4.6)

g(PX, Y ) = 0, (4.7)

g(QX,Y ) = 0, (4.8)

for all X,Y ∈ Γ(TM), N ∈ Γ(T⊥M).

Lemma 4.3 Let M be a semi-invariant submanifold of a (k, µ)-contact manifold M̃ with a

semi-symmetric metric connection such that ξ ∈ Γ(TM), we have

∇̄Xξ = −φX − φhX +X − η(X)ξ, σ(X, ξ) = 0. (4.9)

∇̄ξξ = 0, σ(ξ, ξ) = 0, ANξ = 0. (4.10)

Proof Using (3.3) and (3.5) we have (4.10). In addition, we get

o = g(σ(X, ξ), N) = g(σ(ξ,X), N) = g(ANξ,X).

This completes the proof. �
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§5. Integrability of Distributions

In this section, we study the integrability of all the distributions involved in the definition of

semi-invariant submanifolds.

For all X,Y ∈ Γ(D), we have

g([X,Y ], ξ) = g(∇XY, ξ)− g(∇YX, ξ).

Using (3.1) in above, we get

g([X,Y ], ξ) = g(∇̃XY, ξ)− g(∇̃YX, ξ). (5.1)

Taking account of (3.3) in (5.1) and using (3.5), we obtain

g([X,Y ], ξ) = g(Y, φX + φhX)− g(X,φY + φhY )

and so, g([X,Y ], ξ) 6= 0. This leads to the following:

Theorem 5.4 Let M be a semi-invariant submanifold of a (k, µ)-contact manifold M̃ with

a semi-symmetric metric connection such that dim(D) 6= 0. Then the distribution D is not

integrable.

Theorem 5.5 Let M be a semi-invariant submanifold of a (k, µ)-contact manifold M̃ with a

semi-symmetric metric connection. Then the distribution D⊕ < ξ > is integrable if and only if

σ(X,φY ) = σ(φX, Y ),

for all X,Y ∈ Γ(D⊕ < ξ >).

Proof For X,Y ∈ Γ(D), we have

φ([X,Y ]) = φ(∇XY −∇YX).

Using (3.1) in the above equation, we get

φ([X,Y ]) = φ(∇̃XY − ∇̃YX). (5.2)

Making use of relation (3.3) in (5.2), we get

φ([X,Y ]) = ¯̃∇XφY − ( ¯̃∇Xφ)Y − η(Y )φX − ¯̃∇φX + ( ¯̃∇Y φ)X − η(X)φY. (5.3)

Taking account of (3.8) in (5.3) and using (3.4), we obtain

φ([X,Y ]) = ∇̄XφY + σ(X,φY ) + ∇̄Y φX + σ(Y, φX)

−g(hX, Y )ξ + η(Y )(X + hX) + g(hY,X)ξ − η(X)(Y + hY ) + 2g(φX, Y ),
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where φ([X,Y ]) shows the component of ∇XY from the orthogonal complementary distribution

of D⊕ < ξ > in M . Then, [X,Y ] ∈ Γ(D⊕ < ξ >) if and only if σ(X,φY ) = σ(Y, φX). �

Theorem 5.6 Let M be a semi-invariant submanifold of a (k, µ)-contact manifold M̃ with a

semi-symmetric metric connection. Then the distribution D⊥ is integrable.

Proof For all X,Y ∈ Γ(D⊥), we have

g([X,Y ], ξ) = g(∇XY, ξ)− g(∇YX, ξ).

Using (3.1) in the above equation, we get

g([X,Y ], ξ) = g(∇̃XY, ξ)− g(∇̃YX, ξ). (5.4)

Taking account of (3.3) in (5.4) and using (3.5), we obtain

g([X,Y ], ξ) = g(Y, φX + φhX)− g(X,φY + φhY ),

which implies that g([X,Y ], ξ) = 0. So η([X,Y ]) = 0. Then, we have [X,Y ] ∈ Γ(D⊥). �

Theorem 5.7 Let M be a semi-invariant submanifold of a (k, µ)-contact manifold M̃ with a

semi-symmetric metric connection. Then the distribution D⊥⊕ < ξ > is integrable if and only

if

AφXY = AφYX,

for all X,Y ∈ Γ(D⊥⊕ < ξ >).

Proof For X,Y ∈ Γ(D⊥), we have

φ([X,Y ]) = φ(∇XY −∇YX).

Using (3.1) in above, we get

φ([X,Y ]) = φ(∇̃XY − ∇̃YX). (5.5)

Making use of relation (3.3) in (5.5), we get

φ([X,Y ]) = ¯̃∇XφY − ( ¯̃∇Xφ)Y − η(Y )φX − ¯̃∇φX + ( ¯̃∇Y φ)X − η(X)φY. (5.6)

Taking account of (3.9) in (5.6) and using (3.4), we obtain

φ([X,Y ]) = AφXY −AφYX + ∇̄⊥XφY − ∇̄⊥Y φX + g(hY,X)ξ − g(hX, Y )ξ

+η(Y )(X + hX)− η(X)(Y + hY ).

Then ,we get

[X,Y ] ∈ Γ(D⊥⊕ < ξ >)⇒ AφXY = AφYX.
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Conversely

φ2([X,Y ]) = φ{AφXY −AφYX + ∇̄⊥XφY − ∇̄⊥Y φX + g(hY,X)ξ − g(hX, Y )ξ

+η(Y )(X + hX)− η(X)(Y + hY )}.

Making use of (2.1) and using the equality AφXY = AφYX, the above equation can be

written as

[X,Y ] = φ(∇̄⊥XφY )− φ(∇̄⊥Y φX) + η(Y )φ(X + hX)− η(X)φ(Y + hY ).

Thus, [X,Y ] ∈ Γ(D⊥⊕ < ξ >). Hence the distribution D⊥⊕ < ξ > is integrable. �
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Abstract: For a graph G, the M-polynomial is defined to be

M(G;x, y) =
∑

δ≤α≤β≤∆

mαβ(G)xαyβ ,

where mαβ(α, β ≥ 1) is the number of edges ab of G such that degG(a) = α and degG(b) = β;

and δ is the minimum degree and ∆ is the maximum degree of G. The physicochemical

properties of chemical graphs are found by topological indices, in particular, the degree-based

topological indices, which can be determined from an algebraic formula called M-polynomial.

In this paper, we first compute the M-polynomial of the Dandelion graph and the line graph

of Dandelion graph. Further, we derive some degree-based topological indices of these graphs

from their respective M-polynomial.

Key Words: M-polynomial, Smarandachely M-polynomial, degree-based topological in-

dices, Dandelion graph, line graph.

AMS(2010): 05C07,05C31.

§1. Introduction

Throughout this paper, by a graph G = (V,E), we mean a simple, undirected, and finite graph

of order n and size m. Let V (G) and E(G) denote the vertex set and edge set of G, respectively.

A chemical graph is a labeled graph where the atoms correspond to the vertices and the chemical

bonds of the compound corresponds to the edges. A numerical quantity which is used to analyse

both the physical and chemical properties of compounds is termed as a topological index. A

topological index is also called a graph invariant. In general, the physicochemical properties

and boiling activities of a chemical graph are investigated using topological indices.

The number of vertices of G adjacent to a given vertex v is the degree of the vertex v and

is denoted by degG(v). In a chemical graph, the degree of any vertex is at most 4. For all terms

and definitions, not defined specifically in this paper, we refer to [5].

1Received October 3, 2023, Accepted March 5,2024.
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The study of topological indices was first initiated by H. Wiener [16] in the year 1947. He

introduced Weiner index in order to understand the correlation of the measured properties of

molecules in a compound with their structural properties. In the year 1972, the Weiner index

was interpreted by Hosoya [6] using distances between vertices in a graph. Over the last decade,

various topological indices were introduced and studied by different authors [1,3,4].

Historically, various topological indices have been computed based on their mathematical

definitions. Efforts have been made to explore a more streamlined approach capable of recov-

ering multiple topological indices within a specific category. In this pursuit, the concept of a

general polynomial was introduced, designed to yield the values of necessary topological indices

through its derivatives and integrals. For instance, the Hosoya polynomial [7] is employed for

calculating distance-based topological indices, while the NM-polynomial [15] is used to derive

neighborhood degree sum-based indices. In 2015, Deutsch and Klaz̆ar [2] introduced the con-

cept of M-polynomial to address the computation of degree-based topological indices. For more

details on degree-based topological indices using the M-polynomial, we refer the readers to the

references [11,12,13,14].

Definition 1.1 For a graph G, the M-polynomial is defined to be

M(G;x, y) =
∑

δ≤α≤β≤∆

mαβ(G)xαyβ ,

where mαβ(α, β ≥ 1) is the number of edges ab of G such that degG(a) = α and degG(b) = β.

Particularly, if degG(a) 6= degG(b) for all edges ab ∈ E(G) such a M-polynomial is called a

Smarandachely M-polynomial because it posses the character of Smarandachely denied axiom.

For example, a star Sn−1. The authors in [8] introduced the concept of Dandelion graph while

studying the Wiener inverse interval problem.

Definition 1.2 A star graph, written Sn−1, is a graph on n vertices, consisting of some vertex,

connected to n− 1 leaves.

Definition 1.3 A Dandelion graph, written D(n, l), is a graph on n vertices, consisted of a

copy of the star Sn−1 and copy of a path pl on vertices p0, p1, p2, . . . , pl−1, where p0 is identified

with a star center,

Figure 1 shows an example of Dandelion graph D(17, 8).

Figure 1. Dandelion graph D(17, 8)



On the M-polynomial and Degree-Based Topological Indices of Dandelion Graph 41

Siros Ghobadi et al. [9] computed the F-polynomial of Dandelion graphs. Again in [10],

Siros Ghobadi et al. computed the first Zagreb index, F-index, and F-coindex of the line graph

of Dandelion graph using subdivision concept. Motivated by this, we aim to calculate several

algebraic polynomials and degree-based topological indices of Dandelion graph and the line

graph of Dandelion graph.

§2. Methodology

We first divide the edge set of Dandelion graph and the line graph of Dandelion graph into

different classes based on the degree of end vertices. With the help of this edge division, we

compute the M-polynomial of Dandelion graph and the line graph of Dandelion graph. Further,

by using M-polynomial, we compute the degree-based topological indices as listed in Table 1.

Table 1. Operations to derive degree-based topological indices form M-polynomial

Notation Topological Index Derivation from M(G;x, y)

M1(G) First Zagreb index (Dx +Dy)(M(G;x, y))|x=y=1

M2(G) Second Zagreb index (DxDy)(M(G;x, y))|x=y=1

mM2(G) Second modified Zagreb index (SxSy)(M(G;x, y))|x=y=1

Rα(G) Randić index (Dα
xD

α
y )(M(G;x, y))|x=y=1

RRα(G) Inverse Randić index (SαxS
α
y )(M(G;x, y))|x=y=1

SSD(G) Symmetric division index (DxSy +DySx)(M(G;x, y))|x=y=1

H(G) Harmonic index 2SxJ(M(G;x, y))|x=1

where

M(G;x, y) = f(x, y), Dx = x
∂f(x, y)

∂x
, Dy = y

∂f(x, y)

∂y
,

Sx =

∫ x

o

f(t, y)

t
dt, Sy =

∫ y

o

f(x, t)

t
dt, J(f(x, y)) = f(x, x)

are the operators. As discussed in [2], each of these topological indices can be found using

M-polynomial as given in Table 1.

§3. M-polynomial of Dandelion Graph

In this section we find the M-polynomial of Dandelion graph.

Theorem 3.1 Let G = D(n, l) be the Dandelion graph. Then the M-polynomial of G is

M(G;x, y) = xy2 + (l − 3)x2y2 + x2yn−l+1 + (n− l)xyn−l+1.

Proof Let G = D(n, l) be the Dandelion graph. From Figure 1, |V (G)| = n and |E(G)| =
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n− 1. Since each of the vertices of G is of degree either 1 or 2 or n− l+ 1, the vertex set of G

has three partitions with respect to degree

V1(G) = {u ∈ V (G) : degG(u) = 1};
V2(G) = {u ∈ V (G) : degG(u) = 2};
V3(G) = {u ∈ V (G) : degG(u) = n− l + 1} such that |V1(G)| = n− l + 1, |V2(G)| = l − 2,

|V3(G)| = 1. Further, the edge set of G has four partitions based on the degree of the end

vertices.

E1(G) = {e = uv ∈ E(G) : degG(u) = 1, degG(v) = 2},
E2(G) = {e = uv ∈ E(G) : degG(u) = 2, degG(v) = 2},
E3(G) = {e = uv ∈ E(G) : degG(u) = 2, degG(v) = n− l + 1},
E4(G) = {e = uv ∈ E(G) : degG(u) = 1, degG(v) = n − l + 1} such that |E1(G)| =

1; |E2(G)| = l − 3, |E3(G)| = 1, |E4(G)| = n− l.
Now, from the definition of the M-polynomial,

M(G;x, y) =
∑
α≤β

mαβ(G)xαyβ

= m12(G)xy2 +m22(G)x2y2 +m2(n−l+1)(G)x2yn−l+1 +m1(n−l+1)(G)xyn−l+1

= xy2 + (l − 3)x2y2 + x2yn−l+1 + (n− l)xyn−l+1

This completes the proof. �

Now, we compute some degree-based topological indices of the Dandelion graph from this

M-polynomial.

Theorem 3.2 Let G = D(n, l) be the Dandelion graph. Then

M1(G) = n2 + (3− 2l)n+ l2 + l − 6,

M2(G) = n2 + (3− 2l)n+ l2 + l − 8,

mM2(G) =
(l + 3)n− l2 − 2l + 1

4n− 4l + 4
,

Rα(G) = 2α(n− l + 1) + (n− l)(n− l + 1) + 4α(l − 3) + 2α,

RRα(G) =
2α + 4α(n− l) + ((l − 3)n− l2 + 4l − 3) + 2α(n− l + 1)

4α(n− l + 1)
,

SSD(G) =
2n3 + (5− 6l)n2 + (6l2 − 6l − 1)n− 2l3 + l2 + 5l − 2

2n− 2l + 2
,

H(G) =
(3l + 7)n2 + (−6l2 + l + 23)n+ 3l3 − 8l2 − 5l − 6

6n2 + (30− 12l)n+ 6l2 − 30l + 36
.

Proof From Theorem 3.1, we have

M(G;x, y) = f(x, y) = xy2 + (l − 3)x2y2 + x2yn−l+1 + (n− l)xyn−l+1.
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Then, we get the following:

Dxf(x, y) = 2x2yn−l+1 + (n− l)xyn−l+1 + 2(l − 3)x2y2 + xy2,

Dyf(x, y) = (n− l + 1)x2yn + (n− l)(n− l + 1)xyn + 2(l − 3)x2y2 + 2xy2,

(DyDx)(f(x, y)) = 2(n− l + 1)x2yn + (n− l)(n− l + 1)xyn + 4(l − 3)x2y2 + 2xy2,

Sx(f(x, y)) =
1

2
x2yn−l+1 + (n− l)xyn−l+1 +

1

2
(l − 3)x2y2 + xy2,

Sy(f(x, y)) =
1

n− l + 1
x2yn−l+1 +

n− l
n− l + 1

xyn−l+1

+

(
(l − 3)n− l2 + 4l − 3

)
x2y2

2(n− l + 1)
+

1

2
xy2,

SxSy(f(x, y)) =
1

2(n− l + 1)
x2yn−l+1 +

n− l
n− l + 1

xyn−l+1

+

(
(l − 3)n− l2 + 4l − 3

)
x2y2

4(n− l + 1)
+

1

2
xy2,

SyDx(f(x, y)) =
2x+ n− l
n− l + 1

xyn−l+1 +

(
(2l − 6)n− 2l2 + 8l − 6

)
2(n− l + 1)

x2y2 +
1

2
xy2,

SxDy(f(x, y)) =
n− l + 1

2
x2yn−l+1 +

(
2n2 + (2− 4l)n+ 2l2 − 2l

)
2

xyn−l+1

+(l − 3)x2y2 + 2xy2,

2SxJ(f(x, y)) =

(
(3l − 9)n2 + (−6l2 + 33l − 45)n+ 3l3 − 24l2 + 63l − 54

)
x4

6n2 + (30− 12l)n+ 6l2 − 30l + 36

+

(
4n2 + (20− 8l)n+ 4l2 − 20l + 24

)
x3

6n2 + (30− 12l)n+ 6l2 − 30l + 36

+

(
(12n− 12l + 24)x3 + (12n2 + (36− 24l)n+ 12l2 − 36l)x2

)
xn+l

6n2 + (30− 12l)n+ 6l2 − 30l + 36

Now, we have the following from Table 1:

(1) The first Zagreb index

M1(G) = (Dx +Dy)(f(x, y))|x=y=1 = n2 + (3− 2l)n+ l2 + l − 6.

(2) The second Zagreb index

M2(G) = (DxDy)(f(x, y))|x=y=1 = n2 + (3− 2l)n+ l2 + l − 8.

(3) The second modified Zagreb index

mM2(G) = (SxSy)(f(x, y))|x=y=1 =
(l + 3)n− l2 − 2l + 1

4n− 4l + 4
.
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(4) The Randić index

Rα(G) = (Dα
xD

α
y )(f(x, y))|x=y=1 = 2α(n− l + 1) + (n− l)(n− l + 1) + 4α(l − 3) + 2α.

(5) The inverse Randić index

RRα(G) = (SαxS
α
y )(f(x, y))|x=y=1 =

2α + 4α(n− l) + ((l − 3)n− l2 + 4l − 3) + 2α(n− l + 1)

4α(n− l + 1)
.

(6) The symmetric division index

SSD(G) = (DxSy+DySx)(f(x, y))|x=y=1 =
2n3 + (5− 6l)n2 + (6l2 − 6l − 1)n− 2l3 + l2 + 5l − 2

2n− 2l + 2
.

(7) The harmonic index

H(G) = 2SxJ(f(x, y))|x=1 =
(3l + 7)n2 + (−6l2 + l + 23)n+ 3l3 − 8l2 − 5l − 6

6n2 + (30− 12l)n+ 6l2 − 30l + 36
.

This completes the proof. �

Figure 2 Plot of M-polynomial of Dandelion graph D(17, 8)

§4. M-polynomial of the Line Graph of Dandelion Graph

There are many graph operators (or graph valued functions) with which one can construct a new

graph from a given graph, such as the line graphs, line cut-vertex graphs; total graphs; middle

graphs; and their generalizations. A line graph of a graph G, written L(G), is the graph whose

vertices are the edges of G, with two vertices of L(G) adjacent whenever the corresponding

edges of G have a vertex in common.
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In the next theorem, we find the M-polynomial of the line graph of Dandelion graph.

Theorem 4.1 Let G = D(n, l), l > 4, be a Dandelion graph. Then, the M-polynomial of L(G)

is

M(L(G);x, y) = xy2 + (l − 4)x2y2 + x2yn−l+1 + (n− l)xn−lyn−l+1 +
n2 + l2 − 2nl − n+ l

2
xn−lyn−l.

Proof Let G = D(n, l), l > 4, be the Dandelion graph. Then |V (L(G))| = n − 1. Since

each of the vertices of L(G) is of degree either 1 or 2 or n − l or n − l + 1, the vertex set of

L(G) has four partitions with respect to degree:

V1(L(G)) = {u ∈ V (L(G)) : degL(G)(u) = 1},

V2(L(G)) = {u ∈ V (L(G)) : degL(G)(u) = 2},

V3(L(G)) = {u ∈ V (L(G)) : degL(G)(u) = n− l} and

V4(L(G)) = {u ∈ V (L(G)) : degL(G)(u) = n− l + 1} such that

|V1(L(G))| = 1, |V2(L(G))| = l − 3, |V3(L(G))| = n− l, |V4(L(G))| = 1.

Further, the edge set of G has five partitions based on the degree of the end vertices.

E1(L(G)) = {e = uv ∈ E(L(G)) : degL(G)(u) = 1, degL(G)(v) = 2},

E2(L(G)) = {e = uv ∈ E(L(G)) : degL(G)(u) = 2, degL(G)(v) = 2},

E3(L(G)) = {e = uv ∈ E(L(G)) : degL(G)(u) = 2, degL(G)(v) = n− l + 1},

E4(L(G)) = {e = uv ∈ E(L(G)) : degL(G)(u) = n− l, degL(G)(v) = n− l + 1},

E5(L(G)) = {e = uv ∈ E(L(G)) : degL(G)(u) = n− l, degL(G)(v) = n− l} such that

|E1(L(G))| = 1, |E2(L(G))| = l − 4, |E3(L(G))| = 1, |E4(L(G))| = n− l,

and |E5(L(G))| = n2 + l2 − 2nl − n+ l

2
.

Now, from the definition of the M-polynomial,

M(L(G);x, y) = xy2+(l−4)x2y2+x2yn−l+1+(n−l)xn−lyn−l+1+
n2 + l2 − 2nl − n+ l

2
xn−lyn−l.

This completes the proof. �

Now, we compute some degree-based topological indices of the line graph of Dandelion

graph from this M-polynomial.

Theorem 4.2 Let G = D(n, l), l > 4, be the Dandelion graph. Then,

M1(L(G)) = 2n2 + (−4l + 2k + 2)n+ 2l2 + (2− 2k)l − 10,
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M2(L(G)) = n3 + (−3l + k + 1)n2 + (3l2 + (−2k − 2)l + 2)n− l3 + (k + 1)l2 + 2l − 12,

mM2(L(G)) =
(l − 2)n3 + (−3l2 + 7l + 4)n2 + (3l3 − 8l2 − 8l + 4k)n− l4 + 3l3 + 4l2 − 4kl + 4k

4n3 + (4− 12l)n2 + (12l2 − 8l)n− 4l3 + 4l2
,

Rα(L(G)) = 2α(n− l + 1) + (n− l)(n− l + 1) + 4α(l − 3) + 2α,

RRα(L(G)) =
2α + 4α(n− l) + ((l − 3)n− l2 + 4l − 3) + 2α(n− l + 1)

4α(n− l + 1)
,

SSD(L(G)) =
5n2 + (−6l + 4k − 5)n+ l2 + (9− 4k)l + 4k − 4

2n− 2l + 2
,

H(L(G)) =
A

B
.

where

A = (6l − 4)n3 + (−18l2 + 33l + 12k + 4)n2 + (18l3 − 54l2

+(1− 24k)l + 42k − 12)n− 6l4 + 25l3 + (12k − 5)l2 + (12− 42k)l + 18k,

B = 12n3 + (42− 36l)n2 + (36l2 − 84l + 18)n− 12l3 + 42l2 − 18l.

Proof From Theorem 4.1, we have

M(L(G);x, y) = xy2 + (l − 4)x2y2 + x2yn−l+1 + (n− l)xn−lyn−l+1 + kxn−lyn−l,

where

k =
n2 + l2 − 2nl − n+ l

2
.

Then, we have the following

Dxf(x, y) = (n− l)2xn−lyn−l+1 + 2x2yn−l+1 + k(n− l)xn−lyn−l + 2(l − 4)x2y2 + xy2,

Dyf(x, y) = (n− l)(n− l + 1)xn−lyn−l+1 + (n− l + 1)x2yn−l+1 + k(n− l)xn−lyn−l

+2(l − 4)x2y2 + 2xy2,

(DyDx)(f(x, y)) = (n− l)2(n− l + 1)xn−lyn−l+1 + 2(n− l + 1)x2yn−l+1 + k(n− l)2xn−lyn−l

+4(l − 4)x2y2 + 2xy2.

Sx(f(x, y)) =
((l − 4)n− l2 + 4l)xl+2yl+2 + (2n− 2l)xl+1yl+2 + (2n− 2l)xnyn+1 + (n− l)xl+2yn+1

(2n− 2l)xlyl

+
2kxnyn

(2n− 2l)xlyl

Sy(f(x, y)) =
((l − 4)n2 + (−2l2 + 9l − 4)n+ l3 − 5l2 + 4l)xl+2 + (n2 + (1− 2l)n+ l2 − l)xl+2yl+2

(2n2 + (2− 4l)n+ 2l2 − 2l)xlyl

+
(2n2 − 4nl + 2l2)xnyn+1 + (2n− 2l)xl+2yn+1 + (2kn− 2kl + 2k)xnyn

(2n2 + (2− 4l)n+ 2l2 − 2l)xlyl
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SxSy(f(x, y)) =
((l − 4)n3 + (−3l2 + 13l − 4)n2 + (3l3 − 14l2 + 8l)n− l4 − 5l3 − 4l2)xl+2yl+2

(2n− 2l)(2n2 + (2− 4l)n+ 2l2 − 2l)xlyl

+
(2n3 + (2− 6l)n2 + (6l2 − 4l)n− 2l3 + 2l2)xl+2yl+2

(2n− 2l)(2n2 + (2− 4l)n+ 2l2 − 2l)xlyl

+
(4n2 − 8ln+ 4l2)xnyn+1 + (2n2 − 4nl + 2l2)xl+2yn+1 + (4kn− 4kl + 4k)xnyn

(2n− 2l)(2n2 + (2− 4l)n+ 2l2 − 2l)xlyl
,

SyDx(f(x, y)) =

(
(2l − 8)n− 2l2 + 10l − 8)x2 + (n− l + 1)x

)
xlyl+2

(2n− 2l + 2)xlyl

+

(
(2n2 − 4ln+ 2l2)xn + 4xl+2

)
yn+1 + (2kn− 2kl + 2k)xnyn

(2n− 2l + 2)xlyl
,

SyDx(f(x, y)) =
((2l − 8)x2 + 4x)xlyl+2 + (2n− 2l + 2)xnyn+1 + (n− l + 1)xl+2yn+1 + 2kxnyn

2xlyl
,

2SxJ(f(x, y)) =
(24n2 + (12− 48l)n+ 24l2 − 12l)xn+l+3

(12n3 + (42− 36l)n2 + (36l2 − 84l + 18)n− 12l3 + 42l2 − 18l)x2l

+

(
(6l − 24)n3 + (−18l2 + 93l − 84)n2 + (18l3 − 114l2 + 177l − 36)n

)
x4

(12n3 + (42− 36l)n2 + (36l2 − 84l + 18)n− 12l3 + 42l2 − 18l)

+

(
−6l4 + 45l3 − 93l2 + 36l)

)
x4

(12n3 + (42− 36l)n2 + (36l2 − 84l + 18)n− 12l3 + 42l2 − 18l)

+

(
(8n3 + (28− 24l)n2 + (24l2 − 56l + 12)n− 8l3 + 28l2 − 12l)

)
x3

(12n3 + (42− 36l)n2 + (36l2 − 84l + 18)n− 12l3 + 42l2 − 18l)

+

(
12n3 + (36− 36l)n2 + (36l2 − 72l)n− 12l3 + 36l2

)
x2n+1

(12n3 + (42− 36l)n2 + (36l2 − 84l + 18)n− 12l3 + 42l2 − 18l)x2l

+

(
12kn2 + (42k − 24kl)n+ 12kl2 − 42kl + 18k

)
x2n

(12n3 + (42− 36l)n2 + (36l2 − 84l + 18)n− 12l3 + 42l2 − 18l)x2l

We finally get the results by applying the appropriate operations given in Table 1. �

Figure 3 Plot of M-polynomial of the line graph of Dandelion graph D(17, 8)
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§5. Conclusion

Topological indices play an important role in understanding many physical and chemical prop-

erties of a chemical compound. Some of the degree-based topological indices can be found

by means of the M-polynomial of the corresponding chemical graph. In this paper, we have

determined some of these topological indices using the closed form of the M-polynomial of the

Dandelion graph and the line graph of Dandelion graph. The M-polynomial can be determined

for graph operations, graph products, and graph powers also. The study on M-polynomials

with respect to different types of graph operators also seem to be much promising.
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Abstract: The entire Sombor index of a graph G was introduced by Movahedi and Akhbari

[6]. By motivated their work, we obtained some properties, inequalities and characterization

in terms of order, size, degree and other degree based graphical indices. Also, we present the

computed values of certain families of graphs. In addition to that, we compare the statis-

tical behaviour of Sombor based graphical indices such as KG-Sombor index, Reformulated

Sombor index and Entire Sombor index of molecular graph of linear [k]- alkanes.

Key Words: Entire Sombor index, Sombor index, Kulli-Gutman Sombor index, topological

indices.
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§1. Introduction

A simple undirected graph G = (V,E) is the set of all ordered pairs, such as the set of all

vertices V (G) are related to atoms and the set of all edges E(G) are related to chemical bonds

among atoms with | V |= n and | E |= m. The vertices u and v are adjacent vertices if and

only if they end vertices of a common edge e = uv ∈ E(G). Let (δ(G),∆(G)) be the set of all

ordered pairs represented by the minimum and maximum number of adjacent edges incident

on the vertex. Also, edge degree can be written as

dG(e) = dG(uv) = dG(u) + dG(v)− 2.

The entire Sombor index of a graph G is defined as the sum of the square root of the terms

x and y are the two member of the set B(G). Where B(G) is the set of all subsets of two

members {x, y} ⊆ V (G) ∪ E(G) such that x and y are adjacent or incident to each other. For

more details on graph theoretical terminalogies, we refer to [14,17].

Topological descriptors have made sure their essential importance, because of their easy

formation and speed with which those tests may be accomplished. There are numerous graph

associated numerical descriptors, that have proven their value in one-of-a-kind areas. Thereby,

the system of finding the topological descriptors has emerge as a fascinating and appealing

direction of research. We discussed in this paper are depicted in Table 1. For more details refer

1Received November 7, 2023, Accepted March 6,2024.
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to [9, 10, 11, 23, 26, 27, 28, 29].

Graphical Indices Mathematical Representation

First Zagreb index(
Gutman and Trinajstic [12]

)
M1(G) =

∑
uv∈E(G)

dG(u) + dG(v)

Second Zagreb index(
Gutman and Trinajstic [12]

)
M2(G) =

∑
uv∈E(G)

dG(u) dG(v)

Re-defined Zagreb index(
Ranjini et al., [22]

)
ReZG3(G) =

∑
uv∈E(G)

dG(u)dG(v)
[
dG(u) + dG(v)

]
First general Zagreb index(

X.Li et al.,[20]
)

M4(G) =
∑

u∈V (G)

(dG(u))4

Forgotten index(
Fortula and Gutman [7]

)
F (G) =

∑
uv∈E(G)

[
dG(u)2 + dG(v)2

]
Sombor index(
Gutman [8]

)
SO(G) =

∑
uv∈E(G)

√
dG(u)2 + dG(v)2

Reformulated Sombor index(
Harish et al.,[15]

)
RS(G) =

∑
e∼f

√
dG(e)2 + dG(f)2

KG Sombor index(
Kulli et al.,[18]

)
KG(G) =

∑
ue

√
dG(u)2 + dG(e)2

First Entire Zagreb index(
Alwardi et al.,[2]

)
EM1(G) =

∑
{x,y}⊆B(G)

[dG(x) + dG(y)]

Second Entire Zagreb index(
Alwardi et al.,[2]

)
EM2(G) =

∑
{x,y}⊆B(G)

[dG(x) dG(y)]

Entire Forgotten index(
Bharall et al.,[3]

)
EF (G) =

∑
{x,y}⊆B(G)

[
dG(x)2 + dG(y)2

]
Entire Randic index(

Saleh et al.,[25]
)

ER(G) =
∑

{x,y}⊆B(G)

1√
dG(x)dG(y)

Entire ABC index(
Saleh et al., [24]

)
EABC(G) =

∑
{x,y}⊆B(G)

√
dG(x)+dG(y)−2
dG(x)dG(y)

Platt index(
Platt [21]

)
Pl(G) =

∑
u∈V (G)

dG(u)(dG(u)− 1)

Table 1. Degree-based graphical indices and its representation
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§2. Entire Sombor Index

The entire Sombor index of a graph G and is defined as

ES(G) =
∑

{x,y}⊆B(G)

√
dG(x)2 + dG(y)2.

2.1. Existing and Preliminary Results

Observation 2.1([6]) Let G be a connected graph with n > 3. Then

ES(G) = SO(G) +RS(G) +
∑

u is incident to e

√
dG(u)2 + dG(e)2. (2.1)

For edge e = uv ∈ E(G), equation (2.1) can be expressed as

ES(G) = SO(G) +RS(G) +
∑

uv∈E(G)

[√
dG(u)2 + (dG(u) + dG(v)− 2)2

+
√
dG(v)2 + (dG(u) + dG(v)− 2)2

]
. (2.2)

Observation 2.2([1, 13]) For any graph G with n ≥ 2,

Pl(G) = M1(G)− 2m.

Observation 2.3 Let G be a connected graph with n > 3. Then,

(i) |B(G)| = 2m+ M1(G)
2 ;

(ii) |B(G)| = 3m+ Pl(G)
2 .

Observation 2.4([5]) For any connected graph G with n ≥ 2,

(i) 2m (δ − 1) ≤ Pl(G) ≤ 2m (∆− 1);

(ii) m ≤ Pl(G) ≤ 2m (n− 2).

Proposition 2.1([6]) Let G be a r-regular graph with n > 3 and r > 1. Then

ES(G) = nr

[
r√
2

+
√

2(r − 1)2 +
√

5r2 − 8r + 4

]
.

Proposition 2.2([6]) Let G be a complete graph Kn, cycle Cn, a complete bipartite graph Kr,s

or a path Pn.

(i) If n ≥ 2 in Kn then

ES(Kn) = n(n− 1)

[
n− 1√

2
+
√

2(n− 2)2 +
√

5n2 − 18n+ 17

]
.

(ii) If n > 3 in Cn then

ES(Cn) = 8
√

2 n.
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(iii) If 1 6 r 6 s in Kr,s then

ES(Kr,s) = rs

[√
r2 + s2 +

√
2

2
(r + s− 2)2 +

√
r2 + (r + s− 2)2

+
√
s2 + (r + s− 2)2

]
.

(iv) If n > 4 in Pn then

ES(Pn) = 6
√

5 + 8
√

2 (n− 3).

Proposition 2.3 For any Wheel Wn with n > 4,

ES(Wn) = n
[
7
√

2 + 10
]

+ n
√
n2 + 9 + 2n

√
n2 + 2n+ 17

+n
[√

n2 + 2n+ 10 +
√

2n2 + 2n+ 1
]
.

Proof Let Wn be a Wheel with n > 4. Then |V3,3(G)| = n, |V3,n(G)| = n, |E4,4(G)| = n,

|E4,n+1(G)| = 2n, |En+1,n+1(G)| = n(n− 1)/2, A3,4(G) = 2n, and A3,n+1(G) = An,n+1 = n.

By Observation 2.1, we have

ES(Wn) = n
√

18 + n
√
n2 + 9 + n

√
32 + 2n

√
16 + (n+ 1)2 +

n(n− 1)

2

×
√

2(n+ 1)2 + 2n
√

25 + n
√

9 + (n+ 1)2 + n
√
n2 + (n+ 1)2.

ES(Wn) = n[7
√

2 + 10] + n
√
n2 + 9 + 2n

√
n2 + 2n+ 17 + n[

√
n2 + 2n+ 10

+
√

2n2 + 2n+ 1].

On simplification, we have the required result. �

Now, we obtain the relation between the Sombor index, reformulated Sombor index and

KG Sombor index of a graph G as follows:

Theorem 2.1 Let G be a connected graph with n > 3. Then

ES(G) = SO(G) +RS(G) +KG(G).

Proof Let G be a connected graph with n > 3. Then

ES(G) =
∑

x is either adjacent
or

incident to y

√
dG(x)2 + dG(y)2 =

∑
xy∈E(G)

√
dG(x)2 + dG(y)2
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+
∑

e,f∈E(G), e∼f

√
dG(e)2 + dG(f)2 +

∑
x is incident to e

√
dG(x)2 + dG(e)2

= SO(G) +RS(G) +KG(G).

Thus, the result follows. �

2.2. Inequalities in Terms of Order, Size and Minimum/Maximum Degree

Theorem 2.2 Let G be a connected graph with n > 3. Then

√
2m

n

[
nδ + 4(δ − 1)(2m− n) +

√
2n
√

5δ2 − 8δ + 4
]
≤ ES(G)

≤
√

2
[
m∆ + 2(∆− 1)(n∆2 − 2m) +

√
2m
√

5∆2 − 8∆ + 4
]
.

The both left and right inequalities holds if and only if G is regular.

Proof Let G be a connected graph with n > 3. Then

ES(G) =
∑

xy∈E(G)

√
dG(x)2 + dG(y)2 +

∑
e,f∈E(G), e∼f

√
dG(e)2 + dG(f)2

+
∑
x (e)

√
dG(x)2 + dG(e)2

>
∑

xy∈E(G)

√
2δ +

∑
e,f∈E(G), e∼f

2
√

2(δ − 1)

+
∑

x∈V (G)

∑
e∈E(G)

√
5δ2 − 8δ + 4

≥
√

2mδ + 2
√

2(δ − 1)
∑

x∈V (G)

dG(x)

2

+
∑

x∈V (G)

dG(x)
√

5δ2 − 8δ + 4

≥
√

2mδ + 2
√

2(δ − 1)(M1(G)− 2m) + 2m
√

5δ2 − 8δ + 4

≥
√

2mδ + 2
√

2(δ − 1)(
4m2

n
− 2m) + 2m

√
5δ2 − 8δ + 4

≥
√

2mδ + 4

√
2

n
(δ − 1)(2m2 −mn) + 2m

√
5δ2 − 8δ + 4

i.e.,

ES(G) ≥
√

2m

n

[
nδ + 4(δ − 1)(2m− n) +

√
2n
√

5δ2 − 8δ + 4
]
.

Similarly, we have to prove the right inequality.

The both left and right inequalities holds if and only if G is regular. �
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Theorem 2.3 Let G be a connected graph with n > 3. Then

√
2m
[√

2
√

5δ2 − 8δ + 4 + 4(δ − 1)2 + δ
]
6 ES(G)

≤
√

2m
[√

2
√

5∆2 − 8∆ + 4 + 4(∆− 1)2 + ∆
]
.

The both left and right inequalities holds if and only if G is regular.

Proof Let G be a connected graph with n > 3. By Theorem 2.2, Observations 2.2 and

2.4(i), we have

ES(G) ≥
√

2mδ + 2
√

2(δ − 1)(M1(G)− 2m) + 2m
√

5δ2 − 8δ + 4

≥
√

2mδ + 2
√

2(δ − 1)2m(δ − 1) + 2m
√

5δ2 − 8δ + 4

=
√

2mδ + 4m
√

2(δ − 1)2 + 2m
√

5δ2 − 8δ + 4.

i.e.,

ES(G) >
√

2m
[√

2
√

5δ2 − 8δ + 4 + 4(δ − 1)2 + δ
]
.

Similarly, we have to prove the right inequality.

The both left and right inequalities holds if and only if G is regular. �

Theorem 2.4 Let G be a connected graph with n > 3. Then

√
2m
[
δ + 2(δ − 1) +

√
10δ2 − 16δ + 8

]
6 ES(G)

≤
√

2m
[
∆ + 4(n− 2)(∆− 1) +

√
10∆2 − 16∆ + 8

]
.

The both left and right inequalities holds if and only if G is regular.

Proof Let G be a connected graph with n > 3. By Theorems 2.1 and 2.2, Observations 2.2

and 2.4(ii), we have

ES(G) 6
√

2m∆ + 2
√

2(∆− 1)(M1(G)− 2m) + 2m
√

5∆2 − 8∆ + 4

6
√

2m∆ + 2
√

2(∆− 1)2m(n− 2) + 2m
√

5∆2 − 8∆ + 4

ES(G) 6
√

2m
[
∆ + 4(n− 2)(∆− 1) +

√
10∆2 − 16∆ + 8

]
.

Similarly, we have to prove left inequality.

The both left and right inequalities holds if and only if G is regular. �

2.3. Inequalities in Terms of Other Degree Based Graphical Indices

Theorem 2.5 Let G be a connected graph with n > 3. Then

EM1(G)√
2

6 ES(G) 6 EM1(G).
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The both left and right inequalities holds if and only if G is regular.

Proof Let G be a connected graph with n > 3. We have

dG(x) + dG(y)√
2

6
√
dG(x)2 + dG(y)2 6 dG(x) + dG(y).

Therefore, the above inequalities which satisfies for each members and also taking the

summation of all the above inequalities, we have

1√
2

∑
{x,y}⊆B(G)

[dG(x) + dG(y)] 6
∑

{x,y}⊆B(G)

√
dG(x)2 + dG(y)2

6
∑

{x,y}⊆B(G)

dG(x) + dG(y).

Thus,
EM1(G)√

2
6 ES(G) 6 EM1(G).

The both left and right inequalities holds if and only if G is regular. �

Theorem 2.6 Let G be a connected graph with n > 3. Then

EM2(G)

√
2

∆
6 ES(G) 6 EM2(G)

√
2

δ
.

The both left and right inequalities holds if and only if G is regular.

Proof Let G be a connected graph with n > 3. Then

ES(G) =
∑

{x,y}⊆B(G)

√
dG(x)2 + dG(y)2

=
∑

{x,y}⊆B(G)

dG(x).dG(y)

√
1

dG(x)2
+

1

dG(y)2

≤
∑

{x,y}⊆B(G)

[dG(x).dG(y)]
(√ 1

δ2
+

1

δ2

)
≤ EM2(G)

√
2

δ
.

Similarly, we have to prove the left inequality. Therefore,

EM2(G)

√
2

∆
6 ES(G) 6 EM2(G)

√
2

δ
.

The both left and right inequalities holds if and only if G is regular. �

To prove our next result, we make use of the definition of line graph following.

Any two vertices of a line graph L(G) are adjacent if and only if the corresponding edges

of a graph G are incident with the same vertex of G. The line graph L(G) of a graph G is a
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graph whose vertices equal to the edges of G.

Theorem 2.7 Let G be a connected graph with n > 3. Then,

8
√

2m− 3
√

2|B(G)|+
√

2M2(G) +
F (G)√

2

6 ES(G) 6 16m− 6|B(G)|+ 2M2(G) + F (G).

The both left and right inequalities holds if and only if G is regular.

Proof Let G be a connected graph with n > 3. By Theorem 2.5, we have

EM1(G) = M1(G) +M1(L(G))

=
∑

uv∈E(G)

[
dG(u) + dG(v) + (dG(uv))2

]
≤ 4m− 3M1(G) + 2M2(G) +

∑
uv∈E(G)

[dG(u)2 + dG(v)2]

≤ 4m− 3
(
(2|B(G)| − 4m)

)
+ 2M2(G) + F (G)

≤ 16m− 6|B(G)|+ 2M2(G) + F (G).

Similarly, we have to prove the left inequality.

The both left and right inequalities holds if and only if G is regular. �

Theorem 2.8 Let G be a connected graph with n > 3. Then

EF (G)√
2 ∆

6 ES(G) ≤ EF (G)√
2 δ

.

The both left and right inequalities holds if and only if G is regular.

Proof Let G be a connected graph with n > 3. Then

ES(G) =
∑

{x,y}⊆B(G)

√
dG(x)2 + dG(y)2

=
∑

{x,y}⊆B(G)

dG(x)2 + dG(y)2√
dG(x)2 + dG(y)2

≤
∑

{x,y}⊆B(G)

[dG(x)2 + dG(y)2]
( 1√

δ2 + δ2

)
≤ EF (G)√

2 δ
.

Similarly, we have to prove the left inequality. Therefore,

EF (G)√
2 ∆

6 ES(G) 6
EF (G)√

2 δ
.
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The both left and right inequalities holds if and only if G is regular. �

Theorem 2.9 Let G be a connected graph with n > 3. Then

ER(G)
√

2 δ2 6 ES(G) 6 ER(G)
√

2 ∆2.

The left and right inequalities holds if and only if G is regular.

Proof Let G be a connected graph with n > 3. Then,

ES(G) =
∑

{x,y}⊆B(G)

√
dG(x)2 + dG(y)2

=
∑

{x,y}⊆B(G)

1√
dG(x).dG(y)

[√
dG(x).dG(y)

(
dG(x)2 + dG(y)2

)]
≤

∑
{x,y}⊆B(G)

1√
dG(x).dG(y)

[√
∆2 2(∆)2

]
≤ ER(G)

√
2 ∆2.

Similarly, we have to prove the left inequality. Therefore,

ER(G)
√

2 δ2 6 ES(G) 6 ER(G)
√

2 ∆2.

The both left and right inequalities holds if and only if G is regular. �

Theorem 2.10 Let G be a connected graph with n > 3. Then

ES(G) 6

√
∆2 + δ2

∆δ
ER(G).

The inequality holds if and only if G is regular.

Proof Let G be a connected graph with n > 3. Then,

ES(G) =
∑

{x,y}⊆B(G)

√
dG(x)2 + dG(y)2

=
∑

{x,y}⊆B(G)

√[
dG(x)

dG(y)
+
dG(y)

dG(x)

]
dG(x) dG(y)

≤

√[
∆2 + δ2

∆ δ

] ∑
{x,y}⊆B(G)

√
dG(x) dG(y)

≤

√[
∆2 + δ2

∆ δ

]
ER(G).

The inequality holds if and only if G is regular. �
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Corollary 2.1 Let G be an r-regular connected graph with n > 3. Then

ER(G) ≤ ES(G) ≤
√

2ER(G).

Theorem 2.11 Let G be a connected graph with n > 3. Then,

(i) ES(G) 6

√(
|B(G)|

)
EF (G) and

(ii) ES(G) 6

√(
|B(G)|

)
MEF ∗(G) (EF (G))2,

where,

MEF ∗(G) =
∑

{x,y}⊆B(G)

1

dG(x)2 + dG(y)2

is the modified forgotten index.

Proof Let G be a connected graph with n ≥ 3.

(i) Consider

ES(G) =
∑

{x,y}⊆B(G)

√
dG(x)2 + dG(y)2

≤
√(
|B(G)|

) ∑
{x,y}⊆B(G)

dG(x)2 + dG(y)2 ≤
√(
|B(G)|

)
EF (G).

(ii) Consider

ES(G) =
∑

{x,y}⊆B(G)

√
dG(x)2 + dG(y)2

≤

√√√√(|B(G)|)
∑

{x,y}⊆B(G)

[dG(x)2 + dG(y)2]
2

dG(x)2 + dG(y)2

≤

√√√√(|B(G)|)
∑

{x,y}⊆B(G)

1

dG(x)2 + dG(y)2

∑
{x,y}⊆B(G)

[dG(x)2 + dG(y)2]
2

≤
√

(|B(G)|) MEF ∗(G) (EF (G))2.

We obtained the desired results. �

Theorem 2.12 Let G be a connected graph with n > 3. Then

2δ2

√(
|B(G)|

)
MEF ∗(G) 6 ES(G) 6 2∆2

√(
|B(G)|

)
MEF ∗(G).

The both left and right inequalities holds if and only if G is regular.
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Proof Let G be a connected graph with n > 3. Then,

ES(G) =
∑

{x,y}⊆B(G)

√
dG(x)2 + dG(y)2

≤

√√√√(|B(G)|)
∑

{x,y}⊆B(G)

1

dG(x)2 + dG(y)2
(dG(x)2 + dG(y)2)2

≤
√

(|B(G)|) 4∆4MEF ∗(G)

≤ 2∆2
√

(|B(G)|) MEF ∗(G).

Similarly, we have to prove the left inequality. Therefore,

2δ2

√(
|B(G)|

)
MEF ∗(G) 6 ES(G) 6 2∆2

√(
|B(G)|

)
MEF ∗(G).

The both left and right inequalities holds if and only if G is regular. �

Corollary 2.2 Let G be a connected graph with n > 3. Then,

(i) ES(G) 6

√(
Pl(G)

2 + 3 m
)
EF (G) and

(ii) ES(G) 6

√(
Pl(G)

2 + 3 m
)
MEF ∗(G) (EF (G))2.

Corollary 2.3 Let G be a connected graph with n > 3. Then,

(i) ES(G) 6

√(
2m+ M1(G)

2

)
EF (G) and

(ii) ES(G) 6

√(
2m+ M1(G)

2

)
MEF ∗(G) (EF (G))2.

§3. Chemical Applicability of Linear [k] Alkanes

Hydrocarbons are one of the major part of chemical graph theory. The hydrocarbons are the

organic compounds containing carbon and hydrogen. For example alkane, alkene and alkynes.

Alkanes are saturated, open chain hydrocarbons containing carbon-carbon single bonds. For

example, methane (CH4), ethane (C2H6), propane (C3H8), etc. These hydrocarbons are inert

under normal conditions (i.e do not react with acids, bases and other reagents). Hence, they

were earlier known as paraffins. The uses of alkanes depends on the quantity of carbon atoms.

The first four alkanes are used largely for heating and culinary purposes. For more details, we

refer to [4, 16, 19].

The molecular graph of alkane is a tree in which vertices corresoponds to atoms and edges

to carbon-carbon or hydrogen-carbon bonds in a chemical alkane. The molecular formula for

alkane CnH2n+2 which contains (3n+2) - vertices and (3n+1) - edges and the linear [k] alkanes

can be represented as A[k], see Figure 1. For partitioned of A[k], the value of k represents the

stages of alkanes A[k]. If k = 1 the number of pair of adjacent edges in (3, 3) is 6. For k = 2



Some Inequalities for the Entire Sombor Index 61

the number of pair of adjacent edges in (3, 6) and (6, 6) are shown in Table 2.

b b b b b b b b b b

b

b b

b b

b b

b b

b

1 2 3 4 k

Figure 1. Linear [k] Alkanes(
dG(u), dG(v)

)
: uv ∈ E(G) (1, 4) (4, 4)

Number of edges (2k + 2) (k − 1)(
dG(e), dG(f)

)
: e, f ∈ E(G) (3, 3) (3, 6) (6, 6)

Number of pair of adjacent edges
[
(k − 2) + 6

][
4(k − 1) + 2

]
(k − 2)(

dG(u), dG(v)
)

: uv ∈ E(G) (1, 4) (4, 4)

dG(e) 3 6

Number of edges (2k + 2) (k − 1)

Table 2. Vertex-edges set partitions and their values.

Mathematically, the computed values of Sombor related indices of a graph can represents

as, SO(G) < KG(G) 6 RS(G) < ES(G). The computed values of graphical indices of different

stages k for 1 ≤ k ≤ 4 as shown in Table 3 and its comparative analysis as shown in Figure 2.

This shows the highest and least value of Sombor related topological indices.

Indices Computed values

SO(G) [2
√

17 + 4
√

2]k + [2
√

17− 4
√

2]

RS(G) [5 + 6
√

2]k + [24
√

2 + 6
√

5]

KG(G) [2
√

10 + 4
√

13 + 10]k + [2
√

10− 4
√

13 + 10]

ES(G) [10
√

2 + 2
√

17 + 2
√

10 + 4
√

13 + 15]k

+[20
√

2 + 2
√

17 + 6
√

5 + 2
√

10− 4
√

13 + 4]

Table 3. The computed values of Sombor related indices
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Figure 2. The computed values of Sombor related indices
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Also, the computed values of graphical indices with respected to the particular values k

for 1 ≤ k ≤ 4 as shown in Table 4 and its comparative analysis as shown in Figure 3 as follows:

Stages of k
Sombor related indices

SO(G) RS(G) KG(G) ES(G)

k=1 16.492 54.842 32.649 103.984

k=2 30.395 68.328 63.395 162.119

k=3 44.298 81.813 94.142 220.254

k=4 58.201 95.298 124.889 278.389

Table 4. The particular values of Sombor related indices
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Figure 3. The particular values of Sombor related indices

§4. Conclusion

A topological descriptor can be assumed to be a function that provides the information in

numerical form about any underline molecular structure. Topological descriptors capture the

symmetry of chemical compounds and present the facts in the numerical form including the

presence of heteroatoms, molecular size, multiple bonds, shape and branching.
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§1. Introduction

All the graphs considered here are loopless and finite. For a given graph G and an integer

λ ≥ 1, we use the notation G(λ) to represent the multigraph obtained from G by replacing each

of its edges with λ parallel edges. Similarly, λG denotes the graph consisting of λ edge-disjoint

copies of G. The notations Pt, Ct, Kt, and Kt represents the path, cycle, complete graph,

and complement of the complete graph, each with t vertices, respectively. Also, we denote

the induced subgraph H of G induced by S as 〈S〉. Consider a complete bipartite graph Kt,t

with bipartition (X,Y ), where X = {x0, x1, · · · , xt−1} and Y = {y0, y1, · · · , yt−1}. We define

the spanning subgraph Fi(X,Y ) of Kt,t as 〈{xjyj+i : 0 ≤ j ≤ t− 1}〉, where addition in the

subscripts are taken modulo t. It is clear that Fi(X,Y ) is a 1-factor of Kt,t with a distance

i from X to Y . Moreover, Kt,t =
t−1⊕
i=0

Fi(X,Y ), where ⊕ denotes the edge-disjoint union of

graphs, also called a Smarandache decomposition if Kt,t is labeled.

For two graphs G and H, their lexicographic product G ⊗ H has the vertex set V (G ⊗
H) = V (G) × V (H) and the edge set E(G ⊗ H) = {(g1, h1)(g2, h2) : g1g2 ∈ E(G) or g1 =

g2 and h1h2 ∈ E(H)}. Similarly, the tensor product G × H of two graphs G and H has the

vertex set V (G ×H) = V (G) × V (H) and the edge set E(G ×H) = {(g1, h1)(g2, h2) : g1g2 ∈
E(G) and h1h2 ∈ E(H)}. Note that, the tensor product is commutative and distributive over

edge-disjoint union of graphs, that is, if G = G1 ⊕ G2 ⊕ · · · ⊕ Gu, then G ×H = (G1 ×H) ⊕
· · · ⊕ (Gu×H). One can easily observe that (Ku⊗Kg)− gKu

∼= Ku×Kg, where gKu denotes

g disjoint copies of Ku.

For some integer r ≥ 1, we say that the graph G has a decomposition into the subgraphs

1Received October 4, 2023, Accepted March 6,2024.
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G1, G2, · · · , Gr if G = ⊕ri=1Gi, and G1, G2, · · · , Gr are pairwise edge-disjoint subgraphs of G.

For each i, 1 ≤ i ≤ r, if Gi ∼= H, then we say that G has an H-decomposition and we denote

such decomposition by H|G. A graph G is said to be unicyclic if it has exactly one cycle.

Decomposition of graphs into subgraphs has been an interesting research area in graph

theory since 1950s. Adams et al. [1] published an excellent survey on decomposing complete

graphs into subgraphs containing up to six vertices. Tian et al. [17] established the decomposi-

tion of complete graphs into unicyclic graphs with six vertices and seven edges, while Froncek et

al. [10] proved the decomposition of complete graphs into connected unicyclic bipartite graphs

with seven edges. In recent studies, Froncek et al. [11,12] proved the decomposition of complete

graphs into tri-cyclic and bi-cyclic graphs, each with eight edges. Furthermore, Fahnenstiel et

al. [5] established the necessary and sufficient conditions for the existence of a decomposition

of complete graphs into connected unicyclic bipartite graphs with eight edges. Huang et al.

[13] proved the decomposition of complete equipartite graphs into connected unicyclic graphs,

each having a size of five vertices. Similarly, Paulraja et al. [14] established the decomposition

of certain regular graphs into unicyclic graphs of order five. Sowndhariya et al. [15] proved the

decomposition of product graphs into sunlet graphs of order eight. Aspenson et al. [3], proved

the decomposition K18n and K18n+1 into connected unicyclic graphs with nine edges. Similarly,

Bonhert et al. [4], proved the decompositions of complete graphs into unicyclic disconnected

bipartite graphs with nine edges. Recently, we have proved the existence of decomposition of

λ-fold complete equipartite graphs into connected unicyclic bipartite graphs with eight edges

in [6] and the general problem is open for other classes of product of graphs. In this paper, we

show the existence of such decomposition in tensor product of complete graphs.

Let G1, G2, G3, G4 and G5 be the graphs shown in Figure 1. We assume that these graphs

have the vertex set {v1, v2, · · · , v8}. The edge set of the unicyclic graphs G1, G2, G3, G4, and G5

are denoted by (v1v2v3v4) [v1v5v6v7v8], (v1v2v3v4) [v1v5v7v8] [v5v6], (v1v2v3v4) [v2v6v7v8] [v1v5],

(v1v2v3v4) [v1v5v6] [v3v7v8], and (v1v2v3v4)[v1v5v6] [v4v7] [v3v8], respectively. Clearly, each

Gi, 1 ≤ i ≤ 5, is a connected unicyclic bipartite graph with eight edges.

Figure 1. Connected unicyclic bipartite graphs with eight edges

To prove our results we state the following:

Theorem 1.1([16]) There exists a Pm+1-decomposition of Ku(λ) if and only if λu(u−1) ≡ 0

(mod 2m), u ≥ m+ 1.

Theorem 1.2([2]) For all positive odd integers m and n with 3 ≤ m ≤ n, there exists a

Cm-decomposition of Kn if and only if n(n− 1) ≡ 0 (mod 2m).
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Theorem 1.3([6]) There exists a Gi-decomposition of K4x,4y, 1 ≤ i ≤ 5.

§2. Gi-Decomposition of Base Graphs

In this part, we have established some crucial lemmas to prove our main results.

Lemma 2.1 The graphs K4,2, K4,4 and K4,6 admits a P3-decomposition.

Proof Our proof is divided into two cases.

Case 1. P3|K4,4

Let V (K4,4) = (U, V ), where U = {u0, u1, u2, u3} and V = {v0, v1, v2, v3}. Let P j,13 =

[vjujvj+1] and P j,23 = [ujvj+2uj+3], j ∈ Z4 and additions in the subscripts of u and v are taken

modulo 4. When j varies, {P j,13 , P j,23 } gives a required P3-decomposition of K4,4.

Case 2. P3|K4,6

Let V (K4,4) = (U, V ), where U = {u0, u1, u2, u3} and V = {v0, v1, · · · , v5}. Let P j,13 =

[vjujvj+1], P j,23 = [ujvj+2uj+3], and P j,33 = [v4ujv5], j ∈ Z4 and additions in the subscripts of

u and v are taken modulo 4. When j varies, {P j,13 , P j,23 , P j,33 } gives a required P3-decomposition

of K4,6. �

Lemma 2.2 There exists a Gi-decomposition of P3 ×K5, 1 ≤ i ≤ 5.

Proof Let V (P3 × K5) = ∪i∈Z3
Xi, where X0 = {u0, u1, · · · , u4}, X1 = {v0, v1, · · · , v4}

and X2 = {w0, w1, · · · , w4}. The required Gi-decomposition of P3 ×K5 is shown below.

Let Gj1 = (uj+1vj+3uj+4vj+2)[vj+2wj+3vj+4wj+2vj ],

Gj2 = (uj+1vj+3uj+4vj+2)[vj+2wj+3vj+4wj+2][wj+3vj+1],

Gj3 = (uj+1vj+3wj+1vj+2)[uj+1vjwj+2vj+1][vj+3uj ],

Gj4 = (uj+1vj+3uj+4vj+2)[vj+3wjvj+1][vj+2wj+3vj ], and

Gj5 = (uj+1vj+3wj+1vj+2)[wj+1vj+4wj ][vj+2uj+4][uj+1vj ], j ∈ Z5, where the additions

in the subscripts of u, v, and w are taken modulo 5. Clearly, Gji
∼= Gi, i = 1, 2, 3, 4, 5, j ∈ Z5

shown in Figure 1. When j varies we get the required decomposition of P3 ×K5. �

Lemma 2.3 There exists a Gi-decomposition of P3 ×K8, 1 ≤ i ≤ 5.

Proof Let V (P3 × K8) = ∪i∈Z3
Xi, where X0 = {u0, u1, · · · , u7}, X1 = {v0, v1, · · · , v7}

and X2 = {w0, w1, · · · , w7}. The required Gi-decomposition of P3 ×K8 is shown below.

Let Gj,11 = (uj+5v7wj+6vj+4)[wj+6vj+3uj+2vjw7],

Gj,21 = (ujvj+2wj+1vj+3)[ujvj+4wj+5vj+1u7],

Gj,12 = (uj+6v7wj+6vj+5)[vj+5wj+4vj+2u7][wj+4vj+1],

Gj,22 = (uj+5vjwj+5vj+1)[vj+1ujvj+5w7][ujvj+4],
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Gj,13 = (uj+6v7wj+6vj+5)[uj+6vj+4wj+3vj+1][vj+5u7],

Gj,23 = (uj+5vjwj+5vj+1)[vj+1ujvj+4w7][wj+5vj+2],

Gj,14 = (uj+6v7wj+6vj+5)[uj+6vj+4u7][wj+6vj+3w7],

Gj,24 = (ujvj+2wjvj+1)[ujvj+3uj+6][wjvj+5wj+2],

Gj,15 = (uj+6v7wj+6vj+5)[wj+6vj+4u7][vj+5w7][uj+6vj+3] and

Gj,25 = (ujvj+2wjvj+1)[ujvj+3uj+5][vj+1wj+5][wjvj+4], j ∈ Z7, where the additions in

the subscripts of u, v, and w are taken modulo 7. Clearly, Gj,li
∼= Gi, i = 1, 2, 3, 4, 5, j ∈ Z7, l ∈

{1, 2}.When j and l varies, we get the required decomposition of P3 ×K8. �

Lemma 2.4 There exists a G1-decomposition of P3 ×K12.

Proof Let V (P3 ×K12) = ∪i∈Z3
Xi, where X0 = {u0, u1, · · · , u11}, X1 = {v0, v1, · · · , v11}

and X2 = {w0, w1, · · · , w11}. The required G1-decomposition of P3 ×K12 is given below.

Let Gj,11 = (uj+10v11wj+10vj+9)[wj+10vj+8uj+7vj+5w11],

Gj,21 = (uj+10vj+6wj+10vj+7)[uj+10vj+5wj+4vj+10u11] and

Gj,31 = (ujvj+2wj+9vj+3)[ujvj+5wj+3vj+6uj+2], j ∈ Z11, where the additions in the

subscripts of u, v, and w are taken modulo 11. Clearly, Gj,l1
∼= G1, j ∈ Z11, l ∈ {1, 2, 3}. When

j and l varies, we get the required decomposition of P3 ×K12. �

Lemma 2.5 There exists a Gi-decomposition of P5 ×K6, 1 ≤ i ≤ 5.

Proof Let V (P5×K6) = ∪i∈Z5Xi, whereX0 = {u0, u1, · · · , u5}, X1 = {v0, v1, · · · , v5}, X2 =

{w0, w1, · · · , w5}, X3 = {x0, x1, · · · , x5}, andX4 = {y0, y1, · · · , y5}. The requiredGi-decomposition

of P5 ×K6 is given below.

Let Gj,11 = (ujvj+1uj+3vj+2)[uj+3v5wj+4vj+3u5],

Gj,21 = (vjwj+3xj+1wj+2)[wj+3vj+4w5xj+4y5],

Gj,31 = (wj+4x5yj+4xj+1)[yj+4xjyj+1xj+4wj+3],

Gj,12 = (ujvj+1uj+3vj+2)[vj+2wj+3v5uj+4][wj+3xj+4],

Gj,22 = (vjwj+3xj+1wj+2)[wj+3vj+4w5xj+4][vj+4u5],

Gj,32 = (wj+4x5yj+4xj+1)[yj+4xjyj+1xj+4][xjy5],

Gj,13 = (ujvj+1uj+3vj+2)[uj+3v5wj+3xj+4][vj+1wj+2],

Gj,23 = (vjwj+3xj+1wj+2)[wj+3vj+4w5xj+4][vju5],

Gj,33 = (wj+4x5yj+4xj+1)[yj+4xjyj+1xj+4][xj+1y5],

Gj,14 = (uj+4v5wj+4vj+3)[uj+4vj+2u5][wj+4vj+1wj+3],

Gj,24 = (vj+4w5xj+4wj+3)[vj+4uj+3vj ][xj+4yj+3xj ],

Gj,34 = (wj+4x5yj+4xj+3)[wj+4xj+1wj+3][yj+4xj+2y5],

Gj,15 = (uj+4v5wj+4vj+3)[uj+4vj+2u5][vj+3wj ][wj+4vj+1],
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Gj,25 = (vj+4w5xj+4wj+3)[vj+4uj+3vj ][wj+3xj+1][xj+4yj+3] and

Gj,35 = (wj+4x5yj+4xj+3)[yj+4xj+2y5][xj+3yj+1][wj+4xj+1], j ∈ Z5, where the

additions in the subscripts of u, v, w, x, and y are taken modulo 5. Clearly, Gj,li
∼= Gi, i =

1, 2, 3, 4, 5, j ∈ Z5, l ∈ {1, 2, 3}. When j and l varies, we get the required decomposition of

P5 ×K6. �

Lemma 2.6 There exists a Gi-decomposition of K9 ×K2, 1 ≤ i ≤ 5.

Proof Let V (K9 × K2) = (U, V ), where U = {u0, u1, · · · , u8} and V = {v0, v1, · · · , v8}.
The required Gi-decomposition of K9 ×K2 is given below.

Let Gj1 = (ujvj+1uj+3vj+2)[uj+3vj+6uj+2vj+7uj+1],

Gj2 = (ujvj+1uj+3vj+2)[uj+3vj+6uj+2vj+8][vj+6uj+1],

Gj3 = (ujvj+1uj+3vj+2)[uj+3vj+6uj+2vj+8][vj+2uj+6],

Gj4 = (ujvj+1uj+3vj+2)[uj+3vj+6uj+2][ujvj+5uj+8], and

Gj5 = (ujvj+1uj+3vj+2)[uj+3vj+6uj+2][vj+2uj+5][ujvj+5], j ∈ Z9, where the additions

in the subscripts of u and v are taken modulo 9. Clearly, Gji
∼= Gi, i = 1, 2, 3, 4, 5, j ∈ Z9.

When j varies, we get the required decomposition of K9 ×K2. �

Lemma 2.7 There exists a Gi-decomposition of C3 ×K8, 1 ≤ i ≤ 5.

Proof Let V (C3 × K8) = ∪i∈Z3Xi, where X0 = {u0, u1, · · · , u7}, X1 = {v0, v1, · · · , v7}
and X2 = {w0, w1, · · · , w7}. The required Gi-decomposition of C3 ×K8 is given below.

Let Gj,11 = (uj+5vj+6u7wj+6)[uj+5vjuj+4vj+1uj+3],

Gj,21 = (uj+6v7wj+6vj+5)[vj+5wjvj+4wj+1vj+3],

Gj,31 = (uj+6w7vj+6wj+5)[wj+5ujwj+4uj+1wj+3],

Gj,12 = (uj+5vj+6u7wj+6)[uj+5vjuj+4vj+1][vjuj+2],

Gj,22 = (uj+6v7wj+6vj+5)[vj+5wjvj+4wj+1][wjvj+2],

Gj,32 = (uj+6w7vj+6wj+5)[wj+5ujwj+4uj+1][ujwj+2],

Gj,13 = (uj+5vj+6u7wj+6)[uj+5vjuj+4vj+1][vj+6wj+4],

Gj,23 = (uj+6v7wj+6vj+5)[vj+5wjvj+4wj+1][wj+6uj+4],

Gj,33 = (uj+6w7vj+6wj+5)[wj+5ujwj+4uj+1][uj+6vj+4],

Gj,14 = (uj+5vj+6u7wj+6)[vj+6wj+1vj+5][wj+6uj+1wj+5],

Gj,24 = (uj+6v7wj+6vj+5)[uj+6vj+1uj+5][wj+6uj+4wj ],

Gj,34 = (uj+6w7vj+6wj+5)[uj+6vj+3uj+5][vj+6wj+3vj+5],

Gj,15 = (uj+5vj+6u7wj+6)[wj+6uj+3wj+5][uj+5vj ][vj+6wj+1],

Gj,25 = (uj+6v7wj+6vj+5)[uj+6vj+2uj+5][vj+5wj+1][wj+6uj+2] and

Gj,35 = (uj+6w7vj+6wj+5)[vj+6wj+2vj+5][wj+5uj ][uj+6vj+4], j ∈ Z7,
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where the additions in the subscripts of u, v, and w are taken modulo 7. Clearly, Gj,li
∼= Gi, i =

1, 2, 3, 4, 5, j ∈ Z7, l ∈ {1, 2, 3}. When j and l varies, we get the required decomposition of

C3 ×K8. �

Lemma 2.8 There exists a Gi-decomposition of K4 ×K4, 2 ≤ i ≤ 5.

Proof Let V (K4×K4) = ∪i∈Z4
Xi, where X0 = {u0, u1, u2, u3}, X1 = {v0, v1, v2, v3}, X2 =

{w0, w1, w2, w3}, and X3 = {x0, x1, x2, x3}. The required Gi-decomposition of K4×K4 is given

below.

Let Gj,12 = (u3vj+2w3xj+2)[u3wj+1x3uj+1][wj+1uj ],

Gj,22 = (ujvj+1wjxj+1)[wjuj+1v3wj+2][uj+1w3],

Gj,32 = (uj+1vjwj+1xj)[vjxj+1vj+2x3][xj+1v3],

Gj,13 = (u3vj+2w3xj+2)[vj+2x3wj+2v3][u3wj+1],

Gj,23 = (ujvj+1wjxj+1)[vj+1xj+2v3uj+2][ujw3],

Gj,33 = (uj+1vjwj+1xj)[uj+1wjuj+2x3][vjxj+2],

Gj,14 = (u3vj+2w3xj+2)[u3wj+1uj ][w3uj+1x3],

Gj,24 = (ujvj+1wjxj+1)[ujwj+2x3][wjv3uj+2],

Gj,34 = (uj+1vjwj+1xj)[vjxj+1v3][xjvj+1x3],

Gj,15 = (u3vj+2w3xj+2)[u3wj+1uj ][vj+2xj+1][w3uj+2],

Gj,25 = (ujvj+1wjxj+1)[wjx3uj+2][vj+1xj+2][ujv3] and

Gj,35 = (uj+1vjwj+1xj)[wj+1v3xj+2][vjx3][uj+1wj ], j ∈ Z3,

where the additions in the subscripts of u, v, w, and x are taken modulo 3. Clearly, Gj,li
∼=

Gi, i = 1, 2, 3, 4, 5, j ∈ Z3, l ∈ {1, 2, 3}. When j and l varies, we get the required decomposition

of K4 ×K4. �

Lemma 2.9 For g ≡ 0 (mod 8), there exists a Gi-decomposition of K6 ×Kg, 1 ≤ i ≤ 5.

Proof Let g = 8x, x ≥ 1. We can write K8x = (Kx⊗K8)⊕xK8 =
(
x
2

)
(K2⊗K8)⊕xK8

∼=(
x
2

)
K8,8 ⊕ xK8 and hence K8x × K6 =

(
x
2

)
(K8,8 × K6) ⊕ x(K8 × K6) = 15

(
x
2

)
(K8,8 × K2) ⊕

x(K8 ×K6). By Theorem 1.3, Gi|K8,8, since Gi is bipartite, Gi ×K2 = 2Gi. By Theorem 1.1,

P5|K8 and hence Gi|P5 × K6 by Lemma 2.5. Therefore, the graph K6 × K8x has a required

Gi-decomposition. �

Lemma 2.10 For g ≡ 0 (mod 8), there exists a Gi-decomposition of P3 ×Kg, 1 ≤ i ≤ 5.

Proof Let g = 8x, x ≥ 1. We can write P3 ×K8x = ((P3 ×Kx) ⊗K8) ⊕ x(P3 ×K8) =

((P3 ×
(
x
2

)
K2)⊗K8)⊕ x(P3 ×K8) =

((
x
2

)
(P3 ×K2)⊗K8

)
⊕ x(P3 ×K8) = 4

(
x
2

)
(K2 ⊗K8)⊕

x(P3 ×K8) = 4
(
x
2

)
K8,8 ⊕ x(P3 ×K8). By Theorem 1.3 and Lemma 2.3, the graph P3 ×K8x

has a required Gi-decomposition. �

Lemma 2.11 For u ≡ 0, 4 (mod 8) and g ≡ 0 (mod 4), G1-decomposition of Ku ×Kg exists.

Proof Let u = 8x + t, x ≥ 1 and t ∈ {0, 4}. We can write K8x+t = K8+t ⊕ (x − 1)K8 ⊕
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(x−1)K8,8+t⊕ (Kx−1⊗K8) = K8+t⊕ (x−1)K8⊕ (x−1)K8,8+t⊕ (
(
x−1

2

)
(K2⊗K8)) = K8+t⊕

(x− 1)K8⊕ (x− 1)K8,8+t⊕
(
x−1

2

)
K8,8. By Theorem 1.1, P3|Kg and G1|K8+t×P3, by Lemmas

2.3 and 2.4. By Theorem 1.3, G1|K8,8+t and hence G1 ×Kg = G1 × (
(
g
2

)
K2) =

(
g
2

)
(G1 ×K2),

since G1 is bipartite, G1 ×K2 = 2G1. Therefore, G1-decomposition of Ku ×Kg exists. �

§3. Gi-Decomposition of Ku ×Kg

Theorem 3.1 Let u, g ≥ 4. For 1 ≤ i ≤ 5, Gi|Ku ×Kg if and only if ug(u − 1)(g − 1) ≡ 0

(mod 16), except possibly (u, g,Gi) = (4, 4, G1).

Proof Necessity: The number of edges in Ku×Kg are
(
u
2

)
(g2− g) and Gi has 8 edges. If

Gi|Ku ×Kg, then 8|
(
u
2

)
(g2 − g). Hence ug(u− 1)(g − 1) ≡ 0 (mod 16).

Sufficiency: To prove the sufficiency, from the edge divisibility condition, it is enough to

discuss the following cases.

• u ≡ 0 (mod 4) and g ≡ 0 (mod 4); • u ≡ 0 (mod 4) and g ≡ 1 (mod 4);

• u ≡ 2 (mod 4) and g ≡ 0 (mod 8); • u ≡ 2 (mod 4) and g ≡ 1 (mod 8);

• u ≡ 3 (mod 4) and g ≡ 0 (mod 8); • u ≡ 3 (mod 4) and g ≡ 1 (mod 8);

• u ≡ 1 (mod 4) and g ≡ 1 (mod 4).

Case 1. u ≡ 0 (mod 4) and g ≡ 0 (mod 4)

By Lemma 2.11, G1|Ku×Kg exists and hence it is enough to prove Gi|Ku×Kg, 2 ≤ i ≤ 5.

Let u = 4x and g = 4y, x, y ≥ 1. We can write K4x = (Kx⊗K4)⊕xK4 =
(
x
2

)
(K2⊗K4)⊕xK4 =(

x
2

)
K4,4⊕xK4 andK4y =

(
y
2

)
K4,4⊕yK4. ThenK4x×K4y =

((
x
2

)
K4,4⊕xK4

)
×
((
y
2

)
K4,4⊕yK4

)
=(

x
2

)(
y
2

)
(K4,4 × K4,4) ⊕ y

(
x
2

)
(K4,4 × K4) ⊕ x

(
y
2

)
(K4,4 × K4) ⊕ xy(K4 × K4) = 16

(
x
2

)(
y
2

)
(K4,4 ×

K2)⊕ 6y
(
x
2

)
(K4,4 ×K2)⊕ 6x

(
y
2

)
⊕ (K4,4 ×K2)⊕ xy(K4 ×K4). By Theorem 1.3, Gi|K4,4 since

Gi is bipartite, Gi ×K2 = 2Gi. By Lemma 2.8, Gi|K4 ×K4, 2 ≤ i ≤ 5. Therefore, the graph

K4x ×K4y has a required Gi-decomposition.

Case 2. u ≡ 0, 1 (mod 4) and g ≡ 1 (mod 4)

Let g = 4x + 1, x ≥ 1. We can write K4x+1 = (Kx ⊗K4) ⊕ xK5 =
(
x
2

)
K4,4 ⊕ xK5 and

hence Ku ×K4x+1 =
(
x
2

)
(Ku ×K4,4) ⊕ x(Ku ×K5) =

(
u
2

)(
x
2

)
(K2 ×K4,4) ⊕ x(Ku ×K5). By

Theorem 1.3, Gi|K4,4, since Gi is bipartite, Gi×K2 = 2Gi. By Theorem 1.1, P3|Ku and hence

Gi|P3×K5 by Lemma 2.2. Therefore, the graph Ku×K4x+1 has a required Gi-decomposition.

Case 3. u ≡ 2 (mod 4) and g ≡ 0 (mod 8)

Let u = 4x+2, x ≥ 1. We can write K4x+2 = K6⊕(x−1)K4⊕(x−1)K4,6⊕(Kx−1⊗K4) =

K6 ⊕ (x− 1)K4 ⊕ (x− 1)K4,6 ⊕
(
x−1

2

)
K4,4 and hence K4x+2 ×Kg = (K6 ×Kg)⊕ (x− 1)(K4 ×

Kg) ⊕ (x − 1)(K4,6 × Kg) ⊕
(
x−1

2

)
(K4,4 × Kg). By Lemma 2.9, the graph K6 × Kg has a

Gi-decomposition. By Theorem 1.1 and Lemma 2.1, P3|K4, P3|K4,4, and P3|K4,6 and hence

Gi|P3×Kg by Lemma 2.10. Therefore, the graph K4x+2×Kg has a required Gi-decomposition.

Case 4. u ≡ 3 (mod 4) and g ≡ 0 (mod 8)
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Let u = 4x+3, x ≥ 1. We can write K4x+3 = K7⊕(x−1)K5⊕(x−1)K4,6⊕(Kx−1⊗K4) =

K7⊕(x−1)K5⊕(x−1)K4,6⊕
(
x−1

2

)
K4,4 and hence K4x+3×Kg = (K7×Kg)⊕(x−1)(K5×Kg)⊕

(x−1)(K4,6×Kg)⊕
(
x−1

2

)
(K4,4×Kg). By Theorem 1.2, C3|K7 and the graphs K5, K4,2, K4,4

has P3-decomposition by Theorem 1.1 and Lemma 2.1. Then by Lemmas 2.7 and 2.3, the

graphs C3 ×Kg and P3 ×Kg has Gi-decomposition. Therefore, the graph K4x+3 ×Kg has a

required Gi-decomposition.

Case 5. u ≡ 2, 3 (mod 4) and g ≡ 1 (mod 8)

Let g = 8x + 1, x ≥ 1. We can write K8x+1 = (Kx ⊗K8) ⊕ xK9 =
(
x
2

)
K8,8 ⊕ xK9 and

hence Ku × K8x+1 =
(
x
2

)
(Ku × K4,4) ⊕ x(Ku × K9) =

(
u
2

)(
x
2

)
(K2 × K8,8) ⊕ x

(
u
2

)
(K2 × K9).

By Theorem 1.3, Gi|K8,8, since Gi bipartite, Gi ×K2 = 2Gi and by Lemma 2.6, Gi|K9 ×K2.

Therefore, the graph Ku ×K8x+1 has a required Gi-decomposition. �
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§1. Introduction

In 1975, the connectivity index (now also called the Randić index or the branching index)

of a graph G, denoted by R(G), introduced by the chemist Milan Randić [6], is the degree-

based topological index that is most frequently applied in quantitative structure-property and

structure-activity studies. For a simple undirected graph G = (V,E) with vertex set V (G) and

edge set E(G), its Randić index is defined as

R(G) =
∑

uv∈E(G)

1√
dudv

,

where du denotes the degree of the vertex u in G.

The sum-connectivity index [14], the atom-bond connectivity index [3] and the atom-bond

sum-connectivity index [1] are the class of successful variants of the connectivity index, and

defined as

SCI(G) =
∑

uv∈E(G)

1√
du + dv

,

ABC(G) =
∑

uv∈E(G)

√
du + dv − 2

dudv
,

ABS(G) =
∑

uv∈E(G)

√
1− 2

du + dv
.

In 1976, Kier et al. [4] modified the Randić index, and proposed the higher order Randić

1Supported by the National Natural Science Foundation of China (No. 12261074).
2Received November 3, 2023, Accepted March 8,2024.
3Corresponding author: Zhen Lin, E-mail: lnlinzhen@163.com.
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index hR(G) of a graph G, that is,

hR(G) =
∑

v1,v2,...,vh+1∈Eh(G)

1√
dv1dv2 · · · dvh+1

,

where Eh(G) is all paths of length h in G. Clearly, E1(G) is the edge of G. Thus the higher

order Randić index is a natural extension of the Randić index. The higher order Randić index

is of great interest in mathematics [2,7,9,11] and the theory of molecular topology [10]. In

particular, the lower order Randić index has attracted widespread attention from scholars, and

extensively studied [5,8,12,13]. However, these investigations all focused on benzenoid systems.

The results of the chemical trees (alkanes) have not been reported.

Naturally, we need to study other high order connectivity indices, especially the second

order connectivity indices. By definition, the second sum-connectivity index, second atom-bond

connectivity index and the second atom-bond sum-connectivity index are respectively

2SCI(G) =
∑

uvw∈E2(G)

1√
du + dv + dw

,

2ABC(G) =
∑

uvw∈E2(G)

√
du + dv + dw − 3

dudvdw
,

2ABS(G) =
∑

uvw∈E2(G)

√
1− 3

du + dv + dw
.

In this paper, the expression of the second order connectivity indices of some chemical

trees is found.

§2. Chemical Trees of Module 2

The chemical trees of T 0
2 and T 1

2 are shown in Figure 1.

Figure 1. T 0
2 and T 1

2

Theorem 2.1 The second order connectivity indices of T 0
2 with n vertices are given by

2R(T 0
2 ) =

(6 +
√

3)n

18
+

√
3− 2

3
,

2SCI(T 0
2 ) =

(7 + 6
√

7)n

42
+

14
√

5− 10
√

7− 35

35
,

2ABC(T 0
2 ) =

(4 +
√

2)n

6
+

2
√

6− 3
√

2− 4

3
,

2ABS(T 0
2 ) =

(12
√

7 + 7
√

6)n

42
+

14
√

10− 20
√

7− 35
√

6

35
.
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Proof Let m(i, j, k) denote the number of paths with degree sequence (i, j, k). Then we

can obtain the basic information on T 0
2 in the following table.

m(1, 3, 1) m(1, 3, 3) m(3, 3, 3)

2 n− 2 n−6
2

Thus, we have

2R(T 0
2 ) =

∑
uvw∈E2(T )

1√
dudvdw

= 2× 1√
3

+ (n− 2)× 1√
9

+
n− 6

2
× 1√

27

=
(6 +

√
3)n

18
+

√
3− 2

3
,

2SCI(T 0
2 ) =

∑
uvw∈E2(T )

1√
du + dv + dw

= 2× 1√
5

+ (n− 2)× 1√
7

+
n− 6

2
× 1√

9

=
(7 + 6

√
7)n

42
+

14
√

5− 10
√

7− 35

35
,

2ABC(T 0
2 ) =

∑
uvw∈E2(T )

√
du + dv + dw − 3√

dudvdw

= 2×
√

6

3
+

2n− 4

3
+
n− 6

2
×
√

2

3

=
(4 +

√
2)n

6
+

2
√

6− 3
√

2− 4

3
,

2ABS(T 0
2 ) =

∑
uvw∈E2(T )

√
1− 3

du + dv + dw

= 2×
√

2√
5

+ (n− 2)× 2√
7

+
n− 6

2
×
√

6

3

=
(12
√

7 + 7
√

6)n

42
+

14
√

10− 20
√

7− 35
√

6

35
.

This completes the proof. �

Theorem 2.2 The second order connectivity indices of T 1
2 with n vertices are given by

2R(T 1
2 ) =

(6 +
√

3)n

18
+

6
√

6−
√

3 + 3
√

2− 24

18
,

2SCI(T 1
2 ) =

(7 + 6
√

7)n

42
+

84
√

5− 240
√

7 + 140
√

6− 490 + 105
√

2

420
,

2ABC(T 1
2 ) =

(4 +
√

2)n

6
+

2
√

6− 16−
√

2 +
√

10

6
,

2ABS(T 1
2 ) =

(7
√

6 + 12
√

7)n

42
+

189
√

10− 490
√

6− 480
√

7 + 420
√

2

420
.
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Proof Let m(i, j, k) denote the number of paths with degree sequence (i, j, k). Then we

can obtain the basic information on T 1
2 in the following table.

m(1, 3, 1) m(1, 3, 3) m(3, 3, 3) m(1, 2, 3) m(1, 3, 2) m(3, 3, 2)

1 n− 4 n−7
2 1 1 1

Thus we have

2R(T 1
2 ) =

∑
uvw∈E2(T )

1√
dudvdw

= 1× 1√
3

+ (n− 4)× 1√
9

+
n− 7

2
× 1√

27
+ 1× 1√

6
+ 1× 1√

6
+ 1×

√
2

6

=
1√
3

+
n− 4

3
+
n− 7

6
× 1√

3
+

√
6

6
+

√
6

6
+

√
2

6

=
(6 +

√
3)n

18
+

6
√

6−
√

3 + 3
√

2− 24

18
,

2SCI(T 1
2 ) =

∑
uvw∈E2(T )

1√
du + dv + dw

= 1× 1√
5

+ (n− 4)× 1√
7

+
n− 7

2
× 1√

9
+ 1× 1√

6
+ 1× 1√

6
+ 1× 1√

8

=

√
5

5
+

√
7n− 4

√
7

7
+
n− 7

6
+

2
√

6

6
+

√
2

4

=
(7 + 6

√
7)n

42
+

84
√

5− 240
√

7 + 140
√

6− 490 + 105
√

2

420
,

2ABC(T 1
2 ) =

∑
uvw∈E2(T )

√
du + dv + dw − 3√

dudvdw

= 1×
√

6

3
+ (n− 4)× 2

3
+
n− 7

2
×
√

2

3
+ 1×

√
2

2
+ 1×

√
2

2
+ 1×

√
10

6

=

√
6

3
+

2n− 8

3
+
n− 7

2
×
√

2

3
+

√
2

2
+

√
2

2
+

√
10

6

=
(4 +

√
2)n

6
+

2
√

6− 16−
√

2 +
√

10

6
,

2ABS(T 1
2 ) =

∑
uvw∈E2(T )

√
1− 3

du + dv + dw

=

√
10

5
+ (n− 4)× 2√

7
+
n− 7

2
×
√

6

3
+

1√
2

+
1√
2

+

√
10

4

=
(7
√

6 + 12
√

7)n

42
+

189
√

10− 490
√

6− 480
√

7 + 420
√

2

420
.

This completes the proof. �
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§3. Chemical Trees of Module 3

The chemical trees of T 0
3 , T 1

3 and T 2
3 are shown in Figure 2.

Figure 2. T 0
3 , T 1

3 and T 2
3

Theorem 3.1 The second order connectivity indices of T 0
3 with n vertices are given by

2R(T 0
3 ) =

(2
√

6 +
√

3 +
√

2)n

18
− 2
√

2 +
√

3

6
,

2SCI(T 0
3 ) =

(28
√

6 + 12
√

7 + 21
√

2)n

252
− 2
√

7 + 7
√

2

14
,

2ABC(T 0
3 ) =

(6
√

2 + 2
√

3 +
√

10)n

18
−
√

3 +
√

10

3
,

2ABS(T 0
3 ) =

(28
√

2 + 8
√

7 + 7
√

10)n

84
− 4
√

7 + 7
√

10

14
.

Proof Let m(i, j, k) denote the number of paths with degree sequence (i, j, k). Then we

can obtain the basic information on T 0
3 in the following table.

m(1, 2, 3) m(2, 3, 1) m(2, 3, 2) m(3, 2, 3)

2 2n−6
3

n−3
3

n−6
3

Thus, we have

2R(T 0
3 ) =

∑
uvw∈E2(T )

1√
dudvdw

= 2×
√

6

6
+

√
6

6
× 2n− 6

3
+

√
3

6
× n− 3

3
+

√
2

6
× n− 6

3

=

√
6

3
+

√
6n− 3

√
6

9
+

√
3n− 3

√
3 +
√

2n− 6
√

2

18

=
(2
√

6 +
√

3 +
√

2)n

18
− 2
√

2 +
√

3

6
,
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2SCI(T 0
3 ) =

∑
uvw∈E2(T )

1√
du + dv + dw

= 2×
√

6

6
+

√
6

6
× 2n− 6

3
+

√
7

7
× n− 3

3
+

√
2

4
× n− 6

3

=
(28
√

6 + 12
√

7 + 21
√

2)n

252
− 2
√

7 + 7
√

2

14
,

2ABC(T 0
3 ) =

∑
uvw∈E2(T )

√
du + dv + dw − 3√

dudvdw

= 2×
√

2

2
+

√
2

2
× 2n− 6

3
+

√
3

3
× n− 3

3
+

√
10

6
× n− 6

3

=
(6
√

2 + 2
√

3 +
√

10)n− 6
√

3− 6
√

10

18

=
(6
√

2 + 2
√

3 +
√

10)n

18
−
√

3 +
√

10

3
,

2ABS(T 0
3 ) =

∑
uvw∈E2(T )

√
1− 3

du + dv + dw

= 2×
√

2

2
+

√
2

2
× 2n− 6

3
+

2√
7
× n− 3

3
+

√
5

2
√

2
× n− 6

3

=
(28
√

2 + 8
√

7 + 7
√

10)n

84
− 4
√

7 + 7
√

10

14
.

This completes the proof. �

Theorem 3.2 The second order connectivity indices of T 1
3 with n vertices are given by

2R(T 1
3 ) =

(2
√

6 +
√

3 +
√

2)n

18
+

5
√

3− 2
√

6− 4
√

2

18
,

2SCI(T 1
3 ) =

(28
√

6 + 12
√

7 + 21
√

2)n

252
− 15

√
2 + 5

√
6 + 15

√
7− 18

√
5

45
,

2ABC(T 1
3 ) =

(6
√

2 + 2
√

3 +
√

10)n

18
+

6
√

6− 3
√

2− 7
√

3− 2
√

10

9
,

2ABS(T 1
3 ) =

(28
√

2 + 8
√

7 + 7
√

10)n

84
+

√
10− 5

√
2− 10

√
7

15
.

Proof Let m(i, j, k) denote the number of paths with degree sequence (i, j, k). Then we

can obtain the basic information on T 1
3 in the following table.

m(1, 3, 1) m(1, 3, 2) m(3, 2, 3) m(2, 3, 2)

2 2n−2
3

n−4
3

n−7
3

Thus, we have
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2R(T 1
3 ) =

∑
uvw∈E2(T )

1√
dudvdw

= 2×
√

3

3
+

√
6

6
× 2n− 2

3
+

√
2

6
× n− 4

3
+

√
3

6
× n− 7

3

=
(2
√

6 +
√

3 +
√

2)n

18
+

5
√

3− 2
√

6− 4
√

2

18
,

2SCI(T 1
3 ) =

∑
uvw∈E2(T )

1√
du + dv + dw

= 2×
√

5

5
+

√
6

6
× 2n− 2

3
+

√
2

4
× n− 4

3
+

√
7

7
× n− 7

3

=
(28
√

6 + 12
√

7 + 21
√

2)n

252
− 15

√
2 + 5

√
6 + 15

√
7− 18

√
5

45
,

2ABC(T 1
3 ) =

∑
uvw∈E2(T )

√
du + dv + dw − 3√

dudvdw

= 2×
√

6

3
+

√
2

2
× 2n− 2

3
+

√
10

6
× n− 4

3
+

√
3

3
× n− 7

3

=
(6
√

2 + 2
√

3 +
√

10)n

18
+

6
√

6− 3
√

2− 7
√

3− 2
√

10

9
,

2ABS(T 1
3 ) =

∑
uvw∈E2(T )

√
1− 3

du + dv + dw

= 2×
√

10

5
+

2n− 2

3
×
√

2

2
+
n− 4

3
×
√

10

4
+
n− 7

3
× 2
√

7

7

=
(28
√

2 + 8
√

7 + 7
√

10)n

84
+

√
10− 5

√
2− 10

√
7

15
.

This completes the proof. �

Theorem 3.3 The second order connectivity indices of T 2
3 with n vertices are given by

2R(T 2
3 ) =

4 + 13n

24
,

2SCI(T 2
3 ) =

(
√

6 + 8 +
√

3)n

18
+

5
√

6− 14− 4
√

3

9
,

2ABC(T 2
3 ) =

(3 + 4
√

3 + 8
√

6)n

24
+

10
√

3− 6− 7
√

6

6
,

2ABS(T 2
3 ) =

(3
√

2 + 3
√

3 + 8
√

6)n

18
+

15
√

2− 12
√

3− 14
√

6

9
.
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Proof Let m(i, j, k) denote the number of paths with degree sequence (i, j, k). Then we

can obtain the basic information on T 2
3 in the following table.

m(1, 4, 1) m(1, 4, 4) m(4, 4, 4)

n+10
3

4n−14
3

n−8
3

Thus, we have

2R(T 2
3 ) =

∑
uvw∈E2(T )

1√
dudvdw

=
n+ 10

3
× 1

2
+

4n− 14

3
× 1

4
+
n− 8

3
× 1

8

=
4 + 13n

24
,

2SCI(T 2
3 ) =

∑
uvw∈E2(T )

1√
du + dv + dw

=
n+ 10

3
× 1√

6
+

4n− 14

3
× 1√

9
+
n− 8

3
× 1√

12

=
4n− 14

9
+

10
√

6 +
√

6n+ (n− 8)
√

3

18

=
(
√

6 + 8 +
√

3)n

18
+

5
√

6− 14− 4
√

3

9
,

2ABC(T 2
3 ) =

∑
uvw∈E2(T )

√
du + dv + dw − 3√

dudvdw

=
n+ 10

3
×
√

3

2
+

4n− 14

3
×
√

6

4
+
n− 8

3
× 3

8

=
(3 + 4

√
3 + 8

√
6)n

24
+

10
√

3− 6− 7
√

6

6
,

2ABS(T 2
3 ) =

∑
uvw∈E2(T )

√
1− 3

du + dv + dw

=
n+ 10

3
×
√

2

2
+

4n− 14

3
×
√

6

3
+
n− 8

3
×
√

3

2

=
(3
√

2 + 3
√

3 + 8
√

6)n

18
+

15
√

2− 12
√

3− 14
√

6

9
.

This completes the proof. �

§4. Chemical Trees of Module 4

The chemical trees of T 0
4 , T 1

4 , T 2
4 and T 3

4 are shown in Figure 2.



82 Jingling Fang, Jie Li, Li Li and Zhen Lin

Figure 3. T 0
4 , T 1

4 , T 2
4 and T 3

4

Theorem 4.1 The second order connectivity indices of T 0
4 with n vertices are given by

2R(T 0
4 ) =

(6 + 9
√

2)n

32
+

20− 15
√

2

8
,

2SCI(T 0
4 ) =

(70
√

6 + 42
√

10 + 105
√

2 + 240
√

7)n

1680

+
40
√

6− 6
√

10− 45
√

2− 60
√

7 + 100

60
,

2ABC(T 0
4 ) =

(4
√

3 + 2
√

5 +
√

14 + 16
√

2)n

32
+

10
√

6 + 16
√

3− 28
√

2 +
√

14− 6
√

5

8
,

2ABS(T 0
4 ) =

(35
√

10 + 14
√

70 + 70
√

2 + 160
√

7)n

560

+
120
√

2− 6
√

70− 45
√

10− 120
√

7 + 100
√

6

60
.

Proof Let m(i, j, k) denote the number of paths with degree sequence (i, j, k). Then, we

can obtain the basic information on T 0
4 in the following table.

m(1, 4, 1) m(1, 4, 2) m(1, 4, 4) m(2, 4, 4) m(4, 2, 4) m(2, 4, 2)

n+16
4 n− 7 5 1 n−8

4
n−12

4

Thus, we have

2R(T 0
4 ) =

∑
uvw∈E2(T )

1√
dudvdw

=
n+ 16

4
× 1

2
+
n− 7

2
√

2
+

5

4
+

1

4
√

2
+

1

4
√

2
× n− 8

4
+

1

4
× n− 12

4

=
(6 + 9

√
2)n

32
+

20− 15
√

2

8
.
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2SCI(T 0
4 ) =

∑
uvw∈E2(T )

1√
du + dv + dw

=
n+ 16

4
× 1√

6
+
n− 7√

7
+

5

3
+

1√
10

+
1√
10
× n− 8

4
+

1

2
√

2
× n− 12

4

=

√
6n− 18

√
2

24
+

√
7n

7
+

√
10n− 4

√
10

40
+

√
2n

16
+

2
√

6 + 5

3
−
√

7

=
(70
√

6 + 42
√

10 + 105
√

2 + 240
√

7)n

1680
+

40
√

6− 6
√

10− 45
√

2− 60
√

7 + 100

60
,

2ABC(T 0
4 ) =

∑
uvw∈E2(T )

√
du + dv + dw − 3√

dudvdw

=
n+ 16

4
×
√

3

2
+ (n− 7)

4
√

2

8
+

5
√

6

4
+

√
14

8
+

√
14

8
× n− 8

4
+

√
5

4
× n− 12

4

=

√
3n−

√
14

8
+

√
2n− 7

√
2

2
+

5
√

6− 3
√

5−
√

14

4
+

√
14n+ 2

√
5n

32

=
(4
√

3 + 2
√

5 +
√

14 + 16
√

2)n

32
+

10
√

6 + 16
√

3− 28
√

2−
√

14− 6
√

5

8
,

2ABS(T 0
4 ) =

∑
uvw∈E2(T )

√
1− 3

du + dv + dw

=
n+ 16

4
×
√

2

2
+ (n− 7)

2
√

7

7
+

5
√

6

3
+

√
70

10
× n− 4

4
+

√
10

4
× n− 12

4

=
5
√

2n− 4
√

70 +
√

70n

40
+

6
√

7n+ 35
√

6

21
+

√
10n− 12

√
10

16
+ 2
√

2− 2
√

7

=
(35
√

10 + 14
√

70 + 70
√

2 + 160
√

7)n

560
+

120
√

2− 6
√

70− 45
√

10− 120
√

7 + 100
√

6

60
.

This completes the proof. �

Theorem 4.2 The second order connectivity indices of T 1
4 with n vertices are given by

2R(T 1
4 ) =

(6 + 9
√

2)n

32
+

42− 29
√

2

32
,

2SCI(T 1
4 ) =

(70
√

6 + 42
√

10 + 105
√

2 + 240
√

7)n

1680
+

210
√

6− 189
√

2− 144
√

7− 42
√

10

336
,

2ABC(T 1
4 ) =

(4
√

3 + 2
√

5 +
√

14 + 16
√

2)n

32
+

60
√

3− 48
√

2− 5
√

14− 18
√

5

32
,

2ABS(T 1
4 ) =

(35
√

10 + 14
√

70 + 70
√

2 + 160
√

7)n

560
+

210
√

2− 96
√

7− 63
√

10− 14
√

70

112
.

Proof Let m(i, j, k) denote the number of paths with degree sequence (i, j, k). Then, we

can obtain the basic information on T 1
4 in the following table.

m(1, 4, 1) m(1, 4, 2) m(4, 2, 4) m(2, 4, 2)

n+15
4 n− 3 n−5

4
n−9

4
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Thus, we have

2R(T 1
4 ) =

∑
uvw∈E2(T )

1√
dudvdw

=
n+ 15

4
× 1

2
+
n− 3

2
√

2
+
n− 5

4
× 1

4
√

2
+
n− 9

16

=
(6 + 9

√
2)n

32
+

42− 29
√

2

32
,

2SCI(T 1
4 ) =

∑
uvw∈E2(T )

1√
du + dv + dw

=
n+ 15

4
×
√

6

6
+
n− 3√

7
+

1√
10
× n− 5

4
+
n− 9

8
√

2

=
(70
√

6 + 42
√

10 + 105
√

2 + 240
√

7)n

1680
+

210
√

6− 189
√

2− 144
√

7− 42
√

10

336
,

2ABC(T 1
4 ) =

∑
uvw∈E2(T )

√
du + dv + dw − 3√

dudvdw

=
n+ 15

4
×
√

3

2
+
n− 3√

2
+

√
14

8
× n− 5

4
+
n− 9

4
×
√

5

4

=
(4
√

3 + 2
√

5 +
√

14 + 16
√

2)n

32
+

60
√

3− 48
√

2− 5
√

14− 18
√

5

32
,

2ABS(T 1
4 ) =

∑
uvw∈E2(T )

√
1− 3

du + dv + dw

=
n+ 15

4
×
√

2

2
+

2n− 6√
7

+
7√
70
× n− 5

4
+

√
10n− 9

√
10

16

=
(35
√

10 + 14
√

70 + 70
√

2 + 160
√

7)n

560
+

210
√

2− 96
√

7− 63
√

10− 14
√

70

112
.

This completes the proof. �

Theorem 4.3 The second order connectivity indices of T 2
4 with n vertices are given by

2R(T 2
4 ) =

(6 + 9
√

2)n

32
+

6− 11
√

2

16
,

2SCI(T 2
4 ) =

(70
√

6 + 42
√

10 + 105
√

2 + 240
√

7)n

1680
+

140
√

6− 240
√

7− 126
√

10− 315
√

2

560
,

2ABC(T 2
4 ) =

(4
√

3 + 2
√

5 +
√

14 + 16
√

2)n

32
+

12
√

3− 16
√

2− 6
√

5− 3
√

14

16
,

2ABS(T 2
4 ) =

(35
√

10 + 14
√

70 + 70
√

2 + 160
√

7)n

560
+

210
√

2− 42
√

70− 105
√

10− 160
√

7

280
.
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Proof Let m(i, j, k) denote the number of paths with degree sequence (i, j, k). Then we

can obtain the basic information on T 2
4 in the following table.

m(1, 4, 1) m(1, 4, 2) m(4, 2, 4) m(4, 2, 1) m(2, 4, 2)

n+6
4 n− 3 n−6

4 1 n−6
4

Thus, we have

2R(T 2
4 ) =

∑
uvw∈E2(T )

1√
dudvdw

=
n+ 6

4
× 1

2
+
n− 3

2
√

2
+

1

4
√

2
× n− 6

4
+ 1× 1

2
√

2
+

1

4
× n− 6

4

=
n+ 6

4
× 1

2
+
n− 6

4
× (

1

4
√

2
+

1

4
) +

n− 2

2
√

2

=
(6 + 9

√
2)n

32
+

6− 11
√

2

16
,

2SCI(T 2
4 ) =

∑
uvw∈E2(T )

1√
du + dv + dw

=
n+ 6

4
× 1√

6
+
n− 3√

7
+

1√
10
× n− 6

4
+

1√
7

+
1

2
√

2
× n− 6

4

=
n+ 6

4
× 1√

6
+
n− 6

4
× (

1√
10

+
1

2
√

2
) +

n− 2√
7

=
(70
√

6 + 42
√

10 + 105
√

2 + 240
√

7)n

1680
+

140
√

6− 160
√

7− 84
√

10− 210
√

2

560
,

2ABC(T 2
4 ) =

∑
uvw∈E2(T )

√
du + dv + dw − 3√

dudvdw

=
n+ 6

4
×
√

3

2
+
n− 3√

2
+

√
5

4
× n− 6

4
+

1√
2

+

√
7√
32
× n− 6

4

=
n+ 6

4
×
√

3

2
+
n− 6

4
× (

√
5

4
+

√
7

4
√

2
) +

n− 2√
2

=
(4
√

3 + 2
√

5 +
√

14 + 16
√

2)n

32
+

12
√

3− 16
√

2− 6
√

5− 3
√

14

16
,

2ABS(T 2
4 ) =

∑
uvw∈E2(T )

√
1− 3

du + dv + dw

=
n+ 6

4
×
√

3√
6

+
2n− 6√

7
+

√
7√
10
× n− 6

4
+

2√
7

+

√
5

2
√

2
× n− 6

4

=
(35
√

10 + 14
√

70 + 70
√

2 + 160
√

7)n

560
+

210
√

2− 42
√

70− 105
√

10− 160
√

7

280
.

This completes the proof. �



86 Jingling Fang, Jie Li, Li Li and Zhen Lin

Theorem 4.4 The second order connectivity indices of T 3
4 with n vertices are given by

2R(T 3
4 ) =

(6 + 9
√

2)n

32
+

8
√

6 + 96
√

3− 165
√

2− 6

96
,

2SCI(T 3
4 ) =

(70
√

6 + 42
√

10 + 105
√

2 + 240
√

7)n

1680
+

35
√

2

112
+

8
√

5− 7
√

10

40

−6
√

7

7
+

35
√

6 + 56

168
,

2ABC(T 3
4 ) =

(4
√

3 + 2
√

5 +
√

14 + 16
√

2)n

32
+

8
√

6− 10
√

3− 48
√

2− 11
√

5 + 8

16

−7
√

14

32
+

35
√

15

96
,

2ABS(T 3
4 ) =

(35
√

10 + 14
√

70 + 70
√

2 + 160
√

7)n

560

+
350
√

2− 980
√

70 + 287
√

10− 960
√

7

560
+

√
6

3
.

Proof Let m(i, j, k) denote the number of paths with degree sequence (i, j, k). Then we

can obtain the basic information on T 3
4 in the following table.

m(1, 4, 1) m(1, 4, 2) m(4, 2, 4) m(2, 4, 2) m(1, 3, 1) m(1, 4, 3) m(1, 3, 4) m(2, 4, 3)

n+5
4

n− 6 n−7
4

n−11
4

1 2 2 1

Thus, we have

2R(T 3
4 ) =

∑
uvw∈E2(T )

1√
dudvdw

=
n+ 5

4
× 1

2
+
n− 6

2
√

2
+
n− 7

4
× 1

4
√

2
+
n− 11

4
× 1

4
+

1

2
√

6
+

1√
3

+ 4× 1

2
√

3

=
(6 + 9

√
2)n

32
+

8
√

6 + 96
√

3− 165
√

2− 6

96
,

2SCI(T 3
4 ) =

∑
uvw∈E2(T )

1√
du + dv + dw

=
n+ 5

4
×
√

6

6
+
n− 6√

7
+

1√
10
× n− 7

4
+

1√
8
× n− 11

4

+
1

3
+

1√
5

+ 2× 1√
8

=
(70
√

6 + 42
√

10 + 105
√

2 + 240
√

7)n

1680
+

35
√

2

112
+

8
√

5− 7
√

10

40

−6
√

7

7
+

35
√

6 + 56

168
.
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2ABC(T 3
4 ) =

∑
uvw∈E2(T )

√
du + dv + dw − 3√

dudvdw

=
n+ 5

4
×
√

3

2
+ (n− 6)×

√
2

2
+
n− 7

4
×
√

14

8
+

√
5

4
× n− 11

4

+
1

2
+

√
6

3
+ 2×

√
5√
3

=
(4
√

3 + 2
√

5 +
√

14 + 16
√

2)n

32
+

8
√

6− 10
√

3− 48
√

2− 11
√

5 + 8

16
− 7
√

14

32
+

35
√

15

96
,

2ABS(T 3
4 ) =

∑
uvw∈E2(T )

√
1− 3

du + dv + dw

=
n+ 5

4
×
√

2

2
+ (n− 6)× 2

√
7

7
+

√
7√
10
× n− 7

4
+

√
5√
8
× n− 11

4
+

√
8√
5

+

√
2√
5

+ 4×
√

5√
8

=
(35
√

10 + 14
√

70 + 70
√

2 + 160
√

7)n

560
+

350
√

2− 980
√

70 + 287
√

10− 960
√

7

560
+

√
6

3
.

This completes the proof. �
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Abstract: Following the concept of fuzzy normed linear space that Bag and Samanta

provided in general t-norm settings, a definition of fuzzy strong-b-normed linear space is

provided in this study. In this case, a general function ∅(c) that satisfies certain requirements

is used in place of the scalar function |c|. We study some fundamental results on finite

dimensional fuzzy strong b-normed linear space.
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§1. Introduction

Zadeh [19] was the first to develop the idea of a fuzzy set in 1965. The theory of fuzzy sets has

since been extensively expanded by other authors. Fuzzy metric spaces were first introduced

by Osmo Kaleva [10], Kramosil and Michalek [14], Georage and Veeramani [9], et al. in various

ways. On the other hand, the concept of fuzzy normed linear spaces has been provided in

several ways by Katsaras [11], Felbin [6], Cheng and Mordeson [4] and Bag and Samanta [1].

Different generalised metric and norm types, such as the 2-metric [7], b-metric [5], strong-

b-metric [13], G-metric [15], 2-norm [13], G-norm [12], etc., as well as generalised fuzzy metric

and fuzzy norm types, such as the fuzzy b-metric [16], strong-fuzzy b-metric [18], fuzzy cone

metric [17], fuzzy cone norm [2], G-fuzzy norm [3], etc.

Oner proposed fuzzy strong b-metric spaces and produced some topological findings on

these spaces in [18].

§2. Preliminaries

In this section, some definitions and results are collected which are used in this paper.

Definition 2.1 A binary operation ∗ : [0, 1]× [0, 1]→ [0, 1] is called a t-norm if it satisfies the

following conditions:

1Received October 6, 2023, Accepted March 10, 2024.
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(a) ∗ is commutative and associative;

(b) ∗ is continuous;

(c) a ∗ 1 = a for all a ∈ [0, 1];

(d) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d for each a, b, c, d ∈ [0, 1].

If ∗ is continuous, then it is called continuous t-norm.

The following are examples of some t-norms.

(i) Standard intersection: a ∗ b = min{a, b}.
(ii) Algebraic product: a ∗ b = ab.

(iii) Bounded difference: a ∗ b = max{0, a+ b− 1}.

Definition 2.2 A binary operation � : [0, 1] × [0, 1] → [0, 1] is a continuous tconorm if it

satisfies the following conditions:

(a) is commutative and associative;

(b) is continuous;

(c) � = a for all a ∈ [0, 1];

(d) a � b ≤ c � d whenever a ≤ c and b ≤ d for each of a, b, c, d ∈ [0, 1].

If ∗ is continuous, then it is called continuous t-norm.

The following are examples of some t-norms.

(i) Standard intersection: abb = max{a, b}.
(ii) Algebraic product: a ↓ b = ab.

(iii) Bounded difference: a � b = min{0, a+ b− 1}.

Definition 2.3 A three tuple (X,M, ∗) is said to be a fuzzy metric space, a case of neutrosophic

set if X is an arbitrary set, ∗ a continuous t-norm and M a fuzzy set on X2× [0,∞) satisfying

the following condition, for all x, y, z ∈ X and t, s > 0 :

(a) M(x, y, 0) = 0;

(b) M(x, y, t) = 1 for all t > 0 iff x = y;

(c) M(x, y, t) = M(y, x, t);

(d) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s);

(e) M(x, y, ) : .[0,∞)→ [0, 1] is left continuous;

(f) lim
n→∞

M(x, y, t) = 1.

Definition 2.4 A 5-tuple (X,M,N, ∗,�)issaidtobeanintuitionisticfuzzymetric space (shortly

IFM-Space) if X is an arbitrary set, ∗ is a continuous t-norm, ∀ is a continuous t-conorm and

M,N are fuzzy sets on X2 × [0,∞) satisfying the following conditions:

(a) M(x, y, t) +N(x, y, t) ≤ 1 for all x, y ∈ X and t > 0;

(b) M(x, y, 0) = 0 for all x, y ∈ X;

(c) M(x, y, t) = 1 for all x, y ∈ X and t > 0 if and only if x = y;

(d) M(x, y, t) = M(y, x, t) for all x, y ∈ X and t > 0;

(e) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s) for all x, y, z ∈ X and s, t > 0;

(f) M(x, y, ) : .[0,∞)→ [0, 1] is left continuous for all x, y ∈ X;

(g) lim
n→∞

M(x, y, t) = 1;
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(h) N(x, y, 0) = 1 for all x, y ∈ X;

(i) N(x, y, t) = 0 for all x, y ∈ X and t > 0 if and only if x = y;

(j) N(x, y, t) = N(y, x, t) for all x, y ∈ X and t > 0;

(k) N(x, y, t) �N(y, z, s) ≥ N(x, z, t+ s) for all x, y, z ∈ X and s, t > 0;

(l) M(x, y, ) : .[0,∞)→ [0, 1] is right continuous for all x, y ∈ X;

(m) lim
n→∞

N(x, y, t) = 0 for all x, y ∈ X,

then, (M,N) is called an intuitionistic fuzzy metric on X. The functions M(x, y, t) and

N(x, y, t) denote the degree of nearness and degree of non nearness between x and y with respect

to t, respectively.

Definition 2.5 Let (X,M,N, ∗,�) be an intuitionistic fuzzy metric space. Then,

(a) A sequence {xn} is said to be convergent x in X if for each ε > 0 and t > 0, there exist

n0 ∈ N such that M (xn, x, t) > 1− ε and N (xn, x, t) < 0− ε for all n ≥ n0;

(b) A sequence {xn} is said to be Cauchy if for each ε > 0 and t > 0, there exist n0 ∈ N

such that M (xn, xm, t) > 1− ε and N (xn, xm, t) < 0− ε for all n,m ≥ n0;

(c) An intuitionistic fuzzy metric space in which every Cauchy sequence is convergent is

said to be complete.

Definition 2.6 A sequence {Si} of self maps on a complete intuitionistic fuzzy metric space

(X,M,N, ∗, �) is said to be intuitionistic mutually contractive if for t > 0 and iεN

M (Six, Sjy, t) ≥M
(
x, y,

t

p

)
and N (Six, Sjy, t) ≤ N

(
x, y,

t

p

)
,

where x, y ∈ X, p ∈ (0, 1), i 6= j and x 6= y.

Definition 2.7 Let (X,M,N, ∗,�) be an intuitionistic fuzzy normed linear space.

(i) A sequence {xn} is said to be convergent if there exists x ∈ X such that

lim
n→∞

M (xn − x, t) = 1 and lim
n→∞

N (xn − x, t) = 0

for all t > 0. Then x is called the limit of the sequence {xn} and denoted by lim
n→∞

xn;

(ii) A sequence {xn} in an intuitionistic fuzzy normed linear space (X,N) is said to be

Cauchy if

lim
n→∞

M (xn+p − xn, t) = 1 and lim
n→∞

N (xn+p − xn, t) = 0

for all t > 0 and p = 1, 2, · · · ;
(iii) A ⊆ X is said to be closed if for any sequence {xn} in A converges to x ∈ A;

(iv) A ⊆ X is said to be the closure of A, denoted by Ā if for any x ∈ Ā, if there is a

sequence {xn} ⊆ A such that {xn} converges to x. (v) A ⊆ X is said to be compact if any

sequence {xn} ⊆ A has a subsequence converging to an element of A.

Lemma 2.6 Let (X,M,N, ∗,�) be an intuitionistic fuzzy normed linear space and let M(x, .),

N(x, ·) be with x 6= 0). If the set A = {x : M(x, 1) > 0 and N(x, 1) < 0} is compact, then X is

finite dimensional.
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§3. Intuitionistic Fuzzy Strong φ-b-Normed Linear Space

In this section, we give the definition of intuitionistic fuzzy normed linear space in a new

approach.

Definition 3.1 Let φ be a function defined on R to R+ with the following properties

(φ1) φ(−t) = φ(t) for all t ∈ R;

(φ2) φ(1) = 1;

(φ3) φ is strictly increasing and continuous on (0,∞);

(φ4) lim
α→0

φ(β) = 0 and limα→∞ φ(β) =∞.

The followings are examples of such functions.

(i) φ(β) = |β| for all β ∈ R.

(ii) φ(β) = |β|p for all β ∈ R, p ∈ R+.

(iii) φ(β) =
2β2n

|β|+ 1
for all β ∈ R, n ∈ N.

Definition 3.2 Let X be a linear space over the field R and b ≥ 1 be a given real number. A

fuzzy subset N of X × R is called intuitionistic fuzzy strong φ-b-norm on X if for all x, y ∈ X
the following conditions hold:

(i) ∀t ∈ R with t ≤ 0,M(x, t) = 0;

(ii) (∀t ∈ R, t > 0,M(x, t) = 1) iff x = θ;

(iii) ∀t ∈ R, t > 0,M(cx, t) = M
(
x, t

φ(c)

)
if φ(c) 6= 0;

(iv) ∀s, t ∈ R,M(x+ y, s+ bt) ≥M(x, s) ∗N(y, t);

(v) M(x, ·) is a non-decreasing function of t and limt→∞M(x, t) = 1;

(vi) ∀t ∈ R with t ≥ 0, N(x, t) = 0;

(vii) (∀t ∈ R, t = 0, N(x, t) = 0) iff x = θ;

(viii) ∀t ∈ R, t < 0, N(cx, t) = N
(
x, t

φ(c)

)
if φ(c) 6= 0;

(ix) ∀s, t ∈ R, N(x+ y, s+ bt) ≤ N(x, s) �N(y, t);

(x) N(x, ·) is a non-increasing function of t and limt→∞N(x, t) = 0.

Then (X,M, N, φ, b, ∗) is called intuitionistic fuzzy strong φ-b-normed linear space.

§4. Finite Dimensional Intuitionistic Fuzzy Strong φ-b-Normed Linear Spaces

In this section, some basic results on finite dimensional intuitionistic fuzzy strong φ-b-normed

linear spaces are established.

Lemma 4.1 Let (X,M, N, φ, b, ∗, �) be a Intuitionistic fuzzy strong φ-b-normed linear space with

the underlying t-norm ∗ continuous and t-co norm at (1, 1) and {x1, x2, · · ·xn} be a linearly

independent set of vectors in X. Then there exists c > 0 and δ ∈ (0, 1) such that for any set of



Several Fundamental Findings on Intuitionistic Fuzzy Strong ∅-b-Normed Linear Spaces 93

scalars {β1, β2, · · · , βn} with
∑n
i=1 |βi| 6= 0

M

β1x1 + β2x2 + · · ·+ βnxn,
bc

φ
(

1∑n
i=1|βi|

)
 < 1− δ. (4.1)

and

N

β1x1 + β2x2 + · · ·+ βnxn,
bc

φ
(

1∑n
i=1|βi|

)
 > 0− δ. (4.2)

Proof Notice that the equations

M

β1x1 + β2x2 + · · ·+ βnxn,
bc

φ
(

1∑n
i=1|βi|

)
 < 1− δ.

and

N

β1x1 + β2x2 + · · ·+ βnxn,
bc

φ
(

1∑n
i=1|βi|

)
 > 0− δ.

are equivalent to the relations

M (α1x1 + α2x2 + · · ·+ αnxn, bc) < 1− δ

and

N (α1x1 + α2x2 + · · ·+ αnxn, bc) > 0− δ

for some c > 0, δ ∈ (0, 1) and for all set of scalars {α1, α2, · · · , αn} with
∑n
i=1 |αi| = 1 If

possible, suppose that (4.1) does not hold. Thus, for each c > 0 and δ ∈ (0, 1), there exists a

set of scalars {α1, α2, · · · , αn} with
∑n
i=1 |αi| = 1 for which

M (α1x1 + α2x2 + · · ·+ αnxn, bc) ≥ 1− δ

and

N (α1x1 + α2x2 + · · ·+ αnxn, bc) ≤ 0− δ.

Then, for c = δ = 1
m ,m = 1, 2, . . ., there exists a set of scalars

{
α

(m)
1 , α

(m)
2 , . . . , α

(m)
n

}
with∑n

i=1

∣∣∣α(m)
i

∣∣∣ = 1 such that

M

(
ym,

b

m

)
≥ 1− 1

m

and

N

(
ym,

b

m

)
≤ 0− 1

m
,

where ym = αβ
(m)
1 x1 + β

(m)
2 x2 + · · ·+ β

(m)
n xn. Since

∑n
i=1

∣∣∣α(m)
i

∣∣∣ = 1, we have 0 ≤
∣∣∣α(m)
i

∣∣∣ ≤ 1

for i = 1, 2, . . . , n. So for each fixed i, the sequence
{
α

(m)
i

}
is bounded and hence

{
α

(m)
i

}
has
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a convergent subsequence. Let α1 denotes the limit of that subsequence and let {y1,m} denotes

the corresponding subsequence of {ym}. By the same argument {y1,m} has a subsequence

{y2,m} for which the corresponding subsequence of scalars
{
α

(m)
2

}
converges to α2. Continuing

in this way, after n steps we obtain a subsequence {yn,m} where

yn,m =

n∑
i=1

γ
(m)
i xi with

n∑
i=1

∣∣∣γ(m)
i

∣∣∣ = 1

and γ
(m)
i → αi as m→∞ for each i = 1, 2, · · · , n.

Let y = α1x1 + α2x2 + · · ·+ αnxn. Now,

M (yn,m − y, t) = M

 n∑
j=1

(
γ

(m)
j − αj

)
xj , t


= M

(γ(m)
1 − α1

)
x1 +

n∑
j=2

(
γ

(m)
j − αj

)
xj ,

t

n
+ b(n− 1)

t

nb


≥ M

((
γ

(m)
1 − α1

)
x1,

t

n

)
∗M

 n∑
j=2

(
γ

(m)
j − αj

)
xj , (n− 1)

t

nb


= M

((
γ

(m)
1 − α1

)
x1,

t

n

)

∗M

(γ(m)
2 − α2

)
x2 +

n∑
j=3

(
γ

(m)
j − αj

)
xj ,

t

nb
+ b

(
1− 2

n

)
t

b2


≥ M

((
γ

(m)
1 − α1

)
x1,

t

n

)
∗M

((
γ

(m)
2 − α2

)
x2,

t

nb

)

∗M

 n∑
j=3

(
γ

(m)
j − αj

)
xj ,

(
1− 2

n

)
t

b2


≥ M

((
γ

(m)
1 − α1

)
x1,

t

n

)
∗M

((
γ

(m)
2 − α2

)
x2,

t

nb

)
∗ · · · ∗M

((
γ(m)
n − αn

)
xn,

t

nbn−1

)

= M

x1,
t

nφ
((
γ

(m)
1 − α1

))
 ∗ · · · ∗M

xn, t

nbn−1φ
((
γ

(m)
n − αn

))


and

N (yn,m − y, t) = N

 n∑
j=1

(
γ

(m)
j − αj

)
xj , t


= N

(γ(m)
1 − α1

)
x1 +

n∑
j=2

(
γ

(m)
j − αj

)
xj ,

t

n
+ b(n− 1)

t

nb


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= N

((
γ

(m)
1 − α1

)
x1,

t

n

)

≤ N
(
γ

(m)
1 − α1

)
x1,

t

n

)
�N

 n∑
j=2

(
γ

(m)
j − αj

)
xj , (n− 1)

t

nb


�N

(γ(m)
2 − α2

)
x2 +

n∑
j=3

(
γ

(m)
j − αj

)
xj ,

t

nb
+ b

(
1− 2

n

)
t

b2


≤ N

((
γ

(m)
1 − α1

)
x1,

t

n

)
�N

((
γ

(m)
2 − α2

)
x2,

t

nb

)
and

N

 n∑
j=3

(
γ

(m)
j − αj

)
xj ,

(
1− 2

n

)
t

b2


≥ N

((
γ

(m)
1 − α1

)
x1,

t

n

)
�N

((
γ

(m)
2 − α2

)
x2,

t

nb

)
� · · ·∇N

((
γ(m)
n − αn

)
xn,

t

nbn−1

)

= N

x1,
t

nφ
((
γ

(m)
1 − α1

))
 � · · ·∇N

xn, t

nbn−1φ
((
γ

(m)
n − αn

))
 .

Now taking limit as m→∞ on both sides, we have

lim
m→∞

M (yn,m − y, t) ≥ 1 ∗ 1 ∗ · · · ∗ 1, ∀t > 0

and

lim
m→∞

N (yn,m − y, t) ≤ 0 > 0 � · · · ∨ 0, ∀t > 0

i.e

lim
m→∞

M (yn,m − y, t) = 1, ∀t > 0

and

lim
m→∞

N (yn,m − y, t) = 0, ∀t > 0

Now, for r > 0, choose m such that 1
m < r

b2 . We have

M
(
yn,m,

r

b

)
= M

(
yn,m + θ,

b

m
+ b

(
r

b2
− 1

m

))
≥
(
yn,m,

b

m

)
∗M

(
θ,
r

b2
− 1

m

)
≥
(

1− b

m

)
∗ 1

and

N
(
yn,m,

r

b

)
= N

(
yn,m + θ,

b

m
+ b

(
r

b2
− 1

m

))
≤ N

(
yn,m,

b

m

)
�N

(
θ,
r

b2
− 1

m

)
≤
(

1− b

m

)
� 0
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which implies

lim
m→∞

M
(
yn,m,

r

b

)
≥ 1 i.e., lim

m→∞
M
(
yn,m,

r

b

)
= 1

and

lim
m→∞

N
(
yn,m,

r

b

)
≤ 0 i.e., lim

m→∞
N
(
yn,m,

r

b

)
= 0.

Again,

M(y, 2r) = M
(
y − yn,m + yn,m, r + b · r

b

)
≥M (y − yn,m, r) ·N

(
yn,m,

r

b

)
and

N(y, 2r) = N
(
y − yn,m + yn,m, r + b · r

b

)
≤ N (y − yn,m, r) �N

(
yn,m,

r

b

)
.

Thus,

M(y, 2r) ≥ lim
m→∞

M (y − yn,m, r) ∗ lim
m→∞

M
(
yn,m,

r

b

)
⇒M(y, 2r) ≥ 1 · 1 = 1⇒M(y, 2r) = 1

and

N(y, 2r) ≤ lim
m→∞

N (y − yn,m, r) � lim
m→∞

N
(
yn,m,

r

b

)
⇒ N(y, 2r) ≤ 0 � 0 = 0⇒ N(y, 2r) = 0.

Since r > 0 is arbitrary, so y = θ. Again since
∑n
i=1

∣∣∣α(m)
i

∣∣∣ = 1 and {x1, x2, . . . , xn} is a

linearly independent set of vectors so y = α1x1 + α2x2 + · · · + αnxn 6= θ, thus we arrive at a

contradiction and Lemma is proved. �

Theorem 4.2 Every finite dimensional Intuitionistic fuzzy strong φ-b-normed linear space with

the underlying t-norm * continuous and t-co norm � Continuous at (1, 1) is complete.

Proof Let (X,M, N, φ, b, ∗, �) be a Intuitionistic fuzzy strong φ-b-normed linear space where

b(> 1) is a real constant. Let dimX = r and {e1, e2, · · · , er} be a basis for X. Let {xp} be a

Cauchy sequence in X. Then, xn =
∑r
k=1 α

(n)
k ek for suitable scalars α

(n)
1 , α

(n)
2 , · · · , α(n)

r · So

lim
m,n→∞

M (xm − xn, t) = 1, ∀t > 0

and

lim
m,n→∞

N (xm − xn, t) = 0, ∀t > 0.

Now, by Lemma 4.1 it follows that ∃c > 0 and δ ∈ (0, 1) such that

M


r∑
i=1

(
a

(m)
i − α(n)

i

)
ei,

bc

φ

(
1∑r

i=1

∣∣∣α(m)
i −α(n)

i

∣∣∣
)
 < 1− δ
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and

N


r∑
i=1

(
α

(m)
i − α(n)

i

)
ei,

bc

φ

(
1∑r

i=1

∣∣∣α(m)
i −α(n)

i

∣∣∣
)
 > 0− δ. (4.3)

If
r∑
i=1

∣∣∣α(m)
i − α(n)

i

∣∣∣ = 0

then α
(m)
i = α

(n)
i for any integer i implies that {xn} is a constant sequence and hence follows

the theorem. So we may assume

r∑
i=1

∣∣∣α(m)
i − α(n)

i

∣∣∣ 6= 0.

Again, for 0 < δ < 1 from (4-3) it follows that there exists a positive integer n0(δ, t) such

that

M

(
r∑
i=1

(
α

(m)
i − α(n)

i

)
ei, t

)
> 1− δ, ∀m,n ≥ n0(δ, t) (4.4)

and

N

(
r∑
i=1

(
α

(m)
i − α(n)

i

)
ei, t

)
< 0− δ, ∀m,n ≥ n0(δ, t). (4.5)

Now, from (4.4) and (4.5), ∀m,n ≥ n0(δ, t) we have

M


r∑
i=1

(
α

(m)
i − α(n)

i

)
ei

bc

φ

(
1∑r

i=1

∣∣∣α(m)
i −α(n)

i

∣∣∣
)
 < M

(
r∑
i=1

(
α

(m)
i − α(n)

i

)
ei,t

)

and

N


r∑
i=1

(
α

(m)
i − α(n)

i

)
ei

bc

φ

(
1∑r

i=1

∣∣∣α(m)
i −α(n)

i

∣∣∣
)
 > N

(
r∑
i=1

(
α

(m)
i − α(n)

i

)
ei, t

)
.

Thus,
bc

φ

(
1∑τ

i=1

∣∣∣α(m)
t −α(m)

i

∣∣∣
) < t

since M(x, t) is non-decreasing with respect to t and

bc

φ

(
1∑τ

i=1

∣∣∣α(m)
t −α(m)

i

∣∣∣
) > t
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since N(x, t) is non-increasing with respect to t. Hence, since t > 0 is arbitrary, namely

lim
m,n→∞

bc

φ

(
1∑r

i=1

∣∣∣α(m)
i −α(n)

i

∣∣∣

 = 0

then

lim
m,n→∞

φ

 1∑r
i=1

∣∣∣α(m)
i − α(n)

i

∣∣∣
 =∞.

Thus,

φ

 1

limm→∞
∑r
i=1

∣∣∣α(m)
i − α(n)

i

∣∣∣
 =∞

since φ is continuous. Then

lim
m,n→∞

r∑
i=1

∣∣∣α(m)
i − α(n)

i

∣∣∣ = 0

since lim
α→∞

φ(β) =∞. Therefore,
{
α

(m)
i

}
is a Cauchy sequence of scalars for each i = 1, 2, · · · , r.

So each sequence
{
α

(m)
i

}
converges. Let limn→∞ α

(n)
i = αi for i = 1, 2, . . . , r. Define x =∑

i=1 αei. Then clearly x ∈ X. By similar calculation as in Lemma 4.1 , it can be shown that

limn→∞M (xn − x, t) = 1, limn→∞N (xn − x, t) = 0,∀t > 0. Hence X is complete.

§5. Conclusion

Recently, various writers have constructed various kinds of generalised fuzzy metric spaces as

well as generalised fuzzy normed linear spaces. The concept of fuzzy strong b-normed linear

spaces was presented after the introduction of fuzzy strong b-metric spaces, and various findings

in finite finite dimensions fuzzy strong b-normed linear spaces were examined. We believe there

is a vast area of research to be done in order to create fuzzy strong b-normed linear spaces. Open

issues in such spaces include results on completeness and compactness, operator standards, etc.
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Abstract: Let G be a graph and let f : V (G) → {0, 1, 2, · · · , k − 1} be a func-

tion where k ∈ N and k > 1. For each edge uv, assign a label f (uv) =
⌈
f(u)+f(v)

2

⌉
and f is called a k-total mean cordial labeling of G if |tmf (i)− tmf (j)| ≤ 1 for all
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§1. Introduction

All graphs in this paper are finite, simple and undirected graphs only. Graceful labeling was

introduced by Rosa in [15]. Subsequently Graham and Sloan have introduced the notion of

harmonious labeling [2]. Motivated by these works several author introduce varies types of

graph labeling. The concept of k-total mean cordial labeling has been introduced in [4]. The

4-total mean cordial labeling behavior of several graphs like cycle, complete graph, star, bistar,

comb and crown have been investigated in [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. In this paper

we investigate the 4- total mean cordial labeling behavior of some graphs which are obtained

from stars. Let x be any real number. Then dxe stands for the smallest integer greater than or

equal to x. Terms are not defined here follow from Harary [3] and Gallian [1].

§2. k-Total Mean Cordial Graph

Definition 2.1 Let G be a graph. Let f : V (G) → {0, 1, 2, · · · , k − 1} be a function where

1Received August 9, 2023, Accepted March 12,2024.
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k ∈ N and k > 1. For each edge uv, assign the label f (uv) =
⌈
f(u)+f(v)

2

⌉
. f is called a k-total

mean cordial labeling of G if |tmf (i)− tmf (j)| ≤ 1 for all i, j ∈ {0, 1, 2, · · · , k − 1}, where

tmf (x) denotes the total number of vertices and edges labelled with x, x ∈ {0, 1, 2, · · · , k − 1}.
Otherwise, if there exist integers i, j ∈ {0, 1, 2, · · · , k − 1} such that |tmf (i)− tmf (j)| ≥ 2, such

a labeling f is called a Smarandachely k-total mean cordial labeling.

A graph with an admit a k-total mean cordial labeling or a Smarandachely k-total mean

cordial labeling is called a k-total mean cordial graph or a Smarandachely k-total mean cordial

graph.

§3. Preliminaries

Definition 3.1 A complete bipartite graph K1,n is called a star. Let V (K1,n) = {w,wi : 1 ≤ i ≤ n}
and E (K1,n) = {wwi : 1 ≤ i ≤ n}, w is called the central vertex of the star K1,n.

Definition 3.2 A graph obtained from the cycle Cn and star K1,n by identifying the vertex of

Cn with these central vertex of K1,n is denoted by Cn ⊕K1,n.

Definition 3.3 Let G1, G2 respectively be (p1, q1), (p2, q2) graphs. A corona of G1 with G2

is the graph G1 � G2 obtained by taking one copy of G1 , p1 copies of G2 and joining the ith

vertex of G1 by an edge to every vertex in the ith copy of G2 where 1 ≤ i ≤ p1.

Definition 3.4 A graph Pn � K1 is called a comb. Let Pn be the path u1u2 · · ·un. Let

V (Pn �K1) = V (Pn) ∪ {vi : 1 ≤ i ≤ n} and E (Pn �K1) = E (Pn) ∪ {uivi : 1 ≤ i ≤ n}.

Definition 3.5 A graph Ln = Pn + K2 is called a ladder. Let the vertex set be V (Ln) =

{ui, vi : 1 ≤ i ≤ n} and the edge set E (Ln) = {uiui+1, vivi+1 : 1 ≤ i ≤ n− 1}∪{uivi : 1 ≤ i ≤ n}.

§4. Main Results

Theorem 4.1 A graph Cn ⊕K1,n is 4-total mean cordial labeling for all n ≥ 3.

Proof Let Cn be the cycle u1 u2 · · · un u1, V (Cn ⊕K1,n)) = V (Cn) ∪ {w,wi : 1 ≤ i ≤ n ,

u1 = w} and E (Cn ⊕K1,n)) = E(Cn) ∪ {u1wi : 1 ≤ i ≤ n}. Obviously |V (Cn ⊕K1,n)| +

|E (Cn ⊕K1,n)| = 4n.

Case 1. n ≡ 1 (mod 2).

Let n = 2r + 1, r ∈ N. Consider the cycle Cn : u1 u2 · · · un u1. Assign the label 0 to the

r + 1 vertices u1, u2, · · · , ur+1. Now we assign the label 1 to the r vertices ur+2, ur+3, · · · ,
u2r+1. Next move to the pendent vertices. We now assign the label 3 to the 2r+ 1 vertices w1,

w2, · · · , w2r+1.

Case 2. n ≡ 0 (mod 2).

Let n = 2r, r ∈ N. Assign the label 2 to the vertex u1. Next we assign the label 0 to the r

vertices u2, u3, · · · , ur+1. We now assign the label 1 to the r − 1 vertices ur+2, ur+3, · · · , u2r.

Now we assign the label 0 to the vertex w1. Next we assign the label 2 to the r− 1 vertices w2,

w3, · · · , wr. Finally we assign the label 3 to the r vertices wr+1, wr+2, · · · , w2r.
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This shows that f is a 4-total mean cordial labeling follows from Table 1.

Order of n tmf (0) tmf (1) tmf (2) tmf (3)

n = 2r + 1 2r + 1 2r + 1 2r + 1 2r + 1

n = 2r 2r 2r 2r 2r

Table 1

This completes the proof. �

Theorem 4.2 A graph obtained from the comb Pn�K1 and star K1,n by identifying the central

vertex w of the star with the vertex u1 of the comb is 4-total mean cordial.

Proof Let G be the resulting graph. Take the vertex set and edge set of the comb is

as in Definition 3.4. Let V (G) = V (Pn �K1) ∪ {wi : 1 ≤ i ≤ n}. E (G) = E (Pn �K1) ∪
{u1wi : 1 ≤ i ≤ n}. Clearly |V (G)|+ |E (G)| = 6n− 1.

Case 1. n ≡ 0 (mod 2).

Let n = 2r, r ∈ N. Assign the label 2 to the r vertices u1, u2, · · · , ur. Now we assign the

label 3 to the r vertices ur+1, ur+2, · · · , u2r. Next we assign the label 0 to the r vertices v1,

v2, · · · , vr. We now assign the label 2 to the r vertices vr+1, vr+2, · · · , v2r. Now we assign the

label 0 to the 2r vertices w1, w2, · · · , w2r.

Case 2. n ≡ 1 (mod 2).

Let n = 2r + 1, r ∈ N. Assign the label 2 to the r vertices u1, u2, · · · , ur. Next we assign

the label 3 to the r + 1 vertices ur+1, ur+2, · · · , u2r+1. Now we assign the label 0 to the r + 1

vertices v1, v2, · · · , vr+1. We now assign the label 2 to the r vertices vr+2, vr+3, · · · , v2r+1.

Next we assign the label 0 to the 2r vertices w1, w2, · · · , w2r. Finally we assign the label 1 to

the vertex w2r+1.

Thus, this vertex labeling f is a 4-total mean cordial labeling follows from Table 2.

n tmf (0) tmf (1) tmf (2) tmf (3)

n = 2r 3r 3r 3r − 1 3r

n = 2r + 1 3r + 1 3r + 1 3r + 1 3r + 2

Table 2

This completes the proof. �

Theorem 4.3 A graph G obtained from the comb Pn � K1 and two stars by identifying the

vertex u1 of the comb with the central vertex of one star and un with the central vertex of

another star is 4-total men cordial.

Proof Take the vertex set and edge set of the comb is as in Definition 3.4. Let V (G) =

V (Pn �K1) ∪ {xi, yi : 1 ≤ i ≤ n} and E (G) = E (Pn �K1) ∪ {u1xi, unyi : 1 ≤ i ≤ n}. Note

that |V (G)|+ |E (G)| = 8n− 1.

Assign the label 0 to the n vertices u1, u2, · · · , un. Next we assign the label 1 to the n

vertices v1, v2, · · · , vn. Now we assign the label 3 to the n vertices x1, x2, · · · , xn. Finally we
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assign the label 3 to the n vertices y1, y2, · · · , yn.

Clearly tmf (0) = 2n− 1, tmf (1) = tmf (2) = tmf (3) = 2n. �

Theorem 4.4 A graph obtained from the comb Pn � K1 and three stars by identifying the

vertex u1 of the comb with the central vertex of one star, un with the central vertex of second

star and v1 with the central vertex of third star is 4-total mean cordial.

Proof Let G be the resulting graph. Take the vertex set and edge set of the comb is as in

Definition 3.4. Let V (G) = V (Pn �K1) ∪ {xi, yi, zi : 1 ≤ i ≤ n} and E (G) = E (Pn �K1) ∪
{u1xi, unyi, v1zi : 1 ≤ i ≤ n}. Clearly |V (G)|+ |E (G)| = 10n− 1.

Case 1. n ≡ 0 (mod 2).

Let n = 2r, r ∈ N. Assign the label 0 to the 2r vertices u1, u2, · · · , u2r. Next we assign

the label 2 to the 2r vertices v1, v2, · · · , v2r. Now we assign the label 3 to the 2r vertices x1,

x2, · · · , x2r. Then we assign the label 1 to the r vertices y1, y2, · · · , yr. We now assign the

label 3 to the r vertices yr+1, yr+2, · · · , y2r. Now we assign the label 0 to the r vertices z1, z2,

· · · , zr. Finally we assign the label 3 to the r vertices zr+1, zr+2, · · · , z2r.

Case 2. n ≡ 1 (mod 2).

Let n = 2r + 1, r ∈ N. Assign the label 0 to the 2r + 1 vertices u1, u2, · · · , u2r+1. Now

we assign the label 2 to the 2r+ 1 vertices v1, v2, · · · , v2r+1. Next we assign the label 3 to the

2r + 1 vertices x1, x2, · · · , x2r+1. We now assign the label 1 to the r vertices y1, y2, · · · , yr.
Then we assign the label 3 to the r+ 1 vertices yr+1, yr+2, · · · , y2r+1. Now we assign the label

3 to the r vertices z1, z2, · · · , zr. Finally we assign the label 0 to the r+ 1 vertices zr+1, zr+2,

· · · , z2r+1.

Thus, the vertex labeling f is a 4-total mean cordial labeling follows from Table 3.

n tmf (0) tmf (1) tmf (2) tmf (3)

n = 2r 5r − 1 5r 5r 5r

n = 2r + 1 5r + 2 5r + 2 5r + 3 5r + 2

Table 3

This completes the proof. �

Theorem 4.5 A graph G obtained from the comb Pn �K1 and four stars by identifying the

vertex u1 of the comb with the central vertex of one star, un with the central vertex of second

star, v1 with the central vertex of third star and vn with the central vertex of fourth star is

4-total mean cordial.

Proof Take the vertex set and edge set of the comb is as in Definition 3.4. Let V (G) =

V (Pn �K1) ∪ {wi, xi, yi, zi : 1 ≤ i ≤ n} and E (G) = E (Pn �K1) ∪ {u1wi, unxi, v1yi, vnzi :

1 ≤ i ≤ n}. Note that |V (G)|+ |E (G)| = 12n− 1.

Case 1. n ≡ 0 (mod 2).

Let n = 2r, r ∈ N. Assign the label 0 to the 2r vertices u1, u2, · · · , u2r. Next we assign
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the label 0 to the r vertices v1, v2, · · · , vr. We now assign the label 1 to the r vertices vr+1,

vr+2, · · · , v2r. Next we assign the label 3 to the 2r vertices w1, w2, · · · , w2r. Now we assign

the label 3 to the 2r vertices x1, x2, . . ., x2r. Then we assign the label 1 to the 2r vertices y1,

y2, · · · , y2r. Finally we assign the label 3 to the 2r vertices z1, z2, · · · , z2r.

Case 2. n ≡ 1 (mod 2).

Let n = 2r + 1, r ∈ N. We now assign the label 0 to the 2r vertices u1, u2, · · · , u2r. Next

we assign the label 0 to the r + 1 vertices v1, v2, · · · , vr+1. We now assign the label 1 to the

r vertices vr+2, vr+3, · · · , v2r+1. Next we assign the label 3 to the 2r + 1 vertices w1, w2, · · · ,
w2r+1. Now we assign the label 3 to the 2r + 1 vertices x1, x2, · · · , x2r+1. Then we assign

the label 1 to the 2r + 1 vertices y1, y2, · · · , y2r+1. Finally we assign the label 3 to the 2r + 1

vertices z1, z2, · · · , z2r+1.

Thus, this vertex labeling f is a 4-total mean cordial labeling follows from Table 4.

n tmf (0) tmf (1) tmf (2) tmf (3)

n = 2r 6r − 1 6r 6r 6r

n = 2r + 1 6r + 3 6r + 2 6r + 3 6r + 3

Table 4

This completes the proof. �

Theorem 4.6 A graph obtained from the ladder Ln and star K1,n by identifying the vertex u1

of the ladder with the central vertex of star is 4-total mean cordial.

Proof Let G be the resulting graph. Take the vertex set and edge set of the lad-

der is as in Definition 3.5. Let V (G) = V (Ln) ∪ {wi : 1 ≤ i ≤ n} and E (G) = E (Ln) ∪
{u1wi : 1 ≤ i ≤ n}. Obviously |V (G)|+ |E (G)| = 7n− 2.

Case 1. n ≡ 0 (mod 4).

Let n = 4r, r ∈ N. Assign the label 0 to the r vertices u1, u2, · · · , ur. Next we assign the

label 1 to the r vertices ur+1, ur+2, · · · , u2r. Now we assign the label 2 to the r vertices u2r+1,

u2r+2, · · · , u3r. We now assign the label 3 to the r vertices u3r+1, u3r+2, · · · , u4r. Now we

assign the label 0 to the r vertices v1, v2, · · · , vr. We now assign the label 1 to the r vertices

vr+1, vr+2, · · · , v2r. Next we assign the label 2 to the r vertices v2r+1, v2r+2, · · · , v3r. We now

assign the label 3 to the r vertices v3r+1, v3r+2, · · · , v4r. Now we assign the label 0 to the r+ 1

vertices w1, w2, · · · , wr+1. Then we assign the label 1 to the r vertices wr+2, wr+3, · · · , w2r+1.

We now assign the label 3 to the 2r − 1 vertices w2r+2, w2r+3, · · · , w4r.

Case 2. n ≡ 1 (mod 4).

Let n = 4r+ 1, r ∈ N. As in Case 1 assign the label to the vertices ui, vi, wi (1 ≤ i ≤ 4r).

Now we assign the labels 3, 0, 1 to the vertices u4r+1, v4r+1, w4r+1.

Case 3. n ≡ 2 (mod 4).

Let n = 4r+ 2, r ∈ N. Label the vertices ui, vi, wi (1 ≤ i ≤ 4r + 1) as in Case 2. Next we

assign the labels 3, 0, 2 to the vertices u4r+2, v4r+2, w4r+2.
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Case 4. n ≡ 3 (mod 4).

Let n = 4r+3, r ∈ N. In this case assign the label for the vertices ui, vi, wi (1 ≤ i ≤ 4r + 2)

as in Case 3. We now assign the labels 3, 0, 2 to the vertices u4r+3, v4r+3, w4r+3.

This vertex labeling f is a 4-total mean cordial labeling follows from Table 5.

Order of n tmf (0) tmf (1) tmf (2) tmf (3)

n = 4r 7r 7r 7r − 1 7r − 1

n = 4r + 1 7r + 1 7r + 2 7r + 1 7r + 1

n = 4r + 2 7r + 3 7r + 3 7r + 3 7r + 3

n = 4r + 3 7r + 5 7r + 4 7r + 5 7r + 5

Table 5

This completes the proof. �

Theorem 4.7 A graph G obtained from the ladder Ln and two stars K1,n by identifying the

vertex u1 with the central vertex of one star and un with the central vertex of another star is

4-total mean cordial.

Proof Take the vertex set and edge set of the ladder is as in Definition 3.5. Let V (G) =

V (Ln) ∪ {xi, yi : 1 ≤ i ≤ n} and E (G) = E (Ln) ∪ {u1xi, unyi : 1 ≤ i ≤ n}. Note that |V (G)|+
|E (G)| = 9n− 2.

Case 1. n ≡ 0 (mod 4).

Let n = 4r, r ∈ N. Assign the label 0 to the r vertices u1, u2, · · · , ur. Now we assign the

label 1 to the r vertices ur+1, ur+2, · · · , u2r. We now assign the label 2 to the r vertices u2r+1,

u2r+2, · · · , u3r. Next assign the label 3 to the r vertices u3r+1, u3r+2, · · · , u4r. We now assign

the label 0 to the r vertices v1, v2, · · · , vr. Next we assign the label 1 to the r vertices vr+1,

vr+2, · · · , v2r. Now we assign the label 2 to the r vertices v2r+1, v2r+2, · · · , v3r. We now assign

the label 3 to the r vertices v3r+1, v3r+2, · · · , v4r. Next we assign the label 0 to the 2r + 1

vertices x1, x2, · · · , x2r+1. Now we assign the label 2 to the 2r − 1 vertices x2r+2, x2r+3, · · · ,
x4r. Then we assign the label 1 to the 2r vertices y1, y2, · · · , y2r. Finally we assign the label 3

to the 2r vertices y2r+1, y2r+2, · · · , y4r.

Case 2. n ≡ 1 (mod 4).

Let n = 4r + 1, r ∈ N. Label the vertices ui, vi, xi, yi (1 ≤ i ≤ 4r) as in Case 1. Next we

assign the labels 3, 1, 0, 1 to the vertices u4r+1, v4r+1, x4r+1 y4r+1.

Case 3. n ≡ 2 (mod 4).

Let n = 4r + 2, r ∈ N. In this case assign the label for the vertices ui, vi, xi, yi

(1 ≤ i ≤ 4r + 1) as in Case 2. We now assign the labels 3, 1, 0, 1 to the vertices u4r+2, v4r+2,

x4r+2 y4r+2.

Case 4. n ≡ 3 (mod 4).

Let n = 4r + 3, r ∈ N. As in Case 3, we assign the label to the vertices ui, vi, xi, yi
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(1 ≤ i ≤ 4r + 2). Finally we assign the labels 3, 1, 0, 1 to the vertices u4r+3, v4r+3, x4r+3

y4r+3.

Thus, the vertex labeling f is a 4-total mean cordial labeling follows from Table 6.

Size of n tmf (0) tmf (1) tmf (2) tmf (3)

n = 4r 9r 9r − 1 9r − 1 9r

n = 4r + 1 9r + 2 9r + 1 9r + 2 9r + 2

n = 4r + 2 9r + 4 9r + 4 9r + 4 9r + 4

n = 4r + 3 9r + 6 9r + 7 9r + 6 9r + 6

Table 6

This completes the proof. �

Theorem 4.8 A graph obtained from the ladder Ln and three stars K1,n by identifying the

vertex u1 with the central vertex of one star, un with the central vertex of second star and v1

with the central vertex of third star is 4-total mean cordial.

Proof We denote G as the resulting graph. Take the vertex set and edge set of the ladder

is as in Definition 3.5. Let V (G) = V (Ln) ∪ {xi, yi, zi : 1 ≤ i ≤ n} and E (G) = E (Ln) ∪
{u1xi, unyi, v1zi : 1 ≤ i ≤ n}. Clearly |V (G)|+ |E (G)| = 11n− 2.

Case 1. n ≡ 0 (mod 4).

Let n = 4r, r ∈ N. Assign the label 0 to the r vertices u1, u2, · · · , ur. Next we assign the

label 1 to the r vertices ur+1, ur+2, · · · , u2r. Now we assign the label 2 to the r vertices u2r+1,

u2r+2, · · · , u3r. We now assign the label 3 to the r vertices u3r+1, u3r+2, · · · , u4r. Now we

assign the label 0 to the r vertices v1, v2, · · · , vr. We now assign the label 1 to the r vertices

vr+1, vr+2, · · · , v2r. Next we assign the label 2 to the r vertices v2r+1, v2r+2, · · · , v3r. We

now assign the label 3 to the r vertices v3r+1, v3r+2, · · · , v4r. Next we assign the label 0 to the

3r+ 1 vertices x1, x2, · · · , x3r+1. Now we assign the label 2 to the r− 1 vertices x3r+2, x3r+3,

· · · , x4r. Then we assign the label 1 to the r vertices y1, y2, · · · , yr. We now assign the label

3 to the 3r vertices yr+1, yr+2, · · · , y4r. Finally we assign the label 2 to the 4r vertices z1, z2,

· · · , z4r.

Case 2. n ≡ 1 (mod 4).

Let n = 4r + 1, r ∈ N. In this case we assign the label to the vertices ui, vi, xi, yi, zi

(1 ≤ i ≤ 4r) as in Case 1. We now assign the labels 3, 0, 0, 1, 1 to the vertices u4r+1, v4r+1,

x4r+1 y4r+1, z4r+1.

Case 3. n ≡ 2 (mod 4).

Let n = 4r + 2, r ∈ N. As in Case 2, we assign the label to the vertices ui, vi, xi, yi zi

(1 ≤ i ≤ 4r + 1). Finally we assign the labels 3, 1, 0, 2, 2 to the vertices u4r+2, v4r+2, x4r+2,

y4r+2, z4r+2.

Case 4. n ≡ 3 (mod 4).
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Let n = 4r + 3, r ∈ N. Label the vertices ui, vi, xi, yi, zi (1 ≤ i ≤ 4r + 2) as in Case 3.

Next we assign the labels 3, 0, 0, 2, 1 to the vertices u4r+3, v4r+3, x4r+3, y4r+3, z4r+3.

This vertex labeling f is a 4-total mean cordial labeling follows from Table 7.

n tmf (0) tmf (1) tmf (2) tmf (3)

n = 4r 11r 11r − 1 11r − 1 11r

n = 4r + 1 11r + 3 11r + 2 11r + 2 11r + 2

n = 4r + 2 11r + 5 11r + 5 11r + 5 11r + 5

n = 4r + 3 11r + 8 11r + 8 11r + 7 11r + 8

Table 7

This completes the proof. �

Theorem 4.9 A graph G obtained from the ladder Ln and four stars by identifying the vertex

u1 with the central vertex of one star, un with the central vertex of second star, v1 with the

central vertex of third star and vn with the central vertex of fourth star is 4-total mean cordial.

Proof Take the vertex set and edge set of the ladder is as in Definition 3.5. Let V (G) =

V (Ln) ∪ {wi, xi, yi, zi : 1 ≤ i ≤ n} and E (G) = E (Ln) ∪ {u1wi, unxi, v1yi, vnzi : 1 ≤ i ≤ n}.
Obviously |V (G)|+ |E (G)| = 13n− 2.

Case 1. n ≡ 0 (mod 4).

Let n = 4r, r ∈ N. Assign the label 0 to the 4r vertices u1, u2, · · · , u4r. Next we assign

the label 2 to the 4r vertices v1, v2, · · · , v4r. We now assign the label 0 to the 2r + 1 vertices

w1, w2, · · · , w2r+1. Now we assign the label 1 to the 2r − 1 vertices w2r+2, w2r+3, · · · , w4r.

Next we assign the label 1 to the r + 1 vertices x1, x2, · · · , xr+1. Then we assign the label

3 to the 3r − 1 vertices xr+2, xr+3, · · · , x4r. We now assign the label 0 to the r − 1 vertices

y1, y2, · · · , yr−1. Next we assign the label 1 to the 2r + 1 vertices yr, yr+1, · · · , y3r. Now we

assign the label 3 to the r vertices y3r+1, y3r+2, · · · , y4r. Finally we assign the label 3 to the

4r vertices z1, z2, · · · , z4r.

Case 2. n ≡ 1 (mod 4).

Let n = 4r + 1, r ∈ N. Label the vertices ui, vi, wi, xi, yi, zi (1 ≤ i ≤ 4r) as in Case 1.

Next we assign the labels 0, 2, 2, 2, 3, 3 to the vertices u4r+1, v4r+1, w4r+1, x4r+1, y4r+1, z4r+1.

Case 3. n ≡ 2 (mod 4).

Let n = 4r+ 2, r ∈ N. As in Case 1, we assign the label to the vertices ui, vi, wi, xi, yi zi

(1 ≤ i ≤ 4r). Finally we assign the labels 0, 0, 2, 2, 1, 0, 2, 3, 3, 1, 3, 3 to the vertices u4r+1,

u4r+2, v4r+1, v4r+2, w4r+1, w4r+2, x4r+1, x4r+2, y4r+1, y4r+2, z4r+1, z4r+2.

Case 4. n ≡ 3 (mod 4).

Let n = 4r + 3, r ∈ N. In this case we assign the label to the vertices ui, vi, wi, xi, yi, zi

(1 ≤ i ≤ 4r + 2) as in Case 3. Finally we assign the labels 0, 2, 1, 3, 0, 3 to the vertices u4r+3,

v4r+3, w4r+3, x4r+3, y4r+3, z4r+3.
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This vertex labeling f is a 4-total mean cordial labeling follows from Table 8.

Order of n tmf (0) tmf (1) tmf (2) tmf (3)

n = 4r 13r 13r 13r − 1 13r − 1

n = 4r + 1 13r + 2 13r + 3 13r + 3 13r + 3

n = 4r + 2 13r + 6 13r + 6 13r + 6 13r + 6

n = 4r + 3 13r + 9 13r + 10 13r + 9 13r + 9

Table 8

This completes the proof. �

Example 4.1 A 4-total mean cordial labeling of the graph G obtained from Theorem 4.9 with

n = 5 is given in Figure 1.

Figure 1
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Abstract: In recent decade, Graph Theory has many applications in problems like secu-

rity key generation, brain MRI segmentation and tumor detection by cut sets, virus graph

and its application during COVID-19 pandemic. The color assignment to various graph’s

elements is a significantly important topic for research in graph theory. It has a wide-ranging

applications in sciences, medical sciences, computer engineering, electronics and telecommu-

nication, electrical engineering, network theory, artificial intelligence and machine learning,

psychology and economics, to name a few. Many conjectures are remains open problems

and many researchers and mathematicians from around the world are working on it. In this

paper, we review the graph’s coloring, the types of coloring, theorems and axioms related to

the graph-coloring, and applications.
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§1. Introduction

The famous Konigsberg seven-bridge problem launched graph theory [85, 86]. The task was

to begin at any point, walk through all seven bridges on the Pregel river just one time, and

then came back to the initial point. In 1736, Euler [54] used a graph to resolve this issue. He

represented lands with vertices and a bridge connecting two lands is an edge between them. In

this manner, the problem was represented in a graph. Euler found that there is no such closed

walk exists for this problem. As a result in graph theory, the Eulerian circuit concept was

introduced and “A connected graph is Eulerian if the degree of all vertices is an even number

and vice versa.” This was the first paper considered, and so the evolution of graph theory began.

Later, L.Euler [50,54,120] developed the planer graph formula based on the invariant of

polyhedron in algebraic topology. If polyhedron P has n vertices, f faces and m edges then

1Received November 25, 2023, Accepted March 15, 2024.
2Corresponding author: Haribhau R. Bhapkar, Email: hrbhapkar@gmail.com.
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n+ f −m is invariant and n+ f −m = 2. L.Euler made significant contributions to the field

of mathematics and physics; especially for the advancement in graph theory.

In 1850, legendary four-color map brought graph theory to the forefront. For nearly 127

years, this was an unsolved difficult problem. Many mathematicians and researchers attempted

to solve this problem but were unsuccessful.

§2. Graph Coloring

Coloring a graph began in the mid-nineteenth century with the legendary four-color conjecture

(4CC). Francis Guthrie discovered that all the nations on the administrative map of England

in 1850 were painted in only four colors, with every two adjacent nation-states painted in

a different color. He talked about it with his brother, Frederick Guthrie. Later, Frederick

discussed this problem with his professor, Augustus De-Morgan but he was unable to answer.

Morgan questioned William Hamilton concerning 4CC in 1852. Following that, in 1878, Arthur

Cayley worked on the problem and posted a question in the London mathematical society.

May [105] quotes in an article given by Harary [69] that “Any map on a plane or the surface

of a sphere can be colored with on four colors so that no two adjacent nations have the same

color?” The 4CC was first proved by Kemp [91] in 1879. But there was an error in the proof

shown by Heawood [80] and demonstrated that conjecture was correct for five colors. Many

mathematicians are worked to prove 4CC for more than 100 years. In 1969, Ore and Stemple

[111] revealed proof of 4CC with the numerical method for all maps with less than 40 countries.

Meanwhile the work on coloring of graph elements started. Finally, in 1977, Apple and Haken

[84,90,94] demonstrated 4CC using a computer with 1200 hours of computer time. First time

in history, a famous mathematics problem was solved extensively by using the computer.

After this many mathematicians verified the proof of 4CC in various ways. Robertson,

Sanders, Seymour and Thomas [117] proved 4CC with 633 unavoidable reducible configura-

tions. H. R. Bhapkar [14] proved this by PNR of a graph. Birkhoff [17] proposed a Chromatic

polynomial in 2012, which is based on Gauss [55] fundamental algebraic theorem, which states

that each n-degree polynomial with a complex coefficient has precisely n zeros.

Graphs have the ability to exemplify a wide variety of practical problems. The solutions to

these problems are given by graph theory. For example, the road network problems, electrical

networks consisting of resisters, capacitors and the inductors, maximum flow problems, optimal

path and minimized cost for transportation problems, the communication network, social media

networks, time-table scheduling of flights, trains and buses, signal flow problems in signal

transmission, representation of the structure of an organic molecule in chemistry, etc. These

structures can be represented as graphs, which are collections of points and lines connecting

some or all pairs of points and are known as vertices and edges, respectively.

2.1. Graph

Definition 3.1([48,69,144,145]) A graph H made up of two sets, V (H)-nonempty set of ele-

ments called vertices of graph H represented by point, E(H)-set of unordered pairs of vertices

joined by an arc or a line called an edge-set of graph H. It is symbolized with H(V,E). Please
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refer to books for a basic understanding of graphs.

2.2. Graph’s Coloring

Graph coloring, it is procedure of giving colors to graph components like vertices, edges, regions

in a manner that separates the colors of nearby elements. This term described as a proper

coloring in graph. The significant work is done on vertex coloring because the graph’s edge

and region coloring is identical to its line and dual graph respectively. But many problems of

coloring are studied in their original form in order for getting better results and applications.

Generally, a Smarandachely Λ-coloring of a graph G on a surface S by colors in C is a

mapping ϕΛ : C → V (G) ∪ E(G) ∪ F (G) such that ϕ(u) 6= ϕ(v) if u and v are elements of a

subgraph isomorphic to Λ ≺ G, where F (G) is the face set of 2-cell embedding of G on S ([95,

154]).

2.3. Proper Coloring

Definition 2.2([48,144]) A proper coloring is the process of color allocating to graph’s element

so that neighboring elements colored differently. If k different colors are required, it is known

as k-proper coloring or k-colorable.

The primary categories of graph coloring and some other special types of coloring are

surveyed in the follows sections.

§3. Vertex Coloring

Definition 3.1([48,95,144,154]) A vertex coloring means adjoining vertices of a graph colored

differently. If we needed k colors, then it is known as k-proper vertex coloring.

Generally, a Smarandachely Λ-coloring ϕΛ|V (G) : C → V (G) is called a vertex Smaran-

dachely Λ-coloring.

Definition 3.2 A chromatic number is the number k of least set of distinct colors required for

a graph to be k-properly vertex colorable. It is represented by χ.

The cycle graph C4 is 2-colorable, 3-colorable and 4-colorable. The bare minimum, though,

is 2-colorable. Consequently, the chromatic number χ(C4) is 2.

The following are some standard graphs and their chromatic numbers.

(1) A complete graph Kn is n-vertex colorable;

(2) A null graph is 1-vertex colorable;

(3) A bipartite graph (Km,n) is 2-vertex colorable;

(4) A cycle Cn is 3 or 2-vertex colorable if n is odd or even, respectively;

(5) The chromatic number of tree is 2;

(6) The chromatic number of star graph S1,n is 2;

(7) The chromatic number of path Pn is 2.

Many researchers contributed to the understanding of vertex coloring. In 1936, Konig [85]

characterized two-colorable graphs as below.
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Theorem 3.1 If a graph G is 2-vertex colorable then G is without an odd cycle and vice versa.

Theorem 3.2 A graph is bipartite if and only if it is without an odd cycle and vice versa.

He also demonstrated how to divide any k-regular bipartite graph into one factor. In 1941,

Brooks [5] characterized vertex coloring for connected graphs as below.

Theorem 3.3 Let H be a connected graph with a largest degree ∆. Then,

(A) χ(H) is at most ∆, excluding a complete graph or/and an odd cycle;

(B) χ(H) is ∆+1 for a complete graph and an odd cycle.

In other words, Brook’s theorem is equivalent to this: An odd cycles and complete graph

are both (k − 1)-regular, k-critical graphs. There is no way to compute chromatic number of

any random graph. Greedy color algorithm is one of the most important graph color algorithm

for getting this. The vertex coloring has many bounds. Thus, a clique number is one among

them. Szekeres and Wilf [129] provide the upper bound.

Theorem 3.4 χ(H) ≤ 1 +max[ δ(K)], for a graph H and for all induced subgraphs K ⊆ H.

And then, Berge C. [8, pp. 37] and Ore O. [110, pp. 225] provide a lower bound. Harary,

Hedetniemi [70] provide an upper bound in terms of independent number, as below.

Theorem 3.5 For graph H on n− vertices, n
β ≤ χ ≤ n − β + 1, where β is the cardinality of

maximal independent subset of H.

So, is there any graph that has no triangles but a very high Chromatic number? Dirac [49]

posed this question, and Descartes [46] and Mycielski [104] responded positively. The result

was proved for n ≥ 2 by Kelly and Kelly [87], i.e., there exists n-chromatic graph with a girth is

more than 5. Later, Erdos [51] and Lavasz [96] established the high Chromatic-number result

as shown below.

Theorem 3.6 For integers p > 0 and q > 0, there is a q-chromatic graph with a girth greater

than p.

In 1912, Birkhoff [17] introduced the Chromatic polynomial. It is an n−degree polynomial

that give us count of vertex coloring for set of m colors 1, 2, · · · ,m, where m ≥ χ(H) is a

positive integer. It is clear that it has integer roots, namely 1, 2, · · · ,m − 1 if χ = m. There

are many properties of chromatic polynomials that are explained by Birkhoff [17,6], Whitney

[147], Rota [121], Read [118], and many other authors, as follows:

Theorem 3.7 If a graph H has p vertices, q edges and k components with chromatic number

χ, then the chromatic polynomial f(H,x) of graph H yields the following results.

(1) The coefficients are alternate in sign;

(2) The polynomial f(H,x) has degree p;

(3) The coefficient of xn is 1;

(4) The coefficient of xn−1 is −q;
(5) The polynomial’s constant term is zero;
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(6) The chromatic polynomial with k components is

f(H,x) =

k∏
i=1

f(Hi, x);

(7) The smallest exponent of x is q;

(8) The numbers 1, 2, 3, · · · , χ− 1 are zeros of chromatic polynomial.

Theorem 3.8 4CC is equivalent to f(H,x) = 0 for m=1,2,3 and 4.

As a result of Birkhoff’s attempt to solve the graph theory coloring problem using an

algebraic method, more than 600 papers have been published since the advent of the chromatic

polynomial until today. Benzer [7] identified the linear structure of the DNA molecule in 1955;

as a result, Hajnal and Suranyi [72] introduced and studied interval graphs, a subclass of chordal

graphs, in 1958. Chordal graphs has all of roots from a set {1, 2 · · · , (χ − 1)}. Dmitriev [47]

discovered the characterization of chordal graphs and chromatic polynomials, i.e., “A graph H

is chordal if and only if all the roots of the chromatic polynomial for every induced subgraph H ′

are integers from the set {1, 2, · · · , (χ− 1)}, which are roots of chromatic polynomial of a graph

H. There was lots of research going on chordal graphs and chromatic polynomials.

The complement graph’s chromatic number is given as χ(H) = χ(H). It is clear that

χ(H) = β. Nordhaus and Gaddum [107] provide bounds in terms of sum and product.

Theorem 3.9 The chromatic numbers χ, satisfy inequalities for n vertices graph,

(A) 2
√
n ≤ χ+ χ ≤ n+ 1;

(B) n ≤ χχ ≤
(
n+ 1

2

)2

.

In general, the disjoint union (addition) of two graphs’s chromatic number is largest among

both chromatic numbers. The results of the graph operations on two or more graphs are

discussed by Vizing [134] in 1963 and Aberth [3] in 1964, as below.

Theorem 3.10 Let P and Q be two graphs. Then, the chromatic number of their Cartesian

product is maximum from χ(P ) or χ(Q).

Theorem 3.11 Let P and Q be two graphs. Then, the chromatic number of their join is a sum

of χ(P ) and χ(Q).

Chvatal [44] verified the below result for graphs without triangles in 1970.

Theorem 3.12 If a graph has no triangles and it is four regular, then it is a 4-chromatic graph.

In 1970, Thatcher et al. [132] proved the complexity of vertex coloring as below.

Theorem 3.13 The vertex coloring is NP-complete problem.

In 2007, W. Klotz and T. Sander [93] gave a result on a unitary Cayley graph.

Theorem 3.14 If Xn is unitary Cayley graph such that p is the minimum prime divisor of n,

then its vertex coloring number of Xn is p and the vertex coloring number of its complementary

graph is n/p.
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§4. Edge Coloring

Definition 4.1([48,69,95,144,145,154]) The edge coloring means proper-coloring of edges of a

graph. If we needed k colors, then it is known as k-proper edge coloring.

Generally, a Smarandachely Λ-coloring ϕΛ|E(G) : C → E(G) is called an edge Smaran-

dachely Λ-coloring.

Definition 4.2 The chromatic Index means least k different colors needed such that graph is

k-proper edge colorable. We symbolized this by χ′.

Here are some examples of standard graphs and their edge chromatic numbers.

(1) For a complete graph Kn, χ′(Kn) = (n− 1), where n is a positive integer;

(2) For a complete-bipartite graph (Km,n), χ′(Km,n) = maximum of {m,n};
(3) For a cycle Cn, χ′(Cn) = 2 or 3 if n is even or odd positive integer, respectively;

(4) For a tree T , χ′(T ) = 2;

(5) For a star graph S1,n, χ′(S1,n) = 2;

(6) For a path Pn, χ′(Pn) = 2.

In 1890, Peter Tait [130] proved the result of edge coloring for a planar cubic map.

Theorem 4.1 A cubic planar map with four colors is equivalent to 3 edge coloring and vice

versa.

Claude Shannon [122] published results on the tight bounds of lines in any electrical network

colored differently for identification in 1949.

Theorem 4.2 A multipartite graph H having highest degree ∆, satisfies ∆ ≤ χ′(H) ≤ b 3
2∆c.

In 1964, Vizing [139] characterized tight bonds for edge coloring of simple connected graphs

as below.

Theorem 4.3 If graph H is a simple connected with highest degree is ∆, then ∆ ≤ χ′(H) ≤
∆ + 1.

If χ′(H) = ∆, the graph H is classified as Class-I and if χ′(H) = ∆ + 1, it is classified as

Class-II.

Example 4.1 A complete K2n is of class-I and K2n+1 is of class II.

After this, Vizing [133] worked on a simple planar cubic graph and its edge coloring in

1965 and gave the following characterization.

Theorem 4.4 If a simple cubic planar graph H with an extreme degree is ∆ ≥ 8, then

χ′(H) = ∆.

The above result was enhanced for ∆ ≥ 7 by Grunewald [61], Zhang [151], and Sanders

[123] independently in the years 2000 and 2001. The problem is still open for ∆ ≥ 6. In

general, for multigraph with a largest vertex of degree ∆ having multiplicity µ, Vizing and
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Gupta [58] proved the following theorem for edge coloring. This is known as the Vizing and

Gupta Conjecture.

Theorem 4.5 A connected multigraph H with the largest degree is ∆ and having multiplicity

µ, then χ′(H) is ∆ or ∆ + µ.

Vizing [133] introduced critical graph concept in terms of an edge coloring of a graph and

its deleted subgraph, if χ′(H − e) < χ′(H), every edge e and proved the result.

Theorem 4.6 Every critical graph has 3 and more vertices of maximum degree.

In 1970, there was lots of research on critical graphs and the main critical graph conjecture

is as below.

Theorem 4.7 There is no critical graph of class-II exists for an even number of vertices.

This result was proved forn = 4, 6, 8, and 10 by Jakobsen [82,83]. Later, Fiorini and

Beineke [21] extended to n = 14 and Lars Andersen [1,2,18] to n = 16 (with Fiorini).

In 1973, Mark Goldberg [62] observed that for graph H,ω(H) is a density function where

ω(H) =

⌈
|E(H)|
b|V (H)|/2c

⌉
.

Then, χ′(H) = ω is possibly the best lower bound for edge coloring, and he published the

following conjecture.

Theorem 4.8(Goldberg conjecture) A simple connected graph H has an edge coloring number

χ′ is Max {∆, ω} or ∆ + 1.

In 1974, Paul Seymour worked on the graph density function and edge coloring of graphs

and derived the same result as Goldberg’s conjecture. Later, it was known as the Seymour-

Goldberg conjecture. In 1977, Seymour [124] published the following results from his work with

planar multigraphs and edge coloring.

Theorem 4.9 For a planar multigraph H, χ′(H) = ω or ∆, where ∆ is largest degree and ω

is density of graph H.

R. P. Gupta [63] also worked on Goldberg’s conjecture in 1978 and published a result

known as Gupta’s conjecture, which is an equivalent form of Goldberg’s conjecture.

Theorem 4.10 For a planar multigraph H, the chromatic index

χ′ > ∆ + 1 +

(
∆− 2

2t

)
with t ≥ 1 is a fixed number and encloses a sub-multigraph K of H having 2t′ + 1 vertices such

that

χ′ =

⌈
|E(K)|
t′

⌉
if 1 ≤ t′ < t.
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For t = 1, it is Claude Shannon’s bound [122]. For t = 2, it is the Goldberg conjecture

[62]. Many researchers worked on this conjecture, and finally, in 1990, the famous 1.1-theorem

was proved by Nishizeki and Kashiwagi [108] as below.

Theorem 4.11 For a graph H, if χ′ > 1.1∆(H) + 0.8, then χ′ = ω.

Goldberg’s conjecture is published in parameterized form by using Gupta’s conjecture [63]

as below.

Theorem 4.12 For each graph H, it’s chromatic index is χ′ > ∆(H) + 1 + (∆(H)−2)
(m−1) , odd

integer number m > 4 is an elementary-graph.

Several researchers have demonstrated this result for m, which is from 5 to 38. For m = 39

the result was solved by Chen and Jing [34] in 2017.

In 1977, Erdos and Wilson [52] discussed the chromatic index in Combinatorial Theory

Journal.

Theorem 4.13 Almost all graphs have a distinctive vertex of maximum degree, and hence

almost all graphs are of class-I.

Garey [59] and Holyer [73] discussed about NP completeness of edge coloring of graphs. In

1981, Holyer demonstrated that it is NP-hard problem and proved result as below.

Theorem 4.14 The chromatic index is NP-hard problem to decide for any arbitrary graph.

Cubic graph is NP-complete to conclude whether chromatic index is 3 or 4.

Chudnovsky [38,39] discussed about r-regular planar graphs and edge coloring in 2011.

Theorem 4.15 All 7-regular planar graphs with oddly seven-edge connected are seven edge-

colorable.

Theorem 4.16 Eight-regular planar graph is 8-edge-colorable if and only if graph is oddly

8-edge connected.

In 2012, Huang and Wang [76] proved the result for a planar graph.

Theorem 4.17 A planar graph not having seven-cycle with largest degree six is class-I graph.

In 2013, Machadoa et al. [102] worked on chordless graphs coloring, their time complexity

in polynomial time.

Theorem 4.18 The chordless graph H having maximum degree d > 2, graph H is d-edge

colorable and its time complexity is O(|V (H)|3|E(H)|).

§5. Face Coloring

Definition 5.1([95,130,154]) A face coloring means proper face F coloring of a planar graph.

If it requires k colors, so-called k-proper region coloring. This is also known as face coloring or

map coloring.
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Generally, a Smarandachely Λ-coloring ϕΛ|F (G) : C → F (G) is called a face Smaran-

dachely Λ-coloring.

We know that graph coloring was started with four map color and hence four colorable; so

region chromatic number is 1, 2, 3 or 4.

Theorem 5.1 All planar graphs are four-colorable.

The result was proved for the first time by Kemp [91] in 1879. However, there was an error

in the proof shown by Heawood [80] who proved the conjecture for five colors in 1890.

Theorem 5.2 Every planar graph is five-colorable.

Ore and Stemple [111] demonstrated 4CC for maps with fewer than 40 countries using a

numerical method in 1969.

Theorem 5.3 All planar graphs upto thirty nine faces are four-colorable.

After 87 years, Appel Kenneth and Haken Wolfgang [90,94] presented a proof of 4CC by

verifying more than 1900 unavoidable reducible configurations of a planar graph with the help

of 1200 computer hours in 1977 and proved that each planar graph can be colored with 4 or

less colors. Robertson et al. [117] gave revised proof with less than 650 unavoidable reducible

configurations. In 2014, Bhapkar [14] proved 4CC by using PRN (Pivot Region Number) of

graph. There are various characterizations of 4CC demonstrated by many mathematicians, as

below. In 1931, Whitney [146,147] proved the result on Hamiltonian planar graphs as below:

Theorem 5.4 The 4CC holds iff all hamiltonian planar graphs are four-colorable.

Vizing [139] described 4CC in the form of a chromatic index, as below.

Theorem 5.5 The 4CC is true iff all cubic planar graphs not comprising bridge are 3 edge

colorable.

In 1943, Hadwiger [71] introduced the concept of contraction in graph theory and gave the

famous conjecture below.

Theorem 5.6 All n-chromatic connected graphs are contractible to complete graph Kn.

The converse of this was proved by Wagner [140] in 1960.

Theorem 5.7 4CC is the same to Hadwiger’s conjecture for n = 5.

Grötzsch’s [56] characterized 3-colorable graphs in 1958 as below.

Theorem 5.8(Three color problem) All triangle free planar graphs are three-colorable.

Grünbaum [57] characterized 3-colorable graphs in 1963 as below.

Theorem 5.9 All planar graphs having less than 4 triangles are three-colorable.

Another Characterization of plane graph is given by Ore and Stemple [111] in 1969, as

shown below.
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Theorem 5.10 The 4CC holds iff all bridgeless cubic plane graph are 4-colorable.

In 1976, Steinberg raised the question below, which was proved by Gimbel [126] in 1993.

Theorem 5.11 Every planar graph not comprising four-cycle and five-cycle is three-colorable.

Later in 2005, Borodin et al. [19] improved this result as follows.

Theorem 5.12 A planar graph not consists of cycles of 4− 7 length are three-colorable.

After this, Borodin et al. [20] extended this result up to cycle 3− 9 length in 2006.

§6. Total Coloring

Definition 6.1([10,95,154]) A total coloring means coloring vertices and edges both together

properly. It we use k-colors, so-called k-total coloring of a graph.

Generally, a Smarandachely total coloring of a graph G by colors in C is a mapping ϕΛ :

C → V (G) ∪ E(G) such that ϕ(u) 6= ϕ(v) if u and v are elements of a subgraph isomorphic to

Λ ≺ G.

Definition 6.2 If we required least k different colors for coloring of vertices and edges then

graph is known as k-total colorable or total chromatic number, denoted by χ′′.

In 1965, Mehdi Behzad [9] introduced the idea of total coloring. One of most the important

results was total coloring conjecture. Mehdi Behzad [9,10] and Vizing [139] was discussed

separately this result which is listed below.

Theorem 6.1 For any graph H, with extreme degree is ∆, total chromatic number χ′′(H) holds

inequality ∆ + 1 ≤ χ′′(H) ≤ ∆ + 2.

Therefore, graphs are characterized in two types according to their total coloring number.

A graph H is called Type-I if χ′′(H) = ∆ + 1 and Type-II if χ′′(H) = ∆ + 2.

Example 6.1 A cycle C2n is Type-I and C2n+1 is Type-II.

For graphs having very large maximum degree ∆, Reed and Molloy [115] proved by the

probabilistic approach that its Total Chromatic numbers is at most ∆ + 1026. To determine

the TCC f is NP-hard problem for any arbitrary graph, which was proved by Sanchez-Arroyo

[127] in 1989.

In 1971, Rosenfeld [116] discussed the results of TCC for cubic graphs.

Theorem 6.2 The total coloring number of cubic graph is four or five.

In 1996, Kostochka [88] proved TCC for the largest degree of a graph being fewer than 6,

as below.

Theorem 6.3 The maximum five degree multigraph is at most 7-total colorable.

Later, this result was improved to 6-total colorable, as shown below.
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Theorem 6.4 A multigraph having maximum degree four is at most 6-total colorable.

Theorem 6.5 A five-regular multigraph with perfect matching is at most seven-total colorable.

In 1992, Seoud [128] established results for the Cartesian product of path graphs.

Theorem 6.6 A graph (Pm × Pn) is of Type-I, m,n > 2.

In 1999, Sanders, Daniel P., and Y. Zhao [125] proved that the TCC for the maximum

degree of a planar graph is less than 8, as below.

Theorem 6.7 If a planar graph has at the most degree seven, then it is nine-total colorable.

In 2001, Bojarshinov [33] showed that TCC holds for an interval-graph. This is NP-hard

problem with its polynomial time complexity as below.

Theorem 6.8 An interval-graph H with odd maximum degree is of Type-I and its time com-

plexity is O(|V (H)|+ |E(H)|+ (∆(H))2).

Theorem 6.9 An interval-graph H with even maximum degree is of Type-II and its time

complexity is O(|V (H)|+ |E(H)|+ (∆(H))2).

In 2003 and 2007, Campos and Mello [35,36], proved the results on a circulant graph that

is a power of cycle graph, as below.

Theorem 6.10 The power two of cycle graph Cn (circulant graph-Cn(1, 2)) is Type-I excluding

n = 7.

Theorem 6.11 If Cn(1, 2, · · · , k) is a circulant graph where 2 ≤ k ≤ bn/2c then it is type-II

iff k is odd integer and k > (n−3)
3 .

In 2003, Hilton et al. [81], G. Li and L. Zhang [98] published results on total chromatic

numbers of join graphs.

Theorem 6.12 The graph H = H1 +H2 is a join graph, where H1 and H2 are bipartite graphs

with maximum degree at most 2, then H is of Type-I if and only it if not isomorphic to Kn,n

or K4.

Theorem 6.13 The graph H = H1 +H2 is a regular graph, where H1 and H2 are graphs having

odd number of vertices, then H is of Type-II.

Theorem 6.14 The graph H = Cm +Cn is a join graph. Then, H is of Type-II if and only m

and n are odd integers with m = n.

Theorem 6.15 The graph H = Kp,q + Cn is of Type-I for positive integers n and p > q.

In 2005, Campos and Mello [37] proved some result on bipartite graph families as below.

Theorem 6.16 A grid graph Gm×n, m,n > 1, is of Type-I, a near ladder graph Bk is of Type-I

and II for k is even and odd, respectively and a k-dimensional cube graph Qk is of Type-I for

integers k > 2.
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In 2008, Kowalik et al. [89] proved following result for maximum degree of planar graph is

more than 8 as below.

Theorem 6.17 If the largest degree of a planar graph is more than eight then it is Type-I.

Khennoufa and Togni [92] discussed about fractional total coloring number for cubic cir-

culant and four-regular graphs in 2008.

Theorem 6.18 For a circulant H having n vertices and (p, p, · · · , p)-stable for positive rational

number p, the fractional total coloring number is ≤ (n/p).

Theorem 6.19 All cubic circulant graph H = C2n(1, n) with fractional (p, p, 0)-stable, then

fractional total coloring number is ≤ (2n/p) + 1.

Theorem 6.20 A four regular circulant graph C5p(1, k) is of Type-I for integers p > 0 and

(k − 2), (k − 3) being multiple of 5, where k < 3p/2.

Theorem 6.21 A four regular circulant graph C6p(1, k) is of Type-I for integers p > 3 and

(k − 1), (k − 2) being multiple of 3, where k < 3p.

In 2010, Prnaver and Zmazek [113] results on direct product graph’s total colorings.

Theorem 6.22 The direct product of cycles Cm and Cn is 5-total colorable. Also, the direct

product of cycle Cm and path Pn is 5-total colorable.

In 2011, Campos et al. [40] published result for some snarks families graph’s total colorings.

Theorem 6.23 The total coloring number of infinite snarks families namely flower, Goldberg

and twisted Goldberg snark is 4. Hence these graphs are of Type-I.

In 2012, Campos et al. [41] published result of total-coloring of split indifference graph.

Theorem 6.24 The total-coloring of split indifference graph with largest even and odd degree

is Type-I and II respectively iff Hilton’s condition satisfied.

In 2013, Machadoa et al. [102] discussed TCC for chordless graph with its time complexity

in polynomial time as below.

Theorem 6.25 The chordless graph H having maximum degree is three and more is of Type-I

and its time complexity is O(|V (H)|3|E(H)|).

In 2015, Geetha and Somasundaram [65] published the total coloring for generalized sier-

pinski graph of hypergraph and cycle graph.

Theorem 6.26 For n > 1, if a graph H is Type-I, so the Sierpinski graph S(n,H) is Type-I.

Theorem 6.27 The Sierpinski graph S(n,Ck) of cycle graph Ck is Type-I for positive integers

n > 1, k > 2.

Theorem 6.28 The Sierpinski graph S(n,Qk) of hypercube graph Qk is of Type-I for positive

integer n > 1.
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In 3D topology, WK-recursive topology of graph G is constructed as l layers of 2D recursive

topology of graph G. K(l, n,G) for l = 1 is snark family of graph G that is Sierpinski graph

S(n,G). For WK-recursive topology of complete graph, Geetha and Somasundaram [65] proved

following result of total coloring.

Theorem 6.29 The graph K(l, n,Kk)-WK-recursive topology of complete graph Kk is of Type-I

for positive integers n, k > 1 and l > 0.

Theorem 6.30 The graph K(l, n, Ck)-WK-recursive topology of cycle Ck is of Type-I for pos-

itive integers n > 1, k > 1 and l > 0.

In 2016, Mohan et al. [100], discussed results of total coloring for compounded graph and

rooted graph.

Theorem 6.31 The compounded graph H[G] for any two total colorable graphs H and G is of

Type-I.

Theorem 6.32 A rooted graph H ◦ Pn for total colorable graph H and path Pn is Type-I.

In 2017, Mohan, Geetha and Somasundaram [99], proved results of total colorings for

corona product of two graphs.

Theorem 6.33 For the path, cycle, complete and complete bipartite graphs, the corona product

with any graph H is Type-I.

In 2018, Geetha and Somasundaram [66] published the results on total coloring numbers

of graph’s product.

Theorem 6.34 A graph (Kn ×Kn) is Type-I for even positive integer n.

Theorem 6.35 A graph (Cm × Cn) is Type-I for positive integer n ≥ 3 and m is multiple of

3, 5 and 8.

In 2018, Golumbic [64] discussed total coloring of rooted path graph and its polynomial time

complexity. He also gave algorithm by using greedy algorithm to find total coloring number.

Theorem 6.36 A rooted path graph having even maximum degree is Type-I. Otherwise it is

Type-II. Its time complexity is O(|V (H)|+ |E(H)|).

In 2018, Vignesh [136] discussed total coloring numbers for double graph.

Theorem 6.37 A double graph of Type-I graph is Type-I. Otherwise, it is Type-II.

Theorem 6.38 For two Type-I graph’s deleted lexicon product is Type-I.

Theorem 6.39 The deleted lexicon product of any graph H with path Pm for m > 2 is Type-I.

Theorem 6.40 Let Kn be a complete graph. Then, its line graph is Type-I.

In 2020, Vignesh et al. [135] explained total coloring numbers of Cocktail Party, Core-

Satellite, Shrikhande and Modular Product of Graphs.
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Theorem 6.41 A core-satellite graph is total colorable and it is Type-I if the core and satellite

cliques are of Type-I.

Theorem 6.42 A cocktail party graph of order n is Type-I for n > 2.

Theorem 6.43 The modular product of P3 graph with Cycle Cn and path Pn are total colorable

graph.

Theorem 6.44 The Shrikhande graph is Type-I.

In 2021, Mauro et al. [109] proved 5-total coloring of four regular circulant graphs that are

Type-I as follow.

Theorem 6.45 A circulant graphs C3kp(1, p) is Type-I for integer k > 0, p is a multiple of 3.

Also proved if k is even then C3nk(1, k) is Type-I and C3n(1, 3) is Type-I except that C12(1, 3)

is Type-II.

In 2022, Prajnanaswaroopa et al. [114] described result on total coloring of Caley graph.

Theorem 6.46 A Caley graph is of Type-II.

Theorem 6.47 The TCC holds for odd and mock threshold graph.

For the vertex, edge or total coloring of a graph G, there are open problems following.

Problem 6.1 Let the complete graph Kn be decomposed into 3 subgraphs G1, G2, G3 such that

χ(G1) = n1, χ′(G2) = n2 and χ′′(G3) = n3 for integers n1, n2, n3 ≥ 1.

(1) Determine all possible subgraphs G1, G2 and G3;

(2) Determine all possible integers n1, n2, n3.

Problem 6.2 For any connected graph G, can it be decomposed into 3 subgraphs G1, G2, G3

such that χ(G1) = n1, χ′(G2) = n2 and χ′′(G3) = n3 for integers n1, n2, n3 ≥ 1, particularly,

with some special numbers such as n1 = 0, 1, n2 = 0, 1 or n3 = 0, 1 or other integers?

§7. Perfect Coloring

Definition 7.1 A perfect coloring means proper coloring of all components of planar graph. If

it needs least k colors, then it is called k-proper perfect coloring.

In 2018, Bhapkar [15] introduced perfect coloring of graphs. The following results proved.

Theorem 7.1 A star graph is perfectly (n+ 2)-colorable.

Theorem 7.2 A rose graph is perfectly (m+ 2)-colorable.

Theorem 7.3 A chain graph is perfectly 4-colorable.

Theorem 7.4 A tree with largest degree d is perfectly (d+ 2)-colorable.

Theorem 7.5 A cycle Cn is perfectly 5-colorable if the integer n is multiple of 3. Otherwise,

it is perfectly 6-colorable.
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In 2019, Archana Bhange [30] proved result of perfect coloring of corona product of cycle

graph with cycle, path and null graphs as below.

Theorem 7.6 A perfect coloring of corona product of cycle graph Cn with Cm is m + 3 for

n > 4,m > 4.

Theorem 7.7 A perfect coloring of corona product of cycle graph Cn with path graph Pm is

m+ 3 for n > 4,m > 3.

Theorem 7.8 A perfect coloring of corona product of cycle graph Cn with null graph Nm is

m+ 4 for n > 4,m ≥ 14.

In 2020, Bhange [16] collaborated with Bhapkar to define upper and lower bound and kinds

of perfect coloring. They also worked on some standard families and their Perfect coloring.

Theorem 7.19 The bound for perfect coloring is χ′′ ≤ χp ≤ χ′′ + 4, where χ′′ is total coloring

number.

Theorem 7.10 There are following kinds of perfect coloring of graphs.

(1) Kind 0 perfect coloring if χp(H) = χ′′(H);

(2) Kind 1 perfect coloring if χp(H) = χ′′(H) + 1;

(3) Kind 2 perfect coloring if χp(H) = χ′′(H) + 2;

(4) Kind 3 perfect coloring if χp(H) = χ′′(H) + 3;

(5) Kind 4 perfect coloring if χp(H) = χ′′(H) + 4.

Theorem 7.11 There are no graph with

χp(H) = χ′′(H) + 5.

Theorem 7.12 The diamond graph is kind 0.

Theorem 7.13 The null graph, trees, friendship graph, ladder rung graph are kind 1.

Theorem 7.14 A prism and circular ladder graph are kind 2.

Theorem 7.15 A ladder graph is kind 3.

Theorem 7.16 A helm graph is kind 4.

In 2022, Archana Bhange and Bhapkar [31] worked on perfect coloring of corona product

of Fan graphs with sunlet graph, tadpole graph and proved following results.

Theorem 7.17 A perfect coloring of corona product of sunlet graph and fan graph is ∆ + 1.

Theorem 7.18 Perfect coloring of corona product of Tadpole graph and Fan graph is ∆ + 1.

We observed that the concept of vertex coloring was extended to edge and face coloring

as well as the combination of these elements. After this many researchers in the field of graph

theory have defined various types of graph coloring by enforcing some different conditions while

coloring graphs. Now, let we discuss some other special types of coloring and their results.
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§8. Strong Edge Coloring of Graph

Definition 8.1 A properly-edge colored graph fulfills the condition C(u1) 6= C(u2) for every

edge u1u2 with color set C(u) and C(v) is known as strong edge coloring of graph.

In 1997, Burris [26] introduced this coloring notion. It is also named vertex distinguishing

proper edge coloring. It has the following properties

(1) Adjacent edges have the different color;

(2) If two vertices u1 and u2 are neighbors, their color sets are separate. i.e. C(u1) 6= C(u2).

Notice that a color set C(u) for a vertex u means set of colors of all edges incident at

a vertex u after proper coloring of edge and the strong edge chromatic number symbolized

by χ′s(H) means minimum colors needed for this coloring. Burris, Schelp [26] validated the

following result for cycle graph, bipartite, and complete bipartite.

Theorem 8.1 For a cycle Cn,

(1) χ′s(Cn) = 5, for n = 5;

(2) χ′s(Cn) = 3, for n is multiple of 3;

(3) χ′s(Cn) = 4, else.

Theorem 8.2 For a complete bipartite graph Km,n, 1 ≤ m ≤ n,

(1) χ′s(Km,n) = (n+ 1), if m < n and

(2) χ′s(Km,n) = (n+ 2), if m = n > 1.

Theorem 8.3 For a complete graph Kn, n ≥ 3, χ′s(Kn) is n and n+ 1 for n is odd and even,

respectively.

Theorem 8.4 For a star graph K1,n, n ≥ 3, χ′s(K1,n) = n.

For a graph H with nk at least k colors as there are vertices having degree k. Thus lower

bound is χ′s(H) ≥ max{(k!nk)(1/k) + (k − 1)/2 : for 1 ≤ k ≤ d}. We can improve this lower

bound upto additive 1 as below.

Theorem 8.5 If graph H has largest degree is d and for smallest integer j such that jCk ≥ nk
for 1 ≤ k ≤ d. Then strong edge coloring χ′s(H) = j or j + 1.

The upper bond for strong edge coloring was proved as below.

Theorem 8.6 If a graph H is strong edge coloring and n
1/i
i = max{n1/j

j : for j = 1 to

maximum degree d of graph H}. Then χ′s(H) ≤ (∆ + 1)(2n
1/i
i + 5). This is upper bound.

In 1997, Bazgan et al. [27] verified following result on strong edge coloring.

Theorem 8.7 If H is any graph with n vertices, consists of no more than one isolated vertex

and no isolated edges, then χ′s(H) ≤ n+ 1.

In 2002, Zhongfu Zhang et al. [152] published following results.
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Theorem 8.8 A graph H is formed with n connected components Hi then its strong edge

coloring is χ′s(H) = max{χ′s(Hi) : for all i}.

Theorem 8.9 If T is tree graph with 3 and more vertices, then χ′s(T ) = d for two maximum

degree vertices are not neighbors, otherwise χ′s(T ) = d+ 1.

Theorem 8.10 If two highest degree d vertices are neighbors in any graph, then χ′s ≥ d+ 1.

Theorem 8.11 A graph with highest degree d vertices are not neighbors and two neighbor

vertices of different degree, then χ′s = d.

In 2007 Balister et al. [32] proved following results for strong edge-colorings.

Theorem 8.12 If H be any connected graph with 6 and more vertices, then χ′s(H) ≤ ∆ + 2.

Theorem 8.13 If a graph H has non-isolated edges and the largest degree is 3, then χ′s(H) ≤ 6.

Theorem 8.14 If a bipartite graph B has no isolated edge, then χ′s(B) ≤ ∆ + 2.

Theorem 8.15 If a graph H is non-isolated and it is k-chromatic, then χ′s(H) ≤ ∆+O(log k).

In 2010, Wang et al. [142] proved strong edge coloring for maximum degree of graph more

than 4 with the condition on maximum average degree (mad) as follows.

Theorem 8.16 If a connected graph H has highest degree ∆ with mad(H), then

(1) If ∆ = 3; mad(H) < 7/2, then χ′s(H) ≤ ∆ + 1;

(2) If ∆ ≥ 3; mad(H) < 3, then χ′s(H) ≤ ∆ + 2;

(3) If ∆ ≥ 4; mad(H) < 5/2, then χ′s(H) ≤ ∆ + 1;

(4) If ∆ ≥ 5; mad(H) < 5/2, then χ′s(H) ≤ ∆ + 1 iff graph H has adjacent vertices of

highest degree.

In 2013, Hocquard, Montassier [78] generalized these results and proven the below results

for the largest degree ∆ ≥ 5 with a condition on mad.

Theorem 8.17 For every graph H with ∆ ≥ 5, mad(H) < 3− (2/∆), then χ′s(H) ≤ ∆ + 1.

In 2021, Borut et al [97] proved strong edge coloring of regular graph.

Theorem 8.18 If a graph H is r-regular, then strong-edge-chromatic number χ′s(H) is equal

to (2r − 1) if and only if it covers the Kneser graph K(2r − 1, r − 1).

Theorem 8.19 A cubic graph is 5 strong-edge-chromatic iff it covers Petersen graph.

§9. Vertex Distinguishing Total Coloring

Definition 9.1 There is an additional constraint joined in total coloring, if the color sets of any

two neighboring vertices should be different, such a coloring is known as AVD total coloring.

In 2005, Zhang et al. [153] introduced this coloring type after adding one more restriction

in the definition of total coloring. It has the following properties.
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(1) Adjacent-vertices colored differently;

(2) Adjacent-edges colored differently;

(3) An edge with its end vertices are colored differently;

(4) For each two neighbor vertices u1, u2 of a graph H, both vertices color sets are different.

That means C(u1) 6= C(u2).

The AVD-total-chromatic number symbolized by χat(H). It is the least colors needed for

AVD-total-coloring of a graph. Many researchers provided results on AVD-Total Coloring. The

lower and upper bounds were discussed by Zhang et al. [153] in 2005.

Theorem 9.1(Lower bound) If two maximum degree vertices are adjacent in a simple graph

H, then χat(H) ≥ ∆ + 2; otherwise, χat(H) ≥ ∆ + 1.

Theorem 9.2 If graph H is simple and connected with minimum order 2, then χat(H) ≤ ∆+3.

Thus, by the AVD-total-coloring conjecture we conclude that ∆ + 1 ≤ χat(H) ≤ ∆ + 3.

This is true for various graph families such as the graphs with ∆ = 3, bipartite graphs, complete

graphs.

In 2007, Wang [143] and in 2008, Chen [42] separately verified result of AVD-total-coloring

for maximum degree three graphs as below.

Theorem 9.3 If the largest degree of graph H is at most three, then χat(H) ≤ ∆ + 3.

In 2012, Huang [45] proved following theorem.

Theorem 9.4 If the largest degree of a simple graph H is more than 2, then χat(H) ≤ 2∆.

An algorithmic procedure described for four regular graph’s AVD-total-coloring by Pa-

paioannou and Raftopoulou [112] in 2014.

Theorem 9.5 χat(H) ≤ ∆ + 3 for any four regular graphs having its maximum degree is ∆.

In 2017 Yang [150] proved the result for planar graph.

Theorem 9.6 If the largest degree of a planar graph is more than 10, then χat(H) ≤ ∆ + 2.

In 2019, Wang [141] and Hu [77] independently demonstrated result for planar graph having

extreme degree nine.

Theorem 9.7 If the largest degree of a planar graph H is more than 8, then χat(H) ≤ ∆ + 3.

In 2020, Yulin Chang et al. [43] revised this result for maximum degree is more than 7.

Theorem 9.8 If the largest degree of a planar graph H is more than 7, then χat(H) ≤ ∆ + 3.

§10. Acyclic Coloring

Definition 10.1 If every two-chromatic subgraph is acyclic after graph’s vertex coloring, then

it is known as acyclic coloring. In other words, each cycle in a graph uses minimum three
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colors for proper vertex coloring. The least colors needed for such coloring is known as acyclic

chromatic number.

In 1973, Grunbaum [60] started work on acyclic coloring and proved result for graph with

largest degree is 3 as below.

Theorem 10.1 For any graph H with ∆ = 3, A(H) ≤ 4.

In 1979, Burstein [12] verified result for largest 4 degree graph.

Theorem 10.2 Any graph H with ∆ = 4 is acyclic 5-coloring.

In 1979, Borodin [11] proved result of acyclic coloring for planar graph.

Theorem 10.3 Any planar graph H is at most acyclic 5-coloring.

In 2011, Varagani et al. [138] verified result for largest 6 degree graph.

Theorem 10.4 Any graph H with ∆ = 6 is at most acyclic 12-coloring.

In 2011, Kostochka and Stocker [4] proved result for graph with maximum degree is 5.

Theorem 10.5 Any graph H with ∆ = 5 is at most acyclic 7-coloring.

§11. List Coloring

Definition 11.1 List vertex coloring means proper vertex coloring of graph with color every

vertex from available list of color only. The minimum colors necessary for this coloring is called

List vertex chromatic number or vertex-choosability.

Definition 11.2 If we color edges of graph from an available list of colors for each edge,

then it is called List edge-coloring. Thus choose a color for every edge from a list of colors

only. The minimum colors necessary for this coloring is called List edge chromatic number or

edge-choosability.

Definition 11.13 The total coloring from available list of colors for each vertex and edge is

termed as list total-coloring.

This type of coloring was introduced for the first time by Erdos et al. [53] in 1980.

Theorem 11.1 For any graph, its lower bound of list vertex coloring is chromatic number.

Theorem 11.2 For any graph, the lower bound of list edge coloring is chromatic index of a

graph.

In 1976 Vizing [137] proved result for list edge coloring.

Theorem 11.3 The vertex-choosability of every graph is at most ∆ + 1.

Borodin [25] proved above result is true for planar graphs for ∆ = 8 in 1990. Woodall et

al. [24] verified list chromatic index is ∆ for planar graph for maximum 11 degree. In 1994,
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Borodin [23] proved the result for list coloring.

Theorem 11.4 In a planar graph, if largest degree is more than 9; then total coloring ≤ list

total coloring ≤ maximum degree +2.

In 1995, Woodall [148] proved the result of list total coloring on planar graph.

Theorem 11.5 A planar graph with largest degree is more than 5 and also girth is more than

5; then total coloring = list total coloring = maximum degree + 1. Thus it is of Type-I

graph.

Above result proved for maximum degree 7 and its girth more than 3 by Borodin et al.

[24] in 1997. Hou [74] in 2006 proved above result if there is no 4-cycle in graph.

In 2006 and 2007, Hou, Liu, Cai [74,75] proved the result below.

Theorem 11.6 If a planar graph has largest degree is more than five and does not contains

4-8 length cycles; then List total coloring = total coloring = maximum degree +1. Thus it is of

Type-I graph.

The following are some equivalent results.

Theorem 11.7 A planar graph with largest degree is more than eight, then list total coloring

= total coloring = maximum degree +1, if the graph satisfies below conditions:

(1) There is no intersecting 3-cycle. (Wu-Wang [149] proved in 2008);

(2) Does not contain 5-cycle or 6-cycle. (Ma, Wu, Yu [101] proved in 2009).

In 2006, Borowiecki et al. [22] discussed list coloring of product graphs.

Theorem 11.8 The vertex-choosability of product of two graphs P and Q has tight upper bound,

χl(P ×Q) ≤ min{χl(P ) + col(Q), χl(Q) + col(P )} − 1.

In 2006, Hou, Liu, Cai [74,75] proved the result of List edge coloring for graph without

14-cycle.

Theorem 11.9 The edge-choosability of graph is ∆, if largest degree is more than 3 and without

14-cycle.

In 2008, Wu-Wang [149] verified result for the maximum degree was more than 8 for planar

graphs.

Theorem 11.10 For a more than 8 largest degree planar graph, the List total-coloring = total

coloring = maximum degree +1, if there is no 3 cycle.

Certainly, all the previous colorings can be determined on a graph G, which enables us to

generalize Problem 6.2 as follows.

Problem 11.1 How to decompose a connected graph G, particularly, the complete graph Kn of

order n into subgraphs G1, G2, G3, G4, G5, G6, G7, G8, i.e., G =
8⋃
i=1

Gi such that χ(G1) = n1,
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χ′(G2) = n2, χ′′(G3) = n3, χp(G4) = n4, χ′s(G5) = n5 χat(G6) = n6, χl(G7) = n7 and

A(G8) = n8 for chosen integers ni, 1 ≤ i ≤ 8?

Clearly, Problem 11.1 is Problems 6.1 and 6.2 if n4 = n5 = n6 = n7 = n8 = 0.

§12. π-Coloring and Incident Vertex π-Coloring

Bhapkar and Thakare [155, describe the π-coloring idea, which is based on properly coloring

graph components with distinctive color patterns.

Definition 12.1(π-Coloring, [155]) Let H = (V,E) be a simple connected graph where V is

vertex set, E is edge set, and X = {X1, X2, · · · , Xr} is a collection of distinct subsets of elements

of graph H having some common properties. If there exists a function f : X −→ P (C), where

C is a set of colors and P (C) is its power set, such that f(Xp) 6= f(Xq), for all p 6= q with

some conditions, then it is called π-coloring of graph H. The least number of colors of set C

is called π-chromatic number of a graph H corresponding to function f(X). It is denoted by

πf (H) or π(H).

Assigning distinct colors to each incidence vertex on the edges in set X, which is the

collection of all incident vertices pairs of each edge in the graph is known as incident vertex

π-coloring and it is defined as below [155].

Definition 12.2(Incident Vertex π-Coloring) Let H = (V,E) be a simple connected graph

where V is vertex set, E is edge set, and H = {H1, H2, · · · , Hr}, where Hi = {ei = (u, v)| for

all u, v ∈ E}, that is a collection of order pair incident vertices of every single edge e in E(H).

Define a function f : X −→ P (C), where C is set of colors and P (C) is its power set, such

that f(Xi) 6= f(Xj), for all i 6= j, then it is called incident vertex π-coloring (IVPI) of graph

H. The least number of colors of set C called Incident Vertex π chromatic number of graph H

corresponding to function f(X), and it is represented by IVΠf (H) or IV PI(H).

Bhapkar and Thakare [155] discussed the incident vertex π coloring of graphs namely

star graph, double star graph, complete graph, wheel graph, fan graph, double fan graph and

complete bipartite graph.

Theorem 12.1 The incident vertex π chromatic number of K1,n is n+ 1.

Theorem 12.2 The incident vertex π chromatic number of K1,n,n is n+ 1.

Theorem 12.3 The incident vertex π chromatic number of a complete graph is n.

Theorem 12.4 The incident vertex π chromatic number of wheel graph Wn+1 is n+ 1.

Theorem 12.5 The incident vertex π chromatic number of fan graph F1,n is ∆ + 1.

Theorem 12.6 The incident vertex π chromatic number of double fan graph F2,n is ∆ + 2.

Theorem 12.7 The incident vertex π chromatic number of complete bipartite graph Bm,n is

m+ n.
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§13. Applications of Graphs Coloring

The graph theory has a wide-ranging applications because it deals with real-world problems

and their solutions (for more details, see Narsingh Deo [48], Roberts [119], and Berge [8]).

Certainly, the graph theory is used in mathematics to solve problems involving linear systems

such as signal flow problems. The Markov process is one of the most important methods

in statistics and probability theory for solving problems in various areas such as statistical

information, analysis of various computer programs, control theory, problems in genetics and

inventory theory. As a result, the graph theory is used to solve Markov processes. In chemistry,

the graph theory is used to represent and match the chemical structure of molecules. By

using graph enumeration techniques, we can identify or characterize new chemical composites.

Designing computer programs and analyzing them are the two most crucial aspects of computer

engineering. In computer programming, the graph theory is used for running time estimation

and storage requirements, identifying errors, segmenting and flow of a program, and creating

a stochastic model for a program. It is also used for programme optimization, automatic

flow charts, data structure as graph, and determining the equivalence and validity of various

programmes by transforming their diagraph into canonical form.

There are numerous real-world applications for graph coloring (see [119] for the latest

study), so it has received renewed interest in recent years. We can solve lots of real-world

problems in sciences by using the graph coloring concept, which includes computer network

problems, artificial intelligence problems, machine learning problems from computer engineer-

ing, electrical circuit problems from electrical engineering, and communication network prob-

lems from electronics and communication engineering. One of the most well-known of these

applications is frequency allocation. Each radio transmitter in a radio transmitter network has

its own set of operating frequencies. Once two adjacent transmitters utilize the same frequency,

they can cause interference. The frequency bands assigned to these transmitter pairs should

have been distinct in the simplest model. The aim is to reduce the overall frequency number

used. The graph coloring solves this problem. Vertices are emitters in this case, an edge is

added in among pair of emitters (vertices) that may interfere. As a result, the frequencies

match the colors allocated to the vertices, and nearby vertices must have different colors. The

required frequency separation in larger designs may be greater for closer transmitter pairs or

for number of frequency bands assigned to the same transmitter; and hence, the goal is to gen-

erally reduce the variation between the lowest and highest frequency used (allocation range).

It was widely assumed that assigned frequencies should be distinct and regularly spaced points

on the spectrum (see Hale [79]). As a result, colors are commonly considered as numbers.

Later from Hale’s paper, two frequency assignment models are developed, one T-coloring and

another is channel assignment. After this, Tesman [131] developed list T-coloring model for

frequencies assignment which is with the restriction of frequencies available (using the concept

of list coloring) for the transmitter.

In 2018, Bhapkar [29], explained how to generate security key with the help of perfect

weighted planar graph. This paper also describes algorithm for public key and secret key

generation.
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In 1920, the virus graphs and its use were explained by Bhapkar et al. [28] in details.

There are four types of virus graphs, i.e., the virus graph type I to IV, where types I and II are

not death-defying but types III and IV are extremely harmful for human beings. In this paper,

they also discussed about the importance of graph modeling during pandemic conditions and

its rate spreading. To control the spreading of COVID-19, the cut set concept is used as an

isolation of people.

In 2022, Ghorpade and Bhapkar [67, 68] worked together on brain MRI separation and

used the cut-set concept to find the exact infected area that helps for medical treatment. They

discussed brain MRI segmentation by cut and watershed model.
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