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Nature never deceives us; it is we who deceive ourselves.

Rousseau, a French thinker.
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Abstract: In this paper the symmetric primitive matrices of order n with exponent n −

2 are completely characterized by applying a combinatorial approach, i.e., mathematical

combinatorics ([7]).
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§1. Introduction

An n × n nonnegative matrix A = (aij) is said to be primitive if A
k > 0 for some positive

integer k. The least such k is called the exponent of the matrix A and is denoted by γ(A).

Suppose that SEn = {γ(A) : A is a symmetric and primitive n× n matrix} be the

exponent set of n × n symmetric primitive matrices. In 1986, J.Y.Shao[1] proved SEn =

{1, 2, · · · , 2n− 2}\S, where S is the set of all odd numbers among {n, n+ 1, · · · , 2n− 2} and

gave the characterization of the matrix with exponent 2n− 2. In 1990, B.L.Liu et al[2] gave the

characterization of the matrix with exponent 2n−4. In 1991, G.R.Li et al[3] obtained the char-

acterization with exponent 2n−6. In 1995, J.L.Cai et al[4] derived the complete characterization

of symmetric primitive matrices with exponent 2n − 2r(> n) which is a generalization of the

results in [1, 2, 3], where r = 1, 2, 3, respectively. In 2003, J.L.Cai et al[5] derived the complete

characterization of symmetric primitive matrices with exponent n − 1. However, there are no

results regarding the characterization of symmetric primitive matrices of exponent n− 1. The

purpose of this paper is to go further into the problem and give the complete characterization

of symmetric primitive matrices with exponent n − 2 by applying a combinatorial approach,

i.e., mathematical combinatorics ([7]).

The associated graph of symmetric matrix A, denoted by G(A), is a graph with a vertex

set V (G(A)) = {1, 2, · · · , n} such that there is an edge from i to j in graph G(A) if and only

if aij > 0. Hence G(A) may contain loops if aii > 0 for some i. A graph G is called to be

1Received February 26, 2008. Accepted March 18, 2008.
2Foundation item: Project 10271017 (2002) supported by NNSFC.
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primitive if there exists an integer k > 0 such that for all ordered pairs of vertices i, j ∈ V (G)

(not necessarily distinct), there is a walk from i to j with length k. The least such k is called

the exponent of G, denoted by γ(G). Clearly, a symmetric matrix A is primitive if and only if

its associated graph G(A) is primitive. And in this case, we have γ(A) = γ(G(A)). By this

reason as above, we shall employ graph theory as a major tool and consider γ(G(A)) to prove

our results.

Terminologies and notations not explained in this paper are referred to the reference [6].

§2. Some Lemmas

In the following, we need the conception of the local exponent, i.e., the exponent from vertex

u to vertex v, denoted by γ(u, v), is the least integer k such that there exists a walk of length

m from u to v for all m > k. We denote γ(u, u) by γ(u) for convenience.

Lemma 2.1([1]) A undirected graph G is primitive if and only if G is connected and has odd

cycles.

Lemma 2.2([1]) If G is a primitive graph, then

γ(G) = max
u,v∈V (G)

γ(u, v).

Lemma 2.3([2]) Let G be a primitive graph, and let u, v ∈ V (G). If there are two walks from

u to v with lengths k1 and k2, respectively, where k1 + k2 ≡ 1(mod 2), then

γ(u, v) 6 max{k1, k2} − 1.

Suppose that Pmin(u, v) is a shortest path between u and v in G with the length dG(u, v) =

|Pmin(u, v)|, called the distance between u and v in G. The diameter of G is defined as

diam(G) = max
u,v∈V (G)

dG(u, v).

Suppose that Pmin(G1, G2) is a shortest path between subgraphs G1 and G2 of G with the

length dG(G1, G2) = |Pmin(G1, G2)|, called the distance between G1 and G2 in G. It is obvious

that

dG(G1, G2) = |Pmin(G1, G2)| = min{|Pmin(u, v)| | u ∈ V (G1), v ∈ V (G2)}.

Let u and v be two vertices in G,an (u, v)-walk is said to be a different walk if the length

of the walk and the distance between u and v have different parity. A shortest different walk

is said to be a primitive walk , denoted by Wrim(u, v) and its length by bG(u, v) or simply by

b(u, v).

Clearly, for any two vertices u and v in G, we have

dG(u, v) < bG(u, v), dG(u, v) + bG(u, v) ≡ 1(mod 2).
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Lemma 2.4([5]) Suppose that G is a primitive graph and u, v ∈ V (G),then we have

(a) γ(u, v) > dG(u, v);

(b) γ(u, v) ≡ dG(u, v)(mod 2);

(c) γ(G) > diam(G), γ(G) ≡ diam(G)(mod 2).

Lemma 2.5([5]) Suppose that G is a primitive graph with order n. If there are u, v ∈ V (G)

such that γ(u, v) = γ(G) 6 n, then for any odd cycle C in G we have

|V (Pmin(u, v)) ∩ V (C)| 6 n− γ(G),

where Pmin(u, v) is the shortest path from u to v in G.

Lemma 2.6 Suppose that G is a primitive graph, u, v ∈ V (G), then

γ(u, v) = bG(u, v) − 1.

Thus

γ(G) = max
u,v∈V (G)

bG(u, v) − 1.

Proof Considering the definitions of γ(u, v) and bG(u, v), there is no any (u, v)-walk with

the length of bG(u, v) − 2. So γ(u, v) > bG(u, v) − 1.

On the other hand, for any natural number k > bG(u, v) − 1, from the shortest path

Pmin(u, v) we can make a walk of the length k between u and v when dG(u, v)− k ≡ 0(mod 2);

from the primitive walk Wrim(u, v) we can make a walk of the length k between u and v when

dG(u, v) − k ≡ 1(mod 2). So γ(u, v) 6 bG(u, v) − 1.

Thus, we have γ(u, v) = bG(u, v) − 1. The last result is true by Lemma 2.2. �

According to what is mentioned as above, for arbitrary u, v ∈ V (G), a different walk

of two vertices u and v, denoted by W (u, v), must relate to a cycle C of G. In fact, the

symmetric difference Pmin(u, v)∆W (u, v) of Pmin(u, v) and W (u, v) must contain an odd cycle.

Conversely, any odd cycle C in G can make a different walk W (u, v) between u and v because

of the connectivity of G. So we often write W (u, v) = W (u, v, C). It is clear that for any

u, v ∈ V (G) there must be an odd cycle C′ in G such that

bG(u, v) = bG(u, v, C′) = |Wrim(u, v, C′)|,

then from Lemma 2.6 we have γ(u, v) = γ(u, v, C′) = bG(u, v, C′) − 1. The primitive walk can

be write as

Wrim(u, v) = Wrim(u, v, C′) = Pmin(u,C′) ∪ P (C′) ∪ Pmin(C
′, v),

where P (C′) is a corresponding segment of the odd cycle C′ and

γ(u, v) = γ(u, v, C′) = dG(u,C′) + |P (C′)| + dG(C′, v) − 1.

Moreover, for any odd cycle C in G we have bG(u, v) = bG(u, v, C′) 6 bG(u, v, C) and

γ(u, v) = γ(u, v, C′) 6 γ(u, v, C). And if there is a vertex w ∈ V (C′) such that Pmin(u,C
′) =
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Pmin(u,w) and Pmin(C′, v) = Pmin(w, v) (i.e., |Pmin(u,C
′) ∩ Pmin(C

′, v) ∩ V (C′)|=1), then the

odd C′ is called a primitive cycle between u and v. In this time we have

γ(u, v) = γ(u, v, C′) = dG(u,w) + dG(w, v) + |C′| − 1.

Particularly, we put b(u,C) = b(u, u, C), b(u) = b(u, u); γ(u,C) = γ(u, u, C), γ(u) =

γ(u, u) for convenience.

§3. Constructions of Graphs

Firstly, we define two classes of graphs Mn−2 and Nn−2 as follows.

(3.1) The set of graphs( these dashed lines denote possible edges in a graph)

Mn−2 = M
(1)
n−2 ∪M

(2)
n−2 ∪M

(3)
n−2 ∪M

(4)
n−2,

where

M
(1)
n−2: n = m+ 2t+ 2, (t > 1), 0 6 i < m

2 < j 6 m.

If {xaya | 1 6 a 6 t−1}∩E(G) 6= Ø, then j = i+1 andm ≡ 1(mod 2). Otherwise, j−i < m

andm ≡ 0(mod 2). See Fig.(1).

ya

xt−1

xa

vmvm−1viv0 v1 vj

yt−1

xt

x1y1

yt

C1

C0

Fig.(1) M
(1)
n−2

xaya

y1 x1

vmviv0 vj

Fig.(2) M
(2)
n−2

C0C1

yt xt

w

x

M
(2)
n−2: n = m+ 2t+ 2, (t > 0), 0 6 i < m

2 < j 6 m.

Let t > 1: If {xkyk | 1 6 k 6 t} ∩ E(G) 6= Ø, then j = i + 1; |a − b| = 1 when

{wxa, wyb} ⊆ E(G) (0 6 a, b 6 t), there may be a loop at w when a = t or b = t. If

NG(w) = {x, y} but not the case as above, d(x, y) = 2. If NG(w) = {x} and dG(w,Puv) > t,

there may be a loop at w; Otherwise, if {wxa, wyb} ⊆ E(G) (0 6 a, b 6 t),then j = i + 1,

|a − b| = 1 or j = i + 2, a = b(m 6= 2) and there may be a loop at w when a = t or b = t. If

NG(w) = {x, y} but not the case as above, d(x, y) = 2. If NG(w) = {x} and dG(w,Puv) > t,

there may be a loop at w. If there is not any loop at w and x = vs, then i > 1 or j < m when

s = m
2 .

Let t = 0: There are loops at vi and vj (0 6 i < m
2 < j 6 m), respectively, and no loop

at w but there is a loop C such that dG(w,C) < m
2 . There may be loops at the other vertices.

See Fig.(2).

M
(3)
n−2: n = m+ 2t+ 2, (t > 1),1 6 i+ 1 < m

2 < j 6 m.



The Characterization of Symmetric Primitive Matrices with Exponent n − 2 5

j − i < m when m is an odd number; j − i < m− 1 when m is an even number; j = i+ 2

when {xaya+1 | 1 6 a 6 t} ∩ E(G) 6= Ø. See Fig.(3).

xt−1

· · ·

vmvm−1viv0 v1 vj

Fig.(3) M
(3)
n−2

yt

ya+1

yt+1

xt

xa

C0C1

y1

y2

x1

x2

xt−1yt−1

· · ·

Cy = C1 Cx = C0Cw

xt

vmvm−1viv0 v1 vi+1

Fig.(4) M
(4)
n−2

w
yt

M
(4)
n−2: n = m+ 2t+ 2, (t > 0).

t > 1: i = 1
2 (m − 1). The set of possible chord edges in Cab = ybyb+1 · · · ytwxt · · · xa+1

xayb is {xayb | 0 6 a, b 6 t, a = b(6= 0) or |a − b| = 2}. There may be a loop at w and

{Cab | a = b+ 2} ∪ {Cy} 6= Ø, {Cab | a = b− 2} ∪ {Cx} 6= Ø.

t = 0: If i < 1
2 (m − 1), then there are loops at vy(1

2 (m − 1) < y 6 m). If i = 1
2 (m − 1),

then there are loops at vx and vy (0 6 x 6 i < y 6 m). If i > 1
2 (m− 1), then there are loops

at vx(0 6 x 6 1
2 (m− 1)), there are loops at the other vertices.Fig.(4).

(3.2) The set of graphs

Nn−2 = N
(1)
n−2 ∪N

(3)
n−2 ∪ · · · ∪ N

(n−1)
n−2 , n ≡ 0(mod 2),

where the set of subgraphs

N
(d)
n−2, 1 6 d 6 n− 1, d ≡ 1(mod 2), n ≡ 0(mod 2)

is constructed in the following.

(1) Let n = 2r + 2,take the copies K
c(0)
r+2 , K

c(1)
r+2 ,· · · , K

c(r−1)
r+2 of r graphs Kc

r+2 of order

r+2 (The complement of complete graph Kr+2) and a complete graph K
∗(r)
r+2 with loop at each

vertex. Make the join graph (the definition of join graph and the complement of graph are

referred to [6]): K
c(i)
r+2 ∨K

c(i+1)
r+2 , i = 0, 1, · · · , r − 2 and K

c(r−1)
r+2 ∨K

∗(r)
r+2 . Constructing a new

graph K as follows:

K =
r−2⋃
i=0

(K
c(i)
r+2 ∨K

c(i+1)
r+2 )

⋃
(K

c(r−1)
r+2 ∨K

∗(r)
r+2 )

= K
c(0)
r+2 ∨K

c(1)
r+2 ∨ · · · ∨K

c(r−1)
r+2︸ ︷︷ ︸

r Kc
r+2’s

∨K
∗(r)
r+2 .
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Fig.(5) The graph K with r = 4

u1,0 u1,1 u1,2 u1,3 u1,4

u2,0 u2,1 u2,2 u2,3

u2,4

u3,0 u3,1 u3,2 u3,3 u3,4

u4,0 u4,1 u4,2 u4,3

u4,4

u5,0 u5,1 u5,2 u5,3 u5,4

u6,0 u6,1 u6,2 u6,3 u2,4

V (0) V (1) V (2) V (3) V (4)

Suppose that the vertex sets of the graphs K
c(0)
r+2 , K

c(1)
r+2 ,· · · , K

c(r−1)
r+2 and K

∗(r)
r+2 in order are

V (j) = {ui,j | i = 1, 2, · · · , r + 2}, j = 0, 1, · · · , r,

then

V (K) = V (0) ∪ V (1) ∪ · · · ∪ V (r−1) ∪ V (r).

Fig.(5) shows a graph K with r = 4.

For d: 1 6 d 6 2r + 1,d ≡ 1(mod 2) given,take a path Pt = u1,0u1,1 · · ·u1,t of length

t = r− 1
2 (d− 1) in K and an odd cycle Cd = u1,tu1,t+1 · · ·u1,r−1u1,ru2,ru2,r−1 · · · u2,t+1u1,t of

length d. Constructing a subgraph K(d) of K as follows

K(d) = Pt ∪ Cd, 1 6 d 6 2r + 1, d ≡ 1(mod 2),

which is called a structure subgraph. The subgraph in black lines in Fig.(5) shows K(5) (r = 4).

(2) Let the set of vertex-induced subgraph of order n containing K(d) of K be K(d) where

1 6 d 6 2r+1,d ≡ 1(mod 2), and for any graph N ∈ K(d) let the spanning subgraph containing

K(d) of N be N(d), now we construct the set of graphs N (d) as follows:

N (d) = {N(d) | N ∈ K(d)}, 1 6 d 6 2r + 1, d ≡ 1(mod 2).

(3) Let the set of the graph N(d) ∈ N (d) satisfying the following conditions be

N
(d)
n−2, 1 6 d 6 n− 1, d ≡ 1(mod 2), n = 2r + 2 :
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(i) diam(N(d)) 6 n− 2;

(ii) For d′ > d,N(d) has no the subgraph K(d′) to be the structure subgraph of N(d);

(iii) For the vertex x ∈ N = N(d) with dN (x,Cd) > t,there must be odd cycle C such that

2dN (x,C) + |C| 6 n− 1.

§4. Main Results

Theorem 4.1 G is a primitive graph with order n and for any vertex w ∈ V (G), γ(w) <

γ(G) = n− 2 if and only if G ∈ Mn−2.

Proof We prove the Sufficiency first. Suppose that G ∈ Mn−2, then G is a primitive graph

with order n by the construction of Mn−2. For any vertex w ∈ V (G) we have

γ(w) 6 max{γ(v0), γ(vm)} = max{γ(v0, C1), γ(vm, C0)}

< 2t+m = n− 2 = γ(G),

and for any vertices u, v ∈ V (G) we have

γ(u, v) 6 γ(v0, vm) = γ(v0, vm, C0) = n− 2.

That is γ(G) = max
u,v∈V (G)

γ(u, v) = γ(v0, vm) = n− 2. See Fig.(3-1))∼ (3-4).

For the necessity, suppose that G is a primitive graph with order n and

γ(w) < γ(G) = n− 2 (4.1)

for any vertex w ∈ V (G). Without loss of generality, let u, v ∈ V (G) such that

γ(u, v) = max
x,y∈V (G)

γ(x, y) = γ(G) = n− 2.

According to the discussion in § 2, there must be an odd cycle C0 such that

γ(u, v) = γ(u, v, C0) = γ(G) = n− 2. Let

Puv = Pmin(u, v) = v0v1 · · · vi · · · vj · · · vm,

where v0 = u, vm = v,then we know that n ≡ m (mod 2) by Lemma 2.4.

Suppose that C is an odd cycle in G, then by Lemma 2.4 we have

|V (Puv) ∩ V (C)| 6 n− γ(G) = n− (n− 2) = 2. (4.2)

According to (4.2) the following discussion can be partitioned into three cases:

4.1. Suppose that for any odd cycle C in G,

V (Puv) ∩ V (C) = Ø, (4.3)

then t0 = dG(Puv, C0) > 1,d0 = |C0| ≡ 1(mod 2). Now chose such odd cycle C0 and the shortest

(u, v)-path Puv in G such that 2t0 + d0 is as small as possible.



8 Junliang Cai

Let 



P0 = Pmin(Puv , C0) = x0x1 · · ·xt0 ;

V1 = V (Puv ∪ P0 ∪ C0), V2 = V (G) \ V1.

where x0 = vj , xt0 ∈ V (C0),then n1 = |V1| = m+ t0 + d0. Since n− 2 = γ(u, v) = γ(u, v, C0) 6

m+ 2t0 + d0 − 1,

n2 = |V2| = n− (m+ t0 + d0) 6 n− (n− 1 − t0) = t0 + 1. (4.4)

4.1.1. Suppose that the odd cycle C′ satisfies γ(v) = γ(v, C′) and Pmin(v, C
′) ∩ P0 6= Ø,then,

by the choice of Puv, C0, P0 and the definition of γ(v), we know that γ(v, C′) = γ(v, C0). By

(4.1) we have

γ(v) = γ(v, C0) = 2d(v, C0) + d0 − 1 = 2d(v, xt0) + d0 − 1 < n− 2.

In this time, if there is an odd cycle C1 such that γ(u) = γ(u,C1) and Pmin(u,C1) ∩ P0 6= Ø,

we can obtain in the same way that

γ(u) = γ(u,C0) = 2d(u,C0) + d0 − 1 = 2d(u, xt0) + d0 − 1 < n− 2.

Thus, we have

γ(G) = γ(u, v) = γ(u, v, C0) = d(u, xt0) + d(v, xt0 ) + d0 − 1 < n− 2 = γ(G),

a contradiction. So we must have

Pmin(u,C1) ∩ P0 = Ø. (4.5)

Let vi be the vertex with the maximum suffix in Pmin(u,C1) ∩ Puv and

d1 = |C1|, t1 = d(vi, C1), P1 = Pmin(vi, C1) = y0y1 · · · yt1 ,

where y0 = vi, yt1 ∈ V (C1). By (4.4) and (4.5), we have P0 ∩ P1 = Ø,i < j and

1 6 t1 6 t1 + d1 − 1 6 |V2| 6 t0 + 1. (4.6)

By the choice of Puv,C0 and P0 we also have

2t0 + d0 6 2t1 + d1. (4.7)

From (4.6) and (4.7) we get

2t1 + 2d1 − 4 + d0 6 2t0 + d0 6 2t1 + d1 6 2t0 + 3,

thus d0 6 3,d0 + d1 6 4,|t1 − t0| 6 1.

In all as above we have the following four cases

(d0, d1) =





(1, 3), t1 = t0 − 1;

(3, 1), t0 = t1 − 1;

(1, 1), t1 = t0;

(1, 1), t1 = t0 + 1,

(4.8)



The Characterization of Symmetric Primitive Matrices with Exponent n − 2 9

and

|V (Puv ∪ P0 ∪C0 ∪ P1 ∪ C1)| = m+ t0 + d0 + t1 + d1 − 1 6 n. (4.9)

Thus




n− 2 = γ(u, v) = γ(u, v, C0) 6 m+ 2t0 + d0 − 1;

n− 2 = γ(u, v) 6 γ(u, v, C1) 6 m+ 2t1 + d1 − 1.
(4.10)

So it follows from (4.9) and (4.10) we have

n− 2 6 m+ t0 + t1 +
1

2
(d0 + d1) − 1 6 n−

1

2
(d0 + d1). (4.11)

By (4.8) we have four subcases for discussions:

(i) (d0, d1) = (1, 3),t1 = t0 − 1,thus t1 > 1,t0 > 2. By (4.10) and (4.11) we have

n− 2 = γ(u, v, C0) = m+ 2t0 + d0 − 1 = m+ 2t1 + d1 − 1 = γ(u, v, C1) = m+ 2t0,

i.e., n = m+ 2t0 + 2, therefore by (4.9)

|V (Puv ∪ P0 ∪ C0 ∪ P1 ∪ C1)| = n.

Suppose that V (C1) = {yt0−1, yt0 , z},by (4.1) and (4.2) we get

vλxα 6∈ E(G), vλyβ 6∈ E(G), λ 6= i, j, 0 < α 6 t0, 0 < β 6 t0.

Note that γ(u) = γ(u,C1) < γ(G) and γ(v) = γ(v, C0) < γ(G) we have

0 6 i <
m

2
< j 6 m. (4.12)

If xayb ∈ E(G), 0 6 a 6 t0, 0 6 b 6 t1,then a+ b+ 1 > j − i,i+ j + a+ b ≡ 1(mod 2)

and




n− 2 = γ(u, v, C0) 6 i+ b+ 1 + a+m− j + 2(t0 − a) + d0 − 1,

n− 2 = γ(u, v, C1) 6 i+ a+ 1 + b+m− j + 2(t1 − b) + d1 − 1.
(4.13)

So j − i 6 b− a+ 1 and j − i 6 a− b+ 1. From this we have j = i+ 1 and 1 6 a = b 6 t0 − 1.

By (4.12) m is an odd. Otherwise, since m being an even , γ(vm
2
) < γ(G),j − i < m.

Additionally, it is clever that there may be loops at the vertices yt0 and z,otherwise no any

loop except for at xt0 . So G ∈ M
(1)
n−2(t > 2). See Fig.(3-1).

(ii) (d0, d1) = (3, 1),t0 = t1 − 1,thus t0 > 1,t1 > 2. The discussions of these graphs, which

we omit, is analogous to that in (i), and we know that it is must be in M
(1)
n−2(t > 2).

(iii) (d0, d1) = (1, 1),t0 = t1 > 1. It is analogous to (i) that

n− 2 = γ(u, v, C0) = γ(u, v, C1) = m+ 2t0,

i.e., n = m+ 2t0 + 2,

vλxα 6∈ E(G), vλyβ 6∈ E(G), λ 6= i, j, 0 < α 6 t0, 0 < β 6 t0,
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and

0 6 i <
m

2
< j 6 m.

Thus, by (4.9) we have

|V (Puv ∪ P0 ∪ P1)| = n− 1.

It is easy to see that the graphG has also another vertex, denoted by w and 1 6 NG(w) 6 2.

If xkyl ∈ E(G), 0 6 k, l 6 t0, then j = i+ 1,1 6 k = l 6 t0 and

(a) When {wxa, wyb} ⊆ E(G), (0 6 a, b 6 t0), similar to (4.13) we have

a+ b ≡ 1(mod 2), 1 = j − i 6 min{b− a+ 2, a− b+ 2}.

That is |a− b| = 1. It is clear that as a = t0 or b = t0, there may add a loop at vertex w;

(b) When NG(w) = {x, y} but not the case (a),d(x, y) = 2;

(c) When NG(w) = {x} and dG(w,Puv) > t0, there may add a loop at vertex w.

If there is not xkyl ∈ E(G), 0 6 k, l 6 t0, then we have by similar discussions:

(a′) When {wxa, wyb} ⊆ E(G), (0 6 a, b 6 t0),we have j = i+ 1, |a− b| = 1 or j = i+ 2,

a = b, but m 6= 2 and as a = t0 or b = t0, there may add a loop at vertex w;

(b′) When NG(w) = {x, y} but not the case (a′), d(x, y) = 2;

(c′) When NG(w) = {x} and dG(w,Puv) > t0, there may add a loop at vertex w. If there

is not any loop at vertex w and x = vs, then by γ(w) < γ(G),i > 1 or j < m as s = m
2 .

To sum up we have G ∈ M
(2)
n−2(t > 1)(See Fig.(3-2)).

(iv) (d0, d1) = (1, 1), t1 = t0 + 1 > 2. From (4.9) we get

|V (Puv ∪ P0 ∪ P1)| = n.

And from (4.10) we have

n− 2 = γ(G) = γ(u, v, C0) = m+ 2t0, γ(u, v, C1) 6 m+ 2t1 = m+ 2t0 + 2.

i.e., n = m+ 2t0 + 2,and from (4.1) and (4.2), we have

vλxα 6∈ E(G), λ 6= j, 0 < α 6 t0; vµyβ 6∈ E(G), 0 6 µ < i, 0 < β 6 t1.

Sine γ(u) = γ(u,C1) = 2i+ 2t0 + 2 < m+ 2t0, i+ 1 < m
2 ,thus

1 6 i+ 1 <
m

2
< j 6 m. (4.14)

Now, if vµyβ 6∈ E(G), µ > i, 1 6 β 6 t0 + 1, then by (4.1) we have j − i < m as m is

odd and j − i < m− 1 as m is even.

If xayb ∈ E(G), 0 6 a 6 t0,0 6 b 6 t1, then a+ b+ i+ j ≡ 1(mod 2),





n− 2 = γ(u, v, C0) 6 i+ b+ 1 + a+m− j + 2(t0 − a),

n− 2 = γ(u, v, C1) 6 i+ b+ 1 + a+m− j + 2(t1 − b).
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Thus 1 < j − i 6 b− a+ 1 and 1 < j − i 6 a− b+ 3. this means that j = i+ 2 and b = a+ 1.

So G ∈ M
(3)
n−2(See Fig.(3–3)).

If vµyβ ∈ E(G), (µ > i), then it is must be that y1vi+2 and i+ 2 6 j by (4.14). The case

similar to (b) in (iii).

4.1.2. Suppose that the odd cycle C′ satisfies γ(v) = γ(v, C′) and Pmin(v, C
′) ∩ P0 = Ø,then

there is also an odd cycle C′′ such that γ(u) = γ(u,C′′) and Pmin(u,C
′′)∩ P0 = Ø. Otherwise,

similar to 4.1.1. Let

P ′ = Pmin(Puv , C
′), P ′′ = Pmin(Puv, C

′′)

and writing t′ = dG(Puv, C
′), d′ = |C′|; t′′ = dG(Puv, C

′′), d′′ = |C′′|, therefore

|V (Puv ∪ P0 ∪ P
′ ∪ P ′′ ∪ C0 ∪C

′ ∪ C′′)| = m+ t0 + t′ + t′′ + d0 + d′ + d′′ − 2 6 n.

Since 



n− 2 = γ(u, v, C0) 6 m+ 2t0 + d0 − 1,

n− 2 6 γ(u, v, C′) 6 m+ 2t′ + d′ − 1,

n− 2 6 γ(u, v, C′′) 6 m+ 2t′′ + d′′ − 1.

Thus, we have

n− 2 6 m+ 2
3 (t0 + t′ + t′′) + 1

3 (d0 + d′ + d′′) − 1

6 n+ 1 − 1
3 (t0 + t′ + t′′) − 2

3 (d0 + d′ + d′′)

6 n− 2.

i.e.,

t0 = t′ = t′′ = 1, d0 = d′ = d′′ = 1.

So G ∈ M
(2)
n−2(t = 1)(See Fig.(3-2)).

4.2. Suppose that there is an odd cycle C in G such that

V (Puv) ∩ V (C) = {vi, vλ}, (i < λ). (4.15)

Then from (4.2) we see that λ = i+ 1,thus

n− 2 = γ(u, v) 6 i+ (m− λ) + |C| − 2 = m+ |C| − 3 = |V (Puv ∪C)| − 2 6 n− 2,

i.e.,

V (Puv ∪ C) = V (G), n− 2 = γ(u, v) = γ(G) = m+ |C| − 3,

or

G = Puv ∪ C, n = m+ |C| − 1. (4.16)

In the same time from (4.2), also we see that

N [C0 − {vi, vi+1}] ∩ V (Puv) = {vi, vi+1}.

By (4.2) we have vivi+1 ∈ C,and γ(u, v) = γ(u, v, C),i.e., putting C = C0. Let C0 =

y0y1 · · · yt0wxt0 · · ·x1x0y0 where y0 = vi, x0 = vi+1, t0 > 0, then |C0| = 2t0 + 3,that is n =

m+ 2t0 + 2.
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If there is xayb ∈ E(G), 0 6 a, b 6 t0,then by γ(u, v) = γ(u, v, C0) we have |a − b| ≡

0(mod 2). In this time we have the odd cycle Cab = ybyb+1 · · · yt0wxt0 · · ·xa+1xayb,and so




n− 2 6 γ(u, v, Cab) 6 m+ 2a+ 2t0 − a− b+ 2,

n− 2 6 γ(u, v, Cab) 6 m+ 2b+ 2t0 − a− b+ 2.

That is |a− b| 6 2,or a = b 6= 0(t0 > 1) or |a− b| = 2(t0 > 2).

It is easily seen that the all of odd cycles in G is included in Z = {Cab | 0 6 a, b 6 t0, a =

b 6= 0 or |a− b| = 2} where C0 = C00 except for possible loops Cy at yt0 , Cx at xt0 and Cw at

w.

If there exists Cab, Ca′b′ ∈ Z in G such that γ(u) = γ(u,Cab) < n−2, γ(v) = γ(v, Ca′b′) <

n− 2,then from (4.1) we get




2i+ 2b+ 2t0 + 2 − a− b 6 n− 3,

2(m− i− 1) + 2a′ + 2t0 + 2 − a′ − b′ 6 n− 3,

note that n = m+ 2t0 + 2,the formula as above equivalent to




2i 6 m− 3 + a− b,

2(m− i− 1) 6 m− 3 + b′ − a′

i.e.,

a = b+ 2, a′ = b′ − 2, i =
1

2
(m− 1).

Otherwise,we must have γ(u) = γ(u,Cy) < n− 2 and γ(v) = γ(v, Cx) < n− 2,i.e.,




2i+ 2t0 6 n− 3,

2(m− i− 1) + 2t0 6 n− 3,

From this we can get i = 1
2 (m− 1),and there are loops Cy at yt0 and Cx at xt0 .

To sum up,we obtain that




{Cab | 0 6 a, b 6 t0, a = b+ 2} ∪ {Cy} 6= Ø;

{Cab | 0 6 a, b 6 t0, a = b− 2} ∪ {Cx} 6= Ø.

Evidently,this result is the same as the case of no any xayb ∈ E(G), 0 6 a, b 6 t0 but

t0 > 1.

When t0 = 0, i.e., |C0| = 3,n− 2 = γ(u, v) = γ(u, v, C0) = γ(G) = m. Set C0 = vivi+1wvi,

then there are loops at vertex vx and vy as i = 1
2 (m− 1) where 0 6 x 6 i = 1

2 (m− 1) < y 6 m,

and there may be loops at the rest vertices;There must be a loop at vy as i < 1
2 (m− 1) where

1
2 (m − 1) < y 6 m, and there may be loops at the rest vertices; there must be a loop at vx

as i > 1
2 (m − 1) where 0 6 x 6 1

2 (m − 1), and there may be loops at the rest vertices. So

G ∈ M
(4)
n−2(See Fig.(3-4)).

4.3. There is an odd cycle C such that

V (Puv) ∩ V (C) = {vi}, (4.17)
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but there is not odd cycle C′ such that |V (Puv) ∩ V (C′)| > 2. Thus,we have

n− 2 = γ(u, v) 6 γ(u, v, C) = m+ |C| − 1 = |V (Puv ∪ C)| − 1 6 n− 1.

Since n ≡ m(mod 2),

n− 2 = γ(u, v) = γ(u, v, C) = m+ |C| − 1, |V (Puv ∪ C)| = n− 1,

i.e., n = m + |C| + 1. Evidently,there is only one vertex w in G except for the vertices of

V (Puv ∪ C) and N(C − {vi}) ∩ V (Puv) = {vi}. This indicates that C = C0 and |C0| 6

3,otherwise,there must have γ(u) > γ(G) or γ(v) > γ(G), contradicts to (4.1).

When |C0| = 3 we have γ(G) = m+2 and n = m+ 4. There is no any loop at the vertices

on Puv. By (4.1) we have G ∈ M
(1)
n−2(t = 1) (See Fig.(3–1)).

When |C0| = 1 we have γ(G) = m and n = m + 2. By (4.1) the set of graphs have the

characteristic: there are loops at vi and vj as 0 6 i < m
2 < j 6 m ,there is no any loop at

w,and there may be loops at the rest vertices. There exists a loop C such that dG(w,C) < m
2 .

So G ∈ M
(2)
n−2(t = 0)(See Fig.(3-2)).

The proof is complete. �

Theorem 4.2 Suppose that G is a primitive graph with order n, then there exists a vertex

w ∈ V (G) such that γ(w) = γ(G) = n− 2 if and only if G ∈ Nn−2.

Proof For the sufficiency, suppose that G ∈ Nn−2, without loss of generality suppose that

G ∈ N
(d)
n−2,1 6 d 6 2r + 1, d ≡ 1(mod 2). Since diam(G) 6 n− 2,G is connected and it is clear

that there is at least an odd cycle Cd in G. By Lemma 2.1 we know that G is a primitive graph

and |V (G)| = n1 + n2 = 2t+ d+ 1 = n.

In the following, we need only to prove two results:

(1)γ(u0) = n− 2.

Evidently, γ(u0, Cd) = 2dG(u0, Cd) + |Cd| − 1 = 2t+ d− 1 = n− 2.

Suppose that there is any odd cycle C in G such that γ(u0, C) < n − 2 = 2r,then

2dG(u0, C) + |C| − 1 < 2r,i.e.,

dG(u0, C) +
1

2
(|C| − 1) < r.

This means that there is an odd cycle C in the vertex-induced subgraph G[U ′] in G where

U ′ = {u | dG(u0, u) < r, u ∈ V (G)}.

This is impossible, since G[U ′] is the subgraph of the vertex-induced subgraph K[V ′] in K

where

V ′ = {u | dK(u0, u) < r, u ∈ V (K)},

and K[V ′] is a bipartite graph. So γ(u0) = γ(u0, Cd) = n− 2.

(2) ∀u, v ∈ V (G), γ(u, v) 6 n− 2.
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When u = v,If dG(u,Cd) 6 t, then

γ(u) 6 γ(u,Cd) = 2t+ d− 1 = 2r = n− 2;

If dG(u,Cd) > t, then by the constructed condition (iii) of G we see that there exists an odd

cycle C in G such that 2dG(u,C) + |C| 6 n− 1, that is

γ(u) 6 γ(u,C) = 2dG(u,C) + |C| − 1 6 n− 2.

Thus, we get γ(u, v) 6 n− 2.

When u 6= v, if dG(u,Cd) + dG(v, Cd) 6 2t, then

γ(u, v) 6 γ(u, v, Cd) 6 2t+ d− 1 = n− 2;

If dG(u,Cd) + dG(v, Cd) > 2t,it might just as well suppose that dG(u,Cd) > t,then by the

constructed condition (iii) of G we also see that there exists an odd cycle C in G such that

2dG(u,C) + |C| 6 n− 1.

By considering the shortest path Pmin(u,C) from u to C and Pmin(u0, Cd) from u0 to Cd,

if they intersect each other, let w be the first intersect vertex of Pmin(u,C) from u to C and

Pmin(u0, Cd), then dG(u,w) > dG(u0, w). Thus

γ(u0) 6 γ(u0, C) 6 2(dG(u0, w) + dG(w,C)) + |C| − 1

< 2(dG(u,w) + dG(w,C)) + |C| − 1

= 2dG(u,C) + |C| − 1

6 n− 2 = γ(u0),

a contradiction. Therefore,there are no any intersect vertex between Pmin(u,C) and Pmin(u0, Cd).

Thus, by the connectivity of G and the condition n2 = t + 1, we have dG(u,Cd) = t + 1 and

dG(v, Cd) = t. This means that uv ∈ E(G) or v = u0.

If uv ∈ E(G), then

γ(u, v) 6 γ(u, v, C) = dG(u,C) + dG(v, C) + |C| − 1

< 2dG(u,C) + |C| − 1 6 n− 2;

If v = u0, then

γ(u, v) 6 γ(u, u0, Cd) 6 dG(u,Cd) + dG(u0, Cd) + |Cd| − 2

= 2t+ d− 1 = n− 2.

To sum up, we get ∀u, v ∈ V (G), γ(u, v) 6 n− 2.

For the necessity, suppose that G is a primitive graph with order n,then there must be a

vertex u0 and an odd cycle C in G such that γ(u0) = γ(u0, C) = γ(G) = n− 2, choosing such

vertex u0 and odd cycle C that the length d = |C| as large as possible and writing C = Cd.

By the Lemma 2.4,we have γ(G) = γ(u0) ≡ dG(u0, u0) = 0(mod 2). So, let γ(G) = 2r, thus

n = 2r + 2.
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It is clear that Cd is a primitive cycle at vertex u0, let t = dG(u0, Cd), then γ(u0) =

2t+ d− 1 = 2r. So t = r − 1
2 (d− 1),1 6 d 6 2r + 1. Suppose that

Pt = Pmin(u0, Cd) = u0u1 · · ·ut, Cd = utut+1 · · ·ut+d−1ut,

and write 



V1(t, d) = V (Pt ∪Cd), V2(t, d) = V (G) − V1(t, d);

E1(t, d) = E(Pt ∪ Cd), E2(t, d) = E(G) − E1(t, d).

Then, we calculate

n1 = |V1(t, d)| = t+ d, n2 = |V2(t, d)| = t+ 1, n = 2t+ d+ 1.

What is mentioned as above indicates that there must be the structure subgraph K(d) =

Pt ∪ Cd in G. In order to prove G ∈ N
(d)
n−2 ⊆ Nn−2,it is suffice to prove that (a) The graph

G satisfies the constructed conditions (i),(ii) and (iii) of the set of N
(d)
n−2;(b)The graph G is a

subgraph of K.

(a) By Lemma 2.4 we get diam(G) 6 γ(G) = 2r = n − 2,so the condition (i) holds. By

the choice of Cd we know that for d′ > d there is not the structure subgraph K(d′) in G,so the

condition (ii) holds. Suppose that there exists a vertex x in G such that dG(x,Cd) > t,then

γ(x,Cd) = 2dG(x,Cd) + d− 1 > 2t+ d− 1 = 2r. If 2dG(x,C′) + |C′| > n− 1 for all odd cycle

C′ different from odd Cd in G, then also γ(x,C′) = 2dG(x,C′) + |C′| − 1 > n − 2 = 2r. So

γ(G) > γ(x) > 2r = γ(G), a contradiction. Therefore the condition (iii) holds too.

(b) Suppose that the vertex set V (G) of G is divided into as follows:

V (G) = U0 ∪ U1 ∪ · · · ∪ Ur−1 ∪ Ur,

in which Ui = {u | dG(u0, u) = i, u ∈ V (G)}, i = 0, 1, 2, · · · , r−1, Ur = {u | dG(u0, u) > r, u ∈

V (G)}.

Firstly, we prove that the induced vertex subgraphsG[Ui] all are zero graphs, i = 0, 1, 2, · · · , r−

1. Otherwise,there must be odd cycle in the vertex-induced subgraph G′ = G[U0 ∪ U1 ∪ · · · ∪

Ur−1]. Let C be an odd cycle in G′,then dG′(u0, C)+ 1
2 (|C|−1) < r. Thus, γ(u0) 6 γ(u0, C) =

2dG′(u0, C) + |C| − 1 < 2r = γ(u0),a contradiction.

Secondly, we prove that G[Ur] is a subgraph of K
(r)
r+2. By the definition of K

(r)
r+2,it is suffice

to prove that |Ur| 6 |K
(r)
r+2| = r+2. In fact,when d = 1 since |Ui| > 1, i = 0, 1, · · · , r−1,we have

2r+2 = |V (G)| > r+ |Ur|, i.e., |Ur| 6 r+2. When d > 3 since |Ui| > 1, i = 0, 1, · · · , t,|Uj | > 2,

j = t+ 1, · · · , r − 1,we have 2r + 2 = |V (G)| > t + 1 + 2(r − t− 1) + |Ur|, i.e., |Ur| 6 t+ 3 =

r − 1
2 (d− 1) + 3 6 r + 2.

To sum up, we obtain G ∈ N
(d)
n−2 ⊆ Nn−2. The theorem is proved completely. �

Theorem 4.3 Suppose that A is a symmetric primitive matrix with order n,then γ(A) =

n− 2 if and only if G(A) ∈ Mn−2 ∪ Nn−2.

Proof According to Theorem 4.1 and Theorem 4.2 the theory holds. �
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§1. Introduction

It is safe to report that the many important results in the theory of the curves in E3 were

initiated by G. Monge; and G. Darboux pionnered the moving frame idea. Thereafter, F. Frenet

defined his moving frame and his special equations which play important role in mechanics and

kinematics as well as in differential geometry (for more details see [2]). At the beginning of

the twentieth century, A.Einstein’s theory opened a door of use of new geometries. One of

them, Minkowski space-time, which is simultaneously the geometry of special relativity and the

geometry induced on each fixed tangent space of an arbitrary Lorentzian manifold - a special

case of Smarandache geometries ([4]), was introduced and some of classical differential geometry

topics have been treated by the researchers.

In the case of a differentiable curve, at each point a tetrad of mutually orthogonal unit vec-

tors (called tangent, normal, first binormal and second binormal) was defined and constructed,

and the rates of change of these vectors along the curve define the curvatures of the curve in

four dimensional space [1].

In the present paper, we write some characterizations of space-like curves by the compo-

nents of the position vector according to Frenet frame. Moreover, we obtain important relations

among curvatures of space-like curves.

§2. Preliminaries

1Received February 12, 2008. Accepted March 20, 2008.
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To meet the requirements in the next sections, here, the basic elements of the theory of curves

in the space E4
1 are briefly presented (a more complete elementary treatment can be found in

[1]).

Minkowski space-time E4
1 is an Euclidean space E4 provided with the standard flat metric

given by

g = −dx2
1 + dx2

2 + dx2
3 + dx2

4,

where (x1, x2, x3, x4) is a rectangular coordinate system in E4
1 .

Since g is an indefinite metric, recall that a vector v ∈ E4
1 can have one of the three

causal characters; it can be space-like if g(v, v) > 0 or v = 0, time-like if g(v, v) < 0 and null

(light-like) if g(v, v)=0 and v 6= 0. Similarly, an arbitrary curve α = α(s) in E4
1 can be locally

be space-like, time-like or null (light-like), if all of its velocity vectors α′(s) are respectively

space-like, time-like or null. Also, recall the norm of a vector v is given by ‖v‖ =
√

|g(v, v)|.

Therefore, v is a unit vector if g(v, v) = ±1. Next, vectors v, w in E4
1 are said to be orthogonal

if g(v, w) = 0. The velocity of the curve α(s) is given by ‖α′(s)‖ . The hypersphere of center

m = (m1,m2,m3,m4) and radius r ∈ R+ in the space E4
1 defined by

H3
0 (m, r) =

{
α = (α1, α2, α3, α4) ∈ E4

1 : g(α−m,α−m) = −r2
}
. (1)

Denote by {T (s), N(s), B1(s), B2(s)} the moving Frenet frame along the curve α(s) in the

space E4
1 . Then T,N,B1, B2 are, respectively, the tangent, the principal normal, the first bi-

normal and the second binormal vector fields. Space-like or time-like curve α(s) is said to be

parameterized by arclength function s, if g(α′(s), α′(s)) = ±1. Let ϑ = ϑ(s) be a curve in E4
1 .

If tangent vector field of this curve is forming a constant angle with a constant vector field U ,

then this curve is called an inclined curve.

Let α(s) be a curve in the space-time E4
1 , parameterized by arclength function s. Then for

the unit speed curve α with non-null frame vectors the following Frenet equations are given in

[5] :




T ′

N ′

B′
1

B′
2




=




0 κ 0 0

µ1κ 0 µ2τ 0

0 µ3τ 0 µ4σ

0 0 µ5σ 0







T

N

B1

B2



. (2)

Due to character of α, we write following subcases.

Case 1 α is a space-like vector. Thus T is a space-like vector. Now, we distinguish according

to N .

Case 1.1 If N is space-like vector, then B1 can have two causal characters.

Case 1.1.1 B1 is space-like vector, then µi (1 ≤ i ≤ 5) read

µ1 = µ3 = −1, µ2 = µ4 = µ5 = 1,



Characterizations of Some Special Space-like Curves in Minkowski Space-time 19

and T,N,B1 and B2 are mutually orthogonal vectors satisfying equations

g(T, T ) = g(N,N) = g(B1, B1) = 1, g(B2, B2) = −1.

Case 1.1.2 B1 is time-like vector, then µi (1 ≤ i ≤ 5) read

µ1 = −1, µ2 = µ3 = µ4 = µ5 = 1,

and T,N,B1 and B2 are mutually orthogonal vectors satisfying equations

g(T, T ) = g(N,N) = g(B2, B2) = 1, g(B1, B1) = −1.

Case 1.2 N is time-like vector. Then µi (1 ≤ i ≤ 5) read

µ1 = µ2 = µ3 = µ4 = 1, µ5 = −1,

and T,N,B1 and B2 are mutually orthogonal vectors satisfying equations

g(T, T ) = g(B1, B1) = g(B2, B2) = 1, g(N,N) = −1.

Case 2 α is a time-like vector. Thus T is a time-like vector. Then µi (1 ≤ i ≤ 5) read

µ1 = µ2 = µ4 = 1, µ3 = µ5 = −1,

and T,N,B1 and B2 are mutually orthogonal vectors satisfying equations

g(T, T ) = −1, g(N,N) = g(B1, B1) = g(B2, B2) = 1.

Here κ, τ and σ are, respectively, first, second and third curvature of the curve α.

In another work [3], authors wrote a characterization of space-like curves whose image lies

on H3
0 with following statement.

Theorem 2.1 Let α = α(s) be an unit speed space-like curve with curvatures κ 6= 0, τ 6= 0 and

σ 6= 0 in E4
1 . Then α lies on H3

0 if and only if

σ

τ

d

ds
(
1

κ
) −

d

ds

{
1

σ

[
τ

κ
+

d

ds

(
1

τ

d

ds
(
1

κ
)

)]}
= 0. (3)

In the same space, Yilmaz (see [6]) gave a formulation about inclined curves with the

following theorem.

Theorem 2.2 Let α = α(s) be a space-like curve in E4
1 parameterized by arclength. The curve

α is an inclined curve if and only if

κ

τ
= A cosh(

s∫

0

σds) +B sinh(

s∫

0

σds), (4)

where τ 6= 0 and σ 6= 0, A,B ∈ R.

In this paper, we shall study these equations in Case 1.1.1.
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§3. Characterizations of Some Special Space-Like Curves in E4
1

Let us consider an unit speed space-like curve ξ = ξ(s) with Frenet equations in case 1.1.1 in

Minkowski space-time. We can write this curve respect to Frenet frame {T,N,B1, B2} as

ξ = ξ(s) = m1T +m2N +m3B1 +m4B2, (5)

where mi are arbitrary functions of s. Differentiating both sides of (5), and considering Frenet

equations, we easily have a system of differential equation as follow:





dm1

ds
−m2κ− 1 = 0

dm2

ds
+m1κ−m3τ = 0

dm3

ds
+m2τ +m4σ = 0

dm4

ds
+m3σ = 0





. (6)

This system’s general solution have not been found. Owing to this, we give some special

values to the components and curvatures. By this way, we write some characterizations.

Case 1 Let us suppose the curve ξ = ξ(s) lies fully NB1B2 subspace. Thus, m1 = 0. Using

(6)1,(6)2 and (6)3 we have other components, respectively,





m2 = −
1

κ

m3 = −
1

τ

d

ds
(
1

κ
)

m4 =
1

σ

[
τ

κ
+

d

ds

(
1

τ

d

ds
(
1

κ
)

)]




. (7)

These obtained components shall satisfy (6)4. And therefore, we get following differential

equation:

d

ds

{
1

σ

[
τ

κ
+

d

ds

(
1

τ

d

ds
(
1

κ
)

)]}
−
σ

τ

d

ds
(
1

κ
) = 0. (8)

By the theorem (2.1), (8) follows that ξ = ξ(s) lies on H3
0 (r). Via this case, we write

following results.

Corollary 3.1 Let ξ = ξ(s) be an unit speed space-like curve with curvatures κ 6= 0, τ 6= 0 and

σ 6= 0 in E4
1 .

(i) If the first component of position vector of ξ on Frenet axis is zero, then ξ lies on H3
0 .

(ii) All space-like curves which lies fully NB1B2 subspace are spherical curves. And position

vector of such curves can be written as

ξ = −
1

κ
N −

1

τ

d

ds
(
1

κ
)B1 +

1

σ

[
τ

κ
+

d

ds

(
1

τ

d

ds
(
1

κ
)

)]
B2. (9)

Case 2 Let us suppose the curve ξ = ξ(s) lies fully TB1B2 subspace. In this case m2 = 0.

Solution of (6) yields that
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



m1 = s+ c

m3 = −
κ

τ
(s+ c)

m4 =
1

σ

d

ds

(κ
τ

(s+ c)
)




, (10)

where c is a real number. Using (6)4, we form a differential equation respect to
κ

τ
(s+ c) as

d

ds

{
1

σ

d

ds

(κ
τ

(s+ c)
)}

−
σκ

τ
(s+ c) = 0. (11)

Using an exchange variable t =
s∫
0

σds in (11), we easily have

d2

dt2

(κ
τ

(u(t) + c)
)
−
κ

τ
(u(t) + c) = 0, (12)

where u(t) is a real valued function. (12) has an elementary solution. It follows that

κ

τ
(u(t) + c) = k1e

t + k2e
−t, (13)

where k1, k2 are real numbers. Using hyperbolic functions cosh and sinh, finally we write that

κ

τ
(s+ c) = A1 cosh

s∫

0

σds+A2 sinh

s∫

0

σds, (14)

where A1 and A2 real numbers. Moreover, integrating both sides of (11), we have

[κ
τ

(s+ c)
]2

−
1

σ2

[
d

ds

(κ
τ

(s+ c)
)]2

= constant. (15)

Now, we write following results by means of theorem (2.2) and above equations.

Corollary 3.2 Let ξ = ξ(s) be an unit speed space-like curve with curvatures κ 6= 0, τ 6= 0 and

σ 6= 0 in E4
1 and second component of position vector of ξ on Frenet axis be zero. Then

(i) there are relations among curvatures of ξ as (11), (14) and (15);

(ii) there are no inclined curves in E4
1 whose position vector lies fully in TB1B2 subspace;

(iii) position vector of ξ can be written as

ξ(s) = (s+ c)T −
κ

τ
(s+ c)B1 +

1

σ

d

ds

(κ
τ

(s+ c)
)
B2. (16)

Case 3 Let us suppose m3 = 0 and κ =constant. Then, we arrive





m1 =
c4
κ

d

ds

(σ
τ

)

m2 = −c4
σ

τ
m4 = c4




. (17)

Substituting (17)1 and (17)2 to (6)1, we obtain following differential equation respect to
σ

τ



22 Melih Turgut and Suha Yilmaz

d2

ds2

(σ
τ

)
+ κ2σ

τ
=

κ

c4
. (18)

(18) yields that

σ

τ
= l1 cosκs+ l2 sinκs+

1

κc4
. (19)

And therefore, we write following results.

Corollary 3.3 Let ξ = ξ(s) be an unit speed space-like curve with constant first curvature and

τ 6= 0, σ 6= 0 in E4
1 and third component of position vector of ξ on Frenet axis be zero. Then

(i)there is a relation among curvatures of ξ as (19);

(ii) position vector of ξ can be written as

ξ(s) =
c4
κ

d

ds

(σ
τ

)
T − c4

σ

τ
N + c4B2. (20)

Remark 3.4 Due to σ, m4 can not be zero. Thus, the case m4 =constant is similar to case 3.

And finally, considering system of equation (6), we write following characterizations.

Corollary 3.5 Let ξ = ξ(s) be an unit speed space-like curve with curvatures κ 6= 0, τ 6= 0 and

σ 6= 0 in E4
1 .

(i) The components m1 and m2 can not be zero, together. This result implies that ξ = ξ(s)

never lies fully B1B2 hyperplane. Similarly, the components m2 and m3 can not be zero,

together. This result follows that ξ = ξ(s) never lies fully in TB2 hyperplane.

(ii) If the components m1 = m2 = 0, then, for the space-like curve ξ = ξ(s), there holds

κ =constant and
σ

τ
=constant.

(iii) The components mi, for 1 ≤ i ≤ 4, can not be nonzero constants, together.

Remark 3.6 In the case when ξ = ξ(s) is a space-like curve within other cases or when is a

time-like curve, there holds corollaries which are analogous with corollary 3.1, 3.2, 3.3 and 3.5.

References

[1] B.O’Neill, Semi-Riemannian Geometry, Academic Press, New York,1983.

[2] C.Boyer, A History of Mathematics, New York, Wiley,1968.

[3] C.Camci, K. Ilarslan and E. Sucurovic, On pseudohyperbolical curves in Minkowski space-

time. Turk J.Math. 27 (2003) 315-328.

[4] L.F.Mao, Pseudo-manifold geometries with applications, International J.Math. Combin.,

Vol.1(2007), No.1, 45-58.

[5] J.Walrave, Curves and surfaces in Minkowski space. Dissertation, K. U. Leuven, Fac. of

Science, Leuven,1995.

[6] S. Yilmaz, Spherical Indicators of Curves and Characterizations of Some Special Curves in

four dimensional Lorentzian Space L4, Dissertation, Dokuz Eylul University, (2001).



International J.Math. Combin. Vol.2 (2008), 23-45

Combinatorially Riemannian Submanifolds

Linfan MAO

(Chinese Academy of Mathematics and System Science, Beijing 100080, P.R.China)

E-mail: maolinfan@163.com

Abstract: Submanifolds are important objectives in classical Riemannian geometry, par-
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also considered for combinatorial manifolds. Serval criterions and fundamental equations for
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manifold are found, and the isometry embedding of a combinatorially Riemannian manifold
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§1. Introduction

Combinatorial manifolds were introduced in [9] by a combinatorial speculation on classical

Riemannian manifolds, also an application of Smarandache multi-spaces in mathematics (see

[12] − [13] for details), which can be used both in theoretical physics for generalizing classi-

cal spacetimes to multiple one, also enables one to realize those of non-uniform spaces and

multilateral properties of objectives.

For a given integer sequence n1, n2, · · · , nm,m ≥ 1 with 0 < n1 < n2 < · · · < nm, a com-

binatorial manifold M̃ is defined to be a Hausdorff space such that for any point p ∈ M̃ , there

is a local chart (Up, ϕp) of p, i.e., an open neighborhood Up of p in M̃ and a homoeomorphism

ϕp : Up →
s⋃

i=1

Bni

i ,

where Bn1
1 , Bn2

2 , · · · , Bns
s are unit balls with

s⋂
i=1

Bni

i 6= ∅ and {n1(p), n2(p), · · · , ns(p)(p)} ⊆

{n1, n2, · · · , nm} and
⋃

p∈M̃

{n1(p), n2(p), · · · , ns(p)(p)} = {n1, n2, · · · , nm}. Denoted by M̃(n1, n2,

· · · , nm) or M̃ on the context.

Let Ã = {(Up, ϕp)|p ∈ M̃(n1, n2, · · · , nm))} be an atlas on M̃(n1, n2, · · · , nm). The max-

imum value of s(p) and the dimension of
s(p)⋂
i=1

Bni

i are called the dimension and the intersec-

1Received January 6, 2008. Accepted March 25, 2008.
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tional dimensional of M̃(n1, n2, · · · , nm) at the point p, denoted by d
M̃

(p) and d̂
M̃

(p), respec-

tively. A combinatorial manifold M̃ is called finite if it is just combined by finite manifolds

without one manifold contained in the union of others, called smooth if it is finite endowed

with a C∞ differential structure. For a smoothly combinatorial manifold M̃ and a point

p ∈ M̃ , it has been shown in [7] that dimTpM̃(n1, n2, · · · , nm) = ŝ(p) +
s(p)∑
i=1

(ni − ŝ(p)) and

dimT ∗
p M̃(n1, n2, · · · , nm) = ŝ(p) +

s(p)∑
i=1

(ni − ŝ(p)) with a basis

{
∂

∂xi0j
|p|1 ≤ j ≤ ŝ(p)}

⋃
(

s(p)⋃

i=1

{
∂

∂xij
|p | ŝ(p) + 1 ≤ j ≤ ni})

or

{dxi0j |p|}1 ≤ j ≤ ŝ(p)}
⋃

(

s(p)⋃

i=1

{dxij |p | ŝ(p) + 1 ≤ j ≤ ni}

for any integer i0, 1 ≤ i0 ≤ s(p). Let M̃ be a smoothly combinatorial manifold and

g ∈ A2(M̃) =
⋃

p∈M̃

T 0
2 (p, M̃).

If g is symmetrical and positive, then M̃ is called a combinatorially Riemannian manifold,

denoted by (M̃, g). In this case, if there is a connection D̃ on (M̃, g) with equality following

hold

Z(g(X,Y )) = g(D̃Z , Y ) + g(X, D̃ZY )

then M̃ is called a combinatorially Riemannian geometry, denoted by (M̃, g, D̃). It has been

showed that there exists a unique connection D̃ on (M̃, g) such that (M̃, g, D̃) is a combinato-

rially Riemannian geometry([7]− [8]).

A subset S̃ of a combinatorial manifold or a combinatorially Riemannian manifold M̃ is

called a combinatorial submanifold or combinatorially Riemannian submanifold if it is a com-

binatorial manifold or a combinatorially Riemannian manifold itself. In classical Riemannian

geometry, submanifolds are very important objectives in research, particularly their embed-

ding or immersion in Euclidean spaces. These similar problems should be also considered on

combinatorial submanifolds for characterizing combinatorial manifolds, such as those of what

condition ensures a subset of a combinatorial manifold or a combinatorially Riemannian mani-

fold to be a combinatorial submanifold or a combinatorially Riemannian submanifold in topology

or in geometry? Notice that there are no doubts for the existence of submanifolds of a given

manifold in classical Riemannian geometry. Thereby one can got various fundamental equa-

tions, such as those of the Gauss’s, the Codazzi’s and the Ricci’s for handling the behavior

of submanifolds of a Riemannian manifold. But for a combinatorially Riemannian manifold

the situation is more complex for it being provided with a combinatorial structure. Therefore,

problems without consideration in classical Riemannian geometry should be researched thor-

oughly in this time. For example, for a given subgraph Γ of G[M̃ ] underlying M̃ , whether is
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there a combinatorial submanifold or a combinatorially Riemannian submanifold underlying Γ?

Are those of fundamental equations, i.e., the Gauss’s, the Codazzi’s or the Ricci’s still true

for combinatorially Riemannian submanifolds? If not, what are their right forms? All these

problems should be answered in this paper.

Now let M̃ , Ñ be two combinatorial manifolds, F : M̃ → Ñ a smooth mapping and p ∈ M̃ .

For ∀v ∈ TpM̃ , define a tangent vector F∗(v) ∈ TF (p)Ñ by

F∗(v) = v(f ◦ F ), ∀f ∈ C∞
F (p),

called the differentiation of F at the point p. Its dual F ∗ : T ∗
F (p)Ñ → T ∗

p M̃ determined by

(F ∗ω)(v) = ω(F∗(v)) for ∀ω ∈ T ∗
F (p)Ñ and ∀v ∈ TpM̃

is called a pull-back mapping. We know that mappings F∗ and F ∗ are linear.

For a smooth mapping F : M̃ → Ñ and p ∈ M̃ , if F∗p : TpM̃ → TF (p)Ñ is one-to-

one, we call it an immersion mapping. Besides, if F∗p is onto and F : M̃ → F (M̃) is a

homoeomorphism with the relative topology of Ñ , then we call it an embedding mapping and

(F, M̃) a combinatorially embedded submanifold. Usually, we replace the mapping F by an

inclusion mapping ĩ : M̃ → Ñ and denoted by (̃i, M̃) a combinatorial submanifold of Ñ .

Terminology and notations used in this paper are standard and can be found in [1]−[2], [14]

for manifolds and submanifolds, [3] − [5] for Smarandache multi-spaces and graphs, [7] − [10]

for combinatorial manifolds and [11] for topology, respectively.

§2. Topological Criterions

Let M̃ = M̃(n1, n2, · · · , nm), Ñ = Ñ(k1, k2, · · · , kl) be two finitely combinatorial manifolds

and F : M̃ → Ñ a smooth mapping. For ∀p ∈ M̃ , let (Up, ϕp) and (VF (p), ψF (p)) be local charts

of p in M̃ and F (p) in Ñ , respectively. Denoted by

JX;Y (F )(p) = [
∂Fκλ

∂xµν
]

the Jacobi matrix of F at p. Then we find that

Theorem 2.1 Let F : M̃ → Ñ be a smooth mapping from M̃ to Ñ . Then F is an immersion

mapping if and only if

rank(JX;Y (F )(p)) = d
M̃

(p)

for ∀p ∈ M̃ .

Proof Assume the coordinate matrixes of points p ∈ M̃ and F (p) ∈ Ñ are [xij ]s(p)×ns(p)

and [yij ]s(F (p))×ns(F (p))
, respectively. Notice that

TpM̃ =

〈
∂

∂xi0j1
|p,

∂

∂xij2
|p |1 ≤ i ≤ s(p), 1 ≤ j1 ≤ ŝ(p), ŝ(p) + 1 ≤ j2 ≤ ni

〉

and
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TF (p)Ñ =

〈
{

∂

∂yi0j1
|F (p), 1 ≤ j1 ≤ ŝ(F (p))}

s(F (p))⋃

i=1

{
∂

∂yij2
|F (p), ŝ(F (p)) + 1 ≤ j2 ≤ ki}

〉

for any integer i0, 1 ≤ i0 ≤ min{s(p), s(F (p))}. By definition, F∗p is a linear mapping. We only

need to prove that F∗p : TpM̃ → TpÑ is an injection for ∀p ∈ M̃ . For ∀f ∈ Xp, calculation

shows that

F∗p(
∂

∂xij
)(f) =

∂(f ◦ F )

∂xij

=
∑

µ,ν

∂Fµν

∂xij

∂f

∂yµν
.

Whence, we find that

F∗p(
∂

∂xij
) =

∑

µ,ν

∂Fµν

∂xij

∂

∂yµν
. (2.1)

According to a fundamental result on linear equation systems, these exist solutions in the

equation system (2.1) if and only if

rank(JX;Y (F )(p)) = rank(J∗
X;Y (F )(p)),

where

J∗
X;Y (F )(p) =




· · · F∗p(
∂

∂x11 )

· · · · · ·

· · · F∗p(
∂

∂x1n1
)

JX;Y (F )(p) · · ·

· · · F∗p(
∂

∂xs(p)1 )

· · · · · ·

· · · F∗p(
∂

∂x
s(p)ns(p)

)




.

We have known that

rank(J∗
X;Y (F )(p)) = d

M̃
(p).

Therefore, F is an immersion mapping if and only if

rank(JX;Y (F )(p)) = d
M̃

(p)

for ∀p ∈ M̃ . �

For finding some simple criterions for combinatorial submanifolds, we consider the case

that F : M̃ → Ñ maps each manifold of M̃ to a manifold of Ñ , denoted by F : M̃ 1 →1 Ñ ,

which can be characterized by a purely combinatorial manner. In this case, M̃ is called a

combinatorial in-submanifold of Ñ .
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Let G be a connected graph. A vertex-edge labeled graph GL defined on G is a triple

(G; τ1, τ2), where τ1 : V (G) → {1, 2, · · · , k} and τ2 : E(G) → {1, 2, · · · , l} for positive integers

k and l.

Fig.2.1

For a given vertex-edge labeled graphGL = (V L, EL) on a graphG = (V,E), its a subgraph

is defined to be a connected subgraph Γ ≺ G with labels τ1|Γ(u) ≤ τ1|G(u) for ∀u ∈ V (Γ) and

τ2|Γ(u, v) ≤ τ2|G(u, v) for ∀(u, v) ∈ E(Γ), denoted by ΓL ≺ GL. For example, two vertex-edge

labeled graphs with an underlying graph K4 are shown in Fig.2.1, in which the vertex-edge

labeled graphs (b) and (c) are subgraphs of that (a).

For a finitely combinatorial manifold M̃(n1, n2, · · · , nm) with 1 ≤ n1 < n2 < · · · <

nm,m ≥ 1, we can naturally construct a vertex-edge labeled graph GL[M̃(n1, n2, · · · , nm)] =

(V L, EL) by defining

V L = {ni − manifolds Mni in M̃(n1, n2, · · · , nm)|1 ≤ i ≤ m}

with a label τ1(M
ni) = ni for each vertex Mni , 1 ≤ i ≤ m and

EL = {(Mni,Mnj )|Mni

⋂
Mnj 6= ∅, 1 ≤ i, j ≤ m}

with a label τ2(M
ni ,Mnj ) = dim(Mni

⋂
Mnj ) for each edge (Mni ,Mnj ), 1 ≤ i, j ≤ m. This

construction then enables us to get a topological criterion for combinatorial submanifolds of a

finitely combinatorial manifold by subgraphs in a vertex-edge labeled graph. For this objective,

we introduce the feasibly vertex-edge labeled subgraphs of GL[M̃ ] on a finitely combinatorial

manifold M̃ following.

Applying these vertex-edge labeled graphs correspondent to finitely combinatorial mani-

folds, we get some criterions for combinatorial submanifolds. Firstly, we establish a decompo-

sition result on unit for smoothly combinatorial manifolds.

Lemma 2.1 Let M̃ be a smoothly combinatorial manifolds with the second axiom of countability

hold. For ∀p ∈ M̃ , let Up be the intersection of ŝ(p) manifolds M1,M2, · · · ,Mŝ(p). Then there

are functions fMi
, 1 ≤ i ≤ ŝ(p) in a local chart (Vp, [ϕp]), Vp ⊂ Up in M̃ such that
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fMi
=





1 on Vp

⋂
Mi,

0 otherwise.

Proof By definition, each manifold Mi is also smooth with the second axiom of countability

hold since

Ai = {(Up, [ϕp])|Vp∩Mi
|p ∈M}

is a C∞ differential structure on Mi for any integer i, 1 ≤ i ≤ ŝ(p). According to the decompo-

sition theorem of unit on manifolds with the second axiom of countability hold, there is a finite

cover

ΣMi
= {W i

α, α ∈ N}

on each Mi, where N is a natural number set such that there exists a family function fα ∈

C∞(Mi) with fα|W i
α
≡ 1 but fα|Ni\W i

α
≡ 0.

Not loss of generality, we assume that p ∈ W i
α0

for any integer i. Let

Vp =

ŝ(p)⋂

i=1

W i
α0

and define

fMi
(q) =





fα0 |W i
α0

if q ∈W i
α0
,

0 otherwise.

Then we get these functions fMi
, 1 ≤ i ≤ ŝ(p) satisfied with our desired. �

Theorem 2.2 Let M̃ be a smoothly combinatorial manifold and N a manifold. If for ∀M ∈

V (G[M̃ ]), there exists an embedding FM : M → N , then M̃ can be embedded into N .

Proof By assumption, there exists an embedding FM : M → N for ∀M ∈ V (G[M̃ ]).

For p ∈ M̃ , let Vp be the intersection of ŝ(p) manifolds M1,M2, · · · ,Mŝ(p) with functions fMi
,

1 ≤ i ≤ ŝ(p) in Lemma 2.1 existed. Define a mapping F̃ : M̃ → N at p by

F̃ (p) =

ŝ(p)∑

i=1

fMi
FMi

.

Then F̃ is smooth at each point in M̃ for the smooth of each FMi
and F̃∗p : TpM̃ → TpN is

one-to-one since each (FMi
)∗p is one-to-one at the point p. Whence, M̃ can be embedded into

the manifold N . �

Theorem 2.3 Let M̃ and Ñ be smoothly combinatorial manifolds. If for ∀M ∈ V (G[M̃ ]), there

exists an embedding FM : M → Ñ , then M̃ can be embedded into Ñ .

Proof Applying Lemma 2.1, we can get a mapping F̃ : M̃ → Ñ defined by
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F̃ (p) =

ŝ(p)∑

i=1

fMi
FMi

at ∀p ∈ M̃ . Similar to the proof of Theorem 2.2, we know that F̃ is smooth and F̃∗p : TpM̃ →

TpÑ is one-to-one. Whence, M̃ can be embedded into Ñ . �

Now we introduce conceptions of feasibly vertex-edge labeled subgraphs and labeled quo-

tient graphs in the following.

Definition 2.1 Let M̃ be a finitely combinatorial manifold with an underlying graph GL[M̃ ].

For ∀M ∈ V (GL[M̃ ]) and UL ⊂ N
GL[M̃ ]

(M) with new labels τ2(M,Mi) ≤ τ2|GL[M̃ ]
(M,Mi)

for ∀Mi ∈ UL, let J(Mi) = {M ′
i |dim(M ∩M ′

i) = τ2(M,Mi),M
′
i ⊂ Mi} and denotes all these

distinct representatives of J(Mi),Mi ∈ UL by T . Define the index o
M̃

(M : UL) of M relative

to UL by

o
M̃

(M : UL) = min
J∈T

{dim(
⋃

M ′∈J

(M
⋂
M ′))}.

A vertex-edge labeled subgraph ΓL of GL[M̃ ] is feasible if for ∀u ∈ V (ΓL),

τ1|Γ(u) ≥ o
M̃

(u : NΓL(u)).

Denoted by ΓL ≺o G
L[M̃ ] a feasibly vertex-edge labeled subgraph ΓL of GL[M̃ ].

Definition 2.2 Let M̃ be a finitely combinatorial manifold, L a finite set of manifolds and

F 1
1 : M̃ → L an injection such that for ∀M ∈ V (G[M̃ ]), there are no two different N1, N2 ∈ L

with F 1
1 (M) ∩N1 6= ∅, F 1

1 (M) ∩N2 6= ∅ and for different M1,M2 ∈ V (G[M̃ ]) with F 1
1 (M1) ⊂

N1, F
1
1 (M2) ⊂ N2, there exist N ′

1, N
′
2 ∈ L enabling that N1 ∩ N ′

1 6= ∅ and N2 ∩ N ′
2 6= ∅. A

vertex-edge labeled quotient graph GL[M̃ ]/F 1
1 is defined by

V (GL[M̃ ]/F 1
1 ) = {N ⊂ L |∃M ∈ V (G[M̃ ]) such that F 1

1 (M) ⊂ N},

E(GL[M̃ ]/F 1
1 ) = {(N1, N2)|∃(M1,M2) ∈ E(G[M̃ ]), N1, N2 ∈ L such that

F 1
1 (M1) ⊂ N1, F

1
1 (M2) ⊂ N2 and F

1
1 (M1) ∩ F 1

1 (M2) 6= ∅}

and labeling each vertex N with dimM if F 1
1 (M) ⊂ N and each edge (N1, N2) with dim(M1∩M2)

if F1(M1) ⊂ N1, F
1
1 (M2) ⊂ N2 and F 1

1 (M1) ∩ F 1
1 (M2) 6= ∅.

According to Theorems 2.2 and 2.3, we find criterion for combinatorial submanifolds in the

following.

Theorem 2.4 Let M̃ and Ñ be finitely combinatorial manifolds. Then M̃ is a combinatorial

in-submanifold of Ñ if and only if there exists an injection F 1
1 on M̃ such that

GL[M̃ ]/F 1
1 ≺o Ñ .
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Proof If M̃ is a combinatorial in-submanifold of Ñ , by definition, we know that there is

an injection F : M̃ → Ñ such that F (M̃) ∈ V (G[Ñ ]) for ∀M ∈ V (G[M̃ ]) and there are no

two different N1, N2 ∈ L with F 1
1 (M) ∩ N1 6= ∅, F 1

1 (M) ∩ N2 6= ∅. Choose F 1
1 = F . Since

F is locally 1 − 1 we get that F (M1 ∩M2) = F (M1) ∩ F (M2), i.e., F (M1,M2) ∈ E(G[Ñ ])

or V (G[Ñ ]) for ∀(M1,M2) ∈ E(G[M̃ ]). Whence, GL[M̃ ]/F 1
1 ≺ GL[Ñ ]. Notice that GL[M̃ ]

is correspondent with M̃ . Whence, it is a feasible vertex-edge labeled subgraph of GL[Ñ ] by

definition. Therefore, GL[M̃ ]/F 1
1 ≺o G

L[Ñ ].

Now if there exists an injection F 1
1 on M̃ , let ΓL ≺o GL[Ñ ]. Denote by Γ the graph

GL[Ñ ] \ ΓL, where GL[Ñ ] \ ΓL denotes the vertex-edge labeled subgraph induced by edges in

GL[Ñ ] \ ΓL with non-zero labels in G[Ñ ]. We construct a subset M̃∗ of Ñ by

M̃∗ = Ñ \ ((
⋃

M ′∈V (Γ)

M ′)
⋃

(
⋃

(M ′,M ′′)∈E(Γ)

(M ′
⋂
M ′′)))

and define M̃ = F 1−1
1 (M̃∗). Notice that any open subset of an n-manifold is also a manifold

and F 1−1
1 (ΓL) is connected by definition. It can be shown that M̃ is a finitely combinatorial

submanifold of Ñ with GL[M̃ ]/F 1
1
∼= ΓL. �

An injection F 1
1 : M̃ → L is monotonic if N1 6= N2 if F 1

1 (M1) ⊂ N1 and F 1
1 (M2) ⊂ N2 for

∀M1,M2 ∈ V (G[M̃ ]),M1 6= M2. In this case, we get a criterion for combinatorial submanifolds

of a finite combinatorial manifold.

Corollary 2.1 For two finitely combinatorial manifolds M̃, Ñ , M̃ is a combinatorially mono-

tonic submanifold of Ñ if and only if GL[M̃ ] ≺o G
L[Ñ ].

Proof Notice that F 1
1 ≡ 11

1 in the monotonic case. Whence, GL[M̃ ]/F 1
1 = GL[M̃ ]/11

1 =

GL[M̃ ]. Thereafter, by Theorem 2.4, we know that M̃ is a combinatorially monotonic subman-

ifold of Ñ if and only if GL[M̃ ] ≺o G
L[Ñ ]. �

§3. Fundamental Formulae

Let (̃i, M̃) be a smoothly combinatorial submanifold of a Riemannian manifold (Ñ , g
Ñ
, D̃). For

∀p ∈ M̃ , we can directly decompose the tangent vector space TpÑ into

TpÑ = TpM̃ ⊕ T⊥
p M̃

on the Riemannian metric g
Ñ

at the point p, i.e., choice the metric of TpM̃ and T⊥
p M̃ to be

g
Ñ
|
TpM̃

or g
Ñ
|
T⊥

p M̃
, respectively. Then we get a tangent vector space TpM̃ and a orthogonal

complement T⊥
p M̃ of TpM̃ in TpÑ , i.e.,

T⊥
p M̃ = {v ∈ TpÑ | 〈v, u〉 = 0 for ∀u ∈ TpM̃}.

We call TpM̃ , T⊥
p M̃ the tangent space and normal space of (̃i, M̃) at the point p in (Ñ , g

Ñ
, D̃),

respectively. They both have the Riemannian structure, particularly, M̃ is a combinatorially

Riemannian manifold under the induced metric g = ĩ∗g
Ñ

.

Therefore, a vector v ∈ TpÑ can be directly decomposed into
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v = v⊤ + v⊥,

where v⊤ ∈ TpM̃, v⊥ ∈ T⊥
p M̃ are the tangent component and the normal component of v at

the point p in (Ñ , g
Ñ
, D̃). All such vectors v⊥ in T Ñ are denoted by T⊥M̃ , i.e.,

T⊥M̃ =
⋃

p∈M̃

T⊥
p M̃.

Whence, for ∀X,Y ∈ X (M̃), we know that

D̃XY = D̃⊤
XY + D̃⊥

XY,

called the Gauss formula on the combinatorially Riemannian submanifold (M̃, g), where D̃⊤
XY =

(D̃XY )⊤ and D̃⊥
XY = (D̃XY )⊥.

Theorem 3.1 Let (̃i, M̃) be a combinatorially Riemannian submanifold of (Ñ , g
Ñ
, D̃) with an

induced metric g = ĩ∗g
Ñ

. Then for ∀X,Y, Z, D̃⊤ : X (M̃) × X (M̃) → X (M̃) determined by

D̃⊤(Y,X) = D̃⊤
XY is a combinatorially Riemannian connection on (M̃, g) and D̃⊥ : X (M̃) ×

X (M̃) → T⊥(M̃) is a symmetrically coinvariant tensor field of order 2, i.e.,

(1) D̃⊥
X+Y Z = D̃⊥

XZ + D̃⊥
Y Z;

(2) D̃⊥
λXY = λD̃⊥

XY for ∀λ ∈ C∞(M̃);

(3) D̃⊥
XY = D̃⊥

Y X .

Proof By definition, there exists an inclusion mapping ĩ : M̃ → Ñ such that (̃i, M̃) is a

combinatorially Riemannian submanifold of (Ñ , g
Ñ
, D̃) with a metric g = ĩ∗g

Ñ
.

For ∀X,Y, Z ∈ X (M̃), we know that

D̃X+Y Z = D̃XZ + D̃Y Z

= (D̃⊤
XZ + D̃⊤

XZ) + (D̃⊥
XZ + D̃⊥

XZ)

by properties of the combinatorially Riemannian connection D̃. Thereby, we find that

D̃⊤
X+Y Z = D̃⊤

XZ + D̃⊤
Y Z, D̃⊥

X+Y Z = D̃⊥
XZ + D̃⊥

Y Z.

Similarly, we also find that

D̃⊤
X(Y + Z) = D̃⊤

XY + D̃⊤
XZ, D̃⊥

X(Y + Z) = D̃⊥
XY + D̃⊥

XZ.

Now for ∀λ ∈ C∞(M̃), since

D̃λXY = λD̃XY, D̃X(λY ) = X(λ) + λD̃XY,

we find that

D̃⊤
λXY = λD̃⊤

XY, D̃⊤
X(λY ) = X(λ) + λD̃⊤

XY
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and

D̃⊥
X(λY ) = λD̃⊥

XY.

Thereafter, the mapping D̃⊤ : X (M̃) × X (M̃) → X (M̃) is a combinatorially connection on

(M̃, g) and D̃⊥ : X (M̃) × X (M̃) → T⊥(M̃) have properties (1) and (2).

By the torsion-free of the Riemannian connection D̃, i.e.,

D̃XY − D̃Y X = [X,Y ] ∈ X (M̃)

for ∀X,Y ∈ X (M̃), we get that

D̃⊤
XY − D̃⊤

Y X = (D̃XY − D̃YX)⊤ = [X,Y ]

and

D̃⊥
XY − D̃⊥

Y X = (D̃XY − D̃YX)⊥ = 0,

i.e., D̃⊥
XY = D̃⊥

Y X . Whence, D̃⊤ is also torsion-free on (M̃, g) and the property (3) on D̃⊥

holds. Applying the compatibility of D̃ with g
Ñ

in (Ñ , g
Ñ
, D̃), we finally get that

Z 〈X,Y 〉 =
〈
D̃ZX,Y

〉
+
〈
X, D̃ZY

〉

=
〈
D̃⊤

ZX,Y
〉

+
〈
X, D̃⊤

ZY
〉
,

which implies that D̃⊤ is also compatible with (M̃, g), namely D̃⊤ : X (M̃)×X (M̃) → X (M̃)

is a combinatorially Riemannian connection on (M̃, g). �

Now for ∀X ∈ X (M̃) and Y ⊥ ∈ T⊥M̃ , we know that D̃XY
⊥ ∈ T Ñ . Whence, we can

directly decompose it into

D̃XY
⊥ = D̃⊤

XY
⊥ + D̃⊥

XY
⊥,

called the Weingarten formula on the combinatorially Riemannian submanifold (M̃, g), where

D̃⊤
XY

⊥ = (D̃XY
⊥)⊤ and D̃⊥

XY
⊥ = (D̃XY

⊥)⊥.

Theorem 3.2 Let (̃i, M̃) be a combinatorially Riemannian submanifold of (Ñ , g
Ñ
, D̃) with an

induced metric g = ĩ∗g
Ñ

. Then the mapping D̃⊥ : T⊥M̃ × X (M̃) → T⊥M̃ determined by

D̃(Y ⊥, X) = D̃⊥
XY

⊥ is a combinatorially Riemannian connection on T⊥M̃ .

Proof By definition, we have known that there is an inclusion mapping ĩ : M̃ → Ñ such

that (̃i, M̃) is a combinatorially Riemannian submanifold of (Ñ , g
Ñ
, D̃) with a metric g = ĩ∗g

Ñ
.

For ∀X,Y ∈ X (M̃) and ∀Z⊥, Z⊥
1 , Z

⊥
2 ∈ T⊥M̃ , we know that

D̃⊥
X+Y Z

⊥ = D̃⊥
XZ

⊥ + D̃⊥
Y Z

⊥, D̃⊥
X(Z⊥

1 + Z⊥
2 ) = D̃⊥

XZ
⊥
1 + D̃⊥

XZ
⊥
2

similar to the proof of Theorem 3.1. For ∀λ ∈ C∞(M̃), we know that
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D̃λXZ
⊥ = λD̃XZ

⊥, D̃X(λZ⊥) = X(λ)Z⊥ + λD̃XZ
⊥.

Whence, we find that

D̃⊥
λXZ

⊥ = (λD̃XZ
⊥)⊥ = λ(D̃XZ

⊥)⊥ = λD̃⊥
XZ

⊥,

D̃⊥
X(λZ⊥) = X(λ)Z⊥ + λ(D̃XZ

⊥)⊥ = X(λ)Z⊥ + λD̃⊥
XZ

⊥.

Therefore, the mapping D̃⊥ : T⊥M̃×X (M̃) → T⊥M̃ is a combinatorially connection on T⊥M̃ .

Applying the compatibility of D̃ with g
Ñ

in (Ñ , g
Ñ
, D̃), we finally get that

X
〈
Z⊥

1 , Z
⊥
2

〉
=
〈
D̃XZ

⊥
1 , Z

⊥
2

〉
+
〈
Z⊥

1 , D̃XZ
⊥
2

〉
=
〈
D̃⊥

XZ
⊥
1 , Z

⊥
2

〉
+
〈
Z⊥

1 , D̃
⊥
XZ

⊥
2

〉
,

which implies that D̃⊥ : X (M̃)×X (M̃) → X (M̃) is a combinatorially Riemannian connection

on T⊥M̃ . �

Definition 3.1 Let (̃i, M̃) be a smoothly combinatorial submanifold of a Riemannian manifold

(Ñ , g
Ñ
, D̃). The two mappings D̃⊤, D̃⊥ are called the induced Riemannian connection on M̃

and the normal Riemannian connection on T⊥M̃ , respectively.

Theorem 3.3 Let (̃i, M̃) be a combinatorially Riemannian submanifold of (Ñ , g
Ñ
, D̃) with an

induced metric g = ĩ∗g
Ñ

. Then for any chosen Z⊥ ∈ T⊥M̃ , the mapping D⊤
Z⊥ : X (M̃) →

X (M̃) determined by D̃⊤
Z⊥(X) = D̃⊤

XZ
⊥ for ∀X ∈ X (M̃) is a tensor field of type (1, 1).

Besides, if D̃⊤
Z⊥ is treated as a smoothly linear transformation on M̃ , then D̃⊤

Z⊥ : TpM̃ → TpM̃

at any point p ∈ M̃ is a self-conjugate transformation on g with the equality following hold

〈
D̃⊤

Z⊥(X), Y
〉

=
〈
D̃⊥

X(Y ), Z⊥
〉
, ∀X,Y ∈ TpM̃. (∗)

Proof First, we establish the equality (∗). By applying equalitiesX
〈
Z⊥, Y

〉
=
〈
D̃XZ

⊥, Y
〉
+

〈
Z⊥, D̃XY

〉
and

〈
Z⊥, Y

〉
= 0 for ∀X,Y ∈ X (M̃) and ∀Z⊥ ∈ T⊥M̃ , we find that

〈
D̃⊤

Z⊥(X), Y
〉

=
〈
D̃XZ

⊥, Y
〉

= X
〈
Z⊥, Y

〉
−
〈
Z⊥, D̃XY

〉
=
〈
D̃⊥

XY, Z
⊥
〉
.

Thereafter, the equality (∗) holds.

Now according to Theorem 3.1, D̃⊥
XY posses tensor properties for X,Y ∈ TpM̃ . Combining

this fact with the equality (∗), D̃⊤
Z⊥(X) is a tensor field of type (1, 1). Whence, D̃⊤

Z⊥ determines

a linear transformation D̃⊤
Z⊥ : TpM̃ → TpM̃ at any point p ∈ M̃ . Besides, we can also show

that D̃⊤
Z⊥(X) posses the tensor properties for ∀Z⊥ ∈ T⊥M̃ . For example, for any λ ∈ C∞(M̃)

we know that
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〈
D̃⊤

λZ⊥(X), Y
〉

=
〈
D̃⊥

XY, λZ
⊥
〉

= λ
〈
D̃⊥

XY, Z
⊥
〉

=
〈
λD̃⊤

Z⊥(X), Y
〉
, ∀X,Y ∈ X (M̃)

by applying the equality (∗) again. Therefore, we finally get that D̃λZ⊥(X) = λD̃Z⊥(X).

Combining the symmetry of D̃⊥
XY with the equality (∗) enables us to know that the

linear transformation D̃⊤
Z⊥ : TpM̃ → TpM̃ at a point p ∈ M̃ is self-conjugate. In fact, for

∀X,Y ∈ TpM̃ , we get that

〈
D̃⊤

Z⊥(X), Y
〉

=
〈
D̃⊥

XY, Z
⊥
〉

=
〈
D̃⊥

Y X,Z
⊥
〉

=
〈
D̃⊤

Z⊥(Y ), X
〉

=
〈
X, D̃⊤

Z⊥(Y )
〉
.

Whence, D̃⊤
Z⊥ is self-conjugate. This completes the proof. �

Now we look for local forms for D̃⊤ and D̃⊥. Let (M̃, g, D̃⊤) be a combinatorially Rie-

mannian submanifold of (Ñ , g
Ñ
, D̃). For ∀p ∈ M̃ , let

{eAB|1 ≤ A ≤ d
Ñ

(p), 1 ≤ B ≤ nA and eA1B = eA2B,

for 1 ≤ A1, A2 ≤ d
Ñ

(p) if 1 ≤ B ≤ d̂
Ñ

(p)}

be an orthogonal frame with a dual

{ωAB|1 ≤ A ≤ d
Ñ

(p), 1 ≤ B ≤ nA and ωA1B = ωA2B,

for 1 ≤ A1, A2 ≤ d
Ñ

(p) if 1 ≤ B ≤ d̂
Ñ

(p)}

at the point p in T Ñ abbreviated to {eAB} and ωAB. Choose indexes (AB), (CD), · · · ,

(ab), (cd), · · · and (αβ), (γδ), · · · satisfying 1 ≤ A,C ≤ d
Ñ

(p), 1 ≤ B ≤ nA, 1 ≤ D ≤ nC , · · · ,

1 ≤ a, c ≤ d
M̃

(p), 1 ≤ b ≤ na, 1 ≤ d ≤ nc, · · · and α, γ ≥ d
M̃

(p) + 1 or β, δ ≥ ni + 1 for

1 ≤ i ≤ d
M̃

(p). For getting local forms of D̃⊤ and D̃⊥, we can even assume that {eAB}, {eab}

and {eαβ} are the orthogonal frame of the point in the tangent vector space T Ñ, T M̃ and the

normal vector space T⊥M̃ by Theorems 3.1−3.3. Then the Gauss’s and Weinggarten’s formula

can be expressed by

D̃eab
ecd = D̃⊤

eab
ecd + D̃⊥

eab
ecd,

D̃eab
eαβ = D̃⊤

eab
eαβ + D̃⊥

eab
eαβ .

When p is varied in M̃ , we know that ωab = ĩ∗(ωab) and ωαb = 0, ωaβ = 0. Whence, {ωab}

is the dual of {eab} at the point p ∈ TM̃ . Notice that d̃ωab = ωcd ∧ ωab
cd , ωab

cd + ωcd
ab = 0 in

(M̃, g, D̃⊤), d̃ωAB = ωCD ∧ωAB
CD, ωCD

AB +ωAB
CD = 0,ωαβ

ab +ωab
αβ = 0, ωγδ

αβ +ωαβ
γδ = 0 in (Ñ , g

Ñ
, D̃)

by the structural equations and
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D̃eAB = ωCD
AB eCD.

We finally get that

D̃eab = ωcd
abecd + ωαβ

ab eαβ, D̃eαβ = ωcd
αβecd + ωγδ

αβeγδ.

Since d̃ωαi = ωab ∧ωαi
ab = 0, d̃ωiβ = ωab ∧ωiβ

ab = 0, by the Cartan’s Lemma, i.e., for vectors

v1, v2, · · · , vr, w1, w2, · · · , wr with

r∑

s=1

vs ∧ws = 0.

if v1, v2, · · · , vr are linearly independent, then

ws =
r∑

t=1

astvt, 1 ≤ s ≤ s,

where ast = ats, we know that

ωαi
ab = hαi

(ab)(cd)ω
cd, ωiβ

ab = hiβ

(ab)(cd)ω
cd

with hαi
(ab)(cd) = hαi

(ab)(cd) and hiβ

(ab)(cd) = hiβ

(ab)(cd). Thereafter, we get that

D̃⊥
eab
ecd = ωαβ

ab eαβ = hαβ

(ab)(cd)eαβ,

D̃⊤
eab
eαβ = ωcd

αβecd = hαβ

(ab)(cd)eαβ

.

Whence, we get local forms of D̃⊤ and D̃⊥ in the following.

Theorem 3.4 Let (M̃, g, D̃⊤) be a combinatorially Riemannian submanifold of (Ñ , g
Ñ
, D̃).

For ∀p ∈ M̃ with locally orthogonal frames {eAB}, {eab} and their dual {ωAB}, {ωab} in T Ñ ,

TM̃ ,

D̃⊤
eab
ecd = ωcd

abecd, D̃⊥
eab
ecd = hαβ

(ab)(cd)eαβ

and

D̃⊤
eab
eαβ = hαβ

(ab)(cd)eαβ, D̃⊥
eab
eαβ = ωγδ

αβeγδ.

§4. Fundamental Equations

Applications of these Gauss’s and Weingarten’s formulae enable one to get fundamental equa-

tions such as the Gauss’s, Codazzi’s and Ricci’s equations on curvature tensors for characterizing

combinatorially Riemannian submanifolds.
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Theorem 4.1(Gauss equation) Let (M̃, g, D̃⊤) be a combinatorially Riemannian submanifold

of (Ñ , g
Ñ
, D̃) with the induced metric g = ĩ∗g

Ñ
and R̃, R̃

Ñ
curvature tensors on M̃ and Ñ ,

respectively. Then for ∀X,Y, Z,W ∈ X (M̃),

R̃(X,Y, Z,W ) = R̃
Ñ

(X,Y, Z,W ) +
〈
D̃⊥

XZ, D̃
⊥
Y W

〉
−
〈
D̃⊥

Y Z, D̃
⊥
XW

〉
.

Proof By definition, we know that

R̃
Ñ

(X,Y )Z = D̃XD̃Y Z − D̃Y D̃XZ − D̃[X,Y ]Z.

Applying the Gauss formula, we find that

R̃
Ñ

(X,Y )Z = D̃X(D̃⊤
Y Z + D̃⊥

Y Z) − D̃Y (D̃⊤
XZ + D̃⊥

XZ)

−(D̃⊤
[X,Y ]Z + D̃⊥

[X,Y ]Z)

= D̃⊤
XD̃

⊤
Y Z + D̃⊥

XD̃
⊤
Y Z + D̃XD̃

⊥
Y Z − D̃⊤

Y D̃
⊤
XZ

−D̃⊥
Y D̃

⊤
XZ − D̃Y D̃

⊥
XZ − D̃⊤

[X,Y ]Z − D̃⊥
[X,Y ]Z

= R̃(X,Y )Z + (D̃⊥
XD̃

⊤
Y Z − D̃⊥

Y D̃
⊤
XZ)

−(D̃⊥
[X,Y ]Z − D̃XD̃

⊥
Y Z + D̃Y D̃

⊥
XZ). (4.1)

By the Weingarten formula,

D̃XD̃
⊥
Y Z = D̃⊤

XD̃
⊥
Y Z + D̃⊥

XD̃
⊥
Y Z, D̃Y D̃

⊥
XZ = D̃⊤

Y D̃
⊥
XZ + D̃⊥

Y D̃
⊥
XZ.

Therefore, we get that

〈
R̃(X,Y )Z,W

〉
=
〈
R̃

Ñ
(X,Y )Z,W

〉
+
〈
D̃⊥

XZ, D̃
⊥
Y W

〉
−
〈
D̃⊥

Y Z, D̃
⊥
XW

〉

by applying the equality (∗) in Theorem 2.4, i.e.,

R̃(X,Y, Z,W ) = R̃
Ñ

(X,Y, Z,W ) +
〈
D̃⊥

XZ, D̃
⊥
Y W

〉
−
〈
D̃⊥

Y Z, D̃
⊥
XW

〉
. �

For ∀X,Y, Z ∈ X (M̃), define the covarint differential D̃X on D̃⊥
Y Z by

(D̃XD̃
⊥)Y Z = D̃⊥

X(D̃⊥
Y Z) − D̃⊥

D̃⊤

X
Y
Z − D̃⊥

Y (D̃⊤
XZ).

Then we get the Codazzi equation in the following.

Theorem 4.2 (Codazzi equation) Let (M̃, g, D̃⊤) be a combinatorially Riemannian submanifold

of (Ñ , g
Ñ
, D̃) with the induced metric g = ĩ∗g

Ñ
and R̃, R̃

Ñ
curvature tensors on M̃ and Ñ ,

respectively. Then for ∀X,Y, Z ∈ X (M̃),

(D̃XD̃
⊥)Y Z − (D̃Y D̃

⊥)XZ = R̃⊥(X,Y )Z

Proof Decompose the curvature tensor R̃
Ñ

(X,Y )Z into
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R̃
Ñ

(X,Y )Z = R̃⊤
Ñ

(X,Y )Z + R̃⊥
Ñ

(X,Y )Z.

Notice that

D̃⊤
XY − D̃⊤

Y Z = [X,Y ].

By the formula (4.1), we know that

R̃⊥
Ñ

(X,Y )Z = D̃⊥
XD̃

⊤
Y Z − D̃⊥

Y D̃
⊤
XZ − D̃⊥

[X,Y ]Z + D̃⊥
XD̃

⊥
Y Z − D̃⊥

Y D̃
⊥
XZ

= D̃⊥
XD̃

⊥
Y Z − D̃⊥

Y D̃
⊤
XZ − D̃

D̃⊤

X
Y
Z + D̃⊥

Y D̃
⊥
XZ − D̃⊥

XD̃
⊤
Y Z − D̃

D̃⊤

Y
X
Z

= (D̃XD̃
⊥)Y Z − (D̃Y D̃

⊥)XZ. �

For ∀X,Y ∈ X (M̃), Z⊥ ∈ T⊥(M̃), the curvature tensor R̃⊥ determined by D̃⊥ in T⊥M̃

is defined by

R̃⊥(X,Y )Z⊥ = D̃⊥
XD̃

⊥
Y Z

⊥ − D̃⊥
Y D̃

⊥
XZ

⊥ − D̃⊥
[X,Y ]Z

⊥.

Similarly, we get the next result.

Theorem 4.3(Ricci equation) Let (M̃, g, D̃⊤) be a combinatorially Riemannian submanifold

of (Ñ , g
Ñ
, D̃) with the induced metric g = ĩ∗g

Ñ
and R̃, R̃

Ñ
curvature tensors on M̃ and Ñ ,

respectively. Then for ∀X,Y ∈ X (M̃), Z⊥ ∈ TM̃ ,

R̃⊥(X,Y )Z⊥ = R̃⊥
Ñ

(X,Y )Z⊥ + (D̃XD̃⊥)Y Z
⊥ − (D̃Y D̃⊥)XZ

⊥).

Proof Similar to the proof of Theorem 4.1, we know that

R̃
Ñ

(X,Y )Z⊥ = D̃XD̃Y Z
⊥ − D̃Y D̃XZ

⊥ − D̃[X,Y ]Z
⊥

= R̃⊥(X,Y )Z⊥ + D̃⊥
XD̃

⊤
Y Z

⊥ − D̃⊥
Y D̃

⊤
XZ

⊥

+D̃XD̃
⊥
Y Z

⊥ − D̃Y D̃
⊥
XZ

⊥

= (R̃⊥(X,Y )Z⊥ + (D̃XD̃⊥)Y Z
⊥ − (D̃Y D̃⊥)XZ

⊥)

+D̃⊤
XD̃

⊥
Y Z

⊥ − D̃⊤
Y D̃

⊥
XZ

⊥.

Whence, we get that

R̃⊥(X,Y )Z⊥ = R̃⊥
Ñ

(X,Y )Z⊥ + (D̃XD̃⊥)Y Z
⊥ − (D̃Y D̃⊥)XZ

⊥). �

Certainly, we can also find local forms for these Gauss’s, Codazzi’s and Ricci’s equations

in a locally orthogonal frames {eAB}, {eab} of T Ñ and TM̃ at a point p ∈ M̃ .

Theorem 4.4 Let (M̃, g, D̃
M̃

) be a combinatorially Riemannian submanifold of (Ñ , g
Ñ
, D̃)

with g = ĩ∗g
Ñ

and for p ∈ M̃ , let {eAB}, {eab} be locally orthogonal frames of T Ñ and TM̃ at

p with dual {ωAB}, {ωab}. Then
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R̃(ab)(cd)(ef)(gh) = (R̃
Ñ

)(ab)(cd)(ef)(gh) −
∑

α,β

(hαβ

(ab)(ef)h
αβ

(cd)(gh) − hαβ

(ab)(gh)h
αβ

(cd)(ef)) ( Gauss ),

hαβ

(ab)(cd)(ef) − hαβ

(ab)(ef)(cd) = (R̃
Ñ

)(αβ)(ab)(cd)(ef) ( Codazzi )

and

R̃⊥
(αβ)(γδ)(ab)(cd) = (R̃

Ñ
)(αβ)(γδ)(ab)(cd) −

∑

e,f

(hαβ

(ab)(ef)h
γδ

(cd)(gh) − hαββ

(cd)(ef)h
γδ

(ab)(gh)) ( Ricci )

with R̃⊥
(αβ)(γδ)(ab)(cd) =

〈
R̃(eab, ecd)eαβ , eγδ

〉
and

hαβ

(ab)(cd)(ef)ω
ef = d̃hαβ

(ab)(cd) − ωef
abh

αβ

(ef)(cd) − ωef
cdh

αβ

(ab)(ef) + ωαβ
γδ h

γδ

(ab)(cd).

Proof Let Ω̃ and Ω̃
Ñ

be curvature forms in M̃ and Ñ . Then by the structural equations

in (Ñ , g
Ñ
, D̃) ([10]), we know that

(Ω̃
Ñ

)CD
AB = d̃ωCD

AB − ωEF
AB ∧ ωCD

EF =
1

2
(R̃Ñ)(AB)(CD)(EF )(GH)ω

EF ∧ ωGH

and R̃(eAB, eCD)eEF = Ω̃GH
EF (eAB, eCD)eGH . Let ĩ : M̃ → Ñ be an embedding mapping.

Applying ĩ∗ action on the above equations, we find that

(Ω̃
Ñ

)cd
ab = d̃ωcd

ab − ωef
ab ∧ ωcd

ef − ωαβ
ab ∧ ωcd

αβ

= Ω̃cd
ab +

∑

α,β

hαβ

(ab)(ef)h
αβ

(cd)(gh)ω
ef ∧ ωgh.

Whence, we get that

Ω̃cd
ab = (Ω̃

Ñ
)cd
ab −

1

2

∑

α,β

(hαβ

(ab)(ef)h
αβ

(cd)(gh) − hαβ

(ab)(gh)h
αβ

(cd)(ef))ω
ef ∧ ωgh.

This is the Gauss’s equation

R̃(ab)(cd)(ef)(gh) = (R̃
Ñ

)(ab)(cd)(ef)(gh) −
∑

α,β

(hαβ

(ab)(ef)h
αβ

(cd)(gh) − hαβ

(ab)(gh)h
αβ

(cd)(ef)).

Similarly, we also know that

(Ω̃
Ñ

)αβ
ab = d̃ωαβ

ab − ωcd
ab ∧ ω

αβ
cd − ωγδ

ab ∧ ωαβ
γδ

= d̃(hαβ

(ab)(cd)ω
cd) − hαβ

(cd)(ef)ω
cd
ab ∧ ω

ef − hγδ

(ab)(ef)ω
ef ∧ ωαβ

γδ

= (d̃hαβ

(ab)(cd) − hαβ

(ab)(ef)ω
ef
cd ) − hαβ

(ef)(cd)ω
ef
ab + hγδ

(ab)(cd)ωαβ) ∧ ωcd

= hαβ

(ab)(cd)(ef)ω
ef ∧ ωcd

=
1

2
(hαβ

(ab)(cd)(ef) − hαβ

(ab)(ef)(cd))ω
ef ∧ ωcd
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and

(Ω̃
Ñ

)γδ
αβ = d̃ωγδ

αβ − ωef
αβ ∧ ωγδ

ef − ωζη
αβ ∧ ωγδ

ζη

= Ω̃⊥γδ
αβ +

1

2

∑

e,f

(hαβ

(ef)(ab)h
γδ

(ef)(cd) − hαβ

(ef)(cd)h
γδ

(ef)(ab))ω
ab ∧ ωcd.

These equalities enables us to get

hαβ

(ab)(cd)(ef) − hαβ

(ab)(ef)(cd) = (R̃
Ñ

)(αβ)(ab)(cd)(ef),

and

R̃⊥
(αβ)(γδ)(ab)(cd) = (R̃

Ñ
)(αβ)(γδ)(ab)(cd) −

∑

e,f

(hαβ

(ab)(ef)h
γδ

(cd)(gh) − hαββ

(cd)(ef)h
γδ

(ab)(gh)).

These are just the Codazzi’s or Ricci’s equations. �

§5. Embedding in Combinatorially Euclidean Spaces

For a given integer sequence k1, n2, · · · , kl, l ≥ 1 with 0 < k1 < k2 < · · · < kl, a combinatorially

Euclidean space R̃(k1, · · · , kl) is a union of finitely Euclidean spaces
l⋃

i=1

Rki such that for ∀p ∈

R̃(k1, · · · , kl), p ∈
l⋂

i=1

Rki with l̂ = dim(
l⋂

i=1

Rki) a constant. For a given combinatorial manifold

M̃(n1, n2, · · · , nm), wether it can be realized in a combinatorially Euclidean space R̃(k1, · · · , kl)?

We consider this problem with twofold in this section, i.e., topological or isometry embedding

of a combinatorial manifold in combinatorially Euclidean spaces.

5.1. Topological embedding

Given two topological spaces C1 and C2, a topological embedding of C1 in C2 is a one-to-one

continuous map

f : C1 → C2.

When f : M̃(n1, n2, · · · , nm) → R̃(k1, · · · , kl) maps each manifold of M̃ to an Euclidean space

of R̃(k1, · · · , kl), we say that M̃ is in-embedded into R̃(k1, · · · , kl).

Whitney had proved once that any n-manifold can be topological embedded as a closed

submanifold of R2n+1 with a sharply minimum dimension 2n + 1 in 1936[1]. Applying Whit-

ney’s result enables us to find conditions of a finitely combinatorial manifold embedded into a

combinatorially Euclidean space R̃(k1, · · · , kl).

Firstly, We thereafter get a result for the case l = 1, which completely answers the problem

4.1 raised in [7].

Theorem 5.1 Any finitely combinatorial manifold M̃(n1, n2, · · · , nm) can be embedded into

R2nm+1.
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Proof According to Whitney’s result, each manifold Mni , 1 ≤ i ≤ m, in M̃(n1, n2, · · · , nm)

can be topological embedded into an Euclidean space Rη for any η ≥ 2ni + 1. By assump-

tion, n1 < n2 < · · · < nm. Whence, any manifold in M̃(n1, n2, · · · , nm) can be embedded

into R2nm+1. Applying Theorem 2.2, we know that M̃(n1, n2, · · · , nm) can be embedded into

R2nm+1. �

For in-embedding a finitely combinatorial manifold M̃(n1, n2, · · · , nm) into combinatorially

Euclidean spaces R̃(k1, · · · , kl), we get the next result.

Theorem 5.2 Any finitely combinatorial manifold M̃(n1, n2, · · · , nm) can be in-embedded into

a combinatorially Euclidean space R̃(k1, · · · , kl) if there is an injection

̟ : {n1, n2, · · · , nm} → {k1, k2, · · · , kl}

such that

̟(ni) ≥ max{2ǫ+ 1| ∀ǫ ∈ ̟−1(̟(ni))}

and

dim(R̟(ni)
⋂

R̟(nj)) ≥ 2dim(Mni

⋂
Mnj ) + 1

for any integer i, j, 1 ≤ i, j ≤ m with Mni ∩Mnj 6= ∅.

Proof Notice that if

̟(ni) ≥ max{2ǫ+ 1| ∀ǫ ∈ ̟−1(̟(ni))}

for any integer i, 1 ≤ i ≤ m, then each manifold M ǫ, ∀ǫ ∈ ̟−1(̟(ni)) can be embedded

into R̟(ni) and for ∀ǫ1 ∈ ̟−1(ni), ∀ǫ2 ∈ ̟−1(nj), M
ǫ1 ∩ M ǫ2 can be in-embedded into

R̟(ni) ∩ R̟(nj) if M ǫ1 ∩ M ǫ2 6= ∅ by Whitney’s result. In this case, a few manifolds in

M̃(n1, n2, · · · , nm) may be in-embedded into one Euclidean space R̟(ni) for any integer i, 1 ≤

i ≤ m. Therefore, by applying Theorem 2.3 we know that M̃(n1, n2, · · · , nm) can be in-

embedded into a combinatorially Euclidean space R̃(k1, · · · , kl). �

If l = 1 in Theorem 5.2, then we obtain Theorem 5.1 once more since ̟(ni) is a constant

in this case. But on a classical viewpoint, Theorem 5.1 is more accepted for it presents the

appearances of a combinatorial manifold in a classical space. Certainly, we can also get concrete

conclusions for practical usefulness by Theorem 5.2, such as the next result.

Corollary 5.1 Any finitely combinatorial manifold M̃(n1, n2, · · · , nm) can be in-embedded into

a combinatorially Euclidean space R̃(k1, · · · , kl) if

(i) l ≥ m;

(ii) there exists m different integers ki1 , ki2 , · · · , kim
∈ {k1, k2, · · · , kl} such that

kij
≥ 2nj + 1
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and

dim(Rkij

⋂
Rkir ) ≥ 2dim(Mnj

⋂
Mnr ) + 1

for any integer i, j, 1 ≤ i, j ≤ m with Mnj ∩Mnr 6= ∅.

Proof Choose an injection

π : {n1, n2, · · · , nm} → {k1, k2, · · · , kl}

by π(nj) = kij
for 1 ≤ j ≤ m. Then conditions (i) and (ii) implies that π is an injection

satisfying conditions in Theorem 5.2. Whence, M̃(n1, n2, · · · , nm) can be in-embedded into

R̃(k1, · · · , kl). �

5.2. Isometry embedding

For two given combinatorially Riemannian Cr-manifolds (M̃, g, D̃
M̃

) and (Ñ , g
Ñ
, D̃), an isom-

etry embedding

ĩ : M̃ → Ñ

is an embedding with g = ĩ∗g
Ñ

. By those discussions in Sections 3 and 4, let the local charts

of M̃ , Ñ be (U, [x]), (V, [y]) and the metrics in M̃ , Ñ to be respective

g
Ñ

=
∑

(ςτ),(ϑι)

g
Ñ(ςτ)(ϑι)

dyςτ ⊗ dyϑι, g =
∑

(µν),(κλ)

g(µν)(κλ)dx
µν ⊗ dxκλ,

then an isometry embedding ĩ form M̃ to Ñ need us to determine wether there are functions

yκλ = iκλ[xµν ], 1 ≤ µ ≤ s(p), 1 ≤ ν ≤ ns(p)

for ∀p ∈ M̃ such that

R̃(ab)(cd)(ef)(gh) = (R̃
Ñ

)(ab)(cd)(ef)(gh) −
∑

α,β

(hαβ

(ab)(ef)h
αβ

(cd)(gh) − hαβ

(ab)(gh)h
αβ

(cd)(ef)),

hαβ

(ab)(cd)(ef) − hαβ

(ab)(ef)(cd) = (R̃
Ñ

)(αβ)(ab)(cd)(ef),

R̃⊥
(αβ)(γδ)(ab)(cd) = (R̃

Ñ
)(αβ)(γδ)(ab)(cd) −

∑

e,f

(hαβ

(ab)(ef)h
γδ

(cd)(gh) − hαββ

(cd)(ef)h
γδ

(ab)(gh))

with R̃⊥
(αβ)(γδ)(ab)(cd) =

〈
R̃(eab, ecd)eαβ , eγδ

〉
,

hαβ

(ab)(cd)(ef)ω
ef = d̃hαβ

(ab)(cd) − ωef
abh

αβ

(ef)(cd) − ωef
cdh

αβ

(ab)(ef) + ωαβ
γδ h

γδ

(ab)(cd)

and



42 Linfan Mao

∑

(ςτ),(ϑι)

g
Ñ(ςτ)(ϑι)

(̃i[x])
∂iςτ

∂xµν

∂iϑι

∂xκλ
= g(µν)(κλ)[x].

For embedding a combinatorial manifold into a combinatorially Euclidean space R̃(k1, · · · , kl),

the last equation can be replaced by

∑

(ςτ)

∂iςτ

∂yµν

∂iςτ

∂yκλ
= g(µν)(κλ)[y]

since a combinatorially Euclidean space R̃(k1, · · · , kl) is equivalent to an Euclidean space Rk̃

with a constant k̃ = l̂(p)+
l(p)∑
i=1

(ki − l̂(p)) for ∀p ∈ Rk̃ but not dependent on p (see [9] for details)

and the metric of an Euclidean space Rk̃ to be

g
R̃

=
∑

µ,ν

dyµν ⊗ dyµν .

These combined with additional conditions enable us to find necessary and sufficient conditions

for existing particular combinatorially Riemannian submanifolds.

Similar to Theorems 5.1 and 5.2, we can also get sufficient conditions on isometry em-

bedding by applying Lemma 2.1, i.e., the decomposition lemma on unit. Firstly, we need two

important lemmas following.

Lemma 5.1([2]) For any integer n ≥ 1, a Riemannian Cr-manifold of dimensional n with

2 < r ≤ ∞ can be isometry embedded into the Euclidean space Rn2+10n+3.

Lemma 5.2 Let (M̃, g, D̃
M̃

) and (Ñ , g
Ñ
, D̃) be combinatorially Riemannian manifolds. If for

∀M ∈ V (G[M̃ ]), there exists isometry embedding FM : M → Ñ , then M̃ can be isometry

embedded into Ñ .

Proof Similar to the proof of Theorems 2.2 and 2.3, we only need to prove that the mapping

F̃ : M̃ → Ñ defined by

F̃ (p) =

ŝ(p)∑

i=1

fMi
FMi

is an isometry embedding. In fact, for p ∈ M̃ we have already known that

g
Ñ

((FMi
)∗(v), (FMi

)∗(w)) = g(v, w)

for ∀v, w ∈ TpM̃ and i, 1 ≤ i ≤ ŝ(p). By definition we know that
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g
Ñ

(F̃∗(v), F̃∗(w)) = g
Ñ

(

ŝ(p)∑

i=1

fMi
(FMi

)(v),

ŝ(p)∑

j=1

fMj
(FMj

)(w))

=

ŝ(p)∑

i=1

ŝ(p)∑

j=1

g
Ñ

(fMi
(FMi

)(v), fMj
(FMj

)(w)))

=

ŝ(p)∑

i=1

ŝ(p)∑

j=1

g(fMi
(FMi

)(v), fMj
(FMj

)(w)))

= g(

ŝ(p)∑

i=1

fMi
v,

ŝ(p)∑

j=1

fMj
w)

= g(v, w).

Therefore, F̃ is an isometry embedding. �

Applying Lemmas 5.1 and 5.2, we get results on isometry embedding of a combinatorial

manifolds into combinatorially Euclidean spaces following.

Theorem 5.3 Any combinatorial Riemannian manifold M̃(n1, n2, · · · , nm) can be isometry

embedded into Rn2
m+10nm+3.

Proof According to Lemma 2.1, each manifold Mni , 1 ≤ i ≤ m, in M̃(n1, n2, · · · , nm) can

be isometry embedded into an Euclidean space Rη for any η ≥ n2
i + 10ni + 3. By assumption,

n1 < n2 < · · · < nm. Thereafter, each manifold in M̃(n1, n2, · · · , nm) can be embedded

into Rn2
m+10nm+3. Applying Lemma 5.2, we know that M̃(n1, n2, · · · , nm) can be isometry

embedded into Rn2
m+10nm+3. �

Theorem 5.4 A combinatorially Riemannian manifold M̃(n1, n2, · · · , nm) can be isometry

embedded into a combinatorially Euclidean space R̃(k1, · · · , kl) if there is an injection

̟ : {n1, n2, · · · , nm} → {k1, k2, · · · , kl}

such that

̟(ni) ≥ max{ǫ2 + 10ǫ+ 3| ∀ǫ ∈ ̟−1(̟(ni))}

and

dim(R̟(ni)
⋂

R̟(nj)) ≥ dim2(Mni

⋂
Mnj) + 10dim(Mni

⋂
Mnj ) + 3

for any integer i, j, 1 ≤ i, j ≤ m with Mni ∩Mnj 6= ∅.

Proof If

̟(ni) ≥ max{ǫ2 + 10ǫ+ 3| ∀ǫ ∈ ̟−1(̟(ni))}
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for any integer i, 1 ≤ i ≤ m, then each manifold M ǫ, ∀ǫ ∈ ̟−1(̟(ni)) can be isometry embed-

ded into R̟(ni) and for ∀ǫ1 ∈ ̟−1(ni), ∀ǫ2 ∈ ̟−1(nj), M
ǫ1 ∩M ǫ2 can be isometry embedded

into R̟(ni)∩R̟(nj) if M ǫ1 ∩M ǫ2 6= ∅ by Lemma 5.1. Notice that in this case, serval manifolds

in M̃(n1, n2, · · · , nm) may be isometry embedded into one Euclidean space R̟(ni) for any in-

teger i, 1 ≤ i ≤ m. Now applying Lemma 5.2 we know that M̃(n1, n2, · · · , nm) can be isometry

embedded into a combinatorially Euclidean space R̃(k1, · · · , kl). �

Similar to the proof of Corollary 5.1, we can get a more clearly condition for isometry

embedding of combinatorially Riemannian manifolds into combinatorially Euclidean spaces.

Corollary 5.2 A combinatorially Riemannian manifold M̃(n1, n2, · · · , nm) can be isometry

embedded into a combinatorially Euclidean space R̃(k1, · · · , kl) if

(i) l ≥ m;

(ii) there exists m different integers ki1 , ki2 , · · · , kim
∈ {k1, k2, · · · , kl} such that

kij
≥ n2

j + 10nj + 3

and

dim(Rkij

⋂
Rkir ) ≥ dim2(Mnj

⋂
Mnr ) + 10dim(Mnj

⋂
Mnr) + 3

for any integer i, j, 1 ≤ i, j ≤ m with Mnj ∩Mnr 6= ∅.
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Abstract: In this paper we introduce the concept of half-groups. This is a totally new

concept and demands considerable attention. R.H.Bruck [1] has defined a half groupoid.

We have imposed a group structure on a half groupoid wherein we have an identity element

and each element has a unique inverse. Further, we have defined a new structure called

Smarandache half-group. We have derived some important properties of Smarandache half-

groups. Some suitable examples are also given.

Key Words: half-group, subhalf-group, Smarandache half-group, Smarandache subhalf-
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§1. Introduction

Definition 1.1 Let (S, ∗) be a half groupoid (a partially closed set with respect to ∗ ) such that

(1) There exists an element e ∈ S such that a ∗ e = e ∗ a = a, ∀a ∈ S. e is called identity

element of S;

(2) For every a ∈ S there exists b ∈ S such that a ∗ b = b ∗ a = e (identity) b is called the

inverse of a.

Then (S,*) is called a half-group.

Remark It is easy to verify that

(a) identity element in S is unique;

(b) each element in S has a unique inverse;

(c) associativity does not hold in S as there is at least one product that is not defined in S.

Note In all composition tables in the following examples the blank entries show that the

corresponding products are not defined.

Example 1.1 Let S = {1,−i, i}. Then S is a half-group w.r.t. multiplication. We write this

multiplication table in the following.

1Received March 2, 2008. Accepted March 28, 2008.
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∗ 1 -i i

1 1 -i i

-i -i 1

i i 1

Example 1.2 Let S = {e, a, b, c}. Then (S, ∗) is a half subgroup defined by

∗ e a b c

e e a b c

a a b c e

b b c e a

c c e a

Here the product c ∗ c is not defined.

Definition 1.2 it Let (S, ∗) be a half-group and H a subset of S. If H itself is a half-group

w.r.t. ∗, then H is called a subhalf-group of S.

Example 1.3 Let S = {e, a, b, c, d} be a half-group defined by the following table.

∗ e a b c d

e e a b c d

a a c e b a

b b e c a d

c c d a e b

d d b c e

Then , H = {e, a, b} is a subhalf-group of S.

Definition 1.3 A half-group (S, ∗) is called a Smarandache half-group if S contains a proper

subset G such that G is a nontrivial group w.r.t. ∗.

Definition 1.4 If S is Smarandache half-group such that every group contained properly in S

is commutative, then S is called Smarandache commutative half-group.

Definition 1.5 If S is a Smarandache half-group such that every group contained properly in

S is cyclic, then S is called a Smarandache cyclic half-group.

Example 1.4 Let S be a half-group defined by the following table.
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∗ e a b c

e e a b c

a a e c b

b b c e a

c c e e

Then G = {e, a} is a nontrivial group contained in S. So, S is a Smarandache half-group. Also,

{e, a, b} is a Smarandache half-group. S is also a Smarandache commutative half-group. Also

S is a Smarandache cyclic half-group.

Example 1.5 S = {1,−i, i} is not a Smarandache half-group.

Example 1.6 Let L be the Half-Group given by the following table.

∗ e f g h i j k l

e e f g h i j k l

f f e j g k h l i

g g j e k h l i f

h h g k e l i f j

i i k h l e f j g

j j h l i f e g k

k k l i f j g e

l l i f j g k e

Then L is a half-group which contains a group G = {e, g}. So, L is a Smarandache Half-Group.

There are many Smarandache half-groups in this structure. Results following are obtained

immediately by definition

(1) The smallest half-group is of order 3.

This follows from the very definition of half-groups.

(2) The smallest Smarandache half-group is of order 3.

As a nontrivial group has order at least 2, the half-group which will contain this group

properly will have order at least 3.

§2. Substructures of Smarandache Half-Groups

In this section we introduce Smarandache substructure.

Definition 2.1 Let S be a half-group w.r.t. ∗. A nonempty subset T of S is said to be

Smarandache subhalf-group of S if T contains a proper subset G such that G is a nontrivial

group under the operation of S.
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Theorem 2.1 If S is a half-group and T is a Smarandache subhalf-group of S then S is a

Smarandache half-group.

Proof As T is a Smarandache subhalf-group of S , S contains T properly. Also, T properly

contains a non trivial group. As a result S is a hlf-group which properly contains a nontrivial

group. Therefore S is a Smarandache half-group. �

We also note facts following on Smarandache half-groups.

(1)If R is a Smarandache half-group then every subhalf-group of R need not be a Smaran-

dache subhalf-group.

We give an example to justify our claim.

Example 2.1 Consider a half-group S defined by the following table.

∗ e f g h i j

e e f g h i j

f f h e g j i

g g e h f i i

h h g f e e j

i i j i j e

j j i f i e

Then S ⊃ H = {e, f, g, h} and H is a group. Therefore S is a Smarandache half-group.

Consider a half-group R = {e, f, g}. Then R is not a Smarandache subhalf-group of S as there

does not exist a non trivial group contained in R.

We give a typical example of a half-group following whose subhalf-groups are Smarandache

subhalf-group.

Example 2.2 Consider the following table.

∗ e f g h i j k l

e e f g h i j k l

f f e j g k h l i

g g j e k h l i f

h h g k e l i f j

i i k h l e f j g

j j h l i f e g k

k k l i f j g e

l l i f j g k e

One can easily verify that every subhalf-group is a Smarandache subhalf-group.
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Definition 2.2 If S is a Smarandache half-group such that a subhalf-group A of S contains the

largest group in S then A is called a Smarandache hyper subhalf-group.

In the example above, the largest non-trivial group in S is of order 2 and every Smarandache

subhalf-Group of S contains the largest group in S. Thus, every Smarandache subhalf-Group

in S is a Smarandache hyper subhalf-Group.
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(Department of Mathematics of Obafemi Awolowo University, Ile Ife, Nigeria.)

E-mail: tjayeola@oauife.edu.ng

Abstract: The concept of Smarandache Bryant Schneider Group of a Smarandache loop

is introduced. Relationship(s) between the Bryant Schneider Group and the Smarandache

Bryant Schneider Group of an S-loop are discovered and the later is found to be useful in

finding Smarandache isotopy-isomorphy condition(s) in S-loops just like the formal is useful

in finding isotopy-isomorphy condition(s) in loops. Some properties of the Bryant Schneider

Group of a loop are shown to be true for the Smarandache Bryant Schneider Group of a

Smarandache loop. Some interesting and useful cardinality formulas are also established for

a type of finite Smarandache loop.

Key Words: Smarandache Bryant Schneider group, Smarandache loops, Smarandache f ,

g-principal isotopes.

AMS(2000): 20NO5, 08A05.

§1. Introduction

The study of Smarandache loops was initiated by W. B. Vasantha Kandasamy in 2002. In

her book [16], she defined a Smarandache loop (S-loop) as a loop with at least a subloop

which forms a subgroup under the binary operation of the loop. For more on loops and their

properties, readers should check [14], [3], [5], [7], [6] and [16]. In her book, she introduced over

75 Smarandache concepts in loops but the concept Smarandache Bryant Schneider Group which

is to be studied here for the first time is not among. In her first paper [17], she introduced some

types of Smarandache loops. The present author has contributed to the study of S-quasigroups

and S-loops in [9], [10] and [11] while Muktibodh [13] did a study on the first.

Robinson [15] introduced the idea of Bryant-Schneider group of a loop because its impor-

tance and motivation stem from the work of Bryant and Schneider [4]. Since the advent of the

Bryant-Schneider group, some studies by Adeniran [1], [2] and Chiboka [6] have been done on it

relative to CC-loops, C-loops and extra loops after Robinson [15] studied the Bryant-Schneider

group of a Bol loop. The judicious use of it was earlier predicted by Robinson [15]. As men-

tioned in [Section 5, Robinson [15]], the Bryant-Schneider group of a loop is extremely useful

in investigating isotopy-isomorphy condition(s) in loops.

In this study, the concept of Smarandache Bryant Schneider Group of a Smarandache

1Received March 6, 2008. Accepted April 2, 2008.
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loop is introduced. Relationship(s) between the Bryant Schneider Group and the Smarandache

Bryant Schneider Group of an S-loop are discovered and the later is found to be useful in finding

Smarandache isotopy-isomorphy condition(s) in S-loops just like the formal is useful in finding

isotopy-isomorphy condition(s) in loops. Some properties of the Bryant Schneider Group of

a loop are shown to be true for the Smarandache Bryant Schneider Group of a Smarandache

loop. Some interesting and useful cardinality formulas are also established for a type of finite

Smarandache loop. But first, we state some important definitions.

§2. Definitions and Notations

Definition 2.1 Let L be a non-empty set. Define a binary operation (·) on L : If x · y ∈ L for

∀ x, y ∈ L, (L, ·) is called a groupoid. If the system of equations ; a · x = b and y · a = b have

unique solutions for x and y respectively, then (L, ·) is called a quasigroup. Furthermore, if there

exists a unique element e ∈ L called the identity element such that for ∀ x ∈ L, x · e = e ·x = x,

(L, ·) is called a loop.

Furthermore, if there exist at least a non-empty subset M of L such that (M, ·) is a

non-trivial subgroup of (L, ·), then L is called a Smarandache loop(S-loop) with Smarandache

subgroup(S-subgroup) M .

The set SYM(L, ·) = SYM(L) of all bijections in a loop (L, ·) forms a group called the

permutation(symmetric) group of the loop (L, ·). The triple (U, V,W ) such that U, V,W ∈

SYM(L, ·) is called an autotopism of L if and only if xU · yV = (x · y)W ∀ x, y ∈ L. The

group of autotopisms(under componentwise multiplication [14]) of L is denoted by AUT (L, ·).

If U = V = W , then the group AUM(L, ·) = AUM(L) formed by such U ’s is called the

automorphism group of (L, ·). If L is an S-loop with an arbitrary S-subgroupH , then the group

SSYM(L, ·) = SSYM(L) formed by all θ ∈ SYM(L) such that hθ ∈ H ∀ h ∈ H is called the

Smarandache permutation(symmetric) group of L. Hence, the group SA(L, ·) = SA(L) formed

by all θ ∈ SSYM(L) ∩AUM(L) is called the Smarandache automorphism group of L.

Let (G, ·) be a loop. The bijection Lx : G −→ G defined as yLx = x · y, ∀ x, y ∈ G

is called a left translation(multiplication) of G while the bijection Rx : G −→ G defined as

yRx = y · x, ∀ x, y ∈ G is called a right translation(multiplication) of G.

Definition 2.2(Robinson [15]) Let (G, ·) be a loop. A mapping θ ∈ SYM(G, ·) is a special

map for G means that there exist f, g ∈ G so that (θR−1
g , θL−1

f , θ) ∈ AUT (G, ·).

Definition 2.3 Let (G, ·) be a Smarandache loop with S-subgroup (H, ·). A mapping θ ∈

SSYM(G, ·) is a Smarandache special map(S-special map) for G if and only if there exist

f, g ∈ H such that (θR−1
g , θL−1

f , θ) ∈ AUT (G, ·).

Definition 2.4(Robinson [15]) Let the set

BS(G, ·) = {θ ∈ SYM(G, ·) : ∃ f, g ∈ G ∋ (θR−1
g , θL−1

f , θ) ∈ AUT (G, ·)}

i.e the set of all special maps in a loop, then BS(G, ·) 6 SYM(G, ·) is called the Bryant-

Schneider group of the loop (G, ·).
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Definition 2.5 Let the set

SBS(G, ·) = {θ ∈ SSYM(G, ·) : there exist f, g ∈ H ∋ (θR−1
g , θL−1

f , θ) ∈ AUT (G, ·)}

i.e the set of all S-special maps in a S-loop, then SBS(G, ·) is called the Smarandache Bryant-

Schneider group(SBS group) of the S-loop (G, ·) with S-subgroup H if SBS(G, ·) 6 SYM(G, ·).

Definition 2.6 The triple φ = (Rg, Lf , I) is called an f, g-principal isotopism of a loop (G, ·)

onto a loop (G, ◦) if and only if

x · y = xRg ◦ yLf , ∀ x, y ∈ G or x ◦ y = xR−1
g · yL−1

f , ∀ x, y ∈ G.

f and g are called translation elements of G or at times written in the pair form (g, f), while

(G, ◦) is called an f, g-principal isotope of (G, ·).

On the other hand, (G,⊗) is called a Smarandache f, g-principal isotope of (G,⊕) if for

some f, g ∈ S,

xRg ⊗ yLf = (x⊕ y) ∀ x, y ∈ G

where (S,⊕) is a S-subgroup of (G,⊕). In these cases, f and g are called Smarandache

elements(S-elements).

Let (L, ·) and (G, ◦) be S-loops with S-subgroups L′ and G′ respectively such that xA ∈

G′, ∀ x ∈ L′, where A : (L, ·) −→ (G, ◦). Then the mapping A is called a Smarandache

isomorphism if (L, ·) ∼= (G, ◦), hence we write (L, ·) % (G, ◦). An S-loop (L, ·) is called a

G-Smarandache loop(GS-loop) if and only if (L, ·) % (G, ◦) for all S-loop isotopes (G, ◦) of

(L, ·).

Definition 2.7 Let (G, ·) be a Smarandache loop with an S-subgroup H.

Ω(G, ·) =

{
(θR−1

g , θL−1
f , θ) ∈ AUT (G, ·) for some f, g ∈ H : hθ ∈ H, ∀ h ∈ H

}
.

§3. Main Results

3.1 Smarandache Bryant Schneider Group

Theorem 3.1 Let (G, ·) be a Smarandache loop. SBS(G, ·) 6 BS(G, ·).

Proof Let (G, ·) be an S-loop with S-subgroup H . Comparing Definitions 2.4 and 2.5, it

can easily be observed that SBS(G, ·) ⊂ BS(G, ·). The case SBS(G, ·) ⊆ BS(G, ·) is possible

when G = H where H is the S-subgroup of G but this will be a contradiction since G is an

S-loop.

Identity. If I is the identity mapping on G, then hI = h ∈ H, ∀ h ∈ H and there exists

e ∈ H where e is the identity element in G such that (IR−1
e , IL−1

e , I) = (I, I, I) ∈ AUT (G, ·).

So, I ∈ SBS(G, ·). Thus SBS(G, ·) is non-empty.

Closure and Inverse. Let α, β ∈ SBS(G, ·). Then there exist f1, g1, f2, g2 ∈ H such that
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A = (αR−1
g1
, αL−1

f1
, α), B = (βR−1

g2
, βL−1

f2
, β) ∈ AUT (G, ·).

AB−1 = (αR−1
g1
, αL−1

f1
, α)(Rg2β

−1, Lf2β
−1, β−1)

= (αR−1
g1
Rg2β

−1, αL−1
f1
Lf2β

−1, αβ−1) ∈ AUT (G, ·).

Let δ = βR−1
g1
Rg2β

−1 and γ = βL−1
f1
Lf2β

−1. Then,

(αβ−1δ, αβ−1γ, αβ−1) ∈ AUT (G, ·) ⇔ (xαβ−1δ) · (yαβ−1γ) = (x · y)αβ−1 ∀ x, y ∈ G.

Putting y = e and replacing x by xβα−1, we have (xδ) · (eαβ−1γ) = x for all x ∈ G.

Similarly, putting x = e and replacing y by yβα−1, we have (eαβ−1δ) · (yγ) = y for all y ∈ G.

Thence, xδR(eαβ−1γ) = x and yγL(eαβ−1δ) = y which implies that

δ = R−1
(eαβ−1γ) and γ = L−1

(eαβ−1δ).

Thus, since g = eαβ−1γ, f = eαβ−1δ ∈ H then

AB−1 = (αβ−1R−1
g , αβ−1L−1

f , αβ−1) ∈ AUT (G, ·) ⇔ αβ−1 ∈ SBS(G, ·).

Therefore, SBS(G, ·) 6 BS(G, ·). �

Corollary 3.1 Let (G, ·) be a Smarandache loop. Then, SBS(G, ·) 6 SSYM(G, ·) 6 SYM(G, ·).

Hence, SBS(G, ·) is the Smarandache Bryant-Schneider group(SBS group) of the S-loop (G, ·).

Proof Although the fact that SBS(G, ·) 6 SYM(G, ·) follows from Theorem 3.1 and the

fact in [Theorem 1, [15]] that BS(G, ·) 6 SYM(G, ·). Nevertheless, it can also be traced from

the facts that SBS(G, ·) 6 SSYM(G, ·) and SSYM(G, ·) 6 SYM(G, ·).

It is easy to see that SSYM(G, ·) ⊂ SYM(G, ·) and that SBS(G, ·) ⊂ SSYM(G, ·) while

the trivial cases SSYM(G, ·) ⊆ SYM(G, ·) and SBS(G, ·) ⊆ SSYM(G, ·) will contradict the

fact that G is an S-loop because these two are possible if the S-subgroup H is G. Reasoning

through the axioms of a group, it is easy to show that SSYM(G, ·) 6 SYM(G, ·). By using

the same steps in Theorem 3.1, it will be seen that SBS(G, ·) 6 SSYM(G, ·). �

3.2 The SBS Group of a Smarandache f, g-principal isotope

Theorem 3.2 Let (G, ·) be a S-loop with a Smarandache f, g-principal isotope (G, ◦). Then,

(G, ◦) is an S-loop.

Proof Let (G, ·) be an S-loop, then there exist an S-subgroup (H, ·) of G. If (G, ◦) is a

Smarandache f, g-principal isotope of (G, ·), then

x · y = xRg ◦ yLf , ∀ x, y ∈ G which implies x ◦ y = xR−1
g · yL−1

f , ∀ x, y ∈ G
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where f, g ∈ H . So

h1 ◦ h2 = h1R
−1
g · h2L

−1
f , ∀ h1, h2 ∈ H for some f, g ∈ H.

Let us now consider the set H under the operation ”◦”. That is the pair (H, ◦).

Groupoid. Since f, g ∈ H , then by the definition h1 ◦ h2 = h1R
−1
g · h2L

−1
f , h1 ◦ h2 ∈

H, ∀ h1, h2 ∈ H since (H, ·) is a groupoid. Thus, (H, ◦) is a groupoid.

Quasigroup. With the definition h1 ◦h2 = h1R
−1
g ·h2L

−1
f , ∀ h1, h2 ∈ H , it is clear that (H, ◦)

is a quasigroup since (H, ·) is a quasigroup.

Loop. It can easily be seen that f · g is an identity element in (H, ◦). So, (H, ◦) is a loop.

Group. Since (H, ·) is a associative, it is easy to show that (H, ◦) is associative.

Hence, (H, ◦) is an S-subgroup in (G, ◦) since the latter is a loop(a quasigroup with identity

element f · g). Therefore, (G, ◦) is an S-loop. �

Theorem 3.3 Let (G, ·) be a Smarandache loop with an S-subgroup (H, ·). A mapping θ ∈

SYM(G, ·) is a S-special map if and only if θ is an S-isomorphism of (G, ·) onto some Smaran-

dache f, g-principal isotopes (G, ◦) where f, g ∈ H.

Proof By Definition 2.3, a mapping θ ∈ SSYM(G) is a S-special map implies there exist

f, g ∈ H such that (θR−1
g , θL−1

f , θ) ∈ AUT (G, ·). It can be observed that

(θR−1
g , θL−1

f , θ) = (θ, θ, θ)(R−1
g , L−1

f , I) ∈ AUT (G, ·).

But since (R−1
g , L−1

f , I) : (G, ◦) −→ (G, ·) then for (θR−1
g , θL−1

f , θ) ∈ AUT (G, ·) we must

have (θ, θ, θ) : (G, ·) −→ (G, ◦) which means (G, ·)
θ
∼= (G, ◦), hence (G, ·)

θ

% (G, ◦) because

(H, ·)θ = (H, ◦). (Rg, Lf , I) : (G, ·) −→ (G, ◦) is an f, g-principal isotopism so (G, ◦) is a

Smarandache f, g-principal isotope of (G, ·) by Theorem 3.2.

Conversely, if θ is an S-isomorphism of (G, ·) onto some Smarandache f, g-principal isotopes

(G, ◦) where f, g ∈ H such that (H, ·) is a S-subgroup of (G, ·) means (θ, θ, θ) : (G, ·) −→

(G, ◦), (Rg, Lf , I) : (G, ·) −→ (G, ◦) which implies (R−1
g , L−1

f , I) : (G, ◦) −→ (G, ·) and

(H, ·)θ = (H, ◦). Thus, (θR−1
g , θL−1

f , θ) ∈ AUT (G, ·). Therefore, θ is a S-special map because

f, g ∈ H . �

Corollary 3.2 Let (G, ·) be a Smarandache loop with an S-subgroup (H, ·). A mapping θ ∈

SBS(G, ·) if and only if θ is an S-isomorphism of (G, ·) onto some Smarandache f, g-principal

isotopes (G, ◦) such that f, g ∈ H where (H, ·) is an S-subgroup of (G, ·).

Proof This follows from Definition 2.5 and Theorem 3.3. �

Theorem 3.4 Let (G, ·) and (G, ◦) be S-loops. (G, ◦) is a Smarandache f, g-principal isotope

of (G, ·) if and only if (G, ·) is a Smarandache g, f -principal isotope of (G, ◦).

Proof Let (G, ·) and (G, ◦) be S-loops such that if (H, ·) is an S-subgroup in (G, ·), then

(H, ◦) is an S-subgroup of (G, ◦). The left and right translation maps relative to an element x
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in (G, ◦) shall be denoted by Lx and Rx respectively.

If (G, ◦) is a Smarandache f, g-principal isotope of (G, ·) then, x ·y = xRg ◦yLf , ∀ x, y ∈ G

for some f, g ∈ H . Thus, xRy = xRgRyLf
and yLx = yLfLxRg

x, y ∈ G and we have

Ry = RgRyLf
and Lx = LfLxRg

, x, y ∈ G. So, Ry = R−1
g RyL

−1
f

and Lx = L−1
f LxR

−1
g

= x, y ∈

G. Putting y = f and x = g respectively, we now get Rf = R−1
g RfL−1

f
= R−1

g and Lg =

L−1
f LgR

−1
g

= L−1
f . That is, Rf = R−1

g and Lg = L−1
f for some f, g ∈ H .

Recall that

x · y = xRg ◦ yLf , ∀ x, y ∈ G ⇔ x ◦ y = xR−1
g · yL−1

f , ∀ x, y ∈ G.

So using the last two translation equations,

x ◦ y = xRf · yLg, ∀ x, y ∈ G ⇔ the triple (Rf ,Lg, I) : (G, ◦) −→ (G, ·)

is a Smarandache g, f -principal isotopism. Therefore, (G, ·) is a Smarandache g, f -principal

isotope of (G, ◦).

The converse is achieved by doing the reverse of the procedure described above. �

Theorem 3.5 If (G, ·) is an S-loop with a Smarandache f, g-principal isotope (G, ◦), then

SBS(G, ·) = SBS(G, ◦).

Proof Let (G, ◦) be the Smarandache f, g-principal isotope of the S-loop (G, ·) with S-

subgroup (H, ·). By Theorem 3.2, (G, ◦) is an S-loop with S-subgroup (H, ◦). The left and right

translation maps relative to an element x in (G, ◦) shall be denoted by Lx and Rx respectively.

Let α ∈ SBS(G, ·), then there exist f1, g1 ∈ H so that (αR−1
g1
, αL−1

f1
, α) ∈ AUT (G, ·).

Recall that the triple (Rg1 , Lf1 , I) : (G, ·) −→ (G, ◦) is a Smarandache f, g-principal isotopism,

so x · y = xRg ◦ yLf , ∀ x, y ∈ G and this implies

Rx = RgRxLf
and Lx = LfLxRg

, ∀ x ∈ G which also implies that

RxLf
= R−1

g Rx and LxRg
= L−1

f Lx, ∀ x ∈ G which finally gives

Rx = R−1
g RxL

−1
f

and Lx = L−1
f LxR

−1
g
, ∀ x ∈ G.

Set f2 = fαR−1
g1
Rg and g2 = gαL−1

f1
Lf . Then

Rg2 = R−1
g RgαL

−1
f1

Lf L
−1
f

= R−1
g RgαL

−1
f1

, (1)

Lf2 = L−1
f LfαR

−1
g1

RgR
−1
g

= L−1
f LfαR

−1
g1
, ∀ x ∈ G. (2)

Since, (αR−1
g1
, αL−1

f1
, α) ∈ AUT (G, ·), then

(xαR−1
g1

) · (yαL−1
f1

) = (x · y)α, ∀ x, y ∈ G. (3)
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Putting y = g and x = f separately in the last equation,

xαR−1
g1
R(gαL

−1
f1

) = xRgα and yαL−1
f1
L(fαR

−1
g1

) = yLfα, ∀ x, y ∈ G.

Thus by applying (1) and (2), we now have

αR−1
g1

= RgαR
−1

(gαL
−1
f1

)
= RgαR

−1
g2
R−1

g and αL−1
f1

= LfαL
−1

(fαR
−1
g1

)
= LfαL

−1
f2
L−1

f . (4)

We shall now compute (x ◦ y)α by (2) and (3) and then see the outcome.

(x◦y)α = (xR−1
g ·yL−1

f )α = xR−1
g αR−1

g1
·yL−1

f αL−1
f1

= xR−1
g RgαR−1

g2
R−1

g ·yL−1
f LfαL

−1
f2
L−1

f =

xαR−1
g2
R−1

g · yαL−1
f2
L−1

f = xαR−1
g2

◦ yαL−1
f2
, ∀ x, y ∈ G.

Thus,

(x ◦ y)α = xαR−1
g2

◦ yαL−1
f2
, ∀ x, y ∈ G⇔ (αR−1

g2
, αL−1

f2
, α) ∈ AUT (G, ◦) ⇔ α ∈ SBS(G, ◦).

Whence, SBS(G, ·) ⊆ SBS(G, ◦).

Since (G, ◦) is the Smarandache f, g-principal isotope of the S-loop (G, ·), then by Theorem

3.4, (G, ·) is the Smarandache g, f -principal isotope of (G, ◦). So following the steps above, it can

similarly be shown that SBS(G, ◦) ⊆ SBS(G, ·). Therefore, the conclusion that SBS(G, ·) =

SBS(G, ◦) follows. �

3.3 Cardinality Formulas

Theorem 3.6 Let (G, ·) be a finite Smarandache loop with n distinct S-subgroups. If the SBS

group of (G, ·) relative to an S-subgroup (Hi, ·) is denoted by SBSi(G, ·), then

|BS(G, ·)| =
1

n

n∑

i=1

|SBSi(G, ·)| [BS(G, ·) : SBSi(G, ·)].

Proof Let the n distinct S-subgroups of G be denoted by Hi, i = 1, 2, · · ·n. Note here

that Hi 6= Hj , i, j = 1, 2, · · ·n. By Theorem 3.1, SBSi(G, ·) 6 BS(G, ·), i = 1, 2, · · ·n. Hence,

by the Lagrange’s theorem of classical group theory,

|BS(G, ·)| = |SBSi(G, ·)| [BS(G, ·) : SBSi(G, ·)], i = 1, 2, · · ·n.

Thus, adding the equation above for all i = 1, 2, · · ·n, we get

n|BS(G, ·)| =

n∑

i=1

|SBSi(G, ·)| [BS(G, ·) : SBSi(G, ·)], i = 1, 2, · · ·n, thence,

|BS(G, ·)| =
1

n

n∑

i=1

|SBSi(G, ·)| [BS(G, ·) : SBSi(G, ·)].

�

Theorem 3.7 Let (G, ·) be a Smarandache loop. Then, Ω(G, ·) 6 AUT (G, ·).

Proof Let (G, ·) be an S-loop with S-subgroup H . By Definition 2.7, it can easily be

observed that Ω(G, ·) ⊆ AUT (G, ·).
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Identity. If I is the identity mapping on G, then hI = h ∈ H, ∀ h ∈ H and there exists e ∈ H

where e is the identity element in G such that (IR−1
e , IL−1

e , I) = (I, I, I) ∈ AUT (G, ·). So,

(I, I, I) ∈ Ω(G, ·). Thus Ω(G, ·) is non-empty.

Closure and Inverse. Let A,B ∈ Ω(G, ·). Then there exist α, β ∈ SSYM(G, ·) and some

f1, g1, f2, g2 ∈ H such that

A = (αR−1
g1
, αL−1

f1
, α), B = (βR−1

g2
, βL−1

f2
, β) ∈ AUT (G, ·).

AB−1 = (αR−1
g1
, αL−1

f1
, α)(Rg2β

−1, Lf2β
−1, β−1)

= (αR−1
g1
Rg2β

−1, αL−1
f1
Lf2β

−1, αβ−1) ∈ AUT (G, ·).

Using the same techniques for the proof of closure and inverse in Theorem 3.1 here and by

letting δ = βR−1
g1
Rg2β

−1 and γ = βL−1
f1
Lf2β

−1, it can be shown that,

AB−1 = (αβ−1R−1
g , αβ−1L−1

f , αβ−1) ∈ AUT (G, ·) where g = eαβ−1γ, f = eαβ−1δ ∈ H

such that αβ−1 ∈ SSYM(G, ·) ⇔ AB−1 ∈ Ω(G, ·).

Therefore, Ω(G, ·) 6 AUT (G, ·). �

Theorem 3.8 Let (G, ·) be a Smarandache loop with an S-subgroup H such that f, g ∈ H and

α ∈ SBS(G, ·). If the mapping

Φ : Ω(G, ·) −→ SBS(G, ·) is defined as Φ : (αR−1
g , αL−1

f , α) 7→ α,

then Φ is an homomorphism.

Proof Let A,B ∈ Ω(G, ·). Then there exist α, β ∈ SSYM(G, ·) and some f1, g1, f2, g2 ∈ H

such that

A = (αR−1
g1
, αL−1

f1
, α), B = (βR−1

g2
, βL−1

f2
, β) ∈ AUT (G, ·).

Φ(AB) = Φ[(αR−1
g1
, αL−1

f1
, α)(βR−1

g2
, βL−1

f2
, β)] = Φ(αR−1

g1
βR−1

g2
, αL−1

f1
βL−1

f2
, αβ). It will be

good if this can be written as; Φ(AB) = Φ(αβδ, αβγ, αβ) such that hαβ ∈ H ∀ h ∈ H and

δ = R−1
g , γ = L−1

f for some g, f ∈ H .

This is done as follows. If

(αR−1
g1
βR−1

g2
, αL−1

f1
βL−1

f2
, αβ) = (αβδ, αβγ, αβ) ∈ AUT (G, ·), then,

xαβδ · yαβγ = (x · y)αβ, ∀ x, y ∈ G.

Put y = e and replace x by xβ−1α−1 then xδ · eαβγ = x⇔ δ = R−1
eαβγ .

Similarly, put x = e and replace y by yβ−1α−1. Then, eαβδ · yγ = y ⇔ γ = L−1
eαβδ. So,

Φ(AB) = (αβR−1
eαβγ , αβL

−1
eαβδ, αβ) = αβ = Φ(αR−1

g1
, αL−1

f1
, α)Φ(βR−1

g2
, βL−1

f2
, β) = Φ(A)Φ(B).
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Therefore, Φ is an homomorphism. �

Theorem 3.9 Let (G, ·) be a Smarandache loop with an S-subgroup H such that f, g ∈ H and

α ∈ SSYM(G, ·). If the mapping

Φ : Ω(G, ·) −→ SBS(G, ·) is defined as Φ : (αR−1
g , αL−1

f , α) 7→ α

then,

A = (αR−1
g , αL−1

f , α) ∈ kerΦ if and only if α

is the identity map on G, g · f is the identity element of (G, ·) and g ∈ Nµ(G, ·) the middle

nucleus of (G, ·).

Proof For the necessity, kerΦ = {A ∈ Ω(G, ·) : Φ(A) = I}. So, if A = (αR−1
g1
, αL−1

f1
, α) ∈

kerΦ, then Φ(A) = α = I. Thus, A = (R−1
g1
, L−1

f1
, I) ∈ AUT (G, ·) ⇔

x · y = xR−1
g · yL−1

f , ∀ x, y ∈ G. (5)

Replace x by xRg and y by yLf in (5) to get

x · y = xg · fy, ∀ x, y ∈ G. (6)

Putting x = y = e in (6), we get g · f = e. Replace y by yL−1
f in (6) to get

x · yL−1
f = xg · y, ∀ x, y ∈ G. (7)

Put x = e in (7), then we have yL−1
f = g · y, ∀ y ∈ G and so (7) now becomes

x · (gy) = xg · y, ∀ x, y ∈ G⇔ g ∈ Nµ(G, ·).

For the sufficiency, let α be the identity map on G, g · f the identity element of (G, ·) and

g ∈ Nµ(G, ·). Thus, fg·f = f ·gf = fe = f . Thus, f ·g = e. Then also, y = fg·y = f ·gy ∀ y ∈ G

which results into yL−1
f = gy ∀ y ∈ G. Thus, it can be seen that xαR−1

g ·yαL−1
f = xR−1

g ·yL−1
f =

xR−1
g α·yL−1

f α = xR−1
g ·yL−1

f = xR−1
g ·gy = (xR−1

g ·g)y = xR−1
g Rg·y = x·y = (x·y)α, ∀ x, y ∈ G.

Thus, Φ(A) = Φ(αR−1
g , αL−1

f , α) = Φ(R−1
g , L−1

f , I) = I ⇒ A ∈ kerΦ. �

Theorem 3.10 Let (G, ·) be a Smarandache loop with an S-subgroup H such that f, g ∈ H and

α ∈ SSYM(G, ·). If the mapping

Φ : Ω(G, ·) −→ SBS(G, ·) is defined as Φ : (αR−1
g , αL−1

f , α) 7→ α

then,

|Nµ(G, ·)| = | kerΦ| and |Ω(G, ·)| = |SBS(G, ·)||Nµ(G, ·)|.

Proof Let the identity map on G be I. Using Theorem 3.9, if

gθ = (R−1
g , L−1

g−1 , I), ∀ g ∈ Nµ(G, ·) then, θ : Nµ(G, ·) −→ kerΦ.

θ is easily seen to be a bijection, hence |Nµ(G, ·)| = | kerΦ|.
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Since Φ is an homomorphism by Theorem 3.8, then by the first isomorphism theorem

in classical group theory, Ω(G, ·)/ kerΦ ∼= ImΦ. Φ is clearly onto, so ImΦ = SBS(G, ·),

so that Ω(G, ·)/ kerΦ ∼= SBS(G, ·). Thus, |Ω(G, ·)/ kerΦ| = |SBS(G, ·)|. By Lagrange’s

theorem, |Ω(G, ·)| = | kerΦ||Ω(G, ·)/ kerΦ|, so, |Ω(G, ·)| = | kerΦ||SBS(G, ·)|, ∴ |Ω(G, ·)| =

|Nµ(G, ·)||SBS(G, ·)|. �

Theorem 3.11 Let (G, ·) be a Smarandache loop with an S-subgroup H. If

Θ(G, ·) = {(f, g) ∈ H ×H : (G, ◦) % (G, ·)

for (G, ◦) the Smarandache principal f, g − isotope of (G, ·)},

then

|Ω(G, ·)| = |Θ(G, ·)||SA(G, ·)|.

Proof Let A,B ∈ Ω(G, ·). Then there exist α, β ∈ SSYM(G, ·) and some f1, g1, f2, g2 ∈ H

such that

A = (αR−1
g1
, αL−1

f1
, α), B = (βR−1

g2
, βL−1

f2
, β) ∈ AUT (G, ·).

Define a relation ∼ on Ω(G, ·) such that

A ∼ B ⇐⇒ f1 = f2 and g1 = g2.

It is very easy to show that ∼ is an equivalence relation on Ω(G, ·). It can easily be seen

that the equivalence class [A] of A ∈ Ω(G, ·) is the inverse image of the mapping

Ψ : Ω(G, ·) −→ Θ(G, ·) defined as Ψ : (αR−1
g1
, αL−1

f1
, α) 7→ (f, g).

If A,B ∈ Ω(G, ·) then Ψ(A) = Ψ(B) if and only if (f1, g1) = (f2, g2) so, f1 = f2 and g1 = g2.

Since Ω(G, ·) 6 AUT (G, ·) by Theorem 3.7, then AB−1 = (αR−1
g1
, αL−1

f1
, α)(βR−1

g2
, βL−1

f2
, β)−1

= (αR−1
g1
Rg2β

−1, αL−1
f1
Lf2β

−1, αβ−1) = (αβ−1, αβ−1, αβ−1) ∈ AUT (G, ·) ⇔ αβ−1 ∈ SA(G, ·).

So,

A ∼ B ⇐⇒ αβ−1 ∈ SA(G, ·) and (f1, g1) = (f2, g2).

Whence, |[A]| = |SA(G, ·)|. But each A = (αR−1
g , αL−1

f , α) ∈ Ω(G, ·) is determined by some

f, g ∈ H . So since the set {[A] : A ∈ Ω(G, ·)} of all equivalence classes partitions Ω(G, ·) by

the fundamental theorem of equivalence relation,

|Ω(G, ·)| =
∑

f,g∈H

|[A]| =
∑

f,g∈H

|SA(G, ·)| = |Θ(G, ·)||SA(G, ·)|.

Therefore, |Ω(G, ·)| = |Θ(G, ·)||SA(G, ·)|. �

Theorem 3.12 Let (G, ·) be a finite Smarandache loop with a finite S-subgroup H. (G, ·) is

S-isomorphic to all its S-loop S-isotopes if and only if

|(H, ·)|2|SA(G, ·)| = |SBS(G, ·)||Nµ(G, ·)|.
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Proof As shown in [Corollary 5.2, [12]], an S-loop is S-isomorphic to all its S-loop S-isotopes

if and only if it is S-isomorphic to all its Smarandache f, g principal isotopes. This will happen

if and only if H ×H = Θ(G, ·) where Θ(G, ·) is as defined in Theorem 3.11.

Since Θ(G, ·) ⊆ H × H then it is easy to see that for a finite Smarandache loop with a

finite S-subgroup H , H ×H = Θ(G, ·) if and only if |H |2 = |Θ(G, ·)|. So the proof is complete

by Theorems 3.10 − 3.11. �

Corollary 3.3 Let (G, ·) be a finite Smarandache loop with a finite S-subgroup H. (G, ·) is a

GS-loop if and only if

|(H, ·)|2|SA(G, ·)| = |SBS(G, ·)||Nµ(G, ·)|.

Proof This follows by the definition of a GS-loop and Theorem 3.12. �

Lemma 3.1 Let (G, ·) be a finite GS-loop with a finite S-subgroup H and a middle nucleus

Nµ(G, ·).

|(H, ·)| = |Nµ(G, ·)| ⇐⇒ |(H, ·)| =
|SBS(G, ·)|

|SA(G, ·)|
.

Proof From Corollary 3.3,

|(H, ·)|2|SA(G, ·)| = |SBS(G, ·)||Nµ(G, ·)|.

(1)If |(H, ·)| = |Nµ(G, ·)|, then

|(H, ·)||SA(G, ·)| = |SBS(G, ·)| =⇒ |(H, ·)| =
|SBS(G, ·)|

|SA(G, ·)|
.

(2)If |(H, ·)| = |SBS(G,·)|
|SA(G,·)| , then |(H, ·)||SA(G, ·)| = |SBS(G, ·)|. Hence, multiplying both

sides by |(H, ·)|,

|(H, ·)|2|SA(G, ·)| = |SBS(G, ·)||(H, ·)|.

So that

|SBS(G, ·)||Nµ(G, ·)| = |SBS(G, ·)||(H, ·)| =⇒ |(H, ·)| = |Nµ(G, ·)|.

�

Corollary 3.4 Let (G, ·) be a finite GS-loop with a finite S-subgroup H. If |Nµ(G, ·)| 	 1,

then,

|(H, ·)| =
|SBS(G, ·)|

|SA(G, ·)|
. Hence, |(G, ·)| =

n|SBS(G, ·)|

|SA(G, ·)|
for some n 	 1.

Proof By hypothesis, {e} 6= H 6= G. In a loop, Nµ(G, ·) is a subgroup, hence if |Nµ(G, ·)| 	

1, then, we can take (H, ·) = Nµ(G, ·). So that |(H, ·)| = |Nµ(G, ·)|. Thus by Lemma 3.1,

|(H, ·)| = |SBS(G,·)|
|SA(G,·)| .
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As shown in [Section 1.3, [8]], a loop L obeys the Lagrange’s theorem relative to a subloop

H if and only if H(hx) = Hx for all x ∈ L and for all h ∈ H . This condition is obeyed by

Nµ(G, ·), hence

|(H, ·)|
∣∣∣|(G, ·)| =⇒

|SBS(G, ·)|

|SA(G, ·)|

∣∣∣∣∣|(G, ·)| =⇒

there exists n ∈ N such that

|(G, ·)| =
n|SBS(G, ·)|

|SA(G, ·)|
.

But if n = 1, then |(G, ·)| = |(H, ·)| =⇒ (G, ·) = (H, ·) hence (G, ·) is a group which is a

contradiction to the fact that (G, ·) is an S-loop. Therefore,

|(G, ·)| =
n|SBS(G, ·)|

|SA(G, ·)|

for some natural numbers n 	 1. �
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Abstract: In this paper, the nilpotent matrices over distributive lattices are discussed by

applying the combinatorial speculation ([9]). Some necessary and sufficient conditions for a

lattice matrix A to be a nilpotent matrix are given. Also, a necessary and sufficient condition

for an n × n nilpotent matrix with an arbitrary nilpotent index is obtained.

Key Words: distributive lattice, nilpotent matrix; nilpotent index; direct path.
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§1. Introduction

Since the concept of nilpotent lattice matrix was introduced by Give’on in [2], a number of

researchers have studied the topic of nilpotent lattice matrices(see e.g. [2-8]). In [7], Li gave

some sufficient and necessary conditions for a fuzzy matrix to be nilpotent and proved that an

n×n fuzzy matrixA is nilpotent if and only if the elements on the main diagonal of the kth power

Ak of A are 0 for each k in {1, 2, · · · , n}. Ren et al.(see [8]) obtained some characterizations of

nilpotent fuzzy matrices, and revealed that a fuzzy matrix A is nilpotent if and only if every

principal minor of A is 0. This result was generalized to the class of distributive lattices by

Tan(see [3,5]) and Zhang(see [4]). In particular, Tan gave a necessary and sufficient condition

for an n× n nilpotent matrix to have the nilpotent index n in [3].

In this paper, we discuss the topic of nilpotent lattices matrices. In Section 3, we will

give some characterizations of the nilpotent lattice matrices by applying the combinatorial

speculation ([9]). In Section 4, a necessary and sufficient condition for an n × n nilpotent

matrix with an arbitrary nilpotent index will be obtained, this result provide an answer to the

open problem posed by Tan in [3].

§2. Definitions and Lemmas

For convenience, we shall use N to denote the set {1, 2, · · · , n} and use |S| to denote the

cardinality of a set S.

Let (L, ≤, ∨, ∧) be a distributive lattice with a bottom element 0 and a top element 1

and Mn(L) be the set of all n× n matrices over L.

For A ∈Mn(L), the powers of A are defined as follows: A0 = In, A
r = Ar−1A, r = 1, 2, · · · .

The (i, j)-entry of Ar is denoted by ar
ij .

1Received February 26, 2008. Accepted April 2, 2008.
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A is called the zero matrix if for all i, j ∈ N, aij = 0 and denoted by 0. Let A ∈Mn(L). If

there exists k ≥ 1, Ak = 0, then A is called a nilpotent matrix. The least integer k satisfying

Ak = 0 is called the nilpotent index of A and denoted by h(A).

For A ∈Mn(L), the permanent perA of A is defined as follows:

perA =
∨

σ∈Pn

a1σ(1)a2σ(2) · · · anσ(n),

where Pn denotes the symmetric group of the set N .

For a matrix A ∈ Mn(L), we denote by A[i1, i2, · · · , ir|j1, j2, · · · , jr] the r × r submatrix

of A whose (u, v)-entry is equal to aiujv
(u, v ∈ R). The matrix A[i1, i2, · · · , ir|i1, i2, · · · , ir]

is called a principal submatrix of order r of A, and perA[i1, i2, · · · , ir|i1, i2, · · · , ir] is called a

principal minor of order r of A.

For a given matrix A ∈ Mn(L), the associated graph G(A) : G(A) = (V,H) of A is the

strongly complete directed weighted graph with the node set V = N , the arc set H = {(i, j) ∈

N ×N |aij 6= 0}.

For a given matrix A ∈ Mn(L), a sequence of nodes p = (i0, i1, · · · , ir) of the graph

G(A) = (V,H) is called a path if (ik−1, ik) ∈ H for all k = 1, 2, · · · , r− 1. These arcs, together

with the nodes ik for k = 0, 1, · · · , r, are said to be on the path p. The length of a path, denoted

by l(p), is the number of arcs on it, in the former case, l(p) = r. If all nodes on a path p are

pairwise distinct, then p is called a chain. A path p = (i0, i1, · · · , ir−1, i0) with i0, i1, · · · , ir−1

are pairwise distinct is called a cycle. For a given matrix A ∈Mn(L), we define:

C(A) = {p|p is a cycle of G(A)}.

And for any r ≤ n, we define:

Sr(A) = {p|p is a chain of G(A) and l(p) = r}.

For any path p = (i0, i1, · · · , ir) of G(A), the weight of p with respect to A, will be denoted by

WA(p), is defined as

WA(p) = ai0i1 ∧ ai1i2 ∧ · · · ∧ air−1ir
= ai0i1ai1i2 · · · air−1ir

.

The following lemmas are used.

Lemma 2.1([2]) Let A ∈Mn(L). Then A is nilpotent if and only if An = 0.

Lemma 2.2([4]) Let A = (aij) ∈Mn(L), Am = (am
ij ). Then

am
ij =

∨

1≤i1,i2,··· ,im−1≤n

aii1ai1i2 · · · aim−1j .

Lemma 2.3([4],[5]) Let A ∈Mn(L). Then A is a nilpotent matrix if and only if

perA[i1, i2, · · · , ik|i1, i2, · · · , ik] = 0,
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for all {i1, i2, · · · , ik} ⊂ N , k ∈ N .

Lemma 2.4([4]) Let A be a nilpotent matrix over L. Then

ar1r2ar2r3 · · · arm−1rm
armr1 = 0,

for all {r1, r2, · · · , rm} ⊆ N .

§3. Characterizations of the Nilpotent Lattice Matrices

In this section, we will give some new necessary and sufficient conditions for a lattice matrix to

be a nilpotent matrix.

Theorem 3.1 Let A ∈ Mn(L). Then A is a nilpotent matrix if and only if for all p ∈ C(A),

WA(p) = 0.

Proof (=⇒) By Lemma 2.4, if A is a nilpotent matrix, then for all p = (i0, i1, · · · , ir−1, i0)

∈ C(A), WA(p) = ai0i1ai1i2 · · · air−1i0 = 0.

(⇐=) If for all p ∈ C(A), WA(p) = 0, we prove An = 0. By Lemma 2.2, for any typ-

ical term aii1ai1i2 · · · ain−1j of an
ij , there must be repetitions amongst the n + 1 suffixes i =

i0, i1, · · · , in−1, j = in. Suppose that is(1 ≤ s ≤ n) is the first one which is ∈ {i0, i1, · · · , is−1},

then there exists it(0 ≤ t ≤ s− 1), such that it = is, so, (it, it+1, · · · , is) ∈ C(A). Hence

aii1ai1i2 · · ·ain−1j ≤ aitit+1 · · · ais−1is
= 0,

and

an
ij =

∨

1≤i1,i2,··· ,in−1≤n

aii1ai1i2 · · · ain−1j = 0, ∀i, j ∈ N.

That is to say, An = 0. By Lemma 2.1, A is nilpotent. �

Example 3.1 Consider the lattice L whose diagram is displayed in Fig.1.

0

a

b
c

1

d

Fig.1

Obviously, L is a distributive lattice. Now let

A =




0 a 0

c 0 0

0 1 0


 ∈M3(L).
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then C(A) = {(1, 2, 1), (2, 1, 2)}, and for any element p of C(A), WA(p) = a∧ c = 0, hence A is

a nilpotent matrix. In fact, A3 = 0.

Theorem 3.2 Let A ∈ Mn(L). Then A is a nilpotent matrix if and only if all principal

submatrices of A are nilpotent.

Proof. (⇐=) Since matrix A is a principal submatrix of matrix A, A is a nilpotent matrix.

(=⇒) Let B = (bij) = A[i1, i2, · · · , it|i1, i2, · · · , it] is an arbitrary principal submatrix of A

and let p1 = (k0, k1, · · · , kr−1, k0) ∈ C(B). Then

WB(p1) = bk0k1bk1k2 · · · bkr−1k0 = aik0
ik1
aik1

ik2
· · · aikr−1

ik0
.

Obviously, path p = (ik0 , ik1 , · · · , ikr−1 , ik0) is a cycle of G(A), so, by Theorem 3.1, we have

WA(p) = aik0
ik1
aik1

ik2
· · ·aikr−1

ik0
= 0.

Hence

WB(p1) = WA(p) = 0.

Applying Theorem 3.1, A[i1, i2, · · · , it|i1, i2, · · · , it] is a nilpotent matrix. This completes

the proof. �

Let

A =


 A1 B

0 A2


 ,

where A1 be a m ×m matrix and A2 be a n × n matrix over distributive lattice L. Then for

any p ∈ C(A), p ∈ C(A1) or p ∈ C(A2). Hence we have the following corollary.

Corollary 3.1 Let

A =


 A1 B

0 A2


 ,

where A1 be a m×m matrix and A2 be a n× n matrix over distributive lattice L. Then A is a

nilpotent matrix if and only if A1 and A2 are nilpotent matrices.

Corollary 3.2 Let L be a distributive lattice,

A =




A1 ∗ · · · ∗

0 A2 · · · ∗
...

...
. . .

...

0 0 · · · Ak




∈Mn(L),

where Ai ∈ Mn(i)(L), i = 1, 2, · · · , k, and n = n(1) + n(2) + · · · + n(k). Then A is a nilpotent

matrix if and only if A1, A2, · · · , Ak are all nilpotent matrices.
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§4. A Characterization of Lattice Matrices with an Arbitrary Nilpotent Index

If A is a zero matrix, then h(A) = 1; if A is a nonzero nilpotent matrix, then h(A) ≥ 2. In the

following discussion, we always suppose that A is a nonzero matrix.

If p = (i0, i1, · · · , ir−1) ∈ Sr−1(A) and WA(p) 6= 0, then ai0i1ai1i2 · · · air−2ir−1 = WA(p) is

a term of ar−1
i0ir−1

, so, Ar−1 6= 0. Hence, we have

Lemma 4.1 Let A ∈ Mn(L) be a nilpotent matrix. If there exists p ∈ Sr−1(A), such that

WA(p) 6= 0, then h(A) ≥ r.

Example 3.1(continued). Since p = (3, 2, 1) ∈ S2(A) and WA(p) = 1 ∧ c = c 6= 0, we have

h(A) ≥ 3, i.e., h(A) = 3.

Lemma 4.2 Let A ∈Mn(L) be a nilpotent matrix. If Sr(A) = ∅ or for every p ∈ Sr(A),WA(p) =

0, then h(A) ≤ r.

Proof Suppose that aii1ai1i2 · · · air−1j is a typical term of ar
ij . If |{i, i1, · · · , ir−1, j}| < r+1,

let is(1 ≤ s ≤ r, i = i0, j = ir) be the first one which is ∈ {i, i1, · · · , is−1}, then there exists

it(0 ≤ t ≤ s− 1), such that is = it, so, (it, it+1, · · · , is) ∈ C(A), therefore, we have

aii1ai1i2 · · · air−1j ≤ aitit+1 · · ·ais−1is
= 0.

If |{i, i1, · · · , ir−1, j}| = r + 1, then (i, i1, · · · , ir−1, j) ∈ Sr(A), so

WA(p) = aii1ai1i2 · · · air−1j = 0.

Thus, for any i, j ∈ N and in any cases, we can obtain:

aii1ai1i2 · · ·air−1j = 0.

Therefore

ar
ij =

∨

1≤i1,i2,··· ,ir−1≤n

aii1ai1i2 · · · air−1j = 0, ∀i, j ∈ N.

This means that Ar = 0, i.e., h(A) ≤ r. �

Now, a characterization on lattice matrices with an arbitrary nilpotent index can be given

in the following.

Theorem 4.1 Let A ∈ Mn(L) be a nilpotent matrix. Then h(A) = r(r ∈ N) if and only if

there exists p ∈ Sr−1(A),WA(p) 6= 0 and for all p ∈ Sr(A),WA(p) = 0.

Proof (⇐=) If A is a nilpotent matrix, by Lemma 4.1, h(A) ≥ r, and by Lemma 4.2,

h(A) ≤ r, thus h(A) = r.

(=⇒)Since h(A) = r implies Ar−1 6= 0, there exist i0, i1, · · · , ir−2, j0 ∈ N , such that

ai0i1ai1i2 · · · air−2j0 6= 0, by Lemma 2.4, this means that i0, i1, · · · , ir−2, j0 are pairwise distinct,

i.e., there exists p = (i0, i1, · · · , ir−2, j0) ∈ Sr−1(A),WA(p) = ai0i1ai1i2 · · ·air−2j0 6= 0. On

the other hand, if h(A) = r, then for all p ∈ Sr(A),WA(p) = 0(otherwise, if there exist

p ∈ Sr(A),WA(p) 6= 0, by lemma 4.1, h(A) ≥ r + 1, this is a contradiction). �
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Abstract: In this paper, we study the join of graphs, and give the values of crossing

numbers for join products Gi ∨ Pn for some graphs Gi(i = 2, 5, 6, 9) of order five, which is

related with parallel bundles on planar map geometries ([10]), a kind of planar Smarandache

geometries.
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§1. Introduction

A drawing D of a graph G on a surface S consists of an immersion of G in S such that no edge

has a vertex as an interior point and no point is an interior point of three edges. We say a

drawing of G is a good drawing if the following conditions holds.

(i) no edge has a self-intersection;

(ii) no two adjacent edges intersect;

(iii) no two edges intersect each other more than once;

(iv) each intersection of edges is a crossing rather than tangential.

Let G be a simple graph with vertex set V and edge set E. The crossing number cr(G) of

a graph G is the smallest number of pairs of nonadjacent edges that intersect in a drawing of G

in the plane. An optimal drawing of a graph G is a drawing whose number of crossings equals

cr(G). Let A and B be disjoint edge subsets of G. We denote by crD(A,B) the number of

crossings between edges of A and B, and by crD(A) the number of crossings whose two crossed

edges are both in A. Let H be a subgraph of G, the restricted drawing D|H is said to be a

subdrawing of H . As for more on the theory of crossing numbers, we refer readers to [1] and

[2]. In this paper, we shall often use the term region also in non-planar drawings. In this case,

crossing are considered to be vertices of the map.

Let G and H be two disjoint graphs. The union of G and H , denoted by G+H , has vertex

set V (G)∪V (H) and edge set E(G)∪E(H). And the join of G and H is obtained by adjoining

every vertex of G to every vertex of H in G+H which is denoted by G ∨H (see [3]).

1Received March 6, 2008. Accepted April 6, 2008.
2This project is supported by National Natural Science Foundation of China (10771062) and New Century

Excellent Talents in University (NCET-07-0276).
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Let Km,n denote the complete bipartite graph on sets of m and n vertices, that is, the

graph whose edges join exactly those pairs of vertices which belong one to each set. Let Pn be

the path with n vertices.

From the definitions, following results are easy.

Proposition 1.1 Let G be a graph homeomorphic to H (for the definition of homeomorphic,

readers are referred to [2]), then cr(G) = cr(H).

Proposition 1.2 If G is a subgraph of H, then cr(G) ≤ cr(H).

Proposition 1.3 If D is a good drawing of a graph G, A, B and C are three mutually disjoint

edge subsets of G, then we have

(1) crD(A ∪B) = crD(A) + crD(A,B) + crD(B);

(2) crD(A ∪B,C) = crD(A,C) + crD(B,C).

The investigation on the crossing number of graphs is a classical and however very difficult

problem. The exact value of the crossing number is known only for few specific families of

graphs. The Cartesian product is one of few graph classes, for which exact crossing number

results are known. It has long conjectured in [4] that the crossing number cr(Km,n) of the com-

plete bipartite graph Km,n equals the Zarankiewicz’s Number Z(m,n) = ⌊m
2 ⌋⌊

m−1
2 ⌋⌊n

2 ⌋⌊
n−1

2 ⌋.

(For any real x,⌊x⌋ denotes the maximum integer not greater than x). This conjecture has been

verified by Kleitman for min{m,n} ≤ 6, see [5]. The table in [6] shows the summary of known

crossing numbers for Cartesian products of path, cycle and star with connected graphs of order

five.

Kulli and Muddebihal [7] gave the Characterization of all pairs of graphs which join is

planar graph. In [8] Bogdan Oporowski proved cr(C3 ∨ C5) = 6. In [9] Ling Tang et al. gave

the crossing number of the join of Cm and Pn. It thus seems natural to inquire about crossing

numbers of join product of graphs. In this paper, we give exact values of crossing numbers for

join products Gi ∨Pn for some graphs Gi(i = 2, 5, 6, 9)see Fig.1 of order five in table [6], which

is related with parallel bundles on planar map geometries ([10]), a kind of planar Smarandache

geometries.

G2 = S4 G5 G6 G9

Fig.1

§2. The Crossing Number of G2 ∨ Pn, G6 ∨ Pn and G9 ∨ Pn

One of good drawings for graphs G2 ∨ Pn, G6 ∨ Pn and G9 ∨ Pn are shown in Fig.2-Fig.4

following.
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· · · · · ·

Pn

A good drawing of G2 ∨ Pn

Fig.2

· · · · · ·

Pn

A good drawing of G6 ∨ Pn

Fig.3

· · · · · ·

Pn

A good drawing of G9 ∨ Pn

Fig.4

Theorem 2.1 cr(Gi ∨ Pn) = n(n− 1)(i = 2, 6, 9), for n ≥ 1.

Proof The drawing in Fig.2, Fig.3, Fig.4 following shows that cr(Gi ∨ Pn) ≤ Z(5, n) +

2⌊n
2 ⌋ = 4⌊n

2 ⌋⌊
n−1

2 ⌋ + 2⌊n
2 ⌋ = n(n − 1)(i = 2, 6, 9) (see Fig.2). As Gi contains a subgraph

homeomorphic to K1,4,n, whose crossing number is n(n−1) (see [11]). So we have cr(Gi∨Pn) ≥

cr(K1,4,n) = n(n− 1)(i = 2, 6, 9). This complete the proof. �

§3. The Crossing Number of G5 ∨ Pn

Firstly, let us denote byHn the graph obtained by adding six edges to the graphK5,n, containing
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n vertices of degree 5 and two vertices of degree n+1, one vertices of degree n+2, two vertices

of degree n+ 3, and 5n+ 6 edges (see Fig.5). Consider now the graph G5 in Fig.1. It is easy

to see that Hn = G5 ∪K5,n, where the five vertices of degree n in K5,n, and the vertices of G5

are the same. Let, for i = 1, 2, · · · , n, T i denote the subgraph of K5,n which consists of the five

edges incident with a vertex of degree five in K5,n (see Fig.6). Thus, we have

Hn = G5 ∪K5,n = G5 ∪ (
n⋃

i=1

T i). (1)

· · ·· · ·

Hn

T i T i T j

Fig.5 Fig.6 Fig.7

ti

G5

a

b

c d

e

(a) (b)

Lemma 3.1 Let φ be a good drawing of Hn, if there exist 1 6 i 6= j 6 n, such that

crφ(T i, T j) = 0, then

crφ(G5, T
i ∪ T j) > 1.

Proof Let H be the subgraph of Hn induced by the edges of T i∪T j . Since crφ(T i, T j) = 0,

and in good drawing two edges incident with the same vertex cannot cross, the subdrawing of

T i ∪ T j induced by φ induces the map in the plane without crossing, as shown in Fig.7(a).

Let a, b, c, d, e denote the five vertices of the subgraph G5 (see Fig.7(b)). Clearly, for any

x ∈ V (G5), there are exactly two other vertices of G5 on the boundary of common region with

x. By dG5(b) = 3, at the edges incident with b, there are at least one crossing with edges of H .

Similarly, at the edges incident with d, there are at least one crossing with edges of H . If the

two crossings are different, this completes the proof, otherwise, the same crossing can find at

edge bd, there are also at least one crossing with edges of H . The proof also holds. Therefore,

we complete the proof. �

Theorem 3.2 cr(Hn) = Z(5, n) + ⌊n
2 ⌋, n ≥ 1.

Proof The drawing in Fig.5 shows that

cr(Hn) 6 cr(K5,n) + ⌊
n

2
⌋ = Z(5, n) + ⌊

n

2
⌋.

Thus, in order to prove theorem, we need only to prove that crφ′ (Hn) > Z(5, n) + ⌊n
2 ⌋ for any

drawing φ
′

of Hn. We prove the reverse inequality by induction on n. The case n = 1 is trivial,

and the inequality also holds when n = 2 since H2 contains a subgraph homeomorphic to K3,3,

whose crossing number is 1. Now suppose that for n > 3,

cr(Hn−2) > Z(5, n− 2) + ⌊
n− 2

2
⌋ (2)
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and consider such a drawing φ of Hn that

crφ(Hn) < Z(5, n) + ⌊
n

2
⌋ (3)

Our next analysis depends on whether or not there are different subgraph T i and T j that do

not cross each other in φ.

Case 1 Suppose that crφ(Ti, Tj) ≥ 1 for any two different subgraphs T i and T j, 1 ≤ i 6= j ≤ n.

By Proposition 1.3, using (1), we have

crφ(Hn) = crφ(K5,n) + crφ(G5) + crφ(K5,n, G5) ≥ Z(5, n) + crφ(G5) +

n∑

i=1

crφ(G5, T
i)

This, together with our assumption (3), implies that

crφ(G5) +

n∑

i=1

crφ(G5, T
i) < ⌊

n

2
⌋

We can see that in φ there are no more than ⌊n
2 ⌋ subgraphs T i which cross G5, and at least have

⌈n
2 ⌉ subgraphs T i which does not cross G5. Now, we consider T i, which satisfy crφ(G5, T

i) = 0.

Without loss of generality, we suppose crφ(G5, T
n) = 0 and let F be the subgraph G5 ∪ T n of

the graph Hn.

(1) (2) (3) (4) (5)

Fig.8

Consider the subdrawings φ∗ and φ∗∗ of G5 and F , respectively, induced by φ. Since

crφ(G5, T
n) = 0, the subdrawing φ∗ divides the plane in such a way that all vertices are on

the boundary of one region. It is easy to verify that all possibilities of the subdrawing φ∗ are

shown in Fig.8. Thus, all possibilities of the subdrawing φ∗∗ are shown in Fig.9.

T n

(1) (2) (3)

ω ε

T n T n
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Fig.9

(4) (5) (6)

T n

T n T n

(a) The subdrawing φ∗∗ of 〈G5∪T n〉 is isomorphic to Figure 9(1). When the vertex ti(1 ≤

i ≤ n−1) locates in the region labeled ω, we have crφ(T i, G5∪T n) ≥ 1, using crφ(T i, T j) ≥ 1, we

have crφ(T i, G5∪T
n) ≥ 2; when the vertex ti locates in the other regions, we have crφ(T i, G5∪

T n) ≥ 3.

We suppose there are x vertices ti locates in the region labeled ω, and the other n− 1− x

vertices locates in the other regions. It has been proved that x is no more than ⌊n
2 ⌋, so by

Proposition 1.3, we have

crφ(Hn) = crφ(G5 ∪ T
n ∪

n−1⋃

i=1

T i)

= crφ(G5 ∪ T
n,

n−1⋃

i=1

T i) + crφ(G5 ∪ T
n) + crφ(

n−1⋃

i=1

T i)

≥ Z(5, n− 1) + 2x+ 3(n− 1 − x)

≥ 4⌊
n

2
⌋⌊
n− 1

2
⌋ + 3n− 3 − ⌊

n

2
⌋

≥ Z(5, n) + ⌊
n

2
⌋

(b) The subdrawing φ∗∗ of 〈G5∪T n〉 is isomorphic to Figure 9(2). When the vertex ti(1 ≤

i ≤ n − 1) locates in the region labeled ε, we have crφ(T i, G5 ∪ T n) ≥ 2; when the vertex ti

locates in the other regions, we have crφ(T i, G5 ∪ T n) ≥ 3. Using the similar way as Fig.9(1),

we can have crφ(Hn) ≥ Z(5, n) + ⌊n
2 ⌋.

(c) The subdrawing φ∗∗ of 〈G5 ∪T n〉 is isomorphic to Figure 9(3)-9(6). No matter which

region ti locates in, we have crφ(T i, G5 ∪ T
n) ≥ 3. Then by Proposition 1.3, we have

crφ(Hn) = crφ(G5 ∪ T
n ∪

n−1⋃

i=1

T i)

= crφ(G5 ∪ T
n,

n−1⋃

i=1

T i) + crφ(G5 ∪ T
n) + crφ(

n−1⋃

i=1

T i)

≥ Z(5, n− 1) + 3(n− 1)

≥ Z(5, n) + ⌊
n

2
⌋

This contradicts (3).
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Case 2 Suppose that there are at least two different subgraphs T i and T j that do not cross

each other in φ. Without loss of generality, we may assume that crφ(T n−1, T n) = 0. By Lemma

3.1, crφ(G5, T
n−1∪T n) > 1, as cr(K3,5) = 4, for all i = 1, 2, · · · , n−2, crφ(T i, T n−1∪T n) > 4.

This implies that

crφ(Hn−2, T
n−1 ∪ T n) ≥ 4(n− 2) + 1 = 4n− 7 (4)

As Hn = Hn−2 ∪ (T n−1 ∪ T n), using (1),(2) and (4), we have

crφ(Hn) = crφ(Hn−2) + crφ(T n−1 ∪ T n) + crφ(Hn−2, T
n−1 ∪ T n)

≥ 4⌊
n− 2

2
⌋⌊
n− 3

2
⌋ + ⌊

n− 2

2
⌋ + 4n− 7

= Z(5, n) + ⌊
n

2
⌋

This contradiction to (3). So the conclusion is held.

This completes the proof of Theorem 3.2. �

· · ·· · ·

Pn

A good drawing of G5 ∨ Pn

Fig.10

Theorem 3.3 cr(G5 ∨ Pn) = Z(5, n) + ⌊n
2 ⌋, for n ≥ 1.

Proof The drawing in Fig.10 shows that cr(G5∨Pn) ≤ Z(5, n)+⌊n
2 ⌋. Contrast Fig.10 with

Fig.5, it is easy to check that G5∨Pn has a subgraph which is homeomorphic toHn, whose cross-

ing number is Z(5, n)+⌊n
2 ⌋ in Theorem 3.2. So we have cr(G5∨Pn) ≥ cr(Hn) = Z(5, n)+⌊n

2 ⌋.

This completes the proof of Theorem 3.3. �
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Abstract: In this paper, we introduce 3-dimensional L-summing method by combinatorial

speculation ([8]), which is a more complicated version of the usual technique of “changing

the order of summation”. Applying this method on some special arrays we obtain identities

concerning some special functions, and we get more identities by using a Maple program for

this method. Finally, we introduce higher dimensional versions of L-summing method.

Key Words: L-summing method, identity, special function.

AMS(2000): 65B10, 33-XX

§1. Introduction

An identity is a mathematical sentence that has “=” in its middle; Zeilberger [7]. An ancient

and well-known proof for the identity

n∑

k=1

(2k − 1) = n2

considers an n× n array of bullets (the total number of which is abviously n2) as the following

figure

Fig.1

and divides it into n L-shaped zones containing 1, 3, · · · , 2n− 1 bullets. In Hassani [3] we have

generalized this process to all arrays of numbers with two dimension; to explain briefly, we

1Received March 16, 2008. Accepted April 21, 2008.
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consider the following n× n multiplication table

Fig.2

and we set Σ(n) for the sum of all numbers in it. By summing line by line and using the identity

1 + 2 + · · · + n = n(n+ 1)/2 we have Σ(n) = (n(n+ 1)/2)2. On the other hand, letting Lk be

the sum of numbers in the rotated L in above table (right part of Figure 2), we have

Lk = k + 2k + · · · + k2 + · · · + 2k + k = 2k(1 + 2 + · · · + k) − k2 = k3,

which gives Σ(n) =
∑n

k=1 Lk =
∑n

k=1 k
3, and therefore

∑n
k=1 k

3 = (n(n + 1)/2)2. We call

Lk, L-summing element and above process is 2-dimensional L-summing method (applied on the

array Aab = ab). In general, this method is

∑
(L− Summing Elements) = Σ. (1)

More precisely, the L-summing method of elements of n× n array Aab with 1 ≤ a, b ≤ n, is the

following rearrangement

n∑

k=1

{ k∑

a=1

Aak +

k∑

b=1

Akb −Akk

}
=

∑

1≤a,b≤n

Aab.

This method allows us to obtain easily some classical algebraic identities and also, with help

of Maple, some new compact formulas for sums related with the Riemann zeta function, the

gamma function and the digamma function, Gilewicz [2] and Hassani [3].

In this paper we introduce a 3-dimensional version of L-summing method for n×n×n arrays

and we apply it on some special arrays. Also, we give a Maple program for this method and using

it we generate and then prove more identities. Finally, we introduce a further generalization of L-

summing method in higher dimension spaces. All of these are applications of the combinatorial

speculation. The readers can see in [8] for details.

§2. L-Summing Method in R3

Consider a three dimensional array Aabc with 1 ≤ a, b, c ≤ n and n is a positive integer. We

find an explicit version of the general formulation (1) for this array. The sum of all entries

is Σ(n) =
∑

1≤a,b,c≤nAabc. The L-summing elements in this array have the form pictured in

Fig.3.
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Fig.3

So, we have Lk = Σ2 − Σ1 + Σ0, with

Σ2 =

k∑

b,c=1

Akbc +

k∑

a,c=1

Aakc +

k∑

a,b=1

Aabk,

Σ1 =

k∑

a=1

Aakk +

k∑

b=1

Akbk +

k∑

c=1

Akkc,

Σ0 = Akkk.

Note that Σ2 is the sum of entries in three faces, Σ1 is the sum of entries in three intersected

edges and Σ0 is the end point of all faces and edges. Therefore, L-summing method in R3 takes

the following formulation

n∑

k=1

{Σ2 − Σ1 + Σ0} = Σ(n). (2)

Above equation and its generalization in the last section, rely on the so-called “Inclusion -

Exclusion principal”.

If the array Aabc is symmetric, that is for each permutation σ ∈ S3 it satisfies Aabc =

Aσaσbσc
, then L-summing elements in R3 take the following easier form

Lk = 3

k∑

b,c=1

Akbc − 3

k∑

a=1

Aakk +Akkk. (3)

As examples, we apply his method on two special symmetric arrays, related by the Riemann

zeta function and digamma function.

The Riemann zeta function Suppose s ∈ C and let Aabc = (abc)−s. Setting ζn(s) =∑n
k=1 k

−s, it is clear that

Σ(n) =
∑

1≤a,b,c≤n

(abc)−s = ζ3
n(s).

Since this array is symmetric, considering (3), we have

Lk = 3
ζ2
k(s)

ks
− 3

ζk(s)

k2s
+

1

k3s
.
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Using (2) and an easy simplification, yield that

n∑

k=1

ζ2
k(s)

ks
−
ζk(s)

k2s
=
ζ3
n(s) − ζn(3s)

3
. (4)

Note that if ℜ(s) > 1, then limn→∞ ζn(s) = ζ(s), where ζ(s) =
∑∞

k=1 n
−s is the well-known

Riemann zeta function defined for complex values of s with ℜ(s) > 1 and admits a meromorphic

continuation to the whole complex plan, Ivić [5]. So, for ℜ(s) > 1 we have

∞∑

k=1

ζ2
k(s)

ks
−
ζk(s)

k2s
=
ζ3(s) − ζ(3s)

3
,

which also is true for other values of s by meromorphic continuation, except s = 1 and s = 1
3 .

Digamma function Setting s = 1 in (??) (or equivalently taking Aabc = 1
abc

) and considering

ζn(1) = Hn =
∑n

k=1
1
k
, we obtain

n∑

k=1

{H2
k

k
−
Hk

k2

}
=
H3

n − ζn(3)

3
.

We can state this identity in terms of digamma function Ψ(x) = d
dx

ln Γ(x), where Γ(x) =∫∞

0
e−ttx−1dt is the well-known gamma function. To do this, we use

Ψ(n+ 1) + γ = Hn, (5)

in which γ = 0.57721 . . . is the Euler constant; Abramowitz and Stegun [1]. Therefore, we

obtain
n∑

k=1

{
(Ψ(k + 1) + γ)2

k
−

Ψ(k + 1) + γ

k2

}
=

(Ψ(n+ 1) + γ)3 − ζn(3)

3
. (6)

Letting

§(m,n) =

n∑

k=1

Ψ(k)m

k
,

the following identity in Hassani [3] is a result of 2-dimensional L-summing method

§(1, n) =
(Ψ(n+ 1) + γ)2 + Ψ(1, n+ 1)

2
−
π2

12
− Ψ(n+ 1)γ − γ2, (7)

where Ψ(m,x) = dm

dxm Ψ(x) is called mth polygamma function; Abramowitz and Stegun [1], and

we have

ζn(s) =
(−1)s−1

(s− 1)!
Ψ(s− 1, n+ 1) + ζ(s) (s ∈ Z, s ≥ 2). (8)

Using (8) in (4) we can get a generalization of (6), however (6) itself is the key of obtaining an

analogue of (7) in R3.

Theorem 1 For every integer n ≥ 1, we have

n∑

k=1

{
Ψ(k)2

k
+

Ψ(k)

k2

}
=

(Ψ(n+ 1) + γ)3

3
−
ζn(3)

3
+ (γ − 2)

π2

6

− (γ − 2)Ψ(1, n+ 1) − γ2Ψ(n+ 1) − γ3 − 2§(1, n).
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Proof We begin from the left hand side of the identity (6), then we simplify it by using the

relations Ψ(n+ 1) = 1
n

+ Ψ(n), (5) and the relation (8) with s = 2. This completes the proof.�

Corollary 2 For every integer n ≥ 1, we have

§(2, n) =
(Ψ(n+ 1) + γ)3

3
−
ζn(3)

3
+ (γ − 2)

π2

6
− (γ − 2)Ψ(1, n+ 1)

− γ2Ψ(n+ 1) − γ3 − 2§(1, n) −
n∑

k=1

Ψ(k)

k2
.

In the above corollary, the main term in the right hand side is Ψ(n+1)3

3 . Also, computations

show that
∑∞

k=1
Ψ(k)
k2 = 0.252 . . . .

Note and Problem 3 Since Ψ(x) ∼ lnx, we obtain

§(m,n) ∼
n∑

k=1

lnm k

k
∼

∫ n

1

lnm k

k
dk =

lnm+1 n

m+ 1
∼

Ψ(n+ 1)m+1

m+ 1
.

It is interesting to find an explicit recurrence relation for the function §(m,n). One can attack

this problem by considering generalization of L-summing method in higher dimension spaces,

considered in the last section of this paper.

§3. An Identity - Generator Machine

Based on the formulation of 3-dimensional L-summing method, we can write a Maple program

(see Appendix 1), with input a 3-dimensional array Aabc, and out put an identity, which we

show it by LSMI < Aabc >. We introduce some examples; the first one is LSMI < ln(a) >, which

is
n∑

k=1

{
k2 ln k + 2 k ln Γ(k + 1) − 2 k ln k − ln Γ(k + 1) + ln k

}
= n2 ln Γ(n+ 1).

To prove this, we consider relations (2) and Γ(n+1) = n!, and we obtain Σ(n) = n2
∑n

a=1 ln a =

n2 ln Γ(n+ 1). Also, Σ2 = k2 ln k + 2k ln Γ(k + 1), Σ1 = ln Γ(k + 1) + 2k ln k and Σ0 = ln k.

Breaking up the statement under the sum obtained by LSMI < ln(a) > into the sum of

(k2 − k) ln k + 2k ln Γ(k + 1) and ln Γ (k + 1) + k ln k − ln k, and considering Proposition 6 of

Hassani [3], which states

n∑

k=1

{ln Γ (k + 1) + k ln k − ln k} = n ln Γ(n+ 1),

led us to the following result

n∑

k=1

{
(k2 − k) ln k + 2k ln Γ(k + 1)

}
= (n2 + n) ln Γ(n+ 1). (9)

This is an important example, because examining Maple code of expressed sum in (9), we see

that Maple has no comment for computing it. But, it is obtained by Maple itself and L-summing

method. There is another gap in Maple recognized by this method (see Appendix 2).
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As we see, Maple program of 3-dimension L-summing method is a machine of generating

identities. Many of them are similar and are not interesting, but we can choose some interesting

ones. Another easy example is LSMI < tan(a) >, which (after simplification) is

n∑

k=1

{
(k − 1)2 tan k + (2k − 1)T(k)

}
= n2T(n),

where T(n) =
∑n

k=1 tan k. Our last example is an identity concerning hypergeometric functions,

denoted in Maple by

hypergeom([a1 a2 · · · ap],[b1 b2 · · · bq],x).

Standard notation and definition; Petkovs̆ek, Wilf and Zeilberger [6], is as follows

pFq


 a1 a2 · · · ap

b1 b2 · · · bq
;x


 =

∑

k≥0

tkx
k,

where
tk+1

tk
=

(k + a1)(k + a2) · · · (k + ap)

(k + b1)(k + b2) · · · (k + bq)(k + 1)
x.

Now, setting

H(α, β) = 2F0


 α β

−
; 1


 ,

after simplification of LSMI < a! > we obtain

n∑

k=1

{
(k − 1)2k! + (2k − 1)(k + 1!)H(1, k + 2)

}
= n2(n+ 1)!H(1, n+ 2).

To prove this, considering definition of hypergeometric functions we have H(1, n + 1) = (n +

1)H(1, n + 2), which implies
∑n

a=1 a! = H(1, 2) − (n + 1)!H(1, n + 2) = P(n), say. This gives

Σ(n) = n2P(n) and in similar way it yields that Lk = (k−1)2k!+(2k−1) ((k + 1!)H(1, k + 2) − H(1, 2)).

Above examples are special cases of the array Aabc = f(a), for a given function f . In this

general case, L-summing method takes the following formulation

n∑

k=1

{
(2k − 1)F(k) + (k − 1)2f(k)

}
= n2F(n),

where F(n) =
∑n

a=1 f(a).

§4. Futher Generalizations and Comments

L-summing method in Rt Consider a t−dimensional array Ax1x2···xt
and let Σ(n) =∑

Ax1x2···xt
with 1 ≤ x1, x2, · · · , xt ≤ n. L-summing method in Rt is the rearrangement

Σ(n) =
∑
Lk, where

Lk =
t∑

m=1

{
(−1)m−1Σt−m

}
,
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with

Σt−m =
∑

1≤i1<i2<···<im≤t

{∑′
Axi1i2···im

}
.

The inner sum
∑′

is over xj ∈ {xi1 , · · · , xim
}C = {x1, x2, · · · , xt} − {xi1 , · · · , xim

} with 1 ≤

xj ≤ k, and the index xi1i2···im
denotes x1x2 · · ·xt with xi1 = xi2 = · · · = xim

= k. One

can apply this generalized version to get more general form of relations obtained in previous

sections. For example, considering the array Ax1x2···xt
= (x1x2 · · ·xt)

−s with s ∈ C, yields

n∑

k=1

{
t−1∑

m=1

(−1)m−1

(
t

m

)
k−msζk(s)t−m

}
= ζn(s)t + (−1)tζn(ts).

L-summing method on manifolds. As we told at the beginning, the base of the L-summing

method is multiplication table. Above generalization of L-summing method in Rt is based on

the generalized multiplication tables; see Hassani [4]. But, Rt is a very special t-dimensional

manifold, and if we replace it by Γ, an l−dimensional manifold with l ≤ t, then we can define

generalized multiplication table on Γ by considering lattice points on it (which of course isn’t

easy problem). Let

LΓ(n) =
{
(a1, a2, · · · , at) ∈ Γ ∩ Nt : 1 ≤ a1, a2, · · · , at ≤ n

}
,

and f : Rk −→ C is a function. If OΓ is a collection of k − 1 dimension orthogonal manifolds,

in which LΓ(n) = ∪Λ∈OΓLΛ(n) and LΛi
(n) ∩ LΛj

(n) = φ for distinct Λi,Λj ∈ OΓ, then we can

formulate L-summing method as follows
∑

X∈LΓ(n)

f(X) =
∑

Λ∈OΓ

{ ∑

X∈LΛ(n)

f(X)
}
.

Here L-summing elements are
∑

X∈LΛ(n) f(X). This may ends to some interesting identities,

provided one applies it on some suitable manifolds.

Stronger form of L-summing method. One can state the relation
∑
Lk = Σ(n) in the

following stronger form

Ln = Σ(n) − Σ(n− 1).

Specially, this will be useful for those arrays with Σ(n) computable explicitly and Lk maybe

note. For example, considering the array Ax1x2···xt
= (x1x2 · · ·xt)

−s we obtain

t−1∑

m=1

(−1)m−1

(
t

m

)
n−msζn(s)t−m = ζn(s)t + (−1)tζn(ts) − ζn−1(s)

t − (−1)tζn−1(ts).

Acknowledgment. Thanks to Z. Jafari for introducing me some comments.
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Appendix 1. Maple program of 3-dimension L−summing method for the array Aabc = 1
abc

restart:

A[abc]:=1/(a*b*c);

S21:=sum(sum(eval(A[abc],a=k),b=1..k),c=1..k):

S22:=sum(sum(eval(A[abc],b=k),a=1..k),c=1..k):

S23:=sum(sum(eval(A[abc],c=k),a=1..k),b=1..k):

S2:=S21+S22+S23:

S11:=sum(eval(eval(A[abc],a=k),b=k),c=1..k):

S12:=sum(eval(eval(A[abc],a=k),c=k),b=1..k):

S13:=sum(eval(eval(A[abc],b=k),c=k),a=1..k):

S1:=S11+S12+S13:

S0:=eval(eval(eval(A[abc],a=k),b=k),c=k):

L[k]:=simplify(S2-S1+S0):

ST(A):=(simplify(sum(sum(sum(A[abc],a=1..n),b=1..n),c=1..n))):

Sum(L[k],k=1..n)=ST(A);

Appendix 2. A note on the operator “is” in Maple

The operator “is” in Maple software verifies the numerical and symbolic identities and inequalities, and

it’s out put is “true”, “false” or “FAIL”. We consider the following example, with “FAIL” as out put.

A:=binomial(2*k+1,k+1)+binomial(2*k+1,k)-binomial(2*k,k):

is(sum(A,k = 1 .. n) = binomial(2*n+2,n+1)-2);
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This example is verifying the following identity:

n∑

k=1

{(
2 k + 1

k

)
+

(
2 k + 1

k + 1

)
−

(
2 k

k

)}
=

(
2 n + 2

n + 1

)
− 2,

which is true by using Maple and L-summing method; Hassani [3].
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Abstract: The basis number of a graph G is defined to be the least integer d such that

there is a cycle basis, B, of the cycle space of G such that each edge of G is contained in at

most d members of B. MacLane [11] proved that a graph G is planar if and only if b(G) ≤ 2.

Jaradat [5] proved that the basis number of the direct product of a bipartite graph H with

a cycle C is bounded above by 3 + b(H). In this work, we show that the basis number of

the direct product of a theta graph with a cycle is 3 or 4. Our result, improves Jaradat’s

upper bound in the case that H is a theta graph containing no odd cycle by a combinatorial

approach.

Key Words: cycle space; basis number; cycle basis; direct product.
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§1. Introduction

In graph theory, there are many numbers that give rise to a better understanding and interpre-

tation of the geometric properties of a given graph such as the crossing number, the thickness,

the genus, the basis number, etc.. The basis number of a graph is of a particular importance

because MacLane, in [11], made a connection between the basis number and the planarity of a

graph, which is related with parallel bundles on planar map geometries, a kind of Smarandache

geometries; in fact, he proved that a graph is planar if and only if its basis number is at most

2.

In general, required cycle bases is not very well behaved under graph operations. That

is the basis number b(G) of a graph G is not monotonic (see [2] and [11]). Hence, there does

not seem to be a general way of extending required cycle bases of a certain collection of partial

graphs of G to a required cycle basis of G, respectively. Global upper bound b(G) ≤ 2γ(G) + 2

where γ(G) is the genus of G is proven in [12].

In this paper, we investigate the basis number for the direct product of a theta graphs with

cycles.

1Received February 15, 2008. Accepted April 24, 2008.
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§2. Introduction

Unless otherwise specified, the graphs considered in this paper are finite, undirected, simple

and connected. For a given graph G, we denote the vertex set of G by V (G) and the edge set

by E(G).

Cycle Bases

For a given graph G, the set E of all subsets of E(G) forms an |E(G)|-dimensional vector space

over Z2 with vector addition X ⊕ Y = (X\Y ) ∪ (Y \X) and scalar multiplication 1 · X = X

and 0 ·X = ∅ for all X,Y ∈ E . The cycle space, C(G), of a graph G is the vector subspace of

(E ,⊕, ·) spanned by the cycles of G. Note that the non-zero elements of C(G) are cycles and

edge disjoint union of cycles. It is known that for a connected graph G the dimension of the

cycle space is the cyclomatic number or the first Betti number

dim C(G) = |E(G)| − |V (G)| + r (1)

where r is the number of components in G.

A basis B for C(G) is called a cycle basis of G. A cycle basis B of G is called a d-fold if

each edge of G occurs in at most d of the cycles in B. The basis number, b(G), of G is the

least non-negative integer d such that C(G) has a d-fold basis. The following result will be used

frequently in the sequel.

Theorem 2.1.1.(MacLane). The graph G is planar if and only if b(G) ≤ 2.

The following theorem due to Schmeichel, which proves the existence of graphs that have

arbitrary large basis number.

Theorem 2.1.2. (Schmeichel) For any positive integer r, there exists a graph G with b(G) ≥ r.

Products

Many authors studied the basis number of graph products. The Cartesian product, �, was

studied by Ali and Marougi [3] and Alsardary and Wojciechowski [4].

Theorem 2.2.1. (Ali and Marougi) If G and H are two connected disjoint graphs, then

b (G�H) ≤ max { b (G) + △ (TH) , b (H) + △ (TG)} where TH and TG are spanning trees of

H and G, respectively, such that the maximum degrees △ (TH) and ∆(TG) are minimum with

respect to all spanning trees of H and G.

Theorem 2.2.2.(Alsardary and Wojciechowski) For every d ≥ 1 and n ≥ 2, we have b(Kd
n) ≤ 9

where Kd
n is a d times Cartesian product of the complete graph Kn.

An upper bound on the strong product ⊠ was obtained by Jaradat [9] when he gave the

following result:
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Theorem 2.2.3.(Jaradat) Let G be a bipartite graph and H be a graph. Then b(G ⊠ H) ≤

max
{
b(H) + 1, 2∆(H) + b(G) − 1,

⌊
3∆(TG)+1

2

⌋
, b(G) + 2

}
.

The lexicographic product, G[H ], was studied by Jaradat and Al-zoubi [8] and Jaradat

[10]. They obtained the following result results:

Theorem 2.2.4.(Jaradat and Al-Zoubi) For each two connected graphs G and H, b(G[H ]) ≤

Max{4, 2∆(G) +b(H), 2 + b(G)}.

Theorem 2.2.5.(Jaradat) Let G, T1 and T2be a graph, a spanning tree of G and a tree, respec-

tively. Then, b(G[T2]) ≤ b(G[H ]) ≤ max {5, 4+ 2∆(TG
min) + b(H), 2 + b(G)

}
where TG stands

for the complement graph of a spanning tree T in G and Tmin stands for a spanning tree for

G such that ∆(TG
min) = min{ ∆(TG)|T is a spanning tree of G}.

Schmeichel [12], Ali [1], [2] and Jaradat [5] gave an upper bound for the basis number on

the semi-strong product • and the direct product, ×, of some special graphs. They proved the

following results:

Theorem 2.2.6. (Schmeichel) For each n ≥ 7, b(Kn • P2) = 4.

Theorem 2.2.7.(Ali) For each integers n,m, b(Km •Kn) ≤ 9.

Theorem 2.2.8. (Ali) For any two cycles Cn and Cm with n,m ≥ 3, b(Cn × Cm) = 3.

Theorem 2.2.9.(Jaradat) For each bipartite graphs G and H, b(G×H) ≤ 5 + b(G) + b(H).

Theorem 2.2.10. (Jaradat) For each bipartite graph G and cycle C, b(G× C) ≤ 3 + b(G).

We remark that knowing the number of components in a graph is very important to find

the dimension of the cycle space as in (1), so we need the following result.

Theorem 2.2.11.([5]) Let G and H be two connected graphs. Then G × H is connected if

and only if at least one of them contains an odd cycle. Moreover, If both of them are bipartite

graphs, then G×H consists of two components.

For completeness, we recall that for two graphs G and H , the direct product G × H is

the graph with the vertex set V (G × H) = V (G) × V (H) and the edge set E(G × H) =

{(u1, u2)(v1, v2)|u1v1 ∈ E(G) and u2v2 ∈ E(H)}.

In the rest of this paper, fB(e) stand for the number of elements of B containing the edge

e where B ⊆ C(G).

§3. The Basis number of θn × Cm.

By specializing bipartite graph G in Theorem 2.2.10 into a theta graph θn containing no odd

cycles, we have that b(θn × Cm) ≤ 5. In this paper, we reduce the upper bound to 4. In fact,

we prove that the basis number of the direct product of a theta graph with a cycle is either



90 M.M.M. Jaradat and K.M.A.Al-Shorman

3 or 4. Throughout this work we assume that {1, 2, . . . , n} and {1, 2, . . . ,m} to be the vertex

sets of θn and Cm, respectively.

Definition 3.1. A theta graph θn is defined to be a cycle Cn to which we add a new edge that

joins two non-adjacent vertices . We may assume 1 and δ are the two vertices of θn of degree

3.

The following result follows from Theorem 2.2.11 and noting that at least one of θn and

Cm contains an odd cycle if and only if at least one of n,m, and δ is odd.

Lemma 3.2. Let θn be a theta graph and Cm be a cycle. θn × Cm is connected if and only if

at least one of n,m, and δ is odd, otherwise it consists of two components.

Note that |E(θn ×Cm)| = 2nm+2m and |V (θn ×Cm)| = nm. Hence, by the above lemma

and equation (1), we have

dim C(θn × Cm) = nm+ 2m+ s,

where

s =





1, if θn × Cm is connected,

2, if θn × Cm is disconnected.

Lemma 3.3. Let θn be a theta graph and Cm be a cycle. Then b(θn × Cm) ≥ 3.

Proof Note that θn × Cm contains at most 4 cycles of length 3 and the other cycles are

of length at least 4. Assume that θn × Cm has a 2-fold basis B. Then

2(|E(θn × Cm)|) ≥
∑

C∈B

|C|

≥ 4(dim C(θn × Cm) − 4) + 3(4)

≥ 4(dim C(θn × Cm) − 1),

and so,

2(2nm+ 2m)

4
≥ nm+ 2m+ s− 1

nm+m ≥ nm+ 2m+ s− 1,

where s is as above. Thus,

1 ≥ m+ s.

This is a contradiction. �

Lemma 3.4. For any graph θn of order n ≥ 4 and cycle Cm of order m ≥ 3, we have

b(θn × Cm) ≤ 4.

Proof To prove the lemma, it is sufficient to exhibit a 4-fold basis, B, for C(θn × Cm).

According to the parity of m,n and δ (odd or even), we consider the following eight cases:
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Case 1. m and n are even and δ is odd. Then, for each j = 1, 2, . . . ,m − 2, we consider the

following sets of cycles:

A
(j)
1 = {(i, j) (i+ 1, j + 1) (i, j + 2) (i− 1, j + 1) (i, j) : i = 2, 3, . . . n− 1}

∪ {(1, j) (2, j + 1) (1, j + 2) (n, j + 1) (1, j)}

∪ {(n, j) (n− 1, j + 1) (n, j + 2) (1, j + 1) (n, j)} ,

A
(j)
2 = {(1, j) (2, j + 1) (1, j + 2) (δ, j + 1) (1, j)} ,

A
(j)
3 = {(δ, j) (δ − 1, j + 1) (δ, j + 2) (1, j + 1) (δ, j)} .

Also, we define the following cycles:

c1 = (1, 1) (2, 2) (3, 1) . . . (n, 2) (1, 1) ,

c2 = (1, 2) (2, 1) (3, 2) . . . (n, 1) (1, 2) ,

c3 = (1,m) (2,m− 1) (3,m) . . . (δ,m) (1,m− 1)

(2,m) . . . (δ,m− 1) (1,m) .

Note that, the cycles of A
(j)
1 are edge pairwise disjoint for each j = 1, 2, 3, . . . ,m − 2.

Thus, A
(j)
1 is linearly independent and of 1-fold. Let A1 =

m−2
∪

j=1
A

(j)
1 . Note that, each cycle

of A
(j)
1 contains an edge of the form (i+ 1, j + 1) (i, j + 2) or (n− 1, j + 1) (n, j + 2) which is

not in A
(j−1)
1 . In addition, each cycle of A

(j−1)
1 contains an edge of the form (i, j − 1) (i+ 1, j)

or (n, j) (n− 1, j + 1) which is not in A
(j)
1 . Therefore, A1 is linearly independent. Let V

′

1 =

{(i, j) : i+ j = even} , and V
′

2 = {(i, j) : i+ j = odd}. Let Hk be the induced subgraph of V
′

k

where k = 1, 2. For each j = 1, 2, ...,m− 2, set

B
(j)
1 = {(i, j) (i+ 1, j + 1) (i, j + 2) (i− 1, j + 1) (i, j) | 2 ≤ i ≤ n− 1 and

i+ j = even} ∪ {(1, j) (2, j + 1) (1, j + 2) (n, j + 1) (1, j) : 1 + j = even}

∪ {(n, j) (n− 1, j + 1) (n, j + 2) (1, j + 1) (n, j) : n+ j = even} ,

B
(j)
2 = {(i, j) (i+ 1, j + 1) (i, j + 2) (i− 1, j + 1) (i, j) | 2 ≤ i ≤ n− 1 and

i+ j = odd} ∪ {(1, j) (2, j + 1) (1, j + 2) (n, j + 1) (1, j) : 1 + j = odd}

∪ {(n, j) (n− 1, j + 1) (n, j + 2) (1, j + 1) (n, j) : n+ j = odd} .

Let F (k) =
m−2
∪

j=1
B

(j)
k where k = 1, 2. We prove that ck is independent from the cycles of

F (k). Let E
(k)
j = E (Cn × j (j + 1)) ∩ E (Hk) where Cn is the cycle in θn obtained by deleting

the edge 1δ from θn. Then it is an easy matter to verify that
{
E

(k)
1 , E

(k)
2 , . . . , E

(k)
m−1

}
is a

partition of E (Cn × Pm) ∩ E (Hk) where Pm is the path of Cm obtained by deleting the edge

1m. Moreover, it is clear that E
(k)
1 = E (ck) and E

(k)
1 ∪ E

(k)
2 = E

(
B

(1)
k

)
. Thus, if ck is

a sum modulo 2 of some cycles of F (k), say {T1, T2, . . . , Tr}, then B
(1)
k ⊆ {T1, T2, . . . , Tr}.
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Since no edges in E
(k)
2 belongs to E (ck) and E

(k)
2 ∪ E

(k)
3 = E

(
B

(2)
k

)
, B

(2)
k ⊆ {T1, T2, . . . , Tr}.

By continuing in this way, it implies that B
(m−2)
k ⊆ {T1, T2, . . . , Tr}. Note that E

(k)
m−2 ∪

E
(k)
m−1 = E

(
B

(m−2)
k

)
and each edge of E

(k)
m−1 appears in one and only one cycle of F (k).

It follows that E
(k)
m−1 ⊆ E (ck). This is a contradiction. Therefore, F (k) ∪ {ck} is linearly

independent for k = 1, 2. And since E
(
F (1) ∪ {c1}

)
∩ E

(
F (2) ∪ {c2}

)
= φ, we have F (1) ∪

F (2) ∪ {c1, c2} = A1 ∪ {c1, c2} is linearly independent. Let A2 =
m−2
∪

j=1
A

(j)
2 and A3 =

m−2
∪

j=1
A

(j)
3 .

It is easy to see that the cycles of Ai are edge pairwise disjoint for i = 2, 3 and each cycle

of A3 contains at least one edge of the form (δ, j) (δ − 1, j + 1) and (δ, j) (δ − 1, j − 1) which

is not in A2. And so A2 ∪ A3 is linearly independent. Clearly, c3 can not be written as a

linear combination of cycles of A2 ∪ A3. Therefore, A2 ∪ A3 ∪ {c3} is linearly independent.

Let B1 = A1 ∪ A2 ∪ A3 ∪ {c1, c2, c3} . We now prove that B1 is a linearly independent set.

Note that E(A2 ∪ A3 ∪ {c3}) − {(1, j) (δ, j + 1) , (1, j + 1) (δ, j) |1 ≤ j ≤ m− 1} forms an edge

set of a forest. Thus, any linear combinations of cycles of A2 ∪ A3 ∪ {c3} must contains at

least one edge of the form (1, j) (δ, j + 1) and (1, j + 1) (δ, j) for some j ≤ m − 1 because any

linear combination of a linearly independent set of cycles is a cycle or an edge disjoint union

of cycles. Now, Suppose that there are two sets of cycles say {d1, d2, . . . , dγ1} ⊆ A1 ∪ {c1, c2}

and {f1, f2, . . . , fγ2} ⊆ A2 ∪ A3 ∪ {c3} such that
∑γ1

i=1 di =
∑γ2

i=1 fi (mod 2). Consequently,

E (d1 ⊕ d2 ⊕ · · · ⊕ dγ1) = E (f1 ⊕ f2 ⊕ · · · ⊕ fγ2) and so d1 ⊕ d2 ⊕ · · · ⊕ dγ1 contains at least

one edge of the form (1, j) (δ, j + 1) and (1, j + 1) (δ, j) for some j ≤ m− 1, which contradicts

the fact that no cycle of A1∪ {c1, c2} contains such edges. We now define the following sets of

cycles

A4 = {A
(i)
4 = (i+ 1, 1) (i+ 2, 2) (i+ 1, 3) . . . (i+ 2,m) (i+ 1, 1) : i = 0, 1,

. . . , n− 2},

A5 =
{
A

(i)
5 = (i+ 1, 1) (i, 2) (i+ 1, 3) . . . (i,m) (i+ 1, 1) : i = 1, 2, . . . , n− 1

}
,

and

c
′

1 = (δ, 1) (δ + 1, 2) (δ, 3) (δ + 1, 4) . . . (δ,m− 1) (1,m) (δ, 1) ,

c
′

2 = (1, 1) (2,m) (3, 1) (4,m) . . . (δ, 1) (1,m) (2, 1) . . . (δ,m) (1, 1) ,

c
′

3 = (1, 1) (n, 2) (1, 3) (n, 4)... (n,m) (1, 1) ,

c
′

4 = (n, 1) (1, 2) (n, 3) (1, 4)... (1,m) (n, 1) .

LetD = A4∪A5∪
{
c
′

1, c
′

2, c
′

3, c
′

4

}
. Each cycleA

(i)
4 ofA4 contains the edge (i+ 2,m) (i+ 1, 1)

which belongs to no other cycles of B1∪ A4. Thus B1∪ A4 is linearly independent. Similarly,

each cycle A
(i)
5 of A5 contains the edge (i,m) (i+ 1, 1) which belongs to no other cycles of

B1∪ A4 ∪ A5. Hence B1∪ A4 ∪ A5 is linearly independent. Now c
′

1 is the only cycle of B1∪

A4 ∪ A5 ∪
{
c
′

1

}
which contains the edge (1,m) (δ, 1). Hence B1∪ A4 ∪ A5 ∪

{
c
′

1

}
is linearly

independent. Similarly, c
′

2 is the only cycle of B1∪ A4 ∪A5 ∪
{
c
′

1, c
′

2

}
which contains the edge

(δ,m) (1, 1). Thus B1∪ A4 ∪ A5 ∪
{
c
′

1, c
′

2

}
is linearly independent. Now, c

′

3 and c
′

4 contain
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(1, 1) (n,m) and (1,m) (n, 1), respectively, which appear in no cycle of B1∪ A4 ∪A5 ∪
{
c
′

1, c
′

2

}
.

Therefor, B = B1 ∪D is linearly independent. Now,

|B| =

5∑

i=1

|Ai| +
3∑

i=1

|ci| +
4∑

i=1

|c
′

i|

= n (m− 2) + (m− 2) + (m− 2) + (n− 1) + (n− 1) + 3 + 4

= nm+ 2m+ 1

= dim C (θn × Cm) .

Hence, B is a basis of θn × Cm. To complete the proof of this case, we only need to prove

that B is a 4-fold basis. For simplicity, set Q = ∪3
i=1{ci}. Let e ∈ E (θn × Cm). Then

(1) If e = (i, j) (i+ 1, j + 1) or (n, j) (1, j + 1) where 1 ≤ i ≤ n − 1, and 2 ≤ j ≤ m − 2,

then fA1 (e) = 2, fA2∪A3 (e) ≤ 1, fD (e) ≤ 1, and fQ (e) = 0, and so fB (e) ≤ 4.

(2) If e = (i, j) (i+ 1, j − 1) or (n, j) (1, j − 1) where 1 ≤ i ≤ n − 1, and 3 ≤ j ≤ m − 1,

then fA1 (e) = 2, fA2∪A3 (e) ≤ 1, fD (e) ≤ 1, and fQ (e) = 0, and so fB (e) ≤ 4.

(3) If e = (i, 1) (i+ 1, 2) or (1, 1) (n, 2), where 1 ≤ i ≤ n−1, then fA1 (e) = 1, fA2∪A3 (e) ≤

1, fD (e) ≤ 1, and fQ (e) ≤ 1, and so fB (e) ≤ 4.

(4) If e = (i, 2) (i+ 1, 1) or (1, 2) (n, 1) where 1 ≤ i ≤ n− 1, then fA1 (e) = 1, fA2∪A3 (e) ≤

1, fD (e) ≤ 1, and fQ (e) = 1, and so fB (e) ≤ 4.

(5) If e = (1, j) (δ, j + 1) where 1 ≤ j ≤ m−2, then fA1 (e) = 0, fA2∪A3 (e) ≤ 2, fD (e) = 1,

and fQ (e) = 0, and so fB (e) ≤ 3.

(6) If e = (1, j) (δ, j − 1) where 2 ≤ j ≤ m−2, then fA1 (e) = 0, fA2∪A3 (e) ≤ 2, fD (e) = 1,

and fQ (e) = 0, and so fB (e) ≤ 3.

(7) If e = (i,m− 1) (i+ 1,m) or (i,m) (i+ 1,m− 1) or (1,m) (n,m− 1) where 1 ≤ i ≤

n− 1, then fA1 (e) = 1, fA2∪A3 (e) ≤ 1, fD (e) ≤ 1, and fQ (e) ≤ 1, and so fB (e) ≤ 4.

(8) If e = (1,m) (δ,m− 1) or (1,m−1) (δ,m) , then fA1 (e) = 0, fA2∪A3 (e) ≤ 1, fD (e) ≤ 1,

and fQ (e) ≤ 1, and so fB (e) ≤ 3.

(9) If e = (i + 1, 1) (i,m) or (i, 1)(i + 1,m), where 1 ≤ i ≤ n − 1, then fA1 (e) = 0,

fA2∪A3 (e) = 0, fD (e) ≤ 2, and fQ (e) ≤ 1, and so fB (e) ≤ 3.

(10) If e = (1, 1) (δ,m) or (1,m) (δ, 1), then fA1 (e) = 0, fA2∪A3 (e) = 0, fD (e) ≤ 2 , and

fQ (e) = 0, and so fB (e) ≤ 2.

(11) If e = (1, 1) (n,m) or (n, 1) (1,m), then fA1 (e) = 0, fA2∪A3 (e) = 0, fD (e) ≤ 1,

and fQ (e) = 0, and so fB (e) ≤ 1. Therefore B is a 4-fold basis. The proof of this case is

complete.

Case 2. m and δ are even and n is odd. Now, consider the following sets of cycles: A1, A2

and A3 are as in Case 1 and
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c1 = (1,m) (2,m− 1) (3,m) . . . (δ,m− 1) (1,m) ,

c2 = (1,m− 1) (2,m) (3,m− 1) . . . (δ,m) (1,m− 1) ,

c3 = (1, 1) (2, 2) (3, 1) ... (n, 1) (1, 2) (2, 1) . . . (n, 2) (1, 1) .

Let B1 =
(
∪3

i=1Ai

)
∪
(
∪3

i=1 {ci}
)
. Since E (c1)∩E (c2) = ∅, {c1,c2} is linearly independent.

Since δ ≥ 4, c1 contains an edge of the form (2,m− 1) (3,m) and c2 contains an edge of the

form (2,m) (3,m− 1) and each of which does not appear in any cycles of A2 ∪ A3. Thus

A2∪A3∪{c1,c2} is linearly independent. Next, we show that A1

⋃
{c3} is linearly independent.

Let Ri = E (Cn × i (i+ 1)) where Cn is as in Case 1. Note that {R1,R2, . . . , Rm−1} is a

partition of E (Cn × Pm) where Pm is as in Case 1. Also, E (c3) = R1 and R1∪R2 = E
(
A

(1)
1

)
.

Thus, if c3 can be written as linear combination of some cycles of A1, say {K1,K2, . . . ,Kr},

then A
(1)
1 ⊆ {K1,K2, . . . ,Kr}. Since R2 ∪ R3 = E

(
A

(2)
1

)
and no edges of R2 belongs to

E (c3), A
(2)
1 ⊆ {K1,K2, . . . ,Kr}, and so on. This implies that A

(m−2)
1 ⊆ {K1,K2, . . . ,Kr}.

Note that Rm−1 ⊆ E
(
A

(m−2)
1

)
and each edge of Rm−1 appears only in one cycle of A1. Thus

Rm−1 ⊆ E (c3). This is a contradiction. Hence A1 ∪ {c3} is linearly independent. Let B1 =

A1 ∪A2 ∪A3 ∪{c1, c2, c3}. To show that B1 is a linearly independent set, we assume that there

are two set of cycles say {d1, d2, . . . , dγ1} ⊆ A1 ∪ {c3} and {f1, f2, . . . , fγ2} ⊆ A2 ∪A3 ∪ {c1, c2}

such that
∑γ1

i=1 di =
∑γ2

i=1 fi (mod 2). By using the same argument as in Case 1, we have that

d1 ⊕ d2 ⊕ · · · ⊕ dγ1 contains at least one edge of the form (1, j) (δ, j + 1) and (1, j + 1) (δ, j) for

some j ≤ m − 1. Which contradicts the fact that no cycle of A1∪ {c1} contains such edges.

Now, let A4, A5, c
′

3 and c
′

4 are as defined in Case 1, and define the following cycles:

c
′

1 = (1, 1) (2,m) (3, 1) . . . (δ − 1, 1) (δ,m) (1, 1) ,

c
′

2 = (1,m) (2, 1) (3,m) . . . (δ, 1) (1,m) .

Let D = A4 ∪ A5 ∪
{
c
′

1, c
′

2, c
′

3, c
′

4

}
. By following the same arguments as in Case 1, we

can prove that B = B1 ∪ D is a 4-fold basis for C(θn × Cm). The proof of this case is com-

plete.

Case 3. m,n, and δ are even. Consider the following sets of cycles: A1, A2, A3, A4, A5 and

{c1, c2} are as in Case 1. Also, consider c3 = c1 and c4 = c2 where c1 and c2 are as defined in

Case 2. Moreover, c
′

1 and c
′

2 are as in Case 2. Define the following two cycles:

c
′

3 = (1, 1) (2,m) (3, 1) . . . (n− 1, 1) (n,m) (1, 1) ,

c
′

4 = (1,m) (2, 1) (3,m) . . . (n− 1,m) (n, 1) (1,m) .

By using the same arguments as in Case 1 and Case 2, we can show that

B = A1 ∪A2 ∪A3 ∪A4 ∪A5 ∪
{
c1, c2, c3, c4, c

′

1, c
′

2, c
′

3, c
′

4

}
,
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is linearly independent. Since

|B| =

5∑

i=1

|Ai| + 8

= n (m− 2) + (m− 2) + (m− 2) + (n− 1) + (n− 1) + 8

= nm+ 2m+ 2

= dim C (θn × Cm) ,

B is a basis of C (θn × Cm). To show that B is a 4-fold basis, we follow, word by word, (1) to (11)

of Case 1. The proof of this case is complete.

Case 4. m is even, and δ and n are odd. By relabeling the vertices of θn in the opposite

direction, we get a similar case to Case 2. The proof of this case is complete.

Case 5. m is odd, and n and δ are even. Consider the following sets of cycles: A1, A2, A3 and

{c1, c2} are as in Case 1. In addition, c3 = c1 and c4 = c2 where c1 and c2 are as in Case 2.

Using the same arguments as in Case 1 and Case 2, we can show that each of A1 ∪{c1, c2} and

A2∪A3∪{c3, c4} are linearly independent. Also, then we show that A1∪A2∪A3∪{c1, c2, c3, c4}

is linearly independent. Now, we define the following set of cycles:

A4 =
{
a
(i)
4 = (i,m) (i+ 1,m− 1) (i+ 2,m) (i+ 1, 1) (i,m) : 1 ≤ i ≤ n− 2

}
,

and

A5 =
{
a
(i)
5 = (i, 1) (i+ 1,m) (i+ 2, 1) (i+ 1, 2) (i, 1) : 1 ≤ i ≤ n− 2

}
.

Also, define the following cycle:

c
′

5 = (n− 1, 1) (n,m) (n− 1,m− 1) (n,m− 2) . . . (n, 1) (n− 1,m) (n,m− 1)

(n− 1, m− 2) . . . (n, 2) (n− 1, 1) .

Note that, c
′

5 contains the edge (n− 1,m) (n, 1) which does not occur in any cycle of B1 =

A1 ∪A2 ∪ A3 ∪ {c1, c2, c3, c4}. Thus, B1∪
{
c
′

5

}
is linearly independent. For simplicity, we set

D = {Dk}
n−2
k=1 , where Dk =

{
a
(k)
4 , a

(k)
5

}
. We now, use induction on n to show that the cycles

of D are linearly independent. If n = 3, then D = D1 =
{
a
(1)
4 , a

(1)
5

}
. a

(1)
4 contains the edge

(2, 1) (3,m) which does not occur in the cycle a
(1)
5 . Hence D is linearly independent. Assume

n > 3 and it is true for less than n. Note thatD = {Dk}
n−3
k=1∪

{
a
(n−2)
4 , a

(n−2)
5

}
. By the inductive

step {Dk}
n−3
k=1 is linearly independent. Now, the cycle a

(n−2)
4 contains the edge (n− 1, 1) (n,m)

which does not occur in any cycle of {Dk}
2n−3
k=1 , similarly the cycle a

(n−2)
5 contains the edge

(n, 1)(n − 1,m) which does not occur in any cycle of {Dk}
n−3
k=1 ∪

{
a
(n−2)
4

}
. Therefore, D is

linearly independent. Note that E(D) − {(i + 1, 1)(i,m), (i, 1)(i+ 1,m)|1 ≤ i ≤ n − 2} forms

an edge set of a forest. Thus, any linear combination of cycles of D must contain an edge of

the form (i+ 1, 1)(i,m) or (i, 1)(i+ 1,m) for some 1 ≤ i ≤ n− 2 which does not occur in any

cycle of B1∪
{
c
′

5

}
. Therefore, B1∪

{
c
′

5

}
∪D is linearly independent.
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We now consider c
′

1 and c
′

2 as in Case 2 and c
′

3 and c
′

4 as in Case 1. Note that c
′

1 and c
′

2

contain the edges (1, 1) (δ,m) and (1,m) (δ, 1), respectively, which do not appear in any cycle of

B1∪
{
c
′

5

}
∪D. Thus B1∪ D∪

{
c
′

1, c
′

2, c
′

5

}
is linearly independent. Similarly c

′

3 and c
′

4 contain

the edges (1, 1) (n,m) and (1,m) (n, 1), respectively, which do not appear in any cycle of B1∪{
c
′

1, c
′

2, c
′

5

}
∪D. Thus

B = B1 ∪D ∪
{
c
′

1, c
′

2, c
′

3, c
′

4, c
′

5

}

is linearly independent. Now,

|B| =

5∑

i=1

|Ai| + 9

= n (m− 2) + (m− 2) + (m− 2) + (n− 2) + (n− 2) + 9

= nm+ 2m+ 1

= dim C (θn × Cm) .

Hence, B is a basis of C (θn × Cm). To complete the proof of this case, we show that B is

a 4-fold basis. Let e ∈ E (θn × Cm). Then,

(1) If e = (i+ 1, 1) (i,m) or (i, 1) (i+ 1,m) where 1 ≤ i ≤ n − 1, then fA1 (e) = 0,

fA2∪A3 (e) = 0, f
D∪{c

′

i
}5

i=1
(e) ≤ 3, and f∪4

i=1{ci} (e) = 0, and so fB (e) ≤ 3.

(2) If e is as in (1) to (11) of Case 1 and not of the above form, then, as in that Case 1,

fB (e) ≤ 4. Therefore B is a 4-fold basis. The proof of this case is complete.

Case 6. m and δ are odd and n is even. According to the relation between m and δ, we split

this case into two subcases.

Subcase 6a. δ ≤ m. Then consider the following sets of cycles: A1, A2, A3, c1, c2, c3 are as in

Case 1. In addition, for each i = 2, 3, . . . , δ, we define the following sets of cycles.

Fi = (i, 1) (i− 1, 2) (i− 2, 3) . . . (1, i) (δ, i+ 1) (δ − 1, i+ 2)

(δ − 2, i+ 3) . . . (i, δ + 1)(i+ 1, δ + 2)(i, δ + 3) . . . (i− 1,m) (i, 1) ,

and for each i = 1, 2, 3, . . . , δ − 1

F ′
i = (i, 1) (i+ 1, 2) (i+ 2, 3) . . . (δ, δ − i+ 1) (1, δ − i+ 2)

(2, δ − i+ 3) . . . (i, δ + 1)(i+ 1, δ + 2)(i, δ + 3) . . . (i+ 1,m) (i, 1) .

Also, set

F1 = (1, 1) (δ, 2) (δ − 1, 3) (δ − 2, 4) . . . (1, δ + 1) (δ, δ + 2)

(1, δ + 3) . . . (1,m− 1) (δ,m) (1, 1) ,

and
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F
′

δ = (δ, 1) (1, 2) (2, 3) (3, 4) . . . (δ, δ + 1) (1, δ + 2) (δ, δ + 3)

(1, δ + 4) . . . (δ,m− 1) (1,m) (δ, 1) .

Let

F = ∪ δ
i=1Fi and F

′

= ∪ δ
i=1F

′

i .

By Case 1, A1∪A2∪A3∪{c1, c2, c3} is linearly independent. Note that each cycle of F contains

an edge of the form (i− 1,m) (i, 1) or (δ,m) (1, 1) for some 2 ≤ i ≤ δ which does not occur

in any other cycle of A1 ∪ A2 ∪ A3 ∪ F ∪ {c1, c2, c3}. Thus, A1 ∪ A2 ∪ A3 ∪ F ∪ {c1, c2, c3} is

linearly independent. Similarly, each cycle of F
′

contains an edge of the form (i+ 1,m) (i, 1)

or (1,m) (δ, 1) for some 1 ≤ i ≤ δ− 1 which does not occur in any other cycle of A1 ∪A2 ∪A3 ∪

F ∪ F
′

∪ {c1, c2, c3}. Thus, A1 ∪A2 ∪ A3 ∪ F ∪ F
′

∪ {c1, c2, c3} is linearly independent. Now,

define the following sets of cycles:

A4 =
{
a
(i)
4 = (i,m) (i+ 1,m− 1) (i+ 2,m) (i+ 1, 1) (i,m) : δ − 1 ≤ i ≤ n− 2

}
,

and

A5 =
{
a
(i)
5 = (i, 1) (i+ 1,m) (i+ 2, 1) (i+ 1, 2) (i, 1) : δ − 1 ≤ i ≤ n− 2

}
.

Also, set the following cycles:

c4 = (1, 1) (2,m) (3, 1) . . . (n,m) (1, 1) ,

c5 = (1,m) (2, 1) (3,m) . . . (n, 1) (1,m) .

By using the same arguments as in Case 5, we can show that A4∪A5 is linearly independent.

Since each linear combination of cycles of A4 ∪A5 contains an edge of the form (i+ 1, 1) (i,m)

or (i, 1) (i+ 1,m) for some δ ≤ i ≤ n− 2 which does not occurs in any cycle of A1 ∪A2 ∪A3 ∪

F ∪ F
′

∪ {c1, c2, c3}, A1 ∪ A2 ∪ A3 ∪ A4 ∪ A5 ∪ F ∪ F
′

∪ {c1, c2, c3} is linearly independent.

Finally, c4 contains the edge (n,m) (1, 1) and c5 contains the edge (n, 1) (1,m) which do not

appear in any cycle of A1 ∪A2 ∪A3 ∪A4 ∪A5 ∪ F ∪ F
′

∪ {c1, c2, c3}. Thus,

B = A1 ∪A2 ∪A3 ∪A4 ∪A5 ∪ F ∪ F
′

∪ {c1, c2, c3, c4, c5}

is linearly independent. Since

|B| =

5∑

i=1

|Ai| + |F | + |F
′

| +
5∑

i=1

|ci|

= n(m− 2) + (m− 2) + (m− 2) + (n− δ) +

(n− δ) + δ + δ + 5

= mn+ 2m+ 1

= dim C(θn × Cm),
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B is a basis of C(θn × Cm). To complete the proof of the theorem we only need to prove that

B is a 4-fold basis. For simplicity let Q = ∪5
i=1{ci}. Let e ∈ E (θn × Cm). Then

(1) if e = (i, j) (i+ 1, j + 1) or (n, j) (1, j + 1), where 1 ≤ i ≤ n − 1, and 2 ≤ j ≤ m − 2,

then fA1 (e) = 2, fA2∪A3 (e) ≤ 1, fF∪F
′ (e) = 1, and fQ (e) = 0, and so fB (e) ≤ 4.

(2) If e = (i, j) (i+ 1, j − 1) or (n, j) (1, j − 1), where 1 ≤ i ≤ n − 1, and 3 ≤ j ≤ m − 1,

then fA1 (e) = 2, fA2∪A3 (e) ≤ 1, fF∪F
′ (e) = 1, and fQ (e) = 0, and so fB (e) ≤ 4.

(3) If e = (i, 1) (i+ 1, 2) or (1, 1) (n, 2), where 1 ≤ i ≤ n−1, then fA1 (e) = 1, fA2∪A3 (e) ≤

1, fF∪F
′ (e) = 1, and fQ (e) = 1, and so fB (e) ≤ 4.

(4) If e = (i, 2) (i+ 1, 1) or (1, 2) (n, 1), where 1 ≤ i ≤ n−1, then fA1 (e) = 1, fA2∪A3 (e) ≤

1, fF∪F
′ (e) = 0, and fQ (e) = 1, and so fB (e) ≤ 3.

(5) If e = (1, j) (δ, j + 1) ,where 1 ≤ j ≤ m−2, then fA1 (e) = 0, fA2∪A3 (e) ≤ 2, fF∪F
′ (e) =

1, and fQ (e) = 0, and so fB (e) ≤ 3.

(6) If e = (1, j) (δ, j − 1) ,where 2 ≤ j ≤ m−2, then fA1 (e) = 0, fA2∪A3 (e) ≤ 2, fF∪F
′ (e) =

1, and fQ (e) = 0, and so fB (e) ≤ 3.

(7) If e = (i,m− 1) (i+ 1,m) or (i,m) (i+ 1,m− 1) or (1,m) (n,m− 1) , where 1 ≤ i ≤

n− 1, then fA1 (e) = 1, fA2∪A3 (e) ≤ 1, fF∪F
′ (e) = 1, and fQ (e) ≤ 1, and so fB (e) ≤ 4.

(8) If e = (1,m) (δ,m− 1) or (1,m−1) (δ,m) , then fA1 (e) = 0, fA2∪A3 (e) ≤ 1, fF∪F
′ (e) =

1, and fQ (e) ≤ 1, and so fB (e) ≤ 3.

(9) If e = (i, 1) (i+ 1,m) or (i + 1, 1) (i,m) , where 1 ≤ i ≤ n − 2, then fA1 (e) = 0,

fA2∪A3 (e) = 0, fF∪F
′ (e) ≤ 2, and fQ (e) ≤ 1, and so fB (e) ≤ 3.

(10) If e = (1, 1) (δ,m) or (1,m) (δ, 1) , then fA1 (e) = 0, fA2∪A3 (e) = 0, fF∪F
′ (e) = 1,

and fQ (e) = 0, and so fB (e) ≤ 1.

(11) If e = (1, 1) (n,m) or (n, 1) (1,m) , then fA1 (e) = 0, fA2∪A3 (e) = 0, fF∪F
′ (e) ≤ 1,

and fQ (e) ≤ 1, and so fB (e) ≤ 2. Therefore B is a 4-fold basis.

Subcase 6b. m < δ. Then consider the following set of cycles: A1, c1, c2 are as in Case 1 and

A4 and A5 are as in Case 4, and

c3 = (1, 1)(2, 2)(1, 3)(2, 4) . . . (1,m)(2, 1)(1, 2)(2, 3) . . . (2,m)(1, 1).

Using similar arguments to Case 5, we can show that A1 ∪ A4 ∪ A5 ∪ {c1, c2, c3} is a

linearly independent set. Now, let c4 and c5 be the two cycles as in the Subcase 6a. Then c4

contains the edge (n,m)(1, 1) which does not appear in the cycles of A1 ∪A4 ∪A5 ∪{c1, c2, c3}.

Thus, A1 ∪ A4 ∪ A5 ∪ {c1, c2, c3, c4} is linearly independent. Similarly, c5 contains the edge

(n, 1)(1,m) which does not appear in any cycle of A1 ∪ A4 ∪ A4 ∪ {c1, c2, c3, c4}. Therefore,

A1 ∪ A4 ∪ A5 ∪ {c1, c2, c3, c4, c5} is linearly independent. Now, for j = 2, 3, . . . ,m define the

following cycles:

Fi = (1, j)(2, j − 1)(3, j − 2) . . . (j, 1)(j + 1,m)(j + 2,m− 1)(j + 3,m− 2) . . .

(m+ 1, j)(m+ 2, j − 1)(m+ 3, j) . . . (δ, j − 1)(1, j),
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and for j = 1, 2, 3, . . . ,m− 1

F
′

i = (1, j)(2, j + 1)(3, j + 2) . . . (m− j + 1,m)(m− j + 2, 1)(m− j + 3, 2)

(m− j + 4, 3) . . . (m+ 1, j)(m+ 2, j + 1)(m+ 3, j) . . . (δ, j + 1)(1, j).

Moreover, define

F1 = (1, 1)(2,m)(3,m− 1)(4,m− 2) . . . (m+ 1, 1)(m+ 2,m)(m+ 3, 1) . . . (δ,m)(1, 1)

F
′

m = (1,m)(2, 1)(3, 2)(4, 3) . . . (m+ 1,m)(m+ 2, 1)(m+ 3, 2) . . . (δ, 1)(1,m).

Let

F = ∪m
i=1Fi and F

′

= ∪m
i=1F

′

i .

Note that each cycle of F ∪ F
′

contains an edge of the form (δ, j + 1)(1, j) or (δ, j − 1)(1, j)

which does not appear in other cycles of

B = A1 ∪A4 ∪A5 ∪ F ∪ F
′

∪ {c1, c2, c3, c4, c5}

Thus, B is linearly independent. Since

|B| = |A1| + |A4| + |A5| + |F | + |F
′

| +
5∑

i=1

|ci|

= (m− 2)n+ (n− 2) + (n− 2) +m+m+ 5

= mn+ 2m+ 1

= dim C(θn × Cm),

B is a basis for C(θn × Cm). Now to complete the proof, we show that B is a 4-fold basis. Let

e ∈ E(θn × Cm). Then

(1) if e = (i, j) (i+ 1, j + 1) where 1 ≤ i ≤ δ − 2, and 1 ≤ j ≤ m− 1 or (i, j) (i− 1, j − 1),

where 2 ≤ i ≤ δ − 1, and 2 ≤ j ≤ m, then fA1∪{ci}5
i=1

(e) ≤ 2, fA4∪A5 (e) ≤ 1, fF∪F
′ (e) ≤ 1,

and so fB (e) ≤ 4.

(2) If e = (i, j) (i+ 1, j + 1) where δ ≤ i ≤ n− 1, and 1 ≤ j ≤ m− 1 or (i, j) (i− 1, j − 1),

where δ + 1 ≤ i ≤ n, and 2 ≤ j ≤ m, then fA1∪{ci}5
i=1

(e) ≤ 3, fA4∪A5 (e) ≤ 1, fF∪F
′ (e) = 0

and so fB (e) ≤ 4.

(3) If e = (i, 1) (i+ 1,m) or (i+ 1, 1) (i,m) or (1, 1) (n,m) or (1,m) (n, 1) where 1 ≤ i ≤

n− 2, then fA1∪{ci}5
i=1

(e) ≤ 1, fA4∪A5 (e) ≤ 2, fF∪F
′ (e) = 0 and so fB (e) ≤ 3.

(4) If e = (1, j) (δ, j + 1) or (1, j + 1) (δ, j) or (1, 1) (δ,m) or (1,m) (δ, 1) where 1 ≤ j ≤

m− 1, then fA1∪{ci}5
i=1

(e) ≤ 1, fA4∪A5 (e) ≤ 1, fF∪F
′ (e) ≤ 1, and so fB (e) ≤ 3.

(5) If e = (1, 1) (n,m) or (1,m) (n, 1), then fA1∪{ci}5
i=1

(e) ≤ 1, fA4∪A5(e) = 0, fF∪F
′ (e) =

0, so fB (e) ≤ 1.

Thus, B is a 4-fold basis. The proof of this case is complete.
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Case 7. m and n are odd, and δ is even. According to the relation between m and n, we split

this case into two subcases.

Subcase 7a. m ≥ n. Then consider the following sets of cycles: A1, A2 and A3 are as in Case

1 and c1, c2, c3, c
′

1 and c
′

2 are as in Case 2. Also, for i = 2, 3, . . . , n, define the following cycles:

Fi = (i, 1) (i− 1, 2) (i− 2, 3) . . . (1, i) (n, i+ 1) (n− 1, i+ 2)(n− 2, i+ 3) . . . (i, n+ 1)

(i− 1, n+ 2) (i, n+ 3) . . . (i− 1,m) (i, 1) ,

and for i = 1, 2, 3, . . . , n− 1

F
′

i = (i, 1) (i+ 1, 2) (i+ 2, 3) . . . (n, n− i+ 1) (1,m− i+ 2)

(2,m− i+ 3) . . . (i, n+ 1)(i+ 1, n+ 2)(i, n+ 3) . . . (i+ 1,m) (i, 1) .

Moreover, set

F1 = (1, 1) (n, 2) (n− 1, 3) (n− 2, 4) . . . (1, n+ 1) (n, n+ 2) (1, n+ 3) . . .

(1,m− 1) (n,m) (1, 1) ,

and

F
′

n = (n, 1) (1, 2) (2, 3) (3, 4) . . . (n, n+ 1) (1, n+ 2) (n, n+ 3)

(1, n+ 4) . . . (n,m− 1) (1,m) (n, 1) .

Let

F = ∪n
i=1Fi and F

′

= ∪n
i=1F

′

i .

By Case 2, A1 ∪A2 ∪A3 ∪ c1 ∪ c2 ∪ c3 ∪ c
′

1 ∪ c
′

2 is linearly independent. By a similar argument

as in Subcase 6a, we can show that

B = A1 ∪A2 ∪A3 ∪ F ∪ F
′

∪ c1 ∪ c2 ∪ c3 ∪ c
′

1 ∪ c
′

2

is a linearly independent set of cycles. Since

|B| =
3∑

i=1

|Ai| + |F | + |F
′

| +
3∑

i=1

|ci| + |c
′

1| + |c
′

2|

= (m− 2)n+ (m− 2) + (m− 2) + n+ n+ 5

= mn+ 2m+ 1

= dim C(θn × Cm),

B is a cycle basis of θn × Cm. For simplicity, set Q = ∪3
i=1{ci}

3
i=1. Let e ∈ E(θn × Cm). Then

(1) if e = (i, j) (i+ 1, j + 1) or (n, j) (1, j + 1), where 1 ≤ i ≤ n − 1, and 2 ≤ j ≤ m − 2,

then fA1 (e) = 2, fA2∪A3 (e) ≤ 1, fF∪F
′ (e) = 1, f

c
′

1∪c
′

2
(e) = 0 and fQ (e) = 0, and so fB (e) ≤ 4.
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(2) If e = (i, j) (i+ 1, j − 1) or (n, j) (1, j − 1), where 1 ≤ i ≤ n − 1, and 3 ≤ j ≤ m − 1,

then fA1 (e) = 2, fA2∪A3 (e) ≤ 1, fF∪F
′ (e) = 1, f

c
′

1∪c
′

2
(e) = 0 and fQ (e) = 0, and so fB (e) ≤ 4.

(3) If e = (i, 1) (i+ 1, 2) or (1, 1) (n, 2), where 1 ≤ i ≤ n−1, then fA1 (e) = 1, fA2∪A3 (e) ≤

1, fF∪F
′ (e) = 1, fc

′

1∪c
′

2
(e) = 0 and fQ (e) = 1, and so fB (e) ≤ 4.

(4) If e = (i, 2) (i+ 1, 1) or (1, 2) (n, 1), where 1 ≤ i ≤ n−1, then fA1 (e) = 1, fA2∪A3 (e) ≤

1, fF∪F
′ (e) = 0, fc

′

1∪c
′

2
(e) = 0 and fQ (e) = 1, and so fB (e) ≤ 3.

(5) If e = (1, j) (δ, j + 1) , where 1 ≤ j ≤ m−2, then fA1 (e) = 0, fA2∪A3 (e) ≤ 2, fF∪F
′ (e) =

1, fc
′

1∪c
′

2
(e) = 0 and fQ (e) = 0, and so fB (e) ≤ 3.

(6) If e = (1, j) (δ, j − 1) , where 2 ≤ j ≤ m− 2, then fA1 (e) = 0, fA2∪A3 (e) ≤ 2,

fF∪F
′ (e) = 0, fc

′

1∪c
′

2
(e) = 0 and fQ (e) = 0, and so fB (e) ≤ 2.

(7) If e = (i,m− 1) (i+ 1,m) or (i,m) (i+ 1,m− 1) or (1,m) (n,m− 1) , where 1 ≤ i ≤

n − 1, then fA1 (e) = 1, fA2∪A3 (e) ≤ 1, fF∪F
′ (e) = 1, fc

′

1∪c
′

2
(e) = 0 and fQ (e) ≤ 1, and so

fB (e) ≤ 4.

(8) If e = (1,m) (δ,m− 1) or (1,m−1) (δ,m) , then fA1 (e) = 0, fA2∪A3 (e) ≤ 1, fF∪F
′ (e) =

0, f
c
′

1∪c
′

2
(e) = 0 and fQ (e) ≤ 1, and so fB (e) ≤ 2.

(9) If e = (i, 1) (i+ 1,m) or (i + 1, 1) (i,m) , where 1 ≤ i ≤ n − 2, then fA1 (e) = 0,

fA2∪A3 (e) = 0, fF∪F
′ (e) = 1, f

c
′

1∪c
′

2
(e) ≤ 1 and fQ (e) = 0, and so fB (e) ≤ 2.

(10) If e = (1, 1) (δ,m) or (m, 1) (δ, 1) , then fA1 (e) = 0, fA2∪A3 (e) = 0, fF∪F
′ (e) = 0,

f
c
′

1∪c
′

2
(e) = 1 and fQ (e) = 0, and so fB (e) ≤ 1.

(11) If e = (1, 1) (n,m) or (n, 1) (1,m) , then fA1 (e) = 0, fA2∪A3 (e) = 0, fF∪F
′ (e) = 1,

fc
′

1∪c
′

2
(e) ≤ 1 and fQ (e) = 0, and so fB (e) ≤ 2. Therefore B is a 4-fold basis.

Subcase 7b. m < n. Then consider c
′

1 and c
′

2 as in Case 2 and c
′

5, A4 and A5 as in Case 5.

Moreover, set

A
′

1 = A1 − {{(1, j) (2, j + 1) (1, j + 2) (n, j + 1) (1, j) : j = 1, 2, . . . ,m− 2}

∪ {(n, j) (n− 1, j + 1) (n, j + 2) (1, j + 1) (n, j) : j = 1, 2, . . . ,m− 2}},

where A1 is as in Case 1. Also, set

A
′

2 = {(1, j) (2, j + 1) (3, j) (4, j + 1) . . . (δ, j + 1) (1, j)|j = 1, 2, . . .m− 1}

A
′

3 = {(1, j − 1) (2, j) (3, j − 1) . . . (δ, j) (1, j − 1)|j = 2, . . .m}}.

By Case 5 and noting that each cycle of A
′

2∪A
′

3 contains an edge of the form (δ, j + 1) (1, j) for

some 1 ≤ j ≤ m− 1 or an edge of the form (δ, j) (1, j − 1) for some 2 ≤ j ≤ m which appears

in no cycle of A
′

1 ∪A4 ∪A5 ∪ c
′

1 ∪ c
′

2 ∪ c
′

5, we have that A
′

1 ∪A
′
2 ∪A

′

3 ∪A4 ∪A5 ∪ c
′

1 ∪ c
′

2 ∪ c
′

5 is

linearly independent. Now, for j = 2, 3, . . . ,m, consider the following cycles:

Fi = (1, j)(2, j − 1)(3, j − 2) . . . (j, 1)(j + 1,m)(j + 2,m− 1)(j + 3,m− 2) . . .

(m+ 1, j)(m+ 2, j − 1)(m+ 3, j) . . . (n, j − 1)(1, j),
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and for j = 1, 2, 3, . . . ,m− 1

F
′

i = (1, j)(2, j + 1)(3, j + 2) . . . (m− j + 1,m)(m− j + 2, 1)(m− j + 3, 2)(m− j + 4, 3) . . .

(m+ 1, j)(m+ 2, j + 1)(m+ 3, j) . . . (n, j + 1)(1, j).

Moreover, set

F1 = (1, 1)(2,m)(3,m− 1)(4,m− 2) . . . (m+ 1, 1)(m+ 2,m)(m+ 3, 1) . . . (n,m)(1, 1)

F
′

m = (1,m)(2, 1)(3, 2)(4, 3) . . . (m+ 1,m)(m+ 2, 1)(m+ 3, 2) . . . (n, 1)(m, 1),

Let

F = ∪m
i=1Fi and F

′

= ∪m
i=1F

′

i .

Using a similar arguments as in Subcase 6b, we show that

B = A
′

1 ∪A
′

2 ∪A
′

3 ∪A4 ∪A5 ∪ F ∪ F
′

∪ c
′

1 ∪ c
′

2 ∪ c
′

5

is linearly independent. Note that

|B| =

3∑

i=1

|A
′

i| + |A4| + |A5| + |F | + |F
′

| + 3

= (m− 2)(n− 2) + (m− 1) + (m− 1) + (n− 2) + (n− 2) +m+m+ 3

= mn+ 2m+ 1

= dim C (θn × Cm) .

Thus, B is a basis for C (θn × Cm). Now, let e ∈ E(θn × Cm). Then

(1) If e = (i, j) (i+ 1, j + 1), where 1 ≤ i ≤ n−2, and 1 ≤ j ≤ m−1, then f
A

′

1∪A
′

2∪A
′

3∪A4∪A5
(e) ≤

3, fF∪F
′ (e) = 1, f{c

′

5}
(e) = 0 and f{c

′

1,c
′

2}
(e) = 0, and so fB (e) ≤ 4.

(2) If e = (i, j) (i− 1, j + 1), where 2 ≤ i ≤ n−1, and 1 ≤ j ≤ m−1, then fA
′

1∪A
′

2∪A
′

3∪A4∪A5
(e) ≤

3, fF∪F
′ (e) ≤ 1, f{c

′

5}
(e) = 0 and f{c

′

1,c
′

2}
(e) = 0, and so fB (e) ≤ 4.

(3) If e = (n− 1, j) (n, j + 1) or (n− 1, j + 1) (n, j)or (n − 1, 1)(n,m) or (n − 1,m)(n, 1),

where 1 ≤ j ≤ m − 2, then f
A

′

1∪A
′

2∪A
′

3∪A4∪A5
(e) ≤ 3, fF∪F

′ (e) = 0, f{c
′

5}
(e) ≤ 1 and

f{c
′

1,c
′

2}
(e) = 0, and so fB (e) ≤ 4.

(4) If e = (1, j) (δ, j + 1) or (1, j + 1) (δ, j)or (1, 1) (δ,m) or (1,m) (δ, 1) where 1 ≤ j ≤ m,

then f
A

′

1∪A
′

2∪A
′

3∪A4∪A5
(e) ≤ 1, fF∪F

′ (e) ≤ 1, f{c
′

5}
(e) = 0 and f{c

′

1,c
′

2}
(e) ≤ 1, and so

fB (e) ≤ 3.

(5) If e = (1, j) (n, j + 1) or (1, j + 1) (n, j + 1) or(1, 1) (n,m) or (1,m) (n, 1) where 1 ≤

j ≤ m − 1, then fA
′

1∪A
′

2∪A
′

3∪A4∪A5
(e) = 0, fF∪F

′ (e) ≤ 1, f{c
′

5}
(e) = 0 and f{c

′

1,c
′

2}
(e) = 0,

and so fB (e) ≤ 1. Thus, B is a 4-fold basis of C(θn × Cm). The proof of this case is complete.

Case 8. m,n and δ are odd. By relabeling the vertices of θn in the opposite direction, we get

a similar case to Case 6. The proof of this case is complete. �

By combining Lemma 3.3 and Lemma 3.4, we have the following result.
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Theorem 3.5. For any graph θn of order n ≥ 4 and cycle Cm of order m ≥ 3, we have

3 ≤ b(θn × Cm) ≤ 4.
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Abstract: In this note, we prove that every regular curve in four dimensional Euclidean

space satisfies a vector differential equation of fifth order. Thereafter, in the same space,

a relation among curvatures functions of inclined curves is obtained in terms of harmonic

curvatures, which is related with Smarandache geometries ([5]).
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§1. Introduction

At the beginning of the twentieth century, A.Einstein’s theory opened a door of use of new

geometries. These geometries mostly have higher dimensions. In higher dimensional Euclidean

space, researchers treated some topics of classical differential geometry [1], [2] and [3].

It is well-known that, if a curve differentiable in an open interval, at each point, a set of

mutually orthogonal unit vectors can be constructed. And these vectors are called Frenet frame

or moving frame vectors. The rates of these frame vectors along the curve define curvatures

of the curves. The set, whose elements are frame vectors and curvatures of a curve, is called

Frenet apparatus of the curves.

In [1], author wrote a relation of inclined curves. In this work, first, we prove that every

regular curve in four dimensional Euclidean space satisfies a vector differential equation of fifth

order. This result is obtained by means of Frenet formulas. Then using relation of inclined

curves written in [1], we express a new relation for inclined curves in Euclidean space E4, which

is related with Smarandache geometries, see [5] for details.

§2. Preliminaries

To meet the requirements in the next sections, here, the basic elements of the theory of curves

in the space E4 are briefly presented (a more complete elementary treatment can be found in

[4]).

Let α : I ⊂ R → E4 be an arbitrary curve in the Euclidean space E4. Recall that the curve

α is said to be of unit speed (or parameterized by arclength function s) if 〈α′(s), α′(s)〉 = 1,

where 〈., .〉 is the standard scalar (inner) product of E4given by

1Received February 12, 2008. Accepted April 25, 2008.
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〈X,Y 〉 = x1y1 + x2y2 + x3y3 + x4y4, (1)

for each X = (x1, x2, x3, x4), Y = (y1, y2, y3, y4) ∈ E4. In particular, the norm of a vector

X ∈ E4 is given by

‖X‖ =
√
〈X,X〉.

Let {T (s), N(s), B(s), E(s)} be the moving frame along the unit speed curve α. Then the

Frenet formulas are given by [2]




T ′

N ′

B′

E′




=




0 κ 0 0

−κ 0 τ 0

0 −τ 0 σ

0 0 −σ 0







T

N

B

E



. (2)

Here T,N,B and E are called the tangent, the normal, the binormal and the trinormal vector

fields of the curves, respectively, and the functions κ(s), τ(s) and σ(s) are called the first, the

second and the third curvature of a curve in E4, respectively. Also, the functions H1 =
κ

τ
and

H2 =
H ′

1

σ
are called harmonic curvatures of the curves in E4, where κ 6= 0, τ 6= 0 and σ 6= 0.

Let α : I ⊂ R → E4 be a regular curve. If tangent vector field T of α forms a constant angle

with unit vector U, this curve is called an inclined curve in E4.

In the same space, the author wrote a characterization for inclined curves with the following

theorem in [1].

Theorem 2.1 Let α : I ⊂ R→ E4 be an unit speed regular curve with curvatures κ 6= 0, τ 6= 0

and σ 6= 0. α is an inclined curve if and only if there is a relation

κ

τ
= A. cos

s∫

0

σds.+B. sin

s∫

0

σds, (3)

where A,B ∈ R.

§3. Vector Differential Equation of Fifth Order Satisfied by Regular Curves in E4

Theorem 3.1 Let X : I ⊂ R → E4 be an unit speed regular curve with curvatures κ 6= 0, τ 6= 0

and σ 6= 0 in E4. Position vector and curvatures of α satisfies a vector differential equation of

fifth order.

Proof Let X : I ⊂ R → E4 be an unit speed regular curve with curvatures κ 6= 0, τ 6= 0

and σ 6= 0 in E4. Considering Frenet equations, we write that

N =
T ′

κ
(4)

and
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B =
1

τ
(κT +N ′). (5)

Substituting (3) in (1)3, we get

B′ = −
τ

κ
T ′ + σE. (6)

Then, differentiating (3) and substituting it to (4), we find

B =
1

τ

[
κT + (

T ′

κ
)′
]
. (7)

Taking the integral on both sides of (1)4, we know

E = −

∫
σBds (8)

and substituting (6) to (7), we get

E = −

∫
σ

τ

[
κT + (

T ′

κ
)′
]
ds. (9)

Applying (8) in (5), we have

B′ = −
τ

κ
T ′ − σ

∫
σ

τ

[
κT + (

T ′

κ
)′
]
ds. (10)

Similarly, differentiating (6) and considering (9), then





(
1

τ
)′
[
T ′′κ− T ′κ′

κ2
+ κT

]
+

1

τ

[
(T ′′′κ+ T ′κ′′)κ2 − 2κκ′(T ′′κ− T ′κ′)

κ+
+ κ′T + κT ′

]

+
τ

κ
T ′ + σ

∫ σ
τ

[
κT + (

T ′

κ
)′
]
ds





= 0 (11)

is obtained. One more differentiating of (10) and simplifying this with
.

X= T,
..

X= T ′,
...

X=

T ′′, X(IV ) = T ′′′ and X(V ) = T (IV ), we know





[
1

κτ

]
X(V ) +

[
κ′

κ2τ
+ (

1

τ
)′

1

κ
+ (

1

κ4τ
)′κ+

2

κ3τ

]
.X(IV )+

[
(
1

τ
)′′

1

κ
− 2(

1

τ
)′
κ′

κ2
− κ2κ′τ(

1

κ4τ
)′ −

κ′′

κ2τ
−

2

κ3τ
κ′

2

+ κ5 +
τ

κ
+
σ2

κτ

]
...

.X



−
κ′

κ2
(
1

τ
)′′ −

κ′′

κ2
(
1

τ
)′ +

2κ′
2

κ3
(
1

τ
)′ + κ(

1

τ
)′ + 2κ′

2

κ(
1

κ4τ
) + κ5(

1

κ4τ
)′

−
2κ′κ′′

κ3τ
+
κ′σ

τ
+ (

τ

κ
)′ +

σ2

κτ
− κ2κ′′(

1

κ4τ
)′ −

σ2κ′

κτ




..

.X

[
κ(

1

τ
)′′ + κ′(

1

τ
)′′ + κ′(

1

τ
)′ + κ4κ′(

1

κ4τ
)′ +

4κ′
2

κτ
+
κ′′

τ
+
σ2κ′

τ

]
.

.

X





= 0. (12)

The formula (12) proves the theorem as desired. �
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§4. A Characterization of Inclined Curves in E4

Theorem 4.1 Let α : I ⊂ R→ E4 be an unit speed regular curve with curvatures κ 6= 0, τ 6= 0

and σ 6= 0 in E4. α is an inclined curve if and only if

H2
1 +H2

2 = constant, (13)

where H1 and H2 are harmonic curvatures.

Proof Let α be an regular inclined curve in E4. In this case, we can write

κ

τ
= A. cos

s∫

0

σds.+B. sin

s∫

0

σds, (14)

where A,B ∈ R. If we differentiate (14) respect to s, we get

1

σ

d

ds
(
κ

τ
) = −A. sin

s∫

0

σds.+B. cos

s∫

0

σds. (15)

Similarly, one more differentiating (15) respect to s, we have

d

ds

[
1

σ

d

ds
(
κ

τ
)

]
= −Aσ sin

s∫

0

σds.−Bσ sin

s∫

0

σds. (16)

Using notations σH1 = σ
κ

τ
and

dH2

ds
in (16), we find

σH1 +
dH2

ds
= 0. (17)

Multiplying both sides of (17) with
1

σ
H ′

1 = H2, we obtain

H1H
′
1 +H2H

′
2 = 0. (18)

The formula (18) yields that

H2
1 +H2

2 = constant. (19)

Conversely, let relation (19) hold. Differentiating (19) respect to s, we know

H1H
′
1 +H2H

′
2 = 0. (20)

Similarly differentiating of expressions of harmonic curvatures and using these in (20), we

have the following differential equation

1

σ2
H ′′

1 +
1

σ
(
1

σ
)′H ′

1 +H1 = 0. (21)

Using an exchange variable t =
s∫
0

σds in (20),
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..

H1 +H1 = 0. (22)

Here, the notation
..

H1 indicates derivative of H1 according to t. Solution of (22) follows

that

H1 = A cos t+B sin t, (23)

where A,B ∈ R. Therefore, we write that

κ

τ
= A. cos

s∫

0

σds.+B. sin

s∫

0

σds. (24)

By Theorem 2.1, (24) implies that α is an inclined curve in E4.
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Abstract: For any vertex x in a connected graph G of order p ≥ 2, a set S ⊆ V (G) is an

x-detour set of G if each vertex v ∈ V (G) lies on an x − y detour for some element y in S.

The minimum cardinality of an x-detour set of G is defined as the x-detour number of G,

denoted by dx(G). An x-detour set of cardinality dx(G) is called a dx-set of G. An x-detour

set Sx is called a minimal x-detour set if no proper subset of Sx is an x-detour set. The upper

x-detour number, denoted by d+
x (G), is defined as the maximum cardinality of a minimal

x-detour set of G. We determine bounds for it and find the same for some special classes of

graphs. For any three positive integers a, b and n with a ≥ 2 and a ≤ n ≤ b, there exists a

connected graph G with dx(G) = a, d+
x (G) = b and a minimal x-detour set of cardinality n.

A subset T of a minimum x-detour set Sx of G is an x-forcing subset for Sx if Sx is the unique

minimum x-detour set containing T. An x-forcing subset for Sx of minimum cardinality is a

minimum x-forcing subset of Sx. The forcing x-detour number of Sx, denoted by fdx(Sx), is

the cardinality of a minimum x-forcing subset for Sx. The forcing x-detour number of G is

fdx(G) = min {fdx(Sx)}, where the minimum is taken over all minimum x-detour sets Sx in

G. It is shown that for any three positive integers a, b and c with 2 ≤ a ≤ b ≤ c, there exists

a connected graph G with fdx(G) = a, dx(G) = b and d+
x (G) = c for some vertex x in G.

Key Words: detour, vertex detour number, upper vertex detour number, forcing vertex

detour number.

AMS(2000): 05C12.

§1. Introduction

By a graph G = (V,E) we mean a finite undirected connected graph without loops or multiple

edges. The order and size of G are denoted by p and q respectively. For basic graph theoretic

1Received March 2, 2008. Accepted April 29, 2008.
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terminology we refer to Harary [6]. For vertices x and y in a connected graph G, the distance

d(x, y) is the length of a shortest x− y path in G. An x− y path of length d(x, y) is called an

x− y geodesic. The closed interval I[x, y] consists of all vertices lying on some x− y geodesic

of G, while for S ⊆ V, I[S] =
⋃

x,y∈S

I[x, y]. A set S of vertices is a geodetic set if I[S] = V,

and the minimum cardinality of a geodetic set is the geodetic number g(G). A geodetic set of

cardinality g(G) is called a g − set. The geodetic number of a graph was introduced in [1,7]

and further studied in [3].

The concept of vertex geodomination number was introduced by Santhakumaran and Titus

in [8] and further studied in [9]. Let x be a vertex of a connected graph G. A set S of vertices

of G is an x-geodominating set of G if each vertex v of G lies on an x − y geodesic in G for

some element y in S. The minimum cardinality of an x-geodominating set of G is defined as the

x-geodomination number of G and is denoted by gx(G). An x-geodominating set of cardinality

gx(G) is called a gx-set. The connected vertex geodomination number was introduced and

studied by Santhakumaran and Titus in [11]. A connected x-geodominating set of G is an

x-geodominating set S such that the subgraph G[S] induced by S is connected. The minimum

cardinality of a connected x-geodominating set of G is the connected x-geodomination number

of G and is denoted by cgx(G). A connected x-geodominating set of cardinality cgx(G) is called

a cgx-set of G.

For vertices x and y in a connected graph G, the detour distance D(x, y) is the length

of a longest x − y path in G. An x − y path of length D(x, y) is called an x − y detour. The

closed interval ID[x, y] consists of all vertices lying on some x− y detour of G, while for S ⊆ V,

ID[S] =
⋃

x,y∈S

ID[x, y]. A set S of vertices is a detour set if ID[S] = V, and the minimum

cardinality of a detour set is the detour number dn(G). A detour set of cardinality dn(G) is

called a minimum detour set. The detour number of a graph was introduced in [4] and further

studied in [5].

The concept of vertex detour number was introduced by Santhakumaran and Titus in [10].

Let x be a vertex of a connected graph G. A set S of vertices of G is an x-detour set if each

vertex v of G lies on an x − y detour in G for some element y in S. The minimum cardinality

of an x-detour set of G is defined as the x-detour number of G and is denoted by dx(G). An

x-detour set of cardinality dx(G) is called a dx-set of G. A vertex v in a graph G is an x-detour

vertex if v belongs to every minimum x-detour set of G. The connected x-detour number was

introduced and studied by Santhakumaran and Titus in [12]. A connected x-detour set of G

is an x-detour set S such that the subgraph G[S] induced by S is connected. The minimum

cardinality of a connected x-detour set of G is the connected x-detour number of G and is

denoted by cdx(G). A connected x-detour set of cardinality cdx(G) is called a cdx-set of G.

For the graph G given in Fig.1.1, the minimum vertex detour sets, the vertex detour

numbers, the minimum connected vertex detour sets and the connected vertex detour numbers

are given in Table 1.1. An elaborate study of results in vertex detour number with several

interesting applications is given in [10].
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Fig.1.1

Vertex x dx-sets dx(G) cdx-sets cdx(G)

t {y, w}, {z, w}, {u,w} 2 {y, v, w}, {u, v, w} 3

y {w} 1 {w} 1

z {w} 1 {w} 1

u {w} 1 {w} 1

v {y, w}, {z, w}, {u,w} 2 {y, v, w}, {u, v, w} 3

w {y}, {z}, {u} 1 {y}, {z}, {u} 1

Table 1.1

The following theorems will be used in the sequel.

Theorem 1.1([10]) Let x be any vertex of a connected graph G.

(i) Every end-vertex of G other than the vertex x (whether x is end-vertex or not) belongs

to every x-detour set.

(ii) No cutvertex of G belongs to any dx-set.

Theorem 1.2([10]) Let G be a connected graph with cut vertices and let Sx be an x-detour set

of G. Then every branch of G contains an element of Sx

⋃
{x}.

Theorem 1.3([10]) If G is a connected graph with k end-blocks, then dx(G) ≥ k − 1 for every

vertex x in G. In particular, if x is a cut vertex of G, then dx(G) ≥ k.

Theorem 1.4([10]) Let T be a tree with number of end-vertices t. Then dx(T ) = t − 1 or

dx(T ) = t according as x is an end-vertex or not. In fact, if W is the set of all end-vertices of

T, then W − {x} is the unique dx-set of T.

Theorem 1.5([10]) If G is the complete graph Kn(n ≥ 2), the n-cube Qn(n ≥ 2), the cycle

Cn(n ≥ 3), the wheel Wn = K1 +Cn−1(n ≥ 4) or the complete bipartite graph Km,n(m,n ≥ 2),

then dx(G) = 1 for every vertex x in G.

Throughout the following G denotes a connected graph with at least two vertices.
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§2. Minimal Vertex Detour Sets in a Graph

Definition 2.1 Let x be any vertex of a connected graph G. An x-detour set Sx is called a

minimal x-detour set if no proper subset of Sx is an x-detour set. The upper x-detour number,

denoted by d+
x (G), is defined as the maximum cardinality of a minimal x-detour set of G.

It is clear from the definition that for any vertex x in G, x does not belong to any minimal

x-detour set of G.

Example 2.2 For the graph G given in Fig.2.1, the minimum vertex detour sets, the minimum

vertex detour numbers, the minimal vertex detour sets and the upper vertex detour numbers are

given in Table 2.1.

Fig.2.1

Vertex x Minimum x-detour sets dx(G) Minimal x-detour sets d+
x (G)

t {a, y}, {a, z} 2 {a, u, v}, {a, y}, {a, z} 3

y {a, t}, {a, z}, {a, u}, {a, v} 2 {a, t}, {a, z}, {a, u}, {a, v} 2

z {a} 1 {a} 1

u {a, y}, {a, z}, {a, v} 2 {a, y}, {a, z}, {a, v} 2

v {a, y}, {a, z}, {a, u} 2 {a, y}, {a, z}, {a, u} 2

w {a, z} 2 {a, z}, {a, t, y}, {a, y, u}, 3

{a, y, v}, {a, u, v}

a {z} 1 {z}, {t, y}, {y, u}, {y, v}, {u, v} 2

Table 2.1

Note 2.3 For any vertex x in a connected graph G, every minimum x-detour set is a minimal

x-detour set, but the converse is not true. For the graph G given in Figure 2.1, {a, u, v} is a

minimal t-detour set but it is not a minimum t-detour set of G.

Theorem 2.4 Let x be any vertex of a connected graph G.

(i) Every end-vertex of G other than the vertex x (whether x is end-vertex or not) belongs

to every minimal x-detour set.

(ii) No cut vertex of G belongs to any minimal x-detour set.
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Proof (i) Let x be any vertex of G. Since x does not belong to any minimal x-detour set,

let v 6= x be an end-vertex of G. Then v is the terminal vertex of an x− v detour and v is not

an internal vertex of any detour so that v belongs to every minimal x-detour set of G.

(ii) Let y 6= x be a cut vertex of G. Let U and W be two components of G− {y}. For any

vertex x in G, let Sx be a minimal x-detour set of G. Suppose that x ∈ U. Now, suppose that

Sx

⋂
W = ∅. Let w1 ∈ W. Then w1 /∈ Sx. Since Sx is an x-detour set, there exists an element

z in Sx such that w1 lies in some x − z detour P : x = z0, z1, ..., w1, ..., zn = z in G. Since

Sx

⋂
W = ∅ and y is a cut vertex of G, it follows that the x−w1 subpath of P and the w1 − z

subpath of P both contain y so that P is not a path in G. Hence Sx

⋂
W 6= ∅. Let w2 ∈ Sx

⋂
W.

Then w2 6= y so that y is an internal vertex of an x−w2 detour. If y ∈ Sx, let S = Sx −{y}. It

is clear that every vertex that lies on an x − y detour also lies on an x − w2 detour. Hence it

follows that S is an x-detour set of G, which is a contradiction to Sx a minimal x-detour set of

G. Thus y does not belong to any minimal x-detour set of G. Similarly if x ∈ W, then y does

not belong to any minimal x-detour set of G. �

The following theorem is an easy consequence of the definitions of the minimum vertex

detour number and the upper vertex detour number of a graph.

Theorem 2.5 For any non-trivial tree T with k end vertices, dx(T ) = d+
x (T ) = k or k − 1

according as x is a cut vertex or not.

(ii) For any vertex x in the complete graph Kp, dx(Kp) = d+
x (Kp) = 1.

(iii) For any vertex x in the complete bipartite graph Km,n, dx(Km,n) = d+
x (Km,n) = 1 if

m,n ≥ 2.

(iv) For any vertex x in the wheel Wp, dx(Wp) = d+
x (Wp) = 1. �

Theorem 2.6 For any vertex x in G, 1 ≤ dx(G) ≤ d+
x (G) ≤ p− 1.

Proof It is clear from the definition of minimum x-detour set that dx(G) ≥ 1. Since every

minimum x-detour set is a minimal x-detour set, dx(G) ≤ d+
x (G). Also, since the vertex x does

not belong to any minimal x-detour set, it follows that d+
x (G) ≤ p− 1. �

Remark 2.7 For the complete graph Kp, dx(Kp) = 1 for every vertex x in Kp. For the graph

G given in Figure 2.1, dy(G) = d+
y (G). Also, for the graph K2, d

+
x (K2) = p− 1 for every vertex

x in K2. All the inequalities in Theorem 2.6 can be strict. For the graph G given in Figure 2.1,

dw(G) = 2, d+
w(G) = 3 and p = 7 so that 1 < dw(G) < d+

w(G) < p− 1.

Theorem 2.8 For every pair a, b of integers with 1 ≤ a ≤ b, there is a connected graph G with

dx(G) = a and d+
x (G) = b for some vertex x in G.

Proof For a = b = 1, Kp(p ≥ 2) has the desired properties. For a = b with b ≥ 2, let G

be any tree of order p ≥ 3 with b end-vertices. Then by Theorem 2.5(i), dx(G) = d+
x (G) = b

for any cut vertex x in G. Assume that 1 ≤ a < b. Let F = (K2

⋃
(b− a+ 2)K1)) +K2, where

let Z = V (K2) = {z1, z2}, Y = V ((b − a + 2)K1) = {x, y1, y2, ..., yb−a+1} and U = V (K2) =

{u1, u2}. Let G be the graph obtained from F by adding a−1 new vertices w1, w2, ..., wa−1 and

joining each wi to x. The graph G is shown in Fig.2.2. Let W = {w1, w2, ..., wa−1} be the set
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of end vertices of G.

Fig.2.2

First, we show that dx(G) = a for the vertex x in G. By Theorem 1.3, dx(G) ≥ a. On the

other hand, let S = {w1, w2, ..., wa−1, z1}. Then D(x, z1) = 5 and each vertex of F lies on an

x− z1 detour. Hence S is an x-detour set of G and so dx(G) ≤ |S| = a. Therefore, dx(G) = a.

Also, we observe that a minimum x-detour set of G is formed by taking all the end vertices and

exactly one vertex from Z.

Next, we show that d+
x (G) = b. Let M = {w1, w2, ..., wa−1, y1, y2, ..., yb−a+1}. It is clear

that M is an x-detour set of G. We claim that M is a minimal x-detour set of G. Assume, to

the contrary, that M is not a minimal x-detour set. Then there is a proper subset T of M such

that T is an x-detour set of G. Let s ∈ M and s /∈ T. By Theorem 1.1(i), clearly s = yi, for

some i = 1, 2, ..., b − a + 1. For convenience, let s = y1. Since y1 does not lie on any x − yj

detour where j = 2, 3, ..., b − a + 1, it follows that T is not an x-detour set of G, which is a

contradiction. Thus M is a minimal x-detour set of G and so d+
x (G) ≥ |M | = b.

Now we prove that d+
x (G) = b. Suppose that d+

x (G) > b. Let N be a minimal x-detour set

of G with |N | > b. Then there exists at least one vertex, say v ∈ N such that v /∈ M. Thus

v ∈ {u1, u2, z1, z2}.

Case 1. v ∈ {z1, z2}, say v = z1. Clearly W
⋃
{z1} is an x-detour set of G and also it is a

proper subset of N, which is a contradiction to N a minimal x-detour set of G.

Case 2. v ∈ {u1, u2}, say v = u1. Suppose u2 /∈ N. Then there is at least one y in Y such

that y ∈ N. Clearly, D(x, u1) = 4 and the only vertices of any x − u1 detour are x, z1, z2, u1

and u2. Also x, u2, z1, z2, u1, y is an x− y detour and hence N −{u1} is an x-detour set, which

is a contradiction to N a minimal x-detour set of G. Suppose u2 ∈ N. It is clear that the only

vertices of any x − u1 or x − u2 detour are x, u1, u2, z1 and z2. Since u1, u2 ∈ N, it follows

that both N − {u1} and N − {u2} are x-detour sets, which is a contradiction to N a minimal

x-detour set of G.

Thus there is no minimal x-detour set N of G with |N | > b. Hence d+
x (G) = b. �

Remark 2.9 The graph G of Figure 2.2 contains exactly three minimal x-detour sets, namely

W
⋃
{z1}, W

⋃
{z2} andW

⋃
(Y−{x}).This example shows that there is no ”Intermediate Value

Theorem” for minimal x-detour sets, that is, if n is an integer such that dx(G) < n < d+
x (G),

then there need not exist a minimal x-detour set of cardinality n in G.
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Theorem 2.10 For any three positive integers a, b and n with a ≥ 2 and a ≤ n ≤ b, there exists

a connected graph G with dx(G) = a, d+
x (G) = b and a minimal x-detour set of cardinality n.

Proof We consider four cases.

Case 1. Suppose a = n = b.

Let G be any tree of order p ≥ 3 with a end vertices. Then by Theorem 2.5(i), dx(G) =

d+
x (G) = a for any cut vertex x in G and the set of all end vertices in G is a minimal x-detour

set with cardinality n by Theorem 2.4.

Case 2. Suppose a = n < b. For the graph G given in Figure 2.2 of Theorem 2.8, it is

proved that dx(G) = a, d+
x (G) = b and S = {w1, w2, ..., wa−1, z1} is a minimal x-detour set of

cardinality n.

Case 3. Suppose a < n = b. For the graph G given in Figure 2.2 of Theorem 2.8, it is proved

that dx(G) = a, d+
x (G) = b and S = {w1, w2, ..., wa−1, y1, y2, ..., yb−a+1} is a minimal x-detour

set of cardinality n.

Case 4. Suppose a < n < b. Let l = n− a+ 1 and m = b− n+ 1.

Let F1 = (K2

⋃
lK1)+K2, where let Z1 = V (K2) = {z1, z2}, Y1 = V (lK1) = {y1, y2, ..., yl}

and U1 = V (K2) = {u1, u2}. Similarly let F2 = (K2

⋃
mK1) +K2, where let Z2 = V (K2) =

{z3, z4}, Y2 = V (mK1) = {x1, x2, ..., xm} and U2 = V (K2) = {u3, v4}. Let K1,a−2 be the star

at the vertex x and let W = {w1, w2, ..., wa−2} be the set of end vertices of K1,a−2. Let G be

the graph obtained from K1,a−2, F1 and F2 by joining the vertex x of K1,a−2 to the elements

of U1 and U2. The graph G is shown in Fig.2.3. It follows from Theorem 2.4(i) that for the

vertex x, W is a subset of every minimal x-detour set of G.

Fig.2.3

First, we show that dx(G) = a for the vertex x in G. By Theorem 1.3, dx(G) ≥ a. On the
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other hand, let S = {w1, w2, ..., wa−2, z1, z3}. Then D(x, z1) = 5 and each vertex of F1 lies on

an x− z1 detour. Similarly, D(x, z3) = 5 and each vertex of F2 lies on an x− z3 detour. Hence

S is an x-detour set of G and so dx(G) ≤ |S| = a. Therefore, dx(G) = a.

Next, we show that d+
x (G) = b. Let M = W

⋃
Y1

⋃
Y2. It is clear that M is an x-detour

set of G. We claim that M is a minimal x-detour set of G. Assume, to the contrary, that M is

not a minimal x-detour set. Then there is a proper subset T of M such that T is an x-detour

set of G. Let s ∈ M and s /∈ T. By Theorem 1.1(i), clearly s ∈ Y1

⋃
Y2. For convenience, let

s = y1. Since y1 does not lie on any x − yj detour, where j = 2, 3, ..., l and y1 does not lie on

any x− xj detour, where j = 1, 2, ...,m, it follows that T is not an x-detour set of G, which is

a contradiction. Thus M is a minimal x-detour set of G and so d+
x (G) ≥ |M | = b.

Now, we prove that d+
x (G) = b. Suppose that d+

x (G) > b. Let N be a minimal x-detour set

of G with |N | > b. Then there exists at least one vertex, say v ∈ N such that v /∈ M. Thus,

v ∈ {u1, u2, u3, u4, z1, z2, z3, z4}.

Subcase 1. Suppose v ∈ {z1, z2}, say v = z1. Clearly, every vertex of F1 lies on an x − z1

detour and so (N − V (F1))
⋃
{v} is an x-detour set of G and it is a proper subset of N, which

is a contradiction to N a minimal x-detour set of G.

Subcase 2. Suppose v ∈ {z3, z4}. It is similar to Subcase 1.

Subcase 3. Suppose v ∈ {u1, u2}, say v = u1. Suppose u2 /∈ N. Then there is at least one

element y in Y1 such that y ∈ N. Clearly, D(x, u1) = 4 and the only vertices of any x − u1

detour are x, z1, z2, u1 and u2. Also x, u2, z1, z2, u1, y is an x− y detour and hence N − {u1} is

an x-detour set, which is a contradiction to N a minimal x-detour set of G. Suppose u2 ∈ N.

It is clear that the only vertices of any x − u1 or x − u2 detour are x, u1, u2, z1 and z2. Since

u1, u2 ∈ N, it follows that bothN−{u1} andN−{u2} are x-detour sets, which is a contradiction

to N a minimal x-detour set of G.

Subcase 4. Suppose v ∈ {u3, u4}. It is similar to Subcase 3.

Thus there is no minimal x-detour set N of G with |N | > b. Hence d+
x (G) = b.

Now, we show that there is a minimal x-detour set of cardinality n. Let S = {w1, w2, ...,

wa−2, z3, y1, y2, ..., yl}. It is clear that S is an x-detour set of G. We claim that S is a minimal

x-detour set of G. Assume, to the contrary, that S is not a minimal x-detour set. Then there is

a proper subset T of S such that T is an x-detour set of G. Let s ∈ S and s /∈ T. By Theorem

1.1(i) and Theorem 1.2, clearly s = yi for some i = 1, 2, ..., l. For convenience, let s = y1. Since

y1 does not lie on any x− yj detour where j = 2, 3, ..., l, it follows that T is not an x-detour set

of G, which is a contradiction. Thus S is a minimal x-detour set of G with cardinality |S| = n.

Hence we obtain the theorem. �

§3. Vertex Forcing Subsets in Vertex Detour Sets of a Graph

Let x be any vertex of a connected graph G. Although G contains a minimum x-detour set

there are connected graphs which may contain more than one minimum x-detour set. For

example the graph G given in Fig. 2.1 contains more than one minimum x-detour set. For each

minimum x-detour set Sx in a connected graph G there is always some subset T of Sx that
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uniquely determines Sx as the minimum x-detour set containing T. Such sets are called ”vertex

forcing subsets” and we discuss these sets in this section.

Definition 3.1 Let x be any vertex of a connected graph G and let Sx be a minimum x-

detour set of G. A subset T ⊆ Sx is called an x-forcing subset for Sx if Sx is the unique

minimum x-detour set containing T. An x-forcing subset for x of minimum cardinality is a

minimum x-forcing subset of Sx. The forcing x-detour number of Sx, denoted by fdx(Sx),

is the cardinality of a minimum x-forcing subset for Sx. The forcing x-detour number of G is

fdx(G) = min {fdx(Sx)}, where the minimum is taken over all minimum x-detour sets Sx in

G.

Example 3.2 For the graph G given in Figure 1.1, the minimum x-detour sets, the x-detour

numbers and the forcing x-detour numbers for every vertex x in G are given in Table 3.1.

Vertex x Minimum x-detour sets x-detour number Forcing x-detour number

t {y, w}, {z, w}, {u,w} 2 1

y {w} 1 0

z {w} 1 0

u {w} 1 0

v {y, w}, {z, w}, {u,w} 2 1

w {y}, {z}, {u} 1 1

Table 3.1

Theorem 3.3 any vertex x in a connected graph G, 0 ≤ fdx(G) ≤ dx(G).

Proof Let x be any vertex of G. It is clear from the definition of fdx(G) that fdx(G) ≥ 0.

Let Sx be any minimum x-detour set of G. Since fdx(Sx) ≤ dx(G) and since fdx(G) = min

{fdx(Sx) : Sx is a minimum x-detour set in G}, it follows that fdx(G) ≤ dx(G). Thus 0 ≤

fdx(G) ≤ dx(G). �

Remark 3.4 The bounds in Theorem 3.3 are sharp. For the graph G given in Figure 1.1,

fdy(G) = 0 and fdw(G) = dw(G) = 1. Also, the inequality in Theorem 3.3 can be strict. For

the same graph G given in Figure 1.1, 0 < fdv(G) < dv(G).

The following theorem characterizes those graphs G having fdx(G) = 0, fdx(G) = 1 or

fdx(G) = dx(G). Since the proof of this theorem is straight forward, we omit it.

Theorem 3.5 Let x be any vertex of a graph G. Then

(i) fdx(G) = 0 if and only if G has a unique minimum x-detour set.

(ii) fdx(G) = 1 if and only if G has at least two minimum x-detour sets, one of which is

a unique minimum x-detour set containing one of its elements.

(iii) fdx(G) = dx(G) if and only if no minimum x-detour set of G is the unique minimum

x-detour set containing any of its proper subsets.
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Theorem 3.6 Let x be any vertex of a connected graph G and let Sx be any minimum x-detour

set of G. Then

(i) no cut vertex of G belongs to any minimum x-forcing subset of Sx.

(ii) no x-detour vertex of G belongs to any minimum x-forcing subset of Sx.

Proof Let x be any vertex of a connected graph G and let Sx be any minimum x-detour

set of G.

(i) Since any minimum x-forcing subset of Sx is a subset of Sx, the result follows from

Theorem 1.1(ii).

(ii) Let v be an x-detour vertex of G. Then v belongs to every minimum x-detour set of

G. Let T ⊆ Sx be any minimum x-forcing subset for any minimum x-detour set Sx of G. We

claim that v /∈ T. If v ∈ T, then T ′ = T −{v} is a proper subset of T such that Sx is the unique

minimum x-detour set containing T ′ so that T ′ is an x-forcing subset for Sx with |T ′| < |T |,

which is a contradiction to T a minimum x-forcing subset for Sx. �

Corollary 3.7 Let x be any vertex of a connected graph G. If G contains k end-vertices, then

fdx(G) ≤ dx(G) − k + 1.

Proof This follows from Theorem 1.1(i) and Theorem 3.6(ii). �

Remark 3.8 The bound for fdx(G) in Corollary 3.7 is sharp. For a non-trivial tree T with k

end vertices, fdx(T ) = 0 = dx(T ) − k + 1 for any end vertex x in T.

Theorem 3.9 (i)If T is a non-trivial tree, then fdx(T ) = 0 for every vertex x in T.

(ii) If G is the complete graph Kn (n ≥ 3), the n-cube Qn (n ≥ 2), the cycle Cn (n ≥ 3),

the wheel Wn = K1 + Cn−1 (n ≥ 4) or the complete bipartite graph Km,n (m,n ≥ 2), then

fdx(G) = dx(G) = 1 for every vertex x in G.

Proof (i) This follows from Theorem 1.4 and Theorem 3.5(i).

(ii) For each of the graphs in (ii) it is easily seen that there is more than one minimum

x-detour set for any vertex x. Hence it follows from Theorem 3.5(i) that fdx(G) 6= 0 for each

of the graphs. Also, by Theorem 3.3, fdx(G) ≤ dx(G). Now it follows from Theorem 1.5 that

fdx(G) = dx(G) = 1 for each of the graphs. �

Theorem 3.10 For any vertex x in a connected graph G, 0 ≤ fdx(G) ≤ dx(G) ≤ d+
x (G).

Proof This follows from Theorems 2.6 and 3.3. �

The following theorem gives a realization for the parameters fdx(G), dx(G) and d+
x (G).

Theorem 3.11 For any three positive integers a, b and c with 2 ≤ a ≤ b ≤ c, there exists a

connected graph G with fdx(G) = a, dx(G) = b and d+
x (G) = c for some vertex x in G.

Proof For each integer i with 1 ≤ i ≤ a−1, let Fi be a copy of K2, where vi and v′i are the

vertices of Fi. Let K1,b−a be the star at the vertex x and let U = {u1, u2, ..., ub−a} be the set of

end vertices of K1,b−a. Let H be the graph obtained from K1,b−a by joining the vertex x to the
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vertices of Fi (1 ≤ i ≤ a−1). Let K = (K2

⋃
(c− b+1)K1)+K2, where Z = V (K2) = {z1, z2},

Y = V ((c − b + 1)K1) = {y1, y2, ..., yc−b+1} and X = V (K2) = {x1, x2}. Let G be the graph

obtained from H and K by joining x with x1 and x2. The graph G is shown in Fig.3.1.

Fig.3.1

Step I. First, we show that dx(G) = b for the vertex x in G. By Theorem 1.3, dx(G) ≥ b. On

the other hand, if c− b + 1 > 1, let S = {u1, u2, ..., ub−a, v1, v2, ..., va−1, z1} be the set formed

by taking all the end vertices and exactly one vertex from each Fi and Z, and if c− b+ 1 = 1,

let S = {u1, u2, ..., ub−a, v1, v2, ..., va−1, z1} be the set formed by taking all the end vertices and

exactly one vertex from each Fi and Z
⋃
{y1}. Then D(x, z1) = 5 and each vertex of K lies on

an x− z1 detour and each vertex of Fi lies on an x− vi detour. Hence S is an x-detour set of

G and so dx(G) ≤ |S| = b. Therefore, dx(G) = b.

Step II. Now, we show that fdx(G) = a. Since every minimum x-detour set of G contains U,

exactly one vertex from each Fi (1 ≤ i ≤ a− 1) and one vertex from Z or Z
⋃
{y1} according

as c > b or c = b respectively, let S = {u1, u2, ..., ub−a, v1, v2, ..., va−1, z1} be a minimum x-

detour set of G and let T ⊆ S be any minimum x-forcing subset of S. Then by Theorem 3.6(ii),

T ⊆ S − U. Therefore, |T | ≤ a. If |T | < a, then there is a vertex y ∈ S − U such that y /∈ T.

Now there are two cases.

Case 1. Let y ∈ {v1, v2, ..., va−1}, say y = v1. Let S′ = (S − {v1})
⋃
{v′1}, where v′1 be the

vertex of F1 other than v1. Then S′ 6= S and S′ is also a minimum x-detour set of G such that

it contains T, which is a contraction to T an x-forcing subset of S.

Case 2. Let y = z1. Then exactly similar to Case 1 we see that |T | < a is not possible. Thus

|T | = a and so fdx(G) = a.

Step III. Next, we show that d+
x (G) = c. Let M = {u1, u2, ..., ub−a, v1, v2, ..., va−1, y1, y2,

.., yc−b+1}. It is clear that M is an x-detour set of G. We claim that M is a minimal x-detour

set of G. Assume, to the contrary, that M is not a minimal x-detour set. Then there is a proper

subset T of M such that T is an x-detour set of G. Let s ∈ M and s /∈ T. By Theorem 1.2,

clearly s = yi for some i = 1, 2, ..., c− b + 1. For convenience, let s = y1. Since y1 does not lie

on any x − yj detour where j = 2, 3, ..., c − b + 1, it follows that T is not an x-detour set of

G, which is a contradiction. Thus M is a minimal x-detour set of G and so d+
x (G) ≥ |M | = c.

Now suppose d+
x (G) > c. Let N be a minimal x-detour set of G with |N | > c. Then at least one
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vertex w ∈ N such that w /∈ M. It is clear that every minimal x-detour set contains exactly

one vertex from each Fi. Then by Theorem 2.4(i), w ∈ {x1, x2, z1, z2}.

Case 1. Let w ∈ {z1, z2}, say w = z1. Since every vertex of K lies on an x−z1 detour we have

(N − V (K))
⋃
{z1} is an x-detour set and it is a proper subset of N, which is a contradiction

to N a minimal x-detour set of G.

Case 2. Let w ∈ {x1, x2}, say w = x1. Suppose x2 /∈ N. Then there is at least one y in Y such

that y ∈ N. Clearly, D(x, x1) = 4 and the only vertices of any x − x1 detour are x, z1, z2, x1

and x2. Also x, x2, z1, z2, x1, y is an x− y detour and hence N −{x1} is an x-detour set, which

is a contradiction to N a minimal x-detour set of G. Suppose x2 ∈ N. It is clear that the only

vertices of any x − x1 or x − x2 detour are x, z1, z2, x1 and x2. Since x1, x2 ∈ N, it follows

that both N − {x1} and N − {x2} are x-detour sets, which is a contradiction to N a minimal

x-detour set of G.

Thus there is no minimal x-detour set N of G with |N | > c. Hence d+
x (G) = c. �
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