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Abstract: In this paper the symmetric primitive matrices of order n with exponent n —
2 are completely characterized by applying a combinatorial approach, i.e., mathematical

combinatorics ([7]).
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81. Introduction

An n x n nonnegative matrix A = (a;;) is said to be primitive if A > 0 for some positive
integer k. The least such k is called the exzponent of the matrix A and is denoted by v(A).

Suppose that SE, = {y(A) : A isasymmetric and primitive n x n matrix} be the
exponent set of n x n symmetric primitive matrices. In 1986, J.Y.Shaol! proved SE, =
{1,2,---,2n — 2}\S, where S is the set of all odd numbers among {n,n +1,---,2n — 2} and
gave the characterization of the matrix with exponent 2n — 2. In 1990, B.L.Liu et al®l gave the
characterization of the matrix with exponent 2n —4. In 1991, G.R.Li et al®! obtained the char-
acterization with exponent 2n—6. In 1995, J.L.Cai et all¥) derived the complete characterization
of symmetric primitive matrices with exponent 2n — 2r(> n) which is a generalization of the
results in [1,2, 3], where r = 1,2, 3, respectively. In 2003, J.L.Cai et all® derived the complete
characterization of symmetric primitive matrices with exponent n — 1. However, there are no
results regarding the characterization of symmetric primitive matrices of exponent n — 1. The
purpose of this paper is to go further into the problem and give the complete characterization
of symmetric primitive matrices with exponent n — 2 by applying a combinatorial approach,
i.e., mathematical combinatorics ([7]).

The associated graph of symmetric matriz A, denoted by G(A), is a graph with a vertex
set V(G(A)) ={1,2,---,n} such that there is an edge from 7 to j in graph G(A) if and only
if a;; > 0. Hence G(A) may contain loops if a;; > 0 for some i. A graph G is called to be

1Received February 26, 2008. Accepted March 18, 2008.
2Foundation item: Project 10271017 (2002) supported by NNSFC.
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primitive if there exists an integer k& > 0 such that for all ordered pairs of vertices i,j € V(G)
(not necessarily distinct), there is a walk from ¢ to j with length k. The least such k is called
the exponent of G, denoted by v(G). Clearly, a symmetric matrix A is primitive if and only if
its associated graph G(A) is primitive. And in this case, we have v(A) = v(G(A)). By this
reason as above, we shall employ graph theory as a major tool and consider v(G(A)) to prove
our results.

Terminologies and notations not explained in this paper are referred to the reference [6].

82. Some Lemmas

In the following, we need the conception of the local exponent, i.e., the exponent from vertex
u to vertex v, denoted by v(u,v), is the least integer k such that there exists a walk of length

m from u to v for all m > k. We denote y(u, u) by v(u) for convenience.

Lemma 2.1([1]) A undirected graph G is primitive if and only if G is connected and has odd

cycles.
Lemma 2.2([1]) If G is a primitive graph, then

G) = .
v(G) u,ﬁl?ﬁ’faﬂ(“’”)

Lemma 2.3([2]) Let G be a primitive graph, and let u,v € V(G). If there are two walks from
u to v with lengths k1 and ks, respectively, where ki + ko = 1(mod 2), then

~v(u,v) < max{ky, ka} — 1.

Suppose that Ppin(u,v) is a shortest path between v and v in G with the length dg(u,v) =

| Pmin (1, v)|, called the distance between u and v in G. The diameter of G is defined as
diam(Q) = de(u, v).
iam(G) u,grel?})((G) a(u,v)

Suppose that Ppin(G1, G2) is a shortest path between subgraphs G; and Go of G with the
length dg(G1, G2) = | Pmin(G1, G2)|, called the distance between G; and G in G. Tt is obvious
that

dg(Gl, GQ) = |Pmin(G1,G2)| = Inin{|Pmin(u,v)| | u < V(Gl), ORS V(Gz)}

Let u and v be two vertices in G,an (u,v)-walk is said to be a different walk if the length
of the walk and the distance between v and v have different parity. A shortest different walk
is said to be a primitive walk , denoted by Wi (u, v) and its length by bg(u,v) or simply by
b(u,v).

Clearly, for any two vertices u and v in GG, we have

da(u,v) < ba(u,v), dg(u,v)+ be(u,v) = 1(mod 2).
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Lemma 2.4([5]) Suppose that G is a primitive graph and u,v € V(G),then we have
(&) v(u,v) = da(u,v);
(b) (u,0) = da (s, v) (mod 2);
(¢) v(G) = diam(G), ~(G) = diam(G)(mod 2).

Lemma 2.5([5]) Suppose that G is a primitive graph with order n. If there are u,v € V(Q)
such that v(u,v) = v(G) < n, then for any odd cycle C' in G we have

|V(Pmin(uu U)) N V(C)| < n— V(G)v
where Puin(u,v) is the shortest path from u to v in G.

Lemma 2.6 Suppose that G is a primitive graph, u,v € V(G), then
FY(“H”) - bg(’u,,l)) -1

Thus

G) = be(u,v) — 1.
(G) e c(u,v)

Proof Considering the definitions of y(u, v) and bg(u, v), there is no any (u,v)-walk with
the length of bg(u,v) — 2. So v(u,v) > bg(u,v) — 1.

On the other hand, for any natural number k& > bg(u,v) — 1, from the shortest path
Puin(u,v) we can make a walk of the length k between u and v when dg(u,v) — k = 0(mod 2);
from the primitive walk Wi, (u, v) we can make a walk of the length k between w and v when
de(u,v) — k = 1(mod 2). So v(u,v) < bg(u,v) — 1.

Thus, we have y(u,v) = bg(u,v) — 1. The last result is true by Lemma 2.2. O

According to what is mentioned as above, for arbitrary u,v € V(G), a different walk
of two vertices v and v, denoted by W (u,v), must relate to a cycle C of G. In fact, the
symmetric difference Pyin (u, vV)AW (u,v) of Pyin(u, v) and W (u,v) must contain an odd cycle.
Conversely, any odd cycle C in G can make a different walk W (u,v) between u and v because
of the connectivity of G. So we often write W (u,v) = W(u,v,C). It is clear that for any
u,v € V(G) there must be an odd cycle C” in G such that

ba(u,v) = bg(u,v,C") = |[Wyim (u, v, C")|,

then from Lemma 2.6 we have v(u,v) = y(u,v,C") = bg(u,v,C’) — 1. The primitive walk can
be write as

Wrim(“v ’U) = Wrim(ua v, OI) = Pmin(ua OI) U P(OI) U Pmin(cla 1)),
where P(C") is a corresponding segment of the odd cycle C’ and
y(u,v) = y(u,v,C") = dg(u, C") + |P(C")| + dg (C’,v) — 1.

Moreover, for any odd cycle C' in G we have bg(u,v) = bg(u,v,C") < be(u,v,C) and
~y(u,v) = y(u,v,C") < vy(u,v,C). And if there is a vertex w € V(C”") such that Pyin(u,C’) =
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Prin(u, w) and Ppin(C',v) = Pin(w, v) (i-€., |Pmin(t, C") N Ppin(C’,v) N V(C')|=1), then the
odd (" is called a primitive cycle between u and v. In this time we have

y(u,v) = y(u,v,C") = dg(u, w) + dg(w,v) + |C'| — 1.

Particularly, we put b(u,C) = b(u,u,C), b(u) = blu,u); y(u,C) = vy(u,u,C), v(u) =
v(u, u) for convenience.

83. Constructions of Graphs

Firstly, we define two classes of graphs M,,_s and N,,_» as follows.

(3.1) The set of graphs( these dashed lines denote possible edges in a graph)

Mz =M, uMP oM, oMY,

where
J\/lgll)2; n=m+2t+2,(t>1),0<i<f <j<m.
If{zaya [ 1 <a <t-1}NE(G) # O, then j = i+1 and m = 1(mod 2). Otherwise, j—i <m

Co T Co

Cl CO

Tt '
Yt ¥ ------------- Tt

Tt—1 Ya ¢-------=-=-=---- Ta
w
Ta
z1 Y1 - / S 1
vo V1 Vi Vj Um—-1 Um V0 Vi T vj Umn,
. 1 . 2
Fig.(1) MELZQ Fig.(2) M’ELZQ

and m = 0(mod 2). See Fig.(1).

MP oy n=m42042,(t20),0<i <2 <j<m.

(

Let t > 10 If {mpyp | 1 < k < t}NEG) # O, then j =i+ 1; |[a —b = 1 when
{wxq,wyp} € E(G) (0 < a,b < t), there may be a loop at w when a = t or b = ¢. If
Ng(w) = {z,y} but not the case as above, d(x,y) = 2. If Ng(w) = {z} and dg(w, Pyy) > t,
there may be a loop at w; Otherwise, if {wz,,wys} C E(G) (0 < a,b < t),then j = i+ 1,
la—bl=1orj=1i+2,a=>b(m #2) and there may be a loop at w when a =t or b = ¢. If
Ng(w) = {z,y} but not the case as above, d(x,y) = 2. If Ng(w) = {z} and dg(w, Pyy) > t,
there may be a loop at w. If there is not any loop at w and x = v, then @ > 1 or j < m when
s = 3.

Let t = 0: There are loops at v; and v; (0 < i < F < j < m), respectively, and no loop
at w but there is a loop C such that dg(w,C) < %&. There may be loops at the other vertices.

See Fig.(2).

MP o n=m42+2,(t>1)1<i+1<2<j<m,
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7 —1t < m when m is an odd number; j —i < m — 1 when m is an even number; j =i + 2
when {z.ya11 | 1 < a <t} NE(G) # . See Fig.(3).

Cq Co

- Tt
_ o - Tt—1
- . .
vy V1 V4 Vj Um—1 Um vy V1 Vi Vi+1 Um—1 Um
. 3 . 4
Fig.(3) ./\/17(122 Fig.(4) M;lz

MY n=m+2t4+2,(t>0).

t>1: 1= %(m —1). The set of possible chord edges in Cup = Ypypt1 - YrWTy -+ Tyl
Ta¥p 18 {Tayp | 0 < a,b < t,a = b(# 0) or |a — b = 2}. There may be a loop at w and
[Car | a=b+2}U{C,} £ 0, {Cuy | a=b—2}U{C,} £ 0.

t =0: If i < $(m — 1), then there are loops at v,(3(m — 1) <y < m). If i = $(m — 1),
then there are loops at v, and v, (0 <z <i<y<m). Ifi> %(m — 1), then there are loops
at v;(0 < # < $(m — 1)), there are loops at the other vertices.Fig.(4).

(3.2) The set of graphs

No—2 = N,,El_)g UN,E?’_)g U--- UN,YS”, n = 0(mod 2),

where the set of subgraphs

N, 1<d<n—1, d=1(mod?2), n=0(mod 2)

is constructed in the following.

(1) Let n = 2r 4 2,take the copies Kfsg, ngrlz), . ng:;l) of r graphs K¢ , of order
r+2 (The complement of complete graph K,.12) and a complete graph K, :J(:Q) with loop at each
vertex. Make the join graph (the definition of join graph and the complement of graph are
referred to [6]): Kfsg v ngf;rl), i=0,1,---,r— 2 and Kff:{l) Y K:_(é) Constructing a new
graph K as follows:

T

r—2
c(e c(t+1 c(r—1 *(r
Ko = U v KU v D)

= K/Q VK V- VEY VR,

(& b
TKT+25
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ui,1 ui,2

5

ul

‘ )

XX Y
s o STV N/ SKT N BN, /N BA
o;/w\&/»§zm\t

//

& 5

%

%

=<
‘<\\\\\

Ny
NHERT SIS N 2’0‘&‘\'@?@%‘%‘{ \ |
y v\ e\
Fig.(5) The graph K with r = 4
Suppose that the vertex sets of the graphs K%, K2 ... KU and K7} in order are

V(]):{ul,j|zzlv2aa’r+2}7 j:()vla"'a’ra

then
V(K) = vO YO y...uyr-D e,

Fig.(5) shows a graph K with r = 4.

For d: 1 < d < 2r +1,d = 1(mod 2) given,take a path P, = w1 ou1,1---u1, of length
t=r— %(d —1)in K and an odd cycle Cq = w1 U1 g1 - U1, r—1U1 7 U2 p U2 p—1 - -+ U2 p41U1 ¢ OF
length d. Constructing a subgraph K4 of K as follows

Kagy=PUCq, 1<d<2r+1, d=1(mod 2),

which is called a structure subgraph. The subgraph in black lines in Fig.(5) shows K5 (r = 4).

(2) Let the set of vertex-induced subgraph of order n containing K 4y of K be K@ where
1 <d<2r+1,d=1(mod 2), and for any graph N € K let the spanning subgraph containing
K(qy of N be N4y, now we construct the set of graphs N as follows:

ND =(Ny |[Ne KD}, 1<d<2r+1, d=1(mod 2).
(3) Let the set of the graph N4 € N (@) satisfying the following conditions be

N,(ld_)g, 1<d<n-1, d=1(mod2), n=2r+2:
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(i) diam(N¢g)) <n —2;

(i) For d' > d,N(4) has no the subgraph K4 to be the structure subgraph of N4);

(ii7) For the vertex x € N = N(q) with dx(x,Cq) > t,there must be odd cycle C such that
2dN(:E,C) + |C| § n—1.

84. Main Results

Theorem 4.1 G is a primitive graph with order n and for any vertex w € V(G), v(w) <
Y(G)=n—2if and only if G € M,,_s.

Proof We prove the Sufficiency first. Suppose that G € M,,_», then G is a primitive graph

with order n by the construction of M,,_,. For any vertex w € V(G) we have

’7(11}) < maX{W(”O)vW(”m)} = maX{W(UOa Cl),’Y(’Um, CO)}
< 2t+m=n-2=~(G),

and for any vertices u,v € V(G) we have

V(u,v) < (v, vm) = (v, vm, Co) =1 — 2.

That is v(G) = m{a}(cc)*y(u,v) = v(vo, V) = n — 2. See Fig.(3-1))~ (3-4).
u,ve

For the necessity, suppose that G is a primitive graph with order n and
Y(w) <y(G)=n—2 (4.1)
for any vertex w € V(G). Without loss of generality, let u,v € V(G) such that
0)= ma ) =7(G) =n—2.
v(w,v) = max y(@y)=7(G)=n

According to the discussion in § 2, there must be an odd cycle Cy such that
v(u,v) = y(u,v,Co) = v(G) = n — 2. Let

Py = min(uvv)ZUOUI"'Ui"'Uj"'Um7

where vy = u, v, = v,then we know that n = m (mod 2) by Lemma 2.4.
Suppose that C' is an odd cycle in G, then by Lemma 2.4 we have

V(Pur) A V(C) <1 —3(G) = n— (n—2) =2 (4.2)
According to (4.2) the following discussion can be partitioned into three cases:
4.1. Suppose that for any odd cycle C in G,
V(Puw)NV(C) =0, (4.3)

then to = dg(Puy, Co) = 1,dy = |Co| = 1(mod 2). Now chose such odd cycle Cj and the shortest
(u,v)-path P,, in G such that 2ty + dy is as small as possible.
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Let
PO = Pmin(Pu'u;OO) = ToT1 Ty,

V1:V(PUUUPQUCO), %:V(G)\‘/l

where xg = vj, x4, € V(Cp),then ny = |Vi| = m+1to+dp. Since n—2 = y(u,v) = y(u,v,Cy) <
m+ 2tg +do — 1,

ne=|Val=n—(m+to+do) <n—(n—-—1—ty) =ty + 1. (4.4)
4.1.1. Suppose that the odd cycle C” satisfies v(v) = (v, C") and Ppin(v,C’") N Py # O,then,

by the choice of P,,, Coy, Py and the definition of v(v), we know that v(v,C") = v(v, Cp). By
(4.1) we have

v(v) = v(v,Cp) = 2d(v,Co) +do — 1 = 2d(v,x4,) +do — 1 <n —2.

In this time, if there is an odd cycle Cy such that vy(u) = vy(u, Cy) and Pyin(u, C1) N Py # O,

we can obtain in the same way that
Y(u) = y(u, Cy) = 2d(u,Co) +do — 1 = 2d(u, z¢,) +dop — 1 <n — 2.
Thus, we have
Y(G) = y(u,v) = y(u,v,Co) = d(u, x,) + d(v,24,) +do — 1 <n — 2 =~(G),
a contradiction. So we must have
Poin(u, C1) NPy = Q. (4.5)
Let v; be the vertex with the maximum suffix in Pyin(u, Cy) N Py, and
di =[C1], t1=d(v;,C1), P1 = Puin(vi,C1) = Yoy1 - Yt,»
where yo = v;, ¥, € V(C1). By (4.4) and (4.5), we have PyN Py = i < j and
1<t <t +di—1< Vo <tg+1. (4.6)
By the choice of P,,,Cy and Py we also have
o+ dy < 21 + di. (4.7)
From (4.6) and (4.7) we get
2y +2dy — 4+ do < 2tg +do < 2t +dy < 2to + 3,

thus do < 3,do +d1 < 4,[t1 —to| < 1.
In all as above we have the following four cases

(173)7 tl :t0_17
3, 1 , to = tl - 1;
(do,d1) = 3.1) (4.8)
(151)7 31 :th
(151)7 31 :t0+17
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and
V(P UPhUCOUPLUCY) | =m+tg+do+t1+di — 1< n. (4.9)
Thus
n—2=y(u,v)="vy(u,v,Co) <m+2ty+dy— 1; (4.10)
n—2=~(uv) <y(u,v,C)<m+2t +dy — 1.
So it follows from (4.9) and (4.10) we have
n—2<m+t0+t1+%(do+d1)—1gn—%(do+d1). (4.11)

By (4.8) we have four subcases for discussions:
(1) (do,dr) =(1,3),t; =tg — 1,thus t; > 1,tgp > 2. By (4.10) and (4.11) we have
n—2=~(u,v,Co) =m+2o+dyo—1=m+2t; +di — 1 =~(u,v,C1) = m+ 2to,
ie., n =m+ 2ty + 2, therefore by (4.9)
[V (Puw UPyUCyU P UCH)| =n.
Suppose that V(C1) = {yt,—1, Y1y, 2},by (4.1) and (4.2) we get

nze € E(G), wwys € E(G), A#i,j, 0<a<ty, 0<pg<l.

Note that y(u) = v(u, C1) < v(G) and v(v) = v(v,Cp) < 7v(G) we have
O<i<%<j<m. (4.12)
If xoyp € E(G), 0<a<ty,, 0<b<tithena+b+1>j—ii+j+a+b=1(mod?2)

and

n—2=~yuv,Co) <i+b+l+a+m—j+2(ty—a)+d—1,

(4.13)
ita+l+b+m—j+2(t —b)+d — 1.

NN

n—2 :’Y(U,’U,Cl)

Soj—i<b—a+1landj—i<a—0b+1. From thiswehave j=i+1land1<a=5b<1t—1.
By (4.12) m is an odd. Otherwise, since m being an even , y(vm) < y(G),j —i < m.

Additionally, it is clever that there may be loops at the vertices y;, and z,otherwise no any
loop except for at zy,. So G € J\/lle_)Q(t > 2). See Fig.(3-1).

(i1) (do,d1) = (3,1),t0 = t1 — 1,thus ¢y > 1,61 > 2. The discussions of these graphs, which

we omit, is analogous to that in (i), and we know that it is must be in ijlz(t > 2).
(7i1) (do,dy) = (1,1),tp = t; > 1. It is analogous to (i) that
n—2=~(u,v,Co) =v(u,v,Cy) =m+ 2t,
ie., n=m+ 2ty + 2,

nze € E(G), wwys € E(G), A#i,j, 0<a<ty, 0<pg<l,
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and
. m .
0<2<5<3<m.

Thus, by (4.9) we have
|V(PUUUP0UP1)| =n—1.

It is easy to see that the graph G has also another vertex, denoted by w and 1 < Ng(w) < 2.
If xpy € E(G), 0 <k, Il <tg,then j =i+ 1,1 <k=1<t and

(a) When {wzq, wys} € E(G), (0 < a,b < tg), similar to (4.13) we have
a+b=1(mod 2), 1=j—i<min{b—a+2,a—b+ 2}
That is |a — b| = 1. It is clear that as a = to or b = ¢y, there may add a loop at vertex w;
(b) When Ng(w) = {z,y} but not the case (a),d(z,y) = 2;
(¢) When Ng(w) = {z} and dg(w, Pyu,) = to, there may add a loop at vertex w.
If there is not zxy; € E(G), 0 < k,l < tp, then we have by similar discussions:

(&) When {wzq, wyp} C E(G), (0 < a,b<tg),wehave j=i+1,la—b=1orj=1i+2,

a =10, but m # 2 and as a =ty or b = tg, there may add a loop at vertex w;
(b’) When Ng(w) = {z,y} but not the case (a/), d(z,y) = 2;

(¢’) When Ng(w) = {z} and dg(w, Py, ) > to, there may add a loop at vertex w. If there

m

is not any loop at vertex w and x = v, then by y(w) < y(G),i > 1or j <mas s = 1%.
To sum up we have G € MSEQ(t > 1)(See Fig.(3-2)).

(iv) (do,d1) =(1,1),t1 =to+1 > 2. From (4.9) we get
|V (Py, UPyUPy)| =n.

And from (4.10) we have

n—2=5G)=v(u,v,Co) =m+2ty, y(u,v,C1) <m+2t; =m+ 2ty + 2.
i.e,, n=m+ 2ty + 2,and from (4.1) and (4.2), we have

nTo € E(G), A#j, 0<a<ty vuys ¢ E(G), 0<p<i, 0<B<t.
Sine y(u) = y(u, C1) = 2i 4 2tg + 2 < m + 2to, i + 1 < % ,thus

1<itl<Z<ji<m (4.14)

2
Now, if v,y & E(G), p>1i, 1< <to+1,then by (4.1) we have j —i < m as m is
odd and 7 —¢ <m — 1 as m is even.
If xayp € E(G), 0 < a <tg,0 <b<ty, then a+b+i+ j=1(mod 2),

i+b+1+a+m—j+2t—a),
i+b+1+a+m—j+2(t—b).

n—2= ”Y(U,U,Oo)
n—2= ”Y(U,U,Ol)

NN
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Thus 1 <j—i<b—a+land1<j—i<a—0b+3. thismeansthat j=i+2and b=a+1.
So G € M;B_)Q(See Fig.(3-3)).

If v,y € E(G), (1> 1), then it is must be that y1v;42 and i + 2 < j by (4.14). The case
similar to (b) in (#ii).

4.1.2. Suppose that the odd cycle C” satisfies y(v) = v(v,C") and Puyin(v,C’) N Py = @, then
there is also an odd cycle C” such that y(u) = y(u, C") and Ppin(u, C"”) N Py = @. Otherwise,
similar to 4.1.1. Let

P’ = Pyin(Puv, C"),  P" = Pyin(Puw, C")

and writing ¢’ = dg(Pyy,C"), d' = |C']; "' = dg(Pyy, C"), d’ =|C"|, therefore
[V(PiwUP UP ' UP"UC,UC"UC") | =m+to+t +t"+do+d +d" —2<n.

Since
n—2=y(u,v,Co) <m+2ty+dy — 1,
n—2<y(u,v,0") <m+2t' +d -1,
n—2<y(u,v,C") <m+2t" +d" - 1.
Thus, we have
<mJ(to +1/ + ")+ 3(do +d' +d") — 1
<n41—L(to+t' +1") = 2(do+d' +d")
<

ie.,
to=t'=t"=1, dy=d =d"=1.

So G € M@ (t = 1)(See Fig.(3-2)).
4.2. Suppose that there is an odd cycle C' in G such that
V(Puw) NV(C) = {vi,ua}, (G <A). (4.15)
Then from (4.2) we see that A =i + 1,thus
n—2=7yuv)<i+(m—-AN)+|[C|-2=m+|C|-3=|V(P,uwUC)|-2<n-2,

ie.,

V(P UC) = V(G), n—2=(u,0) =1(C) = m+ 0]~ 3
or
G=P,UC, n=m+|C|-1. (4.16)

In the same time from (4.2), also we see that

N[Co — {vi, vit1}] NV (Puw) = {vi, vig1}
By (4.2) we have v;v;4+1 € Ciand vy(u,v) = y(u,v,C),i.e., putting C = Cy. Let Cy =
YoU1 -« ** Yo Wty * -+ T1ToYo Where yo = v;, 20 = vit1,t0 = 0, then |Co| = 2tp + 3,that is n
m + 2ty + 2.
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If there is z.yp € E(G),0 < a,b < to,then by y(u,v) = y(u,v,Cp) we have |a — b =
0(mod 2). In this time we have the odd cycle Cop = YpYbt1 -+« - Yto Wty * * * Tat1TaYp,and so

(
(
That is |a — b| < 2,or a=b# 0(tg = 1) or |[a — b| = 2(tg = 2).

It is easily seen that the all of odd cycles in G is included in Z = {Cpu | 0 < a,b < tg,a =
b# 0 or |a —b| =2} where Cy = Cyp except for possible loops Cy at 4, Cy at x, and C,, at

7U70ab)
7U70ab)

n—2 U m—+2a+2tg —a—b+ 2,
n—2 U

NN
NN

v
y m+2b+2tg —a—b+2.

w.
If there exists Cyp, Corpr € Z in G such that y(u) = y(u, Cop) < n—2, y(v) = v(v, Corpr) <
n — 2,then from (4.1) we get

%+ 2042 +2—a—b<n—3,
2(m—i—1)4+2a' +2tg+2—ad — b <n -3,

note that n = m + 2ty 4+ 2,the formula as above equivalent to

2i<m—-3+a—b,
2m—i—1)<m—-3+b —d

ie.
1
a=b+2, d=0b -2, i:§(m—1).

Otherwise,we must have y(u) = v(u,Cy) <n —2 and v(v) = v(v,Cy) < n — 2ie.,

21+ 2tg <n — 3,
2(m—i—1) 4+ 2tg <n —3,

From this we can get i = 2(m — 1),and there are loops Cy, at y;, and C at .

To sum up,we obtain that

<to,a=b+2}U{C,} # O;
<to,a=b—2YU{C,) # 0.

Evidently,this result is the same as the case of no any z,y, € F(G),0 < a,b < tp but
to > 1.
When ¢y = 0, i.e., |Co| = 3,n—2 = v(u,v) = vy(u,v,Cpy) = v(G) =m. Set Cy = v;v;11w0;,

then there are loops at vertex v, and v, asi = 2(m—1) where 0 <z <i=1(m—1) <y < m,
and there may be loops at the rest vertices;There must be a loop at v, as ¢ < %(m — 1) where

%(m — 1) < y < m, and there may be loops at the rest vertices; there must be a loop at v,

as i > 2(m — 1) where 0 < < 1(m — 1), and there may be loops at the rest vertices. So

G e MY, (See Fig.(3-4)).
4.3. There is an odd cycle C' such that

V(Puv) N V(C) = {Ui}7 (417)
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but there is not odd cycle C’ such that |V (Py,) N V(C")| = 2. Thus,we have
n—2=~vyu,v) <yu,v,C)=m+|C|-1=|V(P,UC)|—1<n—1.
Since n = m(mod 2),
n—2=v(u,v)=vuv,C)=m+|C| -1, |V(P,UC)=n-1,

ie, n = m+ |C| + 1. Evidently,there is only one vertex w in G except for the vertices of
V(Py UC) and N(C — {v;}) N V(Py) = {v;}. This indicates that C = Cy and |Cy| <
3,otherwise,there must have v(u) > «v(G) or v(v) = v(G), contradicts to (4.1).

When |Cy| = 3 we have v(G) = m +2 and n = m + 4. There is no any loop at the vertices
on P,,. By (4.1) we have G € J\/lle_)Q(t =1) (See Fig.(3-1)).

When |Cy| = 1 we have v(G) = m and n = m + 2. By (4.1) the set of graphs have the

characteristic: there are loops at v; and v; as 0 < i < 3 < j < m ,there is no any loop at

w,and there may be loops at the rest vertices. There exists a loop C' such that dg(w,C) < F.
So G € M, (t = 0)(See Fig.(3-2)).
The proof is complete. O

Theorem 4.2 Suppose that G is a primitive graph with order n, then there exists a vertex
w € V(G) such that v(w) = v(G) =n —2 if and only if G € Ny_o.

Proof For the sufficiency, suppose that G € N,,_», without loss of generality suppose that
G e Né’?Q,l <d<2r+1,d=1(mod 2). Since diam(G) < n — 2,G is connected and it is clear
that there is at least an odd cycle Cy in G. By Lemma 2.1 we know that G is a primitive graph
and [V(G)| =n1+ny=2t+d+1=n.

In the following, we need only to prove two results:

(1)y(uo) = n —2.

Evidently, v(uo, Cq) = 2dg(uo,Cq) + |Ca| =1 =2t +d—-1=n—2.

Suppose that there is any odd cycle C' in G such that vy(ug,C) < n — 2 = 2rthen
2dg(uo, C) 4+ |C] — 1 < 2r,ie,

1
de(ug, C) + §(|C| -1 <
This means that there is an odd cycle C' in the vertex-induced subgraph G[U’] in G where
U' ={u]|dg(ug,u) <r, ueV(G)}.

This is impossible, since G[U'] is the subgraph of the vertex-induced subgraph K[V'] in K
where
V' ={u| dg(uo,u) <r, ueV(K)},
and K[V'] is a bipartite graph. So v(ug) = v(ug, Cq) =n — 2.
(2) Vu,v € V(G), v(u,v) <n—2.
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When U = U7If dG(”a Cd) < t, then
Y(u) < y(u,Cq) =2t +d—1=2r =n —2;

If dg(u,Cq) > t, then by the constructed condition (iii) of G we see that there exists an odd
cycle C' in G such that 2dg(u, C) + |C] < n — 1, that is

v(u) < y(u,C) = 2dg(u,C) +|C| =1 < n —2.

Thus, we get v(u,v) <n — 2.
When u # v, if dg(u, Cq) + da(v, Cq) < 2t, then

")/(’LL,U) gﬂy(uavacd)<2t+d_1:n_27

If dg(u, Cq) + da(v,Cq) > 2t,it might just as well suppose that dg(u,Cy) > tithen by the
constructed condition (7i7) of G we also see that there exists an odd cycle C' in G such that

2dg(u,C)+1Cl <n—1.

By considering the shortest path Ppin(u, C') from u to C' and Py (ug, Cq) from ug to Cq,
if they intersect each other, let w be the first intersect vertex of Ppin(u,C) from u to C and
Poin(ug, Cq), then dg(u,w) > de(ug, w). Thus

Y(uo) < (o, C) < 2(dg(uo, w) + da(w,C)) +[C| -1
< 2(dg(u,w) + dg(w,C)) + |C| — 1
=2dg(u,C)+|C| -1
<n—2=7(uo),
a contradiction. Therefore there are no any intersect vertex between Ppin (4, C') and Puyin (uo, Cq).
Thus, by the connectivity of G and the condition ny = ¢t + 1, we have dg(u,Cq) =t + 1 and

dg(v,Cq) = t. This means that uwv € E(G) or v = ug.
If wv € E(G), then

Y(w,v) < y(u,v,C) =da(u,C) +da(v,C) +[C| -1
<2dg(u,C)+1[C|—1<n—2;

If v = ugp, then

7(“‘7’0) < 7(”7“’07 Cd) < dG(U’de) + dG(u07Cd) + |Cd| -2
=2t+d—1=n-—2.

To sum up, we get Yu,v € V(G), v(u,v) <n—2.

For the necessity, suppose that G is a primitive graph with order n,then there must be a
vertex ug and an odd cycle C' in G such that v(ug) = v(ug, C) = v(G) = n — 2, choosing such
vertex ug and odd cycle C that the length d = |C| as large as possible and writing C = Cy.
By the Lemma 2.4,we have v(G) = v(ug) = dg(ug,up) = 0(mod 2). So, let v(G) = 2r, thus
n=2r+2.
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It is clear that Cy is a primitive cycle at vertex wug, let t = dg(ug, Cq), then y(ug) =
24+d—1=2r. Sot=1r— %(d— 1),1 <d < 2r+ 1. Suppose that

P, = Puin(uo, Cq) = wour - - uy,  Cq = Wpllpq1 -+ - Upyd—1Us,

and write
Vi(t,d) =V (P, UCy), Va(t,d) =V (G) — Vi(t, d);
Ei(t,d) = E(P,UCy), Es(t,d) = E(G) — E;(t,d).

Then, we calculate
ny = |Vi(t,d)| =t+d, no=|Va(t,d)]=t+1, n=2t+d+1.

What is mentioned as above indicates that there must be the structure subgraph Ky =
P, UCy; in G. In order to prove G € ./\/;@2 C N, _2,it is suffice to prove that (a) The graph
G satisfies the constructed conditions (4),(#¢) and (i9i) of the set of Né’?Q;(b)The graph G is a
subgraph of K.

(a) By Lemma 2.4 we get diam(G) < v(G) = 2r = n — 2,50 the condition (i) holds. By
the choice of Cy we know that for d’ > d there is not the structure subgraph K (d') in G,so the
condition (ii) holds. Suppose that there exists a vertex = in G such that dg(z,Cq) > t,then
v(x,Cq) =2dg(x,Cq) +d—1>2t+d—1=2r. If 2dg(xz,C") + |C’| > n — 1 for all odd cycle
¢’ different from odd Cy in G, then also v(z,C") = 2dg(z,C") +|C'| =1 >n—2 = 2r. So
v(G) = y(x) > 2r = v(G), a contradiction. Therefore the condition (ii¢) holds too.

(b) Suppose that the vertex set V(G) of G is divided into as follows:
V(G)=Uulh U---UU,—1 UUp,,

in which U; = {u | dg(up,u) =i, ue V(G)},i=0,1,2,--- ;r—1, U, = {u | dg(ug,u) =1, u €
V(G)}.

Firstly, we prove that the induced vertex subgraphs G[U;] all are zero graphs, i = 0,1,2,--- ,r—
1. Otherwise,there must be odd cycle in the vertex-induced subgraph G’ = G[Up UU; U --- U
Uy—1]. Let C be an odd cycle in G’ then dgr(uo, C) + £ (|C| —1) < r. Thus, v(ug) < y(ug,C) =
2dcr (ug, C) + |C| — 1 < 2r = y(up),a contradiction.

Secondly, we prove that G[U,] is a subgraph of Kr(i)2 By the definition of K 5:_)2,it is suffice
to prove that |U,.| < |K£1)2| =r+2. In fact,when d = 1 since |U;| > 1,4 =0,1,--- ,r—1,we have
2 +2=|V(G)| > r+|U.|, ie., |U| <r+2 Whend > 3since |[Uj| > 1,i=0,1,-- £|U;] > 2,
j=t+1,---,r=Lwehave 2r +2=|V(G)| = t+1+2(r—t—1)+ |U|, ie., |U| <t+3 =
r—id-1)+3<r+2.

To sum up, we obtain G € /\/’,@2 C N,—2. The theorem is proved completely. O

Theorem 4.3 Suppose that A is a symmetric primitive matriz with order n,then v(A) =
n—2 if and only if G(A) € My, _o UN,,_o.

Proof According to Theorem 4.1 and Theorem 4.2 the theory holds. O



16 Junliang Cai

Acknowledgement

The author appreciates Professors Kemin Zhang and Boying Wang for their valuable suggestions

on this paper.

References

[1] Shao J. Y., The Exponent Set of Symmetric Primitive Matrices, Scientia Sinica(A), 1986,
9: 931-939.

[2] Liu B. L., McKay B. D., Wormald, N. C., Zhang K. M., The Exponent Set of Symmetric
Primitive (0,1) Matrices with Zero Trace, Linear Algebra and its Applications, 1990, 133:
121-131.

[3] Li G. R., Song W. J., Jin Z., The Characterization of Symmetric Primitive Matrices with
Exponent 2n — 6(in Chinese), Journal of Nanjing University, 1991, 27: 87-92.

[4] Cai J. L., Zhang K. M., The Characterization of Symmetric Primitive Matrices with Ex-
ponent 2n — 2r(>= n), Linear and Multilinear Algebra, 1995, 39: 391-396.

[5] CaiJ. L., Wang B. Y., The Characterization of Symmetric Primitive Matrices with Expo-
nent n — 1, Linear Algebra and its Applications, 2003, 364: 135-145.

[6] Bondy J. A., Murty U. S. R., Graph theory with applications, London: Macmillan Press,
1976.

[7] L.F.Mao, Combinatorial speculation and the combinatorial conjecture for mathematics,
Selected Papers on Mathematical Combinatorics(I), 1-22, World Academic Union, 2006.



International J.Math. Combin. Vol.2 (2008), 17-22

Characterizations of Some Special Space-like Curves in

Minkowski Space-time

Melih Turgut and Suha Yilmaz

(Department of Mathematics of Dokuz Eylul University, 35160 Buca, Izmir, Turkey)

Email: melih.turgut@gmail.com

Abstract: In this work, a system of differential equation on Minkowski space-time Ef,
a special case of Smarandache geometries ([4]), whose solution gives the components of a
space-like curve on Frenet axis is constructed by means of Frenet equations. In view of
some special solutions of this system, characterizations of some special space-like curves are

presented.
Key words: Minkowski space-time, Frenet frame, Space-like curve.

AMS(2000): 53C50, 51B20.

81. Introduction

It is safe to report that the many important results in the theory of the curves in E® were
initiated by G. Monge; and G. Darboux pionnered the moving frame idea. Thereafter, F. Frenet
defined his moving frame and his special equations which play important role in mechanics and
kinematics as well as in differential geometry (for more details see [2]). At the beginning of
the twentieth century, A.Einstein’s theory opened a door of use of new geometries. One of
them, Minkowski space-time, which is simultaneously the geometry of special relativity and the
geometry induced on each fixed tangent space of an arbitrary Lorentzian manifold - a special
case of Smarandache geometries ([4]), was introduced and some of classical differential geometry
topics have been treated by the researchers.

In the case of a differentiable curve, at each point a tetrad of mutually orthogonal unit vec-
tors (called tangent, normal, first binormal and second binormal) was defined and constructed,
and the rates of change of these vectors along the curve define the curvatures of the curve in
four dimensional space [1].

In the present paper, we write some characterizations of space-like curves by the compo-
nents of the position vector according to Frenet frame. Moreover, we obtain important relations

among curvatures of space-like curves.

§2. Preliminaries

1Received February 12, 2008. Accepted March 20, 2008.
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To meet the requirements in the next sections, here, the basic elements of the theory of curves
in the space Ef are briefly presented (a more complete elementary treatment can be found in
).

Minkowski space-time Ef is an Euclidean space E* provided with the standard flat metric
given by

g = —dz? + dad + dak + da3,

where (71,2, 73, 74) is a rectangular coordinate system in Ef.

Since g is an indefinite metric, recall that a vector v € Ef can have one of the three
causal characters; it can be space-like if g(v,v) > 0 or v = 0, time-like if g(v,v) < 0 and null
(light-like) if g(v,v)=0 and v # 0. Similarly, an arbitrary curve @ = a(s) in E{ can be locally
be space-like, time-like or null (light-like), if all of its velocity vectors o'(s) are respectively
space-like, time-like or null. Also, recall the norm of a vector v is given by |jv|| = \/[g(v,v)|.
Therefore, v is a unit vector if g(v,v) = +1. Next, vectors v, w in E{ are said to be orthogonal
if g(v,w) = 0. The velocity of the curve a(s) is given by ||/ (s)|. The hypersphere of center
m = (mq, ma, m3, my4) and radius r € R* in the space E{ defined by

Hg(m,r) = {a = (a1, 0,a3,04) € Ef cgla—m,a—m) = —r2}. (1)

Denote by {T'(s), N(s), B1(s), B2(s)} the moving Frenet frame along the curve a(s) in the
space E{. Then T, N, By, By are, respectively, the tangent, the principal normal, the first bi-
normal and the second binormal vector fields. Space-like or time-like curve «(s) is said to be
parameterized by arclength function s, if g(a/(s),a’(s)) = +1. Let ¥ = 9(s) be a curve in Ef.
If tangent vector field of this curve is forming a constant angle with a constant vector field U,

then this curve is called an inclined curve.

Let a(s) be a curve in the space-time E}, parameterized by arclength function s. Then for

the unit speed curve « with non-null frame vectors the following Frenet equations are given in

[5] :

T 0 K 0 0 T

N’ _ | mr 0 ot 0 N @)
B 0 ust 0 e, B

B 0 0 uso 0 By

Due to character of «, we write following subcases.

Case 1 « is a space-like vector. Thus T is a space-like vector. Now, we distinguish according
to N.

Case 1.1 If N is space-like vector, then By can have two causal characters.

Case 1.1.1 B is space-like vector, then p; (1 <7 <5) read

pr=p3=—1, po=pa=ps=1,
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and T, N, B; and By are mutually orthogonal vectors satisfying equations

Q(TvT) = g(N,N) = g(BlaBl) = 179(32732) =-1

Case 1.1.2 Bj is time-like vector, then p; (1 <4 < 5) read
p = =1, po = p3 = pa = ps = 1,
and T, N, B; and By are mutually orthogonal vectors satisfying equations

Q(TvT) = g(N,N) = 9(32732) = 179(31731) =-1

Case 1.2 N is time-like vector. Then u; (1 <i <5) read
p1 = po = p3 = pa =1, ps = —1,
and T, N, By and By are mutually orthogonal vectors satisfying equations

g(T,T) = g(Bl,Bl) = g(Bg,BQ) = 1,g(N, N) = —1.

Case 2 « is a time-like vector. Thus T is a time-like vector. Then u; (1 <1 < 5) read

pr=p2 =pa =1, p3 = ps = —1,
and T, N, By and By are mutually orthogonal vectors satisfying equations
9(T,T) = -1, g(N,N) = g(B1, B1) = g(B2, B2) = 1.
Here k, 7 and o are, respectively, first, second and third curvature of the curve a.
In another work [3], authors wrote a characterization of space-like curves whose image lies

on HY with following statement.

Theorem 2.1 Let « = «a(s) be an unit speed space-like curve with curvatures k # 0,7 # 0 and
o #0 in Ef. Then « lies on HY if and only if

i34 (G40 -

In the same space, Yilmaz (see [6]) gave a formulation about inclined curves with the

following theorem.

Theorem 2.2 Let a = a(s) be a space-like curve in EY parameterized by arclength. The curve

a is an inclined curve if and only if

s s
K

- = Acosh(/ ods) + Bsinh(/ ods), (4)

0 0

where 7 # 0 and ¢ # 0, A, B € R.

In this paper, we shall study these equations in Case 1.1.1.
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§3. Characterizations of Some Special Space-Like Curves in E}

Let us consider an unit speed space-like curve ¢ = £(s) with Frenet equations in case 1.1.1 in

Minkowski space-time. We can write this curve respect to Frenet frame {T, N, By, Bo} as

§=¢&(s) =miT +maN + m3By + myB, (5)

where m; are arbitrary functions of s. Differentiating both sides of (5), and considering Frenet

equations, we easily have a system of differential equation as follow:

d
ﬂ—l—mﬁ'—l—m;;az()
ds

d—s+m30':0

This system’s general solution have not been found. Owing to this, we give some special

values to the components and curvatures. By this way, we write some characterizations.

Case 1 Let us suppose the curve £ = £(s) lies fully N B;Bs subspace. Thus, m; = 0. Using
(6)1,(6)2 and (6)3 we have other components, respectively,

) | )

These obtained components shall satisfy (6)4. And therefore, we get following differential

el e} -2ac -0 ©

By the theorem (2.1), (8) follows that & = &(s) lies on HZ(r). Via this case, we write

following results.

equation:

Corollary 3.1 Let £ = &(s) be an unit speed space-like curve with curvatures k # 0,7 # 0 and
o #0 in Ef.

(i) If the first component of position vector of & on Frenet axis is zero, then & lies on H.
(ii) All space-like curves which lies fully N By By subspace are spherical curves. And position
vector of such curves can be written as

e=-v-tim | Tr 2 (220 B )

K Tds K o Tds K

Case 2 Let us suppose the curve £ = £(s) lies fully TB;Bs subspace. In this case mg = 0.
Solution of (6) yields that
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mi=S8-+c¢
“(s +c)
Ts c , (10)

mi= L2 {20 0)

ms =

K
where ¢ is a real number. Using (6)4, we form a differential equation respect to —(s+c¢) as
T

d (1d /k oK
Using an exchange variable t = [ods in (11), we easily have
0
d /K K
= (S +0) = Z(ut) +¢) =0, (12)

where u(t) is a real valued function. (12) has an elementary solution. It follows that

E(u(t) +c) = ke + koe (13)
.
where k1, ko are real numbers. Using hyperbolic functions cosh and sinh, finally we write that

S S

E(s +o)=4A; cosh/ods + A sinh/ods, (14)
T
0 0

where A; and Aj real numbers. Moreover, integrating both sides of (11), we have

Sevo] - 5[4 (S c))r _ constant. (15)

T o2 |ds \t

Now, we write following results by means of theorem (2.2) and above equations.
Corollary 3.2 Let £ = £(s) be an unit speed space-like curve with curvatures k # 0,7 # 0 and
o # 0 in B} and second component of position vector of & on Frenet axis be zero. Then

(i) there are relations among curvatures of & as (11),(14) and (15);
(ii) there are no inclined curves in EY whose position vector lies fully in T By Ba subspace;

(91) position vector of & can be written as

§(s)=(s+c)T—§(s+c)Bl+%% (s +0)) Ba. (16)

Case 3 Let us suppose ms = 0 and x =constant. Then, we arrive

cy d (0’)

m; = —— [ —

! K ds \T
m22—04; . (17)

my = C4

Substituting (17); and (17)2 to (6)1, we obtain following differential equation respect to 7
-
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d? (o 90 K
= - =, 18
ds? (7’) TR T ey (18)
(18) yields that
o . 1
— =1l cosks + lasinks + —. (19)
T RCy

And therefore, we write following results.

Corollary 3.3 Let £ = &(s) be an unit speed space-like curve with constant first curvature and

T #0,0# 0 in Ef and third component of position vector of & on Frenet axis be zero. Then

(i)there is a relation among curvatures of & as (19);

(i) position vector of & can be wrilten as

cd
K ds

£(s) = (Z)r- TN + eiBy. (20)

T

Remark 3.4 Due to o, my4 can not be zero. Thus, the case m4 =constant is similar to case 3.

And finally, considering system of equation (6), we write following characterizations.

Corollary 3.5 Let £ = &(s) be an unit speed space-like curve with curvatures k # 0,7 # 0 and
o # 0 in Ef.

(1) The components my and mo can not be zero, together. This result implies that & = £(s)
never lies fully ByBs hyperplane. Similarly, the components ms and mg can not be zero,
together. This result follows that & = £(s) never lies fully in T By hyperplane.

(ii) If the components m1 = mg = 0, then, for the space-like curve & = £(s), there holds
Kk =constant and — =constant.

.
(#it) The components my, for 1 <i <4, can not be nonzero constants, together.

Remark 3.6 In the case when & = £(s) is a space-like curve within other cases or when is a

time-like curve, there holds corollaries which are analogous with corollary 3.1, 3.2, 3.3 and 3.5.
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Abstract: Submanifolds are important objectives in classical Riemannian geometry, par-
ticularly their embedding or immersion in Euclidean spaces. These similar problems can be
also considered for combinatorial manifolds. Serval criterions and fundamental equations for
characterizing combinatorially Riemannian submanifolds of a combinatorially Riemannian
manifold are found, and the isometry embedding of a combinatorially Riemannian manifold

in an Euclidean space is considered by a combinatorial manner in this paper.
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§1. Introduction

Combinatorial manifolds were introduced in [9] by a combinatorial speculation on classical
Riemannian manifolds, also an application of Smarandache multi-spaces in mathematics (see
[12] — [13] for details), which can be used both in theoretical physics for generalizing classi-
cal spacetimes to multiple one, also enables one to realize those of non-uniform spaces and
multilateral properties of objectives.

For a given integer sequence ni,no, -+ , Ny, m > 1 with 0 < ny < ne < -+ < Ny, a com-
binatorial manifold M is defined to be a Hausdorff space such that for any point p € M , there

is a local chart (U, ¢;) of p, i.e., an open neighborhood U, of p in M and a homoeomorphism

S
op : Up — UBZ“,
i=1

where BY'',By?,---, Bl are unit balls with () Bj" #  and {n1(p),n2(p),--- ,nspm ()} C
i=1
{n17n27 e ,TLm} and U {nl(p)7n2(p)7 T Ms(p) (p)} - {n17n27 e ,TLm}. Denoted by M(n17n27
N p€1\7
-, M) or M on the context.

Let A = {(U,, p)|p € M(ny,ng,- -+ ,nm))} be an atlas on M(ny,ng,- - ,ny). The max-

s(p)
imum value of s(p) and the dimension of () B are called the dimension and the intersec-
i=1

1Received January 6, 2008. Accepted March 25, 2008.
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tional dimensional of M(nl, Ng, -+ , M) at the point p, denoted by dy;(p) and C/[M (p), respec-
tively. A combinatorial manifold M is called finite if it is just combined by finite manifolds
without one manifold contained in the union of others, called smooth if it is finite endowed

with a C* differential structure. For a smoothly combinatorial manifold M and a point

— — s(p)
p € M, it has been shown in [7] that dimT,M (ni,n2, -+ ,nm,) = $(p) + > (n; — 5(p)) and
=1

dimTy; M (ny, g, ,nm) = 5(p) + > (n; — 5(p)) with a basis

{oorlel1 <5 <30 }UU D 15w 1< <))

or

s(p)
{da'T |31 < j < 3(p)} U{d:v”lp | s(p) +1<j <n;}

for any integer ig, 1 < ip < s(p). Let M be a smoothly combinatorial manifold and

ge A2(M)= | .M
pGM

If ¢ is symmetrical and positive, then M is called a combinatorially Riemannian manifold,
denoted by (M, g). In this case, if there is a connection D on (M, g) with equality following
hold

Z(9(X,Y)) = g(Dz,Y) + g(X, DzY)

then M is called a combinatorially Riemannian geometry, denoted by (M g, D). It has been
showed that there exists a unique connection D on (M g) such that (M g, D) is a combinato-
rially Riemannian geometry([7] — [8]).

A subset S of a combinatorial manifold or a combinatorially Riemannian manifold M is
called a combinatorial submanifold or combinatorially Riemannian submanifold if it is a com-
binatorial manifold or a combinatorially Riemannian manifold itself. In classical Riemannian
geometry, submanifolds are very important objectives in research, particularly their embed-
ding or immersion in Euclidean spaces. These similar problems should be also considered on
combinatorial submanifolds for characterizing combinatorial manifolds, such as those of what
condition ensures a subset of a combinatorial manifold or a combinatorially Riemannian mani-
fold to be a combinatorial submanifold or a combinatorially Riemannian submanifold in topology
or in geometry? Notice that there are no doubts for the existence of submanifolds of a given
manifold in classical Riemannian geometry. Thereby one can got various fundamental equa-
tions, such as those of the Gauss’s, the Codazzi's and the Ricci’'s for handling the behavior
of submanifolds of a Riemannian manifold. But for a combinatorially Riemannian manifold
the situation is more complex for it being provided with a combinatorial structure. Therefore,
problems without consideration in classical Riemannian geometry should be researched thor-

oughly in this time. For example, for a given subgraph I' of G [M | underlying M , whether is
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there a combinatorial submanifold or a combinatorially Riemannian submanifold underlying I"?
Are those of fundamental equations, i.e., the Gauss’s, the Codazzi’s or the Ricci’s still true
for combinatorially Riemannian submanifolds? If not, what are their right forms? All these
problems should be answered in this paper.

Now let M , N be two combinatorial manifolds, F : M — N asmooth mapping and p € M.
For Vv € TPM, define a tangent vector F(v) € Tp(p)]v by

Fi(v)=v(foF), VfeCF,,

called the differentiation of F' at the point p. Its dual F™* : ( )N — T*M determined by

(F*w)(v) = w(Fi(v)) for Vw € TF(p)N and Yv € T), M

is called a pull-back mapping. We know that mapplngs F, and F* are linear.

For a smooth mapping F' : M — N and p E M if Fiop : T M — Tre )N is one-to-
one, we call it an immersion mapping. Besides, if F}, is onto and F' : M — F(M) is a
homoeomorphism with the relative topology of N then we call it an embedding mapping and
(F, M) a combmatorzally embedded submanifold. Usually, we replace the mapping F' by an
inclusion mapping ¢ : M — N and denoted by (z M ) a combinatorial submanifold of N.

Terminology and notations used in this paper are standard and can be found in [1]—[2], [14]
for manifolds and submanifolds, [3] — [5] for Smarandache multi-spaces and graphs, [7] — [10]

for combinatorial manifolds and [11] for topology, respectively.

82. Topological Criterions

Let M = M(nl,ng, e M), N = ]\Nf(kl,kg, -+ k) be two finitely combinatorial manifolds
and F : M — N a smooth mapping. For Vp € M, let (Up, ¢p) and (Vp(py, ¥r(p)) be local charts
of pin M and F(p) in N, respectively. Denoted by

8FI€>\
dxhv

Ixv (F)(p) = |

the Jacobi matriz of F' at p. Then we find that

]

Theorem 2.1 Let F: M — N be a smooth mapping from M to N. Then F is an immersion
mapping if and only if

foerEM.

Proof Assume the coordinate matrixes of points p € M and F(p) € N are [xij]s(p)xns(p)
and [yij]S(F(p))an(F(p)), respectively. Notice that

—~ 0 0 ) . PN )
T = (5l el 1S4 5(0),1 <. < 500,50 +1 <2 < i)

and
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N 5 (@)
TrpN = <{6yw1 |Fp): 1 <1 <3(F(p)} U1 {6le2 () S(F(p) +1<j2 < ki}>

for any integer 4o, 1 < iop < min{s(p), s(F(p))}. By definition, F}, is a linear mapping. We only
need to prove that Fy, : T,M — Tpﬁ is an injection for Vp € M. For Vf € %, calculation
shows that

0 _ O(foF)
F. *p(W)(f ) = T orT
Z OF* Of
Oxt Jyrv’
Whence, we find that
OFHv
8:10” Z oz 8y/“’ (2.1)

According to a fundamental result on hnear equation systems, these exist solutions in the
equation system (2.1) if and only if

rank(Jx,y (F)(p)) = rank(Jx.y (F)(p)),

where

Fp(52r)

Fw(%)

Jxy(F)p) = | Jxv(F)(p)
Fup(5257)

f)
F*p(_axs(mn—s(p)) i
We have known that

rank(Jx,y (F)(p)) = dy; (p)-

Therefore, F' is an immersion mapping if and only if

rank(Jx,y (F)(p)) = d]\“j(p)
for Vp € M. -

For ﬁndmg some simple criterions for combinatorial submanifolds, we consider the case
that [ : M — N maps each manifold of M to a manifold of N denoted by F : M 1 —1 N,
which can be characterized by a purely combinatorial manner. In this case, M is called a

combinatorial in-submanifold of N.
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Let G be a connected graph. A wertez-edge labeled graph G defined on G is a triple
(G;71,72), where 71 : V(G) — {1,2,--- ,k} and 7o : E(G) — {1,2,---,1} for positive integers
k and [.

(a) (b)
Fig.2.1

For a given vertex-edge labeled graph G* = (V¥, EL) on a graph G = (V, E), its a subgraph
is defined to be a connected subgraph I' < G with labels 71 |r(u) < 71|g(u) for Vu € V(T") and
Talr(u,v) < 12|a(u,v) for V(u,v) € E(T), denoted by 'Y < GL. For example, two vertex-edge
labeled graphs with an underlying graph K, are shown in Fig.2.1, in which the vertex-edge
labeled graphs (b) and (c¢) are subgraphs of that (a).

For a finitely combinatorial manifold M(nl,ng, ceongy) with 1 < np < ng < -+ <
N, m > 1, we can naturally construct a vertex-edge labeled graph G* [M(nl, No, ~ + ,Ny)] =
(VE,EL) by defining

vE = {n; — manifolds M™ in M(nl,ng,-n ;nm)|l <i<m}

with a label 71 (M™) = n; for each vertex M" 1 <i < m and

EY = {(M™, M| M (Y M™ £ 0,1 <, j <m}

with a label 7o (M™, M") = dim(M™ [\ M™) for each edge (M™ , M"i),1 < i,j < m. This
construction then enables us to get a topological criterion for combinatorial submanifolds of a
finitely combinatorial manifold by subgraphs in a vertex-edge labeled graph. For this objective,

we introduce the feasibly vertez-edge labeled subgraphs of G¥[M] on a finitely combinatorial
manifold M following.

Applying these vertex-edge labeled graphs correspondent to finitely combinatorial mani-
folds, we get some criterions for combinatorial submanifolds. Firstly, we establish a decompo-

sition result on unit for smoothly combinatorial manifolds.

Lemma 2.1 Let M be a smoothly combinatorial manifolds with the second axiom of countability
hold. For Np € M, let Uy, be the intersection of s(p) manifolds My, Ma,- -, Mg,). Then there
are functions far,, 1 <1i <3(p) in a local chart (Vy,[¢p]), Vy C Uy in M such that
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1 onV,\M,,
Im, =

0 otherwise.

Proof By definition, each manifold M; is also smooth with the second axiom of countability
hold since

i = {(Up; [#p))lv,nn;

is a C> differential structure on M; for any integer i,1 < i < 5(p). According to the decompo-

pEM}

sition theorem of unit on manifolds with the second axiom of countability hold, there is a finite

cover

Y, = {Wi a e N}

on each M;, where N is a natural number set such that there exists a family function f, €
Not loss of generality, we assume that p € Wéo for any integer i. Let

s(p)

V= Wi,
i=1
and define
fMi (q) = oo . ’
0 otherwise.
Then we get these functions far,,1 <1 < 5(p) satisfied with our desired. O

Theorem 2.2 Let M be a smoothly combinatorial manifold and N a manifold. If for VM €
V(G[M]), there exists an embedding Frs : M — N, then M can be embedded into N.

Proof By assumption, there exists an embedding Fys : M — N for VM € V(G[M]).
For p € M, let V,, be the intersection of 5(p) manifolds My, Ma,-- -, Mz,
1 <i < 3(p) in Lemma 2.1 existed. Define a mapping F:M — N at p by

y with functions fay,,

s(p)
F(p) = fa, Fu,-
=1

Then F is smooth at each point in M for the smooth of each Fj, and f'*p : TPM — T,N is
one-to-one since each (Fay, )«p is one-to-one at the point p. Whence, M can be embedded into
the manifold N. O

Theorem 2.3 Let M and N be smoothly combinatorial manifolds. If for VM € V(G[M)), there
exists an embedding Fyr : M — J\Nf, then M can be embedded into N.

Proof Applying Lemma 2.1, we can get a mapping F: M — N defined by
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3(p)

p) =Y fuFu,
im1

at Vp € M. Similar to the proof of Theorem 2.2, we know that F is smooth and ﬁ*p : T,,M —
Tpﬁ is one-to-one. Whence, M can be embedded into N. O

Now we introduce conceptions of feasibly vertex-edge labeled subgraphs and labeled quo-
tient graphs in the following.

Definition 2.1 Let M be a finitely combinatorial manifold with an underlying graph G* [M]
For VM € V(GY[M]) and UL C N L[M]( ) with new labels To(M, M;) < TQ|GL[M](M,M1')
for VM; € UL, let J(M;) = {M]|dim(M N M) = 7o(M, M;), M! C M;} and denotes all these
distinct representatives of J(M;), M; € U™ by 7. Define the index o3;(M : U") of M relative
to UY by

oy (M : U") = min{dim( | J (M)}
M'eJ

A vertex-edge labeled subgraph T'Y of GL[M] is feasible if for Yu € V(I'F),

71| (u) > o3 (u: Npr (w)).
Denoted by T <, G [M] a feasibly vertez-edge labeled subgraph T'* of G [M]

Definition 2.2 Let M be a finitely combinatorial manifold Z a finite set of manifolds and
F} . M — & an injection such, that for VM € V(GIM ]) there are no two different N1, Ny € &
with FY(M) NNy # 0, F{(M) N Ny # 0 and for different My, My € V(G[M]) with F}(My) C
Ny, Pl (M) C N, there exist N, N} € £ enabling that Ny " N{ # 0 and No N Nj # 0. A
vertez-edge labeled quotient graph G* []Tj]/Fl1 is defined by

V(GE[M/FY) = {N c £|3M € V(G[M)) such that F}(M) C N},
E(GE[M]/F}) = {(N1, N2)|3(My, My) € E(G[M]), Ny, Ny € Lsuch that
Fll(Ml) C N17F1 (Mg) C Ny and Fl (Ml) n F1 (Mg) #+ @}

and labeling each vertex N with dimM if F{ (M) C N and each edge (N1, N2) with dim(M;NMa)
if Fl(Ml) C Nl,Fll(Mg) C Ny and Fll(Ml) n Fll(Mg) #+ 0.

According to Theorems 2.2 and 2.3, we find criterion for combinatorial submanifolds in the

following.

Theorem 2.4 Let M and N be finitely combinatorial manifolds. Then M is a combinatorial
in-submanifold of]\~] if and only if there exists an injection F on M such that

GF[M]/F} <, N.
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Proof 1If M is a combinatorial in-submanifold of N by definition, we know that there is
an injection F : M — N such that F(M) € V(G[N]) for YM € V(G[M]) and there are no
two different N1, Ny € & with F (M) N Ny # 0, F{(M) N Ny # 0. Choose F!' = F. Since
F is locally 1 — 1 we get that F(My N My) = F(My) N F(M), ie., F(Mi,M,) € E(G[N])
or V(G[N]) for ¥(My, My) € E(G[M]). Whence, GX[M]/F! < G*[N]. Notice that GL[N]
is correspondent with M. Whence, it is a feasible vertex-edge labeled subgraph of GF[N ] v
definition. Therefore, GE[M]/F} <, GE[N].

Now if there exists an injection Fj on M let T <, GL[N]. Denote by T' the graph

GY'[N ] \ T'Z, where GE[N]\ T'* denotes the vertex-edge labeled subgraph induced by edges in
GE[N]\ 'L with non-zero labels in G[N]. We construct a subset M* of N by

U mye U @rmm)

M'eV(T) (M',M")eE(T)

and define M = Fll_l(ﬂ *). Notice that any open subset of an n-manifold is also a manifold
and F~Y(T'l) is connected by definition. It can be shown that M is a finitely combinatorial
submanifold of N with GL[M]/F} ~TF. O

An injection F} : M — & is monotonic if Ny # Ny if F}(M;) C Ny and F}' (M) C Ny for
VM, Msy € V(G[M]), My # M. In this case, we get a criterion for combinatorial submanifolds
of a finite combinatorial manifold.

Corollary 2.1 For two finitely combinatorial manifolds ]Tj, N, M is a combinatorially mono-
tonic submanifold of N if and only if G* [M] =<, GF [N]

Proof Notice that F}' = 1! in the monotonic case. Whence, GE[M]/F} = GF[M]/1} =
GL[M]. Thereafter, by Theorem 2.4, we know that M is a combinatorially monotonic subman-
ifold of N if and only if GL[M] <, GE[N]. O

83. Fundamental Formulae

Let (i, M ) be a smoothly combinatorial submanifold of a Riemannian manifold (N, g N D). For
Vp € M, we can directly decompose the tangent vector space Tpﬁ into

T,N =T,M & T,;"M

on the Riemannian metric g5 at the point p, i.e., choice the metric of TpJT/[/ and TPLM to be
9N|T a7 or gN|T L 37> respectively. Then we get a tangent vector space T),M and a orthogonal
P P

complement T;-J\’Z of TpM in Tpﬁ, ie.,

T.-M = {v € T,N| (v,u) = 0 for Yu € T,M}.

We call TPM, T;-J\’Z the tangent space and normal space of (;, M) at theﬂgoint pin (J\Nf, 95 l~)),
respectively. They both have the Riemannian structure, particularly, M is a combinatorially
Riemannian manifold under the induced metric g = i* IN-

Therefore, a vector v € Tp]v can be directly decomposed into
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v=uv' + ’UJ',
where v € Tp1\7 ,ot € TpJ-M are the tangent component and the normal component of v at
the point p in (J\Nf, 95 l~)) All such vectors v+ in TN are denoted by T+M, i.e.,
17 177
M= | T, M.
pEJ\N4

Whence, for VX,Y € %(]\7), we know that

DxY = DY + Dy,
called the Gauss formula on the combinatorially Riemannian submanifold (1\7, g), where 5;1’ =

(DxY)T and DY = (DxY)*.

Theorem 3.1 Let (i, M) be a combinatorially Riemannian submanifold of (]\Nf,g]v, D) with an
induced metric g :?*gﬁ, Then for VX,Y,Z, DT : 2 (M) x 2 (M) — 2 (M) determined by
DT(Y,X) = DLY is a combinatorially Riemannian connection on (M,g) and D+ : 2 (M) x

2 (M) — T+(M) is a symmetrically coinvariant tensor field of order 2, i.e.,
(1) DxyyZ=DxZ+DyZ;
(2) DY = ADLY for VA € C(M);
(3) D+Y = D X.

Proof By definition, there exists an inclusion mapping i : M — N such that (i, M )is a
combinatorially Riemannian submanifold of (]\7 IR 5) with a metric g = i*g N
For VXY, Z € Z (M), we know that

DxivZ = DxZ+DyZ
= (DxZ+DxZ)+ (DxZ+ DxZ)
by properties of the combinatorially Riemannian connection D. Thereby, we find that

DY yZ=DYZ+DyZ Dy,yZ=D%Z+Dy:Z.

Similarly, we also find that

DY (Y +Z)=DYY +D\Z, D%(Y +Z)=D%Y +DxZ.

Now for VA € C* (M), since

DxxY = ADxY, Dx(\Y)=X()\)+ADyY,

we find that

DIyY =ADYY, DL(AY)=X(\)+ADyY
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and

D% (\Y) = ADxY.
Thereafter, the mapping DT : 2 (M) x 2 (M (N) — (M) is a combinatorially connection on
(M,g) and D+ : 27 (M) x 2 (M) — T+(M) have properties (1) and (2).
By the torsion-free of the Riemannian connection D ie.,
DxY —DyX =[X,Y] € 2 (M)

for VX,Y € %(M), we get that

DYY — Dy X = (DxY — DyX)" =[X,Y]
and
DxY — DX = (DxY — Dy X)* =

ie. Dﬁ;Y D#X Whence, DT is also torsion-free on (M g) and the property (3) on D+
holds. Applying the compatibility of D with gy in (N 95 D) we finally get that

Z(X,Y)

<Z)ZX, Y> + <X, f)ZY>

<5}X,Y> n <X, 15}Y>,

which implies that DT is also compatible with (M, g), namely DT : 2" (M) x 2 (M) — 2 (M)
is a combinatorially Riemannian connection on (M,g). O
Now for VX € 2 (M) and Y+ € TLM, we know that DxY+ € TN. Whence, we can

directly decompose it into

DxY*+ =DiY* 4+ DxY*t,
called the Weingarten formula on the combinatorially Riemannian submanifold (M, g), where

DLYL = (DxYH)T and DY+t = (Dxv+)L.

Theorem 3.2 Let (i, M) be a combinatorially Riemannian submanifold of (]\Nf,g]v, D) with an
induced metric g = ?*gﬁ. Then the mapping Dt TLM x 2 (M) — T+M determined by

ﬁ(YJ-, X)= ﬁﬂng 15 a combinatorially Riemannian connection on TLM.

Proof By definition, we have known that there is an inclusion mapping i:M — N such
that (i, M) is a combinatorially Riemannian submanifold of (N, g &> D) with a metric g = i*g e
For VX,Y € 2 (M) and VZ+, Zi, Z3- € T+ M, we know that

D%,y 2+ = DxZ* + D7, Dx(Z¢ + Z3) = Dx Zi + D% Z5

similar to the proof of Theorem 3.1. For VA € C* (M), we know that
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DixZ+=ADxZ*, Dx(A\Z')=X\Z* +ADxZ*.

Whence, we find that

DiZ+ = (ADx Z1): = N(Dx 21" = A\D% 2+,

Dy (AZH) = X(NZH + MDx 21t = X(\) 2+ + ADx 2+

Therefore, the mapping D+ T M x 3&”(]\7) —TMisa combinatorially connection on T+M.
Applying the compatibility of D with gy in (J\Nf IR 5), we finally get that

X(2+,28) = (Dx 7t 23 ) + (24, Dx 24 ) = (D 21, 24 ) + (74 Dy 73,

which implies that D+ : .2 (1\7 VXX (1\7 )= Z (M ) is a combinatorially Riemannian connection
onT+M. O

Definition 3.1 Let (Z, M) be a smoothly combinatorial submanifold of a Riemannian manifold
(]\Nf,gﬁ,f)). The two mappings ﬁ‘r7 DL are called the induced Riemannian connection on M

and the normal Riemannian connection on T+M, respectively.

Theorem 3.3 Let (;, M) be a combinatorially Riemannian submanifold of (]\Nf,gﬁ, ﬁ) with an
induced metric g = ?*gﬁ. Then for any chosen Z+ € TJ-MV, the mapping D;L : %(M) —
%(M) determined by EgL (X) = E)T(Zl for VX € %(M) is a tensor field of type (1,1).
Besides, if ZN);L is treated as a smoothly linear transformation on M, then EgL : TpM — TpM

at any point p € M is a self-conjugate transformation on g with the equality following hold

<5; (X),Y> - <1~)§(Y), ZL> . VXY € T,M. (%)

Proof First, we establish the equality (x). By applying equalities X <Zl, Y> = <l~)XZL, Y>+
<Zl, f)XY> and (Z1,Y) =0 for ¥X,Y € 2 (M) and VZ+ € T M, we find that

<1~3;(X),Y> - <15XZ¢,Y>
- X<ZL,Y>—<Z¢,1~)XY>:<1~)§Y,ZL>.

Thereafter, the equality () holds.

Now according to Theorem 3.1, ﬁﬂgY posses tensor properties for X, Y € TpM . Combining
this fact with the equality (), lN);L (X) is a tensor field of type (1,1). Whence, EgL determines
a linear transformation 5; Ll TPM — TpJT/f at any point p € M. Besides, we can also show
that IND—Z'—L (X) posses the tensor properties for VZ+ € T+M. For example, for any A € COO(M)
we know that
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<5§Y, /\Zl> = <1~)§(Y, Z¢>

(Dl (X),7)

_ <A15;(X),Y>, VX,Y € 2°(M)

by applying the equality () again. Therefore, we finally get that Dyyu (X) = AD . (X).

Combining the symmetry of 5)%}/ with the equality () enables us to know that the
linear transformation lN); 1t TPM — TPM at a point p € M is self-conjugate. In fact, for
VX,Y € T,M, we get that

<1~)§Y, Z¢> - <1~)¢X, Z¢>

= (D). x) = (x.DL.().

<5;L@¥%y>

Whence, 5; . is self-conjugate. This completes the proof. [
Now we look for local forms for DT and D+. Let (M .g,DT) be a combinatorially Rie-
mannian submanifold of (J\Nf I8 l~)) For Vp € M, let

{eaBll <A<dyj(p),1<B<na and ean=en,s,
for 1< Ay, Ay <dg(p) if 1< B <dgy(p)}

be an orthogonal frame with a dual

{w'P1 <A<dz(p)1<B<na and whB=wAb
for 1< A, Ay <dg(p) iflSngﬁ(p)}

at the point p in TN abbreviated to {eap} and w?B. Choose indexes (AB),(CD),---,
(ab), (cd),--- and (af),(y0),--- satisfying 1 < A,C < dg(p), 1 < B <ns, 1 <D <ng,---,
I <a,c<dyp), 1 <b<ngl <d< ne, - and a,y > dy(p) +1 or 3,6 > n; + 1 for
1 <i < dg;(p). For getting local forms of DT and D1, we can even assume that {eap}, {eqs}
and {eqg} are the orthogonal frame of the point in the tangent vector space TN , TM and the
normal vector space M by Theorems 3.1 —3.3. Then the Gauss’s and Weinggarten’s formula
can be expressed by

nT nL
Deabecd = Deabecd + Deabecdu

D, eap = D;rabeag + Deibeaﬁ'

When p is varied in M, we know that w® = * (w®) and w*® = 0,w? = 0. Whence, {w}
is the dual of {es} at the point p € TM. Notice that dw® = w A W% Wb 4+ wed = 0 in
o L 5 o Tab ~
(M,g,D7), dwtB = wP NwAB wiE +wib = O,wjf —I—wg% =0, wgﬁ—i—wz‘? =0in (N,g5. D)

by the structural equations and
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N CD
DEAB =WpapechD-

We finally get that

n d af > d 9
Degp = wpeed + Wy, €ap, Deap = wipeed + wlgevé-

Since dw®® = w /\wg‘g =0, dwiP = wab /\wiﬁb =0, by the Cartan’s Lemma, i.e., for vectors

V1,V2, ", Up, W1, W2, ,Wr with
K
E vs N ws = 0.
s=1
if v1,v9, -+ , v, are linearly independent, then

T
Wy = § asvg, 1< s<s,
t=1

where asy = ats, we know that

ai 1o cd B _ 110 cd
Wap = h(ab)(cd)W y Wep = h(ab)(cd)w

: [e%) — hai i3 _ piB
with h(ab)(cd) = h(ab)(cd) and h(ab)(cd) = h(ab)(cd). Thereafter, we get that
D;.,eca= ngﬁeaﬁ = h?fl))(cd)eaﬁ’

T d B
D.,,€ap = wpeed = h((lab)(cd)eaﬁ

Whence, we get local forms of DT and D in the following.

Theorem 3.4 Let (M,g,ﬁ—r) be a combinatorially Riemannian submanifold of (N,gﬁ,f)).
For p € M with locally orthogonal frames {eap}, {ea} and their dual {w*B}, {w™} in TN,
™,

nT _ cd L _ ap
De,,€cd = Wapeed; De,,ed = Mgy €as

and

nT _ B8 € _ 6
Deabeaﬁ = h((lab)(cd)eaﬁ’ Deabeaﬁ = wgﬁe,ﬂ;.

84. Fundamental Equations

Applications of these Gauss’s and Weingarten’s formulae enable one to get fundamental equa-
tions such as the Gauss’s, Codazzi's and Ricci’s equations on curvature tensors for characterizing

combinatorially Riemannian submanifolds.
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Theorem 4.1(Gauss equation) Let (]Tj,g, D7) be a combinatorially Riemannian submanifold
of (N,gﬁ,ﬁ) with the induced metric g = Z*gﬁ and E,ﬁﬁ curvature tensors on M and J\Nf,
respectively. Then for VXY, Z, W € 2 (M),

R(X,Y,Z,W) = Rg(X,Y,Z,W) + <5§Z, 5¢W> - <5¢Z, 5§W> .

Proof By definition, we know that

ﬁN(X, Y)Z = DxDyZ — DyDxZ — ﬁ[X,Y]Z'

Applying the Gauss formula, we find that

Ry(X,Y)Z Dx(DyZ + D\ Z) — Dy (D%, Z + D% Z)

~(Dix v)Z + Dix v %)
— DYDyZ+ D%xDyZ+ DxD%:Z — Dy, D} Z
~DyDxZ = DyDxZ - Dix % = Dix 2
— R(X,Y)Z+(D%DyZ - D:DY2)
~(Dixy)Z — DxDyZ + Dy Dx Z). (4.1)

By the Weingarten formula,
DxDsZ =DxDyZ + D%xDsZ, DyD%Z = DyD%xZ+ DyD%Z.

Therefore, we get that

<fz(X, Y)Z, W> - <}~2N(X, Y)Z,W> + <1~)§<Z, 5¢W> - <5¢Z, 5§W>
by applying the equality (%) in Theorem 2.4, i.e.,

R(X,Y,Z,W) = Ry (X,Y,Z,W) + <1~)§Z, 5¢W> - <1~)¢Z, 5§W> .0

For VX, Y, Z e & (]Tj ), define the covarint differential Dx on E%/Z by
(DxD* )y Z = Dy (D7) — LN)%);YZ — DD Z).

Then we get the Codazzi equation in the following.

Theorem 4.2 (Codazzi equation) Let (M g, DT) be a combmatormlly Riemannian submamfold
of (N gN,ﬁ) with the induced metric cg= i*g5 and R RN curvature tensors on M and N
respectively. Then for VXY, 7 € % (M ),

(DxD*)yZ — (DyD*)xZ = R*(X,Y)Z

Proof Decompose the curvature tensor EN (X,Y)Z into
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Ry(X.Y)Z=RL(X,Y)Z+ R%(X,Y)Z.

Notice that

DY — Dy Z =[X,Y].
By the formula (4.1), we know that

DL
RL(X,Y)Z

DxDyZ - DyDxZ — Dix y1Z + Dx Dy Z — Dy Dy Z
= DYDYZ-DyDYZ - DpryZ+ D¢D%Z - DYDY Z — Dy i Z

For VX,Y € %(M), zteTt (M), the curvature tensor R determined by D+ in T-M
is defined by

RH(X,Y)Z+ = DxDyz* — DyDx Z* — Dix vy Z*

Similarly, we get the next result.

Theorem 4.3(Ricci equation) Let (M g,DT) be a combmatomally Riemannian submamfold
of (N,gﬁ,f)) with the induced metric g = i* 9§ and R RN curvature tensors on M and N
respectively. Then for VX, Y € 2 (M ), Zt eTM,

RY(X,Y)Z* = RL(X,Y)Z* + (DxDL)y 2+ — (Dy D) x Z27).

Proof Similar to the proof of Theorem 4.1, we know that

Ry(X,Y)Z" = DxDyZ'—DyDxZ' — Dixy 2+
= RYX,Y)Z'+D+D)Z+ - DDy 7+
+Dx D72t — Dy Dy Z*-
= (RYX.Y)Z" + (DxDY)y 2" - (DyD4)xZ")
+DD$:Z* — Dy DxZ+.
Whence, we get that

RY(X,Y)Z* = RE(X,Y)Z* + (Dx DY)y 24 — (DyDH)xZ*). O

Certainly, we can also find local forms for these Gauss’s, Codazzi’s and Ricci’s equations
in a locally orthogonal frames {eap}, {€a} of TN and TM at a point p € M.

Theorem 4.4 Let (M g,D ) be a combinatorially Riemannian submanifold of (N gN,ﬁ)
with g =1+ gy and for p € M, let {ean}, {ea} be locally orthogonal frames of TN and TM at
p with dual {wABY}, {w®}. Then
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‘é(ab)(Cd)(ef)(gh):(Eﬁ)(ab)(Cd)(ef)(gh)_Zﬁ(h(ab)(ef)h?c%)(gh) Wy om Peayey)  ( Gauss ),
h?ab)(cd)(ef) h?fb)(ef)(cd) = (ﬁﬁ)(aﬁ)(ab)(cd)(ef) ( Codazzi )
and
Bicg) )@y ed) = (B @)(28)ab) c) = Zf: by e Mo (om) — Py Wy ony) ( Ricei )
with R(aﬁ)('yzi)(ab)(cd) = <E(eab, €cd)€as, ewg> and
Wty ey (e = Pty ety — b er) ety — “eahlanycesy 955 My (eay

Proof Let Q and Q ~ be curvature forms in M and N. Then by the structural equations
in (N, g5,D) ([10]), we know that

CD

~ 1 ~~
Q)58 = dwip — whiE NwER = _(RN)(AB)(CD)(EF)(GH)WEF AwH

and E(eAB,eCD)eEF = ﬁgg(eAB,eCD)eGH. Let i : M — N be an embedding mapping.
Applying i* action on the above equations, we find that

. _
Qx)es = dwif WZI{ A Wef 31? A waﬁ
. d af af3 f h
= Qg+ Zhwb (en)teaygmw™ N

Whence, we get that

- 1
cd af af af o wel gh
Vil = @) = 5 2_(Wayenleaam = Manyomeayen)& A"

a)

This is the Gauss’s equation

R — (R af af af op
Rab)(ed)(ef)(gh) = (Rﬁ)(ab)(cd)(ef)(gh) - Z(h(ab)(ef)h(cd)(gh) h(ab)(gh)h(cd)(ej))
o,

Similarly, we also know that

Q) = dwly — Wi AWl — Wl AWy
_ op of el p D
= (Wl ea™) — hiterwes Ao h(ab)(ef) Awy
_ e o efy_ o
= (dh(ab Jed) — My ey@ei) = Py ey wip + h(ab)(cd)waﬁ) Aw?

_ ,aB ef r cd
= h(ab)(cd)(ef)w Aw

o « af ef cd
= (h(ab)(cd)(ef) hab)epyea)) W™ A
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and

Q)% = dwll—wh AWl — Wi AW

. 1
_ Lv6 af 8 af v ab cd
= 9 +52);(h(ef')(ab)h(ef)(cd)_h(ef)(cd)h(ef)(ab))w N

These equalities enables us to get

af af _ (D
h(ab)(cd)(ef) - h(ab)(ef)(cd) - (RN)(aﬁ)(ab)(cd)(ef)’
and
Rl (P af vo aBp 8
Riapyayanyied = Bi@meoracd = D (hiuyepyhionon = Medyer/ My on)-
e, f
These are just the Codazzi’s or Ricci’s equations. O

§85. Embedding in Combinatorially Euclidean Spaces

For a given integer sequence ki, nqo, -+ ,k;,l > 1 with 0 < k) < ko < -+ < k;, a combinatorially

~ 1
Euclidean space R(ky,--- ,k;) is a union of finitely Euclidean spaces | J R such that for Vp €
i=1

! N l
R(ki, -, k), p € () R¥ with{ = dim( () R¥") a constant. For a given combinatorial manifold
i=1 i=1

M(nl, No, -+, Ny, wether it can be realized in a combinatorially Euclidean space f{(kl, s k) ?
We consider this problem with twofold in this section, i.e., topological or isometry embedding

of a combinatorial manifold in combinatorially Euclidean spaces.

5.1. Topological embedding

Given two topological spaces %1 and %5, a topological embedding of ¢ in %5 is a one-to-one

continuous map

f: C(o”1—><g2.

When f : M(nl, No, -+ 4 Nyy) — f{(kl, -++, ki) maps each manifold of M to an Euclidean space
of f{(kl, -+« k), we say that M is in-embedded into f{(kl, s k).

Whitney had proved once that any n-manifold can be topological embedded as a closed
submanifold of R*" 1 with a sharply minimum dimension 2n + 1 in 19361, Applying Whit-
ney’s result enables us to find conditions of a finitely combinatorial manifold embedded into a
combinatorially Euclidean space f{(kl, s k).

Firstly, We thereafter get a result for the case [ = 1, which completely answers the problem
4.1 raised in [7].

Theorem 5.1 Any finitely combinatorial manifold M(nl,ng, <o Nyy) can be embedded into
R2n7n+1.
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Proof According to Whitney’s result, each manifold M"™ |1 < i < m, in M(nl, N, s Nyn)
can be topological embedded into an Euclidean space R" for any > 2n; + 1. By assump-
tion, n; < may < -+ < ngy,. Whence, any manifold in M (ny,ng, - ,ny,) can be embedded
into R?"» 1. Applying Theorem 2.2, we know that M (ni,nsa,- -+ ,n.;,) can be embedded into
R2nm+1. O

For in-embedding a finitely combinatorial manifold M (n1,n2, -+ ,Ny,) into combinatorially
Euclidean spaces f{(kl, -+ k), we get the next result.

Theorem 5.2 Any finitely combinatorial manifold M(nl, Ng, -+ ,Ny) can be in-embedded into
a combinatorially Euclidean space f{(kl, -+ kp) if there is an injection

w:{ni,ne, - Nt — {ki, ko, ki)

such that

w(ni) > max{2e + 1| Ve € w *(ww(n;))}

and

dim(R=) (\R=M)) > 2dim(M™ (| M") + 1
for any integer i,7,1 <i,5 < m with M™ N M" #£ (.

Proof Notice that if

w(n;) > max{2e + 1| Ve € w (w(ni))}

for any integer i,1 < i < m, then each manifold M€, Ve € w *(w(n;)) can be embedded
into R®(™) and for Ve; € w1(n;), Yea € w 1(n;), M N M can be in-embedded into
R="i) N R=() if M N M # () by Whitney’s result. In this case, a few manifolds in

M(nl, Na,- -+ ,Ny,) may be in-embedded into one Euclidean space R=(") for any integer i,1 <
i < m. Therefore, by applying Theorem 2.3 we know that M(ni,ng, -+ ,n,;,) can be in-
embedded into a combinatorially Euclidean space f{(kl, o k). O

If I = 1 in Theorem 5.2, then we obtain Theorem 5.1 once more since w(n;) is a constant
in this case. But on a classical viewpoint, Theorem 5.1 is more accepted for it presents the
appearances of a combinatorial manifold in a classical space. Certainly, we can also get concrete

conclusions for practical usefulness by Theorem 5.2, such as the next result.

Corollary 5.1 Any finitely combinatorial manifold M(nl, Na, -+ ,Ny) can be in-embedded into

a combinatorially Euclidean space f{(kl, ey ky) af
(i) 1=my

(i7) there exists m different integers ki, , kiy, - , ki, € {k1,ka,--- ,ki} such that

kij >2n; +1
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and

dim(R"3 (\RF) > 2dim(M™ (| M) + 1
for any integer i,j,1 < i,7 < m with M"™ N M" # (.

Proof Choose an injection

7TZ{TL1,TL2,"' 7nm}_){kluk27"' 7kl}

by m(n;) = ki; for 1 < j < m. Then conditions (i) and (44) implies that 7 is an injection

satisfying conditions in Theorem 5.2. Whence, M (n1,m2, - ,ny) can be in-embedded into

R(ky,--- k). O

5.2. Isometry embedding

For two given combinatorially Riemannian C"-manifolds (M ., 51\7[) and (]\7 IR 5), an isom-
etry embedding

i:M— N
is an embedding with g = g*gﬁ. By those discussions in Sections 3 and 4, let the local charts
of M, N be (U,[z]), (V,]y]) and the metrics in M, N to be respective

T It v KA
9N = Z gﬂf@,)(m)dyc ®@dy”, g= Z ) (rny A" @ dz"7,
(57),(90) (), (1 N)

then an isometry embedding 7 form M to N need us to determine wether there are functions

yﬁ)\ = il{)\[ij]a 1< < S(p)vl <v< Ns(p)

for Vp € M such that

o) (R af af af af
Rabyeay(e)(gn) = (R )(ab)earenon) = 2 upy ey Poyiany = Pab)an) Poodyes)):

a7

ap ap _ (D
h(ab)(cd)(ef) - h(ab)(ef)(cd) - (RN)(aﬁ)(ab)(cd)(ef)’

pl (D ap 73 app o
Riap)o)anyea) = B @meoaca = D Blayen/ionian) — MenMason)
e, f
with R(Laﬁ)(vti)(ab)(cd) = <R(€ab, ecd)eaﬁa ev5>7
af ef _ q308 _efpaB _efpap aByé
habyeayen)®W™ = Wany(eay = Wab Reyed) ~ Yeaav)(er) T s Pab) (ca)

and
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~ 0isT 82'1%
Z INGr o0 (Z[I])axuu o Jw)(kn) [z].
(s7),(V0)

For embedding a combinatorial manifold into a combinatorially Euclidean space f{(k:l, k),

the last equation can be replaced by

O O el
Oyt HyrA = Y(pv)(kX)
(c1) Y Y

since a combinatorially Euclidean space f{(kl, -+« k) is equivalent to an Euclidean space R*

~ —~ ~

U(p) -
with a constant k = I(p) + > (k; —(p)) for ¥p € R* but not dependent on p (see [9] for details)
i=1

and the metric of an Euclidean space R* to be

Ig = Z dy"” @ dy*”.

v

These combined with additional conditions enable us to find necessary and sufficient conditions
for existing particular combinatorially Riemannian submanifolds.

Similar to Theorems 5.1 and 5.2, we can also get sufficient conditions on isometry em-
bedding by applying Lemma 2.1, i.e., the decomposition lemma on unit. Firstly, we need two
important lemmas following.

Lemma 5.1([2]) For any integer n > 1, a Riemannian C"-manifold of dimensional n with

2 <r < oo can be isometry embedded into the Euclidean space R +10n+3,

Lemma 5.2 Let (M,g, EM) and (]V,gﬁ, 5) be combinatorially Riemannian manifolds. If for

VM € V(G[M)]), there exists isometry embedding Frr : M — N, then M can be isometry

embedded into N.

Proof Similar to the proof of Theorems 2.2 and 2.3, we only need to prove that the mapping
F: M — N defined by

3(p)

i=1
is an isometry embedding. In fact, for p € M we have already known that

95 (Fa,)« (0), (Fagy )« (w)) = g(0, w)

for Yo, w € T,,M and i,1 < i < 5(p). By definition we know that
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_ _ s(p) 3(p)
95 (Fe(v), Fu(w)) = QN(ZfMi(FMi)(U),ZfMj( M, ) (w))
s(p) 5(p)
= Zzgﬁ(sz(FMz)(v)vfMJ(FMJ)(w)))
i=1 j=1

3(p) 3(p)
= >N g0 (Far) (), far, (Fag,) (w)))

i=1 j=1
3(p) 3(p)

= g(ZfMiv7ZfMjw)
i=1 =1
= g(v,w).

Therefore, F is an isometry embedding. 0

Applying Lemmas 5.1 and 5.2, we get results on isometry embedding of a combinatorial
manifolds into combinatorially Euclidean spaces following.

Theorem 5.3 Any combinatorial Riemannian manifold M(nl,ng, cee M) can be isometry
embedded into R"m+10mm+3,

Proof According to Lemma 2.1, each manifold M™, 1 < i < m, in M(nl, Ng, **+ ,MNyy) Can
be isometry embedded into an Euclidean space R" for any 1 > n? 4+ 10n; + 3. By assumption,
ny < ng < -+ < Ny,. Thereafter, each manifold in M(nl,ng, -+ ,n,;,) can be embedded
into R"m+10mm+3  Applying Lemma 5.2, we know that M (ni,ng, - ,nm) can be isometry
embedded into Rmt107mm+3, O
Theorem 5.4 A combinatorially Riemannian manifold M(nl,ng, < ny) can be isometry
embedded into a combinatorially Euclidean space f{(kl, -+« kp) if there is an injection

W:{n17n27"' 7nm}_){kluk27"' 7kl}

such that

w(n;) > max{e® + 10e + 3| Ve € w ™ (w(ns))}

and

dim(Rw(m) ﬂRw(ny‘)) > dim2(M"i mMn,) + 10dim(M™ mMnj) +3
for any integer i,7,1 <i,5 < m with M™ N M" # (.

Proof If

w(n;) > max{e? + 10e + 3| Ve € w ! (w(n;))}
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for any integer i,1 < i < m, then each manifold M€, Ve € w~!(w(n;)) can be isometry embed-
ded into RZ(") and for Ve; € w1 (n;), Yea € w1 (n;), M N M® can be isometry embedded
into R®(™) NR= (™) if M1 N M€ # () by Lemma 5.1. Notice that in this case, serval manifolds

in ]T/[/(nl, No,- -+ ,Nm) may be isometry embedded into one Euclidean space R¥(™) for any in-
teger i,1 < i < m. Now applying Lemma 5.2 we know that M (ni,na,- -+ ,n,,) can be isometry
embedded into a combinatorially Euclidean space f{(kl, e k). 0

Similar to the proof of Corollary 5.1, we can get a more clearly condition for isometry
embedding of combinatorially Riemannian manifolds into combinatorially Euclidean spaces.

Corollary 5.2 A combinatorially Riemannian manifold M(nl,ng, cee M) can be isometry
embedded into a combinatorially Fuclidean space f{(kl, k) af

(i) 1=my

(i7) there exists m different integers ki, , kiy, - , ki, € {k1, k2, ,ki} such that

ki; > nF +10n; + 3

and

dim(R"5 (YR¥r) > dim®(M™ () M") + 10dim(M" (| M"") + 3

for any integer i,j,1 < i,7 < m with M"™ N M" # (.
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Abstract: In this paper we introduce the concept of half-groups. This is a totally new
concept and demands considerable attention. R.H.Bruck [1] has defined a half groupoid.
We have imposed a group structure on a half groupoid wherein we have an identity element
and each element has a unique inverse. Further, we have defined a new structure called
Smarandache half-group. We have derived some important properties of Smarandache half-

groups. Some suitable examples are also given.
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§1. Introduction

Definition 1.1 Let (S, *) be a half groupoid (a partially closed set with respect to x ) such that

(1) There exists an element e € S such that axe =e*xa = a,Ya € S. e is called identity

element of S;

(2) For every a € S there exists b € S such that a b =bxa = e (identily) b is called the

inverse of a.

Then (S,*) is called a half-group.

Remark It is easy to verify that

(a) identity element in S is unique;
(b) each element in S has a unique inverse;

(¢) associativity does not hold in S as there is at least one product that is not defined in S.

Note In all composition tables in the following examples the blank entries show that the

corresponding products are not defined.

Example 1.1 Let S = {1,—4,4}. Then S is a half-group w.r.t. multiplication. We write this

multiplication table in the following.

1Received March 2, 2008. Accepted March 28, 2008.
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1|1 -1
-1 - 1
il1]1

x| e|a C
e | e C
blc]|e

Here the product ¢ * ¢ is not defined.

Definition 1.2 it Let (S, *) be a half-group and H a subset of S. If H itself is a half-group
w.r.t. *, then H is called a subhalf-group of S.

Example 1.3 Let S = {e,a,b, ¢,d} be a half-group defined by the following table.

* | e | a c|d
elel|a c|d

cle|b]a
b|ble|c|al|d
c|c alel|b
d|d|b|c e

Then , H = {e, a,b} is a subhalf-group of S.

Definition 1.3 A half-group (S, ) is called a Smarandache half-group if S contains a proper

subset G such that G is a nontrivial group w.r.t. *.

Definition 1.4 If S is Smarandache half-group such that every group contained properly in S

is commutative, then S is called Smarandache commutative half-group.

Definition 1.5 If S is a Smarandache half-group such that every group contained properly in
S is cyclic, then S is called a Smarandache cyclic half-group.

Example 1.4 Let S be a half-group defined by the following table.
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Then G = {e,a} is a nontrivial group contained in S. So, S is a Smarandache half-group. Also,
{e,a,b} is a Smarandache half-group. S is also a Smarandache commutative half-group. Also

S is a Smarandache cyclic half-group.
Example 1.5 S = {1,—i,i} is not a Smarandache half-group.

Example 1.6 Let L be the Half-Group given by the following table.

x e | flg|h|i]] 1
ele|flg|h|i]] 1
flfle|ljlg|k|h|1l]i
glgl|ljle|lk|h|1]|i]f
h|h|g|lk|el|l|i]|f]]
i|i|k|h|l]|e|f|]j]lg
jlilh|l]i|fle]|g

k|lk|1|i|f|jlg]l|e

L{1]i|]f]j]|g e

Then L is a half-group which contains a group G = {e, g}. So, L is a Smarandache Half-Group.
There are many Smarandache half-groups in this structure. Results following are obtained

immediately by definition

(1) The smallest half-group is of order 3.

This follows from the very definition of half-groups.

(2) The smallest Smarandache half-group is of order 3.

As a nontrivial group has order at least 2, the half-group which will contain this group

properly will have order at least 3.

82. Substructures of Smarandache Half-Groups
In this section we introduce Smarandache substructure.

Definition 2.1 Let S be a half-group w.r.t. *. A nonempty subset T of S is said to be
Smarandache subhalf-group of S if T contains a proper subset G such that G is a nontrivial

group under the operation of S.
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Theorem 2.1 If S is a half-group and T is a Smarandache subhalf-group of S then S is a
Smarandache half-group.

Proof As T is a Smarandache subhalf-group of S, S contains 7" properly. Also, T" properly
contains a non trivial group. As a result S is a hlf-group which properly contains a nontrivial
group. Therefore S is a Smarandache half-group. 0

We also note facts following on Smarandache half-groups.

(D)If R is a Smarandache half-group then every subhalf-group of R need not be a Smaran-
dache subhalf-group.

We give an example to justify our claim.

Example 2.1 Consider a half-group S defined by the following table.

x e | flglh|il]j
ele|flg|h|il]j
flflhle|lg|j]|i
glgle|h|f|i]i
hlh|g elel]
ilifjli]jle

jlgli]f]i e

Then S D H = {e, f,g,h} and H is a group. Therefore S is a Smarandache half-group.
Consider a half-group R = {e, f,g}. Then R is not a Smarandache subhalf-group of S as there
does not exist a non trivial group contained in R.

We give a typical example of a half-group following whose subhalf-groups are Smarandache

subhalf-group.

Example 2.2 Consider the following table.

xle| flg|lh|i|j|k]|]
ele|flg|lh|i|j|k]|]
flfle|ljlg|k|h|1l]i
glgl|ljle|lk|h|1l|i]f
h|h|g|kl|lel|l[|i]|f]]
i|i|k|h|l]|e|f|]j]lg
jlilh|lji|fle]lglk
k|lk|1|1i|f|jlg]|e

L{1]i]f]jlegl|k e

One can easily verify that every subhalf-group is a Smarandache subhalf-group.
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Definition 2.2 If S is a Smarandache half-group such that a subhalf-group A of S contains the
largest group in S then A is called a Smarandache hyper subhalf-group.

In the example above, the largest non-trivial group in S is of order 2 and every Smarandache
subhalf-Group of S contains the largest group in S. Thus, every Smarandache subhalf-Group
in S is a Smarandache hyper subhalf-Group.
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81. Introduction

The study of Smarandache loops was initiated by W. B. Vasantha Kandasamy in 2002. In
her book [16], she defined a Smarandache loop (S-loop) as a loop with at least a subloop
which forms a subgroup under the binary operation of the loop. For more on loops and their
properties, readers should check [14], [3], [5], [7], [6] and [16]. In her book, she introduced over
75 Smarandache concepts in loops but the concept Smarandache Bryant Schneider Group which
is to be studied here for the first time is not among. In her first paper [17], she introduced some
types of Smarandache loops. The present author has contributed to the study of S-quasigroups
and S-loops in [9], [10] and [11] while Muktibodh [13] did a study on the first.

Robinson [15] introduced the idea of Bryant-Schneider group of a loop because its impor-
tance and motivation stem from the work of Bryant and Schneider [4]. Since the advent of the
Bryant-Schneider group, some studies by Adeniran [1], [2] and Chiboka [6] have been done on it
relative to CC-loops, C-loops and extra loops after Robinson [15] studied the Bryant-Schneider
group of a Bol loop. The judicious use of it was earlier predicted by Robinson [15]. As men-
tioned in [Section 5, Robinson [15]], the Bryant-Schneider group of a loop is extremely useful
in investigating isotopy-isomorphy condition(s) in loops.

In this study, the concept of Smarandache Bryant Schneider Group of a Smarandache

1Received March 6, 2008. Accepted April 2, 2008.
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loop is introduced. Relationship(s) between the Bryant Schneider Group and the Smarandache
Bryant Schneider Group of an S-loop are discovered and the later is found to be useful in finding
Smarandache isotopy-isomorphy condition(s) in S-loops just like the formal is useful in finding
isotopy-isomorphy condition(s) in loops. Some properties of the Bryant Schneider Group of
a loop are shown to be true for the Smarandache Bryant Schneider Group of a Smarandache
loop. Some interesting and useful cardinality formulas are also established for a type of finite

Smarandache loop. But first, we state some important definitions.

82. Definitions and Notations

Definition 2.1 Let L be a non-empty set. Define a binary operation (-) on L : If x-y € L for
YV x,y€ L, (L,-) is called a groupoid. If the system of equations ; a-x =b and y-a = b have
unique solutions for x and y respectively, then (L, -) is called a quasigroup. Furthermore, if there
exists a unique element e € L called the identity element such that for¥V x € L, x-e =e-x = x,
(L,-) is called a loop.

Furthermore, if there exist at least a non-empty subset M of L such that (M,-) is a
non-trivial subgroup of (L,-), then L is called a Smarandache loop(S-loop) with Smarandache
subgroup(S-subgroup) M.

The set SYM(L,-) = SYM(L) of all bijections in a loop (L,-) forms a group called the
permutation(symmetric) group of the loop (L,-). The triple (U,V,W) such that U, VW €
SYM(L,-) is called an autotopism of L if and only if 2U - yV = (z - y)W V x,y € L. The
group of autotopisms(under componentwise multiplication [14]) of L is denoted by AUT (L, -).
If U =V = W, then the group AUM(L,-) = AUM (L) formed by such U’s is called the
automorphism group of (L, ). If L is an S-loop with an arbitrary S-subgroup H, then the group
SSYM(L,-) = SSYM(L) formed by all § € SYM(L) such that hd € H ¥V h € H is called the
Smarandache permutation(symmetric) group of L. Hence, the group SA(L,-) = SA(L) formed
by all 6 € SSYM (L) N AUM (L) is called the Smarandache automorphism group of L.

Let (G,-) be a loop. The bijection L, : G — G defined as yL, = = -y,V x,y € G
is called a left translation(multiplication) of G while the bijection R, : G — G defined as
yR, =y -,V x,y € G is called a right translation(multiplication) of G.

Definition 2.2(Robinson [15]) Let (G,-) be a loop. A mapping 0 € SYM(G,-) is a special
map for G means that there exist f,g € G so that (OR;, GL;l, 0) e AUT(G,-).

Definition 2.3 Let (G,-) be a Smarandache loop with S-subgroup (H,-). A mapping 0 €
SSYM(G,-) is a Smarandache special map(S-special map) for G if and only if there exist
f,9 € H such that (0R;*,0L;",0) € AUT(G, ).

Definition 2.4(Robinson [15]) Let the set
BS(G,-) ={0 € SYM(G,") : 3 f,ge G > (OR,",0L;"',0) € AUT(G,")}

i.e the set of all special maps in a loop, then BS(G,-) < SYM(G,-) is called the Bryant-
Schneider group of the loop (G, -).
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Definition 2.5 Let the set
SBS(G,-) = {0 € SSYM(G,-) : there exist f,g € H > (0R,',0L;",0) € AUT(G,-)}

i.e the set of all S-special maps in a S-loop, then SBS(G,-) is called the Smarandache Bryant-
Schneider group(SBS group) of the S-loop (G, -) with S-subgroup H if SBS(G,-) < SYM(G,-).

Definition 2.6 The triple ¢ = (Ry, Ly, 1) is called an f, g-principal isotopism of a loop (G,-)
onto a loop (G,o) if and only if

r-y=xRgoylLyVa,yecd orxoy:ngl-ij?l,V z,y €G.

f and g are called translation elements of G or at times written in the pair form (g, f), while

(G, 0) is called an f,g-principal isotope of (G, -).

On the other hand, (G,®) is called a Smarandache f,g-principal isotope of (G, ®) if for

some f,g €S,

R, @yLy=(x®y)Va,yeCG
where (S,®) is a S-subgroup of (G,®). In these cases, f and g are called Smarandache
elements(S-elements).

Let (L,-) and (G,0) be S-loops with S-subgroups L' and G’ respectively such that xA €
G'Yx e L, where A : (L,-) — (G,0). Then the mapping A is called a Smarandache
isomorphism if (L,-) =2 (G,0), hence we write (L, ) = (G,0). An S-loop (L,-) is called a
G-Smarandache loop(GS-loop) if and only if (L,-) 7 (G,0) for all S-loop isotopes (G,o) of
(L, ).

Definition 2.7 Let (G,-) be a Smarandache loop with an S-subgroup H.

G, ) = {(GRQI,GL.?,G) € AUT(G,") for some f,ge H : h € HY h € H}

83. Main Results
3.1 Smarandache Bryant Schneider Group

Theorem 3.1 Let (G,-) be a Smarandache loop. SBS(G,-) < BS(G, ).

Proof Let (G,-) be an S-loop with S-subgroup H. Comparing Definitions 2.4 and 2.5, it
can easily be observed that SBS(G,-) C BS(G,-). The case SBS(G,-) C BS(G,-) is possible
when G = H where H is the S-subgroup of G but this will be a contradiction since G is an
S-loop.

Identity. If I is the identity mapping on G, then hi = h € H, ¥V h € H and there exists
e € H where e is the identity element in G such that (IR;Y, IL;Y 1) = (I,1,1) € AUT(G,").
So, I € SBS(G,-). Thus SBS(G, -) is non-empty.

Closure and Inverse. Let o, 3 € SBS(G,-). Then there exist f1, g1, f2,92 € H such that



54 Témitépé Gbgldhan Jaiyéold

A=(aR,'al;t @), B= (AR, BL,}, B) € AUT(G,").

AB™! = (aRy! oLy a)(Ry, 87" L p7t B7)

g1’

= (@R, 'Ry, 57 oL Ly, 57 af™h) € AUT(G, ).

Let § = SR, 'Ry, 6~ and v = 3L, 'Ly, 37" Then,

(aB716, a8 y,aB7t) € AUT(G, ") & (zaB716) - (yaB ') = (z-y)ap™t ¥V z,y € G.

Putting y = e and replacing x by zB8a~!, we have (20) - (ea3~1v) = x for all x € G.
Similarly, putting z = e and replacing y by yBa~!, we have (ea3718) - (yy) =y for all y € G.
Thence, 20 R(cap-14) = = and yyL(cqp-15) = y which implies that

_ p-1 -1
0= Riap-1y) 047 = Ligap1sy

Thus, since g = ea3~ 'y, f =eaf~'6 € H then

AB™' = (ap™'R;ap T Ly aB ) € AUT(G, ) & ™! € SBS(G, ).

Therefore, SBS(G,-) < BS(G,-). O

Corollary 3.1 Let (G, ) be a Smarandache loop. Then, SBS(G,-) < SSYM(G,-) < SYM(G,-).
Hence, SBS(G, -) is the Smarandache Bryant-Schneider group(SBS group) of the S-loop (G, ).

Proof Although the fact that SBS(G,-) < SYM(G,-) follows from Theorem 3.1 and the
fact in [Theorem 1, [15]] that BS(G,-) < SYM(G,-). Nevertheless, it can also be traced from
the facts that SBS(G,-) < SSYM(G,-) and SSYM (G, ) < SYM(G,-).

It is easy to see that SSYM (G, ) C SYM(G,-) and that SBS(G,-) C SSYM (G, ) while
the trivial cases SSYM(G,-) C SYM(G,-) and SBS(G,-) C SSYM(G,-) will contradict the
fact that G is an S-loop because these two are possible if the S-subgroup H is G. Reasoning
through the axioms of a group, it is easy to show that SSYM (G, ) < SYM(G,-). By using
the same steps in Theorem 3.1, it will be seen that SBS(G,-) < SSYM(G, ). O

3.2 The SBS Group of a Smarandache f, g-principal isotope

Theorem 3.2 Let (G,-) be a S-loop with a Smarandache f,g-principal isotope (G,0). Then,
(G, 0) is an S-loop.

Proof Let (G,-) be an S-loop, then there exist an S-subgroup (H,-) of G. If (G,0) is a
Smarandache f, g-principal isotope of (G, -), then

r-y=xRyoyLs V 2,y € G which implies x oy = ng_l -yL;l,V z,y € G
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where f,g € H. So
hiohy =hiR;" - hoL ',V hi, hy € H for some f,g € H.

Let us now consider the set H under the operation ”o”. That is the pair (H, o).

Groupoid. Since f,g € H, then by the definition hj o hy = thg_l ~hoL7Y, hiohy €
H,Y hi,hy € H since (H,-) is a groupoid. Thus, (H, o) is a groupoid.

Quasigroup. With the definition i o he = th;1 -thgl, Y hi,he € H, it is clear that (H, o)
is a quasigroup since (H,-) is a quasigroup.

Loop. It can easily be seen that f - g is an identity element in (H, o). So, (H, o) is a loop.

Group. Since (H,-) is a associative, it is easy to show that (H, o) is associative.
Hence, (H, o) is an S-subgroup in (G, o) since the latter is a loop(a quasigroup with identity
element f - g). Therefore, (G,o) is an S-loop. O

Theorem 3.3 Let (G,-) be a Smarandache loop with an S-subgroup (H,-). A mapping 6 €
SYM(G,-) is a S-special map if and only if 0 is an S-isomorphism of (G,-) onto some Smaran-
dache f,g-principal isotopes (G, o) where f,g € H.

Proof By Definition 2.3, a mapping 0 € SSY M (G) is a S-special map implies there exist
f,g9 € H such that (HRg_l, OLJTl, 0) € AUT(G,-). Tt can be observed that

(OR;*,0L;",0) = (0.0.0)(R, ", L. 1) € AUT(G, ).
But since (R_(;l,ijl,I) : (G,0) — (G, ) then for (9R;1,9L;1,9) € AUT(G, ") we must

have (0,0,0) : (G,-) — (G,o) which means (G, ) 2 (G,0), hence (G, ) % (G,0) because
(H,-)0 = (H,o). (Rg,Ls,I) : (G,:) — (G,o0) is an f, g-principal isotopism so (G,0) is a
Smarandache f, g-principal isotope of (G, -) by Theorem 3.2.

Conversely, if 0 is an S-isomorphism of (G, -) onto some Smarandache f, g-principal isotopes
(G,0) where f,g € H such that (H,-) is a S-subgroup of (G,-) means (6,0,0) : (G,) —
(G,0), (Ryg, Ly, 1) : (G,:) — (G,o) which implies (R;*,L;', 1) : (G,0) — (G,-) and
(H,-)0 = (H,o). Thus, (0R;", 9Lj?1, 0) € AUT(G,-). Therefore, 6 is a S-special map because
fige H. O

Corollary 3.2 Let (G,-) be a Smarandache loop with an S-subgroup (H,-). A mapping 0 €
SBS(G,-) if and only if 6 is an S-isomorphism of (G,-) onto some Smarandache f, g-principal
isotopes (G, o) such that f,g € H where (H,-) is an S-subgroup of (G,-).

Proof This follows from Definition 2.5 and Theorem 3.3. O

Theorem 3.4 Let (G,-) and (G,0) be S-loops. (G, o) is a Smarandache f, g-principal isotope
of (G,-) if and only if (G,-) is a Smarandache g, f-principal isotope of (G, o).

Proof Let (G,-) and (G, o) be S-loops such that if (H,-) is an S-subgroup in (G, -), then
(H,o) is an S-subgroup of (G, o). The left and right translation maps relative to an element x
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in (G, o) shall be denoted by £, and R, respectively.

If (G, o) is a Smarandache f, g-principal isotope of (G,-) then, x-y = xRyoyL;.V z,y € G
for some f,g € H. Thus, 2R, = zRyR,r, and yL, = yLyL.r, v,y € G and we have
Ry =RyRyr, and Ly = LyLyg,,x,y € G. So, R, = R;lRny and L, = Ly'L po1 = 2,y €
G. Putting y = f and x = g respectively, we now get Ry = R;lRfL;l = R;l and L, =
Ly'Lyp1=L;". Thatis, Ry = R,;' and L, = L} for some f, g € H.

Recall that

z-y=zxRgoylyVa,yclG & a:oy::z:R;1 -yL;l,VI,yE G.
So using the last two translation equations,
xoy=aRy -yLy,V x,y € G & the triple (Ry,Ly,I) : (G,0) — (G,")

is a Smarandache g, f-principal isotopism. Therefore, (G,-) is a Smarandache g, f-principal
isotope of (G, o).
The converse is achieved by doing the reverse of the procedure described above. O

Theorem 3.5 If (G,-) is an S-loop with a Smarandache f,g-principal isotope (G, o), then
SBS(G,-) = SBS(G, o).

Proof Let (G,0) be the Smarandache f, g-principal isotope of the S-loop (G, ) with S-
subgroup (H, ). By Theorem 3.2, (G, o) is an S-loop with S-subgroup (H, o). The left and right
translation maps relative to an element z in (G, o) shall be denoted by £, and R, respectively.

Let o € SBS(G,"), then there exist fi,¢g1 € H so that (aR_? aL;ll,a) e AUT(G,").

g1
Recall that the triple (Ry,, Ly, ,I) : (G,-) — (G,0) is a Smarandache f, g-principal isotopism,
sox-y=xR;oyLy,V x,y € G and this implies

Ry = RyRar, and L, = LyLypr,,V © € G which also implies that

Rur;, = Ry'Ry and Lo, = L} 'Ly, V x € G which finally gives

Ry = Rg_lRmqu and L, = L7'L g,V o € G

Set fo = faR, 'R, and gy = gozL;llLf. Then
— —1 _ —1
Rgz = Rg RQQL;IILfL;I = Rg RgaLJ?ll’ (1)

-1 -1
£f2 = Lf LfaR;ngR;l = Lf LfaR;ll’v r e G. (2)

Since, (aR;* ozL;ll,oz) € AUT(G, ), then

g1

(:vaRg_ll) . (yaL;ll) =(z-y)a,Vz,y€qG. (3)
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Putting y = g and = = f separately in the last equation,

- -1
xaRg11R(gaL;ll) =rRya and yosz1 L(faR;ll) =yLja,V 2,y €.

Thus by applying (1) and (2), we now have
aR;' = R,aR! = R,aR; 'R  and L' = LyaL} =Lyl 'L (4)
91 9% gL 1) gt/ T, g f F¥ (raryh fO g By
We shall now compute (z o y)a by (2) and (3) and then see the outcome.
(zoy)aw = (J:R%Lyf;l)a = xR;laR;il-nglaL;f =aR;'RyaR RV yL 'Lyl Ly =
—1p-1 “1p-1_ ~1 -
zaR R, -ya£f2 Ly =zaR,, o yaﬁf2 Vx,yed.
Thus,

(xoy)a= ZCCYR;; o yaﬁﬁl,v r,ye G & (aR;,

aﬁﬁl,a) € AUT(G,0) < a € SBS(G, o).
Whence, SBS(G,-) C SBS(G, o).
Since (G, o) is the Smarandache f, g-principal isotope of the S-loop (G, -), then by Theorem
3.4, (G, -) is the Smarandache g, f-principal isotope of (G, o). So following the steps above, it can
similarly be shown that SBS(G,0) C SBS(G,-). Therefore, the conclusion that SBS(G, ) =

SBS(G, o) follows. O

3.3 Cardinality Formulas

Theorem 3.6 Let (G,-) be a finite Smarandache loop with n distinct S-subgroups. If the SBS
group of (G,-) relative to an S-subgroup (H;,-) is denoted by SBS;(G,-), then

IBS(G, )| = + 3 [SBSIG, )| [BS(G, ) : SBS(G, )]

i=1

Proof Let the n distinct S-subgroups of G be denoted by H;, ¢ = 1,2,---n. Note here
that H; # Hj,i,5 = 1,2,---n. By Theorem 3.1, SBS;(G,-) < BS(G,-),i = 1,2,---n. Hence,

by the Lagrange’s theorem of classical group theory,
|BS(G,-)| =|SBS;(G,)| [BS(G,-): SBS;(G,-)],i =1,2,---n.

Thus, adding the equation above for all i =1,2,---n, we get

n|BS(G, )| =Y |SBSi(G,")| [BS(G,") : SBS;(G,")],i =1,2,--n, thence,
i=1

BS(G, ) =+ 3 [SBS(G, )| [BS(G, ) : SBS(G, )]

i=1

Theorem 3.7 Let (G,-) be a Smarandache loop. Then, Q(G,-) < AUT(G,-).

Proof Let (G,-) be an S-loop with S-subgroup H. By Definition 2.7, it can easily be
observed that Q(G,-) C AUT(G,-).
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Identity. If I is the identity mapping on G, then hl = h € H,V h € H and there exists e € H
where e is the identity element in G such that (IR;Y, IL;Y 1) = (I,1,1) € AUT(G,"). So,
(I,I,I) € QG,-). Thus Q(G,-) is non-empty.

Closure and Inverse. Let A, B € Q(G,-). Then there exist a, f € SSYM(G,-) and some
J1,91, f2, 92 € H such that

g1’

A= (aR,',aL}!, o), B=(BR,, BL;, ) € AUT(G,").

AB™' = (aR, aL;} a) (R, 87 LB 57
= (@R 'R,/ oLy Ly, 57" af™h) € AUT(G, ).

Using the same techniques for the proof of closure and inverse in Theorem 3.1 here and by
letting 6 = ﬁRg_llezﬁ_l and v = ﬁLﬁlLﬁﬁ_l, it can be shown that,

AB™! = (aﬁflel,aﬁfngl,aﬂfl) € AUT(G,-) where g =eaB 'y, f=eaB 0 € H

such that o~ € SSYM (G, ) < AB™! € Q(G, ).
Therefore, Q(G,-) < AUT(G, -). O

Theorem 3.8 Let (G,+) be a Smarandache loop with an S-subgroup H such that f,g € H and
a € SBS(G,-). If the mapping

o : Q(G,-) — SBS(G, ) is defined as ¥ : (aRgl,aLyl,a) —
then ® is an homomorphism.

Proof Let A, B € Q(G,-). Then there exist a, 5 € SSYM(G,-) and some f1, g1, f2,92 € H
such that
A= (aR;' aL;

g1’ f1

',a), B=(8R.}, 8L, B) € AUT(G,").
®(AB) = ®[(aR, !, aL}!, o) (BRy, L, B)] = ®(aRy 'SR, aL; 'L, af). Tt will be

g1’ g2
good if this can be written as; ®(AB) = ®(afd, aBy,a) such that haf € HY h € H and
0= R;l, v = L;l for some g, f € H.

This is done as follows. If

(aR,'BR,!, aL;'BL; ", af) = (afs,afy,af) € AUT(G, ), then,

xafo - yafy = (z-y)ab,V z,y € G.

Put y = e and replace by 3 'a~! then 6 - eaf3y =z < 6 = R_

eafy”
Similarly, put # = e and replace y by y3~'a~t. Then, ea36 -yy =y < v = L;Otlﬁé. So,

(AB) = (aBR_ 5, BL 55 aB) = af = ®(aR ' oLyl a)®(BR,}, AL}, ) = ®(A)®(B).

eafy’ 91
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Therefore, ® is an homomorphism. O

Theorem 3.9 Let (G,-) be a Smarandache loop with an S-subgroup H such that f,g € H and
a € SSYM(G,-). If the mapping

® : Q(G,-) — SBS(G,-) is defined as ¥ : (aRgl,aLyl,a) —

then,
A= (aRg_l, aL;l, a) € ker @ if and only if «

is the identity map on G, g - f is the identity element of (G,-) and g € N,(G,-) the middle
nucleus of (G, ).

Proof For the necessity, ker ® = {A € Q(G,-) : ®(A) = I}. So, if A= (aR}, aL}ll, a) €
ker @, then ®(A) = a = I. Thus, A = (R ', L}, 1) € AUT(G,-) &

9170
x~y:a:R;1~yL;1,Vx,y€G. (5)
Replace = by xRy and y by yLy in (5) to get
x-y=2ag9-fy,vVz,yed. (6)
Putting z =y = e in (6), we get g- f = e. Replace y by yLJT1 in (6) to get
:v-yL;lzxg-y,V:v,yEG. (7)
Put z = e in (7), then we have yL;1 =g-y,Yy € G and so (7) now becomes
z-(9y) =zg-y,Vz,y e G ge N,G,-).

For the sufficiency, let o be the identity map on G, g - f the identity element of (G,-) and
g € Nu(G,-). Thus, fg-f = f-gf = fe=f. Thus, f-g =e. Thenalso,y = fgy=fgyVyeG
which results into yL;1 =gy Vy € G. Thus, it can be seen that a:aRg_l ~yaL;1 = a:Rgl ~yL;1 =
ng_la-ijila = ng_l-nyl = ng_l-gy = (ng_l-g)y = :vR;le-y =zy=(rya,Vz,yecdG.
Thus, ®(A) = ®(aR, ', al; ' a) = ®(R;, L 1) =1 = A€ ker . O

Theorem 3.10 Let (G, ) be a Smarandache loop with an S-subgroup H such that f,g € H and
a € SSYM(G,-). If the mapping

d : Q(G,-) — SBS(G,-) is defined as ¥ : (aR;l,aLfl,a) —

then,
INu(G, )| = [ ker @] and |G, )| = [SBS(G, )||Nu(G, -)|.

Proof Let the identity map on G be I. Using Theorem 3.9, if

90 = (R;', L', 1),V g € Nu(G,") then, 0 : N,(G,-) — ker .

g717

6 is easily seen to be a bijection, hence |N,(G, )| = |ker ®|.
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Since ® is an homomorphism by Theorem 3.8, then by the first isomorphism theorem
in classical group theory, Q(G,-)/ker® = Im®. & is clearly onto, so Im® = SBS(G,-),
so that Q(G, )/ ker® = SBS(G,-). Thus, |G, )/ker®| = |SBS(G,-)|. By Lagrange’s
theorem, [Q(G, )| = |ker ®||Q(G, )/ ker ®|, so, |UG,)| = |ker ®||SBS(G,")|, ... |UG,")| =
INW(G, )ISBS(G, ). 0

Theorem 3.11 Let (G,-) be a Smarandache loop with an S-subgroup H. If

G(Gv) = {(f,g)EHXH : (G,O)}(G,-)

~

for (G, o) the Smarandache principal f,g— isotope of (G,-)},

then
UG, )| = [0(G,)|[SA(G, )]

Proof Let A, B € Q(G,-). Then there exist o, 8 € SSY M (G, -) and some f1, g1, f2,92 € H
such that

A= (aR,' oL}l a), B=(BR, 8L, ) € AUT(G, ).

g1’

Define a relation ~ on (G, -) such that
A~ B < fi = f:and g1 = go.

It is very easy to show that ~ is an equivalence relation on Q(G,-). It can easily be seen

that the equivalence class [4] of A € Q(G,+) is the inverse image of the mapping

U . Q(G, ) — O(G,) defined as ¥ : (aR* aL;ll,a) — (f,9).

g1’

If A, B € Q(G,-) then ¥(A) = ¥(B) if and only if (f1,91) = (f2,92) so, f1 = f2 and g1 = go.
Since (G, ) < AUT(G,-) by Theorem 3.7, then AB™! = (aR, ', aL}!, a)(BR,!, BL,, B)~*
= (@R 'Ry, 671 oL} Ly, 71 af™Y) = (e~ af ™t af™h) € AUT(G, ) & o~ € SA(G, ).
So,

A~ B <= af '€ SAG,-) and (f1,91) = (f2,92)

Whence, [[A]| = |SA(G,")|. But each A = (ozRg_l,aL;l,a) € Q(G,-) is determined by some

f.g € H. So since the set {[4] : A € Q(G,-)} of all equivalence classes partitions (G, -) by

the fundamental theorem of equivalence relation,

UG, = Y 1A= Y ISAG, )| =18(G. )IISAG, |-

f.9eH f.9eH

Therefore, |G, )| = |O(G, )||SA(G, ). 0

Theorem 3.12 Let (G,-) be a finite Smarandache loop with a finite S-subgroup H. (G,-) is
S-isomorphic to all its S-loop S-isotopes if and only if

|(H= )|2|SA(G7 )| = |SBS(G7 )HNM(Gv )l
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Proof As shown in [Corollary 5.2, [12]], an S-loop is S-isomorphic to all its S-loop S-isotopes
if and only if it is S-isomorphic to all its Smarandache f, g principal isotopes. This will happen
if and only if H x H = ©(G, ) where O(G, -) is as defined in Theorem 3.11.

Since O(G,-) € H x H then it is easy to see that for a finite Smarandache loop with a
finite S-subgroup H, H x H = O(G,-) if and only if |H|?> = |©(G, -)|. So the proof is complete
by Theorems 3.10 — 3.11. O

Corollary 3.3 Let (G,-) be a finite Smarandache loop with a finite S-subgroup H. (G,-) is a
GS-loop if and only if

|(H= )|2|SA(G7 )| = |SBS(G7 )HNM(Gv )l

Proof This follows by the definition of a GS-loop and Theorem 3.12. O

Lemma 3.1 Let (G,-) be a finite GS-loop with a finite S-subgroup H and a middle nucleus
N#(Ga )
|SBS(G, -)|
|(H, )] = [Nu(G, )| <= |(H, )| = :
g ISA(G, )]
Proof From Corollary 3.3,

(H, )|2|SA(G7 )l = 18BS(G, )HNM(Gv -
(DIf |(H, )] = [Nu(G, )], then

|SBS(G, )|

|(H,)|[SA(G, )| = [SBS(G,-)| = |(H, )| = ISAG, )|

)If |(H, )| = ZE5&5), then |(H,-)[|SA(G, )| = [SBS(G, )| Hence, multiplying both
sides by |(H, )],

[(H,-)[P|SA(G, )| = [SBS(G,)||(H,-)|-
So that
ISBS(G,)||Nu(G, )| = [SBS(G,)||(H, )| = [(H,")| = [Nu.(G, ).

Corollary 3.4 Let (G,-) be a finite GS-loop with a finite S-subgroup H. If |[N,(G,-)| = 1,
then,

|SBS(G, )|
|SA(G, )]

n|SBS(G, )|

. Hence, |(G,-)] = for some n 2 1.

Proof By hypothesis, {e} # H # G. Inaloop, N,(G,-) is a subgroup, hence if | N, (G, -)|

1, then, we can take (H,-) = N,(G,-). So that |(H,-)| = |[N.(G,-)|. Thus by Lemma 3.1,
(B, ) = 83
[SAGII
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As shown in [Section 1.3, [8]], a loop L obeys the Lagrange’s theorem relative to a subloop
H if and only if H(hz) = Hax for all x € L and for all h € H. This condition is obeyed by
N, (G, "), hence

|ISBS(G, )|
H,- G, = —||(G, )| =
(NG = ST |6
there exists n € N such that | |
n|SBS(G,-
G, )| = 272 1
1= "5aG, )

But if n = 1, then |(G,-)| = |(H, )| = (G,+) = (H,-) hence (G, ") is a group which is a
contradiction to the fact that (G, -) is an S-loop. Therefore,

_ nlSBS(G,)
(I Tsaeor

for some natural numbers n = 1. O
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Abstract: In this paper, the nilpotent matrices over distributive lattices are discussed by
applying the combinatorial speculation ([9]). Some necessary and sufficient conditions for a
lattice matrix A to be a nilpotent matrix are given. Also, a necessary and sufficient condition

for an n X n nilpotent matrix with an arbitrary nilpotent index is obtained.
Key Words: distributive lattice, nilpotent matrix; nilpotent index; direct path.

AMS(2000):
§1. Introduction

Since the concept of nilpotent lattice matrix was introduced by Give’on in [2], a number of
researchers have studied the topic of nilpotent lattice matrices(see e.g. [2-8]). In [7], Li gave
some sufficient and necessary conditions for a fuzzy matrix to be nilpotent and proved that an
nxn fuzzy matrix A is nilpotent if and only if the elements on the main diagonal of the kth power
AF of A are 0 for each kin {1,2,--- ,n}. Ren et al.(see [8]) obtained some characterizations of
nilpotent fuzzy matrices, and revealed that a fuzzy matrix A is nilpotent if and only if every
principal minor of A is 0. This result was generalized to the class of distributive lattices by
Tan(see [3,5]) and Zhang(see [4]). In particular, Tan gave a necessary and sufficient condition
for an n x n nilpotent matrix to have the nilpotent index n in [3].

In this paper, we discuss the topic of nilpotent lattices matrices. In Section 3, we will
give some characterizations of the nilpotent lattice matrices by applying the combinatorial
speculation ([9]). In Section 4, a necessary and sufficient condition for an n x n nilpotent
matrix with an arbitrary nilpotent index will be obtained, this result provide an answer to the

open problem posed by Tan in [3].

82. Definitions and Lemmas

For convenience, we shall use N to denote the set {1,2,---,n} and use |S| to denote the
cardinality of a set S.

Let (L, <, V, A) be a distributive lattice with a bottom element 0 and a top element 1
and M, (L) be the set of all n x n matrices over L.

For A € M,,(L), the powers of A are defined as follows: A" = I,,, A" = A" 1A r =1,2,.--.
The (i, j)-entry of A" is denoted by aj;.

1Received February 26, 2008. Accepted April 2, 2008.
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A is called the zero matrix if for all ¢, € N, a;; = 0 and denoted by 0. Let A € M,,(L). If
there exists k > 1, A¥ = 0, then A is called a nilpotent matrix. The least integer k satisfying
A¥ = 0 is called the nilpotent index of A and denoted by h(A).

For A € M, (L), the permanent perA of A is defined as follows:

perA = \/ A10(1)A20(2) """ Ano(n)>
oeP,

where P, denotes the symmetric group of the set N.

For a matrix A € M, (L), we denote by Ali1,i2,- -+ ,ir|j1,72,  ,jr] the 7 X 7 submatrix
of A whose (u,v)-entry is equal to a;,;, (u,v € R). The matrix Afi1, iz, - ,ir|t1,92, - ,ir]
is called a principal submatrix of order r of A, and perAliy,io, - ,i,|i1,42, - , ] is called a

principal minor of order r of A.

For a given matrix A € M, (L), the associated graph G(A4) : G(A) = (V,H) of A is the
strongly complete directed weighted graph with the node set V= N, the arc set H = {(i,j) €
N x Nlag; # 0}.

For a given matrix A € M, (L), a sequence of nodes p = (ig,41, - ,%,) of the graph
G(A) = (V, H) is called a path if (ix—1,ix) € H for all k =1,2,--- ,r — 1. These arcs, together
with the nodes i, for k = 0,1,--- ,r, are said to be on the path p. The length of a path, denoted
by I(p), is the number of arcs on it, in the former case, [(p) = r. If all nodes on a path p are
pairwise distinct, then p is called a chain. A path p = (ig, 41, - ,4r—1,%0) With do,41, -+, 41

are pairwise distinct is called a cycle. For a given matrix A € M,,(L), we define:
C(A) ={p|p is a cycle of G(A)}.
And for any r < n, we define:
Sy(A) = {p|p is a chain of G(A) and I(p) =r}.

For any path p = (ig, 41, ,4,) of G(A), the weight of p with respect to A, will be denoted by
Wa(p), is defined as

Wa(p) = aigiy A @iyiy N N Qi i, = Qigiy Qigiy *** Gy -
The following lemmas are used.
Lemma 2.1([2]) Let A € M, (L). Then A is nilpotent if and only if A™ = 0.
Lemma 2.2([4]) Let A = (a;;) € M, (L), A™ = (a]}). Then
ag = \/ Qigy Ajyig = Ay g5+
1<in ig, o yim-—1<n

Lemma 2.3([4],[5]) Let A € M, (L). Then A is a nilpotent matriz if and only if

pCTA[il,iQ,' o 7ik|i177;27' o 7746] = 07
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for all {iy,i9, -+ ,ix} C N, k€ N.
Lemma 2.4([4]) Let A be a nilpotent matriz over L. Then

ApyroQrorg =+ Qrpy_q7 Orpry = 0,

for all {r1,ra, -+ ,rm} C N.

83. Characterizations of the Nilpotent Lattice Matrices

In this section, we will give some new necessary and sufficient conditions for a lattice matrix to

be a nilpotent matrix.

Theorem 3.1 Let A € M,(L). Then A is a nilpotent matriz if and only if for all p € C(A),
WA (p) =0.

Proof (=) By Lemma 2.4, if A is a nilpotent matrix, then for all p = (ig, 1, ,4r—1,%0)
€ C(A), Wa(p) = aigi, @iyiy *+* Qip_yig = 0.
(<) If for all p € C(A), Wa(p) = 0, we prove A" = 0. By Lemma 2.2, for any typ-

ical term ai;, @iyiy ++ - @i, _,; of aj;, there must be repetitions amongst the n + 1 suffixes 1 =

10,91, ** yin—1,] = in. Suppose that is(1 < s < n) is the first one which is € {ig, 41, - ,is-1},
then there exists i;(0 < ¢t < s — 1), such that i; = is, 8o, (i¢,it41, - ,i5) € C(A). Hence
Qiiy Qiyip " " iy 1§ < Qigiy g~ Cig_yiy = 0,
and
CL?J- = \/ iy Qg * " Q5 = 0, VZ,_] e N.
1<iy iz, in—1<n
That is to say, A™ = 0. By Lemma 2.1, A is nilpotent. O

Example 3.1 Consider the lattice L whose diagram is displayed in Fig.1.

1

Fig.1
Obviously, L is a distributive lattice. Now let

a 0
A=1] ¢ 0 0 | €MD)
10
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then C(A) = {(1,2,1),(2,1,2)}, and for any element p of C(A), Wa(p) = aAc=0, hence A is
a nilpotent matrix. In fact, A% = 0.

Theorem 3.2 Let A € M,(L). Then A is a nilpotent matriz if and only if all principal

submatrices of A are nilpotent.

Proof. (<=) Since matrix A is a principal submatrix of matrix A, A is a nilpotent matrix.
(=) Let B = (bsj) = Ali1, 92, ,it]i1, 82, -+ , 4] is an arbitrary principal submatrix of A
and let p; = (ko, k1, -+ ,kr—1, ko) € C(B). Then

WB(pl) = Dkiohi Okikz *+ Ok 1 ko = iy Vigyiny " Qig, iy -

Obviously, path p = (igy, %k, ik, 1,0k ) i & cycle of G(A), so, by Theorem 3.1, we have

WA (p) - aikoikl aikl Thy .aikr—lik() =0.

Hence
Wi(p1) = Wa(p) = 0.
Applying Theorem 3.1, Aliy,ia,- - ,4¢]i1, 42, - ,it] is a nilpotent matrix. This completes
the proof. O
Let
A1 B
A= ,
0 A,

where A7 be a m x m matrix and As be a n x n matrix over distributive lattice L. Then for
any p € C(A), p € C(A1) or p € C(As). Hence we have the following corollary.

Corollary 3.1 Let

A B
A= ,
0 A

where A1 be a m X m matriz and Ay be a n X n matriz over distributive lattice L. Then A is a

nilpotent matriz if and only if Ay and As are nilpotent matrices.

Corollary 3.2 Let L be a distributive lattice,

A x *
0 A2 . *

A= ] o ) € M, (L),
0 0 - A

where A; € My;)(L),i = 1,2,--- k, and n = n(1) +n(2) +--- +n(k). Then A is a nilpotent

matriz if and only if Ay, As, -+, Ax are all nilpotent matrices.
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84. A Characterization of Lattice Matrices with an Arbitrary Nilpotent Index

If A is a zero matrix, then h(A) = 1; if A is a nonzero nilpotent matrix, then h(A) > 2. In the
following discussion, we always suppose that A is a nonzero matrix.

If p = (io, 41, ,ir—1) € Sr—1(A) and Wa(p) # 0, then aiyi, Giyiy -+ Gip_si_, = Wa(p) is
a term of azro_iil, so, A"~1 = 0. Hence, we have

Lemma 4.1 Let A € M,(L) be a nilpotent matriz. If there exists p € Sy_1(A), such that
Wa(p) # 0, then h(A) > r.

Example 3.1(continued). Since p = (3,2,1) € S3(A4) and Wa(p) = 1 A ¢ = ¢ # 0, we have
h(A) > 3, i.e., h(A4) = 3.

Lemma 4.2 Let A € M, (L) be a nilpotent matriz. If S.(A) = 0 or for everyp € S,.(A), Wa(p) =
0, then h(A) <r.

Proof Suppose that ai;, @iy, -+ - ai,_,; is a typical term of aj;. If [{i,i1,- -+ ,ip—1,j}| <7+1,
let is(1 < s < ri =1ig,j = i) be the first one which iy € {4,41, -+ ,is_1}, then there exists
it(0 <t < s—1), such that is =iy, so, (it,it41, - ,is) € C(A), therefore, we have

Wiy Qigig " Qi1 < Qi " Giy_yi, = 0.
If [{i, i1, ,ip_1,5}| =7 +1, then (i,41,-- ,i,_1,5) € S.(A), so
Wa(p) = @i aiyiy -+~ ai,_yj = 0.
Thus, for any 4,7 € N and in any cases, we can obtain:
Qiiy Qiyiy iy g = 0.

Therefore
al. = \/ Qjjy Qiyig " G _qj = O, V’L,] € N.
1<iy yin, - yir—1<n
This means that A" =0, i.e., h(A) <. O
Now, a characterization on lattice matrices with an arbitrary nilpotent index can be given

in the following.

Theorem 4.1 Let A € M, (L) be a nilpotent matriz. Then h(A) = r(r € N) if and only if
there exists p € Sy_1(A), Wa(p) # 0 and for all p € S,(A), Wa(p) =0.

Proof (<) If A is a nilpotent matrix, by Lemma 4.1, h(A) > r, and by Lemma 4.2,
h(A) <r, thus h(A) = r.

(=)Since h(A) = r implies A"~! # 0, there exist ig,i1, - ,ir—2,j0 € N, such that
Qigiy Biviy = Gi,_sj, 7 0, by Lemma 2.4, this means that ig, i1, - ,ir—2, jo are pairwise distinct,
i.e., there exists p = (io,il, e ,Z.T,Q,jo) S Srfl(A),WA(p) = Qg4 Ajqig " .ai'r72j0 7§ 0 OIl

the other hand, if h(A) = r, then for all p € S,(A4),Wa(p) = O(otherwise, if there exist
p € S.(A),Wa(p) #0, by lemma 4.1, h(A) > r + 1, this is a contradiction). O
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Abstract: In this paper, we study the join of graphs, and give the values of crossing
numbers for join products G; V P, for some graphs G;(i = 2,5,6,9) of order five, which is
related with parallel bundles on planar map geometries ([10]), a kind of planar Smarandache

geometries.
Key Words: graph, crossing number, join, drawing, path.
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81. Introduction

A drawing D of a graph GG on a surface S consists of an immersion of GG in S such that no edge
has a vertex as an interior point and no point is an interior point of three edges. We say a
drawing of G is a good drawing if the following conditions holds.

() no edge has a self-intersection;
(7i) no two adjacent edges intersect;
(#4¢) no two edges intersect each other more than once;
(iv) each intersection of edges is a crossing rather than tangential.

Let G be a simple graph with vertex set V' and edge set E. The crossing number cr(G) of
a graph G is the smallest number of pairs of nonadjacent edges that intersect in a drawing of G
in the plane. An optimal drawing of a graph G is a drawing whose number of crossings equals
cr(G). Let A and B be disjoint edge subsets of G. We denote by c¢rp(A, B) the number of
crossings between edges of A and B, and by ¢rp(A) the number of crossings whose two crossed
edges are both in A. Let H be a subgraph of G, the restricted drawing D|p is said to be a
subdrawing of H. As for more on the theory of crossing numbers, we refer readers to [1] and
[2]. In this paper, we shall often use the term region also in non-planar drawings. In this case,
crossing are considered to be vertices of the map.

Let G and H be two disjoint graphs. The union of G and H, denoted by G+ H, has vertex
set V(G)UV (H) and edge set E(G)UE(H). And the join of G and H is obtained by adjoining
every vertex of G to every vertex of H in G + H which is denoted by GV H (see [3]).

1Received March 6, 2008. Accepted April 6, 2008.
2This project is supported by National Natural Science Foundation of China (10771062) and New Century

Excellent Talents in University (NCET-07-0276).
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Let K, denote the complete bipartite graph on sets of m and n vertices, that is, the
graph whose edges join exactly those pairs of vertices which belong one to each set. Let P, be
the path with n vertices.

From the definitions, following results are easy.

Proposition 1.1 Let G be a graph homeomorphic to H (for the definition of homeomorphic,
readers are referred to [2]), then cr(G) = cr(H).

Proposition 1.2 If G is a subgraph of H, then cr(G) < cr(H).

Proposition 1.3 If D is a good drawing of a graph G, A, B and C are three mutually disjoint
edge subsets of G, then we have

(1) erp(AUB) = ¢erp(A) + erp(A, B) + crp(B);

(2) erp(AUB,C) =crp(A,C) +cerp(B,C).

The investigation on the crossing number of graphs is a classical and however very difficult
problem. The exact value of the crossing number is known only for few specific families of
graphs. The Cartesian product is one of few graph classes, for which exact crossing number
results are known. It has long conjectured in [4] that the crossing number cr(K,, ) of the com-
plete bipartite graph K, , equals the Zarankiewicz’s Number Z(m,n) = |2 ]| ==L [[2]|[2L].
(For any real x,| 2| denotes the maximum integer not greater than x). This conjecture has been
verified by Kleitman for min{m,n} < 6, see [5]. The table in [6] shows the summary of known
crossing numbers for Cartesian products of path, cycle and star with connected graphs of order
five.

Kulli and Muddebihal [7] gave the Characterization of all pairs of graphs which join is
planar graph. In [8] Bogdan Oporowski proved c¢r(Cs V Cs) = 6. In [9] Ling Tang et al. gave
the crossing number of the join of C,, and P,. It thus seems natural to inquire about crossing
numbers of join product of graphs. In this paper, we give exact values of crossing numbers for
join products G; V P, for some graphs G;(i = 2,5, 6,9)see Fig.1 of order five in table [6], which
is related with parallel bundles on planar map geometries ([10]), a kind of planar Smarandache

geometries.

Gs = Sy Gs Gs Gy

Fig.1

82. The Crossing Number of Gy V P,, GV P, and Gy V P,

One of good drawings for graphs Go V P,, Gg V P, and Gy V P, are shown in Fig.2-Fig.4

following.
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X=

A good drawing of G2 V P,
Fig.2

P,

A good drawing of Gg V P,
Fig.3

P,

A good drawing of Gg V P,

Fig.4

Theorem 2.1 cr(G;V P,) =n(n—1)(i =2,6,9), forn > 1.

Proof The drawing in Fig.2, Fig.3, Fig.4 following shows that cr(G; V P,) < Z(5,n) +
202] = 4[2] 252 +2|%] = n(n—1)(i = 2,6,9) (see Fig.2). As G; contains a subgraph
homeomorphic to K1 4 5, whose crossing number is n(n—1) (see [11]). So we have cr(G;V P,) >
er(Kian) =n(n—1)(i =2,6,9). This complete the proof. O

83. The Crossing Number of G5 V P,

Firstly, let us denote by H,, the graph obtained by adding six edges to the graph K5 ,, containing
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n vertices of degree 5 and two vertices of degree n + 1, one vertices of degree n + 2, two vertices
of degree n + 3, and 5n + 6 edges (see Fig.5). Consider now the graph G5 in Fig.1. It is easy
to see that H,, = G5 U K5 ,,, where the five vertices of degree n in K5 ,,, and the vertices of G5
are the same. Let, for i = 1,2,--- ,n, T" denote the subgraph of K5 , which consists of the five
edges incident with a vertex of degree five in K5, (see Fig.6). Thus, we have

n

H, =G5 UKs, =G U(|JT. (1)

Hy,
Fig.5 Fig.6

Lemma 3.1 Let ¢ be a good drawing of H,, if there exist 1 < i # j < n, such that
cry(THT7) =0, then
crg(Gs, T"UTY) > 1.

Proof Let H be the subgraph of H,, induced by the edges of T*UT7. Since cry (T, T7) = 0,
and in good drawing two edges incident with the same vertex cannot cross, the subdrawing of
T U T’ induced by ¢ induces the map in the plane without crossing, as shown in Fig.7(a).
Let a,b,c,d,e denote the five vertices of the subgraph G5 (see Fig.7(b)). Clearly, for any
x € V(G5), there are exactly two other vertices of G5 on the boundary of common region with
x. By dg,(b) = 3, at the edges incident with b, there are at least one crossing with edges of H.
Similarly, at the edges incident with d, there are at least one crossing with edges of H. If the
two crossings are different, this completes the proof, otherwise, the same crossing can find at
edge bd, there are also at least one crossing with edges of H. The proof also holds. Therefore,
we complete the proof. O

Theorem 3.2 cr(H,) = Z(5n)+ 5], n>1.

Proof The drawing in Fig.5 shows that

er(Hy) < er(Ksn) + 5] = 2(6.m) + 5.

Thus, in order to prove theorem, we need only to prove that cry (Hy,) > Z(5,n) + [ 5] for any
drawing ¢/ of H,. We prove the reverse inequality by induction on n. The case n = 1 is trivial,
and the inequality also holds when n = 2 since H» contains a subgraph homeomorphic to K3 3,
whose crossing number is 1. Now suppose that for n > 3,

n—2

cr(Hp—2) 2 Z(5,n—2)+ | 5

] (2)
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and consider such a drawing ¢ of H, that
n
ero(H) < Z(5,m) + |5 3)

Our next analysis depends on whether or not there are different subgraph 7¢ and 77 that do

not cross each other in ¢.

Case 1 Suppose that cry (T}, T;) > 1 for any two different subgraphs 7% and 77,1 < i # j < n.
By Proposition 1.3, using (1), we have

n

crg(Hp) = crg(Ks n) + crg(Gs) + erg(Ks n, Gs) > Z(5,n) + crg(Gs) + > erg(Gs, T

i=1
This, together with our assumption (3), implies that

n

cry(Gs) + ZCT¢(G57Ti) < LgJ

i=1

We can see that in ¢ there are no more than | g | subgraphs T which cross G5, and at least have
[ %] subgraphs 7" which does not cross G5. Now, we consider T, which satisfy cry(G5,T") = 0.
Without loss of generality, we suppose cry(Gs,T") = 0 and let F' be the subgraph G5 UT"™ of

the graph H,,.

(1) (2) (3)

Fig.8

Consider the subdrawings ¢* and ¢** of G5 and F, respectively, induced by ¢. Since
cry(Gs, T™) = 0, the subdrawing ¢* divides the plane in such a way that all vertices are on
the boundary of one region. It is easy to verify that all possibilities of the subdrawing ¢* are
shown in Fig.8. Thus, all possibilities of the subdrawing ¢** are shown in Fig.9.

(1) (2) (3)
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Fig.9

(a) The subdrawing ¢** of (G5UT™) is isomorphic to Figure 9(1). When the vertex ¢;(1 <
i < n—1) locates in the region labeled w, we have cry (T, GsUT™) > 1, using cry(T%,T7) > 1, we
have cry (T%, G5 UT™) > 2; when the vertex ¢; locates in the other regions, we have cry(T*, G5 U
™) > 3.

We suppose there are x vertices ¢; locates in the region labeled w, and the other n — 1 — =z

vertices locates in the other regions. It has been proved that x is no more than [%], so by

Proposition 1.3, we have

n—1
cre(Hn) = cre(GsUT"U U T
=1
n—1 ) n—1 .
= CT¢(G5 urr, U TZ) + CT‘¢(G5 U Tn) + CT‘¢( U Tl)
i=1 i=1

> ZGB,n—-1)+2zx+3(n—1—-2)
L L
>

Z(5,m) + |5

(b) The subdrawing ¢** of (G5UT™) is isomorphic to Figure 9(2). When the vertex ¢;(1 <
i < n — 1) locates in the region labeled e, we have cry(T*, G5 UT™) > 2; when the vertex t;
locates in the other regions, we have cry(T%, G5 UT™) > 3. Using the similar way as Fig.9(1),
we can have cry(H,) > Z(5,n) + [5].

(¢) The subdrawing ¢** of (G5 UT™) is isomorphic to Figure 9(3)-9(6). No matter which

region t; locates in, we have cry(T%, G5 UT™) > 3. Then by Proposition 1.3, we have

n—1
cre(Hy) = erg(GsUT™U U T
i=1
n—1 ) n—1 .
= rg(GsUT", | T%) + erg(Gs UT™) + er (| T
i=1 i=1

Z(5,n—1)+3(n—1)
Z(5,m) + |5

Y

Y

This contradicts (3).



76 Bo Li, Jing Wang and Yuanqiu Huang

Case 2 Suppose that there are at least two different subgraphs 7% and 77 that do not cross
each other in ¢. Without loss of generality, we may assume that crgy(T"~1, T") = 0. By Lemma
3.1, ery(Gs, T 1UT™) > 1, as cr(K35) =4, foralli = 1,2, ,n—2, cry (T, T UT™) > 4.
This implies that

crg(Hpyo, T" PUT") >4(n—2)+1=4n—7 (4)

As H,, = H, o U (T""1UT"), using (1),(2) and (4), we have

erg(Hp) = cry(Hpy—2) +erg(T" P UT™) + erg(Hp—o, T UT™)

= Z(G.n)+ |3

This contradiction to (3). So the conclusion is held.
This completes the proof of Theorem 3.2. 0

P,

41&1%5)\}
2\

\\‘

S

A good drawing of G5 V P,
Fig.10

Theorem 3.3 cr(GsV P,) = Z(5,n) + | 5], forn > 1.

Proof The drawing in Fig.10 shows that cr(GsV P,) < Z(5,n)+ [ %]. Contrast Fig.10 with
Fig.5, it is easy to check that G5V P,, has a subgraph which is homeomorphic to H,,, whose cross-
ing number is Z(5,n) + | 5] in Theorem 3.2. So we have cr(GsV P,) > cr(H,) = Z(5,n)+ [ §].

This completes the proof of Theorem 3.3. O
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concerning some special functions, and we get more identities by using a Maple program for

this method. Finally, we introduce higher dimensional versions of L-summing method.
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81. Introduction

¢

An identity is a mathematical sentence that has “=" in its middle; Zeilberger [7]. An ancient

and well-known proof for the identity
> @k—1)=n?
k=1

considers an n x n array of bullets (the total number of which is abviously n?) as the following

figure

Fig.1

and divides it into n L-shaped zones containing 1,3, --- ,2n — 1 bullets. In Hassani [3] we have

generalized this process to all arrays of numbers with two dimension; to explain briefly, we

1Received March 16, 2008. Accepted April 21, 2008.
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consider the following n x n multiplication table

Blag]-o- | 6% vii | kn

| 2 -- ba | eee | m# [

Fig.2

and we set (n) for the sum of all numbers in it. By summing line by line and using the identity
1+2+4 - +n=n(n+1)/2 we have (n) = (n(n + 1)/2)2. On the other hand, letting Lj be
the sum of numbers in the rotated L in above table (right part of FIGURE 2), we have

Li=k+2k+ - +k + +2k+k=2k(1+2+ -+ k) — k> =k

which gives ¥(n) = Y7, Ly, = Y_p_, k3, and therefore > ;_, k% = (n(n + 1)/2)%. We call
Ly, L-summing element and above process is 2-dimensional L-summing method (applied on the
array A, = ab). In general, this method is

Z(L — Summing Elements) = X. (1)

More precisely, the L-summing method of elements of n x n array Ay, with 1 < a,b < n, is the

following rearrangement

n k k

Z{ZAak +) A _Akk} = > Aw
k=1 a=1 b=1 1<a,b<n

This method allows us to obtain easily some classical algebraic identities and also, with help

of Maple, some new compact formulas for sums related with the Riemann zeta function, the

gamma function and the digamma function, Gilewicz [2] and Hassani [3].

In this paper we introduce a 3-dimensional version of L-summing method for n xn xn arrays
and we apply it on some special arrays. Also, we give a Maple program for this method and using
it we generate and then prove more identities. Finally, we introduce a further generalization of L-
summing method in higher dimension spaces. All of these are applications of the combinatorial

speculation. The readers can see in [8] for details.

§2. L-Summing Method in R?

Consider a three dimensional array Ag,. with 1 < a,b,¢c < n and n is a positive integer. We
find an explicit version of the general formulation (1) for this array. The sum of all entries
is X(n) = 321 cqp.e<n Aabe. The L-summing elements in this array have the form pictured in
Fig.3.
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Fig.3

So, we have Ly = Yo — X1 + %o, with

k k k
Yo = Z Akbc + Z Aakc"’ Z Aabk‘7

b,c=1 a,c=1 a,b=1
k k k

¥ = E Aakk+§ Akbk'f‘g Akkes
a=1 b=1 c=1

Yo = Akkk-

Note that Y5 is the sum of entries in three faces, X7 is the sum of entries in three intersected
edges and Y is the end point of all faces and edges. Therefore, L-summing method in R3 takes

the following formulation

n
> {82 — B1 + T} = B(n). (2)
k=1
Above equation and its generalization in the last section, rely on the so-called “Inclusion -
Exclusion principal”.
If the array Agpe is symmetric, that is for each permutation o € Ss it satisfies Agpe =
Ay, opo., then L-summing elements in R3 take the following easier form

k k
L,=3 Z Agpe — 3 Z Aokt + Agreke- (3)
b,c=1 a=1

As examples, we apply his method on two special symmetric arrays, related by the Riemann
zeta function and digamma function.

The Riemann zeta function Suppose s € C and let Ay = (abe)™®. Setting (,(s) =
Y op_q k7%, it is clear that
S(n)= Y (abe)* = (3(s).
1<a,b,c<n
Since this array is symmetric, considering (3), we have
Gels) _,Gk(s) | 1

Lp=3"2-—+-3 .
k ks k2s k35
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Using (2) and an easy simplification, yield that

Gls) _ Gls) _ G5) = a(3s)
Z’“S e (4)

Note that if R(s) > 1, then lim, .o (u(s) = ((s), where ((s) = > ;- n~* is the well-known
Riemann zeta function defined for complex values of s with R(s) > 1 and admits a meromorphic

continuation to the whole complex plan, Ivié¢ [5]. So, for R(s) > 1 we have

Z () — Gls) _ ¢P(s) —¢(3s)

k2s 3 ’

which also is true for other values of s by meromorphic continuation, except s = 1 and s = %
Digamma function Setting s =1 in (??) (or equivalently taking Agp. = ﬁ) and considering

Co(1) = H, =Y;_, +, we obtain

We can state this identity in terms of digamma function ¥(z) = L InT(z), where I'(z) =

Jo~ e " dt is the well-known gamma function. To do this, we use

U(n+1)+vy=H,, (5)

in which v = 0.57721... is the Euler constant; Abramowitz and Stegun [1]. Therefore, we
obtain

. k+1 )+7)? W(k+D+9] (Tt 1)+9)° - GB)

> ; = (6)

k 3

k=1

Letting

3

0m,m) = 5 L)
2

the following identity in Hassani [3] is a result of 2-dimensional L-summing method

(Tn+)+9)*+9(0,n+1) =*

_ _ 2
5 15 U(n+1)y—77, (7)

§(17n) =

4"y (z) is called m'™ polygamma function; Abramowitz and Stegun [1], and

where ¥(m,z) = 7=

we have

(-1
Cn(s):mlll(s—l,n—l—l)—l-qs) (s €Z,s>2). (8)

Using (8) in (4) we can get a generalization of (6), however (6) itself is the key of obtaining an
analogue of (7) in R3.

Theorem 1 For every integer n > 1, we have

g v @D+ GB)
> {H T2 -3

k2 3
k=1

— (y=2)¥(1,n+1) =2 T(n+1) — > = 2§(1,n).
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Proof We begin from the left hand side of the identity (6), then we simplify it by using the
relations ¥(n+1) = L + W(n), (5) and the relation (8) with s = 2. This completes the proof.C]

Corollary 2 For every integer n > 1, we have

n 3 7T2
s2n) (U ( +31)+7) _Cn?()?»)er_z)F_(7 2)¥(1,n+1)
_ 72\11(11-1—1)—73—2§(17”)_Z\I]k§f)'
k=1

W(n+1)3
3

In the above corollary, the main term in the right hand side is . Also, computations

show that >~ ‘I’kf) =0.252.

Note and Problem 3 Since ¥(z) ~ Inz, we obtain

dk ~
k m+1 m+1

mn

" In™k /lnmk I R e D
k=1

It is interesting to find an explicit recurrence relation for the function §(m,n). One can attack
this problem by considering generalization of L-summing method in higher dimension spaces,

considered in the last section of this paper.

83. An Identity - Generator Machine

Based on the formulation of 3-dimensional L-summing method, we can write a Maple program
(see Appendix 1), with input a 3-dimensional array A, and out put an identity, which we
show it by LSMI < Agp. >. We introduce some examples; the first one is LSMI < In(a) >, which
is

n

> {kInk+2knT(k+1)—2klnk —InT(k+1) +Ink} =n’InT(n+1).
k=1
To prove this, we consider relations (2) and I'(n+1) = n!, and we obtain X(n) = n?>""_ Ina =
n?Inl(n+1). Also, ¥ = k*Ink 4+ 2kInT(k+1), ¥y =InT(k+ 1) + 2kInk and Xp = Ink.
Breaking up the statement under the sum obtained by LSMI < In(a) > into the sum of
(k* —k)Ink + 2kInT(k + 1) and InT (k+ 1) + klnk — Ink, and considering Proposition 6 of
Hassani [3], which states

n

> T (k+1)+klnk—Ink} =nlnT(n+1),
k=1

led us to the following result

> A —k)Ink+2kInT(k + 1)} = (n® + n) InT(n +1). (9)

k=1
This is an important example, because examining Maple code of expressed sum in (9), we see
that Maple has no comment for computing it. But, it is obtained by Maple itself and L-summing

method. There is another gap in Maple recognized by this method (see Appendix 2).
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As we see, Maple program of 3-dimension L-summing method is a machine of generating
identities. Many of them are similar and are not interesting, but we can choose some interesting
ones. Another easy example is LSMI < tan(a) >, which (after simplification) is

Zn: {(k—1)*tank + (2k — 1)T(k)} = n*T(n),
k=1

where T(n) = >°;_, tan k. Our last example is an identity concerning hypergeometric functions,
denoted in Maple by

hypergeom([a; as -+ apl,[b1 by --- bgl,x).

Standard notation and definition; Petkovsek, Wilf and Zeilberger [6], is as follows

aq a .o
oIy Z th
bi b2 - by k>0
where
tk+1 o (k+a1)(k+a2)-~~(k+ap)

te (ktb)(k+ba) - (k+tb)k+1)
Now, setting
a f

ﬁ(avﬁ) = 2F0 5 1 ’
after simplification of LSMI < a! > we obtain
> Atk =1k + 2k = D (k+ 1)9(1L,k+2)} =n’(n+ 1)$H(1,n +2).

k=1

To prove this, considering definition of hypergeometric functions we have $H(1,n + 1) = (n +

1)$(1,n + 2), which implies Yo', al = H(1,2) — (n + 1)1H(1,n + 2) = P(n), say. This gives

Y(n) = n*P(n) and in similar way it yields that Ly = (k—1)?k!+(2k—1) ((k + 1)9(1, k + 2) — H(1,2)).
Above examples are special cases of the array Aup. = f(a), for a given function f. In this

general case, L-summing method takes the following formulation
D Ak =Dk + (k= 1)*f(k)} = n*F(n),
k=1

where §F(n) =>_I'_, f(a).

84. Futher Generalizations and Comments

L-summing method in R’ Consider a t—dimensional array A, .,..., and let X(n) =

S Apiagz, with 1 < @1,29,--- ;2 < n. L-summing method in R? is the rearrangement
X(n) = > Lk, where

t

Ly = Z {(—1)" 'S},

m=1
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with
/
Et—m = E { § Axi1i2...im} .
1<ig<io< - <im <t
. !/ . .
The inner sum Y is over x; € {x;,, -, 2, }¢ = {@1, 20, , 2} — {@iy, -+ 24, } with 1 <
z; < k, and the index X;,4,...s,, denotes x1x2---2¢ with z;;, = x;, = --- = x;,, = k. One

can apply this generalized version to get more general form of relations obtained in previous

sections. For example, considering the array A, z,...z, = (2122 -+ - 2¢)"° with s € C, yields

t—1
{ > (1 (;)k-mck(s)f-m} = Gl + (-1 05).

m=1

D

n
k=1
L-summing method on manifolds. As we told at the beginning, the base of the L-summing
method is multiplication table. Above generalization of L-summing method in R? is based on
the generalized multiplication tables; see Hassani [4]. But, R? is a very special t-dimensional
manifold, and if we replace it by I', an [—dimensional manifold with | < ¢, then we can define
generalized multiplication table on I' by considering lattice points on it (which of course isn’t

easy problem). Let
Lr(n) = {(a1,a2,--- ,a;) € TNN' 11 < ag,ag,--- ,a; < nj,

and f : R¥ — C is a function. If Or is a collection of k — 1 dimension orthogonal manifolds,
in which Lr(n) = UacorLa(n) and Ly, (n) N Ly, (n) = ¢ for distinct A;, A; € Or, then we can
formulate L-summing method as follows
> o=y { ¥ i}
XeLr(n) A€Or X€La(n)

Here L-summing elements are )y La(ny f(X). This may ends to some interesting identities,

provided one applies it on some suitable manifolds.

Stronger form of L-summing method. One can state the relation > Ly = ¥X(n) in the

following stronger form
L,=%(n)—-X(n-1).

Specially, this will be useful for those arrays with X(n) computable explicitly and L; maybe

note. For example, considering the array A, q,...z, = (X122 - 2¢)”° we obtain
t—1 .
> (=t (m> n=" G (8) ™ = Cu(8)' 4 (=1 Cnlts) = Cuo1(s) — (=1)"Cun (ts).
m=1

Acknowledgment. Thanks to Z. Jafari for introducing me some comments.
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Appendix 1. Maple program of 3-dimension L—summing method for the array Asp. = 7

restart:

Alabc] :=1/(axb*c) ;
S21:=sum(sum(eval (A[abc],a=k) ,b=1..k),c=1..k):
S22:=sum(sum(eval (A[abc],b=k) ,a=1..k),c=1..k):
S23:=sum(sum(eval (A[abc],c=k) ,a=1..k),b=1..k):
S2:=5321+S22+523:
S11:=sum(eval(eval(A[abc],a=k),b=k),c=1..k):
S12:=sum(eval(eval (A[abc],a=k),c=k),b=1..k):
S13:=sum(eval(eval (A[abc],b=k),c=k),a=1..k):
S1:=811+S12+S13:

S0:=eval (eval(eval(A[abc],a=k) ,b=k),c=k):

L[k] :=simplify(82-S1+S0):

ST(A) :=(simplify(sum(sum(sum(A[abc],a=1..n),b=1..n),c=1..n))):
Sum(L[k] ,k=1..n)=ST(A);

Appendix 2. A note on the operator “is” in Maple

The operator “is” in Maple software verifies the numerical and symbolic identities and inequalities, and

it’s out put is “true”, “false” or “FAIL”. We consider the following example, with “FAIL” as out put.

A:=binomial(2*k+1,k+1)+binomial(2*¥k+1,k)-binomial(2*k,k):
is(sum(Ak = 1 .. n) = binomial(2*n+2,n+1)-2);
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This example is verifying the following identity:

) () - ()= ()

which is true by using Maple and L-summing method; Hassani [3].
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Abstract: The basis number of a graph G is defined to be the least integer d such that
there is a cycle basis, B, of the cycle space of G such that each edge of G is contained in at
most d members of B. MacLane [11] proved that a graph G is planar if and only if b(G) < 2.
Jaradat [5] proved that the basis number of the direct product of a bipartite graph H with
a cycle C' is bounded above by 3 + b(H). In this work, we show that the basis number of
the direct product of a theta graph with a cycle is 3 or 4. Our result, improves Jaradat’s
upper bound in the case that H is a theta graph containing no odd cycle by a combinatorial

approach.
Key Words: cycle space; basis number; cycle basis; direct product.

AMS(2000): 05C38, 05C75.

81. Introduction

In graph theory, there are many numbers that give rise to a better understanding and interpre-
tation of the geometric properties of a given graph such as the crossing number, the thickness,
the genus, the basis number, etc.. The basis number of a graph is of a particular importance
because MacLane, in [11], made a connection between the basis number and the planarity of a
graph, which is related with parallel bundles on planar map geometries, a kind of Smarandache

geometries; in fact, he proved that a graph is planar if and only if its basis number is at most
2.

In general, required cycle bases is not very well behaved under graph operations. That
is the basis number b(G) of a graph G is not monotonic (see [2] and [11]). Hence, there does
not seem to be a general way of extending required cycle bases of a certain collection of partial
graphs of G to a required cycle basis of G, respectively. Global upper bound b(G) < 2v(G) + 2
where (@) is the genus of G is proven in [12].

In this paper, we investigate the basis number for the direct product of a theta graphs with
cycles.

1Received February 15, 2008. Accepted April 24, 2008.



88 M.M.M. Jaradat and K.M.A.Al-Shorman

§2. Introduction

Unless otherwise specified, the graphs considered in this paper are finite, undirected, simple
and connected. For a given graph G, we denote the vertex set of G by V(G) and the edge set
by E(G).

Cycle Bases

For a given graph G, the set £ of all subsets of E(G) forms an |E(G)|-dimensional vector space
over Zy with vector addition X @Y = (X\Y) U (Y\X) and scalar multiplication 1-X = X
and 0- X = () for all X,Y € £. The cycle space, C(G), of a graph G is the vector subspace of
(€,®,-) spanned by the cycles of G. Note that the non-zero elements of C(G) are cycles and
edge disjoint union of cycles. It is known that for a connected graph G the dimension of the

cycle space is the cyclomatic number or the first Betti number
dim C(G) = |[E(G)| = |V(G)|+r (1)

where r is the number of components in G.

A basis B for C(G) is called a cycle basis of G. A cycle basis B of G is called a d-fold if
each edge of G occurs in at most d of the cycles in B. The basis number, b(G), of G is the
least non-negative integer d such that C(G) has a d-fold basis. The following result will be used
frequently in the sequel.

Theorem 2.1.1.(MacLane). The graph G is planar if and only if b(G) < 2.

The following theorem due to Schmeichel, which proves the existence of graphs that have

arbitrary large basis number.
Theorem 2.1.2. (Schmeichel) For any positive integer r, there exists a graph G with b(G) > r.

Products

Many authors studied the basis number of graph products. The Cartesian product, [J, was
studied by Ali and Marougi [3] and Alsardary and Wojciechowski [4].

Theorem 2.2.1. (Ali and Marougi) If G and H are two connected disjoint graphs, then
b(GOH) <max{b(G)+ A (Ty), b(H)+ A (Te)} where Ty and Tg are spanning trees of

H and G, respectively, such that the mazimum degrees N\ (Tr) and A(Tg) are minimum with

respect to all spanning trees of H and G.

Theorem 2.2.2.(Alsardary and Wojciechowski) For every d > 1 and n > 2, we have b(K%) < 9
where K¢ is a d times Cartesian product of the complete graph K,.

An upper bound on the strong product X was obtained by Jaradat [9] when he gave the

following result:
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Theorem 2.2.3.(Jaradat) Let G be a bipartite graph and H be a graph. Then b(GX H) <
max{b(H) +1,2A(H) +b(G) — 1, L%J b(G) + 2}.

The lexicographic product, G[H], was studied by Jaradat and Al-zoubi [8] and Jaradat
[10]. They obtained the following result results:

Theorem 2.2.4.(Jaradat and Al-Zoubi) For each two connected graphs G and H, b(G[H]) <
Max{4,2A(G) +b(H),2+b(G)}.

Theorem 2.2.5.(Jaradat) Let G, Ty and Thbe a graph, a spanning tree of G and a tree, respec-
tively. Then, b(G[T»]) < b(G[H]) < max {5,4+ 2A(TS,,)) +b(H),2+ b(G)} where T stands
for the complement graph of a spanning tree T in G and Twyin Stands for a spanning tree for

G such that A(TS.,) = min{ A(TY)|T is a spanning tree of G}.

min

Schmeichel [12], Ali [1], [2] and Jaradat [5] gave an upper bound for the basis number on
the semi-strong product e and the direct product, X, of some special graphs. They proved the

following results:

Theorem 2.2.6. (Schmeichel) For each n > 7, b(K,,  Py) = 4.

Theorem 2.2.7.(Ali) For each integers n,m, b(K,, ¢ K,,) < 9.

Theorem 2.2.8. (Ali) For any two cycles C,, and C,, with n,m > 3, b(C,, x C,,) = 3.
Theorem 2.2.9.(Jaradat) For each bipartite graphs G and H, b(G x H) <5+ b(G) + b(H).
Theorem 2.2.10. (Jaradat) For each bipartite graph G and cycle C, b(G x C) < 3+ b(G).

We remark that knowing the number of components in a graph is very important to find

the dimension of the cycle space as in (1), so we need the following result.

Theorem 2.2.11.([5]) Let G and H be two connected graphs. Then G x H is connected if
and only if at least one of them contains an odd cycle. Moreover, If both of them are bipartite

graphs, then G x H consists of two components.

For completeness, we recall that for two graphs G and H, the direct product G x H is
the graph with the vertex set V(G x H) = V(G) x V(H) and the edge set E(G x H) =
{(u1,u2)(v1,v2)|urvy € E(G) and ugve € E(H)}.

In the rest of this paper, fp(e) stand for the number of elements of B containing the edge
e where B C C(Q).

§3. The Basis number of 0,, x C,,.

By specializing bipartite graph G in Theorem 2.2.10 into a theta graph 6,, containing no odd
cycles, we have that b(6,, x C,,) < 5. In this paper, we reduce the upper bound to 4. In fact,

we prove that the basis number of the direct product of a theta graph with a cycle is either
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3 or 4. Throughout this work we assume that {1,2,...,n} and {1,2,...,m} to be the vertex

sets of 6,, and C,, respectively.

Definition 3.1. A theta graph 0, is defined to be a cycle C,, to which we add a new edge that
joins two non-adjacent vertices. We may assume 1 and 0 are the two vertices of 0, of degree

3.

The following result follows from Theorem 2.2.11 and noting that at least one of 6,, and
C), contains an odd cycle if and only if at least one of n,m, and ¢ is odd.

Lemma 3.2. Let 6, be a theta graph and C,, be a cycle. 8,, x C,, is connected if and only if

at least one of m,m, and § is odd, otherwise it consists of two components.

Note that |E(0, x Cp,)| = 2nm + 2m and |V (0,, x Cp,)| = nm. Hence, by the above lemma
and equation (1), we have
dim C(6,, x Cp,) = nm + 2m + s,

where

1, if 8, x C,, is connected,
2, if 0, x C,, is disconnected.

Lemma 3.3. Let 6, be a theta graph and C,, be a cycle. Then b(0,, x Cy,) > 3.

Proof Note that 6,, x C), contains at most 4 cycles of length 3 and the other cycles are
of length at least 4. Assume that 0,, x C,, has a 2-fold basis B. Then

2(E(0n x C)l) 2 D |C]
ceB

> 4(dimC(6,, x Cy,) —4) + 3(4)
> 4(dimC(#,, x Cp,) — 1),
and so,
2(2 2
W > nm+2m+s—1
nm+m > nm+2m+s—1,
where s is as above. Thus,
1>m+s.
This is a contradiction. O

Lemma 3.4. For any graph 0, of order n > 4 and cycle C,, of order m > 3, we have
b(0, x Cp,) < 4.

Proof To prove the lemma, it is sufficient to exhibit a 4-fold basis, B, for C(0,, x Cp,).

According to the parity of m,n and ¢ (odd or even), we consider the following eight cases:
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Case 1. m and n are even and § is odd. Then, for each j = 1,2,...,m — 2, we consider the

following sets of cycles:

AV = {6 G+ L5+ 1) (1, +2) (= 1,5 +1) (6,5) i =2,3,..n— 1}
U{(1,5) (2, + 1) (1,5 +2) (n,j +1) (L,5)}
U{(TL,]) (TL— 17j+ 1) (TL,]+2) (17.7+ 1) (TL,])},

AV = (L) @+ 1) (L7 +2) (6,5 +1) (1,5},
AV = {(6.5) (6~ 1,7+ 1) (6,5 +2) (1,5 +1) (6,4)}

Also, we define the following cycles:

(1,1)(2,2)(3,1)...(n,2) (1,1),

) (1,2)(2,1)(3,2)...(n,1)(1,2),

cs = (I,m)(2,m—1)(3,m)...(6,m)(1,m—1)
(2,m)...(6,m—1)(1,m).

C1

Note that, the cycles of Agj) are edge pairwise disjoint for each j = 1,2,3,...,m — 2.
. m—2 .
Thus, Agj ) is linearly independent and of 1-fold. Let A; = 5} Agj ). Note that, each cycle
j=

of Agj) contains an edge of the form (i 4+ 1,7+ 1) (i,5+2) or (n— 1,5+ 1) (n,j + 2) which is
not in Agjfl). In addition, each cycle of Agjfl) contains an edge of the form (i,5 — 1) (¢ + 1,7)
or (n,7)(n—1,7+ 1) which is not in Agj). Therefore, A, is linearly independent. Let V, =
{(4,7) :i4j=-even}, and V, = {(4,4) : i +j = odd}. Let Hj, be the induced subgraph of V;,
where k = 1,2. For each j =1,2,....m — 2, set

B = {()(i+1,j+1)(j+2) (—1,j+1)(5)]2<i<n—1and
i+j = eventU{(1,7)(2,7+1)(1,7+2)(n,j+1)(1,5): 1+ =even}
U{(n.3) (n = 1,5+ 1) (nj +2) (1, + 1) (n.j) : n+j = even},
BY = {(i)(+1,j+1)(j+2)(—1,j+1)(5)]2<i<n—1and
i+j = odd}U{(1,7)(2,i+1)(1,j+2)(n,j+1)(1,5): 1+j=o0dd}
U{(n.3) (n = 1,5+ 1) (nj +2) (1, + 1) (n.j) : n+j = odd}.
Let F*) = Tng,gj ) where k = 1,2. We prove that ¢j is independent from the cycles of

F®) . Let EJ(-k) =FE(C, xj(j+1))N E(Hy) where C,, is the cycle in 6,, obtained by deleting
the edge 16 from 6,. Then it is an easy matter to verify that {EYC),ESC), . .,E,(,]f)_l} is a
partition of E (C,, X Py,) N E (H}y) where P, is the path of C,, obtained by deleting the edge
1m. Moreover, it is clear that B = E(c;) and EF U B :‘E(BQU. Thus, if ¢, is

a sum modulo 2 of some cycles of F*) say {T},Ty,...,T,}, then B,(cl) c{nh,Ty,...,T }.
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Since no edges in Eék) belongs to E (¢x) and Eék) U Eék) =F (B,(f)) ,B,(f) c{n,Ts,...,T.}.
By continuing in this way, it implies that B(m72) C {T),Ts,...,T}. Note that E® U

m—

Al\.’)

E(k) = F (B( )) and each edge of g )1 appears in one and only one cycle of F(*),

It follows that Eff,f) . € Ef(ct). This is a contradiction. Therefore, F®) U {¢;} is linearly

independent for k = 1,2. And since E (FO U{c1})N E(F® U{c2}) = ¢, we have FI) U
F@ U{cy, e} = A; U {e1,ca} is linearly independent. Let Ay = 77_@12A§j) and A3 = 77_@12Agj).
It is easy to see that the cycles of A; are edge pairwise disjoint Jfor 1 = 2,3 and eajch cycle
of As contains at least one edge of the form (d,7) (6 — 1,7+ 1) and (6,5) (6 — 1, — 1) which
is not in As. And so A U Az is linearly independent. Clearly, c3 can not be written as a
linear combination of cycles of Ay U As. Therefore, As U As U {c3} is linearly independent.
Let By = Ay U Ay U A3 U {c1,¢2,c3}. We now prove that By is a linearly independent set.
Note that E(As U Az U {cs}) — {(1,4) (8,5 +1),(1,5+1)(d,5) |1 <j<m— 1} forms an edge
set of a forest. Thus, any linear combinations of cycles of Ay U A3 U {c3} must contains at
least one edge of the form (1,5) (6,7 + 1) and (1,5 + 1) (9, ) for some j < m — 1 because any
linear combination of a linearly independent set of cycles is a cycle or an edge disjoint union
of cycles. Now, Suppose that there are two sets of cycles say {di,da,...,dy, } € A1 U{c1,ca}
and {f1, fo,..., fro} C Aa U A3 U {cs} such that >, d; = >, f; (mod 2). Consequently,
E(di®de® - ®dy,) =E(fi®fa® - & fy,) and so d1 ® dy @ --- & d,, contains at least
one edge of the form (1,7) (0,7 + 1) and (1,5 + 1) (9, j) for some 5 < m — 1, which contradicts
the fact that no cycle of A1U {c1, o} contains such edges. We now define the following sets of

cycles
Ay = AV =(+1,1)(+2,2)(i+1,3)...(6+2,m)(i+1,1):i=0,1,
n— 2},
A5 = {Ag”:(z‘+1,1)(z',2)(z'+1,3)...(i,m)(i+1,1):i:1,2,...,n—1},
and
¢ = (6,1)(6+1,2)(8,3)(+1,4)...(6,m—1)(1,m)(4,1),
e = (L1)(2,m)(3,1)(4,m)...(6,1)(1,m)(2,1)...(6,m)(1,1),
cg = (1,1)(n,2)(1,3) (n,4)... (n,m) (1,1),
¢ = (1,1)(1,2)(n,3) (1,4)...(1,m) (n,1).

Let D = A4UA5U{C/1, Co, Ca, c;}. Each cycle Aff) of A4 contains the edge (i + 2, m) (i + 1,1)
which belongs to no other cycles of BiU Ay. Thus B1U Ay is linearly independent. Similarly,
each cycle Ag) of As contains the edge (i,m) (i + 1,1) which belongs to no other cycles of
B1U A4 U As. Hence B1U Ay U Aj is linearly independent. Now c/l is the only cycle of B;U
Ay U A5 U {c/l} which contains the edge (1,m) (6,1). Hence B1U Ay U A5 U {cll} is linearly

independent. Similarly, 0/2 is the only cycle of ByU A, U A5 U {c/l, 0/2} which contains the edge

(6,m) (1,1). Thus ByU Ag4 U A5 U {c;,c;} is linearly independent. Now, ¢z and ¢, contain
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(1,1) (n,m) and (1, m) (n, 1), respectively, which appear in no cycle of BiU A4 U A5 U {c,l, 0,2}
Therefor, B = By U D is linearly independent. Now,

5 3 4
Bl = Y A+ el + > el
i=1 =1 =1
= nm-2)+(m—-2)+(m—-2)+(n—1)+(n—-1)+3+4
= nm+2m+1
= dimC (0, x Cy,).

Hence, B is a basis of 8,, x C},. To complete the proof of this case, we only need to prove
that B is a 4-fold basis. For simplicity, set Q@ = U3_,{c;}. Let e € E (6,, x Cy,). Then

(DIfe=(,5)(+1,j+1) or (nj)(1,7+1) where 1 <i<n-1,and 2 < j < m—2,
then fa, (€) =2, fa,ua, (e) <1, fp(e) <1, and fg(e) =0, and so fz(e) < 4.

(2)Ife=(i,5)(i+1,j—1)or (n,j)(1,7j—1) where 1 <i<n—-1,and 3 < j <m-—1,
then fa, (€) =2, fa,ua, () <1, fp(e) <1, and fg(e) =0, and so fg(e) < 4.

3)Ife=(i1)(t+1,2)0r (1,1)(n,2),
1,fp(e) <1, and fg(e) <1, andso fz(e)

(4) Te = (,2) (i +1,1) or (1,2) (n,1)
1,fp(e) <1,and fg(e) =1, and so fp(e) <

(5)Ife=(1,j)((5,j+1)wherel< <m
and fg (e) =0, and so fg(e) <

(6) T e = (1,4) (6, — 1) where 2 < j < m—2, then fa, (¢) = 0, faua, (¢) <2, fp (€) = 1,
and fg (e) =0, and so fz(e) < 3.

here 1 <i <n—1,then fa, (e) =1, fa,ua, (€)

IN

w
<4

where 1 < i <n—1, then fa, () =1, fa,ua, (e) <

2, then fAl ( ) =0, fA2UA3 (6) < 27fD (e) =1,

(MIfe=(G,m—1)@G+1,m)or (i,,m) (i+1,m—1)or (1,m) (n,m —1) where 1 <i <
n— 17 then fAl (6) = 17 fAzUAs (6) S 17 fD (6) S 17 and fQ (6) S 17 and so fB (6) S 4.

(8)Ife = (1,m)(6,m —1)or (1,m—1) (§,m) , then fa, (¢) =0, fa,ua, (e) <1, fp(e) <1,
and fg (e) <1, and so fg(e) < 3.

9) If e = (¢ +1,1) (¢,m) or (4,1)(i + 1,m), where 1 < ¢ < n — 1, then fa, () = 0,
fasuas (6) =0, fp(e) <2, and fg(e) <1, and so fz(e) < 3.

(10) If e = (1,1) (6,m) or (1,m) (d,1), then fa, (e) =0, fa,ua, (e) =0, fp(e) <2, and
fo(e) =0, and so fg(e) < 2.

(11) If e = (1,1) (n,m) or (n,1) (1,m), then fa, (e) = 0, fa,ua,(e) =0, fp(e) <1,
and fo (e) = 0, and so fg(e) < 1. Therefore B is a 4-fold basis. The proof of this case is
complete.

Case 2. m and 0 are even and n is odd. Now, consider the following sets of cycles: Ay, Ao

and Az are as in Case 1 and
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g = (I,m)2,m—-1)3,m)...(6,m—1)(1,m),
ca = (I,m—=1)(2,m)(3,m—1)...(6,m)(1,m—1),
s = (1,1)(2,2)(3,1)...(n,1)(1,2)(2,1)...(n,2) (1,1).

Let By = (UL, 4;)U (U2, {¢;}). Since E (c1)NE (cz) = @, {c1,c2} is linearly independent.
Since 0 > 4, ¢; contains an edge of the form (2,m — 1) (3, m) and c2 contains an edge of the
form (2,m) (3,m — 1) and each of which does not appear in any cycles of As U As. Thus
AU Az U{eq, e} is linearly independent. Next, we show that Ay | {cs} is linearly independent.
Let R; = E(Cy, x i(i+1)) where C), is as in Case 1. Note that {R1 Ra,...,Rp—1} is a
partition of E (C,, X P,,) where P, is as in Case 1. Also, E (¢c3) = Ry and RiURy = F (Agl)).
Thus, if ¢3 can be written as linear combination of some cycles of A;, say {K1, Ko, ..., K, },
then Agl) C {Ky,Ks,...,K,}. Since Ro UR3 = E (A§2)) and no edges of Ry belongs to

E (c3), A§2) C {Kj,Ks,...,K,}, and so on. This implies that A§m72) C {Ky,Ks,...,K,}.
Note that R,,_1 C FE (Agmd)) and each edge of R,,_1 appears only in one cycle of A;. Thus
R,,—1 C E(c3). This is a contradiction. Hence A; U {¢3} is linearly independent. Let By =
A1 UAsU A3 U e, o, c3}. To show that By is a linearly independent set, we assume that there
are two set of cycles say {d1,da,...,dy, } € Ay U{cs} and {f1, fo,..., fr.} C A2 UA3U{c1, o}
such that >-)*, d; = >, fi (mod 2). By using the same argument as in Case 1, we have that
di ®da @ --- @ dy, contains at least one edge of the form (1,5)(d,j + 1) and (1,5 + 1) (4, j) for
some j < m — 1. Which contradicts the fact that no cycle of A;U {¢1} contains such edges.

Now, let A4, As, cl3 and c; are as defined in Case 1, and define the following cycles:

¢ = (LD)(2,m)(3,1)...(6—1,1)(5,m)(1,1),

/

e, = (I,m)(2,1)(3,m)...(5,1)(1,m).

Let D = A4 U A5 U {c;,c;,c;,c;}. By following the same arguments as in Case 1, we
can prove that B = By U D is a 4-fold basis for C(6,, x Cy,,). The proof of this case is com-
plete.

Case 3. m,n, and 0 are even. Consider the following sets of cycles: Ay, As, As, Ay, A5 and
{c1,¢a} are as in Case 1. Also, consider ¢3 = ¢; and ¢4 = ¢3 where ¢; and ¢ are as defined in

Case 2. Moreover, ¢; and ¢, are as in Case 2. Define the following two cycles:
s = (L,1)(2,m)(3,1)...(n—=1,1)(n,m) (1,1),
Cy = (Lm) (251)(35m)(n_15m) (n,l)(l,m)
By using the same arguments as in Case 1 and Case 2, we can show that

B=A1UA;UA3U AU A5 U {Cl,62703,04701702703764},
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is linearly independent. Since

5
Bl = Z|Ai|+8
— n(m—2) 4 (m-2)+(m-2) -1+ (n—1)+8
= nm+2m+2

= dimC (0, x Cpn),

B is a basis of C (6,, x C},). To show that B is a 4-fold basis, we follow, word by word, (1) to (11)

of Case 1. The proof of this case is complete.

Case 4. m is even, and § and n are odd. By relabeling the vertices of 6,, in the opposite

direction, we get a similar case to Case 2. The proof of this case is complete.

Case 5. m is odd, and n and § are even. Consider the following sets of cycles: A;, A, A3 and
{c1,c2} are as in Case 1. In addition, ¢s = ¢; and ¢4 = ¢o where ¢; and ¢y are as in Case 2.
Using the same arguments as in Case 1 and Case 2, we can show that each of A; U{c1,c2} and
AsUA3U{cs, cq} are linearly independent. Also, then we show that A1 UAsUA3U{¢c1,c2,c3,¢4}
is linearly independent. Now, we define the following set of cycles:

A4={a§j>:(i,m)(z’+1,m—1)(i+2,m)(i+1,1)(i,m):1§ign—2},

and

A5:{a§'):(i,1)(i+1,m)(i+2,1)(z‘+1,2)(¢,1):1§i§n—2}.

Also, define the following cycle:

’

s = (n=1,1)(n,m)(n—1,m—1)(n,m—2)...(n,1)(n—1,m)(n,m—1)
(n—=1, m—2)...(n,2) (n—1,1).

Note that, ¢5 contains the edge (n — 1,m) (n,1) which does not occur in any cycle of By =

Ay UAs U Az U{eq,e9,c5,¢4}. Thus, B1U {0/5} is linearly independent. For simplicity, we set
D = {Dk}z;f , where Dy = {aflk), agk) } We now, use induction on n to show that the cycles

of D are linearly independent. If n = 3, then D = Dy = {ail), aél)}. afll) contains the edge
(2,1) (3, m) which does not occur in the cycle aél). Hence D is linearly independent. Assume

n > 3 and it is true for less than n. Note that D = {Dk}z;fu{ainfz), agnd) } By the inductive

step {Dy};_3 is linearly independent. Now, the cycle a{"™ contains the edge (n — 1,1) (n,m)
which does not occur in any cycle of {Dk}iizg, similarly the cycle aé"_2) contains the edge

(n,1)(n — 1,m) which does not occur in any cycle of {Dk}Z;f’ U {ai"_m}. Therefore, D is

linearly independent. Note that E(D) — {(i + 1,1)(i,m), (4, 1)(i + 1,m)|1 < i < n — 2} forms
an edge set of a forest. Thus, any linear combination of cycles of D must contain an edge of
the form (i + 1,1)(i,m) or (i,1)(i + 1, m) for some 1 < i < n — 2 which does not occur in any

cycle of B1U {c;—) . Therefore, B;U c;} U D is linearly independent.
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We now consider c/1 and 0/2 as in Case 2 and c;) and c;l as in Case 1. Note that c/1 and 0/2
contain the edges (1,1) (6,m) and (1,m) (4, 1), respectively, which do not appear in any cycle of
BiU {cs t UD. Thus BiU DU { ¢, ¢y, cs ¢ is linearly independent. Similarly ¢; and ¢, contain
the edges (1,1) (n,m) and (1,m) (n, 1), respectively, which do not appear in any cycle of B;U
{cll, 0/2, 0/5} U D. Thus

B=BiUDU {C;,C;,C;,C;,C;)}

is linearly independent. Now,

5

B = > |Ail+9

i=1

= nm-2)+m-2)+(m—-2)+(n—-2)+(n—-2)+9
= nm+2m-+1

= dimC (6, x Cyy).

Hence, B is a basis of C (6,, x C};,). To complete the proof of this case, we show that B is
a 4-fold basis. Let e € E (0,, x Cy,). Then,

(1) Ife= (i+1,1)(¢,m)or (i,1) (i+1,m) where 1 < i < n — 1, then fa, (e) = 0,
fasua, (€) =0, fDU{C;}?:l (e) <3, and fu1_ (.3 (e) =0, and so fz(e) < 3.

(2) If e is as in (1) to (11) of Case 1 and not of the above form, then, as in that Case 1,
fB(e) < 4. Therefore B is a 4-fold basis. The proof of this case is complete.

Case 6. m and ¢ are odd and n is even. According to the relation between m and ¢, we split

this case into two subcases.

Subcase 6a. § < m. Then consider the following sets of cycles: A1, As, As, c1,ca,c3 are as in

Case 1. In addition, for each i = 2,3,...,6, we define the following sets of cycles.

F o= (1) —1,2)(—23)...(1,4) (8,i +1) (6 — 1,i +2)
(6—2,i43)... (1,6 +1)(i+1,6+2)(i,6+3)...(6—1,m) (1),

and for each i =1,2,3,...,6 — 1

F = (i,1)(i+1,2)(i+23)...(0,6—i+1)(1,0—i+2)
(2,6 —i+3)... (1,6 +1)(i+ 1,6 +2)(i,6 +3) ... (i +1,m) (i,1).

Also, set

Fi o= (1,1)(8,2)(6—1,3)(6 —2,4)...(1,6+ 1) (5,6 +2)
(1,6 +3)...(L,m—1)(5,m)(1,1),

and
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Fs = (6,1)(1,2)(2,3)(3,4)...(6,6+1) (1,6 +2) (6,6 + 3)
(1, 6+4)...(6,m—1)(1,m) (6,1).
Let
F=U) F and F =0 F .

By Case 1, Ay UAsUA3U{cy, c2, c3} is linearly independent. Note that each cycle of F' contains
an edge of the form (i —1,m) (i,1) or (§,m) (1,1) for some 2 < ¢ < § which does not occur
in any other cycle of Ay U Ay U A3 U F U {c1,co,c3}. Thus, Ay U Ay U A3 U F U {c1,c2,c3} 18
linearly independent. Similarly, each cycle of F' contains an edge of the form (i + 1,m) (i,1)
or (1,m) (6,1) for some 1 <14 < §—1 which does not occur in any other cycle of 41 U Ay U A3 U
FUF U {c1,¢9,¢c3}. Thus, Ay UA; UA3 UF U F'uU {c1,¢a, 3} is linearly independent. Now,

define the following sets of cycles:

A4={aff’:(i,m)(z’+1,m—1)(z’+2,m)(z’+1,1)(z’,m):5—1§z’§n—2},
and

A5={ag“:(i,l)(i+1,m)(i+2,1)(i+1,2)(i,1);6—1§z’§n—2}.

Also, set the following cycles:

(1,1)(2,m) (3,1)...(n,m) (1,1),
s = (I,m)(2,1)(3,m)...(n,1)(1,m).

Cq

By using the same arguments as in Case 5, we can show that A4UAs5 is linearly independent.
Since each linear combination of cycles of A4 U A5 contains an edge of the form (i + 1,1) (i, m)
or (i,1) (i + 1,m) for some ¢ < i < n — 2 which does not occurs in any cycle of A; U Ay U A3 U
FUF U {c1,c2,¢3}, Ay UA3 U A3 UALUAs UF U F'U {c1,c2,c3} is linearly independent.
Finally, ¢4 contains the edge (n,m) (1,1) and c5 contains the edge (n,1) (1, m) which do not
appear in any cycle of A; U Ay UAs U A4 U A5 UF U F'u {c1,¢a,c3}. Thus,

B:A1UA2UA3UA4UA5UFUF/U{Cl,02,03,04,c5}

is linearly independent. Since

5 5
Bl = DA+ I[FI+[F |+ el
i=1 i=1

= nm-=2)4(m-=2)+(m—-2)+(n—-9)+
(n—¥8)+06+d+5

= mn+2m-+1

= dim C(0,, x Cp,),
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B is a basis of C(6,, x Cy,,). To complete the proof of the theorem we only need to prove that
B is a 4-fold basis. For simplicity let @ = U?_;{c;}. Let e € E (6,, x Cp,). Then

(Dife=(i,5)(i+1,5+1)or (n,j)(1,j+1), where 1 <i<n-—1,and 2 < j < m — 2,
then fa, (€) =2, fa,ua, (e) <1, frup () =1, and fg (e) =0, and so fz(e) < 4.

(2)Ife=(i,5)(i+1,5—1)or (n,j)(1,j—1), where 1 <i<n—1,and 3 < j<m-—1,
then fa, (€) =2, fa,ua, () <1, fpup (e) =1, and fg (e) =0, and so fz(e) < 4.

B)Ife=(i,1)(i+1,2)or (1,1)(n,2), where 1 <i<n—1,then fa, (¢) =1, fa,ua, (e) <
L, frup () =1, and fg (e) =1, and so fz(e) < 4.

(4)Ife=(i,2)(i+1,1)or (1,2) (n,1), where 1 <i<n—1,then fa, (e) =1, fa,ua, (e) <
1L, frup () =0, and fg (e) =1, and so fz(e) < 3.

(5)Ife=(1,7) (3,5 + 1) ,wherel < j <m—2,then fa, (¢) =0, fa,ua, (e) <2, fp p (€) =
1, and fg (e) =0, and so fg(e) < 3.

(6)Ife=(1,5)(d,5 — 1) ,where2 < j <m—2,then fa, (¢) =0, fa,ua, (e) <2, fp p (€) =
1, and fg (e) =0, and so fg(e) < 3.

(M Ife=(i,m—1)(+1,m)or (i,m) (i+1,m—1)or (I,m) (n,m —1) , where 1 <i <
n—1, then fa, (e) =1, fa,ua, (€) <1, fryp (e) =1, and fg (e) <1, and so fz(e) < 4.

(8)Ife=(1,m) (6,m —1)or (1,m—1) (§,m), then fa, (e) =0, fa,ua, (€) <1, fr p (€) =
1, and fg(e) <1, and so fg(e) < 3.

(9) Ife = (4,1) (i +1,m) or (i +1,1) (¢,m) , where 1 < i < n — 2, then fu, (¢) = 0,
fasua, (€) =0, frup (e) £2,and fg (e) <1, and so fz(e) < 3.

( O) Ife= ( )(5 m) or (Lm) (571)7 then fa, (6) =0, fa,uas (6) =0, fFuF’ (6) =1,
and fg (e) =0, and so fp(e) < 1.

( 1) If e = ( )(TL m) or (TL, 1) (17m)7 then fAl (e) =0, fA2UA3 (6) =0, fFUF’ (e) <1
and fg (e) <1, and so fz(e) < 2. Therefore B is a 4-fold basis.

Subcase 6b. m < §. Then consider the following set of cycles: Aj,¢q,co are as in Case 1 and

Ay and As are as in Case 4, and

= (1,1)(2,2)(1,3)(2,4) ... (1,m)(2,1)(1,2)(2,3) ... (2,m)(1,1).

Using similar arguments to Case 5, we can show that A1 U Ay U A5 U {c1,c2,c3} is a
linearly independent set. Now, let ¢4 and cs be the two cycles as in the Subcase 6a. Then ¢y
contains the edge (n,m)(1,1) which does not appear in the cycles of Ay UA,U A5 U{cy,ca,c3}.
Thus, Ay U Ay U A5 U {e1,¢a,c3,¢4} is linearly independent. Similarly, ¢; contains the edge
(n,1)(1, m) which does not appear in any cycle of Ay U Ay U Ay U {c1,¢a,cs3,ca}. Therefore,
A1 U AL U A5 U {c1,ca,c3,c4,c5} is linearly independent. Now, for j = 2,3,..., m define the

following cycles:

Fi = (LH2i-13B,5-2)...00)@F+1L,m)(G+2,m-1)({+3,m—-2)...
(m+1,5)(m+2,j—1)(m+3,5)...(6,j —1)(1, ),
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and for j=1,2,3,...,m—1

F, = (L,H2,j+1)3B,74+2)...(m—j+1,m)(m—7+2,1)(m—j+3,2)
(m—7+4,3)...0m+1,)(m+2,7+1)(m+3,5)...(6,7+1)(1,5).

Moreover, define

o= (L,1)2,mGBm-1)4m-2)...(m+1,1)(m+2,m)(m+3,1)...(6,m)(1,1)
E, = (1,m)(2,1)3,2)(4,3)...(m+1,m)(m+2,1)(m+3,2)...(51)(1,m).
Let

F=U"F and F' = U™, F,.

Note that each cycle of F U F' contains an edge of the form (3,5 + 1)(1,7) or (6,5 — 1)(1,4)

which does not appear in other cycles of
B=A; UA4UA5UFUF, U{01702,03,04,C5}

Thus, B is linearly independent. Since

5
1Bl = |Ai|+|Aal + 45|+ [FI+ [F [+ e
1=1
= m-2n+n—-2)+n—2)+m+m+5

= mn+?2m+1
= dim C(6, x Cp,),

B is a basis for C(0,, x Cy,). Now to complete the proof, we show that B is a 4-fold basis. Let
e € E(0, x Cyp,). Then

Dife=(,7)(i+1,j+1) wherel <i<d—2,and1<j<m-—1or (i,7)(—1,5—1),
where 2 < ¢ < —1,and 2 < j < m, then f4,uc,ye , (€) <2, faguas (€) <1, fpup (€) <1,
and so fp(e) < 4.

2)Ife=(i,j)(i+1,j+1)whered <i<n-—1l,and1<j<m-—1or(i,j)(i—1,5—1),
where § +1 < i <mn, and 2 < j < m, then fa,urey5, (€) <3, fa,uas(e) <1, fpup (€) =0
and so fg(e) < 4.

(3)Ife=(i,1)(i+1,m)or (i+1,1)(i,m) or (1,1) (n,m) or (1,m) (n,1) where 1 < i <
n—2, then fa,uey5 (e) <1, fauas (€) <2, fpyp () =0 and so f5(e)

4)Ife=(1,5)(0,5+1) or (1,j+1)(0,7) or (1,1)(d, m) or (1,m) (4,
m—1, then fu,u(c,)5 | () <1, fa,uas () <1, fryp (e) <1, and so fz (e

(5) If e=(1,1)(n,m) or (1,m) (n, 1), then fAlu{cl»};'Ll (e) <1, fa,uas
0, s0 fg(e) <1.

e) =0, fpup (€) =

Thus, B is a 4-fold basis. The proof of this case is complete.
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Case 7. m and n are odd, and ¢ is even. According to the relation between m and n, we split

this case into two subcases.

Subcase 7a. m > n. Then consider the following sets of cycles: Aj, As and Az are as in Case

1 and ¢y, ¢9, ¢3, cl1 and 0/2 are as in Case 2. Also, for i = 2,3, ..., n, define the following cycles:

Fo= (1) (—1,2)(i—-2,3)... (L) (n,i+1)(n—1,i+2)(n—2,i+3)...(i,n+1)
(i—1,n+2)(i,n+3)...(0i—1,m)(i,1),

and for i =1,2,3,...,n—1

F, o= (,0)6+1,2)6+2,3)...(n,n—i+1)(1,m—i+2)
2,m—i+3)...(i,n+ 1)+ 1Ln+2)(G,n+3)...(i+1,m) (1),

Moreover, set

B = 1L,)n2)(n-1,3)(n-2,4)...L,n+1)(n,n+2)(1,n+3)...
(ILm—1)(n,m)(1,1),

and

F, = (n,1)(1,2)(2,3)33,4)...(n,n+1)(1,n+2)(n,n+3)
(I,n+4)...(n,m—1)(1,m) (n,1).

Let
F=U",F and F =U" F,.

By Case 2, Ay UAs UA3Ucp Uca Ucg U c/l U 0/2 is linearly independent. By a similar argument
as in Subcase 6a, we can show that
B=AUAyUAsUFUF UciUcaUcsUc; Uc,

is a linearly independent set of cycles. Since

3 3
Bl = Y Al +IFI+[F |+ leil +ler] + el
i=1 i=1
= m-2n+(m—-2)+(m—-2)4+n+n+5
= mn+2m+1

= dim C(0,, x Cp,),

B is a cycle basis of 6,, x C,,. For simplicity, set Q = U3_;{¢;}?_,. Let e € E(6,, x Cy,). Then

() ife=(i,7)@i+1,7+ 1) or (n,j)(1,j+1), where l <i<n-—1,and 2 < j < m — 2,
then fa, (¢) = 2, faua, (€) < 1, Frop (&) = 1, fri,, () = 0 and fio (¢) = 0, and s0 f (¢) < 4.
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(2)Ife=(i,5)(i+1,5—1)or (n,j)(1,j—1), where 1 <i<n—1,and 3 < j<m-—1,
then fa, (e) =2, fa,ua, (€) <1, fpup (e) =1, Feue, (e) =0and fo(e) =0, and so fg(e) < 4.

(B)Ife=(i,1)(i+1,2)or (1,1)(n,2), where 1 <i<n—1,then fa, (¢) =1, fa,ua, (e) <
L frop (e) =1, fC/IUC/Q (e) =0 and fo(e) =1, and so fi(e) < 4.

(4)Ife=(i,2)(i+1,1)or (1,2) (n,1), where 1 <i<n—1,then fa, (e) =1, fa,ua, (e) <
L, frup (€) =0, feoe, (e) =0and fg(e) =1, and so [z (e) < 3.

(5)Ife=(1,5) (6,7 + 1), wherel < j < m—2,then fa, (e) =0, fa,ua, (€) <2, fp p (e) =
L foue, (e) =0 and fo (e) =0, and so fz(e) < 3.

(6) If e=(1,7) (8,5 — 1), where 2 < j < m — 2, then fy, (e ) =0, fa,ua, (e) <2,

Fror (€)= 0. e (€)= 0 and fq (€) = 0, and so fis (¢) <

(M Ie=(,m—-1)(+1,m)or (i,m) (i+1,m—1) or (1 m) (n,m—1), where 1 < <
n—1, then fa, () =1, fa,uas (€) <1, frup (e) =1, feue, (e) = 0 and fg(e) <1, and so
fe(e) <4

(8)Ife = (1,m)(d,m —1)or (1,m—1) (6,m) ,then fa, (e) =0, fa,ua, (e) <1, fp p (€) =
0, fc;Uc; (e) =0and fg(e) <1, and so fz(e) <2

(9) If e = (;,1)(i+1,m) or (i +1,1) (3, ), where 1 < ¢ < n — 2, then f4, (e) = 0,
fasuas (6) =0, frup (e) =1, feue, (e) <1and fg(e) =0, and so f5(e) < 2.

(10) If e = (1,1) (6, m) or (m,1) (,1), then fa, (€) =0, fa,ua,(e) =0, fp p () =0,
fc;Uc; (e) =1 and fg(e) =0, and so fi(e) < 1.

(11) If e = (1,1) (n,m) or (n,1) (1,m), then fa, (€) =0, fa,ua, (e) =0, fpp (e) =1,
feoe, (e) <1and fg(e) =0, and so f5(e) < 2. Therefore B is a 4-fold basis.

. ’ ’ . ’ .
Subcase Tb. m < n. Then consider ¢; and ¢, as in Case 2 and c;, A4 and As as in Case 5.
Moreover, set

/

A = A -{{L,H2 i+ (1, 74+2)(n,j+1)(1,5):5=1,2,....,m—2}
U{(n,j))(n—1,j+1)(n,5+2)(1,j+1)(n,j): 5=1,2,...,m — 2}},

where A; is as in Case 1. Also, set

Ay = {@)EI+1D)G) @ +1)... 00,5+ ) (L))i=1,2,...m -1}
By Case 5 and noting that each cycle of A/2 UA;, contains an edge of the form (4,7 4+ 1) (1, ) for
some 1 < j <m —1 or an edge of the form (4, ) (1,7 — 1) for some 2 < j < m which appears
in no cycle of A} U Ay U A5 Uc; Ucy U ey, we have that A} U A, U A3 U Ay U As Uc) Ucy Ucy is

linearly independent. Now, for j = 2,3,...,m, consider the following cycles:

Fi = (LH2i-13B,5-2)...00)@F+1L,m)(G+2,m-1)({i+3,m—-2)...
(m+1,5)(m+2,5—1)(m+3,5)...(n,j —1)(1,5),
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and for j=1,2,3,...,m—1

F, = (LD2i+D)Bj+2)...(m—j+1,m)m—j+2,1)(m—j+3,2)(m—j+4,3)...
(m+1,)(m+2,j+1)(m+3,7)...(n,j+1)(1,5).

Moreover, set

o= (LD)EmGm-—1DEd,m—2) .. (m+1,1)m+2m)(m+3,1)...(n,m)(1,1)

EF, = (1,m)(2,1)(3,2)4,3)...(m+1,m)(m+2,1)(m+3,2)...(n,1)(m,1),

Let
F=U"F,and F = U/, F,.

Using a similar arguments as in Subcase 6b, we show that
B=A,UAyUA;UA4UAs UFUF Uc,UcyUcs

is linearly independent. Note that

3
1Bl = 14|+ |Ad + 45| + |F| + |F'| +3
i=1
= m=-2)n=2)+4m-1D+m-1D+n-2)+n—-2)+m+m+3
= mn+2m+1

= dimC (0, x Cp) .

Thus, B is a basis for C (6,, x Cy,). Now, let e € E(6,, x Cy,). Then

(HIfe=(i,7) (i + 1,7+ 1), wherel <i <n—2,and 1 < j < m—1, then fA’luA;uA;uA4uA5 (e) <
3, frup (€) =1, f{cg} (e) =0 and f{c;)c;} (e) =0, and so fg(e) < 4.

(2)Ife=(i,7) (i — 1,7+ 1), where2 <i <n-—1,and 1 < j < m—1, then fA;uA;uA;uA4uA5 (e)
3, frup (e) <1, f{cg} (e) =0 and f{c;)c;} (e) =0, and so f5(e) < 4.

(3) If € = (n - 15.]) (nvj + 1) or (n - 15.] + 1) (naj)or (n - 17 1)(nam> or (n - lam)(na 1)7
where 1 < j < m — 2, then fA’luA;uAguA4uA5 (e) < 3, frup (e) = 0, f{cg} () < 1 and
f{c/PC; (e) =0, and so f5(e) < 4.

(4)Ife=(1,5)(0,j+ 1) or (1,5 +1)(d,j5)or (1,1)(6,m) or (1,m)(4,1) where 1 < j < m,
then fA;UA;UAéUA4UA5 (e) <1, fFUF’ (e) <1, f{cg} (e) = 0 and f{Cll,Cl2} (e) < 1, and so
fa(e) <3.

5)Ife=(1,5)(n,j+1)or (1,j+1)(n,5+1) or(1,1)(n,m) or (1,m)(n,1) where 1 <

j S m — 15 then fA/IUA;UA;UA4UA5 (6) = 07 fFUF/ (6) S 15 f{c;} (6) = 0 and f{c’17c;} (6) = 07
and so fp(e) < 1. Thus, B is a 4-fold basis of C(6,, x C,,). The proof of this case is complete.

A

Case 8. m,n and ¢ are odd. By relabeling the vertices of #,, in the opposite direction, we get
a similar case to Case 6. The proof of this case is complete. 0

By combining Lemma 3.3 and Lemma 3.4, we have the following result.
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Theorem 3.5. For any graph 6, of order n > 4 and cycle C,, of order m > 3, we have
3 <60, x Cy,) <A4.
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81. Introduction

At the beginning of the twentieth century, A.Einstein’s theory opened a door of use of new
geometries. These geometries mostly have higher dimensions. In higher dimensional Euclidean
space, researchers treated some topics of classical differential geometry [1], [2] and [3].

It is well-known that, if a curve differentiable in an open interval, at each point, a set of
mutually orthogonal unit vectors can be constructed. And these vectors are called Frenet frame
or moving frame vectors. The rates of these frame vectors along the curve define curvatures
of the curves. The set, whose elements are frame vectors and curvatures of a curve, is called
Frenet apparatus of the curves.

In [1], author wrote a relation of inclined curves. In this work, first, we prove that every
regular curve in four dimensional Euclidean space satisfies a vector differential equation of fifth
order. This result is obtained by means of Frenet formulas. Then using relation of inclined
curves written in [1], we express a new relation for inclined curves in Euclidean space E*, which

is related with Smarandache geometries, see [5] for details.

82. Preliminaries

To meet the requirements in the next sections, here, the basic elements of the theory of curves
in the space E* are briefly presented (a more complete elementary treatment can be found in
).

Let o : I C R — E* be an arbitrary curve in the Euclidean space E4. Recall that the curve
« is said to be of unit speed (or parameterized by arclength function s) if (¢/(s),d/(s)) = 1,

where (.,.) is the standard scalar (inner) product of E*given by

1Received February 12, 2008. Accepted April 25, 2008.
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(X,Y) = 2191 + w2y2 + 3y3 + Taya, (1)

for each X = (x1,72,23,24), Y = (y1,¥2,¥y3,¥4) € E* In particular, the norm of a vector
X € E*is given by

X[ = V(X X).

Let {T'(s), N(s), B(s), E(s)} be the moving frame along the unit speed curve . Then the

Frenet formulas are given by [2]

T’ 0 K 0 O T
N’ -k 0 T 0 N
- 2)
B 0O -7 0 o B
£’ 0 0 —-o O E

Here T, N, B and E are called the tangent, the normal, the binormal and the trinormal vector
fields of the curves, respectively, and the functions x(s),7(s) and o(s) are called the first, the

K
second and the third curvature of a curve in E*, respectively. Also, the functions H; = — and
T
U
Hy, = —L are called harmonic curvatures of the curves in E*, where k # 0,7 # 0 and o # 0.

o
Let a: I C R — E* be a regular curve. If tangent vector field T' of a forms a constant angle
with unit vector U, this curve is called an inclined curve in E4.

In the same space, the author wrote a characterization for inclined curves with the following

theorem in [1].

Theorem 2.1 Leta: I C R — E* be an unit speed reqular curve with curvatures k # 0,7 # 0

and o # 0. « is an inclined curve if and only if there is a relation

S S

e A.cos/ads.—l—B.sin/ads, (3)
-

0 0
where A, B € R.

§3. Vector Differential Equation of Fifth Order Satisfied by Regular Curves in E*

Theorem 3.1 Let X : I C R — E* be an unit speed reqular curve with curvatures k # 0,7 # 0

and o # 0 in E*. Position vector and curvatures of a satisfies a vector differential equation of

fifth order.

Proof Let X : I C R — E* be an unit speed regular curve with curvatures x # 0,7 # 0

and o # 0 in E*. Considering Frenet equations, we write that

TI

K

N (4)

and
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1
B==(kT +N'). (5)
T
Substituting (3) in (1)3, we get
B =-1174sE. (6)
K

Then, differentiating (3) and substituting it to (4), we find

p=1 [KTJF(T/)’]. (7

T K

Taking the integral on both sides of (1)4, we know

B / o Bds (8)

and substituting (6) to (7), we get

Applying (8) in (5), we have
T/
B =-T1_ a/ 7 {,@Tju (—)’} ds. (10)
K T K
Similarly, differentiating (6) and considering (9), then
1 T e — T !
_)’ # + kT | +
T K
k2 =26k (T"k — T'K")
Kt

T/
R of 7 [K;TJF (—)’] ds
KR T

K

(
(T”/K/ + TIK/H)

1
- +:‘<LIT+I€TI:| =0 (11)
-

is obtained. One more differentiating of (10) and simplifying this with X= T, X= T’, X=
7" XIV) = 7" and XV) = TUV) | we know

1 K 1.1 1 2
xor [y A Ayey 2] xaw
[KT:| + f<a2T+(T) I€+(I$4T)H+I€3T +
1,1 1w 1 K 2 T, o]
- __2_/__2/ N 5 _ — | X
[(7’) K (7') 2 " KT(H47') K2T 1137'l<J e +li+m'
K1 K1, 26”1 1 » 1 1
—a G E G SF O R R R H R ) e (=0 02)
2k'K" n Ko n (7'), n o2 2,1( 1 y o2k ’
_ ~re L ey 2
K37 T K KT H47; KT
1 1 1 1 4 ! 1 2,/ .
l/-e(—)" FR Y R 4R ) 4 o s T ] X
T T T KAT KT T T

The formula (12) proves the theorem as desired. U
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§4. A Characterization of Inclined Curves in E*

Theorem 4.1 Let o: I C R — E* be an unit speed reqular curve with curvatures k # 0,7 # 0
and o # 0 in E*. « is an inclined curve if and only if

H} + H3 = constant, (13)

where Hy and Hs are harmonic curvatures.

Proof Let o be an regular inclined curve in E*. In this case, we can write

- A.cos/ods. —|—B.sin/ods7 (14)
-
0 0
where A, B € R. If we differentiate (14) respect to s, we get

S S

1d
——(E) = —A.sin/ads. —l—B.cos/ads. (15)
ods T

0 0

Similarly, one more differentiating (15) respect to s, we have

S S

d [1d k . .
T {;E(;)} = —Aasm/ads. —Basm/ads. (16)
0 0

dH.
Using notations o H; = o and 222 in (16), we find
T

dH5
H — =0. 17
oH; + — (17)

1
Multiplying both sides of (17) with —H| = Has, we obtain
o

H1H{+H2H£:O. (18)
The formula (18) yields that

H? + H? = constant. (19)

Conversely, let relation (19) hold. Differentiating (19) respect to s, we know

HlH{ + HgHé =0. (20)

Similarly differentiating of expressions of harmonic curvatures and using these in (20), we
have the following differential equation

1 " 1 1 I U
—HY + — (=)' H} + Hy = 0. (21)
Using an exchange variable t = [ ods in (20),

0
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Hy +H, = 0. (22)

Here, the notation H; indicates derivative of H; according to t. Solution of (22) follows
that

H, = Acost + Bsint, (23)
where A, B € R. Therefore, we write that

S S

- A.cos/ods.—i—B.sin/ods. (24)

T
0 0

By Theorem 2.1, (24) implies that o is an inclined curve in E*.

Acknowledgements The third author would like to thank TUBITAK-BIDEB for their finan-
cial supports during his Ph.D. studies.
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Abstract: For any vertex z in a connected graph G of order p > 2, a set S C V(@) is an
z-detour set of G if each vertex v € V(G) lies on an = — y detour for some element y in S.
The minimum cardinality of an z-detour set of GG is defined as the z-detour number of G,
denoted by d(G). An z-detour set of cardinality d,(G) is called a d.-set of G. An z-detour
set Sy is called a minimal z-detour set if no proper subset of S, is an z-detour set. The upper
z-detour number, denoted by di (G), is defined as the maximum cardinality of a minimal
z-detour set of G. We determine bounds for it and find the same for some special classes of
graphs. For any three positive integers a,b and n with a > 2 and a < n < b, there exists a
connected graph G with d,(G) = a, df (G) = b and a minimal z-detour set of cardinality n.
A subset T of a minimum x-detour set S, of G is an xz-forcing subset for S, if S, is the unique
minimum z-detour set containing 7. An z-forcing subset for S, of minimum cardinality is a
minimum z-forcing subset of S,. The forcing z-detour number of S5, denoted by f4.(Sz), is
the cardinality of a minimum x-forcing subset for S,. The forcing z-detour number of G is
faz(G) = min {faz(Sz)}, where the minimum is taken over all minimum z-detour sets S, in
G. It is shown that for any three positive integers a,b and ¢ with 2 < a < b < ¢, there exists

a connected graph G with f4,(G) = a, d-(G) = b and dJ (G) = ¢ for some vertex = in G.

Key Words: detour, vertex detour number, upper vertex detour number, forcing vertex

detour number.
AMS(2000): 05C12.
81. Introduction

By a graph G = (V| E) we mean a finite undirected connected graph without loops or multiple
edges. The order and size of G are denoted by p and ¢ respectively. For basic graph theoretic

1Received March 2, 2008. Accepted April 29, 2008.
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terminology we refer to Harary [6]. For vertices x and y in a connected graph G, the distance
d(x,y) is the length of a shortest x — y path in G. An x — y path of length d(z,y) is called an
x — y geodesic. The closed interval I]x,y] consists of all vertices lying on some = — y geodesic

of G, while for S C V, I[S] = U I[z,y]. A set S of vertices is a geodetic set if I[S] =V,
z,yeS
and the minimum cardinality of a geodetic set is the geodetic number g(G). A geodetic set of

cardinality g(G) is called a g — set. The geodetic number of a graph was introduced in [1,7]
and further studied in [3].

The concept of vertex geodomination number was introduced by Santhakumaran and Titus
in [8] and further studied in [9]. Let x be a vertex of a connected graph G. A set S of vertices
of G is an z-geodominating set of G if each vertex v of G lies on an x — y geodesic in G for
some element y in S. The minimum cardinality of an z-geodominating set of G is defined as the
x-geodomination number of G and is denoted by ¢, (G). An z-geodominating set of cardinality
9:(G) is called a g,-set. The connected vertex geodomination number was introduced and
studied by Santhakumaran and Titus in [11]. A connected x-geodominating set of G is an
x-geodominating set S such that the subgraph G[S] induced by S is connected. The minimum
cardinality of a connected z-geodominating set of G is the connected z-geodomination number
of G and is denoted by c¢g.(G). A connected z-geodominating set of cardinality cg.(G) is called
a cgg-set of G.

For vertices « and y in a connected graph G, the detour distance D(x,y) is the length
of a longest  — y path in G. An = — y path of length D(x,y) is called an = — y detour. The
closed interval Ip[z, y] consists of all vertices lying on some 2 — y detour of G, while for S C V,

Ip[S] = U Iplx,y]. A set S of vertices is a detour set if Ip[S] = V, and the minimum
z,yes
cardinality of a detour set is the detour number dn(G). A detour set of cardinality dn(G) is

called a minimum detour set. The detour number of a graph was introduced in [4] and further
studied in [5].

The concept of vertex detour number was introduced by Santhakumaran and Titus in [10].
Let x be a vertex of a connected graph G. A set S of vertices of G is an x-detour set if each
vertex v of G lies on an x — y detour in G for some element y in S. The minimum cardinality
of an a-detour set of G is defined as the xz-detour number of G and is denoted by d,(G). An
a-detour set of cardinality d,(G) is called a dy-set of G. A vertex v in a graph G is an z-detour
vertex if v belongs to every minimum z-detour set of G. The connected z-detour number was
introduced and studied by Santhakumaran and Titus in [12]. A connected z-detour set of G
is an a-detour set S such that the subgraph G[S] induced by S is connected. The minimum
cardinality of a connected z-detour set of G is the connected x-detour number of G and is
denoted by cd,(G). A connected a-detour set of cardinality cd, (G) is called a cd-set of G.

For the graph G given in Fig.1.1, the minimum vertex detour sets, the vertex detour
numbers, the minimum connected vertex detour sets and the connected vertex detour numbers
are given in Table 1.1. An elaborate study of results in vertex detour number with several

interesting applications is given in [10].
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t ¥
d w
T 11
Fig.1.1
Vertex x dy-sets d.(G) cdg-sets cdy (Q)
t {y,w}, {z,w}, {u, w} 2 {y,v,w}, {u,v,w} 3
y {w} 1 {w} 1
z {w} 1 {w} 1
u {w} 1 {w} 1
v {y,w},{z, w}, {u,w} 2 {y,v,w}, {u,v,w} 3
w {y} {=} {u} 1 {y} {=} {u} 1
Table 1.1

The following theorems will be used in the sequel.

Theorem 1.1([10]) Let x be any vertex of a connected graph G.

(1) Every end-vertex of G other than the vertexr x (whether x is end-vertex or not) belongs

to every x-detour set.

(i) No cutvertex of G belongs to any d,-set.

Theorem 1.2([10]) Let G be a connected graph with cut vertices and let S, be an z-detour set
of G. Then every branch of G contains an element of S, J{x}.

Theorem 1.3([10]) If G is a connected graph with k end-blocks, then dz(G) >k — 1 for every
vertex x in G. In particular, if © is a cut vertex of G, then d.(G) > k.

Theorem 1.4([10]) Let T be a tree with number of end-vertices t. Then d (T) =t —1 or
d.(T) =t according as x is an end-vertex or not. In fact, if W is the set of all end-vertices of
T, then W — {x} is the unique dy-set of T.

Theorem 1.5([10)) If G is the complete graph K,(n > 2), the n-cube Q,(n > 2), the cycle
Cp(n > 3), the wheel W,, = K1 + Cy,_1(n > 4) or the complete bipartite graph K, ,(m,n > 2),
then dy(G) =1 for every vertexr x in G.

Throughout the following G denotes a connected graph with at least two vertices.
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§2. Minimal Vertex Detour Sets in a Graph

Definition 2.1 Let x be any vertex of a connected graph G. An x-detour set S, is called a
manimal z-detour set if no proper subset of S, is an x-detour set. The upper x-detour number,

denoted by df (G), is defined as the mazimum cardinality of a minimal z-detour set of G.

It is clear from the definition that for any vertex x in G, x does not belong to any minimal

z-detour set of G.

Example 2.2 For the graph G given in Fig.2.1, the minimum vertex detour sets, the minimum
vertex detour numbers, the minimal vertex detour sets and the upper vertex detour numbers are

giwen in Table 2.1.
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Vertex x | Minimum a-detour sets | d,(G) Minimal z-detour sets i (G)
t {a,y}, {a,z} 2 {a,u, v} {a,y},{a, 2} 3
Yy {a,t},{a, 2z}, {a,u}, {a,v} 2 {a,t},{a, 2z}, {a,u}, {a,v} 2
z {a} 1 {a} 1
u {a,y},{a, 2}, {a,v} 2 {a,y},{a, 2}, {a,v} 2
v {a,y},{a, 2}, {a,u} 2 {a,y},{a, 2}, {a,u} 2
w {a, z} 2 {a, z},{a,t,y},{a,y,u}, 3
{a,y,v},{a,u, v}

a {Z} 1 {Z}a{tvy}a{%u}’{%v}’{uav} 2

Table 2.1

Note 2.3 For any vertex x in a connected graph G, every minimum z-detour set is a minimal
a-detour set, but the converse is not true. For the graph G given in Figure 2.1, {a,u,v} is a

minimal ¢-detour set but it is not a minimum ¢-detour set of G.

Theorem 2.4 Let x be any verter of a connected graph G.

(1) Every end-vertex of G other than the vertex x (whether x is end-vertex or not) belongs

to every minimal x-detour set.

(ii) No cut vertex of G belongs to any minimal x-detour set.
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Proof (i) Let x be any vertex of G. Since 2 does not belong to any minimal a-detour set,
let v # x be an end-vertex of G. Then v is the terminal vertex of an x — v detour and v is not
an internal vertex of any detour so that v belongs to every minimal xz-detour set of G.

(ii) Let y # x be a cut vertex of G. Let U and W be two components of G — {y}. For any
vertex z in G, let S, be a minimal z-detour set of G. Suppose that = € U. Now, suppose that
Se W = 0. Let wy € W. Then wy ¢ S,. Since S, is an z-detour set, there exists an element
z in S, such that w; lies in some = — z detour P : x = zq,21,...,w1,...,2, = z in G. Since
S: W =0 and y is a cut vertex of G, it follows that the z — w; subpath of P and the w; — z
subpath of P both contain y so that P is not a path in G. Hence S, (\W # 0. Let wy € S, [\ W.
Then we # y so that y is an internal vertex of an z — wy detour. If y € S, let S =S, —{y}. It
is clear that every vertex that lies on an x — y detour also lies on an  — wq detour. Hence it
follows that S is an z-detour set of (G, which is a contradiction to S, a minimal z-detour set of
G. Thus y does not belong to any minimal z-detour set of G. Similarly if x € W, then y does
not belong to any minimal z-detour set of G. O

The following theorem is an easy consequence of the definitions of the minimum vertex

detour number and the upper vertex detour number of a graph.

Theorem 2.5 For any non-trivial tree T with k end vertices, d.(T) = df (T) =k or k —1

according as x 1s a cut verter or not.

(it) For any vertex x in the complete graph K, d,(K,) = d} (K,) = 1.
(i13) For any vertex z in the complete bipartite graph Ky, n, dp(Kpn) = df (Kpn) =1 if
m,n > 2.

) -

(iv) For any vertex x in the wheel W, dy(W,) = d} (W,) = 1. O
Theorem 2.6 For any vertex z in G, 1 < d,(G) <d}f (G) <p-—1.

Proof Tt is clear from the definition of minimum 2-detour set that d,(G) > 1. Since every
minimum z-detour set is a minimal z-detour set, d,(G) < d (G). Also, since the vertex z does

not belong to any minimal z-detour set, it follows that df (G) < p — 1. O

Remark 2.7 For the complete graph K,,, d,(K,) = 1 for every vertex x in K,,. For the graph
G given in Figure 2.1, dy,(G) = df (G). Also, for the graph Ky, d} (K3) = p— 1 for every vertex
z in Ks. All the inequalities in Theorem 2.6 can be strict. For the graph G given in Figure 2.1,
dw(G) =2, d}(G) =3 and p=Tso that 1 < d,,(G) < d},(G) <p— 1.

Theorem 2.8 For every pair a,b of integers with 1 < a < b, there is a connected graph G with
d:(G) = a and df (G) = b for some vertezx x in G.

Proof For a =b=1, K,(p > 2) has the desired properties. For a = b with b > 2, let G
be any tree of order p > 3 with b end-vertices. Then by Theorem 2.5(i), d,.(G) = df (G) = b
for any cut vertex x in G. Assume that 1 < a < b. Let F = (K| J(b— a +2)K1)) + K2, where
let Z =V (K3) ={z1,22}, Y = V((b—a+2)K1) = {z,91,Y2, -, Yp—at1} and U = V(K») =
{u1,us}. Let G be the graph obtained from F' by adding a — 1 new vertices wy, wa, ..., we—1 and
joining each w; to x. The graph G is shown in Fig.2.2. Let W = {wy, wa, ..., we—1} be the set
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of end vertices of G.

Fig.2.2

First, we show that d,(G) = a for the vertex x in G. By Theorem 1.3, d,(G) > a. On the
other hand, let S = {wy,wa,...,ws—1,21}. Then D(x,z1) = 5 and each vertex of F lies on an
x — z1 detour. Hence S is an z-detour set of G and so d,(G) < |S| = a. Therefore, d,(G) = a.
Also, we observe that a minimum z-detour set of G is formed by taking all the end vertices and

exactly one vertex from Z.

Next, we show that df (G) = b. Let M = {wy,wa, ... Wa—1,Y1, Y2, -, Yo—a+1}- 1t is clear
that M is an z-detour set of G. We claim that M is a minimal z-detour set of G. Assume, to
the contrary, that M is not a minimal z-detour set. Then there is a proper subset T" of M such
that T is an a-detour set of G. Let s € M and s ¢ T. By Theorem 1.1(i), clearly s = y;, for
some ¢ = 1,2,...,b — a + 1. For convenience, let s = y;. Since y; does not lie on any = — y;
detour where j = 2,3,...,b — a + 1, it follows that T is not an z-detour set of G, which is a
contradiction. Thus M is a minimal z-detour set of G and so d} (G) > |M| = b.

Now we prove that d} (G) = b. Suppose that d} (G) > b. Let N be a minimal z-detour set
of G with |N| > b. Then there exists at least one vertex, say v € N such that v ¢ M. Thus

v € {u1,u2, 21, 22}

Case 1. v € {z1, 22}, say v = z;. Clearly W |J{z1} is an z-detour set of G and also it is a

proper subset of N, which is a contradiction to N a minimal xz-detour set of G.

Case 2. v € {uy,us}, say v = u;. Suppose uz ¢ N. Then there is at least one y in Y such
that y € N. Clearly, D(x,u1) = 4 and the only vertices of any = — u; detour are x, 21, 22, u1
and ug. Also @, us, 21, 22, u1,y is an x — y detour and hence N — {u1} is an z-detour set, which
is a contradiction to N a minimal z-detour set of GG. Suppose us € N. It is clear that the only
vertices of any x — uy or x — uy detour are x,u1,us, 21 and zo. Since ui,us € N, it follows
that both N — {u;} and N — {us} are z-detour sets, which is a contradiction to N a minimal
z-detour set of G.

Thus there is no minimal z-detour set N of G with |[N| > b. Hence d} (G) = b. O

Remark 2.9 The graph G of Figure 2.2 contains exactly three minimal z-detour sets, namely
W U{z1}, W U{z2} and W |J(Y —{z}). This example shows that there is no ”Intermediate Value
Theorem” for minimal z-detour sets, that is, if n is an integer such that d,(G) < n < df (G),

then there need not exist a minimal x-detour set of cardinality n in G.
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Theorem 2.10 For any three positive integers a,b and n with a > 2 and a < n < b, there exists

a connected graph G with d.(G) = a, df (G) = b and a minimal x-detour set of cardinality n.

Proof We consider four cases.
Case 1. Suppose a =n =b.

Let G be any tree of order p > 3 with a end vertices. Then by Theorem 2.5(i), d,(G) =
df (G) = a for any cut vertex z in G and the set of all end vertices in G is a minimal z-detour

set with cardinality n by Theorem 2.4.

Case 2. Suppose a = n < b. For the graph G given in Figure 2.2 of Theorem 2.8, it is
proved that d.(G) = a, df (G) = b and S = {w1,wa,...,we_1, 21} is a minimal z-detour set of

cardinality n.

Case 3. Suppose a < n = b. For the graph G given in Figure 2.2 of Theorem 2.8, it is proved
that d,(G) = a, df (G) = b and S = {wy,wa, ..., Wa—1,Y1, Y2, s Yo—a+1} i a minimal z-detour
set of cardinality n.

Case 4. Supposea <n <b.Letl=n—a+1landm=>b—n+1.

Let Fy = (Ko |JIK )+ K2, wherelet Z; = V(Ks) = {21, 22}, Y1 = V(K1) = {y1, Y2, -, Y1 }
and Uy = V(K2) = {uy,uz}. Similarly let Fy = (Ko |JmK;) + Ko, where let Zy = V(K3) =
{23,24}, Yo = V(mK;) = {21,272, ..., 2} and Uz = V(K3) = {u3,vs}. Let K1 o 2 be the star
at the vertex x and let W = {w1,wa, ..., wa—2} be the set of end vertices of Ky 4—2. Let G be
the graph obtained from K ,—o, F1 and F3 by joining the vertex x of K; ,_o to the elements
of Uy and U,. The graph G is shown in Fig.2.3. It follows from Theorem 2.4(i) that for the
vertex x, W is a subset of every minimal z-detour set of G.

Fig.2.3

First, we show that d,(G) = a for the vertex x in G. By Theorem 1.3, d,(G) > a. On the
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other hand, let S = {wy,wa, ..., wa—2, 21, 23}. Then D(z,21) = 5 and each vertex of F lies on
an x — z; detour. Similarly, D(z, z3) = 5 and each vertex of F; lies on an x — z3 detour. Hence
S is an z-detour set of G and so d;(G) < |S| = a. Therefore, d,(G) = a.

Next, we show that df (G) = b. Let M = W {JY; Y. It is clear that M is an a-detour
set of G. We claim that M is a minimal z-detour set of GG. Assume, to the contrary, that M is
not a minimal xz-detour set. Then there is a proper subset T of M such that T is an z-detour
set of G. Let s € M and s ¢ T. By Theorem 1.1(i), clearly s € Y7 |JYs. For convenience, let
s = y1. Since y; does not lie on any = — y; detour, where j = 2,3, ...,/ and y; does not lie on
any x — x; detour, where j = 1,2,...,m, it follows that 7" is not an xz-detour set of &, which is
a contradiction. Thus M is a minimal z-detour set of G and so d} (G) > |M| = b.

Now, we prove that d; (G) = b. Suppose that d} (G) > b. Let N be a minimal z-detour set
of G with |N| > b. Then there exists at least one vertex, say v € N such that v ¢ M. Thus,

v € {u1, Uz, u3, Ua, 21, 22, 23, 24}

Subcase 1. Suppose v € {z1, 22}, say v = z1. Clearly, every vertex of Fy lies on an @ — z;
detour and so (N — V(Fy)) J{v} is an z-detour set of G and it is a proper subset of N, which
is a contradiction to IV a minimal xz-detour set of G.

Subcase 2. Suppose v € {23, 24}. It is similar to Subcase 1.

Subcase 3. Suppose v € {uj,u2}, say v = uy. Suppose uz ¢ N. Then there is at least one
element y in Y7 such that y € N. Clearly, D(z,u1) = 4 and the only vertices of any = — us
detour are x, 21, 22, u1 and ug. Also x, us, 21, 22,u1,y is an z — y detour and hence N — {u;} is
an z-detour set, which is a contradiction to N a minimal z-detour set of G. Suppose us € N.
It is clear that the only vertices of any © — u; or x — us detour are x, uy, us, z; and zs. Since
u1, ug € N, it follows that both N —{us} and N —{us} are z-detour sets, which is a contradiction

to N a minimal z-detour set of G.

Subcase 4. Suppose v € {us,us}. It is similar to Subcase 3.

Thus there is no minimal z-detour set N of G with |N| > b. Hence d} (G) = b.

Now, we show that there is a minimal z-detour set of cardinality n. Let S = {wy, wa, ...,
Wa—2, 23, Y1, Y2, ---» Y1 }. It is clear that S is an xz-detour set of G. We claim that S is a minimal
z-detour set of G. Assume, to the contrary, that S is not a minimal z-detour set. Then there is
a proper subset T of S such that T is an a-detour set of G. Let s € S and s ¢ T. By Theorem
1.1(i) and Theorem 1.2, clearly s = y; for some ¢ = 1,2, ...,1. For convenience, let s = y;. Since
y1 does not lie on any = — y; detour where j = 2,3, ..., [, it follows that 7" is not an z-detour set
of G, which is a contradiction. Thus S is a minimal a-detour set of G with cardinality |S| = n.

Hence we obtain the theorem. O

83. Vertex Forcing Subsets in Vertex Detour Sets of a Graph

Let x be any vertex of a connected graph G. Although G contains a minimum z-detour set
there are connected graphs which may contain more than one minimum z-detour set. For
example the graph G given in Fig. 2.1 contains more than one minimum z-detour set. For each

minimum z-detour set S, in a connected graph G there is always some subset T' of S, that
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uniquely determines S, as the minimum z-detour set containing 7. Such sets are called ” vertex

forcing subsets” and we discuss these sets in this section.

Definition 3.1 Let x be any vertex of a connected graph G and let S, be a minimum x-
detour set of G. A subset T C S, is called an z-forcing subset for S, if Sy is the unique
minimum x-detour set containing T. An x-forcing subset for x of minimum cardinality is a
minimum x-forcing subset of S,. The forcing xz-detour number of S, denoted by fu.(Sz),
is the cardinality of a minimum x-forcing subset for S,. The forcing x-detour number of G is

faz(G) = min {f4:(Sz)}, where the minimum is taken over all minimum xz-detour sets Sy in

G.

Example 3.2 For the graph G given in Figure 1.1, the minimum z-detour sets, the z-detour

numbers and the forcing x-detour numbers for every vertex z in G are given in Table 3.1.

Vertex =z Minimum z-detour sets r-detour number Forcing z-detour number
t {y, w}, {z, w}, {u, w} 2 1
y {w} 1 0
z {w} 1 0
U {w} 1 0
v {y,w}, {z,w}, {u,w} 2 1
w {y} {z} {u} 1 1

Table 3.1

Theorem 3.3 any vertex x in a connected graph G, 0 < f4.(G) < d.(G).

Proof Let x be any vertex of G. It is clear from the definition of f4,(G) that f4.(G) > 0.
Let S, be any minimum z-detour set of G. Since f4,(S.) < d.(G) and since f4.(G) = min
{faz(Sz) : Sy is a minimum z-detour set in G}, it follows that fi,(G) < d(G). Thus 0 <

Remark 3.4 The bounds in Theorem 3.3 are sharp. For the graph G given in Figure 1.1,
fay(G) = 0 and fq,(G) = dw(G) = 1. Also, the inequality in Theorem 3.3 can be strict. For
the same graph G given in Figure 1.1, 0 < f4,(G) < dy(G).

The following theorem characterizes those graphs G having f4.(G) = 0, f4.(G) = 1 or
faz(G) = dy(G). Since the proof of this theorem is straight forward, we omit it.

Theorem 3.5 Let x be any vertex of a graph G. Then

(1) faz(G) =0 if and only if G has a unique minimum x-detour set.

(i1) faz(G) =1 if and only if G has at least two minimum x-detour sets, one of which is
a unique minimum x-detour set containing one of its elements.

(191) fax(G) = d(G) if and only if no minimum x-detour set of G is the unique minimum

x-detour set containing any of its proper subsets.
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Theorem 3.6 Let x be any vertex of a connected graph G and let S, be any minimum x-detour
set of G. Then

(i) no cut vertex of G belongs to any minimum x-forcing subset of S,.

(ii) no z-detour vertex of G belongs to any minimum x-forcing subset of Sy.

Proof Let x be any vertex of a connected graph G and let S, be any minimum z-detour
set of G.

(i) Since any minimum z-forcing subset of S, is a subset of Sy, the result follows from
Theorem 1.1(ii).

(ii) Let v be an z-detour vertex of G. Then v belongs to every minimum z-detour set of
G. Let T C S, be any minimum z-forcing subset for any minimum z-detour set S, of G. We
claim that v ¢ T. If v € T, then T" = T — {v} is a proper subset of T such that S, is the unique
minimum z-detour set containing T” so that 7" is an z-forcing subset for S, with |T'| < |7,

which is a contradiction to 7" a minimum z-forcing subset for .S, . O

Corollary 3.7 Let x be any vertex of a connected graph G. If G contains k end-vertices, then
faz(G) < do(G) — k + 1.

Proof This follows from Theorem 1.1(i) and Theorem 3.6(ii). O

Remark 3.8 The bound for fg,(G) in Corollary 3.7 is sharp. For a non-trivial tree T' with &
end vertices, fq.(T) =0=d.(T) — k+ 1 for any end vertex = in T.

Theorem 3.9 (i)If T is a non-trivial tree, then fq,(T) =0 for every vertex x in T.

(i1) If G is the complete graph K, (n > 3), the n-cube Q, (n > 2), the cycle Cy, (n > 3),
the wheel W,, = K1 + C,—1 (n > 4) or the complete bipartite graph K, , (m,n > 2), then
faz(G) = d.(G) = 1 for every vertex x in G.

Proof (i) This follows from Theorem 1.4 and Theorem 3.5(i).

(ii) For each of the graphs in (ii) it is easily seen that there is more than one minimum
a-detour set for any vertex z. Hence it follows from Theorem 3.5(i) that fu,(G) # 0 for each
of the graphs. Also, by Theorem 3.3, f4.(G) < dy(G). Now it follows from Theorem 1.5 that
faz(G) = dy(G) =1 for each of the graphs. O

Theorem 3.10 For any vertez x in a connected graph G, 0 < f4.(G) < d.(G) < df (G).

— x

Proof This follows from Theorems 2.6 and 3.3. O

The following theorem gives a realization for the parameters f4,(G), d.(G) and d}f (G).

Theorem 3.11 For any three positive integers a,b and ¢ with 2 < a < b < ¢, there exists a
connected graph G with fq.(G) = a, dz(G) = b and d} (G) = ¢ for some vertex x in G.

Proof For each integer ¢ with 1 <i < a—1, let F; be a copy of K3, where v; and v} are the
vertices of F;. Let K1, be the star at the vertex x and let U = {u1, ug, ..., up—s } be the set of
end vertices of K _q. Let H be the graph obtained from K ;_, by joining the vertex z to the
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vertices of F; (1 <i<a—1).Let K = (KaJ(c—b+1)K1)+ K2, where Z = V(K3) = {21, 22},
Y =V((c—b+1)K1) = {y1,Y2, -, Y1} and X = V(K2) = {x1,22}. Let G be the graph
obtained from H and K by joining x with z; and z2. The graph G is shown in Fig.3.1.

Va—-1 vig_g

Fig.3.1

Step I. First, we show that d,(G) = b for the vertex x in G. By Theorem 1.3, d,(G) > b. On
the other hand, if c — b+ 1> 1, let S = {uy, u9, ..., up—q, v1, V2, ..., Vq—1, 21} be the set formed
by taking all the end vertices and exactly one vertex from each F; and Z, and if c —b0+1 =1,
let S = {uy,ug, ..., Up—q, V1, V2, ..., Vg1, 21 } be the set formed by taking all the end vertices and
exactly one vertex from each F; and Z|J{y1}. Then D(z,z1) =5 and each vertex of K lies on
an x — z1 detour and each vertex of F; lies on an x — v; detour. Hence S is an x-detour set of
G and so dy(G) < |S| = b. Therefore, d,(G) = b.

Step II. Now, we show that f4.(G) = a. Since every minimum z-detour set of G contains U,
exactly one vertex from each F; (1 < i < a— 1) and one vertex from Z or Z|J{y1} according
as ¢ > b or ¢ = b respectively, let S = {uy,ua, ..., Up—q, V1,02, ..., Va—1, 21} be a minimum a-
detour set of G and let T C S be any minimum z-forcing subset of S. Then by Theorem 3.6(ii),
T C S —U. Therefore, |T| < a. If |T| < a, then there is a vertex y € S — U such that y ¢ T.

Now there are two cases.

Case 1. Let y € {v1,v2,...,v4-1}, say y = v1. Let 8" = (S — {v1}) U{vl}, where v] be the
vertex of I} other than v;. Then S’ # S and S’ is also a minimum z-detour set of G such that

it contains 7', which is a contraction to 7" an x-forcing subset of S.

Case 2. Let y = z;. Then exactly similar to Case 1 we see that |T'| < a is not possible. Thus
|T| = a and so f4,(G) = a.

Step III. Next, we show that df(G) = c. Let M = {u1,ug, ..., Up—q, V1, V2, «ery Va—1, Y1, Y2,
woyYe—b+1}- It is clear that M is an z-detour set of G. We claim that M is a minimal xz-detour
set of G. Assume, to the contrary, that M is not a minimal x-detour set. Then there is a proper
subset T' of M such that T" is an z-detour set of G. Let s € M and s ¢ T. By Theorem 1.2,
clearly s = y; for some ¢ = 1,2,...,c — b+ 1. For convenience, let s = y;. Since y; does not lie
on any = — y; detour where j = 2,3,...,c — b+ 1, it follows that 7" is not an z-detour set of
G, which is a contradiction. Thus M is a minimal z-detour set of G and so d} (G) > |M| = c.

Now suppose d;f (G) > c¢. Let N be a minimal a-detour set of G with |[N| > ¢. Then at least one
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vertex w € N such that w ¢ M. It is clear that every minimal z-detour set contains exactly

one vertex from each F;. Then by Theorem 2.4(i), w € {x1, 2, 21, 22}.

Case 1. Let w € {z1,22}, say w = z1. Since every vertex of K lies on an x — z; detour we have
(N —V(K))U{z1} is an z-detour set and it is a proper subset of N, which is a contradiction
to N a minimal x-detour set of G.

Case 2. Let w € {x1,x2}, say w = x1. Suppose x2 ¢ N. Then there is at least one y in Y such
that y € N. Clearly, D(x,21) = 4 and the only vertices of any x — 21 detour are x, 21, 22, 1
and x9. Also x, 9, 21, 22,21,y is an & — y detour and hence N — {x;} is an a-detour set, which
is a contradiction to N a minimal z-detour set of G. Suppose z2 € N. It is clear that the only
vertices of any x — x1 or x — xy detour are x, 21, 29,21 and x5. Since x1,x2 € N, it follows
that both N — {x1} and N — {22} are z-detour sets, which is a contradiction to N a minimal
z-detour set of G.

Thus there is no minimal z-detour set N of G with |N| > ¢. Hence d} (G) = c. O
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