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§1. Introduction

In the development of nonlinear analysis, fixed point theory plays a very important role. Banach

contraction principle [6] was the starting point for many researchers during the last decades in

the field of nonlinear analysis. The Banach contraction principle with rational expressions have

been expanded and some fixed point and common fixed point theorems have been obtained in

[12], [13], [14], [15].

In the existing literature there are a great number of generalizations of the Banach contrac-

tion principle (see [3, 4] and others). Some generalization of the notion of a metric space have

been proposed by some authors, such as, partial metric spaces, probabilistic metric spaces,

fuzzy metric spaces, D-metric spaces, cone metric spaces, b-metric spaces and cone b-metric

spaces (see, [7, 9, 10, 11, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 46]).

Also, as an extension of the fixed point problem there are many results in finding a common

fixed point for two self mappings on different types of metric spaces; see, for example, [2], [41],

[34], [35], [38], [44] and the references therein. But all of these results were found in real valued

metric spaces.

In 2011, Azam et al. [5] introduced the notion of complex valued metric space and es-

tablished sufficient conditions for the existence of common fixed points of a pair of mappings

satisfying a contractive condition. The results proved by Azam et al. [5] and Bhatt et al. [8] via

rational inequality in a complex valued metric space as a contractive condition. Complex valued

1Received March 8, 2023, Accepted June 2, 2023.
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metric space is very useful in many branches of mathematics, including algebraic geometry, num-

ber theory, applied mathematics, applied physics, mechanical engineering, thermodynamics and

electrical engineering. After the establishment of complex valued metric spaces, Rouzkardand

et al. [33] established some common fixed point theorems satisfying certain rational expres-

sions in these spaces which generalize the result of [5]. In 2012, Sintanuvarat and Kumam

[42] extend and improve the results of [5] by replacing the constant of contractive conditions

to some control functions. Verma and Pathak in [44] introduced the notion of (E.A)-property

in complex valued metric space and proved some common fixed point results for two pairs of

weakly compatible mappings satisfying a “max” type contractive condition. After that many

authors have contributed different concepts in this space (see, for example, [29], [36], [37], [42],

[39] and many others).

Recently, Mlaiki [28] (Adv. Fixed Point Theory 4(4) (2014), 509-524) introduced the

concept of complex valued S-metric spaces and investigate the existence and uniqueness of a

common fixed point of two self-mappings in such space via various contractive conditions. After

Mlaiki’s results many authors have established a lot of results in complex valued S-metric space

under various contractive conditions (see, for example, [31], [45] and many others).

In this paper, we prove some common fixed point theorems for contractive type conditions

involving rational expressions in the framework of complex valued S-metric spaces. Our results

extend, generalize and enrich several results from the existing literature.

§2. Preliminaries

Let C be the set of complex numbers and z1, z2 ∈ C. Define a partial order - on C as follows:

z1 - z2 if and only if Re(z1) ≤ Re(z2), Im(z1) ≤ Im(z2). It follows that z1 - z2 if one of

the following conditions is satisfied:

(i) Re(z1) = Re(z2), Im(z1) < Im(z2);

(ii) Re(z1) < Re(z2), Im(z1) = Im(z2);

(iii) Re(z1) < Re(z2), Im(z1) < Im(z2);

(iv) Re(z1) = Re(z2), Im(z1) = Im(z2).

In particular, we will write z1 � z2 if z1 6= z2 and one of (i), (ii) and (iii) is satisfied and

we will write z1 ≺ z2 if only (iii) is satisfied. Note that

0 . z1 � z2 ⇒ |z1| < |z2|,

z1 - z2, z2 ≺ z3 ⇒ z1 ≺ z3.

In 2014, the following definition was introduced by Mlaiki in [28].

Definition 2.1([28]) Let X be a nonempty set and C be the set of all complex numbers. A

complex valued S-metric space on X is a function S : X3 → C that satisfies the following

conditions, for all x, y, z, t ∈ X:
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(CS1) 0 - S(x, y, z);

(CS2) S(x, y, z) = 0 if and only if x = y = z;

(CS3) S(x, y, z) - S(x, x, t) + S(y, y, t) + S(z, z, t).

Then, S is called a complex valued S-metric on X and the pair (X,S) is called a complex

valued S-metric space.

Example 2.2([28]) Let X = C be the set of complex numbers. Define a mapping S : C3 → C
by S(z1, z2, z3) = |max{Re(z1), Re(z2)} − Re(z2)| + i|max{Im(z1), Im(z2)} − Im(z2)|. Then

it is not difficult to verify that (C,S) is a complex valued S-metric space.

Definition 2.3([28]) If (X,S) is called a complex valued S-metric space, then,

(Γ1) A sequence {un} in X converges to u if and only if for every ε ∈ C with 0 ≺ ε, there

exists n0 ∈ N such that for all n ≥ n0, we have S(un, un, u) ≺ ε and we denote this by un → u

or limn→∞ un = u;

(Γ2) A sequence {un} in X is called a Cauchy sequence if for every ε ∈ C with 0 ≺ ε, there

exists n0 ∈ N such that for all n,m ≥ n0, we have S(un, un, um) ≺ ε;
(Γ3) An S-metric space (X,S) is said to be complete if every Cauchy sequence is convergent.

Definition 2.4 Let X be a non-empty set and let R, h : X → X be two self mappings of X.

Then a point v ∈ X is called a

(Λ1) fixed point of operator R if R(v) = v;

(Λ2) common fixed point of R and h if R(v) = h(v) = v.

Definition 2.5([1]) Let P and Q be single valued self-mappings on a set X. If u = Pz = Qz
for some z ∈ X, then z is called a coincidence point point of P and Q, and u is called a point

of coincidence of P and Q.

Definition 2.6([16]) Let P and Q be single valued self-mappings on a set X. Mappings P and

Q are said to be commuting if PQv = QPv for all v ∈ X.

Definition 2.7([17]) Let P and Q be single valued self-mappings on a set X. Mappings P and

Q are said to be weakly compatible if they commute at their coincidence points, i.e., if Pu = Qu
for some u ∈ X implies PQu = QPu.

Definition 2.8([44]) Let (X, d) be a complex valued metric space and let R,Q : X → X be two

self mappings of X. The pair (R,Q) is said to satisfy (E.A)-property if there exists a sequence

{rn} in X such that limn→∞Rrn = limn→∞Qrn = d for some d ∈ X.

Note that weakly compatibility and (E.A)-property are independent of each other (see [30]

for details).

Example 2.9 Let X = C and let R,Q : X → X be defined by R(z) = 4z−2i and Q(z) = z+ i

for all z ∈ X. Let {zn} = {i+ 1
n}n≥1 be the sequence in X. Then

lim
n→∞

Rzn = lim
n→∞

(
4i+

4

n
− 2i

)
= 2i,
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and

lim
n→∞

Qzn = lim
n→∞

(
i+

1

n
+ i
)

= 2i.

Thus there exists a sequence {zn} in X such that limn→∞Rzn = limn→∞Qzn = 2i ∈ X.

Hence R and Q satisfy (E.A)-property.

Liu et al. [25] introduced common (E.A)-property which is an extension of (E.A)-property

were define common (E.A)-property in the complex valued metric space as follows.

Definition 2.10([25]) Let (X, d) be a complex valued metric space and let P,Q,R, T : X → X

be four self mappings of X. The pairs (P,R) and (Q, T ) satisfy the common (E.A)-property if

there exist two sequences {un} and {vn} in X such that

lim
n→∞

Pun = lim
n→∞

Run = lim
n→∞

Qvn = lim
n→∞

T vn = z ∈ X.

Example 2.11 Let X = C and let d be a complex valued metric and let P,Q,R, T : X → X be

four self-maps defined by P(z) = 3+iz, Q(z) = −i−3z2, R(z) = −i−3z and T (z) = 3+(z−2i)

for all z ∈ X. Let {xn} = {−1 + 1
n}n≥1 and {yn} = { 1

n + i}n≥1 be two sequences in X. Then

lim
n→∞

Pxn = lim
n→∞

(
3− i+

i

n

)
= 3− i,

lim
n→∞

Rxn = lim
n→∞

(
− i+ 3− 3

n

)
= 3− i,

lim
n→∞

Qyn = lim
n→∞

(
− i− 3(

1

n
+ i)2

)
= 3− i,

and

lim
n→∞

T yn = lim
n→∞

(
3 + (

1

n
+ i− 2i)

)
= 3− i.

Thus there exist two sequences {xn} and {yn} in X such that

lim
n→∞

Pxn = lim
n→∞

Rxn = lim
n→∞

Qyn = lim
n→∞

T yn = 3− i ∈ X.

Hence the pairs (P,R) and (Q, T ) satisfy common (E.A)-property.

Now, we redefine the common (E.A)-property in the setting of complex valued S-metric

space as follows.

Definition 2.12 Let (X,S) be a complex valued S-metric space and let P,Q,R, T : X → X be

four self mappings of X. The pairs (P,R) and (Q, T ) are said to satisfy the common (E.A)-

property if there exist two sequences {pn} and {qn} in X such that

lim
n→∞

Ppn = lim
n→∞

Rpn = lim
n→∞

Qqn = lim
n→∞

T qn = t ∈ X.

Example 2.13 LetX = C and let S : C3 → C be defined by S(z1, z2, z3) = |max{Re(z1), Re(z2)}−
Re(z2)|+ i|max{Im(z1), Im(z2)} − Im(z2)|. Then (C,S) is a complex valued S-metric space.



Some Common Fixed Point Theorems for Contractive Type Conditions in Complex Valued S-Metric Spaces 5

Let P,Q,R, T : X → X be four self-maps defined by P(z) = z+ i, Q(z) = z+ (1 + 2i), R(z) =

3i− z and T (z) = −z+ (2i− 1) for all z ∈ X. Let {pn} = {i+ 1
n}n≥1 and {qn} = {−1 + i

n}n≥1

be two sequences in X and that Ppn = pn + i = 2i + 1
n and Rpn = 3i − pn = 2i − 1

n for all

n ∈ N. This implies that

S(Ppn,Ppn, 0) = S
(

2i+
1

n
, 2i+

1

n
, 0
)
→ 0 as n→∞.

This shows that Ppn → 0 as n→∞ and by similar way, we have

S(Rpn,Rpn, 0) = S
(

2i− 1

n
, 2i− 1

n
, 0
)
→ 0 as n→∞.

This shows that Rpn → 0 as n→∞. Thus the pair (P,R) satisfies (E.A)-property.

Similarly, note that Qqn = qn + (1 + 2i) = 2i+ i
n and T qn = −qn + (2i− 1) = 2i− i

n for

all n ∈ N. This implies that

S(Qqn,Qqn, 0) = S
(

2i+
i

n
, 2i+

i

n
, 0
)
→ 0 as n→∞.

This shows that Qqn → 0 as n→∞ and by similar way, we have

S(T qn, T qn, 0) = S
(
− 2i− i

n
,−2i− i

n
, 0
)
→ 0 as n→∞.

This shows that T qn → 0 as n→∞. Thus the pair (Q, T ) satisfies (E.A)-property. Thus there

exist two sequences {pn} and {qn} in X such that

lim
n→∞

Ppn = lim
n→∞

Rpn = lim
n→∞

Qqn = lim
n→∞

T qn = 0 ∈ X.

Hence the pairs (P,R) and (Q, T ) satisfy common (E.A)-property.

Lemma 2.14([28]) Let (X,S) be a complex valued S-metric space and let {un} be a sequence

in X. Then {un} converges to u if and only if limn→∞ |S(un, un, u)| = 0 or |S(un, un, u)| → 0

as n→∞.

Lemma 2.15([28]) Let (X,S) be a complex valued S-metric space and let {un} be a sequence

in X. Then {un} is a Cauchy sequence if and only if limn,m→∞ |S(un, un, un+m)| = 0 or

|S(un, un, un+m)| → 0 as n,m→∞.

Lemma 2.16([28]) Let (X,S) be a complex valued S-metric space, then S(x, x, y) = S(y, y, x)

for all x, y ∈ X.

§3. Common Fixed Point Theorems

In this section, we shall prove some common fixed point theorems under contractive type con-

ditions involving rational expression and satisfies (E.A) property in the framework of complex

valued S-metric spaces.



6 G. S. Saluja

Theorem 3.1 Let (X,S) be a complex valued S-metric space and let A,B,Q, T :

X → X be four self-mappings of X satisfying the following conditions:

(i) For all u, v ∈ X,

S(Au,Au,Bv) - r max
{
S(Qu,Qu, T v),S(Bv,Bv,Au),S(Bv,Bv, T v),

1

2
[S(Au,Au, T v) + S(Bv,Bv,Qu)],

S(Bv,Bv,Au)[1 + S(Bv,Bv, T v)]

[1 + S(Au,Au,Bv)]

}
, (3.1)

where r ∈ [0, 1) is a constant;

(ii) The pairs (A,Q) and (B, T ) are weakly compatible;

(iii) One of the pairs (A,Q) and (B, T ) satisfy (E.A) property;

(iv) A(X) ⊆ T (X) and B(X) ⊆ Q(X).

If the range of one of the mappings Q(X) or T (X) is a complete subspace of (X,S), then

A, B, Q and T have a unique common fixed point in X.

Proof First, we suppose that the pair (A,Q) satisfies (E.A) property. Then by Definition

2.8, there exists a sequence {un} in X such that limn→∞Aun = limn→∞Qun = t for some t ∈
X. Further, since A(X) ⊆ T (X), there exists a sequence {vn} in X such that limn→∞Aun =

limn→∞ T vn. Hence limn→∞ T vn = t. We claim that limn→∞ Bvn = t. If not, then putting

u = un, v = vn in inequality (3.1), using Lemma 2.16 and (CS2), we have

S(Aun,Aun,Bvn) - r max
{
S(Qun,Qun, T vn),S(Bvn,Bvn,Aun),S(Bvn,Bvn, T vn),

1

2
[S(Aun,Aun, T vn) + S(Bvn,Bvn,Qun)],

S(Bvn,Bvn,Aun)[1 + S(Bvn,Bvn, T vn)]

[1 + S(Aun,Aun,Bvn)]

}
= r max

{
S(Qun,Qun,Aun),S(Bvn,Bvn,Aun),S(Bvn,Bvn,Aun),

1

2
[S(Aun,Aun,Aun) + S(Bvn,Bvn,Aun)],

S(Bvn,Bvn,Aun)[1 + S(Bvn,Bvn,Aun)]

[1 + S(Aun,Aun,Bvn)]

}
= r max

{
0,S(Aun,Aun,Bvn),S(Aun,Aun,Bvn),

1

2
[S(Aun,Aun,Bvn)],S(Aun,Aun,Bvn)

}
- r S(Aun,Aun,Bvn). (3.2)

Thus

|S(Aun,Aun,Bvn)| ≤ r |S(Aun,Aun,Bvn)|,
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which is a contradiction since r ∈ [0, 1). Letting n→∞, we have

lim
n→∞

|S(Aun,Aun,Bvn)| ≤ r .0 = 0,

which is a contradiction by condition (CS1). Thus, we get limn→∞Aun = limn→∞ Bvn = t.

Now, first we assume that T (X) is a complete subspace of (X,S), then t = T p for some

p ∈ X. Subsequently, we have

lim
n→∞

Bvn = lim
n→∞

Aun = lim
n→∞

Qun = lim
n→∞

T vn = T p = t.

We claim that Bp = T p. For this, putting u = un and v = p in inequality (3.1), using

Lemma 2.16 and (CS2), we have

S(Aun,Aun,Bp) - r max
{
S(Qun,Qun, T p),S(Bp,Bp,Aun),S(Bp,Bp, T p),

1

2
[S(Aun,Aun, T p) + S(Bp,Bp,Qun)],

S(Bp,Bp,Aun)[1 + S(Bp,Bp, T p)]
[1 + S(Aun,Aun,Bp)]

}
. (3.3)

Letting n→∞ in (3.3), using Lemma 2.16 and (CS2), we get

S(T p, T p,Bp) - r max
{
S(T p, T p, T p),S(Bp,Bp, T p),S(Bp,Bp, T p),

1

2
[S(T p, T p, T p) + S(Bp,Bp, T p)],

S(Bp,Bp, T p)[1 + S(Bp,Bp, T p)]
[1 + S(T p, T p,Bp)]

}
= r max

{
0,S(T p, T p,Bp),S(Bp,Bp, T p),

1

2
[S(T p, T p,Bp)],S(Bp,Bp, T p)

}
- r S(T p, T p,Bp). (3.4)

Thus, |S(T p, T p,Bp)| ≤ r |S(T p, T p,Bp)|, which is a contradiction since r ∈ [0, 1). Hence, we

have S(T p, T p,Bp) = 0, that is, T p = Bp = t. Hence p is a coincidence point of the mappings

B and T , that is, the pair (B, T ). Now, the weak compatibility of the pair (B, T ) implies that

BT p = T Bp or Bt = T t.

On the other hand, since B(X) ⊆ Q(X), there exists ν ∈ X such that Bp = Qν. Thus

T p = Bp = Qν = t. Let us show that ν is a coincidence point of the pair (A,Q), that is,

Aν = Qν = t. If not, then putting u = ν and v = p in inequality (3.1), using Lemma 2.16 and

(CS2), we get

S(Aν,Aν,Bp) - r max
{
S(Qν,Qν, T p),S(Bp,Bp,Aν),S(Bp,Bp, T p),

1

2
[S(Aν,Aν, T p) + S(Bp,Bp,Qν)],

S(Bp,Bp,Aν)[1 + S(Bp,Bp, T p)]
[1 + S(Aν,Aν,Bp)]

}
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= r max
{

0,S(Aν,Aν,Bp), 0, S(Aν,Aν,Bp)
2

,

S(Aν,Aν,Bp)
}

- r S(Aν,Aν,Bp). (3.5)

Thus, |S(Aν,Aν,Bp)| ≤ r |S(Aν,Aν,Bp)|, which is a contradiction since r ∈ [0, 1). Hence,

we have S(Aν,Aν,Bp) = 0, that is, S(Aν,Aν,Qν) = 0 and hence Aν = Qν = t. Thus ν

is a coincidence point of the mappings A and Q, that is, the pair (A,Q). Further, the weak

compatibility of the pair (A,Q) implies that AQν = QAν or At = Qt. Hence t is a common

coincidence point of A, B, Q and T .

Now to show that t is a common fixed point of A, B, Q and T . For this, we put u = ν and

v = t in (3.1), using Lemma 2.16 and (CS2), we get

S(t, t,Bt) = S(Aν,Aν,Bt)

- r max
{
S(Qν,Qν, T t),S(Bt,Bt,Aν),S(Bt,Bt, T t),

1

2
[S(Aν,Aν, T t) + S(Bt,Bt,Qν)],

S(Bt,Bt,Aν)[1 + S(Bt,Bt, T t)]
[1 + S(Aν,Aν,Bt)]

}
= r max

{
S(t, t,Bt),S(Bt,Bt, t),S(Bt,Bt,Bt),

1

2
[S(t, t,Bt) + S(Bt,Bt, t)],

S(Bt,Bt, t)[1 + S(Bt,Bt,Bt)]
[1 + S(t, t,Bt)]

}
= r max

{
S(t, t,Bt),S(t, t,Bt), 0,S(t, t,Bt),

S(t, t,Bt)
[1 + S(t, t,Bt)]

}
- r max

{
S(t, t,Bt),S(t, t,Bt), 0,S(t, t,Bt),S(t, t,Bt)

}
- r S(t, t,Bt). (3.6)

Thus, |S(t, t,Bt)| ≤ r |S(t, t,Bt)|, which is a contradiction since r ∈ [0, 1). Hence, we have

S(t, t,Bt) = 0, that is, Bt = t. Consequently, At = Bt = Qt = T t = t. This shows that t is a

common fixed point of the mappings A, B, Q and T .

Similar argument arises if we assume that Q(X) is a complete subspace of (X,S).

Similarly, the property (E.A) of the pair (B, T ) will give the similar result.

Now, we show the uniqueness of the common fixed point. For this, let us assume that t′

be another common fixed point of A, B, Q and T with t′ 6= t. From inequality (3.1), using

Lemma 2.16 and (CS2) for u = t′ and v = t, we have

S(t′, t′, t) = S(At′,At′,Bt)
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- r max
{
S(Qt′,Qt′, T t),S(Bt,Bt,At′),S(Bt,Bt, T t),

1

2
[S(At′,At′, T t) + S(Bt,Bt,Qt′)],

S(Bt,Bt,At′)[1 + S(Bt,Bt, T t)]
[1 + S(At′,At′,Bt)]

}
= r max

{
S(t′, t′, t),S(t, t, t′),S(t, t, t),

1

2
[S(t′, t′, t) + S(t, t, t′)],

S(t, t, t′)[1 + S(t, t, t)]

[1 + S(t′, t′, t)]

}
= r max

{
S(t′, t′, t),S(t′, t′, t), 0,S(t′, t′, t),

S(t′, t′, t)

[1 + S(t′, t′, t)]

}
- r max

{
S(t′, t′, t),S(t′, t′, t), 0,S(t′, t′, t),

S(t′, t′, t)
}

- r S(t′, t′, t). (3.7)

Thus

|S(t′, t′, t)| ≤ r |S(t′, t′, t)|,

which is a contradiction since r ∈ [0, 1). Hence, we have

S(t′, t′, t) = 0,

that is, t′ = t. Hence At = Bt = Qt = T t = t and t is the unique common fixed point of A, B,

Q and T . This completes the proof. �

If we take A = B and Q = T in Theorem 3.1, then we have the following result.

Corollary 3.2 Let (X,S) be a complex valued S-metric space and let A,Q : X → X be two

self-mappings of X satisfying the following conditions:

(i) For all u, v ∈ X,

S(Au,Au,Av) - r max
{
S(Qu,Qu,Qv),S(Av,Av,Au),S(Av,Av,Qv),

1

2
[S(Au,Au,Qv) + S(Av,Av,Qu)],

S(Av,Av,Au)[1 + S(Av,Av,Qv)]

[1 + S(Au,Au,Av)]

}
, (3.8)

where r ∈ [0, 1) is a constant;

(ii) The pairs (A,Q) is weakly compatible;

(iii) The pair (A,Q) satisfies (E.A) property;

(iv) A(X) ⊆ Q(X).
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If the range of the mapping Q(X) is a complete subspace of (X,S), then A and Q have a

unique common fixed point in X.

Theorem 3.3 Let (X,S) be a complex valued S-metric space and let A,B,Q, T :

X → X be four self-mappings of X satisfying the following conditions:

(i) For all u, v ∈ X,

S(Au,Au,Bv) - n1 S(Qu,Qu, T v) + n2 S(Bv,Bv,Au) + n3 S(Bv,Bv, T v)

+n4 S(Au,Au, T v)
[1 + S(Bv,Bv, T v)]

[1 + S(Au,Au,Bv)]

+n5 S(Bv,Bv,Au)
[1 + S(Bv,Bv, T v)]

[1 + S(Au,Au,Bv)]
, (3.9)

where n1, n2, n3, n4, n5 > 0 are nonnegative reals with n1 + n2 + n3 + n4 + n5 < 1;

(ii) The pairs (A,Q) and (B, T ) are weakly compatible;

(iii) One of the pairs (A,Q) and (B, T ) satisfy (E.A) property;

(iv) A(X) ⊆ T (X) and B(X) ⊆ Q(X).

If the range of one of the mappings Q(X) or T (X) is a complete subspace of (X,S), then

A, B, Q and T have a unique common fixed point in X.

Proof First, we suppose that the pair (A,Q) satisfies (E.A) property. Then by Definition

2.8, there exists a sequence {un} in X such that limn→∞Aun = limn→∞Qun = t for some t ∈
X. Further, since A(X) ⊆ T (X), there exists a sequence {vn} in X such that limn→∞Aun =

limn→∞ T vn. Hence limn→∞ T vn = t. We claim that limn→∞ Bvn = t. If not, then putting

u = un and v = vn in inequality (3.9), using Lemma 2.16 and (CS2), we have

S(Aun,Aun,Bvn) - n1 S(Qun,Qun, T vn) + n2 S(Bvn,Bvn,Aun)

+n3 S(Bvn,Bvn, T vn)

+n4 S(Aun,Aun, T vn)
[1 + S(Bvn,Bvn, T vn)]

[1 + S(Aun,Aun,Bvn)]

+n5 S(Bvn,Bvn,Aun)
[1 + S(Bvn,Bvn, T vn)]

[1 + S(Aun,Aun,Bvn)]

= n1 S(Qun,Qun,Qun) + n2 S(Bvn,Bvn,Aun)

+n3 S(Bvn,Bvn,Aun)

+n4 S(Aun,Aun,Aun)
[1 + S(Bvn,Bvn,Aun)]

[1 + S(Aun,Aun,Bvn)]

+n5 S(Bvn,Bvn,Aun)
[1 + S(Bvn,Bvn,Aun)]

[1 + S(Aun,Aun,Bvn)]

= n1 .0 + n2 S(Aun,Aun,Bvn) + n3 S(Aun,Aun,Bvn)

+n4 .0 + n5 S(Aun,Aun,Bvn)

= (n2 + n3 + n5)S(Aun,Aun,Bvn)

- (n1 + n2 + n3 + n4 + n5)S(Aun,Aun,Bvn)

= mS(Aun,Aun,Bvn)
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where m = n1 + n2 + n3 + n4 + n5 < 1. Thus

|S(Aun,Aun,Bvn)| ≤ m |S(Aun,Aun,Bvn)|,

which is a contradiction since m ∈ [0, 1). Letting n→∞, we have

lim
n→∞

|S(Aun,Aun,Bvn)| ≤ m.0 = 0,

which is a contradiction by condition (CS1). Thus, we get limn→∞Aun = limn→∞ Bvn = t.

Now, first we assume that T (X) is a complete subspace of (X,S), then t = T p for some

p ∈ X. Subsequently, we have

lim
n→∞

Bvn = lim
n→∞

Aun = lim
n→∞

Qun = lim
n→∞

T vn = T p = t.

Rest of the proof follows from Theorem 3.1. This completes the proof. �

Theorem 3.4 Let (X,S) be a complex valued S-metric space and let A,B,Q, T :

X → X be four self-mappings of X satisfying the following conditions:

(i) For all u, v ∈ X,

S(Au,Au,Bv) - R1DSC1(u, u, v) +R2DSC2(u, u, v), (3.10)

where R1,R2 > 0 are nonnegative reals with R1 +R2 < 1 and

DSC1(u, u, v) = max
{
S(Qu,Qu, T v),S(Bv,Bv,Au),S(Bv,Bv, T v)

}
,

DSC2(u, u, v) = max
{
S(Au,Au, T v)

[1 + S(Bv,Bv, T v)]

[1 + S(Au,Au,Bv)]
,

S(Bv,Bv,Au)
[1 + S(Bv,Bv, T v)]

[1 + S(Au,Au,Bv)]

}
,

(ii) The pairs (A,Q) and (B, T ) are weakly compatible;

(iii) One of the pairs (A,Q) and (B, T ) satisfy (E.A) property;

(iv) A(X) ⊆ T (X) and B(X) ⊆ Q(X).

If the range of one of the mappings Q(X) or T (X) is a complete subspace of (X,S), then

A, B, Q and T have a unique common fixed point in X.

Proof First, we suppose that the pair (A,Q) satisfies (E.A) property. Then by Definition

2.8, there exists a sequence {un} in X such that limn→∞Aun = limn→∞Qun = t for some t ∈
X. Further, since A(X) ⊆ T (X), there exists a sequence {vn} in X such that limn→∞Aun =

limn→∞ T vn. Hence limn→∞ T vn = t. We claim that limn→∞ Bvn = t. If not, then putting

u = un and v = vn in inequality (3.10), using Lemma 2.16 and (CS2), we have

S(Aun,Aun,Bvn) - R1DSC1(un, un, vn) +R2DSC2(un, un, vn), (3.11)
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where

DSC1(un, un, vn) = max
{
S(Qun,Qun, T vn),S(Bvn,Bvn,Aun),S(Bvn,Bvn, T vn)

}
= max

{
S(Qun,Qun,Qun),S(Bvn,Bvn,Aun),S(Bvn,Bvn,Aun)

}
= max

{
0,S(Aun,Aun,Bvn),S(Aun,Aun,Bvn)

}
= S(Aun,Aun,Bvn), (3.12)

and

DSC2(un, un, vn) = max
{
S(Aun,Aun, T vn)

[1 + S(Bvn,Bvn, T vn)]

[1 + S(Aun,Aun,Bvn)]
,

S(Bvn,Bvn,Aun)
[1 + S(Bvn,Bvn, T vn)]

[1 + S(Aun,Aun,Bvn)]

}
= max

{
S(Aun,Aun,Aun)

[1 + S(Bvn,Bvn,Aun)]

[1 + S(Aun,Aun,Bvn)]
,

S(Bvn,Bvn,Aun)
[1 + S(Bvn,Bvn,Aun)]

[1 + S(Aun,Aun,Bvn)]

}
= max

{
0,S(Aun,Aun,Bvn)

}
= S(Aun,Aun,Bvn). (3.13)

Using equations (3.12) and (3.13) in equation (3.11), we get

S(Aun,Aun,Bvn) - R1 S(Aun,Aun,Bvn) +R2 S(Aun,Aun,Bvn)

=
(
R1 +R2

)
S(Aun,Aun,Bvn)

= W S(Aun,Aun,Bvn), (3.14)

where W = R1 +R2 < 1.

Thus

|S(Aun,Aun,Bvn)| ≤ W |S(Aun,Aun,Bvn)|,

which is a contradiction since W ∈ [0, 1). Letting n→∞, we have

lim
n→∞

|S(Aun,Aun,Bvn)| ≤ W .0 = 0,

which is a contradiction by condition (CS1). Thus, we get limn→∞Aun = limn→∞ Bvn = t.

Now, first we assume that T (X) is a complete subspace of (X,S), then t = T p for some

p ∈ X. Subsequently, we have

lim
n→∞

Bvn = lim
n→∞

Aun = lim
n→∞

Qun = lim
n→∞

T vn = T p = t.

Rest of the proof follows from Theorem 3.1. This completes the proof. �

From Corollary 3.2 we obtain the following special case.

Corollary 3.5 Let (X,S) be a complete complex valued S-metric space and let A : X → X be
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a self-mapping of X satisfies the contractive condition:

S(Au,Au,Av) - q S(u, u, v),

for all u, v ∈ X, where q ∈ [0, 1) is a constant. Then A has a unique fixed point in X.

Remark 3.6 Corollary 3.5 extends Theorem 3.1 of Sedghi et al. [40] from complete S-metric

space to the setting of complete complex valued S-metric space.

Remark 3.7 Corollary 3.5 also extends the well-known Banach fixed theorem [6] from complete

metric space to the setting of complete complex valued S-metric space.

Corollary 3.8([28], Corollary 2.5) Let (X,S) be a complete complex valued S-metric space and

let A : X → X be a self-mapping of X satisfies the contractive condition:

S(Anu,Anu,Anv) - q S(u, u, v),

for all u, v ∈ X, where n is some positive integer and q ∈ [0, 1) is a constant. Then A has a

unique fixed point in X.

Proof By Corollary 3.5, there exists p ∈ X such that Anp = p. Then

S(Ap,Ap, p) = S(AAnp,AAnp,Anp)

= S(AnAp,AnAp,Anp)

- q S(Ap,Ap, p).

Thus

|S(Ap,Ap, p)| ≤ q |S(Ap,Ap, p)|,

which is a contradiction since 0 ≤ q < 1 and so S(Ap,Ap, p) = 0, that is, Ap = p. This shows

that A has a unique fixed point in X. This completes the proof. �

Remark 3.9 (i) Completeness of the space X is relaxed in Theorems 3.1, 3.3 and 3.4.

(ii) Continuity of the mappings A, B, Q and T is relaxed in Theorems 3.1, 3.3 and 3.4.

Finally, we give the following example which is an application of Corollary 3.5.

Example 3.10 Let X1 = {z ∈ C : Re(z) ≥ 0, Im(z) = 0} and X2 = {z ∈ C : Im(z) ≥
0, Re(z) = 0}. Now, let X = X1 ∪X2 and define a mapping S : X3 → C By:

S(z1, z2, z3) =


max{x1, x2, x3}+ imax{x1, x2, x3}, if z1, z2, z3 ∈ X1,

max{y1, y2, y3}+ imax{y1, y2, y3}, if z1, z2, z3 ∈ X2,

(max{x1, x2}+ y3) + i(max{x1, x2}+ y3), if z1, z2 ∈ X1, z3 ∈ X2,

(max{y1, y2}+ x3) + i(max{y1, y2}+ x3), if z1, z2 ∈ X2, z3 ∈ X1,

where z1 = x1 + iy1, z2 = x2 + iy2 and z3 = x3 + iy3. It is very easy to verify that (X,S) is a
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complete complex valued S-metric space.

Now, we define a self-mapping A on X (with z = (x, y)) as

A(z) =

 (x2 , 0), if z ∈ X1,

(0, y2 ), if z ∈ X2.

Now, we show that A satisfies the conditions of Corollary 3.5. Here, we note that

0 - S(z1, z2, z3),S(Az1,Az2,Az3).

. Now, let z1 = x1 + iy1 and z2 = x2 + iy2. Hence, we have the following four cases.

Case 1. If z1, z2 ∈ X1, then we have

S(Az1,Az1,Az2) = S
(

(
x1

2
, 0), (

x1

2
, 0), (

x2

2
, 0)
)

= max
{x1

2
,
x2

2

}
+ imax

{x1

2
,
x2

2

}
= max

{x1

2
,
x2

2

}
(1 + i)

=
1

2
max{x1, x2}(1 + i) -

1

2
S(z1, z1, z2) = q S(z1, z1, z2),

Case 2. If z1, z2 ∈ X2, then we have

S(Az1,Az1,Az2) = S
(

(0,
y1

2
), (0,

y1

2
), (0,

y2

2
)
)

= max
{y1

2
,
y2

2

}
+ imax

{y1

2
,
y2

2

}
= max

{y1

2
,
y2

2

}
(1 + i)

=
1

2
max{y1, y2}(1 + i) -

1

2
S(z1, z1, z2) = q S(z1, z1, z2),

Case 3. If z1 ∈ X1, z2 ∈ X2, then we have

S(Az1,Az1,Az2) = S
(

(
x1

2
, 0), (

x1

2
, 0), (0,

y2

2
)
)

=
(x1

2
+
y2

2

)
(1 + i)

=
1

2
(x1 + y2)(1 + i) -

1

2
S(z1, z1, z2) = q S(z1, z1, z2),

Case 4. If z2 ∈ X1, z1 ∈ X2, then we have

S(Az1,Az1,Az2) = S
(

(0,
y1

2
), (0,

y1

2
), (

x2

2
, 0)
)

=
(x2

2
+
y1

2

)
(1 + i) =

1

2
(x2 + y1)(1 + i)

-
1

2
S(z1, z1, z2) = q S(z1, z1, z2),

where q = 1
2 . If we take 0 ≤ q < 1, then all the conditions of Corollary 3.5 are satisfied. Hence

by applying Corollary 3.5, A has a unique fixed point in X. Indeed, in this case 0 ∈ X is the

unique fixed point.



Some Common Fixed Point Theorems for Contractive Type Conditions in Complex Valued S-Metric Spaces 15

§4. Conclusion

In this paper, we prove some common fixed point theorems for contractive type conditions

involving rational expressions and using common (E.A) property in the framework of complex-

valued S-metric spaces. Also, we give an example in support of the result. The results presented

in this paper extend, generalize and enrich several results from the current existing literature.
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Abstract: Let (G, ·) be a loop. A loop (GH , ·) is called a special loop of (G, ·) if the pair

(H, ·) is an arbitrary a non-empty subloop of (G, ·). In general, (GH , ·) is called second

Smarandache Bol loop (S2ndBL) if it obey the identity (xs · z)s = x(sz · s) for all s ∈ H
and x, z ∈ G. This paper presents some algebraic characterizations of the core of a second

Smarandache Bol loop (S2ndBL). Some results in this paper extend or generalize the results

of the classical studies of the core of a Bol loop. The conditions for the core of S2ndBL

to be left symmetric, left(right) idempotents, left self-distributive, and flexible was shown.

A necessary and sufficient condition for a core of (S2ndBL) to be right(left) alternative

property was revealed. The characterization of S−isotopic and S−isomorphic invariance

was also presented in this paper.
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§1. Introduction

Let Q be a non -empty set. Define a binary operation “ · ” on Q. If x · y ∈ Q for all x, y ∈ Q,

then the pair (Q, ·) is called a groupoid or magma. If the equations: a · x = b and y · a = b

have unique solutions x, y ∈ Q for all a, b ∈ Q, then (Q, ·) is called a quasigroup. Let (Q, ·) be

a quasigroup and there exist a unique element e ∈ Q called the identity element such that for

all x ∈ Q, x · e = e · x = x, then (Q, ·) is called a loop. At times, we shall write xy instead of

x · y and stipulate that · has lower priority than juxtaposition among factors to be multiplied.

Let (Q, ·) be a groupoid and a be a fixed element in Q, then the left and right translations La

and Ra of a are respectively defined by xLa = a · x and xRa = x · a for all x ∈ Q. It can

now be seen that a groupoid (Q, ·) is a quasigroup if its left and right translation mappings are

permutations. Since the left and right translation mappings of a quasigroup are bijective, then

the inverse mappings L−1
x and R−1

x exist.

Let

x\y = yL−1
x = xPy and x/y = xR−1

y = yP−1
x

1Received April 2, 2023, Accepted June 4, 2023.
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and note that

x\y = z ⇐⇒ x · z = y and x/y = z ⇐⇒ z · y = x.

Thus, for any quasigroup (Q, ·), we have two new binary operations; right division (/) and left

division (\) and middle translation Pa for any fixed a ∈ Q. Consequently, (Q, \) and (Q, /) are

also quasigroups. Using the operations (\) and (/), the definition of a loop can be restated as

follows.

Definition 1.1 A loop (Q, ·, /, \, e) is a set G together with three binary operations (·), (/),

(\) and one nullary operation e such that

(i) x · (x\y) = y, (y/x) · x = y for all x, y ∈ Q;

(ii) x\(x · y) = y, (y · x)/x = y for all x, y ∈ Q;

(iii) x\x = y/y or e · x = x for all x, y ∈ Q.

We also stipulate that (/) and (\) have higher priority than (·) among factors to be mul-

tiplied. For instance, x · y/z and x · y\z stand for x(y/z) and x(y\z) respectively.

In a loop (Q, ·) with identity element e, the left inverse element of x ∈ Q is the element

xJλ = xλ ∈ Q such that

xλ · x = e

while the right inverse element of x ∈ G is the element xJρ = xρ ∈ G such that

x · xρ = e.

For more on quasigroups and loops, the reader can check Jaiyéo. lá [13], Pflugfelder [5] and

Shcherbacov [3] for details.

The study of Smarandache concept in groupoid was first introduced by (W. B Vasantha

Kandasamy [18], 2002). The paper [20] and her book on Smarandache concept in the study

of loops [19], where she initially defined Smarandache loop (S-loop) as a loop with at least a

subloop which forms a subgroup under the binary operations of the loop have started receiving

an attention of researchers.

Smarandache quasigroup was defined by (Muktibodh, [21, 22]), as a non-trivial subset H

of a quasigroup (G, ·) such that (H, ·) is a associative subquasigroup of the quasigroup (G, ·).
Immediately after the work of Muktibodh, (Jaiyéo. lá [6], 2006) introduced the study of

holomorphic structures of a loop under Smarandache quasigroup. It was revealed that a loop is a

Smarandache loop if and only if its holomorph is a Smarandache loop and further shown that the

statement is also true for some weak Smarandache loops such as inverse property, weak inverse

property but false for others(conjugacy closed, Bol, central, extra, Burn, A- homogeneous except

if their holomorphs are nuclear or central.

In (Jaiyéo. lá [10, 11, 12, 14, 15], 2008), more characterizations of a Smarandache concept

in quasigroups and loops are presented. In particular, a Smarandache isotopic quasigroup

and holomorphic study of Smarandache automorphism and cross inverse property loops were

investigated in the same manner the isotopy theory was carried out for groupoids, quasigroups,

and loops. The same author [15], introduced and studied double cryptography using the concept
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of Smarandache Keedwell Cross inverse quasigroup.

In [16, 17], the author furthered his exploration of Smarandache quasigroups (loops) theory

by classifying the algebraic structures into first Smarandache quasigroup (loop) and second

Smarandache quasigroup (loop). The author announced that the most comprehensive study in

Bol-Moufang type identities called Bol loop falls into the second class of Smarandache loops.

Hence, the second Smarandache loop is a particular case of the first Smarandache loops and

the second Smarandache Bol loop is a generalization of Bol loops.

In (Jaiyéo. lá [8, 9], 2006), the authors studied parastrophic invariants of Smarandache

quasigroups, and presented a ground view of the studies of the universality of some Smarandache

loops of Bol-Moufang type. His results showed that Smarandache quasigroup (loop) is universal

if all its f, g−principal isotopes are Smarandache f, g− principal isotopes.

In (Osoba et al. [28, 29], 2018), the authors studied the relationship of multiplication

groups and isostrophic quasigroups and some algebraic characterizations of middle Bol loops.

In 2022, Osoba and Jaiyéo. lá [24] presented algebraic connections between the middle Bol

loop and right Bol loop and their cores. A necessary and sufficient condition for the core of a

right Bol loop to be elastic property and right idempotent law was established. It was further

revealed that If a middle Bol loop is right (left) symmetric then, the core of its corresponding

(RBL) is a medial (semimedial). The results in [16, 17] were extended by the first author of

this paper in [27].

In 2023, Jaiyéo. lá et al. [23] presented a study on the Bryant-Schneider group of a middle

Bol loop. The authors used the concept of the Bryant-Schneider group to link some of the

isostrophy-group invariance results of Grecu and Syrbu. In particular, it was established that

some subgroups of the Bryant-Schneider group of a middle Bol loop are isomorphic to the

automorphism and pseudo-automorphism groups of its corresponding right (left) Bol loop.

Some elements of the Bryant-Schneider group of a middle Bol loop were shown to induce

automorphisms and middle pseudo-automorphisms. It was discovered that if a middle Bol loop

is of exponent two then, its corresponding right (left) Bol loop is a left (right) G-loop while more

results on the algebraic properties of a middle Bol loop using its parastrophes were unveiled by

Osoba and Oyebo [26] in 2022.

Recently, the characterization of the cry-automorphism group of some quasigroups was

studied in [25].

§2. Preliminaries

Definition 2.1 A groupoid (quasigroup) (G, ·) is said to have

(1) the left inverse property (LIP ) if there exists a mapping Jλ : x 7→ xλ such that

xλ · xy = y for all x, y ∈ G;

(2) the right inverse property (RIP ) if there exists a mapping Jρ : x 7→ xρ such that

yx · xρ = y for all x, y ∈ G;

(3) the inverse property (IP) if it has both the LIP and RIP;

(4) the right alternative property (RAP) if y · xx = yx · x for all x, y ∈ G;
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(5) the left alternative property (LAP) if y · xx = yx · x for all x, y ∈ G;

(6) the flexibility or elasticity if xy · x = x · yx holds for all x, y ∈ G;

(7) the cross inverse property (CIP ) if there exist mapping Jλ : x 7→ xλ or Jρ : x 7→ xρ

such that xy · xρ = y or x · yxρ = y or xλ · yx = y or xλy · x = y for all x, y ∈ G.

Definition 2.2 A loop (G, ·) is said to be right power alternative property loop (RPAPL) if its

obeys the identity xyn = ((((xy)y)y)y)y...y that is Ryn = Rny for all x, y ∈ G.

Definition 2.3 A special quasigroup(loop) (GH , ·) is called:

(1) a second Smarandache left inverse property quasigroup(loop) S2ndLIPQ(S2ndLIPL)

if it obeys the second Smarandache left inverse property (S2ndLIP ) sλ · sx = x for all x ∈ G
and s ∈ H;

(2) a second Smarandache right inverse property quasigroup(loop) S2ndRIPQ(S2ndRIPL)

if it obeys the second Smarandache right inverse property (S2ndLIP ) xs · sρ = x for all x ∈ G
and s ∈ H;

(3) a second Smarandache inverse property quasigroup(loop) S2ndIP if it has both the

S2ndRIP and S2ndLIP ;

(4) a second Smarandache right alternative property quasigroup(loop) S2ndRAPQ(S2ndRAPL)

if x · ss = xs · s for all x ∈ G and s ∈ H;

(5) a second Smarandache left alternative property quasigroup(loop)

S2ndLAPQ(S2ndLAPL if ss · x = s · sx for all x ∈ G and s ∈ H for all x, y ∈ G;

(6) a second Smarandache flexible or elastic quasigroup(loop) if sx · s = s · xs holds for all

x ∈ G and s ∈ H;

(7) a second Smarandache right power alternative property loop S2ndRPAPL if its obeys

the identity sxn = ((((xs)s)s)s)s...s that is Rsn = Rns for all x ∈ G and s ∈ H.

Definition 2.4 A Smarandache groupoid (quasigroup) (Q, ·) is called:

(1) the second Smarandache right symmetric (S2ndRS) if xs · s = x for all x ∈ Q and

s ∈ H;

(2) the second Smarandache left symmetric (S2ndLS) if s · sx = x for all x ∈ Q and s ∈ H;

(3) the second Smarandache middle symmetric (S2ndMS) if s · xs = x or xs · x = x for all

x ∈ Q and s ∈ H;

(4) the third Smarandache middle symmetric (S3ndMS) if xs · x = s or x · sx = s for all

x ∈ Q and s ∈ H;

(5) the second Smarandache idempotent (S2ndI) if s · s = s for all x ∈ Q and s ∈ H;

(6) the second Smarandache left idempotent (S2ndLI) if ss · x = sx for all x ∈ Q and

s ∈ H;

(7) the second Smarandache right idempotent (S2ndRI) if x · ss = sx for all x ∈ Q and

s ∈ H;

(8) the second Smarandache commutative (S2ndCP) if x · s = s ·x for all x ∈ Q and s ∈ H;

(9) the second Smarandache anti-automorphic inverse property (S2ndAAIP) if (x · s)ρ =

(s · x)ρ or (x · s)λ = (s · x)λ for all x ∈ Q and s ∈ H;
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(10) the second Smarandache totally quasigroup (S2ndTQ) if and only if (1) or (2) and (8)

hold.

Definition 2.5 Let (Q, ·) be a S2ndTQ. If (Q, ·) is a special loop, then it is called second

Smarandache Steiner loop (S2ndSL).

Theorem 2.6 (Jaiyeola [16]) Let the special loop (GH , ·) be a S2ndBL. Then, S2ndBL is

satisfies S2ndRIPL and S2ndRAPL.

Theorem 2.7 (Jaiyeola [16]) If the special loop (GH , ·) is a S2ndBL. Then,

xsn = xsn−1 · s = xs · sn−1

for all n ∈ Z, s ∈ H and x ∈ G.

Theorem 2.8 (Jaiyeola [16]) If the special loop (GH , ·) is a S2ndBL. Then, xsm · sn = xsm+n

for all m,n ∈ Z, s ∈ H and x ∈ G.

Theorem 2.9 (Jaiyeola [16]) If the special loop (GH , ·) is a S2ndBL. Then, GH is a S2ndSAIPL

if and only if GH is a S3rdRIPL.

Corollary 2.10 (Jaiyeola [16]) Every S2ndBL is a Smarandache right power associative property

loop.

Definition 2.11 (Jaiyeola [17]) Let (GH , ·) and (QN , ◦) be spacial groupiods and let GH , QN be

Smarandache isotopes (S-isotopes). Then, (QN , ◦) is a Smarandache isotopic of (GH , ·) if and

only if there is a bijective (A,B,C) : H 7→ N such that the triple (A,B,C) : (GH , ·) 7→ (QN , ·)
is isotopism. Suppose that the triple A = B = C, then (GH , ·) and (QN , ◦) are said to be

Smarandache isomorphic (S-isomorphic).

Definition 2.12 Let the spacial loop (GH , ·) be a S2ndBL. The groupoid (GH ,+) called the

core of (GH , ·) is define as x+ y = xyλ · x for all x ∈ H and y ∈ G.

Definition 2.13 A special groupoid (Q,+) is called:

(1) Smarandache left self distributive (SLSD) if s + (y + z) = (s + y) + (s + z) for all

y, z ∈ Q and s ∈ H;

(2) Smarandache left distributive(SLD) if s(y+z) = (sy)+(sz) for all y, z ∈ Q and s ∈ H;

(3) Smarandache right distributive(SRD) if (y + z)s = (ys) + (zs) for all y, z ∈ Q and

s ∈ H.

Definition 2.14 (Jaiyeola [17], 2011) Let (GH , ·) is called a special loop with special subloop

(H, ·). If (H, ·) is of exponent 2, then (GH , ·) is called a special loop of Smarandache exponent

two.

Definition 2.15 Let (GH , ·) be a special loop. H is called an ideal of (G, ·) if sx ∈ H for all

s ∈ H, and x ∈ G
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Furtherance to the past research, this paper is posted to extend the results in [16, 24].

Some new definitions were established and were used to characterize the core of the second

Smarandache Bol loop.

§3. Main Results

Lemma 3.1 Let (GH , ·) be a special quasigroup.

(1) if (GH , ·) is a S3ndRIP and H is a right ideal of (G, ·), then xρ
2

= x and xρ = xλ for

all x ∈ G;

(2) if (GH , ·) is a S3ndLIP and H is a left ideal of (G, ·), then xλ
2

= x and xρ = xλ for all

x ∈ G;

(3) if (GH , ·) is a S2ndLIP, then sx = b⇒ x = sλb for all s ∈ H and x ∈ G;

(4) if (GH , ·) is a S3ndRIP, then xs = b⇒ x = bsρ for all s ∈ H and x ∈ G;

(5) if (GH , ·) is a S2ndRIP, then ys = b⇒ y = bsρ for all s ∈ H and x ∈ G;

(6) if (GH , ·) is a S3ndLIP, then ys = b⇒ s = yλb for all s ∈ H and x ∈ G;

(7) if (GH , ·) is a S2ndRIP and S3ndLIP, then sλ = (as)λa −S3rdLWIP for all s ∈ H and

a ∈ G;

(8) if (GH , ·) is a S2ndRIP, S3rdLIP, S3ndRIP and H is λ−ideal, then s−1a−1 = (as)−1

for all s ∈ H and a ∈ G;

(9) if (GH , ·) is a S2ndLIP and S3ndRIP, then sρ = b(sb)ρ− S3rdRWIP for all s ∈ H and

b ∈ G;

(10) if (GH , ·) is a S2ndLIP, S3ndRIP, S3rdLIP and H is ρ−ideal, then b−1s−1 = (sb)−1

for all s ∈ H and b ∈ G;

(11) (GH , ·) has S2ndRIP ⇔ Rs−1 = R−1
s ;

(12) (GH , ·) has S2ndLIP ⇔ Ls−1 = L−1
s ;

(13) if (GH , ·) is a S2ndRIP, S3ndIP and λ−ideal, JλRsJρ = Ls−1 for all s ∈ H;

(14) if (GH , ·) is a S2ndLIP, S3ndIP and ρ−ideal, JλLsJρ = Rs−1 for all s ∈ H.

Proof (1) Consider the expression (sx · xρ)(xρ)ρ, then

(sx · xρ)(xρ)ρ =︸︷︷︸
3ndRIP

s(xρ)ρ = sx⇒ xρ
2

= x⇒ J2
ρ = I ⇒ J−1

ρ = Jρ ⇒ Jλ = Jρ.

(2) Consider the expression (xλ · xs)(xλ)λ, then

(xλ · xs)(xλ)λ =︸︷︷︸
3ndLIP

(xλ)λs = xs⇒ xλ
2

= x⇒ J2
λ = I ⇒ Jλ−1 = Jρ ⇒ Jλ = Jρ.

(3) Let sx = b. Multiplying both sides by sλ on the left, we have x = =︸︷︷︸
2ndLIP

sλb.

(4) Let xs = b. Multiplying both sides by sρ on the right, we have x = =︸︷︷︸
2ndRIP

bsρ.

(5) Let ys = b. Multiplying both sides by sρ on the right, we have y = =︸︷︷︸
2ndRIP

bsρ.
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(6) Let ys = b. Multiplying both sides by yλ on the left, we have s = =︸︷︷︸
3ndLIP

yλb.

(7) Let as = c, then a =︸︷︷︸
2ndRIP

csρ ⇒︸︷︷︸
S3ndLIP

sρ = (as)λa⇒ sλ = (as)λa.

(8) So, sρ = (as)λa⇒ sλ = (as)λa
λ−ideal⇒︸︷︷︸
S3rdRIP

sλaρ = (as)λ ⇒ s−1a−1 = (as)−1.

(9) Let sb = c ⇒︸︷︷︸
S2ndLIP

b = sλc ⇒︸︷︷︸
S3ndRIP

bcρsλ ⇒ b(sb)ρ = sρ.

(10) So, b(sb)ρ = sλ ⇒ b(sb)ρ = sρ
ρ−ideal⇒︸︷︷︸
S3rdLIP

bλsρ = (bs)ρ ⇒ b−1s−1 = (sb)−1.

(11) ys · s−1 = y ⇔ yRsRs−1 = y ⇔ RsRs−1 = I ⇔ R−1
s = Rs−1 .

(12) sλ · sx = x⇔ xLsLs−1 = x⇔ LsLs−1 = I ⇔ L−1
s = Ls−1 .

(13) xJλRsJρ = (xλs)ρ
S3rdIP⇒︸︷︷︸
S2rdRIP

s−1(x−1)−1 = s−1x = xLs−1 .

(14) xJλLsJρ = (sxλ)ρ
S2ndLIP⇒︸︷︷︸
S3rdIP

(x−1)−1s−1 = xs−1 = xRs−1 .

This completes the proof. �

Theorem 3.2 Let the spacial loop (GH , ·) be a S2ndBL. Then,

(1) (GH ,+) is (S2nd LS) if (GH , ·) is a (S2nd RIPL) and H is ρ−ideal of (G, ·);
(2) (GH ,+) is (S2nd LI);

(3) (GH ,+) is (S2nd RI);

(4) if (GH , ·) is (S2nd RIP), S2ndelastic, S3rdRIP and H is ρ−ideal, then (GH , ·) satisfies

commutative if and only if (GH ,+) is S2nd middle symmetric;

(5) if (GH , ·) is S3rdRIP and H is ρ−ideal, then (GH ,+) is S2rd LD if and only if (syρ ·
z)yρ = s(yzρ · y)ρ for all s ∈ H and y, z ∈ G;

(6) if (GH , ·) is S3rdSAIP then (GH ,+) is S2nd flexible if and only if (syρ ·s)yρ = s(yρs·yρ)
for all y ∈ G, and s ∈ H.

Proof (1) By symmetric property, we have s + (s + y) = s(s + y)λ · s = [s(syλ · s)λ]s =

[s(sλyλ
2 · sλ)]s. Apply Theorem 2.9, we have ((ssλ · yλ2

)sλ)s = yλ
2

sλ · s = y.

(2) By left idempotent: (s+s)+y = (s+s)yλ · (s+s) = [(ssλ ·s)yλ]ssλ ·s = syλ ·s = s+y.

(3) By right idempotent: y + (s+ s) = y(s+ s)λ · y = y(ssλ · s)λ · y = ysλ · y = y + s.

(4) By middle symmetric:

s+ (x+ s) = x ⇔ [s(x+ s)λ]s = x

⇔ [s(xs−1 · x)λ]s = x ⇔︸︷︷︸
S2ndIP

(xsλ · x)λ = sλ · xsλ

⇔︸︷︷︸ S3rd (RIP) and H is ρ−ideal (xsλ · x)λ = (s · xλs)λ

⇔︸︷︷︸ S2nd(elasticity) (xsλ · x)λ = (sxλ · s)λ

⇔ (x+ s)λ = (s+ x)λ ⇔ x+ s = s+ x

for all x ∈ G and s ∈ H.
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(5) By left self distributive: s+ (y+ z) = (s+ y) + (s+ z). For all s ∈ H and y, z ∈ G, we

have

LHS = (s+ y) + (s+ z) = [(syλ · s)(szλ · s)λ](syλ · s)

=︸︷︷︸
S3rd RIP and H is ρ−ideal

[(syλ · s)(s−1z · s−1)](syλ · s)

=

[((
(syλ · s)sλ

)
z

)
sλ
]
(syλ · s)

=

[(
(syλ · z)

)
sλ
]
(syλ · s)

=

[((
(syλ · z)s−1

)
s

)
yλ
]
s

= (syλ · z)yλ · s

and RHS = s+(y+z) = s(y+z)ρ ·s = s(yzλ ·y)ρ ·s. So, (GH ,+) has S2rdLSD⇔ (syρ ·z)yρ =

s(yzρ · y)ρ for all s ∈ H and y, z ∈ G.

(6) (GH ,+) is S2nd flexible ⇔ (s+ y) + s = s+ (y + s) for all y ∈ G, and s ∈ H.

RHS = LSH

⇔ (s+ y)sλ · (s+ y) = s(y + s)λ · s

⇔ [(syλ · s)sλ](syλ · s) = (s(ysλ · y)λ)s

⇔ [(syλ · s)sλ](syλ · s) =︸︷︷︸
S3rdSAIP

(s(yλs · yλ))s

⇔ syλ(syλ · s) = s(yλs · yλ) · s

⇔ (syλ · s)yλ · s = s(yλs · yλ) · s

⇔ (syλ · s)yλ = s(yλs · yλ).

This completes the proof. �

Theorem 3.3 Let the spacial loop (GH , ·) be a S2ndBL. Then,

(1) (GH ,+) is S2ndRAP if and only if y + s = s for all s ∈ H;

(2) (GH ,+) is S2ndLAP if and only if s+ y = y for all s ∈ H;

(3) if (s+ y)x = sx+ yx for all s ∈ H and x, y ∈ G, then (GH , ·) is satisfies S2ndLAP if

and only if it satisfies S3ndRIP ;

(4) if x(s+ y) = xs+ xy, then (GH , ·) is satisfies SAAIP for all s ∈ H and x, y ∈ G.
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Proof (1) Notice that

(GH ,+) is S2ndRAP ⇔ (y + s) + s = y + (s+ s)

⇔ (y + s)sλ(y + s) = y(s+ s)λ · y

⇔ [(ysλ · y)sλ](ys−1 · y) = [y(ssλ · s)λ]y

⇔ [(ysλ · y)sλ](ysλ · y) = ysλ · y

⇔ (ysλ · y)sλ = e

⇔ ysλ · y = s(λ)ρ

⇔ y + s = s.

(2) Notice that

(GH ,+) is S2ndLAP ⇔ (s+ s) + y = s+ (s+ y)

⇔ [(s+ s)yλ](s+ s) = [s(s+ y)λ]s

⇔ [(ss−1 · s)yλ](ss−1 · s) =︸︷︷︸
S3rdRIP and H is ρ−ideal

[s(syλ · s)λ]s

⇔ syλ · s = [s(sλy · sλ)]s

⇔ syλ · s = ((ssλ · y)sλ)s

⇔ syλ · s = ysλ · s

⇔ syλ · s = y

⇔ s+ y = y.

(3) if (s+ y)x = sx+ yx then,

(syλ · s)x = [(sx)(yx)λ](sx)

Put y = e, the identity element in G, we have ss · x = (sx · xλ)(sx) ⇒︸︷︷︸
S3ndRIP

ss · x = s · sx

for all x ∈ G and s ∈ H.

(4) if x(s+ y) = xs+ yx then,

x(syλ · s) = [(xs)(xy)λ](xs)

⇒ (xs · yλ)s = [(xs)(xy)λ](xs).

Let x = sλ for all s ∈ H, get yρs = (sλy)ρ. �

Corollary 3.4 Let (GH ,+) be a S2ndRAP(LAP) of S2ndBL. Then, (GH , ·) is S3ndMS(S2ndMS)

respectively if and only if it is Smarandache exponent two.

Proof The proof follows from Theorem 3.3. �

Corollary 3.5 Let (GH ,+) be an alternative property of S2ndBL . Then, (GH , ·) is S2ndC if
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and only if it S2ndRIP and Smarandache exponent two.

Proof By Theorem 3.3, we have syρ · s = y ⇔ s · yρ = y · sρ ⇔ s · y = y · s. �

Corollary 3.6 Let (GH ,+) be an alternative property of S2ndBL. Then, (GH , ·) is a second

Smarandache Steiner loop if and only if it S2ndRIP and Smarandache exponent two.

Proof Following from Theorem 3.3, this is true base on Corollaries 3.4 and 3.5. �

Theorem 3.7 Let the spacial loop (GH , ·) be a S2ndBL with Smarandache AIPL and (GH ,+)

be its core.

(1) If (s+ y)x = sx+ yx, then (GH , ·) is Smarandache loop. For all x, z ∈ G and s ∈ H;

(2) If x(s+ y) = xs+ yx, then (GH , ·) is S2nd flexible. For all x, z ∈ G and s ∈ H.

Proof (1) By using Theorems 3.3 and 2.6, we have (syρ ·s)x = [sx(yx)ρ](sx)⇔ (syρ ·s)x =

[sx(x−1yρ)](sx) ⇔ (syρ · s)x = (syρ)(sx). Let yρ = t, for all s ∈ H and x, t ∈ G, we have

tLsRs · x = tLs · xLs. Let t = tL−1
s , then tRs · x = t · xLs ⇔ ts · x = t · sx. For all s ∈ H.

(2) By using Theorems 3.3 and 2.6, we have x(syρ · s) = [xs(xy)ρ](xs) ⇔ x(syρ · s) =

[xs(yρx−1](xs) ⇔ x(syρ · s) = (xs)[(yρx−1 · (xs)] ⇔ x(syρ · s) = (xs)(yρs). Let t = yρ, then

x(st · s) = (xs)(ts) ⇔ x · tLsRs = xLs · tRs. Put x = xL−1
s , get xL−1

s · tLsRs = x · tRs ⇔
sy · s = s · ys. By letting x = s for all s ∈ H and y ∈ G. �

Theorem 3.8 Let the spacial loop (GH , ·) be a S2ndBL. Let (GH , ◦) be a S−principal isotope

of (GH , ·), where x◦y = xRg ·yL−1
g for all x, y ∈ G and some g ∈ H. Let (GH ,+) and (GH ,⊕)

be the cores of (GH , ·) and (GH , ◦) respectively. Then sφ⊕ yφ = (s+ y)φ if and only if

((gs · t−1)s)φ−1 = [(gs)φ−1 · (gt)φ−1J ] · (gs)φ−1

where φ is S−permutation in GH .

Proof Let (GH , ·) be a S2ndBL. By Theorem 2.6, (GH , ·) is a S2ndRIPL. Let (GH , ◦) be a

S-principal isotope of (GH , ·) defined as x ◦ y = xRg · yL−1
g for all g ∈ H is the identity element

in GH . Then y ◦ yρ = yRg · yJρ = e ⇒ yRfJ = yJρL
−1
g ⇒ RgJLg = Jρ, where J : y 7→ y−1

and yρ = yJρ the right inverse element in GH .

s⊕ y = (s ◦ yJρ) ◦ s

= (sRg · yJρL−1
g )Rg · sL−1

g

= (sRg · yRgJLfL−1
g )Rg · sL−1

g

= (sRg · yRfJ)Rg · sL−1
g

So, sφ⊕ yφ = (s+ y)φ⇔ (sRgφ · yφRfJ)Rg · sφL−1
g = (sy−1 · s)φ for all s ∈ H and y ∈ G.
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Doing the following steps: Replace s by sLgφ
−1 and y by

yR−1
g φ−1 ⇔ (sLgRg · yJ)Rg · s = [(sLgφ

−1 · yR−1
g φ−1J)sLgφ

−1]φ

⇔ ((sLgRg · yJ)Rg · s)φ−1 = [(sLgφ
−1 · yR−1

g φ−1J)sLgφ
−1]

⇔ [((gs)(gy−1 · g)s]φ−1 = [(gs)φ−1 · (gg−1 · yg−1)φ−1J ] · (gs)φ−1

⇔ [((gs)(gy−1 · g)s]φ−1 = [(gs)φ−1 · g(g−1y · g−1)φ−1J ] · (gs)φ−1.

Now, set t = g−1y · g−1, we have

⇔ [(gs · t−1)s]φ−1 = [(gs)φ−1 · (gt)φ−1J ] · (gs)φ−1

for any t ∈ GH . �

Theorem 3.9 The core (GH ,+) is S−isotopic invariant for S2ndBL (GH , ·). That is S−isotopic

(GH , ·) have S−isomorphic (GH ,+).

Proof Use Theorem 3.8, we consider the those S-isotopes (GH , ◦), where x◦y = xRg ·yL−1
g

for all x, y,GH and some g ∈ H. Let (GH ,+) and (GH ,⊕) be the S2ndcores of (GH , ·) and

(GH , ◦) respectively. Since (GH , ·) is a S2ndBL, we have (gs · t−1)s = g(st−1 · s) for all t ∈ GH ,

and s ∈ H. Using Theorem 3.8 by replacing φ−1 by Lg, we have

[gs · t−1)s]L−1
g = st−1 · s

⇒ [(gs · t−1)s]L−1
g = [(gs)L−1

g · (gt)L−1
g J ] · (gs)L−1

g

for some g ∈ H. So, by Theorem 3.8, (GH ,+) and (GH ,⊕) are S-isomorphic. �

Corollary 3.10 A S2ndBL is SAAIPL if and only if for each S-principal isotope of (GH , ◦),

where x ◦ y = xRg · yL−1
g for all x, y ∈ G and some g ∈ H, s⊕ y = (s+ y) for all s ∈ H, and

y ∈ G where (GH ,+) and (GH ,⊕) are the cores of (GH , ·) and (GH , ◦) respectively.

Proof Put φ = e in Theorem 3.9, we have ((gs · t−1)s) = [(gs) · (gt)−1] · (gs) for all s ∈ H
and t ∈ GH . Put s = g−1, then t−1g−1 = (gt)−1 for all t ∈ GH and g ∈ H. �
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∑
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§1. Introduction

The graph G = (V,E) we mean a finite, undirected, connected graph with neither loops nor

multiple edges. The order and size of G are denoted by n and m respectively. The degree of

a vertex u in G is the number of edges incident with u and is denoted by dG(u), simply d(u).

The minimum and maximum degree of a graph G is denoted by δ(G) and ∆(G), respectively.

For graph theoretic terminology we refer to Chartrand and Lesniak [1] and Haynes et.al [4,5].

Let v ∈ V . The open neighborhood and closed neighborhood of v are denoted by N(v)

and N [v] = N(v) ∪ {v}. If S ⊆ V then N(S) =
⋃
v∈S

N(v) for all v ∈ S and N [S] = N(S) ∪ S.

If S ⊆ V and u ∈ S then the private neighbor set of u with respect to S is defined by

pn[u, S] = {v : N [v]∩S = {u}}. For any set S ⊆ V , the subgraph induced by S is the maximal

subgraph of G with vertex set S and is denoted by 〈S〉.The vertex has degree one is called a

pendant vertex. The set of all pendant vertices of a graph G is denoted as l(G). A support is

a vertex which is adjacent to a pendant vertex. A weak support is a vertex which is adjacent

to exactly one pendant vertex. A strong support is a vertex which is adjacent to at least two

pendant vertices. An unicyclic graph is a graph with exactly one cycle. A graph without cycle

is called acyclic graph and a connected acyclic graph is called a tree.

A subset S of V is called a dominating set of G if every vertex in V −S is adjacent to at least

one vertex in S. The minimum cardinality of a dominating set is called the domination number

of G and is denoted by γ(G). E.J.Cockayne et.al [2] studied the concept of Roman domination

1Received March 7, 2023, Accepted June 5, 2023.
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first. A Roman dominating function on a graph G is a function f : V (G) −→ {0, 1, 2} satisfying

the condition that every vertex v ∈ V for which f(v) = 0 is adjacent to at least one vertex

u ∈ V with f(u) = 2. Generally, if every vertex v ∈ V for which f(v) = 0 is adjacent to at least

k vertices u ∈ V (G) with f(u) = 2 for a function f : V (G) −→ {0, 1, 2}, such a function f is said

to be a Smarandache-Roman k-dominating function, where k ≥ 1 is an integer. Clearly, if k = 1,

such a Smarandache-Roman k-dominating function is nothing else but the Roman dominating

function. The weight of a Roman dominating function is the value w(f) =
∑
v∈V

f(v). The

minimum weight of a Roman dominating function is called the roman dominating number of

G and is denoted by γR(G).

For a graph G, let f : V −→ {0, 1, 2} and let (V0, V1, V2) be the ordered partition of

V induced by f , where Vi = {v ∈ V : f(v) = i}. Note that there exists an one to one

correspondence between the function f : V −→ {0, 1, 2} and the ordered partition (V0, V1, V2) of

V . Thus we will write f = (V0, V1, V2). We say that a function f = (V0, V1, V2) is a γR−function

if it is a Roman dominating function and w(f) = γR(G). Also w(f) = |V1|+ 2|V2|.
Erin W. Chambers et.al [3] proved that γR(G) ≤ n−∆ + 1. In this paper we characterize

the trees with γR ≥ n−∆.

§2. Family of Trees G

Notation 2.1 The family of trees G33 is obtained from K1,∆ by attaching a path on three

vertices twice to a pendant vertex.

Notation 2.2 The family of trees G23 is obtained from K1,∆ by attaching a path on three

vertices and a path on two vertices to a pendant vertex.

Notation 2.3 The family of trees G1 is obtained from a tree in G33 ∪ G23 by attaching a path

on three vertices twice or a path on two vertices twice or a path on three vertices and a path

on two vertices to at most ∆− 3 pendant vertices whose support has degree ∆.

Notation 2.4 The family of trees G(1) is obtained from a tree in G1 by attaching a path

Pk, k = 1 or 2 to the pendant vertices whose support has degree ∆.

Notation 2.5 The family of trees G(2) is obtained from K1,∆ by subdividing ∆−1 edges twice.

Notation 2.6 The family of trees G(3) is obtained from K1,∆ by subdividing twice i, 1 ≤ i ≤
∆− 2 edges and subdividing once k, 0 ≤ k ≤ ∆− i edges.

Notation 2.7 The family of trees G(4) is obtained from K1,∆ by attaching twice a path on

two vertices to i, 0 ≤ i ≤ ∆ − 2 pendant vertices and attaching a path on two vertices to

k, 0 ≤ k ≤ ∆− i pendant vertices.

Notation 2.8 The family of trees G = {K1,∆} ∪ G(1) ∪ G(2) ∪ G(3) ∪ G(4)

§3. Trees with γR = n−∆ + 1

Theorem 3.1 For a tree T , γR(T ) = n−∆ + 1 if and only if T ∈ G .
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Proof Let T be a tree with γR(T ) = n − ∆ + 1. Let v ∈ V (T ) such that d(v) = ∆.

If ∆ = n − 1, then T is a star. Suppose ∆ < n − 1. Let N(v) = {v1, v2, · · · , v∆} and let

T1 = 〈V −N [v]〉.

Case 1. E(T1) = φ.

Then every vertex of T1 is adjacent to a vertex in N(v). Suppose d(vi) ≥ 4 for some

i, 1 ≤ i ≤ ∆. Let w1, w2, w3 ∈ N(vi)∩V (T1). Then f = ([N(v)−{vi}]∪{w1, w2, w3}, V −[N [v]∪
{w1, w2, w3}], {v, vi}) is a Roman dominating function with w(f) = n−(∆+4)+4 = n−∆, which

is a contradiction. Hence d(vi) ≤ 3 for all i, 1 ≤ i ≤ ∆. Suppose d(vi) = 3 for all i, 1 ≤ i ≤ ∆.

Then f = (V −N(v), φ,N(v)) is a Roman dominating function with w(f) = 2∆ = n−∆− 1,

which is a contradiction. Hence d(vi) ≤ 2 for some i, 1 ≤ i ≤ ∆.

Suppose d(vi) = 3, 1 ≤ i ≤ ∆− 1 and d(v∆) ≤ 2. Then

f =

(V −N(v), φ,N(v)) if d(v∆) = 2

(V −N(v), {v∆}, N(v)− {v∆}) if d(v∆) = 1

is a Roman dominating function with w(f) < n − ∆ + 1 which is a contradiction. Hence at

most ∆− 2 vertices of N(v) have degree 3.Thus T is isomorphic to a tree obtained from K1,∆

by attaching twice a path on two vertices to i, 0 ≤ i ≤ ∆− 2 pendant vertices and attaching a

path on two vertices to k, 0 ≤ k ≤ ∆− i pendant vertices. Hence, T ∈ G(4)

Case 2. E(T1) 6= φ.

Let G1 be any non trivial component of T1 and we may assume without loss generality that

v1 ∈ N(V (G1)). Suppose G1 contains more than one pendant vertex of T . Let w1, w2 ∈ V (G1)

such that d(wi) = 1. Let P = (w1, u1, u2, · · · , ui, w2), i ≥ 1 is a w1 − w2 path in G1. Let

V0 = N(v) ∪ {w1, u2}, V1 = V − [N(v) ∪ {v, w1, u1, u2}, V2 = {v, u1}. Then f = (V0, V1, V2) is a

Roman dominating function of T with w(f) = n− (∆+4)+4 = n−∆ which is a contradiction.

Thus G1 has exactly one pendant vertex of T and hence G1 is a path. Let G1 = (x1, x2, · · · , xr)
such that v1 ∈ N(x1). If r > 2, then

f = (N(v)
⋃
{x1, x3}, V − [N(v) ∪ {x1, x2, x3, v}], {v, x2})

is a Roman dominating function of T with w(f) = n−(∆+4)+4 = n−∆ which is a contradiction.

Hence r ≤ 2. Then G1 = P2. Suppose d(vi) ≥ 4. Let x1, x2, x3 ∈ N(v1), xi 6= v, 1 ≤ i ≤ 3.

Then

f = ([N(v)− {v1}] ∪ {x1, x2, x3}, V − [N [v]
⋃
{x1, x2, x3}], {v, v1})

is a Roman dominating function with w(f) = n−∆, which is a contradiction. Hence d(vi) ≤ 3

for all i.

Suppose d(vi) = 3 for all i, 1 ≤ i ≤ ∆− 1. Then d(v∆) ≤ 2 and then

f = (

∆−1⋃
i=1

N(vi), V − [

∆−1⋃
i=1

N [vi]],

∆−1⋃
i=1

{vi})
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is a Roman dominating function with w(f) = n−∆, which is a contradiction. Hence at most

∆− 2 vertices of N(v) have degree three. If at least one vertex in N(v) has degree three then

T ∈ G(1).

Suppose d(vi) ≤ 2 for all i, 1 ≤ i ≤ ∆. Then T1 contains maximum of ∆ nontrivial

components. Suppose T1 contains ∆ non trivial components G1, G2, · · · , G∆. Let V (Gi) =

{xi1, xi2} such that vi ∈ N(xi1). Then

f = (N(v) ∪ {xi2 : 1 ≤ i ≤ ∆}, {v}, {xi1 : 1 ≤ i ≤ ∆})

is a Roman dominating function of T with w(f) = 1 + 2∆ = n −∆ which is a contradiction.

Hence T1 contains at most ∆− 1 non trivial components.

Suppose T1 contains exactly ∆− 1 non trivial components. Let G1, G2, · · · , G∆−1 be the

non trivial components of T1. If G∆ is trivial component of T1, then

f = ((N [v]− {v∆}) ∪ {xi2 : 1 ≤ i ≤ ∆− 1}, φ, {xi1 : 1 ≤ i ≤ ∆− 1})

is a Roman dominating function of T with w(f) = 2(∆− 1) = 2∆− 2 = n−∆− 2 which is a

contradiction. Hence T is isomorphic to a tree obtained from K1,∆ by subdividing ∆− 1 edges

twice. Thus T ∈ G(2)

If T1 contains i, 1 ≤ i ≤ ∆ − 2 non trivial components, then T is isomorphic to a tree

obtained from K1,∆ by subdividing twice i, 1 ≤ i ≤ ∆ − 2 edges and subdividing once k, 0 ≤
k ≤ ∆− i edges. Hence T ∈ G(3). The converse is obvious. �

§4. Family of Trees F

Notation 4.1 The family of trees T1 is obtained from K1,∆ by attaching thrice a path on two

vertices to a pendant vertex, attaching twice a path on two vertices to i, 0 ≤ i ≤ ∆−3 pendant

vertices and attaching a path on two vertices to k, 0 ≤ k ≤ ∆− 1− i pendant vertices.

Notation 4.2 The family of trees T2 is obtained from K1,∆ by attaching twice a path on two

vertices to ∆− 1 pendant vertices and attaching a path Pk, k = 1 or 2 to a pendant vertex.

Notation 4.3 Let v be a vertex of degree ∆ in a star graphK1,∆ and letN(v) = {v1, v2, · · · , v∆}
The family of trees T (a) is obtained from K1,∆ by subdividing a, 2 ≤ a ≤ 5 times the edge vv1.

Notation 4.4 The family of trees T
(a)

1i is obtained from a tree in T (a), 2 ≤ a ≤ 4 by attaching

a path Pi, 2 ≤ i ≤ 4 to the vertex of distance two from center vertex v.The family of trees T
(a)

2i

is obtained from a tree in T (a), 4 ≤ a ≤ 5 by attaching a path Pi, 1 ≤ i ≤ 3 to the vertex v1.

Notation 4.5 The family of trees T
(a)

1(i,j,k) is obtained from a tree in T
(a)

1i by attaching a path

P3 to at most two times to some or all the vertices of v1, v2, · · · , vj , j ≤ ∆−3, attaching a path

P2 at most two times to some or all the vertices of vj+1, vj+2, · · · , vk, k ≤ ∆− 3 and attaching

a path P2 at most one time to the vertices vk+1, vk+2, · · · , v∆.

Notation 4.6 The family of trees T
(a)

2(i,j,k) is obtained from a tree in T
(a)

2i by attaching a path
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P3 to at most two times to some or all the vertices of v2, v3, · · · , vj , j ≤ ∆−3, attaching a path

P2 at most two times to some or all the vertices of vj+1, vj+2, · · · , vk, k ≤ ∆− 3 and attaching

a path P2 at most one time to the vertices vk+1, vk+2, · · · , v∆.

Notation 4.7 The family of trees T
(3)
i is obtained from a tree in T (3) by attaching a path

Pi, 1 ≤ i ≤ 3 to the vertex v1.The family of trees T
(3)

(i,j,k) is obtained from a tree in T
(3)
i by

attaching a path P3 to at most two times to some or all the vertices of v2, v3, · · · , vj , j ≤ ∆− 3,

attaching a path P2 at most two times to some or all the vertices of vj+1, vj+2, · · · , vk, k ≤ ∆−3

and attaching a path P2 at most one time to the vertices vk+1, vk+2, · · · , v∆.

Notation 4.8 The family of trees T
(3)
bc is obtained from a tree in T (3) by attaching the paths

Pb and Pc, 2 ≤ b ≤ 3, 2 ≤ c ≤ 3 to the vertex v1.The family of trees T
(3)

(bc,j,k) is obtained

from a tree in T
(3)
bc by attaching a path P3 to at most two times to some or all the vertices

of v2, v3, · · · , vj , j ≤ ∆ − 3, attaching a path P2 at most two times to some or all the vertices

of vj+1, vj+2, · · · , vk, k ≤ ∆ − 3 and attaching a path P2 at most one time to the vertices

vk+1, vk+2, · · · , v∆.

Notation 4.9 The family of trees T
(2)

23 is obtained from the tree T (2) by attaching the paths

P2 and P3, to the vertex v1.The family of trees T
(2)

(23,j,k) is obtained from a tree in T
(2)

23 by

attaching a path P3 to at most two times to some or all the vertices of v2, v3, · · · , vj , j ≤ ∆− 3,

attaching a path P2 at most two times to some or all the vertices of vj+1, vj+2, · · · , vk, k ≤ ∆−3

and attaching a path P2 at most one time to the vertices vk+1, vk+2, · · · , v∆.

Notation 4.10 The family of trees

F = T1 ∪T2 ∪T
(a)

1(i,j,k) ∪T
(a)

2(i,j,k) ∪T
(3)

(i,j,k) ∪T
(3)

(bc,j,k) ∪T
(2)

(23,j,k).

§5. Trees with γR = n−∆

Theorem 5.1 For a tree T , γR(T ) = n−∆ if and only if T ∈ F .

Proof Let T be a tree with γR(G) = n−∆. Let v ∈ V (T ) such that d(v) = ∆. It is clear

that ∆ < n− 1. Let N(v) = {v1, v2, · · · , v∆} and let T1 = 〈V −N [v]〉.

Case 1. E(T1) = φ.

Then every vertex of T1 is adjacent to a vertex in N(v). Suppose d(vi) ≥ 5 for some

i, 1 ≤ i ≤ ∆. Let V0 = (N(v) ∪ N(vi)) − {v, vi}, V1 = V − [N(v) ∪ N(vi)], V2 = {v, vi}. Then

f = (V0, V1, V2) is a Roman dominating function with w(f) ≤ n − (∆ + 5) + 4 = n − ∆ − 1

which is a contradiction. Hence d(vi) ≤ 4 for all i, 1 ≤ i ≤ ∆. Suppose d(v1) = d(v2) = 4. Let

N(v1) = {v, u1, u2, u3} and N(v2) = {v, w1, w2, w3}. Now we assume V0 = (N(v) ∪ N(v1) ∪
N(v2)) − {v, v1, v2}, V1 = V − [N(v) ∪ N(v1) ∪ N(v2)], V2 = {v, v1, v2}. Then f = (V0, V1, V2)

is a Roman dominating function with w(f) = n − (∆ + 4 + 3) + 6 = n − ∆ − 1 which is a

contradiction. Hence at most one vertex in N(v) has degree 4.
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Let d(v1) = 4 and d(vi) ≤ 3, 2 ≤ i ≤ ∆. Suppose d(vi) = 3 for all i, 2 ≤ i ≤ ∆. Then

f = (V −N(v), φ,N(v))

is a Roman dominating function with w(f) = 2∆ = n−∆− 2 which is a contradiction. Hence

d(vi) = 3 for all i, 2 ≤ i ≤ ∆− 1 and d(v∆) ≤ 2. Then

f =

(V −N(v), φ,N(v)) if d(v∆) = 2

(V −N(v), {v∆}, N(v)− {v∆}) if d(v∆) = 1

is a Roman dominating function with w(f) = n − ∆ − 1 which is a contradiction. Hence at

most ∆ − 3 vertices of N(v) have degree 3. Thus T is isomorphic to a tree obtained from

K1,∆ by attaching thrice a path on two vertices to a pendant vertex, attaching twice a path

on two vertices to i, 0 ≤ i ≤ ∆ − 3 pendant vertices and attaching a path on two vertices to

k, 0 ≤ k ≤ ∆− 1− i pendant vertices. Thus T ∈ T1.

Suppose d(vi) ≤ 3 for all i, 1 ≤ i ≤ ∆. If d(vi) = 3 for all i, 1 ≤ i ≤ ∆. Then f =

(V − N(v), φ,N(v)) is a Roman dominating function with w(f) = 2∆ = n −∆ − 1, which is

a contradiction. Hence at least one vertex in N(v) has degree less than 3. If more than two

vertices of N(v) have degree less than 3 then by proof as in case 1 we get a contradiction.

Hence d(vi) = 3 for all i, 1 ≤ i ≤ ∆− 1. Thus T is isomorphic to a tree obtained from K1,∆ by

attaching twice a path on two vertices to ∆−1 pendant vertices and attaching a path Pk, k = 1

or 2 to a pendant vertex. Thus T ∈ T2.

Case 2. E(T1) 6= φ.

Let G1 be any nontrivial component of T1 and we may assume without loss of generality

v1 ∈ N(V (G1)). Suppose G1 contains more than two pendant vertices of T . Let w1, w2, w3 ∈
V (G1) such that d(wi) = 1, 1 ≤ i ≤ 3. Then there is a vertex u ∈ G1 such that dG1(u) ≥ 3. Let

x1, x2, x3 ∈ N(u) ∩ V (G1). Then

f = (N(v) ∪ {x1, x2, x3}, V − (N [v] ∪ {x1, x2, x3}, {u, v})

is a Roman dominating function of T with w(f) = n− (∆ + 1 + 4) + 4 = n−∆− 1, which is a

contradiction. Hence G1 is a path.

Subcase 2.1 |V (G1) ∩ l(T )| = 2.

Let w1, w2 ∈ V (G1) such that dT (wi) = 1. Let G = (w1, u1, u2, · · · , uk, w2). Suppose

d(v1, G1) ≥ 2. Let (v1, x1, x2, · · · , xi, uj), j ≤ k, be the shortest v1 −G1 path. Then

f = (N(v) ∪ {xi, uj−1, uj+1}, V − (N [v] ∪ {xi, uj−1, uj+1}, {uj , v})

is a Roman dominating function of T with w(f) = n − ∆ − 1, which is a contradiction.

Hence d(v1, G1) = 1. Thus v1uj ∈ E. Suppose d(v1, wi) ≥ 5, i = 1 or 2. Let V0 = N(v) ∪
{uj−1, uj+1, uj+2, uj+4}, V2 = {v, uj , uj+3}, V1 = V − (V0 ∪ V2). Then f = (V0, V1, V2) is a Ro-

man dominating function with w(f) = n− (∆+4+3)+6 = n−∆−1, which is a contradiction.
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Hence G1 = (w1, u1, u2, · · · , ui, w2), i ≤ 5. If i = 5 then v1u3 ∈ E. If i = 4 then v1u2 ∈ E. If

i = 3 then either v1u1 ∈ E or v1u2 ∈ E. If i = 2 then v1u1 ∈ E.

Let G2(6= G1) be a nontrivial component of T1. If G2 contains more than one pendant

vertex of T then there is a vertex y1 ∈ G2 such that dG2
(y1) ≥ 2. Let y2, y3 ∈ N(y1) ∩ V (G2).

We assume V0 = N(v)∪{uj−1, uj+1, y2, y3}, V2 = {v, uj , y1} and V1 = V − (V0 ∪V2). Then f =

(V0, V1, V2) is a Roman dominating function of T with w(f) = n−∆−1, which is a contradiction.

Hence every nontrivial component of T1 except G1 is a path. Let G2 = (x1, x2, · · · , xr) such that

vi ∈ N(x1) for some i. Suppose r ≥ 3. Let V0 = N(v) ∪ {uj−1, uj+1, x1, x3}, V2 = {v, uj , x2}
and V1 = V − (V0 ∪ V2). Then f = (V0, V1, V2) is a Roman dominating function of T with

w(f) = n − ∆ − 1, which is a contradiction. Hence r = 2. If all the components of T1 are

nontrivial then by similar arguments as above we get γR ≤ n−∆− 1, which is a contradiction

and hence T ∈ T
(a)

1(i,j,k).

Subcase 2.2 |V (G1) ∩ l(T )| = 1.

Let G1 = (u1, u2, · · · , ur, w1) with d(w1) = 1 and let v1u1 ∈ E. If r ≥ 5 then f =

(N(v) ∪ {u1, u3, u4, u6}, V − (N [v] ∪ {u1, u2, u3, u4, u5, u6}, {v, u2, u5}) is a Roman dominating

function with w(f) = n−(∆+1+6)−6 = n−∆−1, which is a contradiction. Hence r ≤ 4. Let

3 ≤ r ≤ 4. Suppose d(v1) ≥ 4. Let u1, x1, x2 ∈ N(v1) and let V0 = [N(v)∪{x1, x2, u1, u2, u4}]−
{v1}, V1 = V −[N [v]∪{x1, x2, u1, u2, u3, , u4}, V2 = {v, v1, u3}. Then f = (V0, V1, V2) is a Roman

dominating function with w(f) = n − [∆ + 1 + 6] + 6 = n −∆ − 1, which is a contradiction.

Hence d(v1) = 2 or 3. If d(v1) = 3 then there exists a path Pj(6= G1), j ≥ 1 attached to

v1. Suppose Pj = (v1, x1, x2, · · · , xj), j ≥ 3. Now, let V0 = N(v) ∪ {u1, u3, x1, x3}, V1 = V −
[N [v] ∪ {u1, u2, u3, x1, x2, x3}], V2 = {v, u2, x2}. Then f = (V0, V1, V2) is a Roman dominating

function with w(f) = n − ∆ − 1, which is a contradiction. Hence j ≤ 2. Hence by similar

arguments as in case 1 we have T ∈ T
(a)

2(i,j,k). If r = 2 then by similar arguments as above we

have T ∈ T
(3)

(i,j,k) ∪T
(3)

(bc,j,k). If r = 1 then T ∈ T
(2)

(23,j,k). The converse is obvious. �
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Abstract: For a graph G, the M-polynomial is defined as

M(G;x, y) =
∑

δ≤i≤j≤∆

mij(G)xiyj ,

where mij , (i, j ≥ 1), is the number of edges uv of G such that degG(u) = i and degG(v) = j;

and δ and ∆ are the minimum and maximum degree of G, respectively. The topological

indices play an important role in determining physio-chemical properties of chemical graphs,

among them the degree-based topological indices can be driven from an algebraic formula

corresponding to the chemical graphs called M-polynomial. In this paper, we compute the

closed forms of M-polynomial for cycle-star graph and the line graph of cycle-star graph.

Further, we give the graphical representation of M-polynomial and derive some degree-based

topological indices from M-polynomial.

Key Words: M-polynomial, degree-based topological indices, cycle-star graph, line graph.
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§1. Introduction

For all terms and definitions, not defined specifically in this paper, we refer to [5]. Throughout

this paper, by a graph G = (V,E), we mean a simple, undirected, finite graph of order n and

size m. Let V (G) and E(G) denote the vertex set and edge set of G, respectively. A chemical

graph (or, molecular graph) is a labeled graph whose vertices and edges correspond to the atoms

and chemical bonds of the compound, respectively. The numerical parameters of a graph which

describe its topology are said to be the topological indices or graph invariants. The topological

indices of a chemical or molecular graph helps us to investigate the physio-chemical properties

and boiling activities.

The study of topological indices was first initiated by H. Wiener [13] in the year 1947. He

introduced Weiner index in order to understand the correlation of the measured properties of

1Received March 1, 2023, Accepted June 6, 2023.
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molecules in a compound with their structural properties. In the year 1972, the Weiner index

was interpreted by Hosoya [6] using distances between vertices in a graph. Over the last decade,

various topological indices were introduced and studied by different authors [1,3, 4].

There are many algebraic polynomials such as Hosoya polynomial (or, Weiner polynomial),

which plays an important role in determining distance-based topological indices. Among many

other algebraic polynomials, M-polynomial [2] introduced in 2015 plays an important role in

determining the closed form of many degree-based topological indices. Related papers on finding

topological indices using M-polynomials can be found in [7,8,9,10,11].

Sedlar [12] introduced the concept of cycle-star graph while studying additively weighted

Harary index for extremal unicyclic graphs.

Definition 1.1 A cycle-star graph, written CSk,n−k, is a graph with n vertices consisting of

the cycle graph of length k and n− k leafs appended to the same vertex of the cycle.

Clearly, cycle-star graphs are the unicyclic graphs (i.e., connected graphs containing exactly

one cycle). Recently, the topological indices of unicyclic graphs attracted much attention.

Studies along this line include general multiplicative Zagreb indices of unicyclic graphs, Zagreb

eccentricity indices of unicyclic graphs, Maximal hyper-Zagreb index of unicyclic graphs with

a given order, and matching number. However, the studies on the topological indices of the

intersection graph on the vertex set of cycle-star graph was not attempted. In this paper we

have made an attempt to fill this gap and study the topological indices of the cycle-star graph

and line graph of the cycle-star graph through a polynomial approach.

The cycle-star graphs CS3,4 and CS4,3 are shown in Figure 1.

Figure 1

§2. Methodology

We first divide the edge set of cycle-star graph and the line graph of cycle-star graph into

different classes based on the degree of end vertices. With the help of this edge division, we

compute the M-polynomial of cycle-star graph and the line graph of cycle-star graph. Further,

by using M-polynomial, we compute the degree-based topological indices as listed in Table 1.

The 3-D graph of M-polynomials are sketched by using MATLAB.
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§3. Preliminaries

Definition 3.1 For a graph G, the M-polynomial is defined as

M(G;x, y) =
∑

δ≤i≤j≤∆

mij(G)xiyj ,

where mij , (i, j ≥ 1), is the number of edges uv of G such that degG(u) = i and degG(v) = j;

and δ and ∆ are the minimum and maximum degree of G, respectively.

Table 1. Operations to derive degree-based topological indices from M-polynomial

Notation Topological Index Derivation from M(G;x, y)

M1(G) First Zagreb index (Dx +Dy)(M(G;x, y))|x=y=1

M2(G) Second Zagreb index (DxDy)(M(G;x, y))|x=y=1

mM2(G) Second modified Zagreb index (SxSy)(M(G;x, y))|x=y=1

Rα(G) Randić index (Dα
xD

α
y )(M(G;x, y))|x=y=1

RRα(G) Inverse Randić index (SαxS
α
y )(M(G;x, y))|x=y=1

SSD(G) Symmetric division index (DxSy +DySx)(M(G;x, y))|x=y=1

H(G) Harmonic index 2SxJ(M(G;x, y))|x=1

I(G) Inverse sum index SxJDxDy(M(G;x, y))|x=1

A(G) Augmented Zagreb index S3
xQ−2JD

3
xD

3
y(M(G;x, y))|x=1

Here,

M(G;x, y) = f(x, y), Dx(f(x, y)) = x
∂f(x, y)

∂x
, Dy(f(x, y)) = y

∂f(x, y)

∂y
,

Sx(f(x, y)) =

∫ x

o

f(t, y)

t
dt, Sy(f(x, y)) =

∫ y

o

f(x, t)

t
dt,

J(f(x, y)) = f(x, x) and Qαf(x, y) = xαf(x, y).

are the operators.

As discussed in [2], each of these topological indices can be found using M-polynomials as

given in Table 1.

§4. M-Polynomial of Cycle-Star Graph CSk,n−k

In this section, we find the M-polynomial of cycle-star graph CSk,n−k.

Theorem 4.1 Let G = CSk,n−k be the cycle-star graph. Then the M-polynomial of G is

M(G;x, y) = (k − 2)x2y2 + 2x2yn−k+2 + (n− k)xyn−k+2.
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Proof Let G = CSk,n−k be the cycle-star graph. It is easy to see from Figure 1 that

|V (G)| = n and |E(G)| = k+ n− k = n. Since each of the vertices of G is of degree either 1 or

2 or n− k + 2, the vertex set of G has three partitions with respect to degree:

V1(G) = {u ∈ V (G) : degG(u) = 1};
V2(G) = {u ∈ V (G) : degG(u) = 2};
V3(G) = {u ∈ V (G) : degG(u) = n− k + 2}.

Clearly, |V1(G)| = n− k; |V2(G)| = k − 1; |V3(G)| = 1.

Further, the edge set of G has three partitions based on the degree of end vertices.

E1(G) = {e = uv ∈ E(G) : degG(u) = 2, degG(v) = 2};
E2(G) = {e = uv ∈ E(G) : degG(u) = 2, degG(v) = n− k + 2};
E3(G) = {e = uv ∈ E(G) : degG(u) = 1, degG(v) = n− k + 2}.
Clearly, |E1(G)| = k − 2; |E2(G)| = 2; |E3(G)| = n − k. Now, from the definition of

M-polynomial,

M(G;x, y) =
∑

δ≤i≤j≤∆

mij(G)xiyj

= m22(G)x2y2 +m2(n−k+2)(G)x2yn−k+2 +m1(n−k+2)(G)xyn−k+2

= (k − 2)x2y2 + 2x2yn−k+2 + (n− k)xyn−k+2.

This completes the proof. �

We now compute some degree-based topological indices of the cycle-star graph using this

M-polynomial.

Theorem 4.2 Let G = CSk,n−k be the cycle-star graph. Then,

M1(G) = n2 + (5− 2k)n+ k2 − k,

M2(G) = n2 + (6− 2k)n+ k2 − 2k,

mM2(G) =
(k + 2)n− k2

4n− 4k + 8
,

Rα(G) = 4α(n− k + 2) + (n− k)(n− k + 2) + 4α(k − 2),

RRα(G) =
1

n− k + 2
+ 4α(n− 4) + (k − 2)n− k2 + 4k − 4,

SSD(G) =
n3 + (5− 3k)n2 + (3k2 − 8k + 5)n− k3 + 3k2 − k

n− k + 2
,

H(G) =
2
(
(k + 2)n2 + (−2k2 + 11k − 14)n+ (16− 8k)n+ 8n+ k3 − 5k2 + 2k

)
4n2 + (28− 8k)n+ 4k2 − 28k + 48

,

I(G) =
n3 + (8− 2k)n2 + (k2 − 9k + 14)n+ k2 − 2k

n2 + (7− 2k)n+ k2 − 7k + 12
,

A(G) =
n4 + (4k + 6)n3 + (−18k2 + 6k + 12)n2 + (20k3 − 30k2 + 8)n− 7k4 + 18k3 − 12k2

n3 + (3− 3k)n2 + (3k2 − 6k + 3)n− k3 + 3k2 − 3k + 1
.
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Proof From Theorem 4.1, we have

M(G;x, y) = f(x, y) = (k − 2)x2y2 + 2x2yn−k+2 + (n− k)xyn−k+2.

Then, we have the following:

Dx(f(x, y)) = 4x2yn−k+2 + (n− k)xyn−k+2 + 2(k − 2)x2y2,

Dy((f(x, y)) = 2(n− k + 2)x2yn−k+2 + (n− k)(n− k + 2)xyn−k+2 + 2(k − 2)x2y2,

(DyDx)(f(x, y)) = 4(n− k + 2)x2yn−k+2 + (n− k)(n− k + 2)xyn−k+2 + 4(k − 2)x2y2,

Sx(f(x, y)) = x2yn−k+2 + (n− k)xyn−k+2 + 1
2 (k − 2)x2y2,

Sy(f(x, y)) = 1
2n−2k+4

(
4x2yn−k+2 + (2n− 2k)xyn−k+2 + ((k − 2)n− k2 + 4k − 4)x2y2

)
,

SxSy(f(x, y)) = 1
4n−4k+8

(
4x2yn−k+2 + (4n− 4k)xyn−k+2 + ((k − 2)n− k2 + 4k − 4)x2y2

)
,

SyDx(f(x, y)) = 1
n−k+2

(
(4x+ n− k)xyn−k+2 + ((k − 2)n− k2 + 4k − 4)x2y2

)
,

SxDy(f(x, y)) = (n−k+ 2)x2yn−k+2 +
(
n2 + (2− 2k)n+ k2 − 2k

)
xyn−k+2 + (k−2)x2y2,

2SxJ(f(x, y)) =
2((k − 2)n2 + (−2k2 + 11k − 14)n+ k3 − 9k2 + 26k − 24)x4

4n2 + (28− 8k)n+ 4k2 − 28k + 48

+
(8n− 8k + 24)xn+4−k + (4n2 + (16− 8k)n+ 4k2 − 16k)xn+3−k

4n2 + (28− 8k)n+ 4k2 − 28k + 48
,

SxJDxDy(f(x, y)) =

(
(k − 2)n2 + (−2k2 + 11k − 14)n+ k3 − 9k2 + 26k − 24

)
x4

n2 + (7− 2k)n+ k2 − 7k + 12

+

(
4n2 + (20− 8k)n+ 4k2 − 20k + 24

)
xn+4−k

n2 + (7− 2k)n+ k2 − 7k + 12

+

(
n3 + (6− 3k)n2 + (3k2 − 12k + 8)n− k3 + 6k2 − 8k

)
xn+3−k

n2 + (7− 2k)n+ k2 − 7k + 12
,

S3
xQ−2JD

3
xD

3
y(f(x, y)) =

(
(8k − 16)n3 + (−24k2 + 72k − 48)n2 + (24k3 − 96k2 + 120k − 48)n

)
x2

n3 + (3− 3k)n2 + (3k2 − 6k + 3)n− k3 + 3k2 − 3k + 1

+

(
−8k4 + 40k3 − 72k2 + 56k − 16

)
x2

n3 + (3− 3k)n2 + (3k2 − 6k + 3)n− k3 + 3k2 − 3k + 1

+

(
16n3 + (48− 48k)n2 + (48k2 − 96k + 48)n

)
xn−k+2

n3 + (3− 3k)n2 + (3k2 − 6k + 3)n− k3 + 3k2 − 3k + 1

+

(
−16k3 + 48k2 − 48k + 16

)
xn−k+2

n3 + (3− 3k)n2 + (3k2 − 6k + 3)n− k3 + 3k2 − 3k + 1

+

(
n4 + (6− 4k)n3 + (6k2 − 18k + 12)n2 + (−4k3 + 18k2 − 24k + 8)n

)
xn−k+1

n3 + (3− 3k)n2 + (3k2 − 6k + 3)n− k3 + 3k2 − 3k + 1

+

(
k4 − 6k3 + 12k2 − 8k

)
xn−k+1

n3 + (3− 3k)n2 + (3k2 − 6k + 3)n− k3 + 3k2 − 3k + 1
.

Now, we have the following from Table 1:
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1. First Zagreb index

M1(G) = (Dx +Dy)(f(x, y))|x=y=1 = n2 + (5− 2k)n+ k2 − k.

2. Second Zagreb index

M2(G) = (DxDy)(f(x, y))|x=y=1 = n2 + (6− 2k)n+ k2 − 2k.

3. Second modified Zagreb index

mM2(G) = (SxSy)(f(x, y))|x=y=1 =
(k + 2)n− k2

4n− 4k + 8
.

4. Randić index

Rα(G) = (Dα
xD

α
y )(f(x, y))|x=y=1 = 4α(n− k + 2) + (n− k)(n− k + 2) + 4α(k − 2).

5. Inverse Randić index

RRα(G) = (SαxS
α
y )(f(x, y))|x=y=1

=
1

n− k + 2
+ 4α(n− 4) + (k − 2)n− k2 + 4k − 4.

6. Symmetric division index

SSD(G) = (DxSy +DySx)(f(x, y))|x=y=1

=
n3 + (5− 3k)n2 + (3k2 − 8k + 5)n− k3 + 3k2 − k

n− k + 2
.

7. Harmonic index

H(G) = 2SxJ(f(x, y))|x=1

=
2
(
(k + 2)n2 + (−2k2 + 11k − 14)n+ (16− 8k)n+ 8n+ k3 − 5k2 + 2k

)
4n2 + (28− 8k)n+ 4k2 − 28k + 48

.

8. Inverse sum index

I(G) = SxJDxDy(f(x, y))|x=1 =
n3 + (8− 2k)n2 + (k2 − 9k + 14)n+ k2 − 2k

n2 + (7− 2k)n+ k2 − 7k + 12
.

9. Augmented Zagreb index

A(G) = S3
xQ−2JD

3
xD

3
y(f(x, y))|x=1

=
n4 + (4k + 6)n3 + (−18k2 + 6k + 12)n2 + (20k3 − 30k2 + 8)n− 7k4 + 18k3 − 12k2

n3 + (3− 3k)n2 + (3k2 − 6k + 3)n− k3 + 3k2 − 3k + 1
.

This completes the proof. �
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Figure 2. Plot of M-polynomial of the cycle-star graph CS7,7

§5. M-Polynomial of Line Graph of Cycle-Star Graph CSk,n−k

There are many graph operators with which one can construct a new graph from a given graph,

such as the line graphs, total graphs, middle graphs, and their generalizations.

Definition 5.1 A line graph of a graph G, written L(G), is the graph whose vertices are the

edges of G, with two vertices of L(G) adjacent whenever the corresponding edges of G have a

vertex in common.

In the next Theorem, we find the M-polynomial of the line graph of cycle-star graph.

Theorem 5.1 Let G = CSk,n−k be the cycle-star graph. Then the M-polynomial of L(G) is

M(L(G);x, y) = (k − 3)x2y2 + 2x2yn−k+2 + xn−k+2yn−k+2 + 2(n− k)xn−k+1yn−k+2

+

(
n− k

2

)
xn−k+1yn−k+1.

Proof Let G = CSk,n−k be the cycle-star graph. Then, |V (L(G))| = n and |E(L(G))| =
1
2

(
n2 + k2 − 2nk + 3n− k

)
. Since each of the vertices of L(G) is of degree either 2 or n−k+ 1
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or n− k + 2, the vertex set of L(G) has three partitions with respect to degree:

V1(L(G)) = {u ∈ V (L(G)) : degL(G)(u) = 2};

V2(L(G)) = {u ∈ V (L(G)) : degL(G)(u) = n− k + 1};

V3(L(G)) = {u ∈ V (L(G)) : degL(G)(u) = n− k + 2}.

Clearly, |V1(L(G))| = k − 2; |V2(L(G))| = n− k; |V3(L(G))| = 2.

Furthermore, the edge set of L(G) has five partitions based on the degree of the end

vertices.

E1(L(G)) = {e = uv ∈ E(L(G)) : degL(G)(u) = 2, degL(G)(v) = 2};

E2(L(G)) = {e = uv ∈ E(L(G)) : degL(G)(u) = 2, degL(G)(v) = n− k + 2};

E3(L(G)) = {e = uv ∈ E(L(G)) : degL(G)(u) = n− k + 2, degL(G)(v) = n− k + 2};

E4(L(G)) = {e = uv ∈ E(L(G)) : degL(G)(u) = n− k + 1, degL(G)(v) = n− k + 2};

E5(L(G)) = {e = uv ∈ E(L(G)) : degL(G)(u) = n− k + 1, degL(G)(v) = n− k + 1}.

Clearly,

|E1(L(G))| = k − 3, |E2(L(G))| = 2, |E3(L(G))| = 1,

|E4(L(G))| = 2(n− k) and |E5(L(G))| =
(
n− k

2

)
.

Now, from the definition of M-polynomial,

M(L(G);x, y) =
∑

δ≤i≤j≤∆

mij(G)xiyj = m22(L(G))x2y2

+m2(n−k+2)(L(G))x2yn−k+2 +m(n−k+2)(n−k+2)(L(G))xn−k+2yn−k+2

+m(n−k+1)(n−k+2)(G)xn−k+1yn−k+2

+m(n−k+1)(n−k+1)(L(G))xn−k+1yn−k+1

= (k − 3)x2y2 + 2x2yn−k+2 + xn−k+2yn−k+2

+2(n− k)xn−k+1yn−k+2 +

(
n− k

2

)
xn−k+1yn−k+1

This completes the proof. �

We now compute some degree-based topological indices of the line graph of cycle-star graph

using this M-polynomial.
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Theorem 5.2 Let G = CSk,n−k be the cycle-star graph. Then,

M1(L(G)) = 4n2 + (−8k + 2a+ 10)n+ 4k2 + (−2a− 6)k + 2a,

M2(L(G)) = 2n3 + (−6k + a+ 7)n2 + (6k2 + (−2a− 14)k + 2a+ 12)n− 2k3

+(a+ 7)k2 + (−2a− 8)k + a,

mM2(G) =
A1

B1
+
A2

B2
,

Rα(G) = 4α(n− k + 2) + (n− k)(n− k + 2) + 4α(k − 2),

RRα(G) =
1

n− k + 2
+ 4α(n− 4) + (k − 2)n− k2 + 4k − 4,

SSD(G) =
C1

D1
,

H(G) =
E1

F1
+
E2

F2
,

I(G) =
G1

H1
+
G2

H2
,

where, A1 = (k− 3)n4 + (−4k2 + 18k− 6)n3 + (6k3− 36k2 + 31k+ 4a+ 5)n2, B1 = 4n4 + (24−
16k)n3 +(24k2−72k+52)n2 +(−16k3 +72k2−104k+48)n+4k4−24k3 +52k2−48k+16, A2 =

(−4k4+30k3−44k2+(2−8a)k+16a+8)n+k5−9k4+19k3+(4a−7)k2+(−16a−4)k+16a, B2 =

4n4+(24−16k)n3+(24k2−72k+52)n2+(−16k3+72k2−104k+48)n+4k4−24k3+52k2−48k+16,

C1 = 5n3+(−13k+2a+13)n2+(11k2+(−4a−20)k+6a+10)n−3k3+(2a+7)k2+(−6a−6)k+4a,

D1 = n2 + (3 − 2k)n + k2 − 3k + 2, E1 = (2k + 2)n4 + (−8k2 + 9k + 4a + 25)n3 + (12k3 −
39k2 + (−12a−26)k+ 30a+ 63)n2, F1 = 4n4 + (34−16k)n3 + (24k2−102k+ 98)n2 + (−16k3 +

102k2 − 196k + 116)n + 4k4 − 34k3 + 98k2 − 116k + 48, E2 = (−8k4 + 43k3 + (12a− 23)k2 +

(−60a − 68)k + 68a + 40)n + 2k5 − 15k4 + (24 − 4a)k3 + (30a + 5)k2 + (−68a − 16)k + 48a,

F2 = 4n4 + (34 − 16k)n3 + (24k2 − 102k + 98)n2 + (−16k3 + 102k2 − 196k + 116)n + 4k4 −
34k3 + 98k2− 116k+ 48, G1 = 4n4 + (−16k+ 2a+ 30)n3 + (24k2 + (−6a− 86)k+ 13a+ 75)n2,

H1 = 4n2+(22−8k)n+4k2−22k+24, G2 = (−16k3+(6a+82)k2+(−26a−128)k+23a+56)n+

4k4 +(−2a−26)k3 +(13a+53)k2 +(−23a−32)k+12a, H2 = 4n2 +(22−8k)n+4k2−22k+24.

Proof From Theorem 5.1, we have

M(L(G);x, y) = (k − 3)x2y2 + 2x2yn−k+2 + xn−k+2yn−k+2

+2(n− k)xn−k+1yn−k+2 + axn−k+1yn−k+1,

where a =
(
n−k

2

)
. Then, we have the following:

Dx(f(x, y)) = (n− k + 2)xn−k+2yn−k+2 + 2(n− k)(n− k + 1)xn−k+1yn−k+2

+4x2yn−k+2 + a(n− k + 1)xn−k+1yn−k+1 + 2(k − 3)x2y2;

Dy((f(x, y)) = (n− k + 2)xn−k+2yn−k+2 + 2(n− k)(n− k + 2)xn−k+1yn−k+2

+2(n− k + 2)x2yn−k+2 + a(n− k + 1)xn−k+1yn−k+1 + 2(k − 3)x2y2;
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(DyDx)(f(x, y)) = (n− k + 2)2xn−k+2yn−k+2

+2(n− k)(n− k + 1)(n− k + 2)xn−k+1yn−k+2

+4(n− k + 2)x2yn−k+2 + a(n− k + 1)2xn−k+1yn−k+1 + 4(k − 3)x2y2;

Sx(f(x, y)) =
(k − 3)x2y2

2
+ x2yn−k+2 +

xn−k+2yn−k+2

n− k + 2

+
2(n− k)xn−k+1yn−k+2

n− k + 1
+ a

xn−k+1yn−k+1

n− k + 1
;

Sy(f(x, y)) =
(k − 3)x2y2

2
+

2x2yn−k+2

n− k + 2
+
xn−k+2yn−k+2

n− k + 2

+
2(n− k)xn−k+1yn−k+2

n− k + 2
+ a

xn−k+1yn−k+1

n− k + 1
;

SxSy(f(x, y)) =
(k − 3)x2y2

4
+
x2yn−k+2

n− k + 2
+
xn−k+2yn−k+2

(n− k + 2)2

+
2(n− k)xn−k+1yn−k+2

(n− k + 1)(n− k + 2)
+ a

xn−k+1yn−k+1

(n− k + 1)2
;

SyDx(f(x, y)) =
I

(n− k + 2)yk
;

SxDy(f(x, y)) =
((k − 3)n− k2 + 4k − 3)xk+2y2

(n− k + 1)x2
+

J

(n− k + 1)x2
;

where, I = x1−k(((k− 3)n− k2 + 5k− 6)xk+1yk+2 + yn((4xk+1 + xn((n− k+ 2)x+ 2n2 + (2−
4k)n+2k2−2k))y2 +(an−ak+2a)xny)), J = yn(((n2 +(3−2k)n+k2−3k+2)xk+2 +xn((n−
k + 1)x2 + (2n2 + (4− 4k)n+ 2k2 − 4k)x))y + (an− ak + a)xn+1),

2SxJ(f(x, y)) =
K1

L1
+
K2

L2
+
K3

L3
+
K4

L4
+
K5

L5
+
K6

L6
+
K7

L7
,

where, K1 = 2((16n3 + (72− 48k)n2 + (48k2− 144k+ 104)n− 16k3 + 72k2− 104k+ 48)xn+k+4,

L1 = (8n4 +αn3 +βn2 +γn+ 8k4− 68k3 + 196k2− 232k+ 96)x2k, K2 = ((2k− 6)n4 + (−8k2 +

41k− 51)n3 + (12k3− 87k2 + 202k− 147)n2)x2k+4, L2 = (8n4 +αn3 +βn2 + γn+ 8k4− 68k3 +

196k2 − 232k + 96)x2k, K3 = ((−8k4 + 75k3 − 251k2 + 352k − 174)n + 2k5 − 23k4 + 100k3 −
205k2 + 198k− 72)x2k+4), L3 = (8n4 + αn3 + βn2 + γn+ 8k4 − 68k3 + 196k2 − 232k+ 96)x2k,

K4 = x2n((4n3 +(26−12k)n2 +(12k2−52k+46)n−4k3 +26k2−46k+24)x4, L4 = (8n4 +αn3 +

βn2+γn+8k4−68k3+196k2−232k+96)x2k, K5 = (8n4+(56−32k)n3+(48k2−168k+112)n2+

(−32k3+168k2−224k+64)n)x3, L5 = (8n4+αn3+βn2+γn+8k4−68k3+196k2−232k+96)x2k,

K6 = (8k4−56k3 +112k2−64k)x3, L6 = (αn3 +βn2 +γn+8k4−68k3 +196k2−232k+96)x2k,

K7 = (4an3 + (30a − 12ak)n2 + (12ak2 − 60ak + 68a)n − 4ak3 + 30ak2 − 68ak + 48a)x2),

L7 = (8n4 + αn3 + βn2 + γn + 8k4 − 68k3 + 196k2 − 232k + 96)x2k, α = 68 − 32k, β =



48 Shilpa H. C, Gayathri K, Nagesh H. M and Narahari N

48k2 − 204k + 196, γ = −32k3 + 204k2 − 392k + 232.

SxJDxDy(f(x, y)) =
(16n2 + (56− 32k)n+ 16k2 − 56k + 48)xn+k+4

(4n2 + (22− 8k)n+ 4k2 − 22k + 24)x2k

+
M1

N1
+
M2

N2
+
M3

N3
+
M4

N4
+
M5

N5
,

where, M1 = ((4k − 12)n2 + (−8k2 + 46k − 66)n+ 4k3 − 34k2 + 90k − 72)x2k+4, N1 = (4n2 +

(22−8k)n+4k2−22k+24)x2k, M2 = x2n((2n3 +(15−6k)n2 +(6k2−30k+34)n−2k3 +15k2−
34k+ 24)x4, N2 = (4n2 + (22− 8k)n+ 4k2− 22k+ 24)x2k, M3 = 4n4 + (28− 16k)n3 + (24k2−
84k+ 56)n2 + (−16k3 + 84k2−112k+ 32)n, N3 = (4n2 + (22−8k)n+ 4k2−22k+ 24)x2k, M4 =

4k4−28k3+56k2−32k, N4 = (4n2+(22−8k)n+4k2−22k+24)x2k, M5 = (2an3+(13a−6ak)n2+

(6ak2−26ak+23a)n−2ak3+13ak2−23ak+12a)x2), N5 = (4n2+(22−8k)n+4k2−22k+24)x2k.

Now, we have the following from Table 1:

1. First Zagreb index

M1(L(G)) = (Dx +Dy)(f(x, y))|x=y=1 = 4n2 + (−8k + 2a+ 10)n+ 4k2 + (−2a− 6)k + 2a.

2. Second Zagreb index

M2(L(G)) = (DxDy)(f(x, y))|x=y=1 = 2n3 + (−6k + a+ 7)n2

+(6k2 + (−2a− 14)k + 2a+ 12)n− 2k3 + (a+ 7)k2 + (−2a− 8)k + a.

3. Second modified Zagreb index

mM2(L(G)) = (SxSy)(f(x, y))|x=y=1 =
O1

P1
+
O2

P2
,

where, O1 = (k− 3)n4 + (−4k2 + 18k− 6)n3 + (6k3− 36k2 + 31k+ 4a+ 5)n2, P1 = 4n4 + (24−
16k)n3 + (24k2 − 72k + 52)n2 + (−16k3 + 72k2 − 104k + 48)n+ 4k4 − 24k3 + 52k2 − 48k + 16,

O2 = (−4k4+30k3−44k2+(2−8a)k+16a+8)n+k5−9k4+19k3+(4a−7)k2+(−16a−4)k+16a,

P2 = 4n4 + (24− 16k)n3 + (24k2 − 72k+ 52)n2 + (−16k3 + 72k2 − 104k+ 48)n+ 4k4 − 24k3 +

52k2 − 48k + 16.

4. Randić index

Rα(L(G)) = (Dα
xD

α
y )(f(x, y))|x=y=1 = (n− k + 2)2 + 2α(n− k)(n− k + 1)(n− k + 2)

+4α(n− k + 2) + a(n− k + 1)2 + 4α(k − 3).

5. Inverse Randić index

RRα(L(G)) = (SαxS
α
y )(f(x, y))|x=y=1 =

k − 3

4α
+

1

n− k + 2
+

1

(n− k + 2)2

+
2α(n− k)

(n− k + 1)(n− k + 2)
+ a

1

(n− k + 1)2
.
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6. Symmetric division index

SSD(L(G)) = (DxSy +DySx)(f(x, y))|x=y=1

=
Q

n2 + (3− 2k)n+ k2 − 3k + 2
,

where Q = 5n3 + (−13k + 2a+ 13)n2 + (11k2 + (−4a− 20)k + 6a+ 10)n− 3k3 + (2a+ 7)k2 +

(−6a− 6)k + 4a.

7. Harmonic index

H(L(G)) = 2SxJ(f(x, y))|x=1 =
R1

S1
+
R2

S2
,

where, R1 = (2k+ 2)n4 + (−8k2 + 9k+ 4a+ 25)n3 + (12k3−39k2 + (−12a−26)k+ 30a+ 63)n2,

S1 = 4n4 + (34 − 16k)n3 + (24k2 − 102k + 98)n2 + (−16k3 + 102k2 − 196k + 116)n + 4k4 −
34k3 + 98k2 − 116k + 48, R2 = (−8k4 + 43k3 + (12a − 23)k2 + (−60a − 68)k + 68a + 40)n +

2k5−15k4 + (24−4a)k3 + (30a+ 5)k2 + (−68a−16)k+ 48a, S2 = 4n4 + (34−16k)n3 + (24k2−
102k + 98)n2 + (−16k3 + 102k2 − 196k + 116)n+ 4k4 − 34k3 + 98k2 − 116k + 48.

8. Inverse sum index

I(L(G)) = SxJDxDy(f(x, y))|x=1 =
U1

V1
+
U2

V2
,

where, U1 = 4n4 + (−16k+ 2a+ 30)n3 + (24k2 + (−6a− 86)k+ 13a+ 75)n2, V1 = 4n2 + (22−
8k)n+ 4k2− 22k+ 24, U2 = (−16k3 + (6a+ 82)k2 + (−26a− 128)k+ 23a+ 56)n+ 4k4 + (−2a−
26)k3 + (13a+ 53)k2 + (−23a− 32)k + 12a, V2 = 4n2 + (22− 8k)n+ 4k2 − 22k + 24.

This completes the proof. �

Figure 3. Plot of M-polynomial of the line graph of cycle-star graph CS7,7



50 Shilpa H. C, Gayathri K, Nagesh H. M and Narahari N

§6. Conclusion

Topological indices play an important role in understanding many physical and chemical prop-

erties of a chemical compound. Some of the degree-based topological indices can be found by

means of the M-polynomial of the corresponding chemical graph. In this paper, we have deter-

mined some of these topological indices using the closed form of the M-polynomial of cycle-star

graph and the line graph of cycle-star graph. The study on M-polynomials with respect to

different types of graph operators seem to be much promising.
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Abstract: Let G be a graph. Let f : V (G) → {0, 1, 2, . . . , k − 1} be a function where

k ∈ N and k > 1. For each edge uv, assign the label

f (uv) =

⌈
f (u) + f (v)

2

⌉
and f is called a k-total mean cordial labeling of G if |tmf (i)− tmf (j)| ≤ 1, for all i, j ∈
{0, 1, 2, . . . , k − 1}, where tmf (x) denotes the total number of vertices and edges labelled

with x, x ∈ {0, 1, 2, . . . , k − 1}. A graph with admit a k-total mean cordial labeling is called

k-total mean cordial graph. In this paper we investigate the 4-Total mean cordial labeling

behavior of some graphs like C4 × Pn, middle graph of Pn, total graph of Pn, middle graph

of Cn, total graph of Cn and kayak paddale graph.

Key Words: Total mean cordial labelling, Smarandachely total mean cordial labeling,

middle graph, total graph.

AMS(2010): 05C78.

§1. Introduction

In this paper we consider simple, finite and undirected graphs only. Cordial labeling was

introduced by Cahit [1]. The notion of k-total mean cordial labeling has been introduced in

[5]. The 4-total mean cordial labeling behaviour of several graphs like cycle, complete graph,

star, bistar, comb and crown have been studied in [5, 6, 7, 8, 9, 10, 11, 12, 13]. Edge-Odd

gracefulness of middle graphs and total graphs of certain graphs was studied in [4]. In this

paper we investigate the 4- total mean cordial labeling of middle graph of the path Pn, total

graph of the path Pn, middle graph of the cycle Cn, total graph of the cycle Cn, C4 × Pn and

kayak paddale graph. Let x be any real number. Then dxe stands for the smallest integer

greater than or equal to x. Terms are not defined here follow from Harary [3] and Gallian [2].

1Received February 5, 2023, Accepted June 7, 2023.
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.

§2. k-Total Mean Cordial Graph

Definition 2.1 Let G be a graph. Let f : V (G) → {0, 1, 2, . . . , k − 1} be a function where

k ∈ N and k > 1. For each edge uv, assign the label f (uv) =
⌈
f(u)+f(v)

2

⌉
. f is called a k-total

mean cordial labeling of G if |tmf (i)− tmf (j)| ≤ 1, for all i, j ∈ {0, 1, 2, . . . , k − 1}, where

tmf (x) denotes the total number of vertices and edges labelled with x, x ∈ {0, 1, 2, . . . , k − 1}.
A graph with admit a k-total mean cordial labeling is called k-total mean cordial graph.

Such a labeling f is called a Smarandachely k-total mean cordial labeling of G if there are

integers i, j ∈ {0, 1, 2, · · · , k − 1} hold with |tmf (i)− tmf (j)| ≥ 2 and G is called a Smaran-

dachely k-total mean cordial graph.

§3. Preliminaries

Definition 3.1([3]) A middle graph M(G) of a graph G is the graph whose vertex set is

V (G)∪E(G) and in which two vertices are adjacent if and only if either they are adjacent edges

of G or one is a vertex of G and the other is an edge incident with it.

Definition 3.2([3]) A total graph T (G) of a graph G is the graph whose vertex set is V (G) ∪
E(G) and in which two vertices are adjacent whenever they are either adjacent or incident in

G.

Definition 3.3([3]) A Kayak Paddale KP (m,n, l) is the graph obtained by joining the cycles

Cm and Cn with the path Pl+1 of length l. Let Cm be the cycle u1 u2 . . . un u1 and Cn be the

cycle v1 v2 . . . vn v1. Let Pl+1 be the path w1 w2 . . . wn. Identify u1 with w1 and wn with v1.

§4. Main Results

Theorem 4.1 A graph C4 × Pn is a 4-total mean cordial for all n ≥ 2.

Proof Let V (C4 × Pn) = {ai, bi, ci, di : 1 ≤ i ≤ n} and E (C4 × Pn) = {aiai+1, bibi+1, cici+1,

didi+1 : 1 ≤ i ≤ n− 1}
⋃
{aibi, bici, cidi, diai : 1 ≤ i ≤ n}. Obviously,

|V (C4 × Pn)|+ |E (C4 × Pn)| = 12n− 4.

Case 1. n ≡ 0 (mod 4).

Let n = 4r, r ∈ N. Assign the label 0 to the 4r − 1 vertices a1, a2, · · · , a4r−1. Now we

assign the label 2 to the vertex a4r. Next we assign the label 3 to the 4r vertices b1, b2, · · · ,
b4r. We now assign the label 0 to the 2r vertices c1, c2, . . ., c2r. Now we assign the label 1

to the r − 1 vertices c2r+1, c2r+2, · · · , c3r−1. Next we assign the label 3 to the r vertices c3r,

c3r+1, · · · , c4r−1. Now we assign the label 0 to the vertex c4r. We now assign the label 1 to

the 2r vertices d1, d2, · · · , d2r. Now we assign the label 2 to the 2r − 1 vertices d2r+1, d2r+2,

· · · , d4r−1. Finally we assign the label 0 to the vertex d4r.
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Case 2. n ≡ 1 (mod 4).

Let n = 4r + 1, r ∈ N. Assign the label 0 to the 4r + 1 vertices a1, a2, · · · , a4r+1. Next

we assign the label 3 to the 4r + 1 vertices b1, b2, · · · , b4r+1. Now we assign the label 0 to the

2r + 1 vertices c1, c2, · · · , c2r+1. We now assign the label 1 to the r vertices c2r+2, c2r+3, · · · ,
c3r+1. Next we assign the label 3 to the r vertices c3r+2, c3r+3, · · · , c4r+1. We now assign the

label 1 to the 2r+ 1 vertices d1, d2, · · · , d2r+1. Now we assign the label 2 to the 2r− 1 vertices

d2r+2, d2r+3, · · · , d4r. Finally we assign the label 3 to the vertex d4r+1.

Case 3. n ≡ 2 (mod 4).

Let n = 4r + 2, r ≥ 0. Label the vertices ai, bi, ci, di (1 ≤ i ≤ 4r + 1) as in Case 1. Next

we assign the labels 2, 3, 0, 0 to the vertices a4r+2, b4r+2, c4r+2, d4r+2.

Case 4. n ≡ 3 (mod 2).

Let n = 4r + 3, r ≥ 0. Assign the label 0 to the 4r + 3 vertices a1, a2, · · · , a4r+3. Now

we assign the label 3 to the 4r + 3 vertices b1, b2, · · · , b4r+3. Next we assign the label 0 to the

2r + 2 vertices c1, c2, · · · , c2r+2. Now we assign the label 1 to the r vertices c2r+3, c2r+4, · · · ,
c3r+2. Next we assign the label 3 to the r + 1 vertices c3r+3, c3r+4, . . ., c4r+3. We now assign

the label 1 to the 2r + 2 vertices d1, d2, · · · , d2r+2. Now we assign the label 2 to the 2r + 1

vertices d2r+3, d2r+4, · · · , d4r+3.

Thus, this vertex labeling f is a 4-total mean cordial labeling follows from the Table 1.

Order of n tmf (0) tmf (1) tmf (2) tmf (3)

n = 4r 12r − 1 12r − 1 12r − 1 12r − 1

n = 4r + 1 12r + 2 12r + 2 12r + 2 12r + 2

n = 4r + 2 12r + 5 12r + 5 12r + 5 12r + 5

n = 4r + 3 12r + 8 12r + 8 12r + 8 12r + 8

Table 1

This completes the proof. �

Theorem 4.2 A middle graph of the path Pn, M (Pn) is a 4-total mean cordial for all values

of n ≥ 2.

Proof Let u1, u2, · · · , un be the vertices of path Pn and let v1, v2, · · · , vn−1 be the added

vertices corresponding to the edges e1, e2, · · · , en of Pn to obtain M (Pn). Let V (M (Pn)) =

{ui : 1 ≤ i ≤ n}
⋃
{vi : 1 ≤ i ≤ n− 1}, E (M (Pn)) = {uivi, viui+1 : 1 ≤ i ≤ n− 1}

⋃
{vivi+1 :

1 ≤ i ≤ n− 2}. Clearly, |V (M (Pn))|+ |E (M (Pn))| = 5n− 5.

Case 1. n ≡ 0 (mod 4).

Let n = 4r, r ≥ 1. Assign the label 0 to the r vertices u1, u2, · · · , ur. Now we assign the

label 1 to the r vertices ur+1, ur+2, · · · , u2r. Next we assign the label 2 to the r − 1 vertices

u2r+1, u2r+2, · · · , u3r−1. We now assign the label 3 to the r vertices u3r, u3r+1, · · · , u4r−1.

Next we assign the label 0 to the vertex u4r.
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Now we assign the label 0 to the r vertices v1, v2, · · · , vr. Next we assign the label 1 to

the r− 1 vertices vr+1, vr+2, · · · , v2r−1. We now assign the label 2 to the r vertices v2r, v2r+1,

· · · , v3r−1. Next we assign the label 3 to the r − 1 vertices v3r, v3r+1, · · · , v4r−2. Finally, we

assign the label 2 to the vertex v4r−1.

Case 2. n ≡ 1 (mod 4).

Let n = 4r + 1, r ≥ 1. Assign the label 0 to the r + 1 vertices u1, u2, · · · , ur+1. Next we

assign the label 1 to the r vertices ur+2, ur+3, · · · , u2r+1. Now we assign the label 2 to the r

vertices u2r+2, u2r+3, · · · , u3r+1. We now assign the label 3 to the r vertices u3r+2, u3r+3, · · · ,
u4r+1.

Next we assign the label 0 to the r vertices v1, v2, · · · , vr. Now we assign the label 1 to

the r vertices vr+1, vr+2, · · · , v2r. We now assign the label 2 to the r vertices v2r+1, v2r+2, · · · ,
v3r. Next we assign the label 3 to the r vertices v3r+1, v3r+2, · · · , v4r.

Case 3. n ≡ 2 (mod 4).

Let n = 4r + 2, r ≥ 1. Label the vertices ui (1 ≤ i ≤ 4r + 1), vi (1 ≤ i ≤ 4r) as in Case 2.

Now we assign the labels 0, 2 to the vertex u4r+2,v4r+1.

Case 4. n ≡ 3 (mod 2).

Let n = 4r + 3, r ≥ 1. Assign the label 0 to the r + 1 vertices u1, u2, · · · , ur+1. Now we

assign the label 1 to the r + 1 vertices ur+2, ur+3, · · · , u2r+2. We now assign the label 2 to

the r vertices u2r+3, u2r+4, · · · , u3r+2. Next we assign the label 3 to the r + 1 vertices u3r+3,

u3r+4, · · · , u4r+3.

Now we assign the label 0 to the r + 1 vertices v1, v2, · · · , vr+1. Next we assign the label

1 to the r vertices vr+2, vr+3, · · · , v2r+1. We now assign the label 2 to the r+ 1 vertices v2r+2,

v2r+3, · · · , v3r+2. Finally, we assign the label 3 to the r vertices v3r+3, v3r+4, . . ., v4r+2.

Thus, this vertex labeling f is a 4-total mean cordial labeling follows from the Table 2.

Order of n tmf (0) tmf (1) tmf (2) tmf (3)

n = 4r 5r − 1 5r − 2 5r − 1 5r − 1

n = 4r + 1 5r 5r 5r 5r

n = 4r + 2 5r + 1 5r + 1 5r + 1 5r + 2

n = 4r + 3 5r + 3 5r + 2 5r + 3 5r + 2

Table 2

Case 5. n = 2 or 3.

A 4-total mean cordial labeling of M (Pn) is given in Tabel 3.

Value of n u1 u2 u3 v1 v2

2 0 3 2

3 0 1 3 0 3

Table 3

This completes the proof. �
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Theorem 4.3 A total graph of the path Pn, T (Pn) is a 4-total mean cordial for all values of

n ≥ 2.

Proof Clearly, the vertex labeling of Theorem 4.2 is also a 4-total mean cordial labeling of

T (Pn). �

Theorem 4.4 A middle graph of the cycle Cn, M (Cn) is a 4-total mean cordial for all values

of n ≥ 3.

Proof Let u1, u2, · · · , un be the vertices of cycle Cn and let v1, v2, · · · , vn be the added

vertices corresponding to the edges e1, e2, · · · , en of Cn to obtain M (Cn). Let V (M (Cn)) =

{ui, vi : 1 ≤ i ≤ n} and let E (M (Cn)) = {uivi : 1 ≤ i ≤ n}
⋃
{vivi+1, viui+1 : 1 ≤ i ≤ n− 1}

⋃
{v1vn, vnu1}. Notice that |V (M (Cn))|+ |E (M (Cn))| = 5n.

Case 1. n ≡ 0 (mod 4).

Let n = 4r, r ≥ 1. Assign the label 0 to the r vertices v1, v2, · · · , vr. Next we assign the

label 1 to the r vertices vr+1, vr+2, . . ., v2r. We now assign the label 2 to the r vertices v2r+1,

v2r+2, · · · , v3r. Now we assign the label 3 to the r vertices v3r+1, v3r+2, · · · , v4r.

Next we assign the label 0 to the r vertices u1, u2, · · · , ur. Now we assign the label 1 to

the r vertices ur+1, ur+2, · · · , u2r. We now assign the label 2 to the r−1 vertices u2r+1, u2r+2,

· · · , u3r−1. Next we assign the label 3 to the r vertices u3r, u3r+1, · · · , u4r−1. Finally we assign

the label 0 to the vertex u4r.

Case 2. n ≡ 1 (mod 4).

Let n = 4r + 1, r ≥ 1. Assign the label 0 to the r + 1 vertices v1, v2, · · · , vr+1. Now we

assign the label 1 to the r vertices vr+2, vr+3, . . ., v2r+1. Next we assign the label 2 to the r

vertices v2r+2, v2r+3, · · · , v3r+1. We now assign the label 3 to the r vertices v3r+2, v3r+3, · · · ,
v4r+1.

Now we assign the label 0 to the r vertices u1, u2, · · · , ur. Next we assign the label 1 to

the r vertices ur+1, ur+2, · · · , u2r. We now assign the label 2 to the r vertices u2r+1, u2r+2,

· · · , u3r. Now we assign the label 3 to the r vertices u3r+1, u3r+2, · · · , u4r. Finally we assign

the label 2 to the vertex u4r+1.

Case 3. n ≡ 2 (mod 4).

Let n = 4r + 2, r ≥ 1. Assign the label 0 to the r + 1 vertices v1, v2, · · · , vr+1. Next we

assign the label 1 to the r+ 1 vertices vr+2, vr+3, · · · , v2r+2. We now assign the label 2 to the

r vertices v2r+3, v2r+4, · · · , v3r+2. Now we assign the label 3 to the r vertices v3r+3, v3r+4, · · · ,
v4r+2.

Next we assign the label 0 to the r + 1 vertices u1, u2, · · · , ur+1. Now we assign the label

1 to the r vertices ur+2, ur+3, · · · , u2r+1. We now assign the label 2 to the r vertices u2r+2,

u2r+3, · · · , u3r+2. Finally we assign the label 3 to the r + 1 vertices u3r+3, u3r+4, · · · , u4r+2.

Case 4. n ≡ 3 (mod 2).

Let n = 4r + 3, r ≥ 1. Assign the label 0 to the r + 1 vertices v1, v2, · · · , vr+1. Now we
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assign the label 1 to the r+ 1 vertices vr+2, vr+3, · · · , v2r+2. We now assign the label 2 to the

r vertices v2r+3, v2r+4, · · · , v3r+2. Now we assign the label 3 to the r+ 1 vertices v3r+3, v3r+4,

· · · , v4r+3.

Next we assign the label 0 to the r + 1 vertices u1, u2, · · · , ur+1. Now we assign the label

1 to the r vertices ur+2, ur+3, · · · , u2r+1. We now assign the label 2 to the r+ 1 vertices u2r+2,

u2r+3, · · · , u3r+2. Next we assign the label 3 to the r vertices u3r+3, u3r+4, · · · , u4r+2. Finally

we assign the label 2 to the vertex u4r+3.

Thus this vertex labeling f is a 4-total mean cordial labeling follows from the Table 4.

n tmf (0) tmf (1) tmf (2) tmf (3)

n = 4r 5r 5r 5r 5r

n = 4r + 1 5r + 1 5r + 1 5r + 2 5r + 1

n = 4r + 2 5r + 3 5r + 3 5r + 2 5r + 2

n = 4r + 3 5r + 3 5r + 4 5r + 4 5r + 4

Table 4

This completes the proof. �

Theorem 4.5 A total graph of the cycle Cn, T (Cn) is a 4-total mean cordial if n ≡ 0, 2

(mod 4).

Proof Obviously, the vertex labeling of Theorem ?? is also a 4-total mean cordial labeling

of T (Cn). �

Theorem 4.6 A Kayak Paddale KP (n, n, n) is a 4-total mean cordial for all values of n ≥ 3.

Proof Let V (KP (n, n, n)) = {ui, vi : 1 ≤ i ≤ n}
⋃{

u1 = w1,v1=wn+1

}⋃
{wi : 2 ≤ i ≤ n}

and let E (KP (n, n, n)) = {uiui+1, vivi+1 : 1 ≤ i ≤ n}
⋃
{u1un, v1vn}

⋃
{w1−1wi : 2 ≤ i ≤ n}.

Notice that |V (KP (n, n, n))|+ |E (KP (n, n, n))| = 6n− 1.

Case 1. n ≡ 0 (mod 4).

Let n = 4r, r ≥ 1. Assign the label 0 to the r+1 vertices u1, u2, · · · , ur+1. Next we assign

the label 1 to the 3r − 1 vertices ur+2, ur+3, · · · , u4r.

Now we assign the label 3 to the r vertices v1, v2, · · · , vr. Now we assign the label 2 to the

3r − 1 vertices vr+1, vr+2, · · · , v4r−1. Then we assign the label 0 to the vertex v4r.

Next we assign the label 0 to the 2r − 1 vertices w2, w2, · · · , w2r. Finally we assign the

label 3 to the 2r vertices w2r+1, w2r+2, · · · , w4r.

Case 2. n ≡ 1 (mod 4).

Let n = 4r + 1, r ≥ 1. Now we assign the label 0 to the r + 1 vertices u1, u2, · · · , ur+1.

Next we assign the label 1 to the 3r vertices ur+2, ur+3, · · · , u4r+1.

Next we assign the label 2 to the r + 1 vertices v1, v2, · · · , vr+1. We now assign the label

3 to the 3r vertices vr+2, vr+3, · · · , v4r+1.
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Now we assign the label 0 to the 2r vertices w2, w3, · · · , w2r+1. Next we assign the label

2 to the 2r vertices w2r+2, w2r+3, · · · , w4r+1.

Case 3. n ≡ 2 (mod 4).

Let n = 4r + 2, r ≥ 1. We now assign the label 0 to the r + 2 vertices u1, u2, · · · , ur+2.

Next we assign the label 1 to the 3r vertices ur+3, ur+4, · · · , u4r+2.

Now we assign the label 2 to the r + 1 vertices v1, v2, · · · , vr+1. Next we assign the label

3 to the 3r + 1 vertices vr+2, vr+3, · · · , v4r+2.

We now assign the label 0 to the 2r vertices w2, w3, · · · , w2r+1. Finally we assign the label

2 to the 2r + 1 vertices w2r+2, w2r+3, · · · , w4r+2.

Case 4. n ≡ 3 (mod 2).

Let n = 4r + 3, r ≥ 1. Assign the label 0 to the r + 2 vertices u1, u2, · · · , ur+2. Now we

assign the label 1 to the 3r + 1 vertices ur+3, ur+4, · · · , u4r+3.

We now assign the label 3 to the r + 1 vertices v1, v2, · · · , vr+1. Next we assign the label 2 to

the 3r + 1 vertices vr+2, vr+3, · · · , v4r+2. Now we assign the label 1 to the vertex v4r+3.

Next we assign the label 0 to the 2r+ 1 vertices w2, w3, · · · , w2r+2. Finally we assign the

label 3 to the 2r + 1 vertices w2r+3, w2r+4, · · · , w4r+3.

Thus, this vertex labeling f is a 4-total mean cordial labeling follows from the Table 5.

n tmf (0) tmf (1) tmf (2) tmf (3)

n = 4r 6r 6r 6r − 1 6r

n = 4r + 1 6r + 1 6r + 2 6r + 1 6r + 1

n = 4r + 2 6r + 3 6r + 2 6r + 3 6r + 3

n = 4r + 3 6r + 5 6r + 4 6r + 4 6r + 4

Table 5

This completes the proof. �
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§1. Introduction

For standard terminology and notion in graph theory, we refer the reader to the text-book of

Harary [1]. The non-standard will be given in this paper as and when required.

To model individuals’ preferences towards each other in a group, Harary [2] introduced the

concept of signed graphs in 1953. A signed graph S = (G, σ) is a graph G = (V,E) whose

edges are labeled with positive and negative signs (i.e., σ : E(G) → {+,−}). The vertices

of a graph represent people and an edge connecting two nodes signifies a relationship between

individuals. The signed graph captures the attitudes between people, where a positive (negative

edge) represents liking (disliking). An unsigned graph is a signed graph with the signs removed.

Similar to an unsigned graph, there are many active areas of research for signed graphs.

The sign of a cycle (this is the edge set of a simple cycle) is defined to be the product of the

signs of its edges; in other words, a cycle is positive if it contains an even number of negative

edges and negative if it contains an odd number of negative edges. A signed graph S is said

to be balanced if every cycle in it is positive. A signed graph S is called totally unbalanced if

every cycle in S is negative. Otherwise, such a signed graph G is Smarandachely, i.e., both of

the positive and negative cycles appeared in it. A chord is an edge joining two non adjacent

vertices in a cycle.

A marking of S is a function ζ : V (G) → {+,−}. Given a signed graph S one can easily

1Received March 15, 2023, Accepted June 8, 2023.
2Corresponding author: somashekar2224@gmail.com
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define a marking ζ of S as follows: For any vertex v ∈ V (S),

ζ(v) =
∏

uv∈E(S)

σ(uv),

the marking ζ of S is called canonical marking of S. For more new notions on signed graphs

refer the papers (see [6, 8, 9, 13C17, 17C26]).

The following are the fundamental results about balance, the second being a more advanced

form of the first. Note that in a bipartition of a set, V = V1 ∪ V2, the disjoint subsets may be

empty.

Theorem 1.1 A signed graph S is balanced if and only if either of the following equivalent

conditions is satisfied:

(i) Its vertex set has a bipartition V = V1 ∪ V2 such that every positive edge joins vertices

in V1 or in V2, and every negative edge joins a vertex in V1 and a vertex in V2 (Harary [2]).

(ii) There exists a marking µ of its vertices such that each edge uv in Γ satisfies σ(uv) =

ζ(u)ζ(v). (Sampathkumar [10]).

A switching S with respect to a marking ζ is the operation of changing the sign of every

edge of S to its opposite whenever its end vertices are of opposite signs.

Two signed graphs S1 = (G1, σ1) and S2 = (G2, σ2) are said to be weakly isomorphic (see

[28]) or cycle isomorphic (see [29]) if there exists an isomorphism φ : G1 → G2 such that the

sign of every cycle Z in S1 equals to the sign of φ(Z) in S2. The following result is well known

(see [29]):

Theorem 1.2(T. Zaslavsky, [29]) Given a graph G, any two signed graphs in ψ(G), where

ψ(G) denotes the set of all the signed graphs possible for a graph G, are switching equivalent if

and only if they are cycle isomorphic.

§2. Full Block Signed Graph of a Signed Graph

The full block graph FB(G) of a graph G is the graph whose vertex set is the union of the set of

vertices, edges and blocks of G in which two vertices are adjacent if the corresponding vertices

and blocks of G are adjacent or the corresponding members of G are incident (See [5]).

Motivated by the existing definition of complement of a signed graph, we now extend the

notion of full block graphs to signed graphs as follows: The Full block signed graph FB(S) =

(FB(G), σ′) of a signed graph S = (G, σ) is a signed graph whose underlying graph is FB(G)

and sign of any edge uv is FB(S) is ζ(u)ζ(v), where ζ is the canonical marking of S. Further,

a signed graph S = (G, σ) is called a full block signed graph, if S ∼= FB(S′) for some signed

graph S′. The following result restricts the class of full line signed graphs.

Theorem 2.1 For any signed graph S = (G, σ), its full block signed graph FB(S) is balanced.

Proof Since sign of any edge e = uv in FB(S) is ζ(u)ζ(v), where ζ is the canonical marking
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of S, by Theorem 1.1, FB(S) is balanced. �

For any positive integer k, the kth iterated full block signed graph, FBk(S) of S is defined

as follows:

FB0(S) = S, FBk(S) = FB(FBk−1(S)).

Corollary 2.2 For any signed graph S = (G, σ) and for any positive integer k, FBk(S) is

balanced.

Corollary 2.3 For any two signed graphs S1 and S2 with the same underlying graph, FB(S1) ∼
FB(S2).

The following result characterize signed graphs which are full line signed graphs.

Theorem 2.4 A signed graph S = (G, σ) is a full block signed graph if, and only if, S is

balanced signed graph and its underlying graph G is a full block graph.

Proof Suppose that S is balanced and G is a full block graph. Then there exists a graph

G′ such that FB(G′) ∼= G. Since S is balanced, by Theorem 1.1, there exists a marking ζ

of G such that each edge uv in S satisfies σ(uv) = ζ(u)ζ(v). Now consider the signed graph

S′ = (G′, σ′), where for any edge e in G′, σ′(e) is the marking of the corresponding vertex in

G. Then clearly, FB(S′) ∼= S. Hence S is a full block signed graph.

Conversely, suppose that S = (G, σ) is a full block signed graph. Then there exists a

signed graph S′ = (G′, σ′) such that FB(S′) ∼= S. Hence, G is the full block graph of G′ and

by Theorem 2.1, S is balanced. �

The notion of negation η(S) of a given signed graph S defined to be η(S) has the same

underlying graph as that of S with the sign of each edge opposite to that given to it in S in

[3]. However, this definition does not say anything about what to do with nonadjacent pairs of

vertices in S while applying the unary operator η(.) of taking the negation of S.

For a signed graph S = (G, σ), the FB(S) is balanced (Theorem 1.1). We now examine,

the conditions under which negation η(S) of FB(S) is balanced.

Proposition 2.5 Let S = (G, σ) be a signed graph. If FB(G) is bipartite then η(FB(S)) is

balanced.

Proof Since, by Theorem 1.1, FB(S) is balanced, it follows that each cycle C in FLS(S)

contains even number of negative edges. Also, since FB(G) is bipartite, all cycles have even

length; thus, the number of positive edges on any cycle C in FB(S) is also even. Hence

η(FB(S)) is balanced. �

§3. Switching Equivalence of Full Block Signed Graphs and Full Signed Graphs

In [27], we defined the full signed graph of a signed graph as follows: The full signed graph

FS(S) = (FG(G), σ′) of a signed graph S = (G, σ) is a signed graph whose underlying graph
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is FG(G) and sign of any edge uv is FS(S) is ζ(u)ζ(v), where ζ is the canonical marking of S.

Further, a signed graph S = (G, σ) is called a full signed graph, if S ∼= FS(S′) for some signed

graph S′. The following result restricts the class of full signed graphs.

Theorem 3.1(Swamy et al., [27]) For any signed graph S = (G, σ), its full signed graph FS(S)

is balanced.

In [5], the authors remarked that FB(G) and FG(G) are isomorphic if and only if G is a P2.

We now give a characterization of signed graphs whose full block signed graphs are switching

equivalent to their full signed graphs.

Theorem 3.2 For any nontrivial connected signed graph S = (G, σ), FB(S) ∼ FS(S) if and

only if G is a P2.

Proof Suppose FB(S) ∼ FS(S). This implies, FB(G) ∼= FG(G) and hence G is a P2.

Conversely, suppose that G is a P2. Then FB(G) ∼= FG(G). Now, if S any signed graph

with G is a P2, By Theorem 2.1 and 3.1, FB(S) and FS(S) are balanced and hence, the result

follows from Theorem 1.2. This completes the proof. �

§4. Switching Equivalence of Full Block Signed Graphs and Full Line Signed Graphs

In [27], we defined the full line signed graph of a signed graph as follows: The full line signed

graph FLS(S) = (FLG(G), σ′) of a signed graph S = (G, σ) is a signed graph whose underlying

graph is FLG(G) and sign of any edge uv is FLS(S) is ζ(u)ζ(v), where ζ is the canonical

marking of S. Further, a signed graph S = (G, σ) is called a full line signed graph, if S ∼=
FLS(S′) for some signed graph S′. The following result restricts the class of full line signed

graphs.

Theorem 4.1(Swamy et al., [27]) For any signed graph S = (G, σ), its full line signed graph

FLS(S) is balanced.

In [5], the authors remarked that FB(G) and FLG(G) are isomorphic if and only if G is

a tree. We now give a characterization of signed graphs whose full block signed graphs are

switching equivalent to their full line signed graphs.

Theorem 4.2 For any nontrivial connected signed graph S = (G, σ), FB(S) ∼ FLS(S) if and

only if G is a P2.

Proof Suppose FB(S) ∼ FLS(S). This implies, FB(G) ∼= FLG(G) and hence G is a tree.

Conversely, suppose that G is a tree. Then FB(G) ∼= FLG(G). Now, if S any signed graph

with G is a tree, By Theorem 2.1 and 4.1, FB(S) and FLS(S) are balanced and hence, the

result follows from Theorem 1.2. This completes the proof. �

In view of the negation operator introduced by Harary [3], we have the following cycle

isomorphic characterizations.
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Corollary 4.3 For any two signed graphs S1 = (G1, σ) and S2 = (G2, σ), η(FB(S1)) ∼
η(FB(S2)), if G1 and G2 are isomorphic.

Corollary 4.4 For any two signed graphs S1 = (G1, σ) and S2 = (G2, σ), FB(η(S1)) and

FB(η(S2)) are cycle isomorphic, if G1 and G2 are isomorphic.

Corollary 4.5 For any connected signed graph S = (G, σ), FB(η(S)) ∼ FS(S) if and only if

G is a P2.

Corollary 4.6 For any connected signed graph S = (G, σ), FB(S) ∼ FS(η(S)) if and only if

G is a P2.

Corollary 4.7 For any connected signed graph S = (G, σ), FB(η(S)) ∼ FS(η(S)) if and only

if G is a P2.

Corollary 4.8 For any connected signed graph S = (G, σ), FB(η(S)) ∼ FLS(S) if and only

if G is a tree.

Corollary 4.9 For any connected signed graph S = (G, σ), FB(S) ∼ FLS(η(S)) if and only

if G is a tree.

Corollary 4.10 For any connected signed graph S = (G, σ), FB(η(S)) ∼ FLS(η(S)) if and

only if G is a tree.
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§1. Introduction

In this paper we consider only finite, undirected and simple graphs.The concept of pair difference

cordial labeling of a graph was introduced and studied some properties of pair difference cordial

labeling in [4]. By definition, let L = {±1,±2,±3, · · · ,±bp/2c}. Consider a mapping f :

V −→ L by assigning different labels in L to the different elements of V when p is even and

different labels in L to p− 1 elements of V and repeating a label for the remaining one vertex

when p is odd. Such a labeling is said to be a pair difference cordial labeling if for each

edge uv of G there exists a labeling |f(u)− f(v)| such that
∣∣∆f1 −∆fc1

∣∣ ≤ 1. Otherwise, it is

called a Smarandachely pair difference cordial labeling if
∣∣∆f1 −∆fc1

∣∣ ≥ 2, where ∆f1 and ∆fc1

respectively denote the numbers of edges labeled or not labeled with 1.

A graph G for which there exists a pair difference cordial labeling or Smarandachely pair

difference cordial labeling is called a pair difference cordial graph or Smarandachely pair dif-

ference cordial graph. The pair difference cordial labeling behavior of several graphs have been

investigated in [4,5,6,7,8,9,10,11]. In this paper we investigate pair difference cordial labeling

behavior of some trees and some graphs derived from cube graph.Terms not defined here are

follow from [2,3].
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§2. Preliminaries

Definition 2.1([2]) Let Pn be the path a1a2a3 · · · an. A Y−tree Yn is the tree of order n + 1

whose vertex set is V (Yn) = {a1, a2, a3, · · · , an, a} and the edge set E(Yn) = E(Pn) ∪ {an−1a}.
In other words Yn is obtained by attaching the vertex a to the vertex an−1 of Pn.

Definition 2.2([2]) A W− graph W (n) is the graph with vertex set

{c1, c2, b, w, d}
⋃
{x1, x2, x3, · · · , xn}

⋃
{y1, y2, y3, · · · , yn}

and the edge set

{c1x1, c1x
2, · · · , c1xn}

⋃
{c2y1, c2y

2, · · · , c2yn}
⋃
{c1b, c1w, c2w, c2d}.

Definition 2.3([2]) A W−tree WT (n, k) is a graph obtained by taking k− copies of W− graph

W (n) and a new vertex a and joining a which in each copy d where n ≥ 2, k ≥ 3.

Let V (WT (n, k)) = {a, ci1, ci2, di, xi1, xi2, xi3, · · · , xin+1, y
i
1, y

i
2, y

i
3, · · · , yin+1 : 1 ≤ i ≤ k},

E(WT (n, k)) = {aci1, aci2, dici1, dici2, ci1xij , ci2xij : 1 ≤ i ≤ k, 1 ≤ j ≤ n}. Obviously WT (n, k) has

nk(k + 1) + k(n+ 1) + 1 vertices and nk(k + 1) + k(n+ 1) edges.

Definition 2.4([3]) Let G be the graph and G1, G2, G3, · · · , Gn;n ≥ 2 be n copies of the graph

G. Then the graph obtained by adding an edge from Gi to Gi+1, i = 1, 2, 3, · · · , n− 1) is called

path union of graph G.

Definition 2.5([3]) Let G1, G2, G3, · · · , Gn be any n− graphs. A graph obtained by replacing

each vertex of K1,n except the apex vertex by the graph G1, G2, G3, · · · , Gn is known as an open

star of graphs which is denoted by OS(G1, G2, G3, · · · , Gn). If G1 = G2 = G3 = · · · = Gn = G

then it is denoted by OS(n.G).

Definition 2.6([3]) A hypercube is an n− dimensional analogue of a square (n = 2) and a cube

(n = 3) which is also known as an n− cube or n− dimensional cube which is denoted by Qn.

§3. Graphs Obtained From Trees

Theorem 3.1 A Y-tree is pair difference cordial for all values of n ≥ 3.

Proof Take the vertex set and edge set from Definition 2.1. The proof is divided into the

following 4 cases.

Case 1. n ≡ 0(mod4).

Assign the labels 1, 2,−1,−2 respectively to the vertices a1, a2, a3, a4 and allocate the

values 3, 4,−3,−4 individually to the vertices a5, a6, a7, a8. Net we put the labels 5, 6,−5,−6

separately to the vertices a9, a10, a11, a12 and assign the labels 7, 8,−7,−8 respectively to the

vertices a13, a14, a15, a16. Proceeding like this process until we reach the vertex an. Finally
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assign the label −1 to the vertex a.

In this case ∆f1 = ∆fc1
= n

2 .

Case 2. n ≡ 1(mod4).

Assign the labels as in Case 1 to the vertices ai, 1 ≤ i ≤ n−1). And then, assign the labels
n+1

2 ,−(n+1
2 ) to the vertices an, a. Then ∆f1 = n+1

2 ,∆fc1
= n−1

2 .

Case 3. n ≡ 2(mod4).

Assign the labels as in Case 1 to the vertices ai, 1 ≤ i ≤ n − 2). Lastly assign the labels
n
2 ,−(n2 ), n−2

2 to the vertices an−1, an, a.

In this case ∆f1 = ∆fc1
= n

2 .

Case 4. n ≡ 3(mod4).

Assign the labels as in Case 1 to the vertices ai, 1 ≤ i ≤ n − 3). Finally assign the labels
n−1

2 , n+1
2 ,−(n−1

2 ),−(n+1
2 ) to the vertices an−2, an−1, an, a. Then ∆f1 = n−1

2 ,∆fc1
= n+1

2 . �

Theorem 3.2 The W-tree WT (2, n) is not pair difference cordial for all values of n ≥ 3.

Proof A WT (2, n) has 7n+ 3 vertices and 7n+ 2 edges. Our proof is divided into 2 cases

following.

Case 1. n is even.

The maximum possible of ∆f1 = 4n. Then ∆fc1
≥ 7n+ 2− 4n.∆fc1

−∆f1 ≥ 3n+ 2 > 1.

Case 2. n is odd.

The maximum possible of ∆f1 = 4n+1. Then ∆fc1
≥ 7n+2−4n−1. ∆fc1

−∆f1 ≥ 3n+1 > 1.

Therefore, a wheel WT (2, n) is not pair difference cordial. �

§4. Graphs Obtained From Cube

Theorem 4.1 The path union of n− copies of Q3 is pair difference cordial for all values of

n ≥ 2.

Proof Let G be the graph obtained by joining n− copies of the cube Q3. Let

V (G) = {xi1, yi1, xi2, yi2, xi3, yi3, xi4, yi4 : 1 ≤ i ≤ n},

E(G) = {xi1xi2, xi2xi3, xi3xi4, xi1xi4, yi1yi2, yi2yi3, yi3yi4, yi1yi4 : 1 ≤ i ≤ n}⋃
{xijyij : 1 ≤ i ≤ n, 1 ≤ j ≤ 4}.

Obviously, G has 8n vertices and 13n− 1 edges. Our proof is divided into 2 cases following.

Case 1. n is even.

When n = 2, Assign the labels 1, 2, 3, 4,−1,−2,−3,−4 respectively to the vertices x11, x12,



68 R. Ponraj, A. Gayathri and S. Somasundaram

x13, x14, y11, y12, y13, y14 and assign the labels 5, 6, 7, 8,−5,−6,−7,−8 respectively to the ver-

tices x21, x22, x23, x24, y21, y22, y23, y24.

If n ≥ 4, define a map ψ from the vertex set V (G) to the set {±1,±2, · · · ,±4n} by

ψ(xi1) = 8i− 7, i = 1, 3, 5, · · · , n− 1,

ψ(xi2) = 8i− 6, i = 1, 3, 5, · · · , n− 1,

ψ(xi3) = 8i− 5, i = 1, 3, 5, · · · , n− 1,

ψ(xi4) = 8i− 4, i = 1, 3, 5, · · · , n− 1,

ψ(yi1) = −(8i− 7), i = 1, 3, 5, · · · , n− 1,

ψ(yi2) = −(8i− 6), i = 1, 3, 5, · · · , n− 1,

ψ(yi3) = −(8i− 5), i = 1, 3, 5, · · · , n− 1,

ψ(yi4) = −(8i− 4), i = 1, 3, 5, · · · , n− 1,

ψ(xi1) = 8i− 2, i = 2, 4, 6, · · · , n,

ψ(xi2) = 8i− 3, i = 2, 4, 6, · · · , n,

ψ(xi3) = 8i− 1, i = 2, 4, 6, · · · , n,

ψ(xi4) = 8i, i = 2, 4, 6, · · · , n,

ψ(yi1) = −(8i− 2), i = 2, 4, 6, · · · , n,

ψ(yi2) = −(8i− 3), i = 2, 4, 6, · · · , n,

ψ(yi3) = −(8i− 1), i = 2, 4, 6, · · · , n,

ψ(yi4) = −(8i), i = 2, 4, 6, · · · , n.

Case 2. n is odd.

Define a map ψ : V (G)→ {±1,±2, · · · ,±4n} by

ψ(xi1) = 8i− 7, i = 1, 3, 5, · · · , n,

ψ(xi2) = 8i− 6, i = 1, 3, 5, · · · , n,

ψ(xi3) = 8i− 5, i = 1, 3, 5, · · · , n,

ψ(xi4) = 8i− 4, i = 1, 3, 5, · · · , n,

ψ(yi1) = −(8i− 7), i = 1, 3, 5, · · · , n,

ψ(yi2) = −(8i− 6), i = 1, 3, 5, · · · , n,

ψ(yi3) = −(8i− 5), i = 1, 3, 5, · · · , n,

ψ(yi4) = −(8i− 4), i = 1, 3, 5, · · · , n,

ψ(xi1) = 8i− 2, i = 2, 4, 6, · · · , n− 1,

ψ(xi2) = 8i− 3, i = 2, 4, 6, · · · , n− 1,

ψ(xi3) = 8i− 1, i = 2, 4, 6, · · · , n− 1,
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ψ(xi4) = 8i, i = 2, 4, 6, · · · , n− 1,

ψ(yi1) = −(8i− 2), i = 2, 4, 6, · · · , n− 1,

ψ(yi2) = −(8i− 3), i = 2, 4, 6, · · · , n− 1,

ψ(yi3) = −(8i− 1), i = 2, 4, 6, · · · , n− 1,

ψ(yi4) = −(8i), i = 2, 4, 6, · · · , n− 1.

Table 2 given below establishes that this vertex labeling f is a pair difference cordial.

Nature of n ∆fc1
∆f1

n is odd 13n−1
2

13n−1
2

n is even 13n
2

13n−2
2

This completes the proof. �

Theorem 4.2 A graph obtained by joining two copies of Q3 by path Pn is pair difference cordial

for all values of n ≥ 4.

Proof Let G be the graph obtained by joining two copies of Q3 by path Pn with

V (G) = {xi1, yi1, xi2, yi2, xi3, yi3, xi4, yi4 : 1 ≤ i ≤ 2}
⋃
{zk : 1 ≤ k ≤ n− 2},

E(G) = E(Q3)
⋃
{zizi+1 : 1 ≤ i ≤ n− 2}

⋃
{z1y14, zn−2x11}.

Obviously, G has n+ 14 vertices and n+ 23 edges.

Case 1. n ≡ 0(mod4).

Assign labels 1, 2, 3, 4, 5, 6, 7, 8 respectively to vertices x11, x12, x13, x14, y11, y12, y13, y14 and

assign the labels−1,−2,−3,−4,−5,−6,−7,−8 respectively to the vertices x21, x22, x23, x24, y21,

y22, y23, y24.

Assign the labels 9, 10,−9,−10 respectively to the vertices z1, z2, z3, z4 and allocate the val-

ues 11, 12,−11,−12 individually to the vertices z5, z6, z7, z8. Net we put the labels 5, 6,−5,−6

separately to the vertices z9, z10, z11, z12 and assign the labels 7, 8,−7,−8 respectively to the

vertices z13, z14, z15, z16. Proceeding like this process until we reach the vertex zn−4. Finally

assign the labels n+14
2 ,−(n+14

2 ) to the vertex zn−3, zn−2.

Case 2. n ≡ 1(mod4).

Assign the labels as in Case 1 to the vertices xij , yij , 1 ≤ i ≤ 2, 1 ≤ j ≤ 4, ) and zk, 1 ≤
k ≤ n−5. And then, assign the labels n+13

2 ,−(n+13
2 ),−(n+11

2 ) to the vertices zn−4, zn−3, zn−2.

Case 3. n ≡ 2(mod4).

Assign the labels as in case 1 to the vertices xij , yij , 1 ≤ i ≤ 2, 1 ≤ j ≤ 4, ) and

zk, 1 ≤ k ≤ n − 6. Lastly assign the labels n+12
2 , n+14

2 ,−(n+12
2 ),−(n+14

2 ) to the vertices

zn−5, zn−4, zn−3, zn−2.
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Case 4. n ≡ 3(mod4).

Assign the labels as in case 1 to the vertices xij , yij , 1 ≤ i ≤ 2, 1 ≤ j ≤ 4, ) and zk, 1 ≤
k ≤ n − 7. Finally assign the labels n+12

2 , n+14
2 ,−(n+12

2 ),−(n+14
2 ),−(n+12

2 ) to the vertices

zn−6, zn−5, zn−4, zn−3, zn−2.

The Table 3 given below establishes that this vertex labeling f is a pair difference cordial.

Nature of n ∆f1 ∆fc1

n ≡ 0 (mod 4) n+24
2

n+22
2

n ≡ 1 (mod 4) n+23
2

n+23
2

n ≡ 2 (mod 4) n+24
2

n+22
2

n ≡ 3 (mod 4) n+23
2

n+23
2

This completes the proof. �

Theorem 4.3 An S(n.Q3) is pair difference cordial for all even n.

Proof Our proof is divided into 2 cases following.

Case 1. n ≡ 0(mod4).

Define a map ψ : V (G)→ {±1,±2, · · · ,±4n} by

ψ(x) = 1,

ψ(xi1) = 4i− 3, 1 ≤ i ≤ n

2
,

ψ(xi2) = 4i− 2, 1 ≤ i ≤ n

2
,

ψ(xi3) = 4i− 1, 1 ≤ i ≤ n

2
,

ψ(xi4) = 4i, 1 ≤ i ≤ n

2
,

ψ(yi1) = −(4i− 3), 1 ≤ i ≤ n

2
,

ψ(yi2) = −(4i− 2), 1 ≤ i ≤ n

2
,

ψ(yi3) = −(4i− 1), 1 ≤ i ≤ n

2
,

ψ(yi4) = −4i, 1 ≤ i ≤ n

2
,

ψ(x(n2 +2i−1)1) = 2n+ 4i− 3, 1 ≤ i ≤ n

4
,

ψ(x(n2 +2i−1)2) = 2n+ 4i− 2, 1 ≤ i ≤ n

4
,

ψ(x(n2 +2i−1)3) = 2n+ 4i− 1, 1 ≤ i ≤ n

4
,

ψ(x(n2 +2i−1)4) = 2n+ 4i, 1 ≤ i ≤ n

4
,

ψ(y(n2 +2i−1)1) = 2n+ 4i+ 4, 1 ≤ i ≤ n

4
,
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ψ(y(n2 +2i−1)2) = 2n+ 4i+ 3, 1 ≤ i ≤ n

4
,

ψ(y(n2 +2i−1)3) = 2n+ 4i+ 2, 1 ≤ i ≤ n

4
,

ψ(y(n2 +2i−1)4) = 2n+ 4i+ 1, 1 ≤ i ≤ n

4
,

ψ(x(n2 +2i)1) = −(2n+ 4i− 3), 1 ≤ i ≤ n

4
,

ψ(x(n2 +2i)2) = −(2n+ 4i− 2), 1 ≤ i ≤ n

4
,

ψ(x(n2 +2i)3) = −(2n+ 4i− 1), 1 ≤ i ≤ n

4
,

ψ(x(n2 +2i)4) = −(2n+ 4i), 1 ≤ i ≤ n

4
,

ψ(y(n2 +2i)1) = −(2n+ 4i+ 4), 1 ≤ i ≤ n

4
,

ψ(y(n2 +2i)2) = −(2n+ 4i+ 3), 1 ≤ i ≤ n

4
,

ψ(y(n2 +2i)3) = −(2n+ 4i+ 2), 1 ≤ i ≤ n

4
,

ψ(y(n2 +2i)4) = −(2n+ 4i+ 1), 1 ≤ i ≤ n

4
,

Case 2. n ≡ 1(mod4).

Define a map ψ from the vertex set V (G) to the set {±1,±2, · · · ,±4n} by

ψ(x) = 3,

ψ(xi1) = 4i− 3, 1 ≤ i ≤ n+ 2

2
,

ψ(xi2) = 4i− 2, 1 ≤ i ≤ n+ 2

2
,

ψ(xi3) = 4i− 1, 1 ≤ i ≤ n+ 2

2
,

ψ(xi4) = 4i, 1 ≤ i ≤ n+ 2

2
,

ψ(yi1) = −(4i− 3), 1 ≤ i ≤ n+ 2

2
,

ψ(yi2) = −(4i− 2), 1 ≤ i ≤ n+ 2

2
,

ψ(yi3) = −(4i− 1), 1 ≤ i ≤ n+ 2

2
,

ψ(yi4) = −4i, 1 ≤ i ≤ n+ 2

2
,

ψ(x(n2 +2i−1)1) = 2n+ 4i+ 1, 1 ≤ i ≤ n− 2

4
,

ψ(x(n2 +2i−1)2) = 2n+ 4i+ 2, 1 ≤ i ≤ n− 2

4
,

ψ(x(n2 +2i−1)3) = 2n+ 4i+ 3, 1 ≤ i ≤ n− 2

4
,
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ψ(x(n2 +2i−1)4) = 2n+ 4i+ 4, 1 ≤ i ≤ n− 2

4
,

ψ(y(n2 +2i−1)1) = 2n+ 4i+ 5, 1 ≤ i ≤ n− 2

4
,

ψ(y(n2 +2i−1)2) = 2n+ 4i+ 6, 1 ≤ i ≤ n− 2

4
,

ψ(y(n2 +2i−1)3) = 2n+ 4i+ 7, 1 ≤ i ≤ n− 2

4
,

ψ(y(n2 +2i−1)4) = 2n+ 4i+ 8, 1 ≤ i ≤ n− 2

4
,

ψ(x(n2 +2i)1) = −(2n+ 4i+ 1), 1 ≤ i ≤ n− 2

4
,

ψ(x(n2 +2i)2) = −(2n+ 4i+ 2), 1 ≤ i ≤ n− 2

4
,

ψ(x(n2 +2i)3) = −(2n+ 4i+ 3), 1 ≤ i ≤ n− 2

4
,

ψ(x(n2 +2i)4) = −(2n+ 4i+ 4), 1 ≤ i ≤ n− 2

4
,

ψ(y(n2 +2i)1) = −(2n+ 4i+ 5), 1 ≤ i ≤ n− 2

4
,

ψ(y(n2 +2i)2) = −(2n+ 4i+ 6), 1 ≤ i ≤ n− 2

4
,

ψ(y(n2 +2i)3) = −(2n+ 4i+ 7), 1 ≤ i ≤ n− 2

4
,

ψ(y(n2 +2i)4) = −(2n+ 4i+ 8), 1 ≤ i ≤ n− 2

4
,

In both cases ∆f1 = ∆fc1
= 13n

2 . �

A pair difference cordial labeling of S(6.Q3) is shown in Figure 1.

Figure 1
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Abstract: For a graph G without isolated vertices and without isolated edges, a product

irregular labeling w : E(G) → {1, 2, · · · .m} is a labeling of the edges of G such that for

any two distinct vertices u and v of G the product of labels of the edges incident with u is

different from the product of labels of the edges incident with v. The minimal m for which

there exist a product irregular labeling is called the product irregularity strength of G and is

denoted by ps(G). In this note, we find the product irregularity strength of block graph of

cycle-star graph and sunlet graph.

Key Words: Smarandachely H product-irregular labeling, product-irregular labeling,

product irregularity strength, block graph, cycle-star graph, sunlet graph.
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§1. Introduction

Throughout this paper let G be a simple graph, i.e., a graph without loops or multiple edges,

without isolated vertices and without isolated edges. Let the vertex set and edge set of G are

denoted by V (G) and E(G), respectively. Let w : E(G)→ {1, 2, · · · .m} be an integer labeling

of the edges of G. Then the product degree pdG(v) of a vertex v ∈ V (G) in the graph G with

respect to the labeling w is defined by

pdG(v) =
∏
v∈e

w(e).

A labeling w is said to be product-irregular if for every pair of vertices u, v ∈ V (G), u 6= v,

pdG(u) 6= pdG(v).

Generally, for a typical subgraph H ≺ G, a labeling w is said to be Smarandachely H

product-irregular if for every pair of vertices u, v ∈ V (G), u 6= v, there are pdG(u) 6= pdG(v)

for u, v ∈ V (G)\V (H) but pdG(u) = pdG(v) for u, v ∈ V (H). Clearly, if H = ∅, such a

Smarandachely H product-irregular property is nothing else but the product-irregular property.

The product irregularity strength ps(G) of G is the smallest value of m for which there

exists a product-irregular labeling w : E(G)→ {1, 2, · · · .m}.
1Received March 3, 2023, Accepted June 10, 2023.
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This concept was first introduced by Anholcer in [1] as a multiplicative version of the well

studied concept of irregularity strength of graphs introduced by Chartrand et al. in [3].

The corona product of two graphs G and H, denoted by G
⊙
H, is a graph obtained by

taking one copy of G (which has n vertices) and n copies H1, H2, · · · , Hn of H, and then joining

the ith vertex of G to every vertex in Hi. The corona product Cn
⊙
K1 is called the sunlet

graph.

A graph G is connected if between any two distinct vertices there is a path. A maximal

connected subgraph of G is called a component of G. A cut-vertex of a graph is one whose

removal increases the number of components. A non-separable graph is connected, nontrivial,

and has no cut-vertices. A block of a graph is a maximal non-separable subgraph. If two distinct

blocks B1 and B2 are incident with a common cut-vertex, then they are called adjacent blocks.

There are many graph operators (or graph valued functions) with which one can con-

struct a new graph from a given graph, such as the line graphs, the block graphs, and their

generalizations.

The block graph of a graph G, written B(G), is the graph whose vertices are the blocks of

G and in which two vertices are adjacent whenever the corresponding blocks have a cut-vertex

in common.

Jelena Sedlar [5] introduced the concept of cycle-star graph as follows: The cycle-star

graph, written CSk,n−k, is a graph with n vertices consisting of the cycle graph of length k and

n− k leafs appended to the same vertex of the cycle.

Figure 1 The cycle-star graphs CS3,4 and CS4,3

§2. Preliminary Results

Let nd denote the number of vertices of degree d, where δ(G) ≤ d ≤ ∆(G). Anholcer in [1]

showed that

ps(G) ≥ maxδ(G)≤d≤∆(G)

{⌈
d

e
n

1
d

d − d+ 1

⌉}
. (1)

If the graph G is r−regular, then the expression (1) reduces to

ps(G) ≥
⌈r
e
n

1
r − r + 1

⌉
. (2)
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Also, for a cycle Cn on n ≥ 3 vertices, the bounds on ps(Cn) is given in [1]. That is, for

n ≥ 3,

ps(Cn) ≥
⌈√

2n− 1

2

⌉
for n > 17,

ps(Cn) ≥

⌈(
n

1− loge 2

) 1
2

⌉
and that for every ε > 0 there exists n0 such that for every n ≥ n0,

ps(Cn) ≤
⌈
(1 + ε)

√
2n loge n

⌉
.

Anholcer in [2] considered the product irregularity strength of complete bipartite graphs

Km,n and proved that for two integers m and n such that 2 ≥ m ≥ n, ps(Km,n) = 3 if and only

if n ≥
(
m+2

2

)
.

However, the studies on the product irregularity strength of the intersection graph on the

vertex set of a graph was not attempted. In this paper we have made an attempt to fill this

gap and study the the product irregularity strength of the block graph of cycle-star graph and

sunlet graph.

§3. Product Irregularity Strength of Block Graph of Cycle-Star Graph CSk,n−k

The following result in [4] determines the exact value of product irregularity strength of a

complete graph Kn on n ≥ 3 vertices.

Theorem 3.1 For every complete graph Kn on n ≥ 3 vertices, ps(Kn) = 3.

We now use Theorem 3.1 to find the exact value of product irregularity strength of block

graph of cycle-star graph CSk,n−k for k ≥ 3 and n− k ≥ 2.

Theorem 3.2 Let G = CSk,n−k be a cycle-star graph, where k ≥ 3 and n − k ≥ 2. Then

ps(B(G)) = 3.

Proof Since the block graph a cycle-star graph CSk,n−k with k ≥ 3 and n− k ≥ 2 leafs is

a complete graph Kn on n ≥ 3 vertices, from Theorem 3.1, it follows that ps(B(G)) = 3. This

completes the proof. �

§4. Product Irregularity Strength of Block Graph of Sunlet Graph Cn
⊙
K1

In this section we find the exact value of product irregularity strength of block graph of sunlet

graph Cn
⊙
K1, n ≥ 3.

Theorem 4.1 Let G = Cn
⊙
K1, n ≥ 3, be a sunlet graph. Then ps(B(G)) = n.
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Proof Let G = Cn
⊙
K1, n ≥ 3, be a sunlet graph. By definition, the block graph of

sunlet graph is a star graph K1,n on n ≥ 3 vertices. Let v1, v2, · · · , vn be pendant vertices and

v0 be the central vertex of K1,n. At first, let us weight all the edges consecutively starting from

1 to n. Then the product degree of vertices v ∈ B(G) is pdB(G)(vi) = i for 1 ≤ i ≤ n and

pdB(G)(vi) = n!. Clearly, product degrees of all vertices are distinct. Hence ps(B(G)) = n.

This completes the proof. �

§5. Conclusion

In this note, we have found the exact values of product irregularity strength of block graph of

cycle-star graph and sunlet graph. However, to find the exact values of product irregularity

strength of different graph operators still remain open.
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Abstract: Let G(V,E) be a graph with order p and size q. A bijection f : V (G) →
{0, 1, 2, · · · , p− 1} is said to be a cube sum labeling if the induced function f∗ : E(G)→ N
defined by f∗(uv) = [f(u)]3 + [f(v)]3 is injective. Such a function f is said to be a cube

sum labeling and the graph G is a cube sum graph. In this paper we discuss some algebraic

properties and evaluate some families of cube sum graph.
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§1. Introduction

Labeling of graphs is one of the emerging topics in graph theory. The credit goes to Rosa [1]

to explore this innovative idea. If the vertices or edges or both of the graph are assigned values

subject to certain condition(s) then it is known as graph labeling. The idea of graph labeling

was originated in 1967. Till then graph labeling has attracted many researchers and due to

the wholehearted efforts for research in this field, more than 200 graph labeling techniques and

more than 2500 research papers are available. A dynamic survey on graph labeling is regularly

updated by Gallian [6] and it is published by The Electronic Journal of Combinatorics.

In this paper we consider simple, finite, undirected and connected graph. A graph G(V,E)

with p vertices and q edges is also denoted as G(p, q) graph. We refer to Bondy and Murty

[5] for the standard terminology and notations related to graph theory and Burton [2] for the

terms related to number theory. We denote an edge with end vertices u and v by uv.

A square sum labeling is one of the graph labeling techniques, where edge label is obtained

by sum of squares of labels of end vertices of the corresponding edge. The square sum labeling

was introduced by Ajitha, Arumugam and Germina.

Definition 1.1(Ajitha et al., [10]) A graph G = (V,E) with p vertices and q edges is said to

be a square sum graph, if there exists a bijection f : V (G) → {0, 1, 2, · · · , p − 1} such that the

induced function f∗ : E(G)→ N, defined by f∗(uv) = (f(u))2 + (f(v))2, is injective.

1Received February 28, 2023, Accepted June 12, 2023.
2Correspondence: miteshmaths1984@gmail.com
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Many interesting results are carried out for square sum labeling of graphs. The literature

on square sum labeling is accessible in electronic form in different research papers such as [3],

[4], [7], [10] etc.

A cube sum labeling was introduced by Vediyappan Govindan, Sandra Pinelas and S.Dhivya

[9] as follow and they proved that paths, cycle, stars, wheel graph, fan graphs are cube sum

graph.

Definition 1.2(Vediyappan Govindan et al., [9]) A graph G = (V,E) with p vertices and q

edges is said to be a cube sum graph, if there exists a bijection f : V (G) → {0, 1, 2, · · · , p − 1}
such that the induced function f∗ : E(G) → N, defined by f∗(uv) = (f(u))3 + (f(v))3, is

injective.

Notice that 1729 is the smallest natural number expressible as a sum of two cubes in

two different ways as 123 + 13 and 93 + 103. From the story of G.H. Hardy and Srinivasa

Ramanujan, 1729 is known as Ramanujan number or Taxi-cab number [2]. Other numbers which

can expressed as sum of two cubes in two different ways are 4104 = 23 +163 = 93 +153, 13832 =

23 + 243 = 183 + 203, 20683 = 103 + 273 = 193 + 243, etc. Taxi-cab number is related with sum

of cube of two numbers. So, we also refer cube sum labeling as Taxi-cab labeling as well.

In this paper we have used the Fermat’s Last Theorem [2] which states that No three

positive integers a, b and c satisfy the equation an + bn = cn for any integer value of n greater

than 2.

§2. Cube Sum Labeling

Definition 2.1 A bijective function f : V (G) → {0, 1, 2, · · · , p − 1} is said to be a cube sum

labeling if the induced function f∗ : E(G)→ N defined by f∗(uv) = [f(u)]3 +[f(v)]3 is injective.

Generally, let H ≺ G be a typical subgraph of G such as those of path, cycle. If such an

induced function f∗ is injective on E(G)\E(H) but not on E(G), such a labeling f is said to

be a Smarandachely cube sum H labeling. Particularly, if H = ∅, then such a Smarandachely

cube sum H labeling is nothing else but a cube sum labeling.

A graph G with cube sum labeling is called a cube sum graph.

Lemma 2.2(Burton, [2]) The cube of any integer is one of the form 9k, 9k + 1 or 9k + 8.

Theorem 2.3 Let G be a cube sum graph with cube sum labeling f . Then, for any edge

e ∈ E(G), f∗(e) 6≡ 3, 4, 5, 6(mod 9).

Proof Let u, v ∈ V (G), f(u) = a and f(v) = b. Then, for edge e = uv ∈ E(G), f∗(uv) =

a3 + b3.

Since a and b are integers, from Lemma 3.1, a3 ≡ 0, 1 or 8(mod 9) and b3 ≡ 0, 1 or 8(mod 9).

But then a3 + b3 ≡ 0, 1, 2, 7 or 8(mod 9). Hence, the result is proved. �

Lemma 2.4(Burton, [2]) The cube of any integer is one of the form 7k or 7k ± 1.
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Theorem 2.5 Let G be a cube sum graph with cube sum labeling f . Then for any edge e ∈ E(G),

f∗(e) 6≡ 3, 4(mod 7).

Proof Let f(u) = a and f(v) = b. Then, for edge e = uv ∈ E(G), f∗(uv) = a3 + b3. From

lemma 3.2, since a and b are integers, a3 ≡ 0, 1 or 6(mod 7), and b3 ≡ 0, 1 or 6(mod 7). But

then a3 + b3 ≡ 0, 1, 2, 5 or 6(mod 7). This completes the proof. �

Theorem 2.6 If G(p, q) is cube sum graph with cube sum labeling f , then∑
uv∈E(G)

f∗(uv) =
∑

v∈V (G)

[f(v)]3d(v)

where d(v) is the degree of vertex v in G.

Proof Let f : V (G)→ {0, 1, 2, · · · , p− 1} be a cube sum labeling of a graph G with each

edge uv is assigned the label f∗(uv) = [f(u)]3 + [f(v)]3.

Now every edge is incident with exactly two vertices and degree of a vertex is the number of

edges incident with that vertex. Then, while counting the total sum of edge labels, the number

of times of repetition (occurrence) of each vertex label is equal to the number of edges incident

to the corresponding vertex. Then the sum of f∗(e) count [f(v)]3 at total number of times an

edge is incident with a vertex v. So∑
uv∈E(G)

f∗(uv) =
∑

v∈V (G)

[f(v)]3d(v). �

Corollary 2.7 If G(p, q) is an r-regular cube sum graph, then

∑
uv∈E(G)

f∗(uv) =
r(p− 1)2p2

4
.

Proof From Theorem 3.3, we have∑
uv∈E(G)

f∗(uv) =
∑

v∈V (G)

[f(v)]3d(v). (1)

Here, G(p, q) is an r-regular cube sum graph, i.e. d(v) = r, ∀v ∈ V (G).∑
uv∈E(G)

f∗(uv) = r
∑

v∈V (G)

[f(v)]3 {from (1)}

= r
(
03 + 13 + · · ·+ (p− 1)3

)
=
r(p− 1)2p2

4
. �

§3. Some Cube Sum Graphs

Theorem 3.1 A complete graph Kn is a cube sum graph if and only if n ≤ 11.
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Proof Let V (Kn) = {v1, v2, · · · , vn} and E(Kn) = {vivj | 1 ≤ i, j ≤ n, i 6= j}. Here,

|V (Kn)| = n and |E(Kn)| = n(n−1)
2 .

Case 1. n ≤ 11.

Let us define a function f : V (Kn)→ {0, 1, 2, · · · , n− 1} as

f(vi) = i− 1 ; 1 ≤ i ≤ n.

It is obvious that f is bijective and the induced function f∗ : E(Kn)→ N defined by

f∗(uv) = (f(u))3 + (f(v))3,

for every uv ∈ E(Kn) is injective. Hence, Kn is a cube sum graph for n ≤ 11.

Case 2. n > 11.

Notice that every two vertices are adjacent to each other in a complete graph. So, defining

a mapping f : V (Kn)→ {0, 1, 2, · · · , n− 1} in any form, we have two edges ei and ej such that

f∗(ei) = 123 + 13 = 1729 and f∗(ej) = 93 + 103 = 1729. Thus, the induced function f∗ is not

injective. Hence, Kn is not a cube sum graph for n > 11. �

Theorem 3.2 A complete bipartite graph K2,n is a cube sum graph for any integer n ≥ 1.

Proof Let V1 = {v1, vn+2} and V2 = {v2, v3, · · · , vn+1} be bipartition of V (K1,n) =

{v1, v2, v3, · · · , vn+1, vn+2} and E(K1,n) = {vivj | i = 1, n + 2 and j = 2, 3, · · · , n + 1}. Here,

|V (K2,n)| = n+2 and |E(K2,n)| = 2n. Let us define a function f : V (K2,n)→ {0, 1, 2, · · · , n+1}
as

f(vi) = i− 1 ; 1 ≤ i ≤ n+ 2.

It is obvious that f is bijective.

Furthermore, one can observe that

f∗(v1v2)(= 1) < f∗(v1v3)(= 23) < f∗(v1v4)(= 33)

< · · · < f∗(v1vn+1)(= n3) < f∗(vn+2v2)(= (n+ 1)3 + 1)

< f∗(vn+2v3)(= (n+ 1)3 + 23) < · · · < f∗(vn+2vn+1)(= (n+ 1)3 + n3).

Then, the induced function f∗ : E(K2,n)→ N defined by

f∗(uv) = (f(u))3 + (f(v))3,

for every uv ∈ E(K2,n) is injective. Hence, K2,n is a cube sum graph. �

Theorem 3.3 Every tree is a cube sum graph.

Proof Let v0,0 be a vertex with maximum degree in a tree T . Choose v0,0 as a root vertex

of T (say zero level vertex). Let l be the height of T . Consider n0 = 0.
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Let n1 be the number of vertices at distance one from v0,0 and let us denote these vertices

by v1,1, v1,2, · · · v1,n1
. These vertices are first level vertices. Let n2 be the number of vertices at

distance two from v0,0 which are denoted by v2,1, v2,2, · · · v2,n2
. These vertices are second level

vertices. We give priority as in ascending order.

Repeating this way, let nl be the number of vertices at distance l from v0,0 which are

denoted by vl,1, vl,2, · · · vl,nl . These are lth level vertices.

The above process is possible because there is one and only one path between any pair of

vertices in any tree. Here, |V (T )| =
l∑
i=1

(ni) + 1 = n and |E(T )| =
l∑
i=1

(ni) = n− 1.

Let us define a function f : V (T )→ {0, 1, 2, 3, · · · , n− 1} as

f(vi,j) =

0; i = 0, j = 0.

f(vi−1,ni−1) + j; 1 ≤ i ≤ l, 1 ≤ j ≤ ni.

Here, vertex labels are in ascending order from zero level vertex to l level vertices. So, it is

obvious that f is bijective and for edge labels we have following arguments. We have following

two cases for edge labels. Without loss of generality, let e1 and e2 be any two arbitrary edges

of tree T .

Case 1. Let e1 and e2 be two incident edges. Then obviously f∗(e1) 6= f∗(e2).

Case 2. Let e1 = v1v2 and e2 = v3v4 be the edges such that e1 and e2 have no common ver-

tex. Here {f(v1), f(v2), f(v3), f(v4)} is non-empty subset of N. So, by well ordering principle,

{f(v1), f(v2), f(v3), f(v4)} has a least element, say f(v1).

Since T is a tree, at least one of the vertex v3 or v4 is not adjacent to v1. If v4 is not

adjacent to v1, then f(v4) > f(v2) and if v3 is not adjacent to v1 then f(v3) > f(v2). So,

f∗(e1) 6= f∗(e2). Thus, the induced function f∗ : E(G)→ N defined by

f∗(uv) = (f(u))3 + (f(v))3,

for every uv ∈ E(G) is injective. Hence, tree T is a cube sum graph. �

Theorem 3.4 A cycle Cn is a cube sum graph.

Proof Let V (Cn) = {v1, v2, · · · , vn} and E(Cn) = {vivi+1 | 1 ≤ i ≤ n− 1}
⋃
{vnv1}. Here,

|V (Cn)| = n and |E(Cn)| = n.

Let us define a function f : V (Cn)→ {0, 1, 2, · · · , n− 1} as per subsequent two cases.

Case 1. n is even.

In this case, define

f(vi) =


0; i = 1.

2i− 3; 2 ≤ i ≤ n+2
2 .

n− 2(i− n+2
2 ); n+2

2 < i ≤ n.
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It is obvious that f is bijective and we can observe that

f∗(v1v2)(= 1) < f∗(v1vn)(= 23) < f∗(v2v3)(= 13 + 33)

< · · · < f∗(vn
2
vn+2

2
) < f∗(vn+4

2
vn+2

2
).

Case 2. n is odd.

In this case, define

f(vi) =


0; i = 1.

2i− 3; 2 ≤ i ≤ n+1
2 .

n+ 1− 2(i− n+1
2 ); n+1

2 < i ≤ n.

It is obvious that f is bijective and we can observe that

f∗(v1v2)(= 1) < f∗(v1vn)(= 23) < f∗(v2v3)(= 13 + 33)

< · · · < f∗(vn
2
vn+2

2
) < f∗(vn+4

2
vn+2

2
).

So, in both the cases the induced function f∗ : E(Cn)→ N defined by

f∗(uv) = (f(u))3 + (f(v))3,

is injective. Hence, Cn is a cube sum graph. �

Theorem 3.5 A wheel Wn is a cube sum graph.

Proof Let V (Wn) = {v0, v1, · · · , vn} and E(Wn) = {v0vi | 1 ≤ i ≤ n}
⋃
{vivi+1 | 1 ≤

i ≤ n − 1}
⋃
{vnv1}, where v0 is apex and v1, v2, · · · , vn are rim vertices of Wn. Clearly,

|V (Wn)| = n+ 1 and |E(Wn)| = 2n.

Let us define a function f : V (Wn)→ {0, 1 · · · , n} as follows.

f(vi) =


0 ; i = 0.

1 ; i = 1.

2(i− 1) ; 1 < i ≤ bn+2
2 c.

2n− 2i+ 3 ; bn+2
2 c < i ≤ n.

It is obvious that f is bijective. We consider the following two cases for the edge labels.

Case 1. n is odd.

From above vertex labels, one can observe that labels of rim edges are in ascending order

as

f∗(v1v2)(= 13 + 23) < f∗(v1vn)(= 13 + 33) < f∗(v2v3)(= 23 + 43)

< f∗(vnvn−1)(= 33 + 53) < · · · < f∗(vn+1
2
vn+3

2
)(= (n− 1)3 + n3).
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From Fermat’s Last Theorem, f∗(v0vi) is never equal to any of above edge labels for

integers 1 ≤ i ≤ n.

Case 2. n is even.

From above vertex labels, one can observe that labels of rim edges are in ascending order

as

f∗(v1v2)(= 13 + 23) < f∗(v1vn)(= 13 + 33) < f∗(v2v3)(= 23 + 43)

< f∗(vnvn−1)(= 33 + 53) < · · · < f∗(vn+2
2
vn+4

2
)(= (n− 1)3 + n3).

From Fermat’s Last Theorem, f∗(v0vi) (1 ≤ i ≤ n) is never equal to any one of above edge

labels. So, in both the cases the induced function f∗ : E(Wn)→ N defined by

f∗(uv) = (f(u))3 + (f(v))3,

for every uv ∈ E(Wn) is injective. Hence, Wn is a cube sum graph. �

Corollary 3.6 A gear Gn is a cube sum graph.

Corollary 3.7 A shell Sn is a cube sum graph.

Theorem 3.8 A helm Hn is a cube sum graph.

Proof Let V (Hn) = {v0, vi, ui | 1 ≤ i ≤ n} and E(Hn) = {v0vi | 1 ≤ i ≤ n}
⋃
{viui | 1 ≤

i ≤ n}
⋃
{vivi+1 | 1 ≤ i ≤ n− 1}

⋃
{vnv1}, where v0 is apex, v1, v2, · · · , vn are rim vertices and

u1, u2 · · · , un are pendant vertices of helm Hn. Obviously, |V (Hn)| = 2n+1 and |E(Hn)| = 3n.

Let us define a function f : V (Hn)→ {0, 1 · · · , 2n} as follows.

Case 1. n is even.

In this case, define

f(vi) =


0 ; i = 0.

1 ; i = 1.

4i− 5 ; 2 ≤ i ≤ n+2
2 .

2n− 3− 4
(
i− n+4

2

)
; n+2

2 < i ≤ n.

f(ui) =

4i− 4 ; 2 ≤ i ≤ n+2
2 .

2n− 2− 4
(
i− n+4

2

)
; n+2

2 < i ≤ n.

It is obvious that f is bijective and for the edge labels in the graph there are three possi-

bilities as follows:
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(1) Edge labels on rim edges are

f∗(v1v2)(= 13 + 33) < f∗(v1vn)(= 13 + 53)

< f∗(v2v3)(= 33 + 73) < f∗(vnvn−1)(= 53 + 93)

< · · · < f∗(vn+2
2
vn+4

2
)(= (2n− 1)3 + (2n− 3)3).

They are in ascending order of the form 2k (k ∈ N) because the common end vertices of these

edges are labeled by odd numbers (naturally distinct).

(2) Edge labels on edges incident to pendant vertices are

f∗(v1u1)(= 13 + 23) < f∗(v2u2)(= 33 + 43)

< f∗(vnun)(= 53 + 63)

< · · · < f∗(vn+2
2
un+2

2
)(= (2n− 1)3 + (2n)3).

They are in ascending order of the form 2k + 1 (k ∈ N) because common end vertices of these

edges are labeled by consecutive numbers (naturally distinct).

(3) Edge labels on edges incident to apex are

f∗(v0v1)(= 13) < f∗(v0v2)(= 33) < f∗(v0vn)(= 53)

< · · · < f∗(v0vn+2
2

)(= (2n− 1)3).

They are in ascending order of the form 2k + 1 (k ∈ N) because common end vertices of these

edges are labeled by 0 and other end vertices by odd numbers (naturally distinct).

It is clear that the labels of possibilities (1) and (2) are distinct.

From Fermat’s Last Theorem, the edge labels in the possibilities (3) are distinct from the

edge labels in the possibilities (1) and (2). So, the labels of above all possibilities are internally

as well as externally distinct.

Case 2. n is odd.

In this case, define

f(vi) =


0 ; i = 0.

1 ; i = 1.

4i− 5 ; 2 ≤ i ≤ n+1
2 .

2n− 1− 4
(
i− n+3

2

)
; n+1

2 < i ≤ n.

f(ui) =

4i− 4 ; 2 ≤ i ≤ n+1
2 .

2n− 4
(
i− n+3

2

)
; n+1

2 < i ≤ n.

Using the arguments similar to the case 1, one can observe that in this case the function

f is bijective and for every uv ∈ E(G) the induced edge labels f∗(uv) = (f(u))3 + (f(v))3 are

all distinct.
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So, in both the cases the induced function f∗ : E(Hn)→ N defined by

f∗(uv) = (f(u))3 + (f(v))3,

is injective. Hence Hn is a cube sum graph. �

§4. Concluding Remarks

Labeling of discrete structure is a potential area of research. We have discussed some algebraic

properties of cube sum graph. We have also proved that the following graphs are cube sum

graphs: a complete graph Kn if and only if n ≤ 11, a complete bipartite graph K2,n for n ≥ 1,

every tree, cycle graph, wheel graph, gear graph, shell graph and helm graph. To investigate

more results for various graphs as well as in the context of different graph operations is an open

area of research.
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r(G, j)xj , where r(G, j) is the number of Roman dominating functions of

G of weight j [5]. The roots of a Roman domination polynomial of a graph are called the

Roman domination roots of that graph. In this article, the Roman domination polynomials
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§1. Introduction

Throughout this paper all the considered graph are finite simple graphs i.e. all the graphs here

are finite, undirected and have no self-loops or multiple edges. Let G = (V,E) be a graph. The

order and the size of G are denoted respectively by |V (G)| = n and |E(G)| = m.

The Roman domination number of a graph G = (V,E), γR(G), has been defined in [7] as

the smallest weight, W (f(V )), of a function f : V (G)→ {0, 1, 2} satisfying the condition that

every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2, where

W (f(V )) =
∑

u∈V (G)

f(u). A function f : V (G)→ {0, 1, 2} with this condition is called a Roman

dominating function of the graph G = (V,E) or in brief an RDF of G. For more details about

Roman domination and its properties, the reader is referred to [6].

In [5], Deepak et al. introduced the Roman domination polynomial of a graph G as

1Received March 30, 2023, Accepted June 14, 2023.
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R(G, x) =

2n∑
j=γR(G)

r(G, j)xj , where r(G, j) is the number of Roman dominating functions of G

of weight j and studied some of its properties. The roots of the Roman domination polynomial

of a graph G are called the Roman domination roots of G. In addition, the Roman domination

polynomials of paths and cycles are studied in details in [4] and [3], respectively.

As with all the types of graph polynomials, the analysis of the Roman domination poly-

nomial of graphs can give us some informations about graphs. Similar to the domination

polynomial of graphs [2, 1], an atlas for the Roman domination polynomials of graphs of order

at most six is presented in this article. Moreover, the Roman domination polynomials of all the

connected graphs of order less than or equal to six and their roots are illustrated in a table.

Furthermore, for computing the Roman domination polynomials of the disconnected graphs of

order less than or equal to six the following lemma can be used.

Lemma 1.1([5]) If a graph G consists of m components G1, · · · , Gm, then R(G, x) = R(G1, x)

×R(G2, x)× · · · ×R(Gm, x).

Some coefficients of the polynomials are computed by using the following theorem.

Theorem 1.2([5]) Let G be a graph on n vertices with i isolated vertices, t vertices of degree

one and l vertices of degree two. Suppose R(G, x) =

2n∑
j=γR(G)

r(G, j)xj is the Roman domination

polynomial of G. Then the following hold:

(i) r(G, 2n− 1) = n;

(ii) i =
n(n+ 1)

2
− r(G, 2n− 2);

(iii) r(G, 2n− 3) = 2

(
n

2

)
+

(
n

3

)
− i(n− 1)− t;

(iv) If G has s K2-components, then

r(G, 2n− 4) =

(
n

2

)
+ 3

(
n

3

)
+

(
n

4

)
− i(n− 1) +

(
i

2

)
− t(n− 1) + s− l.

(v) If G 6= K2, then r(G, 2) = |{v ∈ V (G) : |deg(v) = n− 1}|

and the other coefficients are computed by determining all the possible functions f : V (G) →
{0, 1, 2} of some size and reduce the cases when f : V (G)→ {0, 1, 2} is not an RDF function of

the graph G. For instance, all the possible functions of size 2n− 5, 2n− 6, 2n− 7 and 2n− 8

are given as:

(i) For size 2n− 5 there is 3

(
n

3

)
+ 4

(
n

4

)
+

(
n

5

)
possible function;

(ii) For size 2n− 6 there is

(
n

3

)
+ 6

(
n

4

)
+ 5

(
n

5

)
+

(
n

6

)
possible function;

(iii) For size 2n− 7 there is 4

(
n

4

)
+ 10

(
n

5

)
+ 6

(
n

6

)
+

(
n

7

)
possible function;

(iv) For size 2n− 8 there is

(
n

4

)
+ 10

(
n

5

)
+ 15

(
n

6

)
+ 7

(
n

7

)
+

(
n

8

)
possible function.
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All the roots of the polynomials are found by using the Matlab program. On the other

hand, the repetition of any root is expressed as an exponent on that root. For example, the

three times repetition of the zero root is expressed as (0)3.

§2. Roman Domination Polynomials of All Connected Graphs of order≤ 6

In the following, a table illustrates all the connected graphs of order less than of equal to six

with their Roman domination polynomials and roots.

Graph Roman Domination Polynomial Roman Domination Roots

x2 + x 0, −1

x4 + 2x3 + 3x2 (0)2, −1±
√
2i

x6 + 3x5 + 6x4 + 5x3 + x2 (0)2, −1, −0.2848, −0.8576± 1.6662i

x6 + 3x5 + 6x4 + 7x3 + 3x2
(0)2, (−1)2, −1±

√
11i

2

x8 + 4x7 + 10x6 + 13x5 + 10x4 + 3x3 + x2 (0)2, −0.1062± 0.3824i, −0.9827± 0.8465i,

−0.9111± 1.7159i

x8 + 4x7 + 10x6 + 14x5 + 11x4 + 2x3 (0)3, −0.2471, −1.2146± 0.8713i,

−0.6618± 1.7846i

x8 + 4x7 + 10x6 + 15x5 + 16x4 + 5x3 (0)3, −0.4599, −0.2992± 1.7264i,

−1.4708± 1.174i

x8 + 4x7 + 10x6 + 16x5 + 15x4 + 4x3 (0)3, −0.402, −1.4178± 0.8204i,

−0.3812± 1.8877i

x8 +4x7 +10x6 +16x5 +17x4 +8x3 +2x2 (0)2, −0.3296± 0.3569i, −1.352± 0.9293i,

−0.3184± 1.7455i
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Graph Roman Domination Polynomial Roman Domination Roots

x8+4x7+10x6+16x5+19x4+12x3+4x2 (0)2, −0.5274± 0.5087i, −1.3019± 1.0899i,

−0.1708± 1.5986i

x10 + 5x9 + 15x8 + 26x7 + 29x6 + 21x5 +

10x4 + 4x3 + x2

(0)2, −1, −0.575, 0.0259± 0.5197i,

−0.69± 0.9483i, −1.0485± 1.89i

x10 + 5x9 + 15x8 + 27x7 + 32x6 + 21x5 +

6x4 + x3

(0)3, −1, −0.1803± 0.2468i,

−0.6458± 1.7634i, −1.1739± 1.2873i

x10+5x9+15x8+28x7+34x6+23x5+6x4 (0)4, −1, −0.5973, −1.1535± 1.1497i,

−0.5479± 1.8674i

x10 + 5x9 + 15x8 + 28x7 + 35x6 + 27x5 +

12x4 + 4x3 + x2

(0)2, −1, −0.6222, −0.0191± 0.4241i,

−1.0795± 1.1832i, −0.5904± 1.7686i

x10 + 5x9 + 15x8 + 28x7 + 36x6 + 27x5 +

10x4 + 2x3

(0)3, −1, −0.2632± 0.3289i,

−1.2977± 1.2965i, −0.4391± 1.7768i

x10 + 5x9 + 15x8 + 29x7 + 38x6 + 31x5 +

12x4 + x3

(0)3, (−1)2, −0.1113, −0.3914± 1.7864i,

−1.053± 1.2558i

x10 + 5x9 + 15x8 + 29x7 + 38x6 + 29x5 +

10x4 + x3

(0)3, −1, −0.1613, −0.574,
−1.2552± 1.1673i, −0.3771± 1.8796i

x10+5x9+15x8+30x7+40x6+31x5+10x4 (0)4, (−1)2, −0.3193± 1.9689i,

−1.1807± 1.058i

x10 + 5x9 + 15x8 + 29x7 + 40x6 + 35x5 +

16x4 + 3x3

(0)3, −1, −0.4934± 0.2123i,

−1.2496± 1.3342i, −0.2571± 1.7452i

x10 + 5x9 + 15x8 + 29x7 + 39x6 + 33x5 +

16x4 + 5x3 + x2

(0)2, −1, −0.6085, −0.11± 0.3958i,

−1.2109± 1.2087i, −0.3749± 1.785i
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Graph Roman Domination Polynomial Roman Domination Roots

x10 + 5x9 + 15x8 + 30x7 + 41x6 + 37x5 +

18x4 + 4x3 + x2

(0)2, −1, −1.3489, −0.0581± 0.2926i,

−0.9508± 1.2585i, −0.3167± 1.8022i

x10 + 5x9 + 15x8 + 30x7 + 42x6 + 37x5 +

16x4 + 2x3

(0)3, (−1)2, −0.1977, −1.1768± 1.2281i,

−0.2244± 1.8564i

x10 + 5x9 + 15x8 + 30x7 + 42x6 + 37x5 +

16x4 + 2x3

(0)3, (−1)2, −0.1977, −1.1768± 1.2281i,

−0.2244± 1.8564i

x10 + 5x9 + 15x8 + 29x7 + 41x6 + 39x5 +

22x4 + 7x3 + x2

(0)2, −1, −0.4598, −0.3386± 0.3367i,

−0.2004± 1.6457i, −1.2311± 1.398i

x10 + 5x9 + 15x8 + 30x7 + 42x6 + 39x5 +

22x4 + 8x3 + 2x2

(0)2, (−1)2, −0.1147± 0.4777i,

−1.0835± 1.1503i, −0.3018± 1.7963i

x10 + 5x9 + 15x8 + 30x7 + 43x6 + 41x5 +

22x4 + 6x3 + x2

(0)2, (−1)2, −0.1639± 0.28i,

−1.1513± 1.291i, −0.1848± 1.7724i

x10 + 5x9 + 15x8 + 30x7 + 44x6 + 43x5 +

22x4 + 4x3

(0)3, (−1)2, −0.3665, −1.2308± 1.3839i,

−0.0859± 1.7817i

x10 + 5x9 + 15x8 + 30x7 + 44x6 + 45x5 +

28x4 + 10x3 + 2x2

(0)2, (−1)2, −0.2436± 0.4032i,

−1.1373± 1.3645i, −0.1191± 1.686i

x10 + 5x9 + 15x8 + 30x7 + 45x6 + 47x5 +

28x4 + 8x3 + x2

(0)2, (−1)2, −0.2484± 0.1789i,

−1.2315± 1.4418i, −0.0201± 1.7228i

x10 + 5x9 + 15x8 + 30x7 + 45x6 + 49x5 +

34x4 + 14x3 + 3x2

(0)2, (−1)2, −0.3355± 0.477i,

−0.0235± 1.6156i, −1.141± 1.4413i

x10 + 5x9 + 15x8 + 30x7 + 45x6 + 51x5 +

40x4 + 20x3 + 5x2

(0)2, (−1)2, −0.5± 0.6887i, 0.0198± 1.469i,

−1.0198± 1.469i
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Graph Roman Domination Polynomial Roman Domination Roots

x12 + 6x11 + 21x10 + 45x9 + 65x8 +

66x7 + 51x6 + 30x5 + 15x4 + 5x3 + x2

(0)2, 0.1235± 0.63i, −0.3468± 0.3391i,

−0.5± 0.866i, −1.1904± 0.6991i,

−1.0862± 2.0572i

x12 + 6x11 + 21x10 + 46x9 + 69x8 +

69x7 + 45x6 + 18x5 + 6x4 + x3

(0)3, −0.3121, −0.0323± 0.4384i,

−1.0811± 0.6413i, −0.8774± 1.3707i,

−0.8532± 1.7983i

x12 + 6x11 + 21x10 + 46x9 + 70x8 +

70x7 + 43x6 + 14x5 + 3x4

(0)4, −0.1845± 0.3661i, −1.0193± 0.5608i,

−0.569± 1.7459i, −1.2272± 1.5512i

x12 + 6x11 + 21x10 + 47x9 + 73x8 +

75x7 + 46x6 + 12x5 + x4

(0)4, −0.1569, −0.2961, −1.1689± 0.632i,

−0.4916± 1.8189i, −1.1129± 1.4817i

x12 + 6x11 + 21x10 + 47x9 + 73x8 +

75x7 + 48x6 + 16x5 + 3x4

(0)4, −0.2402± 0.3241i, −1.0707± 0.6568i,

−0.5512± 1.855i, −1.1379± 1.351i

x12 + 6x11 + 21x10 + 48x9 + 76x8 +

80x7 + 51x6 + 14x5 + x4

(0)4, −0.1065, −0.4101, −1.289± 0.6654i,

−0.466± 1.9189i, −0.9867± 1.348i

x12 + 6x11 + 21x10 + 47x9 + 73x8 +

78x7 + 59x6 + 32x5 + 15x4 + 5x3 + x2

(0)2, 0.1005± 0.5357i, −0.3634± 0.3076i,

−0.9047± 1.0954i, −1.0993± 0.7781i,

−0.733± 1.8761i

x12 + 6x11 + 21x10 + 47x9 + 74x8 +

77x7 + 55x6 + 23x5 + 7x4 + x3

(0)3, −0.2808, −0.1229± 0.4157i,

−0.6917± 0.9552i, −0.5851± 1.8882i,

−1.46± 1.1647i

x12 + 6x11 + 21x10 + 47x9 + 75x8 +

81x7 + 54x6 + 30x5 + 3x4

(0)4, −0.1226, −1.7056, −0.1608± 0.8745i,

−0.4263± 1.8985i, −1.4987± 1.5959i

x12 + 6x11 + 21x10 + 48x9 + 77x8 +

85x7 + 61x6 + 24x5 + 6x4 + x3

(0)3, −0.4477, −0.0846± 0.3091i,

−1.2938± 0.6559i, −0.4577± 1.7908i,

−0.9401± 1.4635i
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Graph Roman Domination Polynomial Roman Domination Roots

x12 + 6x11 + 21x10 + 48x9 + 77x8 +

84x7 + 60x6 + 25x5 + 7x4 + x3

(0)3, −0.333, −0.135± 0.3698i,

−1.1933± 0.7199i, −0.4782± 1.8756i,

−1.027± 1.2682i

x12 + 6x11 + 21x10 + 48x9 + 78x8 +

87x7 + 62x6 + 22x5 + 4x4

(0)4, −0.2759± 0.2872i, −1.302± 0.7156i,

−0.3364± 1.8063i, −1.0857± 1.4852i

x12 + 6x11 + 21x10 + 48x9 + 78x8 +

86x7 + 59x6 + 20x5 + 3x4

(0)4, −0.2987± 0.2091i, −1.1757± 0.6497i,

−0.3324± 1.8639i, −1.1932± 1.4373i

x12 + 6x11 + 21x10 + 48x9 + 78x8 +

86x7 + 61x6 + 24x5 + 5x4

(0)4, −0.3289± 0.392i, −1.0706± 0.6814i,

−1.2184± 1.3314i, −0.382± 1.8693i

x12 + 6x11 + 21x10 + 48x9 + 78x8 +

88x7 + 65x6 + 26x5 + 5x4

(0)4, −0.3725± 0.3183i, −1.2292± 0.6886i,

−0.3643± 1.7517i, −1.034± 1.4858i

x12 + 6x11 + 21x10 + 49x9 + 81x8 +

93x7 + 70x6 + 28x5 + 5x4

(0)4, −0.3903± 0.2555i, −0.8845± 1.4059i,

−1.3704± 0.678i, −0.3548± 1.8539i

x12 + 6x11 + 21x10 + 49x9 + 81x8 +

92x7 + 65x6 + 20x5 + 2x4

(0)4, −0.193, −0.3455, −1.444± 0.647i,

−0.2776± 1.8986i, −1.0092± 1.4952i

x12 + 6x11 + 21x10 + 49x9 + 81x8 +

91x7 + 64x6 + 22x5 + 3x4

(0)4, −0.3236± 0.1375i, −1.3071± 0.6816i,

−1.0564± 1.3279i, −0.3129± 1.9443i

x12 + 6x11 + 21x10 + 50x9 + 84x8 +

96x7 + 69x6 + 24x5 + 3x4

(0)4, −0.2931, −0.3912, −0.9289± 1.2843i,

−1.4442± 0.6431i, −0.2848± 2.0214i

x12 + 6x11 + 21x10 + 48x9 + 78x8 +

88x7 + 69x6 + 37x5 + 16x4 + 5x3 + x2

(0)2, 0.0483± 0.4866i, −0.3807± 0.322i,

−1.0655± 0.7386i, −0.4789± 1.8345i,

−1.1231± 1.2337i



94 Deepak G., Manjunath N., Manjunatha R., Shashidhara J.M. and Akram Alqesmah

Graph Roman Domination Polynomial Roman Domination Roots

x12 + 6x11 + 21x10 + 48x9 + 78x8 +

88x7 + 67x6 + 32x5 + 11x4 + 2x3

(0)3, −0.4201, −0.1104± 0.4858i,

−1.1744± 0.6852i, −0.4308± 1.7973i,

−1.0744± 1.3725i

x12 + 6x11 + 21x10 + 48x9 + 79x8 +

91x7 + 69x6 + 30x5 + 8x4 + x3

(0)3, −0.3093, −0.1986± 0.3323i,

−1.1854± 0.6472i, −0.2844± 1.7695i,

−1.177± 1.516i

x12 + 6x11 + 21x10 + 48x9 + 79x8 +

92x7 + 72x6 + 33x5 + 9x4 + x3

(0)3, −0.2376, −0.2756± 0.3559i,

−1.2094± 0.6657i, −0.2836± 1.7083i,

−1.1126± 1.5483i

x12 + 6x11 + 21x10 + 48x9 + 80x8 +

94x7 + 73x6 + 32x5 + 7x4

(0)4, −0.418± 0.4055i, −1.117± 0.6553i,

−0.2117± 1.7592i, −1.2534± 1.5328i

x12 + 6x11 + 21x10 + 49x9 + 81x8 +

94x7 + 75x6 + 38x5 + 15x4 + 5x3 + x2

(0)2, 0.0702± 0.4345i, −0.4437± 0.2135i,

−0.8269± 1.3436i, −1.3747± 0.6844i,

−0.425± 1.8568i

x12 + 6x11 + 21x10 + 49x9 + 82x8 +

96x7 + 74x6 + 32x5 + 8x4 + x3

(0)3, −0.3786, −0.1866± 0.2785i,

−1.3112± 0.6703i, −0.2771± 1.8538i,

−1.0359± 1.4185i

x12 + 6x11 + 21x10 + 49x9 + 82x8 +

97x7 + 77x6 + 35x5 + 9x4 + x3

(0)3, −0.2893, −0.2676± 0.2811i,

−1.3411± 0.6708i, −0.2853± 1.7984i,

−0.9614± 1.4678i

x12 + 6x11 + 21x10 + 49x9 + 82x8 +

97x7 + 77x6 + 35x5 + 9x4 + x3

(0)3, −0.2893, −0.2676± 0.2811i,

−1.3411± 0.6708i, −0.2853± 1.7984i,

−0.9614± 1.4678i

x12 + 6x11 + 21x10 + 49x9 + 82x8 +

96x7 + 76x6 + 36x5 + 10x4 + x3

(0)3, −0.184, −0.3372± 0.4009i,

−1.2633± 0.7621i, −0.332± 1.8505i,

−0.9755± 1.2738
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Graph Roman Domination Polynomial Roman Domination Roots

x12 + 6x11 + 21x10 + 49x9 + 83x8 +

99x7 + 78x6 + 34x5 + 7x4

(0)4, −0.4344± 0.3425, −1.2443± 0.7076i,

−1.1133± 1.4237i, −0.208± 1.8371i

x12 + 6x11 + 21x10 + 49x9 + 83x8 +

100x7 + 81x6 + 37x5 + 8x4

(0)4, −0.4721± 0.3624i, −1.2814± 0.7156i,

−0.2047± 1.7874i, −1.0418± 1.4677i

x12 + 6x11 + 21x10 + 49x9 + 83x8 +

99x7 + 76x6 + 30x5 + 5x4

(0)4, −0.3847± 0.2078i, −1.2966± 0.6407i,

−0.1699± 1.856i, −1.1487± 1.5097i

x12 + 6x11 + 21x10 + 49x9 + 83x8 +

99x7 + 76x6 + 30x5 + 5x4

(0)4, −0.3847± 0.2078i, −1.2966± 0.6407i,

−0.1699± 1.856i, −1.1487± 1.5097i

x12 + 6x11 + 21x10 + 50x9 + 85x8 +

102x7 + 81x6 + 37x5 + 9x4 + x3

(0)3, −0.4793, −0.2359± 0.2063i,

−1.34± 0.5136i, −0.2629± 1.9138i,

−0.9216± 1.3839i

x12 + 6x11 + 21x10 + 50x9 + 86x8 +

104x7 + 83x6 + 37x5 + 7x4

(0)4, −0.5422± 0.2074i, −1.2695± 0.6782i,

−0.983± 1.3109i, −0.2053± 1.9216i

x12 + 6x11 + 21x10 + 50x9 + 86x8 +

104x7 + 81x6 + 32x5 + 5x4

(0)4, −0.3956± 0.1422i, −1.4133± 0.6206i,

−1.0285± 1.4517i, −0.1626± 1.9301i

x12 + 6x11 + 21x10 + 50x9 + 86x8 +

104x7 + 81x6 + 32x5 + 5x4

(0)4, −0.3956± 0.1422i, −1.4133± 0.6206i,

−1.0285± 1.4517i, −0.1626± 1.9301i

x12 + 6x11 + 21x10 + 50x9 + 86x8 +

106x7 + 91x6 + 46x5 + 11x4

(0)4, −0.5786± 0.39i, −0.7173± 1.4495i,

−1.4467± 0.734i, −0.2575± 1.7935i

x12 + 6x11 + 21x10 + 48x9 + 80x8 +

96x7 + 81x6 + 45x5 + 18x4 + 5x3 + x2

(0)2, −0.0184± 0.4127i, −0.4318± 0.3685i,

−1.129± 0.6906i, −0.2618± 1.6586i,

−1.159± 1.5295i
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Graph Roman Domination Polynomial Roman Domination Roots

x12 + 6x11 + 21x10 + 48x9 + 80x8 +

96x7 + 81x6 + 41x5 + 13x4 + 2x3

(0)3, −0.3915, −0.2307± 0.4047i,

−0.1986± 1.6219i, −1.3076± 0.8313i,

−1.0673± 1.5915i

x12 + 6x11 + 21x10 + 49x9 + 82x8 +

97x7 + 81x6 + 46x5 + 20x4 + 6x3 + x2

(0)2, −0.0193± 0.5142i, −0.3809± 0.2499i,

−0.9361± 1.1908i, −1.2662± 0.7793i,

−0.3976± 1.8522i

x12 + 6x11 + 21x10 + 49x9 + 83x8 +

100x7 + 83x6 + 44x5 + 17x4 + 5x3 + x2

(0)2, 0.0212± 0.4112i, −0.4442± 0.2853i,

−1.2421± 0.7185i, −0.2605± 1.8109i,

−1.0744± 1.3845i

x12 + 6x11 + 21x10 + 49x9 + 83x8 +

101x7 + 84x6 + 42x5 + 13x4 + 2x3

(0)3, −0.4247, −0.2232± 0.3935i,

−1.3145± 0.6601i, −0.2104± 1.7613i,

−1.0396± 1.5166i

x12 + 6x11 + 21x10 + 49x9 + 83x8 +

101x7 + 84x6 + 42x5 + 13x4 + 2x3

(0)3, −0.4247, −0.2232± 0.3935i,

−1.3145± 0.6601i, −0.2104± 1.7613i,

−1.0396± 1.5166i

x12 + 6x11 + 21x10 + 49x9 + 84x8 +

104x7 + 88x6 + 44x5 + 12x4 + x3

(0)3, −0.1341, −0.4273± 0.3811i,

−1.2532± 0.6966i, −0.1351± 1.7632i,

−1.1174± 1.5131i

x12 + 6x11 + 21x10 + 49x9 + 84x8 +

104x7 + 86x6 + 40x5 + 10x4 + x3

(0)3, −0.2416, −0.3148± 0.2456i,

−1.3003± 0.6331i, −0.1038± 1.7952i,

−1.1603± 1.5787i

x12 + 6x11 + 21x10 + 49x9 + 82x8 +

96x7 + 72x6 + 32x5 + 8x4 + x3

(0)3, (−1)2, −0.6702, −0.2146± 0.2651i,

−1.1889± 1.4508i, −0.2615± 1.8914i

x12 + 6x11 + 21x10 + 49x9 + 84x8 +

105x7 + 93x6 + 51x5 + 15x4 + x3

(0)3, −0.0902, −0.584± 0.4736i,

−1.2491± 0.8035i, −0.1482± 1.6641i,

−0.9736± 1.4954i
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Graph Roman Domination Polynomial Roman Domination Roots

x12 + 6x11 + 21x10 + 49x9 + 85x8 +

107x7 + 92x6 + 46x5 + 11x4

(0)4, −0.5542± 0.4259i, −1.1816± 0.7297i,

−0.0686± 1.7718i, −1.1956± 1.5114i

x12 + 6x11 + 21x10 + 50x9 + 86x8 +

106x7 + 91x6 + 49x5 + 18x4 + 5x3 + x2

(0)2, 0.0065± 0.377i, −0.4814± 0.2683i,

−0.8424± 1.3964i, −0.2552± 1.8481i,

−1.4275± 0.6819i

x12 + 6x11 + 21x10 + 50x9 + 86x8 +

106x7 + 89x6 + 44x5 + 13x4 + 2x3

(0)3, −0.4773, −0.2069± 0.35i,

−1.4357± 0.626i, −0.2084± 1.8498i,

−0.9105± 1.4676i

x12 + 6x11 + 21x10 + 50x9 + 86x8 +

106x7 + 93x6 + 52x5 + 17x4 + 2x3

(0)3, −0.2189, −0.5046± 0.4894i,

−0.6196± 1.2791i, −0.3357± 1.8302i,

−1.4307± 0.7725i

x12 + 6x11 + 21x10 + 50x9 + 87x8 +

109x7 + 93x6 + 46x5 + 12x4 + x3

(0)3, −0.1411, −0.4254± 0.3143i,

−1.3917± 0.6763i, −0.1365± 1.8433i,

−0.9758± 1.4644i

x12 + 6x11 + 21x10 + 50x9 + 87x8 +

109x7 + 93x6 + 46x5 + 12x4 + x3

(0)3, −0.1411, −0.4254± 0.3143i,

−1.3917± 0.6763i, −0.1365± 1.8433i,

−0.9758± 1.4644i

x12 + 6x11 + 21x10 + 50x9 + 87x8 +

109x7 + 93x6 + 46x5 + 12x4 + x3

(0)3, −0.1411, −0.4254± 0.3143i,

−1.3917± 0.6763i, −0.1365± 1.8433i,

−0.9758± 1.4644i

x12 + 6x11 + 21x10 + 50x9 + 88x8 +

112x7 + 95x6 + 44x5 + 9x4

(0)4, −0.485± 0.2888i, −1.3653± 0.6551i,

−1.1019± 1.5178i, −0.0479± 1.8706i

x12 + 6x11 + 21x10 + 50x9 + 87x8 +

110x7 + 98x6 + 53x5 + 15x4 + x3

(0)3, −0.092, −0.5575± 0.4075i,

−0.8202± 1.4852i, −0.1641± 1.7577i,

−1.4123± 0.7401i
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Graph Roman Domination Polynomial Roman Domination Roots

x12 + 6x11 + 21x10 + 50x9 + 88x8 +

112x7 + 99x6 + 52x5 + 13x4

(0)4, −0.6273± 0.4267i, −0.9408± 1.3728i,

−1.3306± 0.8333i, −0.1013± 1.8161i

x12 + 6x11 + 21x10 + 50x9 + 88x8 +

112x7 + 97x6 + 48x5 + 11x4

(0)4, −0.5453± 0.3684i, −1.34± 0.7294i,

−1.0427± 1.4531i, −0.072± 1.8455i

x12 + 6x11 + 21x10 + 50x9 + 88x8 +

112x7 + 95x6 + 44x5 + 9x4

(0)4, −0.485± 0.2888i, −1.3653± 0.6551i,

−1.1019± 1.5178i, −0.0479± 1.8706i

x12 + 6x11 + 21x10 + 49x9 + 84x8 +

105x7 + 93x6 + 54x5 + 22x4 + 6x3 + x2

(0)2, −0.0786± 0.4225i, −0.4153± 0.2981i,

−1.252± 0.7062i, −0.182± 1.7154i,

−1.0722± 1.4899i

x12 + 6x11 + 21x10 + 49x9 + 84x8 +

106x7 + 94x6 + 52x5 + 18x4 + 3x3

(0)3, −0.4495, −0.2757± 0.4629i,

−1.3173± 0.6507i, −0.1142± 1.6899i,

−1.0681± 1.6039i

x12 + 6x11 + 21x10 + 49x9 + 85x8 +

108x7 + 95x6 + 52x5 + 19x4 + 5x3

(0)3, −0.8284, −0.0878± 0.4909i,

−1.2316± 0.7055i, −0.0743± 1.763i,

−1.1922± 1.5644i

x12 + 6x11 + 21x10 + 49x9 + 85x8 +

109x7 + 98x6 + 54x5 + 17x4 + 2x3

(0)3, −0.2333, −0.4386± 0.4226i,

−1.2605± 0.6864i, −0.0447± 1.7103i,

−1.1397± 1.592i

x12 + 6x11 + 21x10 + 49x9 + 85x8 +

109x7 + 100x6 + 58x5 + 19x4 + 2x3

(0)3, −0.1758, −0.5658± 0.5017i,

−1.2057± 0.7781i, −0.064± 1.6618i,

−1.0767± 1.5277i

x12 + 6x11 + 21x10 + 50x9 + 86x8 +

106x7 + 95x6 + 60x5 + 29x4 + 10x3 + 2x2

(0)2, −0.0012± 0.581i, −0.4883± 0.315i,

−0.7487± 1.114i, −0.3524± 1.9001i,

−1.4095± 0.7885i
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Graph Roman Domination Polynomial Roman Domination Roots

x12 + 6x11 + 21x10 + 50x9 + 87x8 +

110x7 + 98x6 + 56x5 + 22x4 + 6x3 + x2

(0)2, −0.0566± 0.4029i, −0.4434± 0.2502i,

−1.3964± 0.682i, −0.1827± 1.8053i,

−0.9209± 1.4429i

x12 + 6x11 + 21x10 + 50x9 + 87x8 +

111x7 + 99x6 + 54x5 + 18x4 + 3x3

(0)3, −0.493, −0.2562± 0.4156i,

−1.4321± 0.6182i, −0.1255± 1.7715i,

−0.9397± 1.5633i

x12 + 6x11 + 21x10 + 50x9 + 88x8 +

113x7 + 102x6 + 58x5 + 21x4 + 5x3 + x2

(0)2, −0.027± 0.3248i, −0.5297± 0.3493i,

−1.345± 0.7385i, −0.1065± 1.8048i,

−0.9918± 1.4336i

x12 + 6x11 + 21x10 + 50x9 + 88x8 +

114x7 + 107x6 + 65x5 + 24x4 + 5x3 + x2

(0)2, −0.0431± 0.2804i, −0.6378± 0.4173i,

−0.8158± 1.4693i, −0.1205± 1.7096i,

−1.3828± 0.8164i

x12 + 6x11 + 21x10 + 50x9 + 88x8 +

114x7 + 103x6 + 56x5 + 17x4 + 2x3

(0)3, −0.2542, −0.422± 0.3556i,

−1.3894± 0.6657i, −0.0554± 1.7847i,

−1.006± 1.5497i

x12 + 6x11 + 21x10 + 50x9 + 88x8 +

114x7 + 105x6 + 60x5 + 19x4 + 2x3

(0)3, −0.1831, −0.5358± 0.4304i,

−0.9159± 1.5054i, −0.0806± 1.7439i,

−1.3761± 0.7416i

x12 + 6x11 + 21x10 + 50x9 + 88x8 +

114x7 + 103x6 + 56x5 + 17x4 + 2x3

(0)3, −0.2542, −0.422± 0.3556i,

−1.3894± 0.6657i, −0.0554± 1.7847i,

−1.006± 1.5497i

x12 + 6x11 + 21x10 + 50x9 + 88x8 +

114x7 + 105x6 + 60x5 + 19x4 + 2x3

(0)3, −0.1831, −0.5358± 0.4304i,

−0.9159± 1.5054i, −0.0806± 1.7439i,

−1.3761± 0.7416i

x12 + 6x11 + 21x10 + 50x9 + 88x8 +

114x7 + 105x6 + 60x5 + 19x4 + 2x3

(0)3, −0.1831, −0.5358± 0.4304i,

−0.9159± 1.5054i, −0.0806± 1.7439i,

−1.3761± 0.7416i
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Graph Roman Domination Polynomial Roman Domination Roots

x12 + 6x11 + 21x10 + 50x9 + 89x8 +

117x7 + 107x6 + 58x5 + 16x4 + x3

(0)3, −0.0849, −0.5511± 0.3827i,

−1.3403± 0.715i, 0.0048± 1.8007i,

−1.071± 1.5332i

x12 + 6x11 + 21x10 + 50x9 + 89x8 +

118x7 + 109x6 + 62x5 + 18x4 + x3

(0)3, −0.0709, −0.6957± 0.5181i,

−1.1718± 0.5179i, 0.0102± 1.7809i,

−1.1072± 1.5419i

x12 + 6x11 + 21x10 + 50x9 + 89x8 +

117x7 + 107x6 + 58x5 + 16x4 + x3

(0)3, −0.0849, −0.5511± 0.3827i,

−1.3403± 0.715i, 0.0048± 1.8007i,

−1.071± 1.5332i

x12 + 6x11 + 21x10 + 50x9 + 90x8 +

120x7 + 111x6 + 60x5 + 15x4

(0)4, −0.6364± 0.4i, −1.283± 0.7667i,

−1.1381± 1.5159i, 0.0575± 1.8177i

x12 + 6x11 + 21x10 + 50x9 + 90x8 +

120x7 + 111x6 + 60x5 + 15x4

(0)4, −0.6364± 0.4i, −1.283± 0.7667i,

−1.1381± 1.5159i, 0.0575± 1.8177i

x12 + 6x11 + 21x10 + 49x9 + 85x8 +

110x7 + 103x6 + 64x5 + 27x4 + 7x3 + x2

(0)2, −0.2107± 0.4016i, −0.3587± 0.3219i,

−1.2598± 0.695i, −0.0725± 1.6492i,

−1.0983± 1.5824i

x12 + 6x11 + 21x10 + 49x9 + 85x8 +

111x7 + 106x6 + 66x5 + 25x4 + 4x3

(0)3, −0.3743, −0.4699± 0.5431i,

−1.2836± 0.712i, −0.014± 1.596i,

−1.0454± 1.6378i

x12 + 6x11 + 21x10 + 50x9 + 88x8 +

114x7 +107x6 +68x5 +31x4 +10x3 +2x2

(0)2, −0.0443± 0.4978i, −0.5229± 0.3243i,

−0.9295± 1.4096i, −0.1523± 1.7575i,

−1.3511± 0.7477i

x12 + 6x11 + 21x10 + 50x9 + 88x8 +

115x7 + 108x6 + 66x5 + 27x4 + 7x3 + x2

(0)2, −0.1532± 0.3941i, −0.4109± 0.2588i,

−1.3937± 0.6711i, −0.0866± 1.7314i,

−0.9557± 1.5443i
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Graph Roman Domination Polynomial Roman Domination Roots

x12 + 6x11 + 21x10 + 50x9 + 88x8 +

116x7 + 111x6 + 68x5 + 25x4 + 4x3

(0)3, −0.4065, −0.4318± 0.4781i,

−1.4156± 0.6723i, −0.0405± 1.6731i,

−0.9089± 1.6189i

x12 + 6x11 + 21x10 + 50x9 + 89x8 +

118x7 + 112x6 + 68x5 + 26x4 + 6x3 + x2

(0)2, −0.0835± 0.3041i, −0.5301± 0.3671i,

−1.3446± 0.7231i, −0.0164± 1.7521i,

−1.0255± 1.5257i

x12 + 6x11 + 21x10 + 50x9 + 89x8 +

118x7 + 114x6 + 72x5 + 28x4 + 6x3 + x2

(0)2, −0.0847± 0.2693i, −0.6226± 0.4356i,

−0.9221± 1.4781i, −0.0345± 1.7066i,

−1.3362± 0.8198i

x12 + 6x11 + 21x10 + 50x9 + 89x8 +

119x7 + 115x6 + 70x5 + 24x4 + 3x3

(0)3, −0.243, −0.5545± 0.4425i,

−1.3725± 0.7272i, 0.0242± 1.7089i,

−0.9757± 1.5901i

x12 + 6x11 + 21x10 + 50x9 + 89x8 +

119x7 + 115x6 + 70x5 + 24x4 + 3x3

(0)3, −0.243, −0.5545± 0.4425i,

−1.3725± 0.7272i, 0.0242± 1.7089i,

−0.9757± 1.5901i

x12 + 6x11 + 21x10 + 50x9 + 89x8 +

119x7 + 115x6 + 70x5 + 24x4 + 3x3

(0)3, −0.243, −0.5545± 0.4425i,

−1.3725± 0.7272i, 0.0242± 1.7089i,

−0.9757± 1.5901i

x12 + 6x11 + 21x10 + 50x9 + 90x8 +

121x7 + 116x6 + 70x5 + 25x4 + 5x3 + x2

(0)2, −0.0363± 0.2693i, −0.6238± 0.3994i,

−1.2869± 0.779i, 0.043± 1.7737i,

−1.096± 1.5049i

x12 + 6x11 + 21x10 + 50x9 + 90x8 +

122x7 + 119x6 + 72x5 + 23x4 + 2x3

(0)3, −0.1297, −0.6492± 0.4324i,

−1.324± 0.7875i, 0.0788± 1.74i,

−1.0408± 1.5613i

x12 + 6x11 + 21x10 + 50x9 + 90x8 +

122x7 + 119x6 + 72x5 + 23x4 + 2x3

(0)3, −0.1297, −0.6492± 0.4324i,

−1.324± 0.7875i, 0.0788± 1.74i,

−1.0408± 1.5613i
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Graph Roman Domination Polynomial Roman Domination Roots

x12 + 6x11 + 21x10 + 50x9 + 90x8 +

122x7 + 121x6 + 76x5 + 25x4 + 2x3

(0)3, −0.1121, −0.736± 0.4347i,

0.0763± 1.7018i, −1.3382± 0.8915i,

−0.946± 1.5361i

x12 + 6x11 + 21x10 + 49x9 + 85x8 +

112x7 + 111x6 + 76x5 + 35x4 + 9x3 + x2

(0)2, −0.2865± 0.1324i, −0.4153± 0.6139i,

−0.0178± 1.5072i, −1.2854± 0.7218i,

−0.995± 1.6462i

x12 + 6x11 + 21x10 + 50x9 + 89x8 +

119x7 +117x6 +78x5 +36x4 +11x3 +2x2

(0)2, −0.1224± 0.4731i, −0.5155± 0.3399i,

−1.3496± 0.7314i, −0.0412± 1.6919i,

−0.9713± 1.5201i

x12 + 6x11 + 21x10 + 50x9 + 87x8 +

110x7 + 98x6 + 56x5 + 23x4 + 6x3 + x2

(0)2, −0.095± 0.4168i, −0.3314± 0.3237i,

−1.448± 0.67i, −0.1814± 1.8122i,

−0.9443± 1.459i

x12 + 6x11 + 21x10 + 50x9 + 89x8 +

121x7 + 123x6 + 82x5 + 32x4 + 5x3

(0)3, −0.3499, −0.5934± 0.4954i,

0.0784± 1.6146i, −1.4059± 0.7324i,

−0.9041± 1.6807i

x12 + 6x11 + 21x10 + 50x9 + 90x8 +

123x7 + 124x6 + 82x5 + 33x4 + 7x3 + x2

(0)2, −0.1152± 0.2405i, −0.6359± 0.439i,

−1.3318± 0.7978i, 0.074± 1.685i,

−0.9911± 1.5662i

x12 + 6x11 + 21x10 + 50x9 + 90x8 +

122x7 +123x6 +84x5 +37x4 +10x3 +2x2

(0)2, −0.0913± 0.3631i, −0.7025± 0.4349i,

−0.9207± 1.4437i, 0.0185± 1.6731i,

−1.3039± 0.9196i

x12 + 6x11 + 21x10 + 50x9 + 90x8 +

123x7 + 124x6 + 82x5 + 33x4 + 7x3 + x2

(0)2, −0.1152± 0.2405i, −0.6359± 0.439i,

−1.3318± 0.7978i, 0.074± 1.685i,

−0.9911± 1.5662i
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Graph Roman Domination Polynomial Roman Domination Roots

x12 + 6x11 + 21x10 + 50x9 + 90x8 +

124x7 + 127x6 + 84x5 + 31x4 + 4x3

(0)3, −0.2388, −0.6756± 0.4587i,

−1.3675± 0.7958i, 0.1242± 1.6615i,

−0.9617± 1.6404i

x12 + 6x11 + 21x10 + 50x9 + 90x8 +

124x7 + 127x6 + 84x5 + 31x4 + 4x3

(0)3, −0.2388, −0.6756± 0.4587i,

−1.3675± 0.7958i, 0.1242± 1.6615i,

−0.9617± 1.6404i

x12 + 6x11 + 21x10 + 50x9 + 89x8 +

121x7 + 125x6 + 90x5 + 44x4 + 13x3 + 2x2

(0)2, −0.3369± 0.3633i, −0.4276± 0.4667i,

0.0164± 1.5594i, −1.3856± 0.7407i,

−0.8664± 1.6238i

x12 + 6x11 + 21x10 + 50x9 + 90x8 +

123x7 + 126x6 + 90x5 + 45x4 + 15x3 + 3x2

(0)2, −0.1346± 0.524i, −0.5926± 0.389i,

0.0122± 1.655i, −1.299± 0.8058i,

−0.986± 1.4882i

x12 + 6x11 + 21x10 + 50x9 + 90x8 +

124x7 + 129x6 + 92x5 + 43x4 + 12x3 + 2x2

(0)2, −0.1808± 0.3545i, −0.618± 0.4469i,

0.0759± 1.6192i, −1.341± 0.8078i,

−0.936± 1.5796i

x12 + 6x11 + 21x10 + 50x9 + 90x8 +

125x7 + 132x6 + 94x5 + 41x4 + 9x3 + x2

(0)2, −0.1737± 0.1812i, −0.6682± 0.4706i,

0.1377± 1.6032i, −1.377± 0.8028i,

−0.9187± 1.6633i

x12 + 6x11 + 21x10 + 50x9 + 90x8 +

125x7 +134x6 +102x5 +53x4 +17x3 +3x2

(0)2, −0.2721± 0.4424i, −0.5909± 0.4568i,

0.0924± 1.542i, −1.3515± 0.8172i,

−0.8779± 1.606i

x12 + 6x11 + 21x10 + 50x9 + 90x8 +

126x7 + 135x6 + 96x5 + 39x4 + 6x3

(0)3, −0.3189, −0.7075± 0.4716i,

0.1916± 1.5988i, −1.4076± 0.7946i,

−0.917± 1.7322i

x12 + 6x11 + 21x10 + 50x9 + 90x8 +

126x7 +139x6 +112x5 +63x4 +22x3 +4x2

(0)2, −0.4209± 0.5088i, −0.527± 0.4644i,

0.1355± 1.4616i, −1.3631± 0.8255i,

−0.8245± 1.6489i
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x12 + 6x11 + 21x10 + 50x9 + 90x8 +

126x7 +137x6 +104x5 +51x4 +14x3 +2x2

(0)2, −0.2378± 0.2739i, −0.6605± 0.4862i,

0.164± 1.5421i, −1.3872± 0.8092i,

−0.8785± 1.6945i

x12 + 6x11 + 21x10 + 50x9 + 90x8 +

126x7 +141x6 +120x5 +75x4 +30x3 +6x2

(0)2, −0.5662± 0.3387i, −0.5± 0.866i,

0.1321± 1.3332i, −0.7327± 1.5959i,

−1.3332± 0.8446i

Now, all connected graphs of order≤ 6 with their Roman domination polynomials and

roots are listed in the table.
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follows the principle of logical consistency and can not contradict itself on one hand. But on
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