Aims and Scope: The International J. Mathematical Combinatorics (ISSN 1937-1055) is a fully refereed international journal, sponsored by the MADIS of Chinese Academy of Sciences and published in USA quarterly comprising 100-150 pages approx. per volume, which publishes original research papers and survey articles in all aspects of Smarandache multi-spaces, Smarandache geometries, mathematical combinatorics, non-euclidean geometry and topology and their applications to other sciences. Topics in detail to be covered are:

Smarandache multi-spaces with applications to other sciences, such as those of algebraic multi-systems, multi-metric spaces, ···, etc. Smarandache geometries;
Differential Geometry; Geometry on manifolds;
Topological graphs; Algebraic graphs; Random graphs; Combinatorial maps; Graph and map enumeration; Combinatorial designs; Combinatorial enumeration;
Low Dimensional Topology; Differential Topology; Topology of Manifolds;
Geometrical aspects of Mathematical Physics and Relations with Manifold Topology;
Applications of Smarandache multi-spaces to theoretical physics; Applications of Combinatorics to mathematics and theoretical physics;
Mathematical theory on gravitational fields; Mathematical theory on parallel universes;
Other applications of Smarandache multi-space and combinatorics.

Generally, papers on mathematics with its applications not including in above topics are also welcome.

It is also available from the below international databases:

Serials Group/Editorial Department of EBSCO Publishing
10 Estes St. Ipswich, MA 01938-2106, USA
Tel.: (978) 356-6500, Ext. 2262 Fax: (978) 356-9371
http://www.ebsco.com/home/printsubs/priceproj.asp

and

Gale Directory of Publications and Broadcast Media, Gale, a part of Cengage Learning
27500 Drake Rd. Farmington Hills, MI 48331-3535, USA
Tel.: (248) 699-4253, ext. 1326; 1-800-347-GALE Fax: (248) 699-8075
http://www.gale.com

Indexing and Reviews: Mathematical Reviews(USA), Zentralblatt fur Mathematik(Germany), Referativnyi Zhurnal (Russia), Mathematika (Russia), Computing Review (USA), Institute for Scientific Information (PA, USA), Library of Congress Subject Headings (USA).

Subscription A subscription can be ordered by an email to j.mathematicalcombinatorics@gmail.com or directly to

Linfan Mao
The Editor-in-Chief of International Journal of Mathematical Combinatorics
Chinese Academy of Mathematics and System Science
Beijing, 100190, P.R.China
Email: maolinfan@163.com

Price: US$48.00
Editorial Board (3nd)

Editor-in-Chief

Linfan MAO
Chinese Academy of Mathematics and System
Science, P.R.China
and
Beijing University of Civil Engineering and
Architecture, P.R.China
Email: maolinfan@163.com

Deputy Editor-in-Chief

Guohua Song
Beijing University of Civil Engineering and
Architecture, P.R.China
Email: songguohua@bucea.edu.cn

Editors

S.Bhattacharya
Deakin University
Geelong Campus at Waurn Ponds
Australia
Email: Sukanto.Bhattacharya@Deakin.edu.au

Said Broumi
Hassan II University Mohammedia
Hay El Baraka Ben M’sik Casablanca
B.P.7951 Morocco

Junliang Cai
Beijing Normal University, P.R.China
Email: caijunliang@bnu.edu.cn

Yanxun Chang
Beijing Jiaotong University, P.R.China
Email: yxchang@center.njtu.edu.cn

Jingan Cui
Beijing University of Civil Engineering and
Architecture, P.R.China
Email: cuijingan@bucea.edu.cn

Shaofei Du
Capital Normal University, P.R.China
Email: dushf@mail.cnu.edu.cn

Baizhou He
Beijing University of Civil Engineering and
Architecture, P.R.China
Email: hebaizhou@bucea.edu.cn

Xiaodong Hu
Chinese Academy of Mathematics and System
Science, P.R.China
Email: xdu@amss.ac.cn

Yuanqiu Huang
Hunan Normal University, P.R.China
Email: hyqq@public.cs.hn.cn

H.Iseri
Mansfield University, USA
Email: hiseri@mnsfld.edu

Xue Li
Nankai University, P.R.China
Email: lxl@nankai.edu.cn

Guodong Liu
Huizhou University
Email: lgd@hzu.edu.cn

W.B.Vasantha Kandasamy
Indian Institute of Technology, India
Email: vasantha@iitm.ac.in

Ion Patrascu
Fratii Buzesti National College
Craiova Romania

Han Ren
East China Normal University, P.R.China
Email: lren@math.ecnu.edu.cn

Ovidiu-Ilie Sandru
Politehnica University of Bucharest
Romania
Mingyao Xu
Peking University, P.R.China
Email: xumy@math.pku.edu.cn

Guiying Yan
Chinese Academy of Mathematics and System Science, P.R.China
Email: yanguiyng@yahoo.com

Y. Zhang
Department of Computer Science
Georgia State University, Atlanta, USA

Famous Words:

The physicists say that I am a mathematician, and the mathematicians say that I am a physicist. I am a completely isolated man and though everybody knows me, there are very few people who really know me.

By Albert Einstein, an American theoretical physicist.
Finite Forms of
Reciprocity Theorem of Ramanujan and its Generalizations

D.D.Somashekara and K.Narasimha Murthy
(Department of Studies in Mathematics, University of Mysore, Manasagangotri, Mysore-570006, India)
E-mail: dsomashekara@yahoo.com, simhamurth@yahoo.com

Abstract: In his lost notebook, Ramanujan has stated a beautiful two variable reciprocity theorem. Its three and four variable generalizations were recently, given by Kang. In this paper, we give new and an elegant approach to establish all the three reciprocity theorems via their finite forms. Also we give some applications of the finite forms of reciprocity theorems.

Key Words: q-series, reciprocity theorems, bilateral extension, q-gamma, q-beta, eta-functions.

AMS(2010): 33D15, 33D05, 11F20

§1. Introduction

In his lost notebook [16], Ramanujan has stated the following beautiful two variable reciprocity theorem.

Theorem 1.1 If \(a, b \) are complex numbers other than 0 and \(-q^{-n}\), then

\[
\rho(a,b) - \rho(b,a) = \left(1 - \frac{1}{b}\right) \frac{(aq/b, bq/a, q)_{\infty}}{(-aq, -bq)_{\infty}},
\]

where

\[
\rho(a,b) = \left(1 + \frac{1}{b}\right) \sum_{n=0}^{\infty} \frac{(-1)^n q^{n(n+1)/2} a^n b^{-n}}{(-aq)_n},
\]

and as usual

\[
(a)_{\infty} := (a; q)_{\infty} := \prod_{n=0}^{\infty} (1 - aq^n),
\]

\[
(a)_{n} := (a; q)_{n} := \frac{(a)_{\infty}}{(aq^n)_{\infty}}, \text{ n is an integer.}
\]

\(^1\)Received June 24, 2013, Accepted August 28, 2013.
In what follows, we assume \(|q| < 1\) and employ the following notations

\[
\begin{align*}
(a_1, a_2, a_3, \ldots, a_m)_n &= (a_1)_n (a_2)_n (a_3)_n \cdots (a_m)_n, \\
(a_1, a_2, a_3, \ldots, a_n)_\infty &= (a_1)_\infty (a_2)_\infty (a_3)_\infty \cdots (a_n)_\infty.
\end{align*}
\]

The first proof of (1.1) was given by Andrews [4] using his identity, which he has derived using many summation and transformation formulae for basic hypergeometric series and the well-known Jacobi’s triple product identity, which in fact, is a special case of (1.1). Somashekara and Fathima [19] used Ramanujan’s \(_1\psi_1\) summation formula and Heine’s transformation formula to establish an equivalent version of (1.1). Bhargava, Somashekara and Fathima [9] provided another proof of (1.1). Kim, Somashekara and Fathima [15] gave a proof of (1.1) using only \(q\)-binomial theorem. Guruprasad and Pradeep [11] also have devised a proof of (1.1) using \(q\)-binomial theorem. Adiga and Anitha [1] devised a proof of (1.1) along the lines of Ismail’s proof of Ramanujan’s \(_2\psi_2\) binomial theorem. Adiga and Berndt, Chan, Yeap and Yee [8] found the three different proofs of (1.1). The first one is similar to that of Somashekara and Fathima [19]. The second proof depends on Rogers-Fine identity and the third proof is combinatorial. Kang [14] constructed a proof of (1.1) along the lines of Venkatachaleingar’s proof of Ramanujan’s \(_1\psi_1\) summation formula. Recently, Somashekara and Narasimha Murthy [21] have given a proof of (1.1) using Abel’s lemma on summation by parts and Jacobi’s triple product identity. For more details one may refer the book by Andrews and Berndt [5].

Kang, in her paper [14] has obtained the following three and four variable generalizations of (1.1).

Theorem 1.2 If \(|c| < |a| < 1\) and \(|c| < |b| < 1\), then

\[
\rho_3(a, b; c) - \rho_3(b, a; c) = \left(\frac{1}{a} - \frac{1}{b}\right) \frac{(c, aq/b, bq/a, q)_\infty}{(-c/a, -c/b, -aq, -bq)_\infty},
\]

where

\[
\rho_3(a, b; c) := \left(1 + \frac{1}{b}\right) \sum_{n=0}^{\infty} \frac{(c)_n (-1)^n q^{n(n+1)/2} a^n b^{-n}}{(-aq)_n (-c/b)^{n+1}}.
\]

Theorem 1.3 If \(|c|, |d| < |a|, |b| < 1\), then

\[
\rho_4(a, b; c, d) - \rho_4(b, a; c, d) = \left(\frac{1}{b} - \frac{1}{a}\right) \frac{(c, d, cd/ab, aq/b, bq/a, q)_\infty}{(-c/a, -c/b, -d/a, -d/b, -aq, -bq)_\infty},
\]

where

\[
\rho_4(a, b; c, d) := \left(1 + \frac{1}{b}\right) \sum_{n=0}^{\infty} \frac{(c, d, cd/ab)_n \left(1 + \frac{cdq^n}{b}\right) (-1)^n q^{n(n+1)/2} a^n b^{-n}}{(-aq)_n (-c/b, -d/b)^{n+1}}.
\]

In fact, to derive (1.2), Kang [14] has employed Ramanujan’s \(_1\psi_1\) summation formula and Jackson’s transformation of \(_2\phi_1\) and \(_2\phi_2\) series. Later, Adiga and Guruprasad [2] have given a proof of (1.2) using \(q\)-binomial theorem and Gauss summation formula. Somashekara and Mamta [20] have obtained (1.2) using (1.1) by parameter augmentation method. One more proof of (1.2) was given by Zhang [23].
Kang [14] has established the four variable reciprocity theorem (1.3) by employing Andrews generalization of $1\psi_1$ summation formula [4, Theorem 6], Sears transformation of $3\phi_2$ series and a limiting case of Watson’s transformation for a terminating very well-poised $8\phi_7$ series. Adiga and Guruprasad [3] have derived (1.3) using an identity of Andrew’s [4, Theorem 1], Ramanujan’s $1\psi_1$ summation formula and the Watson’s transformation.

The main objective of this paper is to give finite forms of the reciprocity theorems (1.1), (1.2) and (1.3). To obtain our results, we begin with a known finite unilateral summation and then shift the summation index, say k ($0 \leq k \leq 2n$) by n:

$$\sum_{k=0}^{2n} A(k) = \sum_{k=-n}^{n} A(k+n).$$

After some manipulations, we employ some well-known transformation formulae for the basic hypergeometric series. The same method has been extensively utilized by Bailey [6]-[7], Slater [18], Schlosser [17] and Jouhet and Schlosser [13].

We recall some standard definitions which we use in this paper. The q-gamma function $\Gamma_q(x)$, was introduced by Thomae [22] and later by Jackson [12] as

$$\Gamma_q(x) = \frac{(q)_{\infty}}{(q^x)_{\infty}} (1 - q)^{1-x}, \quad 0 < q < 1. \quad (1.4)$$

A q-Beta function is defined by

$$B_q(x, y) = (1 - q) \sum_{n=0}^{\infty} \frac{(q^{n+1})_{\infty}}{(q^{n+y})_{\infty}} q^{nx}.$$

A relation between q-Beta function and q-gamma function is given by

$$B_q(x, y) = \frac{\Gamma_q(x)\Gamma_q(y)}{\Gamma_q(x+y)}. \quad (1.5)$$

The Dedekind eta function is defined by

$$\eta(\tau) := e^{\pi i \tau / 12} \prod_{n=1}^{\infty} (1 - e^{2\pi i n \tau}), \quad \text{Im}(\tau) > 0$$

$$:= q^{1/24}(q; q)_{\infty}, \quad \text{where } e^{2\pi i \tau} = q. \quad (1.6)$$

In Section 2, we state some standard identities for basic hypergeometric series which we use for our purpose. In Section 3, we establish the finite forms of two, three and four variable reciprocity theorems 1.1, 1.2 and 1.3. In Section 4, we give some applications of the finite forms of reciprocity theorems.

§2. Some Standard Identities for Basic Hypergeometric Series

In this section, we list some standard summation and transformation formulae for the basic hypergeometric series which will be used in the remainder of this paper. Some identities involving q-shifted factorials are

$$(a)_n = \frac{1}{(aq^{-1})_n} = \frac{(-q/a)^n}{(q/a)_n} q^{nz}, \quad (2.1)$$
\[(a)_{k+n} = (a)_n(aq^n)_k, \quad (aq^{-n})_n = (q/a)_n\left(-\frac{a}{q}\right)^n q^{-\binom{n}{2}}, \quad (aq^{-kn})_n = \frac{(q/a)_{kn}}{(q/a)_{k-1}}(-a)^n q^{\binom{n}{2} - kn^2}. \quad \text{(2.2 - 2.4)}\]

\[q - \text{Chu-Vandermonde's Sum} \ [10, \text{equation (II.7), p.354}]\]
\[
\sum_{k=0}^{n} \frac{(q^{-n}, A)_k}{(q, C)_k} (Cq^n/A)^k = \frac{(C/A)_n}{(C)_n}. \quad \text{(2.5)}
\]

\[q - \text{Pfaff-Saalschütz's Summation formula} \ [10, \text{equation (II.12), p.355}]\]
\[
\sum_{k=0}^{n} \frac{(q^{-n}, A, B)_k}{(q, C, ABq^{1-n}/C)_k} q^k = \frac{(C/A, C/B)_n}{(C, C/AB)_n}. \quad \text{(2.6)}
\]

\[\text{Jackson's } q - \text{analogue of Dougall's } \tau F_6 \text{ Sum} \ [10, \text{equation (II.22), p.356}]\]
\[
\sum_{k=0}^{n} \frac{(A, qA^{1/2}, -qA^{1/2}, B, C, D, E, q^{-n})_k}{(q, A^{1/2}, -A^{1/2}, Aq/B, Aq/C, Aq/D, Aq/E, Aq^{n+1})_k} q^k = \frac{(Aq, Aq/BC, Aq/BD, Aq/CD)_n}{(Aq/B, Aq/C, Aq/D, Aq/BCD)_n}, \quad \text{(2.7)}
\]

where \(A^2q = BCDEq^{-n}\).

\[\text{Sear's terminating transformation formula} \ [10, \text{equation (III.13), p.360}]\]
\[
\sum_{k=0}^{n} \frac{(q^{-n}, B, C)_k}{(q, D, E)_k} (DEq^n/BC)^k = \frac{(E/C)_n}{(E)_n} \sum_{k=0}^{n} \frac{(q^{-n}, C, D/B)_k}{(q, Cq^{1-n}/E)_k} q^k, \quad \text{(2.8)}
\]

\[\text{Watson's transformation for a terminating very well poised } \phi_7 \text{ series} \ [10, \text{equation (III.19), p.361}]\]
\[
\sum_{k=0}^{n} \frac{(q^{-n}, A, B, C)_k}{(q, D, E, F)_k} q^k = \frac{(D/B, D/C)_n}{(D, D/BC)_n} \times \sum_{k=0}^{n} \frac{(\sigma, q\sigma^{1/2}, -q\sigma^{1/2}, B, C, E/A, F/A, q^{-n})_k}{(q, \sigma^{1/2}, -\sigma^{1/2}, E, F, EF/AB, EF/AC, EFq^n/A)_k} (EFq^n/BC)^k, \quad \text{(2.9)}
\]

where \(DEF = ABCq^{1-n}\) and \(\sigma = EF/Aq\).

\[\text{Bailey's terminating } 10\phi_9 \text{ transformation formula} \ [10, \text{equation (III.28), p.363}]\]
\[
\sum_{k=0}^{n} \frac{(A, qA^{1/2}, -qA^{1/2}, B, C, D, E, F, \lambda Aq^{n+1}/EF, q^{-n})_k}{(q, A^{1/2}, -A^{1/2}, Aq/B, Aq/C, Aq/D, Aq/E, Aq/F, EFq^{-n}/\lambda, Aq^{n+1})_k} q^k = \frac{(Aq, Aq/EF, \lambda q/E, \lambda q/F)_n}{(Aq/E, Aq/F, \lambda q/EF, \lambda q)_n} \times \sum_{k=0}^{n} \frac{(\lambda, \lambda^{1/2}, -q\lambda^{1/2}, B/A, C/A, D/A, E, F, \lambda Aq^{n+1}/EF, q^{-n})_k}{(q, \lambda^{1/2}, -\lambda^{1/2}, Aq/B, Aq/C, Aq/D, \lambda q/E, \lambda q/F, EFq^{-n}/A, \lambda q^{n+1})_k} q^k, \quad \text{(2.10)}
\]

where \(\lambda = qA^2/BCD\).
§3. Main Identities

In this section, we establish the finite forms of reciprocity theorems.

Theorem 3.1 If \(a, b\) are complex numbers other than 0 and \(-q^{-n}\), then

\[
(1 + \frac{1}{b}) \sum_{k=0}^{n} \frac{(q^{-n}, -bq^{n})_k}{(q^{-n}, -aq)_k} \frac{(aq^{1+n}/b)_k}{(q^{1+n}/a)_k} = \left(1 + \frac{1}{a}\right)(1 - q^n) \sum_{k=0}^{n-1} \frac{(q^{-n+1}, -aq^{n+1})_k}{(q^{1+n})_k} \frac{(bq^n/a)_k}{(q^n)_k} (aq)/n (bq/a)_{n-1} (q)_n \text{.} \tag{3.1}
\]

Proof Replace \(n\) by \(2n\) in (2.5) to obtain

\[
\sum_{k=0}^{2n} \frac{(q^{-2n}, A)_k}{(q, C)_k} (Cq^{2n}/A)_k = \frac{(C/A)^{2n}}{(C)^{2n}}. \tag{3.2}
\]

Shift the summation index \(k\) by \(n\), so that the sum runs from \(-n\) to \(n\) and (3.2) takes the form

\[
\frac{(q^{-n}, Aq^n)_k}{(q, C)_k} (Cq^{2n}/A)_k = \frac{(C/A)_n}{(A, q^{-2n})_n} \frac{(Cq^{2n}/A)^{-n}}{(C)^{2n}}. \tag{3.3}
\]

Now, replacing \(A\) by \(-b\) and \(C\) by \(-aq^{1-n}\) in (3.3), then using (2.2) and (2.3) in the resulting identity, we obtain

\[
\sum_{k=-n}^{n} \frac{(q^{-n}, -aq^n)_k}{(q^{1+n}, -aq)_k} (aq^{1+n}/b)_k = \left(\frac{1}{b} - \frac{1}{a}\right) (aq/b)_n (bq/a)_{n-1} (q)_n \frac{1}{(1 + \frac{1}{a})(-aq)_n (-bq)_{n-1}(q^{1+n})_n}. \tag{3.4}
\]

This can be written as

\[
\left(1 + \frac{1}{b}\right) \sum_{k=0}^{n} \frac{(q^{-n}, -bq^n)_k}{(q^{1+n}, -aq)_k} (aq^{1+n}/b)_k + \left(1 + \frac{1}{b}\right) \sum_{k=1}^{n} \frac{(q^{-n}, -1/a)_k}{(q^{1+n}, -q^{-1}/b)_k} q^k \text{.}
\]

Now, the first term on left side of (3.4) is same as the first term on the left side of (3.1). To this end, we change \(n \to n - 1\) and then set \(B = -aq^{n+1}, C = q, D = q^{2+n}\) and \(E = -bq\) in (2.8) to obtain

\[
\sum_{k=0}^{n-1} \frac{(q^{-n+1}, -aq^{n+1})_k}{(q^{n+2}, -bq)_k} (bq^n/a)_k = \frac{(-b)_{n-1}}{(-bq)_n} \sum_{k=0}^{n-1} \frac{(q^{-n+1}, -q/a)_k}{(q^{n+2}, -q^{2-n}/b)_k} q^k. \tag{3.5}
\]
Multiply (3.5) throughout by \(\frac{(1 + \frac{1}{a}) (1 - q^{-n})}{(1 - q^{n+1})(1 + \frac{1}{b})}q\), to obtain

\[
\frac{(1 + \frac{1}{a}) (1 - q^{-n})}{(1 - q^{n+1})(1 + \frac{2^{-n}}{b})}q \sum_{k=0}^{n-1} \frac{(q^{-n+1} - aq^{n+1})}{(q^{n+2} - bq)_{k}} (bq^n/a)^k = \frac{(1 + b)}{(1 + bq^{n-1})} \sum_{k=0}^{n-1} \frac{(q^{-n} - 1/a)_{k+1}}{(q^{n+1} - q^{1-n}/b)_{k+1}} q^{k+1}.
\]

This on simplification yields

\[
\left(1 + \frac{1}{b}\right) \sum_{k=1}^{n} \frac{(q^{-n}, -1/a)_{k}}{(q^{n+1}, -q^{1-n}/b)_{k}} q^k
\]

\[
= -\left(1 + \frac{1}{a}\right) (1 - q^n) \sum_{k=0}^{n-1} \frac{(q^{-n+1} - aq^{n+1})}{(q^{1+n})_{k+1}(-bq)_{k}} (bq^n/a)^k,
\]

completing the proof of (3.1).

\[\square\]

Theorem 3.2 If \(|c| < |a| < 1\) and \(|c| < |b| < 1\), then

\[
\left(1 + \frac{1}{b}\right) \left(1 + \frac{c q^n}{b}\right) \times \sum_{k=0}^{n} \frac{(q^{-n}, c, -c q^n/a, -bq^n)_{k}}{(q^{1+n}, -aq)_{k}(-c/b, cq^{2n})_{k+1}} (1 - cq^{2k+n}) \left(\frac{aq^{1+n}}{b}\right)^k - \left(1 + \frac{1}{a}\right) (1 - q^n)
\]

\[
\times \sum_{k=0}^{n-1} \frac{(q^{-n+1}, c, -aq^{n+1})_{k}(-cq^n/b)_{k+1}}{(q^{1+n}, -c/a, cq^{2n})_{k+1}(-bq)_{k}} (1 - cq^{2k+n+1}) \left(\frac{bq^n}{a}\right)^k
\]

\[
= \left(1 - \frac{1}{a}\right) \frac{(c)_{2n}(aq/b, -bq^n, q)_{n} (bq/a)_{n-1}}{(-c/a, -c/b, -aq, q^{1+n})_{n} (-bq)_{2n-1}}.
\] (3.6)

Proof Replace \(n\) by \(2n\) in (2.6) to obtain

\[
\sum_{k=0}^{2n} \frac{(q^{-2n}, A, B)_{k}}{(q, C, ABq^{1-2n}/C)_{k}} q^k = \frac{(C/A, C/B)_{2n}}{(C, C/AB)_{2n}}. \tag{3.7}
\]

Shift the summation index \(k\) by \(n\), so that the sum runs from \(-n\) to \(n\) and (3.7) takes the form

\[
\sum_{k=-n}^{n} \frac{(q^{-n}, Aq^n, Bq^n)_{k}}{(q^{1+n}, Cq^n, ABq^{1-2n}/C)_{k}} q^k = \frac{(C/A, C/B)_{2n}}{(C, C/AB)_{2n}} (q, C, ABq^{1-2n}/C)_{n} q^{-n}. \tag{3.8}
\]

Now, we replace \(A\) by \(-c/b\), \(B\) by \(-q^{-n}/a\) and \(C\) by \(-cq^{-n}/a\) in (3.8), and then use (2.2) and (2.3) in the resulting identity, to obtain

\[
\sum_{k=-n}^{n} \frac{(q^{-n}, -1/a, -cq^n/b)_{k}}{(q^{1+n}, -c/a, -q^{1-n}/b)_{k}} q^k = \left(1 - \frac{1}{a}\right) \frac{(c)_{2n}(aq/b, -bq^n, q)_{n} (bq/a)_{n-1}}{(-c/a, -c/b, -aq, q^{1+n})_{n} (-bq)_{2n-1}}.
\]
This can be written as
\[
\left(1 + \frac{1}{b}\right) \sum_{k=0}^{n} \frac{(q^{-n}, -aq/c, -bq^n)_k}{(q^{1+n}, -aq, -bq^{1-n}/c)_k} q^k + \left(1 + \frac{1}{b}\right) \sum_{k=1}^{n} \frac{(q^{-n}, -1/a - cq^n/b)_k}{(q^{1+n}, -c/a, -q^{1-n}/b)_k} q^k
\]
\[
= \left(\frac{1}{b} - \frac{1}{a}\right) \frac{(c)_{2n}(aq/b, -bq^n, q) (bq/a)_{n-1}}{(-c/a, -c/b, -aq, q^{1+n})_n (-bq)_{2n-1}}.
\tag{3.9}
\]

Now, set \(A = -aq/c, B = q, C = -bq^n, D = -bq^{1-n}/c, E = q^{n+1}\) and \(F = -aq\) in \(3.9\) and multiply the resulting identity throughout by \((1 + b^{-1})\), to obtain
\[
\left(1 + \frac{1}{b}\right) \sum_{k=0}^{n} \frac{(q^{-n}, -aq/c, -bq^n)_k}{(q^{1+n}, -aq, -bq^{1-n}/c)_k} q^k
\]
\[
= \left(1 + \frac{1}{b}\right) \left(1 + \frac{cq^n}{b}\right) \sum_{k=0}^{n} \frac{(q^{-n}, c, -cq^n/a, -bq^n)_k}{(q^{1+n}, -aq)_k (-c/b, cq^{2n})_{k+1}} (1 - cq^{2k+n}) \left(\frac{aq^{1+n}}{b}\right)^k.
\tag{3.10}
\]

Next, change \(n \to n - 1\) in \(3.9\) and then set \(A = -q/a, B = q, C = -cq^{n+1}/b, D = -q^{2-n}/b, E = q^{n+2}\) and \(F = -cq/a\) to obtain
\[
\sum_{k=0}^{n-1} \frac{(q^{-n+1}, -aq/a, -cq^{n+1}/b)_k}{(q^{2+n}, -cq/a, -q^{2-n}/b)_k} q^k = \frac{(-q^{-n}/b, q^{1-2n}/c)_{n-1}}{(-q^{2-n}/b, q^{2-n}/c)_{n-1}} \times \sum_{k=0}^{n-1} \frac{(q^{-n+1}, c, -aq^{n+1}, -cq^{1+n}/b)_k (1 - cq^{2k+n+1})}{(q^{2+n}, -cq/a, -cq^{2n})_k (1 - cq^{n+1})} \left(\frac{bq^n}{a}\right)^k.
\tag{3.11}
\]

Multiply \(3.11\) throughout by \(\frac{1}{(1 - q^{-n})(1 + \frac{1}{a})(1 + \frac{cq^n}{b})(1 + \frac{q^{2-n}}{b})} q\) to obtain
\[
\left(1 + \frac{1}{b}\right) \sum_{k=0}^{n-1} \frac{(q^{-n}, -1/a, -cq^n/b)_k}{(q^{1+n}, -c/a, -q^{1-n}/b)_k+1} q^{k+1}
\]
\[
= \left(1 + \frac{1}{a}\right) (1 - q^{-n}) \left(1 + \frac{cq^n}{b}\right) \left(1 - \frac{q^{n-1}}{c}\right)
\]
\[
\times \sum_{k=0}^{n-1} \frac{(q^{-n+1}, c, -aq^{n+1}, -cq^{1+n}/b)_k (1 - cq^{2k+n+1})}{(q^{2+n}, -cq/a, -cq^{2n})_k (1 - cq^{n+1})} \left(\frac{bq^n}{a}\right)^k.
\tag{3.12}
\]

On simplification \(3.12\) yields
\[
\left(1 + \frac{1}{b}\right) \sum_{k=1}^{n} \frac{(q^{-n}, -1/a, -cq^n/b)_k}{(q^{1+n}, -c/a, -q^{1-n}/b)_k} q^k = - \left(\frac{1}{a}\right) (1 - q^n)
\]
\[
\times \sum_{k=0}^{n-1} \frac{(q^{-n+1}, c, -aq^{n+1})_k (-cq^n/b)_{k+1}}{(q^{1+n}, -c/a, cq^{2n})_k (1 - cq^{2k+n+1})} (1 - cq^{2k+n+1}) \left(\frac{bq^n}{a}\right)^k.
\tag{3.13}
\]

Using \(3.10\) and \(3.13\) in \(3.9\), we obtain \(3.6\).
Theorem 3.3 If $|c|, |d| < |a|, |b| < 1$, then

$$
(1 + 1/b) \frac{(1 - aq^{n+1}/b) (1 + cdq^{2n-1}/a)}{(1 + q^n)} \times \sum_{k=0}^{n} \frac{(q^{-n}, c, d, cd/ab, aq^{-1}/b, cdq^{2n}/b)_k}{(q^{k+2n}, aq, Aq/AB, Aq/AD, Aq/BD, Aq/CD)_k} (1 + \frac{cdq^{2k}}{b}) q^k
$$

$$- \frac{(1 + \frac{1}{a}) (1 - aq^{n+1}/b)}{(1 + cdq^{2n-1}/a)} \times \sum_{k=0}^{n} \frac{(q^{-n+1}, c, d, cd/ab, bq^{-1}/a)_k (cdq^{2n-1}/a)_k}{(q^{k+2n}, bq, aq/BC, Aq/BD, Aq/CD)_k} (1 + \frac{cdq^{2k}}{a}) q^k
$$

$$= \left(1 - \frac{1}{b} \right) \frac{(c, d, cd/ab)_n (aq/b)_n (q)_n}{(-aq)_n (aq/b)_n (-aq/ab)_n (aq/ab)_n}.
$$

(3.14)

Proof Replace n by $2n$ in (2.7) to obtain

$$
\sum_{k=0}^{2n} \frac{(q^{-2n}, A, B, C, D, A^2q^{2n+1}/BCD)_k}{(q, Aq/B, Aq/C, Aq/D, BCDq^{2n}/A, Aq^{2n+1})_k} (1 - Aq^{2k}) q^k
$$

$$= \frac{(Aq, Aq/BC, Aq/BD, Aq/CD)_{2n}}{(Aq/B, Aq/C, Aq/D, Aq/BCD)_{2n}}.
$$

(3.15)

Shift the summation index k by n, so that the sum runs from $-n$ to n and (3.15) takes the form

$$
\sum_{k=-n}^{n} \frac{(q^{-n}, Aq^n, Bq^n, Cq^n, Dq^n, A^2q^{3n+1}/BCD)_k}{(q^{k+n}, Aq^{k+n}/B, Aq^{k+n}/C, Aq^{k+n}/D, BCDq^{-n}/A, Aq^{3n+1})_k} (1 - Aq^{2k+2n}) q^k
$$

$$= \frac{(Aq, Aq/BC, Aq/BD, Aq/CD)_{2n}}{(Aq/B, Aq/C, Aq/D, Aq/BCD)_{2n}} \times \frac{(q, Aq/B, Aq/C, Aq/D, BCDq^{-2n}/A, Aq^{2n+1})_n (q^{-n})}{(q^{-2n}, A, B, C, D, A^2q^{2n+1}/BCD)_n} q^{-n}.
$$

(3.16)

Replacing A, B, C, D respectively by $Aq^{-2n}, Bq^{-n}, Cq^{-n}, Dq^{-n}$ in (3.16) and simplifying using (2.2), (2.3) and (2.4), we obtain

$$
\sum_{k=0}^{n} \frac{(q^{-n}, Aq^{-n}, B, C, D, A^2q^{2n+1}/BCD)_k}{(q^{k+n}, Aq^{-n}/B, Aq^{-n}/C, Aq^{-n}/D, BCq^{-2n}/A, Aq^{n+1})_k} (1 - Aq^{2k}) q^k
$$

$$- A \sum_{k=1}^{n} \frac{(q^{-n}, q^{-n}/A, B/A, C/A, D/A, Aq^{2n}/BCD)_k}{(q^{k+n}, q^{-n}/B, q^{-n}/C, q^{-n}/D, BCq^{-2n}/A, q^{n+1}/A)_k} (1 - \frac{q^{2k}}{A}) q^k
$$

$$= (1 - A) \frac{(q, Aq, q/A)_n (Bq/BC, Aq/BD, Aq/CD)_{2n}}{(q/B, q/C, q/D, Aq/B, Aq/C, Aq/D, q^{1+n} A^2q^{2n+1}/BCD)_n} \times \frac{(Aq/BCD)_{3n}}{(Aq/BCD, Aq^{1+n}/BCD)_{2n}}.
$$

(3.17)
Setting \(A = aq/b, B = -q/b, C = -aq/c \) and \(D = -aq/d \) in (3.17) and then simplifying, we obtain

\[
\sum_{k=0}^{n} \frac{(q^{-n}, aq^{-n}/b, -q/b, -aq/c, -aq/d, -cdq^{2n}/b)_{k}}{(q^{1+n}, -aq, -aq/c/b, -aq/d/b, -aq^{2-2n}/cd, aq^{n+2}/b)_{k}} \left(1 - \frac{aq^{2k+1}}{b} \right) q^{k}
\]

\[
- \frac{aq}{b} \sum_{k=1}^{n} \frac{(q^{-n}, bq^{-n-1}/a, -1/a, -b/c, -b/d, -cdq^{2n-1}/a)_{k}}{(q^{1+n}, -b, -c/a, -d/a, -bq^{1-2n}/cd, bq^{n}/a)_{k}} \left(1 - \frac{bq^{2k-1}}{a} \right) q^{k}
\]

\[
= \left(1 - \frac{aq}{b} \right) \frac{(aq^{2}/b, b/a)_{n} (c, d, cd/ab)_{2n}}{(-b, -c/a, -d/a, -aq/b, -aq, q^{1+n}, -cdq^{n}/b)_{n}}
\]

\[
\times \frac{(-cd/aq_{3n})}{(-cd/qa, -cdq^{n-1}/a)_{2n}}.
\]

Multiply (3.18) throughout by \(\frac{(1 + \frac{1}{b})}{(1 + \frac{a}{b})(1 + \frac{q}{b})} \) to obtain

\[
\left(1 + \frac{1}{b} \right) \sum_{k=0}^{n} \frac{(q^{-n}, aq^{-n}/b, -q/b, -aq/c, -aq/d, -cdq^{2n}/b)_{k}}{(q^{1+n}, -aq, -aq^{2-2n}/cd, aq^{n+2}/b)_{k}} \left(1 - \frac{aq^{2k+1}}{b} \right) q^{k}
\]

\[
- \frac{aq}{b} \sum_{k=1}^{n} \frac{(q^{-n}, bq^{-n-1}/a, -1/a, -b/c, -b/d, -cdq^{2n-1}/a)_{k}}{(q^{1+n}, -b, -c/a, -d/a, -bq^{1-2n}/cd, bq^{n}/a)_{k}} \left(1 - \frac{bq^{2k-1}}{a} \right) q^{k}
\]

\[
= \left(1 - \frac{1}{b} \right) \frac{(aq/b)_{n+1}(q^{1+n})_{n}}{(-c/a, -d/a, -aq)_{n}(-c/b, -d/b)_{n+1}(q^{1+n})_{n}}
\]

\[
\times \frac{(aq/b)_{n+1}(-cd/qa)_{3n}}{(-aq^{n+1}/b)(1 - q^{n})(1 + cdq^{2n-1}/a)}
\]

Now, set \(A = aq/b, B = -q/b, C = -aq/c, D = -aq/d, E = aq^{1-n}/b, F = q \) and \(\lambda = -cd/b \) in (2.10), to obtain

\[
\sum_{k=0}^{n} \frac{(q^{-n}, aq^{-n}/b, -q/b, -aq/c, -aq/d, -cdq^{2n}/b)_{k}}{(q^{1+n}, -aq, -aq/c/b, -aq/d/b, -aq^{2-2n}/cd, aq^{n+2}/b)_{k}} \left(1 - \frac{aq^{2k+1}}{b} \right) q^{k}
\]

\[
= \left(1 - \frac{aq^{n+1}/b}{1 - q^{n}} \right) \frac{(1 + cdq^{2n-1}/a)}{(1 + cdq^{n}/b)}
\]

\[
\times \sum_{k=0}^{n} \frac{(q^{-n}, c, d, cd/ab, aq^{1-n}/b, -cdq^{2n}/b)_{k}}{(q^{1-2n}, -aq, -aq/c/b, -aq/d/b, -cdq^{n}/a, cdq^{n+1}/b)_{k}} \left(1 + \frac{cdq^{k}}{b} \right) q^{k}.
\]

Multiply (3.20) throughout by \(\frac{(1 + \frac{1}{b})}{(1 + \frac{q}{b})(1 + q^{n})} \) to obtain

\[
\left(1 + \frac{1}{b} \right) \sum_{k=0}^{n} \frac{(q^{-n}, aq^{1-n}/b, -q/b, -aq/c, -aq/d, -cdq^{2n}/b)_{k}}{(q^{1+n}, -aq, -aq^{2-2n}/cd, aq^{n+2}/b)_{k}} \left(1 - \frac{aq^{2k+1}}{b} \right) q^{k}
\]

\[
= \left(1 + \frac{1}{b} \right) \frac{(1 - aq^{n+1}/b)(1 + cdq^{2n-1}/a)}{(1 + q^{n})}
\]
\[\times \sum_{k=0}^{n} \frac{(q^{-n}, c, d, cd/ab, aq^{1-n}/b, -cdq^{2n}/b)_{k}}{(q^{1-2n}, -aq)_{k}(-c/b, -d/b, -cdq^{n-1}/a, -cdq^{n}/b)_{k+1}} \left(1 + \frac{cdq^{2k}}{b} \right) q^{k}. \]

(3.21)

Next, change \(n \to n - 1 \) in (2.10) and then set \(A = bq/a, B = -q/a, C = -bq/c, D = -bq/d, E = bq^{-n}/a, F = q \) and \(\lambda = -cd/a \) to obtain

\[\sum_{k=0}^{n-1} \frac{(q^{-n+1}, bq^{-n}/a, -q/a, -bq/c, -bq/d, -cdq^{2n}/a)_{k}}{(q^{2+n}, -bq, -cq/a, -dq/a, -bq^{2-2n}/cd, bq^{n}/a)_{k}} \left(1 - \frac{bq^{2k+1}}{a} \right) q^{k} \]

\[= (1 - bq^{-n}/a)(1 - q^{n+1})(1 + cdq^{2n-1}/b) \]

\[= (1 - q^{2n})(1 + cdq^{n}/b) \]

\[\times \sum_{k=0}^{n-1} \frac{(q^{-n+1}, c, d, cd/ab, bq^{-n}/a, -cdq^{2n}/a)_{k}}{(q^{1-2n}, -bq, -cq/a, -dq/a, -cdq^{n+1}/a, -cdq^{n+1}/b)_{k+1}} \left(1 + \frac{cdq^{2k}}{a} \right) q^{k}. \]

(3.22)

Multiplying (3.22) throughout by

\[\frac{1 + \frac{b}{c}}{1 + \frac{b}{c}} \frac{(1 + \frac{b}{c})(1 + \frac{b}{c})}{1 + q^{-n+1}} \left(1 - \frac{bq^{n+1}}{a} \right)(1 + \frac{cdq^{n+1}/a}{1 + cdq^{n}/a}) \]

we obtain

\[\frac{1 + \frac{b}{c}}{1 + \frac{b}{c}} \sum_{k=0}^{n-1} \frac{(q^{-n}, bq^{-n-1}/a, -1/a, -b/c, -b/d, -cdq^{2n-1}/a)_{k+1}}{(q^{1+n}, -b, -c/a, -d/a, -bq^{1-2n}/cd, bq^{n}/a)_{k+1}} \left(1 - \frac{bq^{2k+1}}{a} \right) q^{k+1} \]

\[\times \left(1 + \frac{bq^{2k+1}}{a} \right) q^{k+1} = \frac{(1 + \frac{b}{c}) (1 - aq^{n+1}/b)(b/aq)}{(1 + q^{n})(1 + cdq^{n}/a)} \]

\[\times \sum_{k=0}^{n-1} \frac{(q^{-n+1}, c, d, cd/ab, bq^{-n}/a)_{k}(-cdq^{2n-1}/a)_{k+1}}{(q^{1-2n}, -bq, -cdq^{n+1}/a)_{k}(-c/a, -d/a, -cdq^{n}/b)_{k+1}} \left(1 + cdq^{2k}/a \right) q^{k}. \]

(3.23)

Now, (3.23) can be written as

\[\frac{1 + \frac{b}{c}}{1 + \frac{b}{c}} \sum_{k=1}^{n} \frac{(q^{-n}, bq^{-n-1}/a, -1/a, -b/c, -b/d, -cdq^{2n-1}/a)_{k}}{(q^{1+n}, -b, -c/a, -d/a, -bq^{1-2n}/cd, bq^{n}/a)_{k}} \]

\[\times \left(1 - \frac{bq^{2k-1}}{a} \right) q^{k} = \frac{(1 + \frac{b}{c}) (1 - aq^{n+1}/b)}{(1 + q^{n})(1 + cdq^{n-1}/a)} \]

\[\times \sum_{k=0}^{n-1} \frac{(q^{-n+1}, c, d, cd/ab, bq^{-n}/a)_{k}(-cdq^{2n-1}/a)_{k+1}}{(q^{1-2n}, -bq, -cdq^{n+1}/a)_{k}(-c/a, -d/a, -cdq^{n}/b)_{k+1}} \left(1 + cdq^{2k}/a \right) q^{k}. \]

(3.24)

On using (3.21) and (3.24) in (3.19), we obtain (3.14).

\[\square \]

Remark 3.1 Letting \(n \to \infty \) in (3.1), (3.6) and (3.14), we obtain (1.1), (1.2) and (1.3) respectively.

§4. Some Applications of the Finite Forms of the Reciprocity Theorems

In this Section, we deduce finite forms of some \(q \)-series identities along with the \(q \)-gamma, \(q \)-beta and eta function identities from (3.1) and (3.6).
Corollary 4.1 (Finite form of Euler’s identity)

\[\sum_{k=0}^{n-1} \frac{(q^{-n+1}, -q^{n+2}/x)_k}{(q^{1+n}_x, q)_k} (-1)^k q^{nk-k} x^k = (-x)_{n-1}. \] (4.1)

Proof Set \(b = -1 \) and \(a = q/x \) in (3.1), and after some simplifications, we obtain (4.1). Let \(n \to \infty \) in (4.1) to obtain the well-known Euler’s Identity

\[\sum_{k=0}^{\infty} \frac{q^{k(k-1)/2} x^k}{(q)_k} = (-x)_\infty. \]

Corollary 4.2 (Finite form of \(\phi_1 \)-series [10, equation (II.5), p.354])

\[\sum_{k=0}^{n-1} \frac{(q^{-n+1}, x - xq^{n+2}/y)_k(xq^n)_k}{(q^{1+n}, xq^{2n})_k(q, y)_k} (1 - xq^{2n+k+1}) (y/x)^k q^{nk-k} x^k \]

\[= \frac{(xq^n)_{n-1}(y/x)_{n-1}}{(q^{1+n})_n(y)_{n-1}} \] (4.2)

Proof Set \(b = -1 \), \(a = -xq/y \) and \(c = x \) in (3.6), and after some simplifications, we obtain (4.2). If we let \(n \to \infty \) in (4.2), gives

\[\sum_{k=0}^{\infty} \frac{(-1)^k q^{k(k-1)/2} (x)_k (y/x)_k}{(q, y)_k} = \frac{(y/x)_\infty}{(y)_{\infty}}. \]

Corollary 4.3

\[(1 + bq^{n+1}) \sum_{k=0}^{n} \frac{(q^{-n}, -q^{n}/b)_k}{(-bq, q^{2n+1})_k} (1 - q^{2n+k+1})(-1)^k q^{nk+k} y^k = 1. \] (4.3)

Proof Set \(a = -1 \), \(c = q \) and \(b = b^{-1} \) in (3.6), and after some simplifications, we obtain (4.3). If we let \(n \to \infty \) in (4.3), gives

\[\sum_{k=0}^{\infty} q^{k(k+1)/2} y^k = 1. \]

If we set \(b = 1 \) in (4.3), we obtain

\[(1 + q^{n+1}) \sum_{k=0}^{n} \frac{(q^{-n}, -q^{n})_k}{(-q, q^{2n+1})_k} (1 - q^{2n+k+1})(-1)^k q^{nk+k} = 1. \] (4.4)

Letting \(n \to \infty \) in (4.4), we obtain

\[\sum_{k=0}^{\infty} q^{k(k+1)/2} (-q)_{k+1} = 1. \]

We define

\[\Gamma_{q,n}(x) := \frac{(q)_n}{(q^{x})_n} \frac{1}{(1 - q)^{1-x}}, \]
and
\[B_{q,n}(x, y) := \frac{(q, q^{x+y})_n}{(q^x, q^y)_n} (1 - q). \]

Note that \(\Gamma_{q,n}(x) \to \Gamma_q(x) \) and \(B_{q,n}(x, y) \to B_q(x, y) \) as \(n \to \infty \), which are define in (1.4) and (1.5).

Corollary 4.4

\[\Gamma_{q,n}(x) = \frac{(-q^{1+x}, q^{1+n})_n (1 - q)^{1-x}}{2 (-q)_n (-q)_{n-1}} \left(\sum_{k=0}^{n} \frac{(q^{-n}, q^{n+x})_k}{(q^{1+n}, -q^{1+x})_k} (-1)^k q^{nk+k} \right. \]

\[+ (1 + q^x) (1 - q^n) \sum_{k=0}^{n-1} \frac{(q^{-n+1}, -q^{n+x+1})_k}{(q^{1+n})_k (q^{x+1})_k} (-1)^k q^{nk}. \]

(4.5)

Proof Set \(a = q^x \) and \(b = -q^n \) in (3.1), and after some simplifications, we obtain (4.5). \(\square \)

Corollary 4.5

\[B_{q,n}(x, y) = \frac{(1 - q)(1 - q^x)(q^{1+x}, q^{1+n}, q^y)_n}{(q^{1+x-y}, q^{y-x}, q^{x+y+n})_n} \]

\[\times \left[(1 - q^{n+x}) \sum_{k=0}^{n} \frac{(q^{-n}, q^{x+y})_k (q^{n+y})_k^2}{(q^{1+n})_k (q^{2n+x+y})_k (q^x)_k^2} (1 - q^{2k+n+x+y}) q^{nk+k+kx-ky} \right. \]

\[- q^{y-x} (1 - q^n) \]

\[\left. \times \sum_{k=0}^{n-1} \frac{(q^{-n+1}, q^{x+y}, q^{n+x+1})_k (q^{n+x})_k^2}{(q^{1+n}, q^{y}, q^{2n+x+y}, q^y)_k} (1 - q^{2k+n+x+y+1}) q^{nk+ky+kx} \right]. \]

(4.6)

Proof Set \(a = -q^x, b = -q^y \) and \(c = q^{x+y} \) in (3.6), and after some simplifications, we obtain (4.6). \(\square \)

Corollary 4.6

\[\sum_{k=0}^{n} \frac{(q^{-n})_k}{(-q)_k+1} (-1)^k q^{nk+k} + \sum_{k=0}^{n-1} \frac{(q^{-n+1}, -q^{n+2})_k}{(q, q^{n+1})_k+1} (-1)^k q^{nk} = \frac{2(-q)_{n-1}}{(1 + q^n) (q^{n+1})_n}. \]

(4.7)

Proof Set \(a = q \) and \(b = -q \) in (3.1), and after some simplifications, we obtain (4.5). \(\square \)

Letting \(n \to \infty \) in (4.5), (4.6) and (4.7) and using (1.4), (1.5) and (1.6), we obtain respectively \(q \)-gamma, \(q \)-beta and eta function identities

\[\Gamma_q(x) = \frac{(-q^{1+x})_{\infty} (1 - q)^{1-x}}{2(-q)_\infty^2} \left[\sum_{k=0}^{\infty} q^k (k+1)/2 (q^{x+1})_k + (1 + q^x) \sum_{k=0}^{\infty} q^k (k+1)/2 (q^x+k)_k \right], \]
\[B_q(x, y) = \frac{(1 - q)(1 - q^x)(q^{1+x} - q^y)}{(q^{1+x-y} - q^{y-x})} \times \left\{ \sum_{k=0}^{n} \frac{(-1)^k q^{k(k+1)/2} (q^{x+y})_k}{(q^x)_k^{k+x - ky}} q^{k+kx - ky} \right. \\
\left. - q^{y-x} \sum_{k=0}^{n-1} \frac{(-1)^k q^{k(k+1)/2} (q^y)_k}{(q^y)_k^{k+1}} q^{ky - kx} \right\}, \]

\[
\eta(2\tau) = \frac{q^{-1/24}}{2} \left[\sum_{k=0}^{\infty} \frac{q^{k(k+1)/2}}{(-q)_{k+1}} + \sum_{k=0}^{\infty} \frac{q^{k(k+1)/2}}{(q)_{k+1}} \right].
\]

Conclusion We see that the finite forms of reciprocity theorems are interesting and also preserve all the symmetries. A number of identities of the types (4.1) - (4.7) can be deduced from the finite forms of reciprocity theorems.

Acknowledgement

The authors would like to thank the referee for useful comments, which considerably improved the quality of the paper. The first author would like to thank University Grants Commission (UGC), India for the financial support under the grant SAP-DRS-1 No.F.510/2/DRS/2011. The second author also thankful to UGC, India, for the award of Teacher Fellowship under the grant No. KAMY074-TF01-13112010.

References

14

D.D.Somashekara and K.Narasimha Murthy

Math. (Kyungshang), 11 (2005), 227 - 234.

The Jordan θ-Centralizers of Semiprime Gamma Rings with Involution

M.F.Hoque and Nizhum Rahman

(Department of Mathematics, Pabna University of Science and Technology, Bangladesh)

E-mail: fazlul.math@yahoo.co.in, nl.nizhum@gmail.com

Abstract: Let M be a 2-torsion free semiprime Γ-ring with involution I satisfying a certain assumption and let $\theta : M \rightarrow M$ be an endomorphism of M. We prove that if $T : M \rightarrow M$ is an additive mapping such that $2T(x\alpha x) = T(x)\alpha I(I(x)) + \theta(I(x))\alpha T(x)$ holds for all $x \in M$ and $\alpha \in \Gamma$, then T is a Jordan θ-centralizer with involution.

Key Words: Semiprime Γ-ring, involution, semiprime Γ-ring with involution, centralizer, θ-centralizer, Jordan θ-centralizer.

AMS(2010): 16N60, 16W25, 16U80

§1. Introduction

An extensive generalized concept of classical ring set forth the notion of a gamma ring theory. As an emerging field of research, the research work of classical ring theory to the gamma ring theory has been drawn interest of many algebraists and prominent mathematicians over the world to determine many basic properties of gamma ring and to enrich the world of algebra. The different researchers on this field have been doing a significant contributions to this field from its inception. In recent years, a large number of researchers are engaged to increase the efficacy of the results of gamma ring theory over the world.

Let M and Γ be additive abelian groups. If there exists a mapping $(x, \alpha, y) \rightarrow x\alpha y$ of $M \times \Gamma \times M \rightarrow M$, which satisfies the conditions

(i) $x\alpha y \in M$;
(ii) $(x + y)\alpha z = x\alpha z + y\alpha z$, $x(\alpha + \beta)z = x\alpha z + x\beta z$, $x\alpha(y + z) = x\alpha y + x\alpha z$.
(iii) $(x\alpha y)\beta z = x\alpha(y\beta z)$ for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$, then M is called a Γ-ring.

Every ring M is a Γ-ring with $M=\Gamma$. However a Γ-ring need not be a ring. Gamma rings, more general than rings, were introduced by Nobusawa[11]. BERNES[2] weakened slightly the conditions in the definition of Γ-ring in the sense of Nobusawa.

Let M be a Γ-ring. Then an additive subgroup U of M is called a left (right) ideal of M if $MTU \subset U(U\Gamma M \subset U)$. If U is both a left and a right ideal, then we say U is an ideal of M.

\footnote{Received July 15, 2013, Accepted November 16, 2013.}
Suppose again that \(M \) is a \(\Gamma \)-ring. Then \(M \) is said to be a 2-torsion free if \(2x=0 \) implies \(x=0 \) for all \(x \in M \). An ideal \(P_1 \) of a \(\Gamma \)-ring \(M \) is said to be prime if for any ideals \(A \) and \(B \) of \(M \), \(A\Gamma B \subseteq P_1 \) implies \(A \subseteq P_1 \) or \(B \subseteq P_1 \). An ideal \(P_2 \) of a \(\Gamma \)-ring \(M \) is said to be semiprime if for any ideal \(U \) of \(M \), \(U\Gamma U \subseteq P_2 \) implies \(U \subseteq P_2 \). A \(\Gamma \)-ring \(M \) is said to be prime if \(a\Gamma Mb=(0) \) with \(a,b \in M \), implies \(a=0 \) or \(b=0 \) and semiprime if \(a\Gamma Ma=(0) \) with \(a \in M \) implies \(a=0 \). Furthermore, \(M \) is said to be commutative \(\Gamma \)-ring if \(xay\gamma x=yax \) for all \(x,y \in M \) and \(\alpha \in \Gamma \). Moreover, the set \(Z(M)=\{x \in M: xay=yax \text{ for all } \alpha \in \Gamma, y \in M \} \) is called the centre of the \(\Gamma \)-ring \(M \).

If \(M \) is a \(\Gamma \)-ring, then \([x,y]_{\alpha}=xay-\gamma yax \) is known as the commutator of \(x \) and \(y \) with respect to \(\alpha \), where \(x,y \in M \) and \(\alpha \in \Gamma \). We make the basic commutator identities:

\[
[xay, y]\gamma z=[x, y]_{\beta}xay + x[a, \gamma]y + xay[y, z]_{\gamma} \quad \text{and} \quad [x, y]\gamma [a, \beta]y + y[a, \beta]x + y[a, \gamma]z
\]

for all \(x,y,z \in M \) and \(\alpha, \beta \in \Gamma \).

We consider the following assumption:

\[
(A) xay\gamma z = x\beta y\gamma z \text{ for all } x,y,z \in M \text{ and } \alpha, \beta \in \Gamma.
\]

According to the assumption (A), the above two identities reduce to

\[
[xay, y]_{\gamma}z=[x, y]_{\beta}xay + x[a, \gamma]y + xay[y, z]_{\gamma} \quad \text{and} \quad [x, y]\gamma [a, \beta]y + y[a, \beta]x + y[a, \gamma]z
\]

which we extensively used.

An additive mapping \(T: M \to M \) is a left(right) centralizer if \(T(xay)=T(x)ay(T(xay)=x\alpha T(y)) \) holds for all \(x, y \in M \) and \(\alpha \in \Gamma \). A centralizer is an additive mapping which is both a left and a right centralizer. For any fixed \(a \in M \) and \(\alpha \in \Gamma \), the mapping \(T(x)=aax \) is a left centralizer and \(T(x)=xoa \) is a right centralizer. We shall restrict our attention on left centralizer, since all results of right centralizers are the same as left centralizers. An additive mapping \(D: M \to M \) is called a derivation if \(D(xay)=D(x)ay + x\alpha D(y) \) holds for all \(x,y \in M \), and \(\alpha \in \Gamma \) and is called a Jordan derivation if \(D(xax)=D(x)ax + x\alpha D(x) \) for all \(x \in M \) and \(\alpha \in \Gamma \).

An additive mapping \(T: M \to M \) is Jordan left(right) centralizer if

\[
T(xax)=T(x)ax(T(xax)=x\alpha T(x))
\]

for all \(x \in M \) and \(\alpha \in \Gamma \). Every left centralizer is a Jordan left centralizer but the converse is not ingeneral true.

An additive mappings \(T: M \to M \) is called a Jordan centralizer if \(T(xay+yax)=T(x)ay+y\alpha T(x) \) for all \(x,y \in M \) and \(\alpha \in \Gamma \). Every centralizer is a Jordan centralizer but Jordan centralizer is not in general a centralizer.

Bernes[2], Luh[10] and Kyuno[9] studied the structure of \(\Gamma \)-rings and obtained various generalizations of corresponding parts in ring theory.

Borut Zalar[15] worked on centralizers of semiprime rings and proved that Jordan centralizers and centralizers of this rings coincide. Joso Vukman[12, 13, 14] developed some remarkable results using centralizers on prime and semiprime rings.

Y.Ceven[3] worked on Jordan left derivations on completely prime \(\Gamma \)-rings. He investigated the existence of a nonzero Jordan left derivation on a completely prime \(\Gamma \)-ring that makes the
Γ-ring commutative with an assumption. With the same assumption, he showed that every Jordan left derivation on a completely prime Γ-ring is a left derivation on it.

In [4], M. F. Hoque and A.C. Paul have proved that every Jordan centralizer of a 2-torsion free semiprime Γ-ring is a centralizer. There they also gave an example of a Jordan centralizer which is not a centralizer.

In [5], M. F. Hoque and A.C. Paul have proved that if \(M \) is a 2-torsion free semiprime Γ-ring satisfying the assumption (A) and if \(T : M \to M \) is an additive mapping such that \(T(x\alpha y\beta x) = x\alpha T(y)\beta x \) for all \(x, y \in M \) and \(\alpha, \beta \in \Gamma \), then \(T \) is a centralizer. Also, they have proved that \(T \) is a centralizer if \(M \) contains a multiplicative identity 1.

Our research works are inspired by the works of [1], [5], [7] and [8] and we obtain the results in Γ-rings with involution by assuming an assumption (A).

§2. The \(\theta \)-Centralizers of Semiprime Gamma Rings with Involution

Definition 2.1 Let \(M \) be a 2-torsion free semiprime Γ-ring and let \(\theta \) be an endomorphism of \(M \). An additive mapping \(T : M \to M \) is a left(right) \(\theta \)-centralizer if \(T(x\alpha y) = T(x)\alpha T(y)(T(x\alpha y) = \theta(x)\alpha T(y)) \) holds for all \(x, y \in M \) and \(\alpha \in \Gamma \). If \(T \) is a left and a right \(\theta \)-centralizer, then it is natural to call \(T \) a \(\theta \)-centralizer.

Definition 2.2 Let \(M \) be a Γ-ring and let \(a \in M \) and \(\alpha \in \Gamma \) be fixed element. Let \(\theta : M \to M \) be an endomorphism. Define a mapping \(T : M \to M \) by \(T(x) = \alpha \theta(x) \). Then it is clear that \(T \) is a left \(\theta \)-centralizer. If \(T(x) = \theta(x)\alpha a \) is defined, then \(T \) is a right \(\theta \)-centralizer.

Definition 2.3 An additive mapping \(T : M \to M \) is Jordan left(right) \(\theta \)-centralizer if \(T(x\alpha x) = T(x)\alpha T(x)(T(x\alpha x) = \theta(x)\alpha T(x)) \) holds for all \(x \in M \) and \(\alpha \in \Gamma \).

It is obvious that every left \(\theta \)-centralizer is a Jordan left \(\theta \)-centralizer but in general Jordan left \(\theta \)-centralizer is not a left \(\theta \)-centralizer [8, Example-2.1].

Definition 2.4 Let \(M \) be a Γ-ring and let \(\theta \) be an endomorphism on \(M \). An additive mapping \(T : M \to M \) is called a Jordan \(\theta \)-centralizer if \(T(x\alpha y + y\alpha x) = T(x)\alpha \theta(y) + \theta(y)\alpha T(x) \), for all \(x, y \in M \) and \(\alpha \in \Gamma \).

It is clear that every \(\theta \)-centralizer is a Jordan \(\theta \)-centralizer but the converse is not in general a \(\theta \)-centralizer [8, Example-2.2 and 2.3].

Definition 2.5 An additive mapping \(D : M \to M \) is called a \((\theta, \theta)\)-derivation if \(D(x\alpha y) = D(x)\alpha \theta(y) + \theta(x)\alpha D(y) \) holds for all \(x, y \in M \) and \(\alpha \in \Gamma \) and is called a Jordan \((\theta, \theta)\)-derivation if \(D(x, x) = D(x)\alpha \theta(x) + \theta(x)\alpha D(x) \) holds for all \(x \in M \) and \(\alpha \in \Gamma \).

We have given two examples in [8] which are ensure that a \(\theta \)-centralizer and a Jordan \(\theta \)-centralizer exist in Γ-ring.

Definition 2.6 Let \(M \) be a Γ-ring. Then the mapping \(I : M \to M \) is called an involution if
(i) \(II(a) = a; \)
(ii) \(I(a + b) = I(a) + I(b); \)
(iii) \(I(ab) = I(b)aI(a) \)

for all \(a, b \in M \) and \(\alpha \in \Gamma \).

Example 2.1 Let \(R \) be a ring with involution \(I \) containing the unity element 1. Let \(M = M_{1,2}(R) \) and \(\Gamma = \left\{ \begin{pmatrix} n_1 & 1 \\ n_2 & 1 \end{pmatrix} : n_1, n_2 \in \mathbb{Z} \right\} \). Then \(M \) is a \(\Gamma \)-ring. We define an involution \(I : M \rightarrow M \) by

\[
I(a, b) = (I(a), I(b))
\]

\[
II(a, b) = (II(a), II(b)) = (a, b)
\]

\[
I((a, b) + (c, d)) = I(a + c, b + d)
= (I(a + c), I(b + d))
= (I(a) + I(c), I(b) + I(d))
= (I(a), I(b)) + (I(c), I(d))
= I(a, b) + I(c, d)
\]

Now

\[
I \begin{pmatrix} (a, b) \\ (n_1) \\ n_2 \end{pmatrix} (c, d) = I \begin{pmatrix} (an_1 + bn_2)(c, d) \\ (c, d) \end{pmatrix}
\]

\[
= I(an_1c + bn_2c, an_1d + bn_2d)
= (I(an_1c + bn_2c), I(an_1d + bn_2d))
= (I(an_1c) + I(bn_2c), I(an_1d) + I(bn_2d))
= (I(c)n_1I(a) + I(c)n_2I(b), I(d)n_1I(a) + I(d)n_2I(b))
= (I(c), I(d)) \begin{pmatrix} n_1 \\ n_2 \end{pmatrix} (I(a), I(b))
= I(c, d)\alpha I(a, b),
\]

where \(\alpha = \begin{pmatrix} n_1 \\ n_2 \end{pmatrix} \).

Definition 2.7 Let \(M \) be a 2-torsion free semiprime \(\Gamma \)-ring with involution \(I \) and let \(\theta : M \rightarrow M \) be an endomorphism of \(M \). An additive mapping \(T : M \rightarrow M \) is called a left(right) Jordan \(\theta \)-centralizer with involution if for all \(x \in M, \alpha \in \Gamma, \)

\[
T(x\alpha x) = T(x)\alpha \theta(I(x))(T(x)\alpha x) = \theta(I(x))\alpha T(x).
\]
If T is both left and right Jordan θ–centralizer of M with involution, then it is called Jordan θ–centralizer of M with involution.

First, we need the following Lemmas, for proving our main results:

Lemma 2.1 Suppose M is a semiprime Γ-ring satisfying the assumption (A). Suppose that the relation $x\alpha a\beta y + y\alpha a\beta z = 0$ holds for all $a \in M$, some $x, y, z \in M$ and $\alpha, \beta \in \Gamma$. Then $(x + z)\alpha a\beta y = 0$ for all $a \in M$ and $\alpha, \beta \in \Gamma$.

Lemma 2.2 Suppose M is a 2-torsion free semiprime Γ-ring with involution I and satisfying the assumption (A). Let $T : M \to M$ be an additive mapping such that

$$2T(x\alpha x) = T(x)\alpha\theta(I(x)) + \theta(I(x))\alpha T(x)$$

holds for all $x \in M$, $\alpha \in \Gamma$ and θ is an endomorphism on M. Then

$$2T(x\alpha y + y\alpha x) = T(x)\alpha\theta(I(y)) + T(y)\alpha\theta(I(x)) + \theta(I(x))\alpha T(y) + \theta(I(y))\alpha T(x)$$

for all $x, y \in M$.

Proof We have $2T(x\alpha x) = T(x)\alpha\theta(I(x)) + \theta(I(x))\alpha T(x)$. By linearizing, the above relation becomes

$$2T(x\alpha y + y\alpha x) = T(x)\alpha\theta(I(y)) + T(y)\alpha\theta(I(x)) + \theta(I(x))\alpha T(y) + \theta(I(y))\alpha T(x).$$

(1)

This completes the proof. \square

Lemma 2.3 Suppose M is a 2-torsion free semiprime Γ-ring with involution I and satisfying the assumption (A). Let $T : M \to M$ be an additive mapping such that

$$2T(x\alpha x) = T(x)\alpha\theta(I(x)) + \theta(I(x))\alpha T(x)$$

holds for all $x \in M$, $\alpha \in \Gamma$ and θ is an endomorphism on M. Then

$$8T(x\alpha y\beta x) = T(x)\alpha\theta(I(x)\beta I(y) + 3I(y)\beta I(x)) + \theta(I(y)\beta I(x)) + 3I(x)\beta I(y)\alpha T(x) + 2\theta(I(x)\beta I(y)\alpha\theta(I(x))) - \theta(I(x)\alpha I(x)\beta T(y) - T(y)\beta\theta(I(x)\alpha I(x))$$

for all $x, y \in M$.

Proof Putting $2(x\beta y + y\beta x)$ for y in (1) and using Lemma 2.2, we get

$$4T(x\alpha(x\beta y + y\beta x) + (x\beta y + y\beta x)\alpha x)$$

$$= T(x)\alpha\theta(2I(x)\beta I(y) + 3I(y)\beta I(x)) + \theta(3I(x)\beta I(y)$$

$$+ 2I(y)\beta I(x)\alpha T(x) + \theta(I(x)\alpha T(x)\beta I(y))$$

$$+ \theta(I(x)\alpha I(x)\beta T(y) + T(y)\beta I(x)\alpha I(x))$$

$$+ 2\theta(I(x)\beta T(y)\alpha\theta(I(x)) + \theta(I(y)\beta T(x)\alpha\theta(I(x)))$$

(2)
On the other hand

\[4T(x\alpha(x\beta y + y\beta x) + (x\beta y + y\beta x)\alpha x) = 4T(x\alpha x\beta y + y\beta x\alpha x) + 8T(x\alpha y\beta x) \]

Now, using hypothesis, we obtain

\[
4T(x\alpha(x\beta y + y\beta x) + (x\beta y + y\beta x)\alpha x) \\
= T(x)\alpha \theta(I(x)\beta I(y)) + \theta(I(y)\beta I(x))\alpha T(x) + \\
\theta(I(x))\alpha T(x)\beta \theta(I(y)) + \theta(I(y))\beta T(x)\alpha \theta(I(x)) \\
+ 2\theta(I(x))\alpha I(x)\beta T(y) + 2T(y)\beta \theta(I(x)\alpha I(x)) + 8T(x\alpha y\beta x) \tag{3}
\]

Then from (2) and (3), we have

\[
8T(x\alpha y\beta x) = T(x)\alpha \theta(I(x)\beta I(y)) + 3I(y)\beta I(x) + \theta(I(y)\beta I(x)) \\
+ 3I(x)\beta I(y)\alpha T(x) + 2\theta(I(x))\beta T(y)\alpha \theta(I(x)) \\
- \theta(I(x))\alpha I(x)\beta T(y) - T(y)\beta \theta(I(x)\alpha I(x)) \tag{4}
\]

for all \(x, y \in M\). This completes the proof. \(\Box\)

Lemma 2.4 Suppose \(M\) is a 2-torsion free semiprime \(\Gamma\)-ring with involution \(I\) and satisfying the assumption (A). Let \(T : M \to M\) be an additive mapping such that

\[2T(x\alpha x) = T(x)\alpha \theta(I(x)) + \theta(I(x))\alpha T(x) \]

holds for all \(x \in M\), \(\alpha \in \Gamma\) and \(\theta\) is an endomorphism on \(M\). Then

\[
0 = T(x)\alpha \theta(I(x)\gamma I(y)\beta I(x) - 2I(y)\gamma I(x)\beta I(x) \\
- 2I(x)\beta (y)\gamma (y)) + \theta(I(x)\gamma I(y)\beta I(x) \\
- 2I(y)\gamma I(x)\beta I(x) - 2I(x)\beta I(x)\gamma I(y))\alpha T(x) \\
+ \theta(I(x))\alpha T(x)\beta \theta(I(x)\gamma I(y)) + I(y)\gamma I(x) \\
+ \theta(I(x))\gamma I(y) + I(y)\gamma I(x))\beta T(x)\alpha \theta(I(x)) \\
+ \theta(I(x))\gamma T(x)\beta \theta(I(y)) \\
+ \theta(I(y))\beta T(x)\gamma \theta(I(x)I(x))
\]

for all \(x, y \in M\) and \(\alpha, \beta, \gamma \in \Gamma\).
Proof Putting $8(x\beta y\gamma x)$ for y in (1) and using lemma (2.3), we obtain

$$16T(x\alpha x\beta y\gamma x + x\beta y\gamma x\alpha x) = T(x)\alpha \theta(9I(x)\gamma I(y)\beta I(x) + 3I(y)\gamma I(x)\beta I(x)) +\theta(9I(x)\gamma I(y)\beta I(x) + 3I(x)\beta I(x)\gamma I(y))\alpha T(x) +\theta(I(x))\alpha T(x)\beta \theta(I(x)\gamma I(y) + 3I(y)\gamma I(x)) +\theta(I(y)\gamma I(x) + 3I(x)\gamma I(y))\beta T(x)\alpha \theta(I(x)) -T(y)\gamma \theta(I(x)\beta I(x)\alpha I(x)) +\theta(I(x)I(x))\gamma T(y)\beta \theta(I(x)) +\theta(I(x))\gamma T(y)\beta \theta(I(x)) +\theta(I(x))\gamma T(y)\beta \theta(I(x)) -\theta(I(x)\alpha I(x)\beta I(x))\gamma T(y).$$

(5)

On the other hand using (4) and then after collecting some terms using Lemma 2.2, we obtain

$$16T(x\alpha x\beta y\gamma x + x\beta y\gamma x\alpha x) = T(x)\alpha \theta(2I(x)\beta I(x)\gamma I(y) +5I(y)\beta I(x)\gamma I(x) + 8I(x)\gamma I(y)\beta I(x)) +\theta(2I(y)\beta I(x)\gamma I(x) + 5I(x)\beta I(x)\gamma I(y) +8I(x)\gamma I(y)\beta I(x))\alpha T(x) +2\theta(I(x))\gamma T(y)\beta \theta(I(y)\alpha I(x)) +2\theta(I(x))\gamma I(y)\beta T(x)\alpha \theta(I(x)) +\theta(I(x)\alpha I(x))\gamma T(y)\beta \theta(I(x)) +\theta(I(x))\gamma T(y)\beta \theta(I(x)) -\theta(I(x)\alpha I(x))\gamma T(y)\beta \theta(I(x)) -\theta(I(x)\beta I(x)\alpha I(x))\gamma T(y) -T(y)\gamma \theta(I(x)\alpha I(x)\beta I(x)).$$

(6)

By comparing (5) and (6), we get

$$0 = T(x)\alpha \theta(I(x)\gamma I(y)\beta I(x) - 2I(y)\gamma I(x)\beta I(x) - 2I(x)\beta I(x)\gamma (y)) +\theta(I(x)\gamma I(y)\beta I(x) - 2I(y)\gamma I(x)\beta I(x) - 2I(x)\beta I(x)\gamma I(y))\alpha T(x) +\theta(I(x)\alpha T(x)\beta \theta(I(x)\gamma I(y) + I(y)\gamma I(x)) +\theta(I(x)\gamma I(y) + I(x)\gamma I(y)\beta T(x)\alpha \theta(I(x)) +\theta(I(x)\alpha I(x)\gamma T(x)\beta \theta(I(y)) +\theta(I(y))\beta T(x)\gamma \theta(I(x)I(x)).$$

(7)

for $x, y \in M$ and $\alpha, \beta, \gamma \in \Gamma$. \(\square\)

Lemma 2.5 Suppose M is a 2-torsion free semiprime Γ-ring with involution I and satisfying the assumption (A). Let $T: M \to M$ be an additive mapping such that

$$2T(x\alpha x) = T(x)\alpha \theta(I(x)) + \theta(I(x))\alpha T(x)$$
holds for all $x \in M$, $\alpha \in \Gamma$ and θ is an endomorphism on M. Then

$$0 = \theta(I(x)\gamma I(y))\beta[\theta(I(x)\alpha I(x))], T(x)\right \rangle_{\alpha} + 2\theta(I(x)\alpha I(x)\gamma I(y))\beta[T(x), \theta(I(x))]\right \rangle_{\alpha}$$

$$+ 2\theta(I(y)\gamma I(x)\alpha I(x))\beta[T(x), \theta(I(x))]\right \rangle_{\alpha} + \theta(I(y)\gamma I(x))\beta[\theta(I(x)), T(x)]\right \rangle_{\alpha} \alpha \theta(I(x))$$

$$+ \theta(I(y))\beta[\theta(I(x)), T(x)]\right \rangle_{\alpha} \gamma \theta(I(x)\alpha I(x))$$

for all $x, y \in M$ and $\alpha, \beta, \gamma \in \Gamma$.

\textbf{Proof} Replacing y by $x\alpha y$ in (7), we have

$$0 = T(x)\alpha \theta(I(x)\gamma I(y)\beta I(x))\alpha(I(x)) - 2\theta(I(y)\alpha I(x)\gamma I(x)\beta I(x)$$

$$- 2\theta(I(y)\gamma I(x)\alpha I(x)) + \theta(I(x)\gamma I(y)\beta I(x)$$

$$- 2\theta(I(y)\alpha I(x)\gamma I(x)\beta I(x) - 2\theta(I(x)\beta I(x)\gamma I(y)\alpha I(x)) + I(y)\alpha I(x)\gamma I(x)$$

$$+ \theta(I(x)\alpha I(x))\beta[T(x)\alpha \theta(I(x))] + \theta(I(x)\gamma I(y))\beta[T(x)\alpha \theta(I(x))]$$

$$+ \theta(I(y)\gamma I(x))\beta[T(x)\alpha \theta(I(x))] + \theta(I(y))\beta[T(x)\alpha \theta(I(x))]\right \rangle_{\alpha} \gamma \theta(I(x)\alpha I(x)).$$

(8)

Right multiplication of (7) by $\theta(I(x))$, we get

$$0 = T(x)\alpha \theta(I(x)\gamma I(y)\beta I(x))\alpha(I(x)) - 2\theta(I(y)\gamma I(x)\beta I(x)\alpha I(x)$$

$$- 2\theta(I(x)\beta I(x)\gamma I(y)\alpha I(x)) + \theta(I(x)\gamma I(y)\beta I(x)$$

$$- 2\theta(I(y)\gamma I(x)\alpha I(x) - 2\theta(I(x)\beta I(x)\gamma I(y))\alpha T(x)\alpha \theta(I(x))$$

$$+ \theta(I(x)\alpha T(x)\beta \theta(I(x))\gamma I(y)$$

$$+ I(y)\gamma I(x))\alpha \theta(I(x)) + \theta(I(x)\gamma I(y)$$

$$+ I(y)\gamma I(x))\beta[T(x)\alpha \theta(I(x)\alpha I(x))$$

$$+ \theta(I(x)\alpha I(x))\gamma T(x)\beta \theta(I(y)\alpha I(x))$$

$$+ \theta(I(y))\beta T(x)\gamma \theta(I(x)\alpha I(x)\alpha I(x)).$$

(9)

Subtracting (9) from (8) and using assumption(A), we have

$$0 = \theta(I(x)\alpha I(y)\gamma I(x))\beta[\theta(I(x)), T(x)]\right \rangle_{\alpha}$$

$$+ 2\theta(I(x)\alpha I(x)\gamma I(y))\beta[T(x), \theta(I(x))]\right \rangle_{\alpha}$$

$$+ 2\theta(I(y)\gamma I(x)\alpha I(x))\beta[T(x), \theta(I(x))]\right \rangle_{\alpha}$$

$$+ \theta(I(x)\gamma I(y))\beta[\theta(I(x)), T(x)]\right \rangle_{\alpha} \alpha \theta(I(x))$$

$$+ \theta(I(y)\gamma I(x))\beta[\theta(I(x)), T(x)]\right \rangle_{\alpha} \alpha \theta(I(x))$$

$$+ \theta(I(y))\beta[\theta(I(x)), T(x)]\right \rangle_{\alpha} \gamma \theta(I(x)\alpha I(x))$$

$$+ \theta(I(y))\beta[\theta(I(x)), T(x)]\right \rangle_{\alpha} \gamma \theta(I(x)\alpha I(x))$$
Now combining first and fourth term together this relation reduces as,
\[
0 = \theta(I(x)\gamma I(y))\beta[\theta(I(x)\alpha I(x)), T(x)]_\alpha \\
+2\theta(I(x)\alpha I(x)\gamma I(y))\beta[T(x), \theta(I(x))]_\alpha \\
+2\theta(I(y)\gamma I(x)\alpha I(x))\beta[T(x), \theta(I(x))]_\alpha \\
+\theta(I(y)\gamma I(x))\beta[\theta(I(x)), T(x)]_\alpha \alpha \theta(I(x)) \\
+\theta(I(y))\beta[\theta(I(x)), T(x)]_\alpha \gamma \theta(I(x)\alpha I(x)) \\
\tag{10}
\]
for all \(x, y \in M\) and \(\alpha, \beta, \gamma \in \Gamma\).

\[\textbf{Lemma 2.6} \quad \text{Suppose} \ M \text{ is a 2-torsion free semiprime \(\Gamma\)}-\text{ring with involution \(I\) and satisfying the assumption (A). Let} \ T : M \to M \text{ be an additive mapping such that}
\]
\[
2T(x\alpha x) = T(x)\alpha \theta(I(x)) + \theta(I(x))\alpha T(x)
\]
\[\text{holds for all} \ x \in M, \ \alpha \in \Gamma \ \text{and} \ \theta \text{ is an endomorphism on} \ M. \ \text{Then}
\]
\[
0 = [T(x), \theta(I(x))]_\alpha \gamma \theta(y)\beta[T(x), \theta(I(x))]_\alpha \\
-2[T(x), \theta(I(x)\alpha I(x))]_\alpha \theta(y)\beta[T(x), \theta(I(x))]_\alpha
\]
\[\text{for all} \ x, y \in M \ \text{and} \ \alpha, \beta, \gamma \in \Gamma.
\]

\[\textbf{Proof} \quad \text{First replacing} \ y \ \text{by} \ I(y) \ \text{in (10), we have}
\]
\[
0 = \theta(I(x)\gamma y)\beta[\theta(I(x)\alpha I(x)), T(x)]_\alpha \\
+2\theta(I(x)\alpha I(x)\gamma y)\beta[T(x), \theta(I(x))]_\alpha \\
+2\theta(y\gamma I(x)\alpha I(x))\beta[T(x), \theta(I(x))]_\alpha \\
+\theta(y\gamma I(x))\beta[\theta(I(x)), T(x)]_\alpha \alpha \theta(I(x)) \\
+\theta(y)\beta[\theta(I(x)), T(x)]_\alpha \gamma \theta(I(x)\alpha I(x))
\]
\[\text{Now putting} \ \theta(y) = T(x)\alpha \theta(I(y)) \quad 0 = \theta(I(x))\gamma T(x)\alpha \theta(I(y))\beta[\theta(I(x)\alpha I(x)), T(x)]_\alpha \\
+2\theta(I(x)\alpha I(x))\gamma T(x)\alpha \theta(I(y))\beta[T(x), \theta(I(x))]_\alpha \\
+2\theta(I(x))\gamma I(x)\alpha I(x))\beta[T(x), \theta(I(x))]_\alpha \\
+T(x)\alpha \theta(I(y)\gamma I(x))\beta[\theta(I(x)), T(x)]_\alpha \alpha \theta(I(x)) \\
+T(x)\alpha \theta(I(y))\beta[\theta(I(x)), T(x)]_\alpha \gamma \theta(I(x)\alpha I(x)). \quad \tag{11}
\]
\[\text{Left multiplication of (11) by} \ T(x)\alpha \ \text{we get}
\]
\[
0 = T(x)\alpha \theta(I(x)\gamma I(y)\beta[\theta(I(x)\alpha I(x)), T(x)]_\alpha \\
+2\theta(I(x)\alpha I(x))\gamma I(y)\beta[T(x), \theta(I(x))]_\alpha \\
+2\theta(I(x))\gamma I(x)\alpha I(x))\beta[T(x), \theta(I(x))]_\alpha \\
+T(x)\alpha \theta(I(y))\gamma I(x))\beta[\theta(I(x)), T(x)]_\alpha \alpha \theta(I(x)) \\
+T(x)\alpha \theta(I(y))\beta[\theta(I(x)), T(x)]_\alpha \gamma \theta(I(x)\alpha I(x)). \quad \tag{12}
\]
Subtracting (12) from (11), we arrive at

\[0 = [T(x), \theta(I(x))]_\alpha \gamma \theta(y) \beta [T(x), \theta(I(x))]_\alpha - 2[T(x), \theta(I(x)\alpha I(x))]_\alpha \gamma \theta(y) \beta [T(x), \theta(I(x))]_\alpha \]

Replacing \(y\) by \(I(y)\), we get

\[0 = [T(x), \theta(I(x))]_\alpha \gamma \theta(y) \beta [T(x), \theta(I(x)\alpha I(x))]_\alpha - 2[T(x), \theta(I(x)\alpha I(x))]_\alpha \gamma \theta(y) \beta [T(x), \theta(I(x))]_\alpha \]

for all \(x, y \in M\) and \(\alpha, \beta, \gamma \in \Gamma\).

\[\square\]

Lemma 2.7 Suppose \(M\) is a 2-torsion free semiprime \(\Gamma\)-ring with involution \(I\) and satisfying the assumption (A). Let \(T : M \rightarrow M\) be an additive mapping such that

\[2T(x_\alpha x) = T(x)\alpha \theta(I(x)) + \theta(I(x))\alpha T(x)\]

holds for all \(x \in M\), \(\alpha \in \Gamma\) and \(\theta\) is an endomorphism on \(M\). Then

\[[T(x), \theta(I(x)\alpha I(x))]_\alpha = 0\]

for all \(x \in M\).

Proof Now replacing \(\theta(y)\) by \(r\) and taking \(a = [T(x), \theta(I(x))]_\alpha\), \(b = [T(x), \theta(I(x)\alpha I(x))]_\alpha\), and \(c = -2[T(x), \theta(I(x)\alpha I(x))]_\alpha\) in (13), we get \(a \gamma r \beta + c \gamma r \beta a = 0\) for all \(r \in M\). Hence using Lemma 2.1, we obtain that \((c + b)\beta \gamma r = 0\), which implies that

\[[T(x), \theta(I(x)\alpha I(x))]_\alpha \beta r \gamma [T(x), \theta(I(x))]_\alpha = 0.\]

Using this relation, we arrive at

\[0 = [T(x), \theta(I(x)\alpha I(x))]_\alpha \beta r \gamma (\theta(I(x))\alpha [T(x), \theta(I(x))]_\alpha + [T(x), \theta(I(x))]_\alpha \alpha \theta(I(x)))\]

We therefore have

\[[T(x), \theta(I(x)\alpha I(x))]_\alpha \beta r \gamma [T(x), \theta(I(x)\alpha I(x))]_\alpha = 0\]

for all \(r \in M\).

Hence by semiprimeness of \(M\), we have

\[[T(x), \theta(I(x)\alpha I(x))]_\alpha = 0, \quad (14)\]

for all \(x \in M\).

\[\square\]

Theorem 2.1 Suppose \(M\) is a 2-torsion free semiprime \(\Gamma\)-ring with involution \(I\) and satisfying the assumption (A). Let \(T : M \rightarrow M\) be an additive mapping such that

\[2T(x_\alpha x) = T(x)\alpha \theta(I(x)) + \theta(I(x))\alpha T(x)\]
holds for all $x \in M$, $\alpha \in \Gamma$ and θ is an endomorphism on M. Then T is a Jordan θ—centralizer.

Proof Linearizing the relation given in Lemma-2.7, we get

$$0 = \left[T(x), \theta(I(y)\alpha I(y)) \right]_{\alpha} + \left[T(y), \theta(I(x)\alpha I(x)) \right]_{\alpha} + \left[T(x), \theta(I(x)\alpha I(y) + I(y)\alpha I(x)) \right]_{\alpha}$$

Putting in above relation $-x$ for x and comparing the relation so obtained with the above relation and by 2-torsion freeness of M,

$$\left[T(x), \theta(I(x)\alpha I(y) + I(y)\alpha I(x)) \right]_{\alpha} + \left[T(y), \theta(I(x)\alpha I(x)) \right]_{\alpha} = 0 \quad (15)$$

Replacing $2(\alpha \beta y + y \beta x)$ for y and using Lemma 2.7, we obtain

$$0 = \left[T(x), \theta(I(x)\alpha I(y) + y \beta x) + 2(\alpha \beta y + y \beta x)\alpha I(x) \right]_{\alpha}$$

Thus we have

$$0 = 2\theta(I(x)\alpha I(x))\beta[T(x), \theta(I(y))]_{\alpha} + 2[T(x), \theta(I(y))]_{\alpha} \beta\theta(I(x)\alpha I(x))$$

Hence in particular, we find that

$$0 = \theta(I(x)\alpha I(x))\beta[T(x), \theta(I(x))]_{\alpha} + 3[T(x), \theta(I(x))]_{\alpha} \beta \theta(I(x)\alpha I(x))$$

In view of Lemma-2.7, this reduces to

$$0 = \theta(I(x)\alpha I(x))\beta[T(x), \theta(I(x))]_{\alpha} + 3[T(x), \theta(I(x))]_{\alpha} \beta \theta(I(x)\alpha I(x))$$

According to Lemma-2.7, we get

$$\left[T(x), \theta(I(x)) \right]_{\alpha} \beta \theta(I(x)) + \theta(I(x)) \beta[T(x), \theta(I(x))]_{\alpha} = 0$$

Hence using the later relation, we find that

$$\theta(I(x)\alpha I(x))\beta[T(x), \theta(I(x))]_{\alpha} = [T(x), \theta(I(x))]_{\alpha} \beta \theta(I(x)\alpha I(x))$$

Further using this replacement in (17), we have

$$\left[T(x), \theta(I(x)) \right]_{\alpha} \beta \theta(I(x)\alpha I(x)) = 0 \quad (18)$$
for all $x \in M$ and $\alpha, \beta \in \Gamma$.

Similarly

$$\theta(I(x)\alpha I(x))\beta[T(x), \theta(I(x))]_{\alpha} = 0$$ \hspace{1cm} (19)$$

for all $x \in M$ and $\alpha, \beta \in \Gamma$.

We also have

$$\theta(I(x))\beta[T(x), \theta(I(x))]_{\alpha}\alpha \theta(I(x)) = 0$$ \hspace{1cm} (20)$$

for all $x \in M$ and $\alpha, \beta \in \Gamma$.

From (15) we have

$$[T(x), \theta(I(x)\alpha I(y) + I(y)\alpha I(x))]_{\alpha} = -[T(y), \theta(I(x)\alpha I(x))]_{\alpha}$$

and combining this fact with (16), we arrive at

$$0 = 2\theta(I(x)\alpha I(x))\beta[T(x), \theta(I(y))]_{\alpha} + 2[T(x), \theta(I(y))]_{\alpha}\beta \theta(I(x)\alpha I(x)) + 4[T(x), \theta(I(x)\beta I(y)\alpha I(x))]_{\alpha} + T(x)\beta \theta(I(y)), \theta(I(x)\alpha I(x))]_{\alpha} + \theta[I(y)], \theta(I(x)\alpha I(x))]_{\alpha}\beta T(x) - \theta(I(x))\beta[T(x), \theta(I(x)\alpha I(x))]_{\alpha} + I(y)\alpha I(x)) - T(x), \theta(I(x)\alpha I(y) + I(y)\alpha I(x))]_{\alpha}\beta \theta(I(x)) + 2\theta(I(x)\alpha I(x))\beta[T(x), \theta(I(y))]_{\alpha} + 2[T(x), \theta(I(y))]_{\alpha}\beta \theta(I(x)\alpha I(x)) + 4\theta(I(x))\beta[I(x), \theta(I(x))]_{\alpha} + T(x)\beta \theta(I(y)), \theta(I(x)\alpha I(x))]_{\alpha} + \theta[I(y)], \theta(I(x)\alpha I(x))]_{\alpha}\beta T(x) - \theta(I(x))\beta[T(x), \theta(I(x)\alpha I(x))]_{\alpha} - \theta[I(x)\alpha I(y)]\beta[T(x), \theta(I(x))]_{\alpha} + T(x), \theta(I(x))]_{\alpha}\beta \theta(I(y)\alpha I(x)) - \theta[I(x)]\beta[T(x), \theta(I(x))]_{\alpha}\beta \theta(I(x)\alpha I(x)) - \theta[I(y)]\beta[T(x), \theta(I(x))]_{\alpha}\beta \theta(I(x))$$

Hence, we have

$$0 = \theta(I(x)\alpha I(x))\beta[T(x), \theta(I(y))]_{\alpha} + [T(x), \theta(I(y))]_{\alpha}\beta \theta(I(x)\alpha I(x)) + 3[T(x), \theta(I(x))]_{\alpha}\beta \theta(I(y)\alpha I(x)) + 3\theta[I(x)\alpha I(y)]\beta[T(x), \theta(I(x))]_{\alpha} + 2\theta[I(x)]\beta[T(x), \theta(I(y))]_{\alpha}\alpha \theta(I(x)) + T(x)\beta \theta(I(y)), \theta(I(x)\alpha I(x))]_{\alpha} + \theta[I(y)], \theta(I(x)\alpha I(x))]_{\alpha}\beta T(x) - \theta(I(x))\beta[T(x), \theta(I(x))]_{\alpha}\alpha \theta(I(y)) - \theta[I(y)]\beta[T(x), \theta(I(x))]_{\alpha}\beta \theta(I(x))$$ \hspace{1cm} (21)$$
Replacing y by $x\gamma y$, we have

$$0 = \theta(I(x)\alpha I(x))\beta[T(x), \theta(I(y)\gamma I(x))]\alpha$$

$$+ [T(x), \theta(I(y)\gamma I(x))]\alpha \beta \theta(I(x)\alpha I(x))$$

$$+ 3[T(x), \theta(I(x))]\alpha \beta \theta(I(y)\gamma I(x)\alpha I(x))$$

$$+ 3\theta(I(x)\alpha I(y)\gamma I(x))\beta[T(x), \theta(I(x))]\alpha$$

$$+ 2\theta(I(x))\beta[T(x), \theta(I(y)\gamma I(x))]\alpha \theta(I(x))$$

$$+ T(x)\beta[\theta(I(y)\gamma I(x)), \theta(I(x)\alpha I(x))]\alpha$$

$$+ [\theta(I(y)\gamma I(x)), \theta(I(x)\alpha I(x))]\beta T(x)$$

$$- \theta(I(x))\beta[T(x), \theta(I(x))]\alpha \alpha \theta(I(y)\gamma I(x))$$

$$- \theta(I(y)\gamma I(x))\beta[T(x), \theta(I(x))]\alpha \theta(I(x))$$

This can be written as (also using assumption (A))

$$0 = \theta(I(x)\alpha I(x))\beta[T(x), \theta(I(y))]\alpha \gamma \theta(I(x))$$

$$+ \theta(I(x)\alpha I(x)\gamma I(y))\beta[T(x), \theta(I(x))]\alpha$$

$$+ [T(x), \theta(I(y))]\alpha \beta \theta(I(x)\alpha I(x)\gamma I(x))$$

$$+ \theta(I(y))\beta[T(x), \theta(I(x))]\alpha \gamma \theta(I(x)\alpha I(x))$$

$$+ 3[T(x), \theta(I(x))]\alpha \beta \theta(I(y)\gamma I(x)\alpha I(x))$$

$$+ 3\theta(I(x)\alpha I(y)\gamma I(x))\beta[T(x), \theta(I(x))]\alpha$$

$$+ 2\theta(I(x))\beta[T(x), \theta(I(y)\gamma I(x))]\alpha \gamma \theta(I(x))$$

$$+ [\theta(I(y)), \theta(I(x)\alpha I(x))]\alpha \gamma \theta(I(x))\beta T(x)$$

$$- \theta(I(x))\beta[T(x), \theta(I(x))]\alpha \gamma \theta(I(y)\gamma I(x))$$

$$- \theta(I(y)\gamma I(x))\beta[T(x), \theta(I(x))]\alpha \gamma \theta(I(x))$$

In view of (18) and (20), we have

$$0 = \theta(I(x)\alpha I(x))\beta[T(x), \theta(I(y))]\alpha \gamma \theta(I(x))$$

$$+ \theta(I(x)\alpha I(x)\gamma I(y))\beta[T(x), \theta(I(x))]\alpha$$

$$+ [T(x), \theta(I(y))]\alpha \beta \theta(I(x)\alpha I(x)\gamma I(x))$$

$$+ 3[T(x), \theta(I(x))]\alpha \beta \theta(I(y)\gamma I(x)\alpha I(x))$$

$$+ 3\theta(I(x)\alpha I(y)\gamma I(x))\beta[T(x), \theta(I(x))]\alpha$$

$$+ 2\theta(I(x))\beta[T(x), \theta(I(y)\gamma I(x))]\alpha \gamma \theta(I(x))$$

$$+ [\theta(I(y)), \theta(I(x)\alpha I(x))]\alpha \gamma \theta(I(x))\beta T(x)$$

$$- \theta(I(x))\beta[T(x), \theta(I(x))]\alpha \gamma \theta(I(y)\gamma I(x))$$

$$- \theta(I(y)\gamma I(x))\beta[T(x), \theta(I(x))]\alpha \gamma \theta(I(x))$$

$$+ [\theta(I(y)), \theta(I(x)\alpha I(x))]\alpha \gamma \theta(I(x))\beta T(x)$$

$$- \theta(I(x))\beta[T(x), \theta(I(x))]\alpha \gamma \theta(I(y)\gamma I(x)).$$

(22)
Right multiplication of (21) by $\gamma \theta(I(x))$ gives

$$0 = \theta(I(x) \alpha I(x)) \gamma[I(x)] \beta[T(x), \theta(I(y))] \alpha, \gamma \theta(I(x))$$

$$+ [T(x), \theta(I(y))] \alpha \beta[\theta(I(x) \alpha I(x) \gamma I(x))$$

$$+ 3 \theta(I(x) \alpha I(y)) \beta[T(x), \theta(I(I))] \alpha, \gamma \theta(I(x))$$

$$+ 2 \theta(I(I)) \beta[T(x), \theta(I(I))] \alpha, \alpha \theta(I(x) \gamma I(x))$$

$$+ [\theta(I(I)), \theta(I(x) \alpha I(x))] \alpha, \beta[I(x) \gamma I(x)]$$

$$+ [\theta(I(I)), \theta(I(x) \alpha I(x))] \alpha, \alpha \theta(I(x) \gamma I(x))$$

$$- \theta(I(x)) \beta[T(x), \theta(I(I))] \alpha, \alpha \theta(I(y) \gamma I(x))$$

(23)

Subtracting (23) from (22), we get (also using assumption (A))

$$0 = \theta(I(x) \alpha I(x) \gamma I(y)) \beta[T(x), \theta(I(x))] \alpha$$

$$+ 3 \theta(I(x) \gamma I(y)) \beta[I(I), \theta(I(I))] \alpha$$

$$+ 2 \theta(I(x) \gamma I(y)) \beta[T(x), \theta(I(I))] \alpha, \alpha \theta(I(x))$$

$$+ [\theta(I(I)), \theta(I(x) \gamma I(x))] \alpha, \beta[I(x) \gamma I(x)]$$

Further in view of (19) this yields

$$0 = 2 \theta(I(x) \gamma I(y)) \beta[T(x), \theta(I(I))] \alpha$$

$$+ 3 \theta(I(x) \gamma I(y)) \beta[T(x), \theta(I(I))] \alpha$$

$$+ \theta(I(x) \gamma I(y)) \beta[T(x), \theta(I(I))] \alpha, \alpha \theta(I(x))$$

In view of Lemma 2.7, the above relation yields that

$$0 = \theta[I(x) \alpha I(x) \gamma I(y)] \beta[T(x), \theta(I(I))] \alpha$$

$$+ 2 \theta(I(x) \gamma I(y)) \beta[T(x), \theta(I(I))] \alpha$$

(24)

Further application of Lemma 2.7, (18), (19), (20) together with Lemma 2.5 yields that

$$0 = \theta[I(x) \alpha I(x) \gamma I(y)] \beta[T(x), \theta(I(I))] \alpha$$

(25)

Hence combining (24) and (25) and by 2-torsion freeness of M, we have

$$\theta[I(x) \gamma I(y) \alpha I(x)] \beta[T(x), \theta(I(I))] \alpha = 0$$

Now put $y = I(y)$, we have

$$\theta(I(x) \gamma y \alpha I(x)) \beta[T(x), \theta(I(I))] \alpha = 0$$

Now replacing $\theta(y)$ by $[T(x), \theta(I(I))] \alpha, \alpha \theta(y)$ in the later expression, we have (also using assumption (A))

$$\theta(I(x)) \alpha [T(x), \theta(I(I))] \alpha, \gamma \theta(y) \beta[\theta(I(x)) \alpha [T(x), \theta(I(I))] \alpha$$

$$= 0$$
As \(\theta \) is an endomorphism, the semiprimeness of \(M \) gives
\[
\theta(I(x))\alpha[T(x), \theta(I(x))]_\alpha = 0
\]
and hence in view of Lemma 2.7, we can write
\[
[T(x), \theta(I(x))]_\alpha \alpha \theta(I(x)) = 0.
\]
Linearizing (26) and using (27), we get
\[
0 = \theta(I(x))\alpha[T(x), \theta(I(y))]_\alpha + \theta(I(x))\alpha[T(y), \theta(I(x))]_\alpha \\
+ \theta(I(x))\alpha[T(y), \theta(I(y))]_\alpha + \theta(I(y))\alpha[T(x), \theta(I(x))]_\alpha \\
+ \theta(I(y))\alpha[T(x), \theta(I(y))]_\alpha + \theta(I(y))\alpha[T(y), \theta(I(x))]_\alpha
\]
Putting in the above relation \(-x\) for \(x \) and comparing the relation so obtained with the above we get,
\[
0 = \theta(I(x))\alpha[T(x), \theta(I(y))]_\alpha + \theta(I(x))\alpha[T(y), \theta(I(x))]_\alpha \\
+ \theta(I(y))\alpha[T(x), \theta(I(x))]_\alpha
\]
Now, multiply the above relation by \([T(x), \theta(I(x))]_\alpha \alpha \) from left and use (27), we have
\[
[T(x), \theta(I(x))]_\alpha \alpha \theta(I(y))\alpha[T(x), \theta(I(x))]_\alpha = 0
\]
This follows that,
\[
[T(x), \theta(I(x))]_\alpha = 0.
\]
Combining (28) with our hypothesis, we get
\[
T(x\alpha x) = T(x)\alpha \theta(I(x)) \text{ for all } x \in M
\]
and
\[
T(x\alpha x) = \theta(I(x))\alpha T(x) \text{ for all } x \in M
\]
This means that \(T \) is a left and right Jordan \(\theta \)-centralizer. This complete the proof of our theorem. \(\square \)

Corollary 2.1 Suppose that \(M \) be a 2-torsion free semiprime \(\Gamma \)-ring with involution \(I \) and satisfying the assumption(A). If \(T : M \to M \) be an additive mapping such that
\[
2T(x\alpha x) = T(x)\alpha I(x) + I(x)\alpha T(x)
\]
holds for all \(x \in M \) and \(\alpha \in \Gamma \), then \(T \) is a Jordan centralizer with involution \(I \).

References

First Approximate Exponential Change of Finsler Metric

T.N.Pandey, M.N.Tripathi and O.P.Pandey
(Department of Mathematics and Statistics, DDU Gorakhpur University, Gorakhpur, India)
E-mail: tnp1952@gmail.com, manishnathtripathi@gmail.com, oppandey1988@gmail.com

Abstract: The purpose of the present paper is to find the necessary and sufficient conditions under which a first approximate exponential change of Finsler metric becomes a Projective change. The condition under which a first approximate exponential change of Finsler metric of Douglas space becomes a Douglas space have been also found. The exponential change of Finsler metric has been studied [1].

Key Words: Exponential change, projective change, Douglas space.

AMS(2010): 53C60, 53B40

§1. Introduction

Let $F^n = (M^n, L)$ is a Finsler space, where L is Finsler function of x and $y = \dot{x}$ and M^n is n-dimensional smooth manifold. In the paper [1] exponential change of Finsler metric, i.e. Finsler metric L changed to $L e^{(\beta / L)}$ represented by \overline{L} where $\beta = b_i(x) y^i$ is one form defined on the manifold M^n. The exponential change of Finsler metric is represented as

$$\overline{L} = L \left\{ 1 + \frac{\beta}{L} + \frac{1}{2!} \left(\frac{\beta}{L} \right)^2 + \frac{1}{3!} \left(\frac{\beta}{L} \right)^3 + \frac{1}{4!} \left(\frac{\beta}{L} \right)^4 + \ldots \right\} \quad \text{for } |\beta| < |L|.\quad (1.1)$$

Neglecting powers of β higher than 2, \overline{L} approximates to $L + \beta + \frac{\beta^2}{2L}$, which will be called first approximate exponential change of Finsler metric L. That is,

$$\overline{L} = L + \beta + \frac{\beta^2}{2L}$$

Then Finsler space $\overline{F}^n = (M^n, \overline{L})$ is said to be obtained from Finsler space $F^n = (M^n, L)$ by first approximate exponential change. The quantities corresponding to \overline{F}^n is denoted by putting bar on those quantities.

Some basic tensor of $F^n = (M^n, L)$ are given as follows:

$$g_{ij} = \frac{1}{2} \frac{\partial^2 L^2}{\partial y^i \partial y^j}, \quad l_i = \frac{\partial L}{\partial y^i} = L_i \quad \text{and} \quad h_{ij} = g_{ij} - l_i l_j,$$

where g_{ij} is fundamental metric tensor, l_i is normalized element of support and h_{ij} is angular metric tensor.

\footnote{Received September 9, 2013, Accepted November 18, 2013.}
Partial derivative with respect to x^i and y^i will be denoted as ∂_i and $\dot{\partial}_i$ respectively and derivatives are written as
\[
L_i = \frac{\partial L}{\partial y^i}, \quad L_{ij} = \frac{\partial^2 L}{\partial y^i \partial y^j} \quad \text{and} \quad L_{ijk} = \frac{\partial^3 L}{\partial y^k \partial y^j \partial y^i}.
\] (1.2)

The equation of geodesic of a Finsler space [2] is
\[
\frac{d^2 x^i}{ds^2} + 2G^i \left(x, \frac{dx}{ds} \right) = 0,
\]
where G^i is positively homogeneous function of degree two in y^i and is given by
\[
2G^i = \frac{g^{ij}}{2} (y^r \dot{\partial}_j L^2 - \partial_j L^2).
\]

Berwald connection $B\Gamma = (G^i_{jk}, G^i_j, 0)$ of Finsler space $F^n = (M^n, L)$ is given by [2]
\[
G^i_{jk} = \frac{\partial G^i_j}{\partial y^k}, \quad G^i_j = \frac{\partial G^i}{\partial y^j}.
\]

Cartan connection $C\Gamma = (F^i_{jk}, G^i_j, C^i_{jk})$ is constructed from L with the help of following axioms [3]:

(1) Cartan connection $C\Gamma$ is v-metrical;
(2) Cartan connection $C\Gamma$ is h-metrical;
(3) The (v)v torsion tensor field S^1 of Cartan connection vanishes;
(4) The (h)h torsion tensor field T of Cartan connection vanishes;
(5) The deflection Tensor field D of Cartan connection vanishes.

Denote the h and v-covariant derivative with respect to Cartan connection by $|_k$ and $|_k$.

Let
\[
G^i = G^i_i + D^i,
\] (1.3)
where D^i is difference tensor homogeneous function of second degree in y^i. Then $G^i_j = G^i_j + D^i_j$, $G^i_{jk} = G^i_{jk} + D^i_{jk}$, where $D^i_j = \frac{\partial D^i}{\partial y^j}$ and $D^i_{jk} = \frac{\partial D^i_j}{\partial y^k}$ are homogeneous function of degree 1 and 0 in y^i respectively.

§2. Difference Tensor D^i

From (1.1) and (1.2) we have,
\[
\bar{L}_i = \left(1 - \frac{\beta^2}{2L^2}\right) L_i + \left(1 + \frac{\beta}{L}\right) b_i,
\] (2.1)
\[
\bar{L}_{ij} = \left(1 - \frac{\beta^2}{2L^2}\right) L_{ij} + \frac{\beta^2}{L^2} L_i L_j - \frac{\beta}{L^2} (L_i b_j + L_j b_i) + \frac{1}{L} b_i b_j,
\] (2.2)
\[
\bar{L}_{ijk} = \left(1 - \frac{\beta^2}{2L^2}\right) L_{ijk} + \frac{\beta^2}{L^3} (L_{ij} L_k + L_{ik} L_j + L_{jk} L_i) - \frac{\beta}{L^2} (L_{ij} b_k + L_{ik} b_j + L_{jk} b_i)
\]
where ‘0’ denotes contraction with y^k.

Now in F^n and F^m, we have

$$L_{ij|k} = 0 \Rightarrow \partial_k T_{ij} - T_{ijr} \Gamma_{rk}^i - T_{ir} F_{jk}^r - T_{jr} F_{ik}^r = 0,$$

$$L_{ij|k} = 0 \Rightarrow \partial_k L_{ij} - L_{ijr} G_{k}^r - L_{ir} F_{jk}^r - L_{jr} F_{ik}^r = 0,$$

Now deal with following equations in F^n and F^m

$$T_{ij} = 0 \Rightarrow \partial_j T_i - T_{ir} \Gamma_{ij}^r - T_{ir} F_{ij}^r = 0,$$

$$L_{ij} = 0 \Rightarrow \partial_j L_{i} - L_{ir} G_{j}^r - L_{ir} F_{ij}^r = 0.$$

Putting the value from (2.1), (2.2), (2.4) and (2.10) in (2.9), we have

$$2r_{ij} = b_{ij} + b_{ji}, \quad (2.12)$$

therefore putting the value from (2.11) in (2.12), we have

$$2 \left(1 + \frac{\beta}{L} \right) r_{ij} = \mathcal{T}_{ir} D_{ij}^r + \mathcal{T}_{jr} D_{ij}^r + 2 \mathcal{T}_{ir} D_{ij}^r + \mathcal{T}_{jr} D_{ij}^r + \frac{1}{L^2} (\beta L_i - L b_i) (r_{j0} + s_{j0}) + \frac{1}{L^2} (\beta L_j - L b_j) (r_{i0} + s_{i0}).$$

Subtract (2.8) from (2.13) and contract the resulting equation by $y^i y^j$, we get

$$\left(1 - \frac{\beta^2}{2L^2} \right) L r + \left(1 + \frac{\beta}{L} \right) b_{i} D_{r} = \frac{1}{2} \left(1 + \frac{\beta}{L} \right) r_{00}.$$

$$+ \frac{2\beta}{L^2} (L_i L_j b_k + L_j L_k b_j + L_j L_k b_i) - \frac{1}{L^2} (L_i b_j b_k + L_j b_i b_k + L_k b_j b_i) - \frac{3\beta^2}{L^4} L_i L_j L_k,$$

$$\partial_j T_{ij} = \left(1 - \frac{\beta^2}{2L^2} \right) \partial_j L_i + \frac{\beta}{L^2} (L_i - L b_i) \partial_j L + \frac{1}{L^2} (L b_i - \beta L_i) \partial_j \beta + \left(1 + \frac{\beta}{L} \right) \partial_j b_i,$$

$$\partial_k T_{ij} = \left\{ \left(1 - \frac{\beta^2}{2L^2} \right) \partial_k L_i + \frac{\beta}{L^2} (\beta L_i - L b_i) \partial_k L + \frac{1}{L^2} (L b_i - \beta L_i) \partial_k \beta + \left(1 + \frac{\beta}{L} \right) \partial_k b_i \right\}.$$
Since
\[2s_{ij} = b_{ij} - b_{ji},\] (2.15)
therefore putting the value from (2.11) in (2.15), we have
\[2\left(1 + \frac{\beta}{L}\right)s_{ij} = \mathcal{T}_{ir}D_j^r - \mathcal{T}_{jr}D_i^r + \frac{1}{L^2}(\beta L_i - Lb_i)(r_{j0} + s_{j0}) - \frac{1}{L^2}(\beta L_j - Lb_j)(r_{i0} + s_{i0}).\] (2.16)

Subtract (2.8) from (2.16) and contract the resulting equation by \(y^ib^i\), we have
\[\beta(3\beta^2 - 2(1 + b^2)L^2)L_{ir}D^r - L(3\beta^2 - 2(1 + b^2)L^2)b_{ir}D^r = L\{2L^2(\beta + L)s_0 + r_{00}(L^2b^2 - \beta^2)\},\] (2.17)
Solution of algebraic equation (2.14) and (2.17) is given by
\[b_{ir}D^r = \frac{2L^2(2L^2 - \beta^2)(\beta + L)s_0 + \{(L^2b^2 - \beta^2)(\beta^2 + 2\beta L + 2L^2) + \beta(\beta + L)(2L^2 - \beta^2)\}r_{00}}{2(\beta^2 + 2\beta L + 2L^2)(2(1 + b^2)L^2 - 3\beta^2)},\] (2.18)
\[L_{ir}D^r = \frac{L(\beta + L)\{(2L^2 - \beta^2)r_{00} - 4L^2(\beta + L)s_0\}}{2(\beta^2 + 2\beta L + 2L^2)(2(1 + b^2)L^2 - 3\beta^2)}.\] (2.19)

Subtract (2.8) from (2.16) and contract the resulting equation by \(y^i\), we have
\[(1 + \frac{\beta}{L})s_{i0} + \frac{1}{2L^2}(Lb_i - \beta L_i)r_{00} = \mathcal{T}_{ir}D^r.\] (2.20)

Putting the value from (2.2) in (2.20) using \(LL_{ir} = g_{ir} - L_iL_r, L_i = l_i\) and contracting the resulting equation by \(g^{ij}\), we have
\[D^j = \frac{2L^2(\beta + L)}{(2L^2 - \beta^2)}s_0^j + \frac{2L^2\{(2L^2 - \beta^2)r_{00} - 4L^2(\beta + L)s_0\}}{(2L^2 - \beta^2)(2(1 + b^2)L^2 - 3\beta^2)}\left[\frac{(2L^3 - 3\beta^2 L - 2\beta^3)}{L^2(\beta^2 + 2\beta L + 2L^2)}y^i + b^j\right].\] (2.21)

Proposition 2.1 Difference tensor of first approximate exponential change of Finsler metric \(L\) is given by equations (2.21).

§3. **Projective Change of Finsler Metric**

Definition 3.1 A Finsler space \(\mathcal{F}^n\) is called projective to Finsler space \(F^n\) if there is geodesics correspond between \(\mathcal{F}^n\) and \(F^n\). That is, \(L \rightarrow \mathcal{L}\) is projective if \(\mathcal{G} = \mathcal{G} + P(x, y)y^i\), where \(P(x, y)\) is called projective factor, this is homogeneous scalar function of degree one in \(y^i\).
Putting $D^i = Py^i$ in equation (2.21), where P is projective factor and contracting the result equation by y_j, we have

$$P = \frac{(\beta + L)((2L^2 - \beta^2)r_{00} - 4L^2(\beta + L)s_0)}{(\beta^2 + 2\beta L + 2L^2)(2(1 + b^2)L^2 - 3\beta^2)}. \quad (3.1)$$

Putting $D^i = Py^i$ in equation (2.21) the value from (3.1) in (2.21), we get

$$\frac{2((2L^2 - \beta^2)r_{00} - 4L^2(\beta + L)s_0)}{(2L^2 - \beta^2)(2(1 + b^2)L^2 - 3\beta^2)}(\beta y^j - L^2b^j) = \frac{2L^2(\beta + L)}{(2L^2 - \beta^2)} s_0^j. \quad (3.2)$$

Contracting (3.2) by b_j, we have

$$r_{00} = \frac{2L^2(\beta + L)}{(\beta^2 - L^2\beta^2)} s_0. \quad (3.3)$$

Putting the value from (3.3) in (3.1), we have

$$P = \frac{2L^2(L + \beta)^2}{(\beta^2 - L^2\beta^2)((\beta^2 + 2\beta L + 2L^2)} s_0. \quad (3.4)$$

Eliminating P and r_{00} from (3.4), (3.3) and (2.21), we have

$$s_0^j = \left\{ b^j - \left(\frac{\beta}{L^2} \right) y^j \right\} \frac{L^2 s_0}{(L^2\beta^2 - \beta^2)}. \quad (3.5)$$

Equation (3.3) and (3.5) are necessary condition for first approximate exponential change of Finsler metric to be projective.

Conversely, if condition (3.3) and (3.5) are satisfied, then put these value in (2.21), we have

$$D^i = \frac{2L^2(L + \beta)^2}{(\beta^2 - L^2\beta^2)(\beta^2 + 2\beta L + 2L^2)} s_0 y^j = Py^j.$$

That is F^n is projective to F^n.

Theorem 3.1 The first approximate exponential change of Finsler space is projective iff equation (3.3) and (3.5) are satisfied and then projective factor P is given by $P = \frac{2L^2(L + \beta)^2}{(\beta^2 - L^2\beta^2)(\beta^2 + 2\beta L + 2L^2)} s_0.$

§4. Douglas Space

Definition 4.1 A Finsler space F^n is called Douglas space if $G^i y^j - G^j y^i$ is homogeneous polynomial of degree three in y^i. In brief, homogeneous polynomial of degree r in y^i is denoted by $hp(r)$.

If we denote

$$B^i = D^i y^j - D^j y^i \quad (4.1)$$

from equation (2.21), we have

$$B^i = \frac{2L^2((2L^2 - \beta^2)r_{00} - 4L^2(\beta + L)s_0)}{(2L^2 - \beta^2)(2(1 + b^2)L^2 - 3\beta^2)}(b^j y^i - b^i y^j) + \frac{2L^2(\beta + L)}{(2L^2 - \beta^2)} s_0^j y^i - s_0^i y^j. \quad (4.2)$$
From (4.2), we see that B^{ij} is hp(3).

That is, if Douglas space is transformed to be Douglas space by first approximate exponential change of Finsler metric, then B^{ij} is hp(3) and if B^{ij} is hp(3) then Douglas space transformed by first approximate exponential change is Douglas space.

Theorem 4.1 The first approximate exponential change of Douglas space is Douglas space iff B^{ij} given by (4.2) is hp(3).

References

Difference Cordiality of Some Derived Graphs

R. Ponraj and S. Sathish Narayanan
(Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627412, India)

E-mail: ponrajmaths@gmail.com, sathishrvss@gmail.com

Abstract: Let G be a (p, q) graph. Let $f : V(G) \to \{1, 2, \ldots, p\}$ be a function. For each edge uv, assign the label $|f(u) - f(v)|$. f is called a difference cordial labeling if f is a one to one map and $|e_f(0) - e_f(1)| \leq 1$ where $e_f(1)$ and $e_f(0)$ denote the number of edges labeled with 1 and not labeled with 1 respectively. A graph with a difference cordial labeling is called a difference cordial graph. In this paper we investigate the difference cordial labeling behavior of Splitting, Degree splitting and Shadow graph of some standard graphs.

Key Words: Splitting graph, degree splitting graph, shadow graph, corona.

AMS(2010): 05C78

§1. Introduction

Let $G = (V, E)$ be (p, q) graph. Throughout this paper we have considered only simple and undirected graphs. The number of vertices of G is called the order of G and the number of edges of G is called the size G. Graph labeling is an assignment of integers to the vertices or edges, or both, subject to certain conditions. Graph labeling plays an important role of various fields of science and few of them are astronomy, coding theory, x-ray crystallography, radar, circuit design, communication network addressing, database management, secret sharing schemes, and models for constraint programming over finite domains [4]. The graph labeling problem was introduced by Rosa and he has introduced graceful labeling of graphs [21] in the year 1967. In 1980, Cahit [2] introduced the Cordial labeling of graphs. Kuo, Chang, and Kwong [8], Youssef [25], Liu and Zhu [10], Kirchherr [7], Ho, Lee, and Shee [6], Riskin [20], Seoud and Abdel Maqusoud [23], Diab [3], Lee and Liu [9], Andar, Boxwala, and Limaye [1], Vaidya, Ghodasara, Srivastav, and Kaneria [24] were worked in cordial labeling. Ponraj et al. introduced k-product cordial labeling [17], k-total product cordial labeling [18] recently. Inspiration of the above work, R. Ponraj, S. Sathish Narayanan and R. Kala introduced difference cordial labeling of graphs [11]. Let G be a (p, q) graph. Let f be a map from $V(G)$ to $\{1, 2, \ldots, p\}$. For each edge uv, assign the label $|f(u) - f(v)|$. f is called difference cordial labeling if f is a one to one map and $|e_f(0) - e_f(1)| \leq 1$ where $e_f(1)$ and $e_f(0)$ denote the number of edges labeled with 1 and not labeled with 1 respectively. A graph with a difference cordial labeling is called a

\footnote{Received June 28, 2013, Accepted November 20, 2013.}
difference cordial graph. In [11]-[16] difference cordial labeling behavior of several graphs like path, cycle, complete graph, complete bipartite graph, bistar, wheel, web, grid, prism, book and some more standard graphs have been investigated. In this paper, we investigate the difference cordial labeling behavior of some derived graphs like splitting graph, Degree splitting graph and shadow graphs. Let \(x \) be any real number. Then the symbol \([x]\) stands for the largest integer less than or equal to \(x \) and \(\lceil x \rceil \) stands for the smallest integer greater than or equal to \(x \). Terms and definitions not defined here are used in the sense of Harary [5].

\[\text{§2. Splitting Graphs} \]

A splitting graph of a graph was introduced by E.Sampath Kumar and H.B.Waliker [22]. For a graph \(G \), the splitting graph of \(G \), \(S' (G) \), is obtained from \(G \) by adding for each vertex \(v \) of \(G \) a new vertex \(v' \) so that \(v' \) is adjacent to every vertex that is adjacent to \(v \). Note that if \(G \) is a \((p,q)\) graph then \(S' (G) \) is a \((2p,3q)\) graph.

Theorem 2.1 \(S' (P_n) \) is difference cordial.

Proof Let \(P_n : u_1u_2 \ldots u_n \) be the path. Let \(V \left(S' (P_n) \right) = \{ v_i : 1 \leq i \leq n \} \cup V (P_n) \) and \(E \left(S' (P_n) \right) = E (P_n) \cup \{ u_iv_{i+1}, v_{i+1}u_{i+1} : 1 \leq i \leq n - 1 \} \).

Case 1 \(n \) is odd.

Define a map \(f : V \left(S' (P_n) \right) \to \{1, 2 \ldots 2n\} \) by

\[
\begin{align*}
f (u_{2i-1}) &= 4i - 1, \quad 1 \leq i \leq \left\lfloor \frac{n-1}{2} \right\rfloor, \\
f (u_{2i}) &= 4i - 2, \quad 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor, \\
f (v_{2i-1}) &= 4i - 3, \quad 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor, \\
f (v_{2i-1}) &= 4i, \quad 1 \leq i \leq \left\lfloor \frac{n-1}{2} \right\rfloor, \\
f (u_n) &= 2n.
\end{align*}
\]

Obviously, the above labeling is a difference cordial labeling of \(S' (P_n) \).

Case 2 \(n \) is even.

Assign the label to vertices \(u_{2i-1}, v_{2i}, 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor \), \(u_{2i}, 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor \), \(v_{2i-1}, 1 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor \) as in Case 1 and then define \(f (u_{n-1}) = 2n \) and \(f (v_n) = 2n - 1 \). Since \(e_f (0) = \frac{3n - 4}{2} \) and \(e_f (1) = \frac{3n - 2}{2} \), \(f \) is a difference cordial labeling of \(S' (P_n) \).

Theorem 2.2 \(S' (C_n) \) is difference cordial.

Proof Let \(C_n : u_1u_2 \cdots u_nu_1 \) be a cycle. Let \(V \left(S' (C_n) \right) = V (C_n) \cup \{ v_i : 1 \leq i \leq n \} \) and
\[E\left(S' (C_n)\right) = \left\{ u_i v_{i+1} \mod n, v_i u_{i+1} \mod n : 1 \leq i \leq n \right\} \cup E (C_n). \]

Case 1 \(n \) is odd.

Let \(f \) be a difference cordial defined in Case 1 of Theorem 2.1. Define a map \(g : V \left(S' (C_n) \right) \rightarrow \{1, 2 \ldots 2n\} \) by

\[
\begin{align*}
g(u_i) &= f(u_i), \quad 1 \leq i \leq n - 1, \\
g(v_i) &= f(v_i), \quad 1 \leq i \leq n - 1, \\
g(v_n) &= f(u_n), \\
g(u_n) &= f(v_n).
\end{align*}
\]

Since \(e_f(0) = \frac{3n+1}{2} \) and \(e_f(1) = \frac{3n-1}{2} \), \(g \) is a difference cordial labeling of \(S' (C_n) \).

Case 2 \(n \) is even.

Let \(f \) be a difference cordial labeling defined in Case 2 of Theorem 2.1. Define a map \(h : V \left(S' (C_n) \right) \rightarrow \{1, 2 \ldots 2n\} \) by

\[
\begin{align*}
h(u_i) &= f(u_i) \quad \forall i \neq n - 1, \\
h(v_i) &= f(v_i) \quad \forall i \neq n - 1
\end{align*}
\]

\(h(u_{n-1}) = f(u_n), \ h(v_n) = f(u_{n-1}). \) Since \(e_f(0) = e_f(1) = \frac{3n}{2} \), \(h \) is a difference cordial labeling of \(S' (C_n) \).

The corona of \(G \) with \(H \), \(G \odot H \) is the graph obtained by taking one copy of \(G \) and \(p \) copies of \(H \) and joining the \(i \)th vertex of \(G \) with an edge to every vertex in the \(i \)th copy of \(H \).

The graph \(P_n \odot K_1 \) is called a comb.

Theorem 2.3 \(S' (P_n \odot K_1) \) is difference cordial.

Proof Let \(u_i' \) \((1 \leq i \leq n) \) be the vertex corresponding to \(u_i \) \((1 \leq i \leq n)\) and \(v_i' \) \((1 \leq i \leq n)\) be the vertex corresponding to \(v_i \) \((1 \leq i \leq n)\). Define a map \(f : V \left(S' (P_n \odot K_1) \right) \rightarrow \{1, 2 \ldots 4n\} \) by \(f(u_1) = 3, \ f(u'_1) = 1, \)

\[
\begin{align*}
f(u_{i+1}) &= 3i + 1 \quad 1 \leq i \leq n - 1, \\
f(u'_{i+1}) &= 3i + 3 \quad 1 \leq i \leq n - 1, \\
f(v_i) &= 3i - 1 \quad 1 \leq i \leq n, \\
f(v'_i) &= 3n + 1 \quad 1 \leq i \leq n
\end{align*}
\]

Since \(e_f(0) = 3n - 2 \) and \(e_f(1) = 3n - 1 \), \(f \) is a difference cordial labeling of \(S' (P_n \odot K_1) \).

Theorem 2.4 \(\left(11\right) \) If \(G \) is a \((p, q)\) difference cordial graph, then \(q \leq 2p - 1 \).

The graph \(W_n = C_n + K_1 \) is called a wheel.

Theorem 2.5 \(S' (W_n) \) is not difference cordial.
Proof Clearly, the number of vertices and edges in $S'(W_n)$ are $2n + 2$ and $6n$ respectively. By Theorem 2.4, $6n \leq 2(2n + 2) - 1 \leq 4n - 3$. This is impossible. □

Theorem 2.6([11]) Any Path is a difference cordial graph.

Theorem 2.7 $S'(K_{1,n})$ is difference cordial iff $n \leq 3$.

Proof Since $S'(K_{1,1}) \cong P_4$, by theorem 2.6, $S'(K_{1,1})$ is difference cordial. The difference cordial labeling of $S'(K_{1,2})$ and $S'(K_{1,3})$ is shown in Figure 1.

![Figure 1](image)

Suppose f is a difference cordial labeling of $K_{1,n}$ with $n > 3$. Clearly, $e_f(1) \leq 4$. Then $e_f(0) \geq q - 4 \geq 3n - 4$. This implies, $e_f(0) - e_f(1) \geq 3n - 8 > 1$, a contradiction. □

Theorem 2.8 $S'(K_n)$ is not difference cordial.

Proof The order and size of $S'(K_n)$ are $2n$ and $\frac{3n(n - 1)}{2}$ respectively. By Theorem 2.4, $\frac{3n(n - 1)}{2} \leq 2(2n) - 1$. This implies $2 \leq 5n^2 + 3n$. Hence, $S'(K_n)$ is not difference cordial. □

The graph $C_n \times P_2$ is called prism.

Theorem 2.9 $S'(C_n \times P_2)$ is not difference cordial.

Proof The order and size of $S'(C_n \times P_2)$ are $4n$ and $9n$ respectively. By Theorem 2.4, $9n \leq 2(4n) - 1$. ⇒ $n \leq -1$. This is impossible. □

The helm H_n is the graph obtained from a wheel by attaching a pendant edge at each vertex of the n-cycle. A flower Fl_n is the graph obtained from a helm by joining each pendant vertex to the central vertex of the helm.

Theorem 2.10 A splitting graph of a flower graph is not difference cordial.

Proof The number of vertices and edges in the splitting graph of a flower graph are $4n + 2$ and $12n$ respectively. By theorem 2.4, $12n \leq 2(4n + 2) - 1$. This implies $4n \leq 3$. This is impossible. □
§3. Degree Splitting Graphs

The concept of Degree splitting graph was introduced by R. Ponraj and S. Somasundaram in [19]. Let $G = (V, E)$ be a graph with $V = S_1 \cup S_2 \cup \cdots \cup S_t \cup T$ where each S_i is a set of vertices having at least two vertices and having the same degree and $T = V - \bigcup_{i=1}^{t} S_i$. The Degree Splitting graph of G denoted by $DS(G)$ is obtained from G by adding vertices w_1, w_2, \ldots, w_t and joining w_i to each vertex of S_i ($1 \leq i \leq t$).

Theorem 3.1 $DS(P_n)$ is difference cordial.

Proof Let P_n be the path $u_1u_2\ldots u_n$. Let $V(DS(P_n)) = V(P_n) \cup \{u, v\}$ and $E(DS(P_n)) = \{uu_i : 2 \leq i \leq n - 1\} \cup \{uu_1, uv_n\}$. Define $f : V(DS(P_n)) \to \{1, 2, \ldots, n+2\}$ by $f(u_i) = i, 1 \leq i \leq n, f(v) = n + 1, f(u) = n + 2$. Since $e_f(1) = n, e_f(0) = n - 1$, f is a difference cordial labeling of $DS(P_n)$.

Theorem 3.2 [11] The wheel W_n is difference cordial.

Theorem 3.3 $DS(C_n)$ is difference cordial.

Proof Since $DS(C_n) \cong W_n$, the proof follows from Theorem 3.2. □

Theorem 3.4 [11] K_n is difference cordial iff $n \leq 4$.

Theorem 3.5 $DS(K_n)$ is difference cordial iff $n \leq 3$.

Proof Since $DS(K_n) \cong K_{n+1}$, the proof follows from Theorem 3.4. □

Theorem 3.6 [11] $K_{2,n}$ is difference cordial iff $n \leq 4$.

Theorem 3.7 $DS(K_{1,n})$ is difference cordial iff $n \leq 4$.

Proof Since $DS(K_{1,n}) \cong K_{2,n}$, the proof follows from Theorem 3.6. □

Theorem 3.8 $DS(W_n)$ is difference cordial iff $n = 3$.

Proof The difference cordial labeling of $DS(W_3)$ is given in figure 2.

![Figure 2](image)

Suppose $DS(W_n)$ is difference cordial, then by Theorem 2.4, $3n \leq 2(n + 2) - 1$. This implies $n = 3$.
Theorem 3.9 \(DS(K_n^c + 2K_2) \) is difference cordial iff \(n = 1 \).

Proof The order and size of \(DS(K_n^c + 2K_2) \) are \(n + 6 \) and \(5n + 6 \) respectively. Suppose \(DS(K_n^c + 2K_2) \) is difference cordial, then by theorem 2.4, \(5n + 6 \leq 2(n + 6) - 1 \). This is true when \(n = 1 \). The difference cordial labeling of \(DS(K_1^c + 2K_2) \) is given in Figure 3.

\[\begin{array}{c}
\text{Figure 3}
\end{array} \]

This completes the proof. \(\square \)

Theorem 3.10 \(DS(K_2 + mK_1) \) is difference cordial iff \(n \leq 3 \).

Proof The graph \(DS(K_2 + mK_1) \) consists of \(m + 4 \) vertices and \(3m + 3 \) edges. Since \(DS(K_2 + K_1) \cong W_3 \), using Theorem 3.2, \(DS(K_2 + K_1) \) is difference cordial. The difference cordial labeling of \(DS(K_2 + 2K_1) \) and \(DS(K_2 + 3K_1) \) are given in Figure 4.

\[\begin{array}{c}
\text{Figure 4}
\end{array} \]

Suppose \(DS(K_2 + mK_1) \) is difference cordial, then by theorem 2.4, \(3m + 3 \leq 2(m + 4) - 1 \). \(\Rightarrow m \leq 4 \). When \(m = 4 \), \(e_f(0) \geq 4 + 3 + 2 \geq 9 \). Obviously, \(e_f(1) \leq 7 \). Hence \(e_f(0) - e_f(1) \geq 2 \). This implies \(DS(K_2 + mK_1) \) is not difference cordial. \(\square \)

Theorem 3.11 \(DS(K_{n,n}) \) is difference cordial iff \(n \leq 2 \).

Proof The order and size of \(DS(K_{n,n}) \) are \(2n + 1 \) and \(n^2 + 2n \) respectively. Suppose \(DS(K_{n,n}) \) is difference cordial, then by theorem 2.4, \(n^2 + 2n \leq 2(n + 1) - 1 \), \(\Rightarrow n^2 - 2n - 1 \leq 0 \). \(\Rightarrow n \leq 2 \). Since \(DS(K_{1,1}) \cong K_3 \), \(DS(K_{2,2}) \cong W_4 \), using Theorems 3.2 and 3.4, \(DS(K_{1,1}) \) and \(DS(K_{2,2}) \) are difference cordial. \(\square \)
The triangular snake T_n is obtained from the path P_n by replacing each edge of the path by a triangle C_3.

Theorem 3.12 $DS(T_n)$ is difference cordial iff $n \leq 5$.

Proof Clearly, the order and size of $DS(T_n)$ ($n > 3$) are $2n + 1$ and $5n - 4$ respectively. By Theorem 2.4, $5n - 4 \leq 2(2n + 1) - 1$. This implies $n \leq 5$. Since $DS(T_2) \cong W_3$, using theorem 3.2, $DS(T_2)$ is difference cordial. The difference cordial labeling of $DS(T_3)$, $DS(T_4)$ and $DS(T_5)$ are given in Figure 5.

This completes the proof. □

The Quadrilateral snake Q_n is obtained from the path P_n by replacing each edge of the path by a cycle C_4.

Theorem 3.13 $DS(Q_n)$ is difference cordial iff $n \leq 5$.

Proof The difference cordial labeling of $DS(Q_n)$ ($n \leq 5$) is given in Figure 6.

The number of vertices and edges in $DS(Q_n)$ are $3n$ and $7n - 6$ respectively. Suppose $DS(Q_n)$ is difference cordial, then by Theorem 2.4, $7n - 6 \leq 2(3n) - 1$. This implies $n \leq 5$. □

The sunflower graph S_n is obtained by taking a wheel with central vertex v_0 and the cycle $C_n : v_1v_2 \ldots v_nv_1$ and new vertices $w_1w_2 \ldots w_n$ where w_i is joined by vertices $v_i, v_{i+1(\text{mod } n)}$.

The Lotus inside a circle LC_n is a graph obtained from the cycle $C_n : u_1u_2 \ldots u_nu_1$ and a star $K_{1,n}$ with central vertex v_0 and the end vertices $v_1v_2 \ldots v_n$ by joining each v_i to u_i and $u_{i+1(\text{mod } n)}$.

![Figure 5](image-url)
Theorem 3.14 The following are not difference cordial: $DS(S_n)$, $DS(LC_n)$, and $DS(Fl_n)$.

Proof Since the order and size of the graphs given above are $2n + 3$ and $6n$ respectively. Suppose the graphs given above are difference cordial, then using theorem 2.4, $6n \leq 2(2n + 3) − 1$. This implies $2n \leq 5$, a contradiction.

The graph $L_n = P_n \times P_2$ is called ladder.

Theorem 3.15 $DS(L_n)$ is difference cordial iff $n \leq 5$.

Proof Since $DS(L_2) \cong W_4$, by theorem 3.2, $DS(L_2)$ is difference cordial. For $n \geq 3$, $V(DS(L_n)) = \{u_i, v_i : 1 \leq i \leq n\} \cup \{u, v\}$ and $E(DS(L_n)) = \{u_iu_{i+1}, v_iv_{i+1} : 1 \leq i \leq n-1\} \cup \{u_i, v_i : 1 \leq i \leq n\} \cup \{uu_1, vv_1, vu_n, vv_n\}$. The difference cordial labeling of $DS(L_n)$ is given in Table 1.

<table>
<thead>
<tr>
<th>n</th>
<th>u</th>
<th>v</th>
<th>u_1</th>
<th>u_2</th>
<th>u_3</th>
<th>u_4</th>
<th>u_5</th>
<th>v_1</th>
<th>v_2</th>
<th>v_3</th>
<th>v_4</th>
<th>v_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>8</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>10</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>12</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>8</td>
<td>11</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 1:

Conversely, Suppose f is a difference cordial labeling, then by Theorem 2.4, $5n - 2 \leq 2(2n + 2) - 1$, $\Rightarrow n \leq 5$.

Theorem 3.16 If $m + n > 8$ then $DS(B_{m,n})$ $(m \neq n)$ is not difference cordial.

Proof Clearly, the order and size of $DS(B_{m,n})$ are $m + n + 3$ and $2m + 2n + 1$ respectively. Obviously, $e_f(1) \leq m + m + 2$. Also we observe that $e_f(0) \geq m + n - 2 + m - 1 + n - 2 \geq 2m + 2n - 5$.
\[e_f(0) - e_f(1) \geq m + n - 7 \rightarrow (1) \]. Suppose \(DS(B_{m,n}) \) is difference cordial with \(m + n > 8 \), then a contradiction arises to (1).

Theorem 3.17 \(DS(B_{n,n}) \) is difference cordial iff \(n \leq 2 \).

Proof The order and size of \(DS(B_{n,n}) \) are \(2n + 4 \) and \(4n + 3 \) respectively. Clearly \(e_f(0) \geq 2n - 2 + n + n - 1 \geq 4n - 3 \). Also \(e_f(1) \leq 2n + 3 \). Then \(e_f(0) - e_f(1) \geq 2n - 6 \). It follows that \(n \leq 3 \) when \(n = 3, e_f(1) \leq 6 \). This implies \(DS(B_{3,3}) \) is not difference cordial. \(DS(B_{1,1}) \equiv DS(P_4) \), using Theorem 3.1, \(DS(B_{1,1}) \) is difference cordial. The difference cordial labeling of \(DS(B_{2,2}) \) is given in Figure 7.

![Figure 7](image1)

This completes the proof.

Theorem 3.18 \(DS(B_{1,n}) \) is difference cordial iff \(n \leq 4 \).

Proof \(DS(B_{1,n}) \) consists of \(n + 4 \) vertices and \(2n + 3 \) edges. Note that \(e_f(1) \leq 5 \). Then \(e_f(0) \geq q - 5 \geq 2n - 2 \). \(\Rightarrow e_f(0) - e_f(1) \geq 2n - 7 \). It follows that \(n \leq 4 \). By Theorem 3.17, \(DS(B_{1,1}) \) is difference cordial. The difference cordial labeling of \(DS(B_{1,2}), DS(B_{1,3}) \) and \(DS(B_{1,4}) \) are given in Figure 8.

![Figure 8](image2)

This completes the proof.

Theorem 3.19 \(DS(B_{2,n}) \) is difference cordial iff \(n \leq 4 \).

Proof The order and size of \(DS(B_{2,n}) \) are \(n + 5 \) and \(2n + 5 \) respectively. It is clear that \(e_f(1) \leq 6 \). Then \(e_f(0) \geq q - 6 \geq 2n - 1 \). Hence \(e_f(0) - e_f(1) \geq 2n - 7 \). This implies \(n \leq 4 \).
Using theorems 3.18, 3.17, $DS(B_{2,1})$ and $DS(B_{2,2})$ are difference cordial. The difference cordial labeling of $DS(B_{2,3})$ and $DS(B_{2,4})$ are given in Figure 9.

![Figure 9](image)

This completes the proof. \hfill \Box

Theorem 3.20 $DS(B_{3,n})$ is difference cordial iff $n \leq 2$.

Proof The number of vertices and edges in $DS(B_{3,n})$ are $n + 6$ and $2n + 7$ respectively. Obviously $e_f(1) \leq 6$. $\Rightarrow e_f(0) \geq q - 6 \geq 2n + 1$. Therefore $e_f(0) - e_f(1) \geq 2n - 5$ \longrightarrow (1).

Suppose $n > 3$ then a contradiction arises to (1). By Theorem 3.17, $DS(B_{3,3})$ is not difference cordial. Using theorems 3.18, 3.19, $DS(B_{3,1})$ and $DS(B_{3,2})$ are difference cordial. \hfill \Box

§4. Shadow Graphs

The shadow graph $D_2(G)$ of a connected graph G is constructed by taking two copies of G, G' and G'' and joining each vertex u' in G' to the neighbors of the corresponding vertex u'' in G''.

Theorem 4.1 Let G be a (p,q) graph with $q \geq p$. Then $D_2(G)$ is not difference cordial.

Proof Suppose G is a difference cordial graph with $q \geq p$. Clearly, $D_2(G)$ consists of $2p$ vertices and $4q$ edges. By Theorem 2.4, $4q \leq 2(2p) - 1$. This implies $4q \leq 4q - 1$, a contradiction. \hfill \Box

Theorem 4.2 $D_2(P_n)$ is difference cordial.

Proof Let $V(D_2(P_n)) = \{u_i, v_i : 1 \leq i \leq n\}$ and $E(D_2(P_n)) = \{u_i u_{i+1}, v_i u_{i+1} : 1 \leq i \leq n - 1\} \cup \{u_i v_{i+1}, v_i u_{i+1} : 1 \leq i \leq n - 1\}$. Define a map $f : V(D_2(P_n)) \rightarrow \{1, 2 \ldots 2n\}$ by

\[
\begin{align*}
 f(u_i) &= i \quad 1 \leq i \leq n \\
 f(v_i) &= n + i \quad 1 \leq i \leq n.
\end{align*}
\]

Since $e_f(0) = e_f(1) = 2n - 2$, f is a difference cordial labeling of $D_2(P_n)$. \hfill \Box

Theorem 4.3(11) Any Cycle is a difference cordial graph.

Theorem 4.4 $D_2(K_n)$ is difference cordial iff $n \leq 2$.

Proof The order and size of $D_2(K_n)$ are $2n$ and $2\binom{n}{2} + n(n - 1)$ respectively. Suppose $D_2(K_n)$ is difference cordial. By Theorem 2.4, $2\binom{n}{2} + n(n - 1) \leq 2(2n) - 1$. This implies,
$2n^2 - 6n + 1 \leq 0$. It follows that, $n \leq 2$. Since $D_2 (K_2) \cong C_4$, using Theorem 4.3, $D_2 (K_2)$ is difference cordial. \hfill \Box

Theorem 4.5 \textit{$D_2 (K_{1,m})$ is difference cordial iff $m \leq 2$.}

Proof The order and size of $D_2 (K_{1,m})$ are $2m + 2$ and $4m$ respectively. Clearly, $e_f (1) \leq 2m + 1$. Let v be the central vertex of $K_{1,m}$ and v' be the corresponding shadow vertex. Note that the degree of v and v' in $D_2 (K_{1,m})$ are $2m$. Therefore, $e_f (0) \geq (2m-2) + (2m-2) \geq 4m-4$. Hence, $e_f (0) - e_f (1) \geq 2m - 3$. This implies, $m \leq 2$. Since $D_2 (K_{1,1}) \cong C_4$, by Theorem 4.3, $D_2 (K_{1,1})$ is difference cordial. A difference cordial labeling of $D_2 (K_{1,2})$ is given in Figure 10.

![Figure 10](image)

This completes the proof. \hfill \Box

References

Abstract: In the present paper, first we describe the orthogonality relations between denominator polynomials of \(\left[n - 1 \right]/n \) Pade approximants and related power series expansion; next we derive a continued fraction expansion called regular C-fraction for Euler’s generating function of factorials and finally four orthogonal polynomials are extracted from numerator as well as denominator polynomials of both even and odd order convergents of the regular C-fraction connected to Pade approximants.

Key Words: Euler’s generating function for factorials, regular C-fraction, orthogonal polynomials, Pade approximants.

AMS(2010): 05A15, 11J70, 30B70, 33C45, 41A21

§1. Introduction

There is a very interesting literature [2-3] which interprets that \(\left[n - 1 \right]/n \) order Pade approximants provides an orthogonality relation between its denominator polynomials and the power series expansion. They are nothing but even order convergents [2-3,7,9] of a regular C-fraction expansion of the power series expansion. The denominator polynomials transformed to monic form are orthogonal polynomials with respect to a linear moment functional \(L : \mathbb{P} \rightarrow \mathbb{R} \) from the space of all polynomials over \(\mathbb{R} \) into \(\mathbb{R} \) which has \(n^{th} \) moment same as the coefficient of \(x^n \) in a known power series. According to Favard’s theorem [4-6,8] the necessary and sufficient condition for orthogonality of \(P_n(x) \) is to satisfy the following three term recurrence relation:

\[
P_{-1}(x) := 0, \quad P_0(x) := 1,
\]

\[
P_n(x) := (x - c_n)P_{n-1}(x) - \lambda_n P_{n-2}(x), \quad n = 1, 2, 3, 4, \cdots ,
\]

where \(c_n \)'s are real and \(\lambda_n \)'s are non-zero numbers. The orthogonality relation [5-6,8] is given by

\[
L\{P_m(x)P_n(x)\} = \begin{cases}
0, & m \neq n; \\
\lambda_1 \lambda_2 \cdots \lambda_{n+1}, & m = n.
\end{cases}
\]
Motivated strongly by the above works, in the present paper, four orthogonal polynomials are extracted from numerator as well as denominator polynomials of both even and odd order convergence of a regular C-fraction connected to Pade approximants for the Euler’s generating function of factorials. In Section two, main results of Pade approximation, related continued fractions and orthogonal polynomials are reviewed which will be useful in the next Sections. In Section three, we derive a continued fraction expansion called regular C-fraction for Euler’s generating function of factorials. In the last Section, we take the help of the regular C-fraction expansion derived in the previous Section to compute four orthogonal polynomials.

§2. Main Results of Pade Approximation, Related Continued Fractions and Orthogonal Polynomials

In this section, we review some results which are used for next Sections. We begin with the definition of Pade approximants and a standard result.

1. A rational function

\[\frac{m/n}{f}(x) = \frac{p^{(m,n)}_0 + p^{(m,n)}_1 x + \cdots + p^{(m,n)}_m x^m}{1 + q^{(m,n)}_1 x + \cdots + q^{(m,n)}_n x^n} = \frac{P^{(m,n)}_m(x)}{Q^{(m,n)}_n(x)} \]

is said to be \((m,n)\) order Pade approximants \([2-3]\) for a formal power series

\[f(x) := a_0 + a_1 x + \cdots + a_N x^N + \cdots, \]

if

\[(1 + q^{(m,n)}_1 x + \cdots + q^{(m,n)}_n x^n) \times (a_0 + a_1 x + \cdots + a_m x^m + \cdots) - (p^{(m,n)}_0 + p^{(m,n)}_1 x + \cdots + p^{(m,n)}_m x^m) = O(x^{m+n+1}), \]

where \(q^{(m,n)}_i, p^{(m,n)}_j\) may or may not be zero \(i = 1, 2, \cdots, n\) and \(j = 1, 2, \cdots, m\).

The standard result \([2-3]\) states that \([m/n]f(x)\) exists and unique if and only if the \(n \times n\) Hankel determinant:

\[H_{m,n} = \begin{vmatrix} a_m & a_{m-1} & \cdots & a_{m-n} \\ a_{m+1} & a_m & \cdots & a_{m-n+1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m+n} & a_{m+n-1} & \cdots & a_m \end{vmatrix} \neq 0, \]

where \(a_i = 0, \) if \(i < 0.\)

2. Let

\[\frac{[n-1/n]f(x)}{Q^{(n-1,n)}_n(x)} \]

be \((n-1,n)\) Pade approximants for \(f(x)\).

Then \(Q^{(n-1,n)}_n(x)\) satisfies

\[a_{n+k} + a_{n+k-1} q^{(n-1,n)}_1 + \cdots + a_{k+1} q^{(n-1,n)}_{n-1} + a_{k} q^{(n-1,n)}_{n} = 0 \]

\(3\)
for \(k = 0, 1, 2, \ldots, n - 1 \). Put

\[
\tilde{q}_n^{(n-1,n)}(x) = x^n Q^{(n-1,n)}_n \left(\frac{1}{x} \right) = x^n + q_1^{(n-1,n)} x^{n-1} + \cdots + q_n^{(n-1,n)}.
\]

For the power series

\[
f(x) := a_0 + a_1 x + \cdots + a_N x^N + \cdots,
\]

define a linear moment generating function by

\[
L_f(x^n) = a_n.
\]

Then (3) simply states that

\[
L_f(x^k \tilde{q}_n^{(n-1,n)}(x)) = 0, \quad n = 0, 1, 2, 3, \ldots, n - 1.
\]

Hence

\[
L_f(q_m^{(n-1,n)}(x) \tilde{q}_n^{(n-1,n)}(x)) = 0, \quad \text{if} \ m \neq n.
\]

Therefore \(\{\tilde{q}_n^{(n-1,n)}(x)\} \) forms monic orthogonal polynomial with respect to \(L_f \).

3. Let

\[
[n/n]_f(x) = \frac{P^{(n,n)}(x)}{Q^{(n,n)}(x)}
\]

be \((n, n)\) Padé approximants for \(f(x) \). Then, we have

\[
\frac{\tilde{P}^{(n,n)}_{n-1}(x)}{Q^{(n,n)}_{n}(x)} = [n-1/n]_{f_1}(x),
\]

where \(f_1(x) = a_1 + a_2 x + \cdots + a_{n+1} x^n + \cdots = \frac{f(1)}{x} - a_0 \). Using item 2, \(\{\tilde{q}_n^{(n,n)}(x)\} \) forms monic orthogonal polynomial with respect to \(L_{f_1} \).

4. Let

\[
[n+1/n]_f(x) = \frac{P^{(n+1,n)}_{n+1}(x)}{Q^{(n+1,n)}_{n}(x)}
\]

be \((n+1, n)\) Padé approximants for \(f(x) \). Then, we have

\[
\frac{\tilde{P}^{(n+1,n)}_{n-1}(x)}{Q^{(n+1,n)}_{n}(x)} = [n-1/n]_{f_2}(x),
\]

where \(f_2(x) = a_2 + a_3 x + \cdots + a_{n+1} x^n + \cdots = \frac{f(1)}{x^2} - a_0 - a_1 x \). Using item 2, \(\{\tilde{q}_n^{(n+1,n)}(x)\} \) forms monic orthogonal polynomial with respect to \(L_{f_2} \).

5. Let \([m/n]_f(x) = \frac{P^{(m,n)}_m(x)}{Q^{(m,n)}_n(x)} \) be \((m, n)\) order Padé approximants for \(f(x) \). Then

\[
\frac{1}{f(x)} - \frac{Q^{(m,n)}_{m}(x)}{P^{(m,n)}_{m}(x)} = - \left[f(x) - \frac{P^{(m,n)}_{m}(x)}{Q^{(m,n)}_{m}(x)} \right] \left[\frac{f(x)P^{(m,n)}_{m}(x)}{Q^{(m,n)}_{m}(x)} \right]^{-1} = O(x^{m+n+1}).
\]
6. Suppose

\[f(x) = \frac{c_0}{1} + \frac{c_1 x}{1} + \cdots + \frac{c_n x}{1} + \cdots. \]

Then [2-3]

\[
\frac{P_1}{Q_1} = \frac{c_0}{1}, \quad \frac{P_2}{Q_2} = \frac{c_0}{1 + c_1 x}, \quad \cdots, \quad \frac{P_{2n}}{Q_{2n}} = \frac{P_{2n-1} + c_{2n} P_{2n-2}}{Q_{2n-1} + c_{2n} Q_{2n-2}} = \lfloor n - 1/n \rfloor f(x),
\]

\[
\frac{P_{2n+1}}{Q_{2n+1}} = \frac{P_{2n} + c_{2n+1} P_{2n-1}}{Q_{2n} + c_{2n+1} Q_{2n-1}} = \lfloor n/n \rfloor f(x).
\]

§3. Derivation of Regular C-Fraction for Euler’s Generating Function of Factorials

The generating function for factorial numbers with its asymptotic relation

\[
E(x) = \int_0^\infty \frac{e^{-t}}{1 + xt} dt \sim \sum_{n=0}^\infty (-1)^n n!x^n, \text{ as } x \to 0,
\]

was first studied by Euler [2]. It has a remarkable regular C-fraction expansion:

\[
\int_0^\infty \frac{e^{-t}}{1 + xt} dt = \frac{1}{1} + \frac{x}{1} + \cdots + \frac{nx}{1} + \cdots. \quad (5)
\]

Theorem 3.1 Let \(I_{2n-1} = \int_0^\infty \frac{t^{n-1} e^{-t}}{(1 + xt)^n} dt \) and \(I_{2n} = \int_0^\infty \frac{t^n e^{-t}}{(1 + xt)^n} dt, n = 0, 1, 2, 3, \cdots. \)

Then

\[
I_{2n-2} - I_{2n-1} = x I_{2n},
\]

\[
n I_{2n-1} - I_{2n} = n n I_{2n+1}
\]

and as a result

\[
\frac{I_{2n-1}}{I_{2n-2}} = \frac{1}{1} + \frac{n x}{1 + n x I_{2n+1}}, \quad n = 1, 2, 3, \cdots,
\]

which readily gives

\[
\frac{I_1}{I_0} = \int_0^\infty \frac{e^{-t}}{1 + xt} dt = \frac{1}{1} + \frac{x}{1} + \cdots + \frac{nx}{1} + \cdots.
\]

Proof We can show that

\[
I_{2n-2} - I_{2n-1} = \int_0^\infty \frac{[(1 + xt)^{n-1} - t^{n-1}] e^{-t} dt}{(1 + xt)^n}
\]

\[
= x I_{2n}.
\]

\[
\frac{I_{2n-1}}{I_{2n-2}} = \frac{1}{1 + n x I_{2n-1}}.
\]
and

$$nI_{2n-1} - I_{2n} = \int_0^\infty \frac{d(t^n e^{-t})}{(1 + xt)^n} = nxI_{2n+1}.$$

$$\frac{I_{2n}}{n I_{2n-1}} = \frac{1}{1 + nxI_{2n+1}}.$$

For \(n = 1 \), also the identities hold:

$$I_1 = \frac{1}{1 + xe^{I_1}}, \quad \frac{I_2}{I_1} = \frac{1}{1 + x \frac{I_2}{I_1}}.$$

Therefore

$$\frac{I_{2n-1}}{I_{2n-2}} = \frac{1}{1 + \frac{nx}{1 + n x \frac{I_{2n+1}}{I_{2n}}}}, \quad n = 1, 2, 3, \ldots .$$

Hence

$$\frac{I_1}{I_0} = I_1 = \int_0^\infty \frac{e^{-t}}{1 + xt} dt = \frac{x}{1 + I + \frac{x}{1 + I + \ldots + \frac{nx}{1 + I + \ldots + \ldots}}. \quad \square$$

§4. Computation of Four Orthogonal Polynomials

Let us consider (5),

$$E(x) = \frac{1}{1 + \frac{x}{1 + \frac{x}{1 + \ldots + \frac{nx}{1 + \ldots + \ldots}}}.$$}

In the language of Pade approximants, the continued fraction provides diagonal Pade approximants [2-3] which are given by (please see item 6 of Section two)

$$\frac{A_1}{B_1} = \frac{P_0}{Q_0} = \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \ldots + \frac{1}{1 + \ldots + \ldots}}}.$$

and lower diagonal Pade approximants are given by (please see item 6 of Section 2)

$$\frac{A_2}{B_2} = \frac{P_0^{(1)}(0,0)}{Q_0^{(1)}(0,0)} = \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \ldots + \frac{1}{1 + \ldots + \ldots}}}.$$}

Let us make use of definitions of even and odd parts of continued fraction as given in [9]. \([n - 1/n] \) Pade approximants can be computed using the even part of continued fraction (5):

$$\frac{1}{1 + x - \frac{1^2 x^2}{1 + 3x} - \ldots - \frac{n^2 x^2}{1 + (2n + 1)x} - \ldots},$$

we obtain even order convergents:

$$\frac{A_{2n+2}(x)}{B_{2n+2}(x)} = \frac{(1 + (2n + 1)x)A_{2n}(x) - n^2 x^2 A_{2n-2}(x)}{(1 + (2n + 1)x)B_{2n}(x) - n^2 x^2 B_{2n-2}(x)}.$$
with
\[\frac{A_2}{B_2} = \frac{1}{1 + x}, \quad \frac{A_4}{B_4} = \frac{1 + 3x}{1 + 4x + 2x^2}, \quad n = 2, 3, 4, \ldots . \]
Similarly, \([n/n]\) Pade approximants can be computed using the odd part of continued fraction (5):
\[1 - \frac{x}{1 + 2x} - \frac{1.2 x^2}{1 + 4x} - \ldots - \frac{n(n + 1) x^2}{1 + (2n + 2)x} - \ldots ,\]
we obtain odd order convergents:
\[\frac{A_{2n+3}}{B_{2n+3}} = \frac{(1 + (2n + 2)x)A_{2n+1}(x) - n(n + 1)x^2A_{2n-1}(x)}{(1 + (2n + 2)x)B_{2n+1}(x) - n(n + 1)x^2B_{2n-1}(x)} \]
with
\[\frac{A_1}{B_1} = \frac{1}{1}, \quad \frac{A_3}{B_3} = \frac{1 + x}{1 + 2x}, \quad n = 2, 3, 4, \ldots . \]
The desired orthogonal polynomials are nothing but
\[p_n(x) = x^n A_{2n+2} \left(\frac{1}{x}\right), \quad n = 0, 1, 2, \ldots , \]
\[q_n(x) = x^n B_{2n} \left(\frac{1}{x}\right), \quad n = 0, 1, 2, \ldots , \]
\[r_n(x) = x^n A_{2n+1} \left(\frac{1}{x}\right), \quad n = 0, 1, 2, \ldots , \]
\[s_n(x) = x^n B_{2n+1} \left(\frac{1}{x}\right), \quad n = 0, 1, 2, \ldots , \]
where we can select \(B_0 \left(\frac{1}{x}\right) := 1\). Now we can describe orthogonality of \(q_n(x), s_n(x), p_n(x)\) and \(r_n(x)\) as follows:

(1) Consider the series
\[E(x) = 0! - 1!x + 2!x^2 - 3!x^3 + \cdots + (-1)^n n!x^n + \cdots . \]
The linear moment generating function with respect to \(E(x)\) denoted by \(L_E\) has \(n^{th}\) moment,
\[L_E\{x^n\} = (-1)^n n!. \]
The three term recurrence relation of \(q_n(x)\) is
\[q_{n+1}(x) = (x + 2n + 1)q_n(x) - n^2 q_{n-1}(x), \]
\[q_0(x) = 1, \quad q_1(x) = x + 1, \quad n = 1, 2, 3, \ldots . \]
As a result of applying (1) and (2), we obtain the orthogonality of \(q_n(x)\) is
\[L_E\{q_m(x)q_n(x)\} = \begin{cases} 0, & m \neq n; \\ \lambda_1 \lambda_2 \cdots \lambda_{n+1}, & m = n, \end{cases} \]
where \(\lambda_1 = 1\) and \(\lambda_k = (k - 1)^2, \ k = 2, 3, \ldots, n + 1\). Following [1], it is well known fact in the literature that
\[
q_n(x) = n!L_n(-x) = \sum_{r=0}^{n} r! \left(\binom{n}{r}\right)^2 x^{n-r},
\]
where \(L_n(x)\) is Laguerre polynomials of order 0.

(2) Using item 3 of Section two, we obtain the series
\[
E_1(x) = \frac{E(x) - 1}{x} = 1! - 2!x + \cdots + (-1)^n(n + 1)!x^n + \cdots.
\]
The linear moment generating function with respect to \(E_1(x)\) denoted by \(L_{E_1}\) has \(n^{th}\) moment
\[
L_{E_1}\{x^n\} = (-1)^n(n + 1)!.\]

The three term recurrence relation of \(s_n(x)\) is
\[
s_{n+1}(x) = (x + 2n + 2)s_n(x) - n(n + 1)s_{n-1}(x),
 \quad s_0(x) = 1, \quad s_1(x) = x + 2, \quad n = 1, 2, 3, \ldots.
\]
As a result of applying (1) and (2), we obtain the orthogonality of \(s_n(x)\) is
\[
L_{E_1}\{s_m(x)s_n(x)\} = \begin{cases} 0, & m \neq n; \\
\lambda_1\lambda_2\cdots\lambda_{n+1}, & m = n,
\end{cases}
\]
where \(\lambda_1 = 1\) and \(\lambda_k = (k - 1)k, \ k = 2, 3, \ldots, n + 1\). Following [1], it is well known fact in the literature that
\[
s_n(x) = n!L_n^1(-x) = \sum_{r=0}^{n} r! \binom{n}{r} \binom{n + 1}{r} x^{n-r},
\]
where \(L_n^1(x)\) is Laguerre polynomials of order 1.

(3) Using items 4 and 5 of Section 2, we obtain the series
\[
\frac{1}{E(x)} = 1 + x - d_1x^2 + d_2x^3 - d_3x^4 + \cdots + (-1)^n d_n x^{n+1} + \cdots.
\]
\[
E_2(x) = \frac{\frac{1}{E(x)} + 1 + x}{x^2} = d_1 - d_2x + d_4x^2 - d_3x^3 + \cdots + (-1)^n d_{n+1} x^n + \cdots.
\]
The linear moment generating function with respect to \(E_2(x)\) denoted by \(L_{E_2}\) has \(n^{th}\) moment
\[
L_{E_2}\{x^n\} = (-1)^n d_{n+1}.
\]

The three term recurrence relation of \(p_n(x)\) is
\[
p_{n+1}(x) = (x + 2n + 3)p_n(x) - (n + 1)^2 p_{n-1}(x),
 \quad p_0(x) = 1, \quad p_1(x) = x + 3, \quad n = 1, 2, 3, \ldots.
\]
As a result of applying (1) and (2), we obtain the orthogonality of \(p_n(x)\) is
\[
L_{E_2}\{p_m(x)p_n(x)\} = \begin{cases} 0, & m \neq n; \\
\lambda_1\lambda_2\cdots\lambda_{n+1}, & m = n,
\end{cases}
\]
where $\lambda_1 = 1$ and $\lambda_k = k^2, \ k = 2, 3, \ldots, n + 1$.

(4) Using item 3 and item 5 of Section 2, we obtain the series
\[
E_3(x) = \frac{1}{E(x)} = 1 - d_1 x + d_2 x^2 - d_3 x^3 + \cdots + (-1)^n d_n x^n + \cdots.
\]
The linear moment generating function with respect to $E_3(x)$ denoted by L_{E_3} has n^{th} moment
\[
L_{E_3}\{x^n\} = (-1)^n d_n.
\]
The three term recurrence relation of $r_n(x)$ is
\[
r_{n+1}(x) = (x + 2n + 2)r_n(x) - n(n + 1)r_{n-1}(x),
\]
\[
r_0(x) = 1, \quad r_1(x) = x + 1, \quad n = 1, 2, 3, \ldots.
\]
As a result of applying (1) and (2), we obtain the orthogonality of $r_n(x)$ is
\[
L_{E_3}\{r_m(x)r_n(x)\} = \begin{cases} 0, & m \neq n; \\ \lambda_1 \lambda_2 \cdots \lambda_{n+1}, & m = n, \end{cases}
\]
where $\lambda_1 = 1$ and $\lambda_k = k(k - 1), \ k = 2, 3, \ldots, n + 1$.

Suppose $r_n(x) = x^n + r_{n-1}x^{n-1} + \cdots + r_1 x + r_0$. Since $L_{E_3}\{r_0(x)r_n(x)\} = 0$, we can compute d_n using
\[
d_n = -[r_{n-1}d_{n-1} + \cdots + r_1d_1 + r_0], \quad d_0 = 1, \quad n = 1, 2, \ldots.
\]

Acknowledgement:

The first author is thankful to both UGC-SAP, DRS-I, No. F.510/2/DRS/2011(SAP-I) and DST- project No. SR/S2/HEP-006/2009 and the second author is thankful to UGC, Govt. of India for encouraging this work under RGNF No. F.14-854[ST]/2010[SA-III].

References

On Odd Sum Graphs

S.Arockiaraj
Department of Mathematics
Mepco Schlenk Engineering College, Sivakasi - 626 005, Tamilnadu, India

P.Mahalakshmi
Department of Mathematics
Kamaraj College of Engineering and Technology, Virudhunagar - 626 001, Tamilnadu, India

E-mail: psarockiaraj@gmail.com, mahajai1979@gmail.com

Abstract: An injective function \(f : V(G) \rightarrow \{0, 1, 2, \ldots, q\} \) is an odd sum labeling if the induced edge labeling \(f^* \) defined by \(f^*(uv) = f(u) + f(v) \), for all \(uv \in E(G) \), is bijective and \(f^*(E(G)) = \{1, 3, 5, \ldots , 2q - 1\} \). A graph is said to be an odd sum graph if it admits an odd sum labeling. In this paper, we have studied the odd sum property for the graphs paths \(P_p \), cycles \(C_p \), \(C_p \odot K_1 \), the ladder \(P_2 \times P_p \), \(P_m \odot nK_1 \), the balloon graph \(P_n(C_p) \), quadrilateral snake \(Q_n \), \([P_m; C_n] \), \((P_m; Q_3)\), \(T_p^{(n)} \), \(H_n \odot mK_1 \), bistar graph and cyclic ladder \(P_2 \times C_p \).

Key Words: Labeling, odd sum labeling, odd sum graph.

AMS(2010): 05C78

§1. Introduction

Throughout this paper, by a graph we mean a finite, undirected simple graph. Let \(G(V, E) \) be a graph with \(p \) vertices and \(q \) edges. For notations and terminology we follow [1].

Path on \(p \) vertices is denoted by \(P_p \) and a cycle on \(p \) vertices is denoted by \(C_p \) whose length is \(p \). If \(m \) number of pendant vertices are attached at each vertex of \(G \), then the resultant graph obtained from \(G \) is the graph \(G \odot mK_1 \). When \(m = 1 \), \(G \odot K_1 \) is the corona of \(G \). The bistar graph \(B_{m,n} \) is the graph obtained from \(K_2 \) by identifying the central vertices of \(K_{1,m} \) and \(K_{1,n} \) at the end vertices of \(K_2 \) respectively. The graph \(P_2 \times P_p \) is the ladder and \(P_2 \times C_p \) is the cyclic ladder. The balloon of a graph \(G \), \(P_n(G) \) is the graph obtained from \(G \) by identifying an end vertex of \(P_n \) at a vertex of \(G \). Let \(v \) be a fixed vertex of \(G \). The graph \([P_m; G] \) is obtained from \(m \) copies of \(G \) and the path \(P_m : u_1u_2\ldots u_m \) by identifying \(u_i \) with the vertex \(v \) of the \(i^{th} \) copy of \(G \), for \(1 \leq i \leq m \). The graph \((P_m; G) \) is obtained from \(m \) copies of \(G \) and the path \(P_m : u_1u_2\ldots u_m \) by joining \(u_i \) with the vertex \(v \) of the \(i^{th} \) copy of \(G \) by means of an edge, for \(1 \leq i \leq m \) [7]. The cube graph \(Q_3 \) is \(P_2 \times C_4 \). A quadrilateral snake is obtained from a path by

1Received September 16, 2013, Accepted November 26, 2013.
identifying each edge of the path with an edge of the cycle C_4. The graph $T_p^{(n)}$ is a tree formed from n copies of path on p vertices by joining an edge uu' between every pair of consecutive paths where u is a vertex in i^{th} copy of the path and u' is the corresponding vertex in the $(i+1)^{th}$ copy of the path.

In [2], an odd edge labeling of a graph is defined as follows: A labeling $f : V(G) \to \{0, 1, 2, \ldots, p - 1\}$ is called an odd edge labeling of G if for the edge labeling $f^+ : E(G)$ defined by $f^+(uv) = f(u) + f(v)$ for any edge $uv \in E(G)$, for a connected graph G, the edge labeling is not necessarily injective. In [5], the concept of pair sum labeling was introduced. An injective function $f : V(G) \to \{-1, 1, 2\}$ is said to be a mean labeling if the induced edge labeling f^* defined by

$$f^*(uv) = \begin{cases} f(u) + f(v) & \text{if } f(u) + f(v) \text{ is even,} \\ \frac{f(u) + f(v)}{2} + 1 & \text{if } f(u) + f(v) \text{ is odd} \end{cases}$$

is injective and $f^*(E(G)) = \{1, 2, \ldots, q\}$. A graph G is said to be odd mean if there exists an injective function f from $V(G)$ to $\{0, 1, 2, 3, \ldots, 2q - 1\}$ such that the induced map f^* from $E(G) \to \{1, 3, 5, \ldots, 2q - 1\}$ defined by

$$f^*(uv) = \begin{cases} f(u) + f(v) & \text{if } f(u) + f(v) \text{ is even,} \\ \frac{f(u) + f(v)}{2} + 1 & \text{if } f(u) + f(v) \text{ is odd} \end{cases}$$

is a bijection [6].

Motivated by these, we introduce a new concept called odd sum labeling. An injective function $f : V(G) \to \{0, 1, 2, \ldots, q\}$ is an odd sum labeling if the induced edge labeling f^* defined by $f^*(uv) = f(u) + f(v)$, for all $uv \in E(G)$, is bijective and $f^*(E(G)) = \{1, 3, 5, \ldots, 2q - 1\}$. A graph is said to be an odd sum graph if it admits an odd sum labeling. In this paper, we have studied the odd sum property for the graphs paths P_p, cycles C_p, $C_p \odot K_1$, the ladder $P_2 \times P_p$, $P_m \odot nK_1$, the balloon graph $P_n(C_p)$, quadrilateral snake $Q_n, [P_m; C_n], (P_m; Q_2), T_p^{(n)}, H_n \odot mK_1$, bistar graph and cyclic ladder $P_2 \times C_p$.

§2. Main Results

Observation 2.1 Every graph having an odd cycle is not an odd sum graph.

Proof If a graph has a cycle of odd length, then at least one edge uv on the cycle such that $f(u)$ and $f(v)$ are of same suit and hence its induced edge label $f^*(uv)$ is even.

Proposition 2.2 Every path $P_p, p \geq 2$ is an odd sum graph.
Proof Let \(v_1, v_2, \ldots, v_p \) be the vertices of the path \(P_p \). The labeling \(f : V(G) \rightarrow \{0, 1, 2, \ldots, q\} \) is defined as \(f(v_i) = i - 1 \) for \(1 \leq i \leq p \) and the induced edge label is \(f^*(v_i v_{i+1}) = 2i - 1 \), for \(1 \leq i \leq p - 1 \). Then \(f \) is an odd sum labeling and hence \(P_p \) is an odd sum graph. \(\square \)

![Figure 1: An odd sum labeling of \(P_{10} \).]

Proposition 2.3 Cycle \(C_p \) is an odd sum graph only when \(p \equiv 0 (\text{mod} \ 4) \).

![Figure 2: An odd sum labeling of \(C_{24} \).]

Proof By Observation 2.1, \(C_p \) is not an odd sum graph when \(p \) is odd. Suppose \(p = 2m, m \geq 2 \) and \(C_p \) admits an odd sum labeling. Then \(\sum_{uv \in E(G)} f^*(uv) = \sum_{uv \in E(G)} (f(u) + f(v)) \). This implies that \(1 + 3 + \cdots + (4m - 1) = 2(0 + 1 + 2 + \cdots + 2m) - 2i \) where \(i \) is not a vertex label of \(C_p \). From this we have, \(i = m \). If \(m \) is odd, then the number of even values is in excess of 2 that of the number of odd values and they are to be assigned as vertex labels in \(C_p \). Thus if \(C_p \) admits an odd sum labeling, then \(m \) should be even and hence \(p \) is a multiple of 4.

Suppose \(p = 4m, m \geq 1 \). Let \(v_1, v_2, \ldots, v_p \) be the vertices of the cycle \(C_p \). The labeling \(f : V(G) \rightarrow \{0, 1, 2, \ldots, 4m\} \) is defined as follows.

\[
f(v_i) = \begin{cases}
 i, & 1 \leq i \leq 2m - 1 \text{ and } i \text{ is odd,} \\
 i - 2, & 1 \leq i \leq 2m \text{ and } i \text{ is even,} \\
 i, & 2m + 1 \leq i \leq 4m.
\end{cases}
\]

The induced edge labels are obtained as follows.

\[
f^*(v_i v_{i+1}) = \begin{cases}
 2i - 1, & 1 \leq i \leq 2m, \\
 2i + 1, & 2m + 1 \leq i \leq 4m - 1 \text{ and}
\end{cases}
\]

\[
f^*(v_{4m} v_1) = 4m + 1.
\]
Hence f is an odd sum labeling of C_p only when $p \equiv 0 \,(mod\,4)$.

\section*{Proposition 2.4} For each even integer $p \geq 4$, $C_p \circ K_1$ is an odd sum graph.

\textit{Proof} In $C_p \circ K_1$, let v_1, v_2, \ldots, v_p be the vertices on the cycle and let u_i be the pendant vertex of v_i at each $i, 1 \leq i \leq p$.

\textbf{Case 1} $p = 4m$, for $m \geq 1$.

The labeling $f : V(C_p \circ K_1) \rightarrow \{0,1,2,\ldots,8m\}$ is defined as follows.

$$
f(v_i) = \begin{cases}
2i - 2, & 1 \leq i \leq 2m - 1 \text{ and } i \text{ is odd}, \\
2i, & 2m + 1 \leq i \leq 4m - 1 \text{ and } i \text{ is odd}, \\
2i - 1, & 2 \leq i \leq 4m \text{ and } i \text{ is even and}
\end{cases}
$$

Thus f is an odd sum labeling of $C_p \circ K_1$. Hence $C_p \circ K_1$ is an odd sum graph when $p = 4m$.

\textbf{Case 2} $p = 4m + 2$, for $m \geq 1$.

The labeling $f : V(C_p \circ K_1) \rightarrow \{0,1,2,\ldots,8m + 4\}$ is defined as follows.

$$
f(v_i) = \begin{cases}
2i, & 1 \leq i \leq 2m + 1 \text{ and } i \text{ is odd}, \\
2i, & 2m + 2 \leq i \leq 4m + 1 \text{ and } i \text{ is odd}, \\
2i - 1, & 2 \leq i \leq 4m \text{ and } i \text{ is even and}
\end{cases}
$$

The induced edge labels are obtained as follows.

$$
f^*(u_i v_i) = \begin{cases}
4i - 1, & 1 \leq i \leq 2m - 1, \\
4i + 1, & 2m \leq i \leq 4m - 1, \\
4i - 1, & 2m + 1 \leq i \leq 4m.
\end{cases}
$$

Thus f is an odd sum labeling of $C_p \circ K_1$. Hence $C_p \circ K_1$ is an odd sum graph when $p = 4m$.

\section*{On Odd Sum Graphs}
The induced edge labels are obtained as follows.

$$f^*(v_iv_{i+1}) = \begin{cases}
4i - 1, & 1 \leq i \leq 2m, \\
4i + 1, & i = 2m + 1, \\
4i + 3, & i = 2m + 2, \\
4i + 1, & 2m + 3 \leq i \leq 4m + 1,
\end{cases}$$

$$f^*(v_{4m+2}v_1) = 8m + 3$$

and

$$f^*(u_iv_i) = \begin{cases}
4i - 3, & 1 \leq i \leq 2m + 1, \\
4i - 1, & i = 2m + 2, \\
4i - 3, & i = 2m + 3 \\
4i - 1, & 2m + 4 \leq i \leq 4m + 2.
\end{cases}$$

Thus f is an odd sum labeling of $C_p \odot K_1$. Hence $C_p \odot K_1$ is an odd sum graph.

\[\square\]

\textbf{Figure 3:} An odd sum labeling of $C_{24} \odot K_1$.
Proposition 2.5 For every positive integer \(p \geq 2 \), the ladder \(P_2 \times P_p \) is an odd sum graph.

Proof Let \(u_1, u_2, \ldots, u_p \) and \(v_1, v_2, \ldots, v_p \) be the vertices of the two copies of \(P_p \). The labeling \(f : V(P_2 \times P_p) \to \{0, 1, 2, \ldots, 3p - 2\} \) is defined as follows.

\[
\begin{align*}
 f(u_i) &= 3i - 3, \text{ for } 1 \leq i \leq p \text{ and } \nonumber \\
 f(v_i) &= 3i - 2, \text{ for } 1 \leq i \leq p.
\end{align*}
\]

The induced edge labels are obtained as follows.

\[
\begin{align*}
 f^*(u_i u_{i+1}) &= 6i - 3, \text{ for } 1 \leq i \leq p - 1, \\
 f^*(v_i v_{i+1}) &= 6i - 1, \text{ for } 1 \leq i \leq p - 1 \text{ and } \\
 f^*(u_i v_i) &= 6i - 5, \text{ for } 1 \leq i \leq p.
\end{align*}
\]

Thus \(f \) is an odd sum labeling of \(P_2 \times P_p \). Hence \(P_2 \times P_p \) is an odd sum graph. \(\square \)

Figure 5: An odd sum labeling of \(P_2 \times P_9 \).
Proposition 2.6 The graph $P_m \odot nK_1$ is an odd sum graph if either m is an even positive integer and n is any positive integer or m is an odd positive integer and $n = 1, 2$.

Proof In $P_m \odot nK_1$, let u_1, u_2, \ldots, u_m be the vertices on the path and $\{u_{i,j} : 1 \leq j \leq n\}$ be the pendant vertices attached at $u_i, 1 \leq i \leq m$.

Case 1 m is even.

The labeling $f : V(P_m \odot nK_1) \rightarrow \{0, 1, 2, \ldots, m(n+1) - 1\}$ is defined as follows. For $1 \leq i \leq m$,

$f(u_i) = \begin{cases}
(n+1)(i-1), & \text{if } i \text{ is odd}, \\
(n+1)i-1, & \text{if } i \text{ is even}.
\end{cases}$

For $1 \leq i \leq m$ and $1 \leq j \leq n$,

$f(u_{i,j}) = \begin{cases}
(n+1)(i-1)+2j-1, & \text{if } i \text{ is odd}, \\
(n+1)(i-2)+2j, & \text{if } i \text{ is even}.
\end{cases}$

The induced edge labels are obtained as follows.

$f^*(u_{i,j}) = 2(n+1)(i-1)+2j-1$, for $1 \leq i \leq m$ and $1 \leq j \leq n$ and

$f^*(u_{i,i+1}) = 2(n+1)i-1$, for $1 \leq i \leq m-1$.

Thus f is an odd sum labeling of $P_m \odot nK_1$.

Case 2 m is odd.

If $P_m \odot nK_1$ has an odd sum labeling f when m is odd, then f is a bijection from $V(P_m \odot nK_1)$ to the set $\{0, 1, 2, \ldots, m(n+1)-1\}$. Since the number of even integers in this set is either equal to or one excess to the number of odd integers in this set, n should be less than or equal to 2.

In case of m is odd and $n = 1, 2$, the labeling $f : V(P_m \odot nK_1) \rightarrow \{0, 1, 2, \ldots, m(n+1)-1\}$ is defined as follows.

For $1 \leq i \leq m$,

$f(u_i) = \begin{cases}
(n+1)(i-1)+1, & \text{if } i \text{ is odd}, \\
(n+1)i-2, & \text{if } i \text{ is even}.
\end{cases}$

Figure 6: An odd sum labeling of $P_6 \odot 3K_1$.
For $1 \leq i \leq m$ and $1 \leq j \leq n$,

$$f(u_{i,j}) = \begin{cases} (n+1)(i-1) + 2(j-1), & \text{if } i \text{ is odd,} \\ (n+1)(i-2) + 2j + 1, & \text{if } i \text{ is even.} \end{cases}$$

The induced edge labels are obtained as follows.

For $1 \leq i \leq m$ and $1 \leq j \leq n$,

$$f^*(u_{i,j}) = 2(n+1)(i-1) + 2j - 1.$$

For $1 \leq i \leq m - 1$,

$$f^*(u_{i,i+1}) = 2(n+1)i - 1.$$

Thus f is an odd sum labeling of $P_m \odot nK_1$.

\[\]

Figure 7: An odd sum labeling of $P_7 \odot K_1$.

Figure 8: An odd sum labeling of $P_5 \odot 2K_1$.

Proposition 2.7 The graph $P_n(C_p)$ is an odd sum graph if either $p \equiv 0 \pmod{4}$ or $p \equiv 2 \pmod{4}$ and $n \not\equiv 1 \pmod{3}$.

Proof Let u_1, u_2, \ldots, u_p be the vertices of C_p and v_1, v_2, \ldots, v_n be the vertices of the path P_n and u_p be identified with v_1 in $P_n(C_p)$.

Case 1 $p \equiv 0 \pmod{4}$.

Let $p = 4m, m \geq 1$. The labeling $f : V(P_n(C_p)) \to \{0, 1, 2, \ldots, 4m + n - 1\}$ is defined as follows.

$$f(u_i) = \begin{cases} i, & 1 \leq i \leq 4m \text{ and } i \text{ is odd,} \\ i - 2, & 1 \leq i \leq 2m \text{ and } i \text{ is even,} \\ i, & 2m + 1 \leq i \leq 4m \text{ and } i \text{ is even,} \end{cases}$$

$$f(v_i) = 4m + i - 1, 2 \leq i \leq n.$$
The induced edge labels are obtained as follows.

\[
f^*(u_iu_{i+1}) = \begin{cases}
2i - 1, & 1 \leq i \leq 2m, \\
2i + 1, & 2m + 1 \leq i \leq 4m - 1.
\end{cases}
\]

\[f^*(u_1u_{4m}) = 4m + 1\] and
\[f^*(v_iv_{i+1}) = 8m + 2i - 1, \quad 1 \leq i \leq n - 1.
\]

Thus \(f\) is an odd sum labeling of \(P_n(C_p)\).

Figure 9: An odd sum labeling of \(P_5(C_8)\).

Case 2 \(p \equiv 2(\text{mod } 4)\).

Let \(p = 4m + 2, m \geq 1\).

Subcase 2.1 \(n \equiv 0(\text{mod } 3)\).

The labeling \(f : V(P_n(C_p)) \rightarrow \{0, 1, 2, \ldots, 4m + n + 1\}\) is defined as follows.

\[
f(u_1) = 4m + 3,
\]

\[
f(u_i) = \begin{cases}
i - 2, & 1 \leq i \leq 2m + 3, \\
i, & 2m + 4 \leq i \leq 4m + 2 \text{ and } i \text{ is even}, \\
i - 2, & 2m + 4 \leq i \leq 4m + 2 \text{ and } i \text{ is odd and}
\end{cases}
\]

\[
f(v_i) = \begin{cases}
4m + i + 1, & 1 \leq i \leq n - 3 \text{ and } i \equiv 1(\text{mod } 3), \\
4m + i - 1, & 1 \leq i \leq n - 1 \text{ and } i \equiv 2(\text{mod } 3), \\
4m + i + 3, & 1 \leq i \leq n - 1 \text{ and } i \equiv 0(\text{mod } 3), \\
4m + n + 1, & i = n - 2, \\
4m + n - 1, & i = n.
\end{cases}
\]
The induced edge labels are obtained as follows.

\[
f^*(u_{i}u_{i+1}) = \begin{cases}
4m + 3, & i = 1, \\
2i - 3, & 2 \leq i \leq 2m + 2, \\
2i - 1, & 2m + 3 \leq i \leq 4m + 1.
\end{cases}
\]

\[f^*(u_{4m+2}u_{1}) = 8m + 5\]

\[
f^*(v_{i}v_{i+1}) = \begin{cases}
8m + 2i + 3, & 2 \leq i \leq n - 4 \text{ and } i \equiv 2(\text{mod } 3), \\
8m + 2i + 5, & 2 \leq i \leq n - 4 \text{ and } i \equiv 0(\text{mod } 3), \\
8m + 2i + 1, & 2 \leq i \leq n - 4 \text{ and } i \equiv 1(\text{mod } 3), \\
8m + 4n - 2i - 5, & n - 3 \leq i \leq n - 1.
\end{cases}
\]

Thus \(f\) is an odd sum labeling of \(P_n(C_p)\).

Figure 10: An odd sum labeling of \(P_{12}(C_{22})\).

Subcase 2.2 \(n \equiv 2(\text{mod } 3)\).

The labeling \(f : V(P_n(C_p)) \rightarrow \{0, 1, 2, \ldots, 4m + n + 1\}\) is defined as follows.

\[f(u_1) = 4m + 3,\]

\[
f(u_i) = \begin{cases}
i - 2, & 1 \leq i \leq 2m + 3, \\
i, & 2m + 4 \leq i \leq 4m + 2 \text{ and } i \text{ is even}, \\
i - 2, & 2m + 4 \leq i \leq 4m + 2 \text{ and } i \text{ is odd},
\end{cases}
\]

and \(f(v_i) = \begin{cases}
4m + i + 1, & 1 \leq i \leq n \text{ and } i \equiv 1(\text{mod } 3), \\
4m + i - 1, & 1 \leq i \leq n \text{ and } i \equiv 2(\text{mod } 3), \\
4m + i + 3, & 1 \leq i \leq n \text{ and } i \equiv 0(\text{mod } 3).
\end{cases}\)
The induced edge labels are obtained as follows.

\[f^*(u_iu_{i+1}) = \begin{cases}
4m + 3, & i = 1, \\
2i - 3, & 2 \leq i \leq 2m + 2, \\
2i - 1, & 2m + 3 \leq i \leq 4m + 1,
\end{cases} \]

\[f^*(u_{4m+2}u_1) = 8m + 5 \]

and

\[f^*(v_iv_{i+1}) = \begin{cases}
8m + 2i, & 1 \leq i \leq n \text{ and } i \equiv 1 (\text{mod } 3), \\
8m + 2i + 1, & 1 \leq i \leq n \text{ and } i \equiv 2 (\text{mod } 3), \\
8m + 2i + 5, & 1 \leq i \leq n \text{ and } i \equiv 0 (\text{mod } 3).
\end{cases} \]

Thus \(f \) is an odd sum labeling of \(P_n(C_p) \). Hence \(P_n(C_p) \) is an odd sum graph.

\[\square \]

Figure 11: An odd sum labeling of \(P_{11}(C_{18}) \).

Proposition 2.8 \([P_m;C_n]\) is an odd sum graph for \(n \equiv 0 (\text{mod } 4) \) and any \(m \geq 2 \).

Proof In \([P_m;C_n]\), let \(v_1, v_2, \ldots, v_m \) be the vertices on the path \(P_m \), \(v_{i,1}, v_{i,2}, \ldots, v_{i,n} \) be the vertices of the \(i^{th} \) cycle \(C_n \), for \(1 \leq i \leq m \) and each vertex \(v_{i,1} \) of the \(i^{th} \) cycle \(C_n \) is identified with the vertex \(v_i \) of the path \(P_m \), \(1 \leq i \leq m \).

Suppose \(n = 4t, t \geq 1 \). The labeling \(f : V([P_m;C_n]) \rightarrow \{0, 1, 2, 3, \ldots, m(n + 1) - 1\} \) is defined as follows.

For \(1 \leq i \leq m \),

\[f(v_{i,j}) = \begin{cases}
(n+1)(i-1) + j - 1, & 1 \leq j \leq 2t, i \text{ and } j \text{ are odd,} \\
(n+1)(i-1) + j + 1, & 2t + 1 \leq j \leq 4t, i \text{ and } j \text{ are odd,} \\
(n+1)(i-1) + j - 1, & 1 \leq j \leq 4t, i \text{ is odd and } j \text{ are even,} \\
(n+1)i - j, & 1 \leq j \leq 2t, i \text{ is even and } j \text{ is odd,} \\
(n+1)i - j - 2, & 2t + 1 \leq j \leq 4t, i \text{ is even and } j \text{ is odd,} \\
(n+1)i - j, & 1 \leq j \leq 4t, i \text{ is even and } j \text{ is even.}
\end{cases} \]
For $1 \leq i \leq m$, the induced edge label is obtained as follows.

\[
 f^*(v_{i,j}v_{i,j+1}) = \begin{cases}
 2(n+1)(i-1) + 2j - 1, & 1 \leq j \leq 2t - 1 \text{ and } i \text{ is odd,} \\
 2(n+1)(i-1) + 2j + 1, & 2t \leq j \leq 4t - 1 \text{ and } i \text{ is odd,} \\
 2(n+1)(i-1) + 9, & j = 1 \text{ and } i \text{ is even,} \\
 2(n+1)(i-1) + 2j - 3, & 2 \leq j \leq 2t + 1 \text{ and } i \text{ is even,} \\
 2(n+1)(i-1) + 2j - 1, & 2t + 2 \leq j \leq 4t - 1 \text{ and } i \text{ is even}
\end{cases}
\]

and \(f^*(v_{i,4t}v_{i,1}) = \begin{cases}
 2(n+1)(i-1) + 4t - 1, & i \text{ is odd,} \\
 2(n+1)(i-1) + 8t - 1, & i \text{ is even.}
\end{cases}\)

Thus \(f \) is an odd sum labeling of \([P_m;C_n]\). Hence \([P_m;C_n]\) is an odd sum graph. \(\square\)

Figure 12: An odd sum labeling of \([P_5;C_8]\).

Proposition 2.9 Quadrilateral snake \(Q_n\) is an odd sum graph for \(n \geq 1\).

Proof The vertex set and edge set of the Quadrilateral snake \(Q_n\) are \(V(Q_n) = \{u_i, v_j, w_j : 1 \leq i \leq n + 1, 1 \leq j \leq n\}\) and \(E(Q_n) = \{u_i v_j, v_i w_i, u_i u_{i+1}, u_{i+1} w_i : 1 \leq i \leq n\}\) respectively. The labeling \(f : V(Q_n) \to \{0, 1, 2, \ldots, 4n\}\) is defined as follows.

\[
 f(u_i) = \begin{cases}
 4i - 4, & 1 \leq i \leq n + 1 \text{ and } i \text{ is odd,} \\
 4i - 5, & 1 \leq i \leq n \text{ and } i \text{ is even,}
\end{cases}
\]

\[
 f(v_i) = \begin{cases}
 4i - 3, & 1 \leq i \leq n \text{ and } i \text{ is odd,} \\
 4i - 2, & 1 \leq i \leq n \text{ and } i \text{ is even}
\end{cases}
\]

and \(f(w_i) = \begin{cases}
 4i, & 1 \leq i \leq n \text{ and } i \text{ is odd,} \\
 4i - 1, & 1 \leq i \leq n \text{ and } i \text{ is even.}
\end{cases}\)

The induced edge labels are obtained as follows

\[
 f^*(u_i u_{i+1}) = 8i - 5, \quad 1 \leq i \leq n,
\]

\[
 f^*(u_i v_i) = 8i - 7, \quad 1 \leq i \leq n,
\]

\[
 f^*(v_i w_i) = 8i - 3, \quad 1 \leq i \leq n,
\]

\[
 f^*(w_i u_{i+1}) = 8i - 1, \quad 1 \leq i \leq n.
\]
Thus f is an odd sum labeling of Q_n. Hence the Quadrilateral snake Q_n is an odd sum graph for $n \geq 1$.

Figure 13: An odd sum labeling of Q_7.

Proposition 2.10 $(P_m; Q_3)$ is an odd sum graph for any positive integer $m \geq 1$.

Proof Let $v_{i,j}$, $1 \leq j \leq 8$ be the vertices in the i^{th} copy of Q_3, $1 \leq i \leq m$ and u_1, u_2, \ldots, u_m be the vertices on the path P_m. $\{u_iu_{i+1} : 1 \leq i \leq m-1\} \cup \{u_iv_{i,1} : 1 \leq i \leq m\} \cup \{v_{i,1}v_{i,2}, v_{i,1}v_{i,4}, v_{i,1}v_{i,6}, v_{i,2}v_{i,3}, v_{i,4}v_{i,5}, v_{i,5}v_{i,6}, v_{i,5}v_{i,8}, v_{i,6}v_{i,7}, v_{i,7}v_{i,8} : 1 \leq i \leq m\}$ be the edge set of $(P_m; Q_3)$.

The labeling $f: V[(P_m; Q_3)] \rightarrow \{0, 1, 2, \ldots, 14m - 1\}$ is defined as follows:

For $1 \leq i \leq m$,

$$f(u_i) = \begin{cases}
14(i - 1), & i \text{ is odd}, \\
14i - 1, & i \text{ is even}.
\end{cases}$$

For $1 \leq i \leq m$ and i is odd,

$$f(v_{i,j}) = \begin{cases}
14i - 13, & j = 1, \\
14i - 12 + j, & 2 \leq j \leq 3, \\
14i - 12, & j = 4, \\
14i - 5, & j = 5, \\
14i - 8 + j, & 6 \leq j \leq 7, \\
14i - 4, & j = 8.
\end{cases}$$

For $1 \leq i \leq m$ and i is even,

$$f(v_{i,j}) = \begin{cases}
14i - 2, & j = 1, \\
14i - j - 3, & 2 \leq j \leq 3, \\
14i - 3, & j = 4, \\
14i - 10, & j = 5, \\
14i - j - 7, & 6 \leq j \leq 7, \\
14i - 11, & j = 8.
\end{cases}$$

The induced edge label of $(P_m; Q_3)$ is obtained as follows:
For $1 \leq i \leq m-1$,
\[f^*(u_iu_{i+1}) = 28i - 1. \]

For $1 \leq i \leq m$,
\[f^*(u_iv_{i,1}) = \begin{cases}
28i - 27, & \text{if } i \text{ is odd}, \\
28i - 3, & \text{if } i \text{ is even}.
\end{cases} \]

<table>
<thead>
<tr>
<th>For $1 \leq i \leq m$ and i is odd</th>
<th>For $1 \leq i \leq m$ and i is even</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f^*(v_{i,1}v_{i,2}) = 28i - 23$</td>
<td>$f^*(v_{i,1}v_{i,2}) = 28i - 7$</td>
</tr>
<tr>
<td>$f^*(v_{i,1}v_{i,4}) = 28i - 25$</td>
<td>$f^*(v_{i,1}v_{i,4}) = 28i - 5$</td>
</tr>
<tr>
<td>$f^*(v_{i,1}v_{i,6}) = 28i - 15$</td>
<td>$f^*(v_{i,1}v_{i,6}) = 28i - 15$</td>
</tr>
<tr>
<td>$f^*(v_{i,2}v_{i,3}) = 28i - 19$</td>
<td>$f^*(v_{i,2}v_{i,3}) = 28i - 11$</td>
</tr>
<tr>
<td>$f^*(v_{i,2}v_{i,7}) = 28i - 11$</td>
<td>$f^*(v_{i,2}v_{i,7}) = 28i - 19$</td>
</tr>
<tr>
<td>$f^*(v_{i,3}v_{i,4}) = 28i - 21$</td>
<td>$f^*(v_{i,3}v_{i,4}) = 28i - 9$</td>
</tr>
<tr>
<td>$f^*(v_{i,3}v_{i,8}) = 28i - 13$</td>
<td>$f^*(v_{i,3}v_{i,8}) = 28i - 17$</td>
</tr>
<tr>
<td>$f^*(v_{i,4}v_{i,5}) = 28i - 17$</td>
<td>$f^*(v_{i,4}v_{i,5}) = 28i - 13$</td>
</tr>
<tr>
<td>$f^*(v_{i,5}v_{i,6}) = 28i - 7$</td>
<td>$f^*(v_{i,5}v_{i,6}) = 28i - 23$</td>
</tr>
<tr>
<td>$f^*(v_{i,5}v_{i,8}) = 28i - 9$</td>
<td>$f^*(v_{i,5}v_{i,8}) = 28i - 21$</td>
</tr>
<tr>
<td>$f^*(v_{i,6}v_{i,7}) = 28i - 3$</td>
<td>$f^*(v_{i,6}v_{i,7}) = 28i - 27$</td>
</tr>
<tr>
<td>$f^*(v_{i,7}v_{i,8}) = 28i - 5$</td>
<td>$f^*(v_{i,7}v_{i,8}) = 28i - 25$</td>
</tr>
</tbody>
</table>

Thus f is an odd sum labeling of $(P_m; Q_3)$. Hence $(P_m; Q_3)$ is an odd sum graph. \(\square\)

Figure 14: An odd sum labeling of $(P_4; Q_3)$.

Proposition 2.11 For all positive integers p and n, the graph $T_p^{(n)}$ is an odd sum graph.

Proof Let $v_i^{(j)}$, $1 \leq i \leq p$ be the vertices of the j^{th} copy of the path on p vertices, $1 \leq j \leq n$. The graph $T_p^{(n)}$ is formed by adding an edge $v_i^{(j)}v_{i+1}^{(j+1)}$ between j^{th} and $(j+1)^{th}$ copy of the path at some i, $1 \leq i \leq p$. The labeling $f : V(G) \to \{0, 1, 2, \ldots, np - 1\}$ is defined as follows:
For $1 \leq j \leq n$ and $1 \leq i \leq p$,

\[f(v_i^{(j)}) = \begin{cases}
 p(j-1) + i - 1, & j \text{ is odd}, \\
 pj - i, & j \text{ is even}.
\end{cases} \]

The induced edge labeling is obtained as follows:

For $1 \leq j \leq n$ and $1 \leq i \leq p - 1$,

\[f^*(v_i^{(j)}v_{i+1}^{(j)}) = \begin{cases}
 2p(j-1) + 2i - 1, & j \text{ is odd,} \\
 2pj - 2i - 1, & j \text{ is even and}
\end{cases} \]

\[f^*(v_i^{(j)}v_{i+1}^{(j)}) = 2pj - 1. \]

Thus f is an odd sum labeling of the graph $T_p^{(n)}$. Hence $T_p^{(n)}$ is an odd sum graph. \hfill \Box

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure15.png}
\caption{An odd sum labeling of $T_8^{(5)}$.}
\end{figure}

Proposition 2.12 The graph $H_n \odot mK_1$ is an odd sum graph for all positive integers m and n.

Proof Let u_1, u_2, \ldots, u_n and v_1, v_2, \ldots, v_n be the vertices on the path of length $n - 1$. Let $x_{i,k}$ and $y_{i,k}$, $1 \leq k \leq m$, be the pendant vertices at u_i and v_i respectively, for $1 \leq i \leq n$. Define $f : V(H_n \odot mK_1) \to \{0, 1, 2, \ldots, 2n(m + 1) - 1\}$ as follows:
For $1 \leq i \leq n$,

\[
\begin{align*}
 f(u_i) &= \begin{cases}
 i + m(i - 1), & \text{if } i \text{ is odd}, \\
 i(m + 1) - 2, & \text{if } i \text{ is even}
 \end{cases} \\
 f(v_i) &= \begin{cases}
 f(u_i) + n(m + 1) + m - 2, & \text{if } i \text{ is odd and } n \text{ is odd}, \\
 f(u_i) + n(m + 1) - m + 2, & \text{if } i \text{ is even and } n \text{ is odd}, \\
 f(u_i) + n(m + 1), & \text{if } n \text{ is even}.
 \end{cases}
\end{align*}
\]

For $1 \leq i \leq n$ and $1 \leq k \leq m$,

\[
\begin{align*}
 f(x_{i,k}) &= \begin{cases}
 (m + 1)(i - 1) + 2k - 2, & \text{if } i \text{ is odd}, \\
 (m + 1)(i - 2) + 2k + 1, & \text{if } i \text{ is even}
 \end{cases} \\
 f(y_{i,k}) &= \begin{cases}
 f(x_{i,k}) + n(m + 1) - m + 2, & \text{if } i \text{ is odd and } n \text{ is odd}, \\
 f(x_{i,k}) + n(m + 1) + m - 2, & \text{if } i \text{ is even and } n \text{ is odd}, \\
 f(x_{i,k}) + n(m + 1), & \text{if } n \text{ is even}.
 \end{cases}
\end{align*}
\]

The induced edge labels are obtained as follows:

For $1 \leq i \leq n - 1$,

\[
\begin{align*}
 f^*(u_iu_{i+1}) &= 2i(m + 1) - 1 \\
 f^*(v_iv_{i+1}) &= f^*(u_iu_{i+1}) + 2n(m + 1).
\end{align*}
\]

For $1 \leq i \leq n$ and $1 \leq k \leq m$,

\[
\begin{align*}
 f^*(u_ix_{i,k}) &= 2(m + 1)(i - 1) + 2k - 1 \\
 f^*(v_ix_{i,k}) &= f^*(u_ix_{i,k}) + 2n(m + 1).
\end{align*}
\]

When n is odd,

\[
f^* \left(u_{\frac{n+1}{2}}v_{\frac{n+1}{2}} \right) = 2n(m + 1) - 1.
\]

When n is even,

\[
f^* \left(u_{\frac{n}{2}+1}v_{\frac{n}{2}} \right) = 2n(m + 1) - 1.
\]

Thus f is an odd sum labeling of $H_n \odot mK_1$. Hence $H_n \odot mK_1$ is an odd sum graph for all positive integers m and n. \square
Figure 16: An odd sum labeling of $H_4 \odot 3K_1$.

Figure 17: An odd sum labeling of $H_5 \odot 4K_1$.
Corollary 2.13 For any positive integer \(m \), the bistar graph \(B(m,m) \) is an odd sum graph.

Proof By taking \(n = 1 \) in Proposition 2.12, the result follows. \(\square \)

Proposition 2.14 For any even integer \(p \geq 4 \), the cyclic ladder \(P_2 \times C_p \) is an odd sum graph.

Proof Let \(u_1, u_2, \ldots, u_p \) and \(v_1, v_2, \ldots, v_p \) be the vertices of the inner and outer cycle which are joined by the edges \(\{u_iv_i : 1 \leq i \leq p\} \).

Case 1 \(p = 4m, m \geq 2 \).

![Figure 18: An odd sum labeling of \(P_2 \times C_{24} \).](image)

The labeling \(f : V(P_2 \times C_p) \rightarrow \{0, 1, 2, \ldots, 12m\} \) is defined as follows:

\[
\begin{align*}
f(u_i) &= \begin{cases}
i - 1, & 1 \leq i \leq 2m - 1 \text{ and } i \text{ is odd}, \\
i + 1, & 2 \leq i \leq 4m - 2 \text{ and } i \text{ is even}, \\
i + 1, & 2m + 1 \leq i \leq 4m - 1 \text{ and } i \text{ is odd},
\end{cases} \\
f(u_{4m}) &= 1 \text{ and } \\
f(v_i) &= \begin{cases}
8k + i, & 1 \leq i \leq 4m - 1 \text{ and } i \text{ is odd}, \\
8k + i - 2, & 2 \leq i \leq 2m \text{ and } i \text{ is even}, \\
8k + i, & 2m + 2 \leq i \leq 4m \text{ and } i \text{ is even}.
\end{cases}
\end{align*}
\]
The induced edge labeling is obtained as follows.

\[f^*(u_iu_{i+1}) = \begin{cases} 2i + 1, & 1 \leq i \leq 2m - 1, \\ 2i + 3, & 2m \leq i \leq 4m - 2, \\ i + 2, & i = 4m - 1, \end{cases} \]

\[f^*(u_1u_{4m}) = 1, \]

\[f^*(v_iv_{i+1}) = \begin{cases} 16m + 2i - 1, & 1 \leq i \leq 2m \\ 16m + 2i + 1, & 2m + 1 \leq i \leq 4m - 1, \end{cases} \]

\[f^*(v_1v_{4m}) = 20m + 1, \]

\[f^*(u_iv_i) = \begin{cases} 8m + 2i - 1, & 1 \leq i \leq 2m, \\ 8m + 2i + 1, & 2m + 1 \leq i \leq 4m - 1 \text{ and} \end{cases} \]

\[f^*(u_{4m}v_{4m}) = 12m + 1. \]

Thus \(f \) is an odd sum labeling of \(P_2 \times C_p \). Hence \(P_2 \times C_p \) is an odd sum graph when \(p = 4m \).

Case 2 \(p = 4m + 2, m \geq 1. \)

\[\text{Figure 19: An odd sum labeling of } P_2 \times C_{22}. \]

The labeling \(f : V(P_2 \times C_p) \to \{0, 1, 2, \ldots, 12m\} \) is defined as follows:

\[f(u_i) = \begin{cases} 3i - 3, & 1 \leq i \leq 2m + 2, \\ 3i + 1, & 2m + 3 \leq i \leq 4m + 1 \text{ and } i \text{ is odd}, \end{cases} \]
On Odd Sum Graphs

\[f(u_i) = \begin{cases}
3i - 3, & 2m + 4 \leq i \leq 4m \text{ and } i \text{ is even,} \\
3i - 1, & i = 4m + 2 \text{ and} \\
3i - 2, & 1 \leq i \leq 2m + 1, \\
3i + 2, & 2m + 2 \leq i \leq 4m \text{ and } i \text{ is even,} \\
3i - 2, & 2m + 3 \leq i \leq 4m + 1 \text{ and } i \text{ is odd,} \\
3i, & i = 4m + 2.
\]

\[f(v_i) = \begin{cases}
3i - 2, & 1 \leq i \leq 2m + 1, \\
3i + 2, & 2m + 2 \leq i \leq 4m \text{ and } i \text{ is even,} \\
3i, & i = 4m + 2.
\]

The induced edge labels are given as

\[f^*(u_iu_{i+1}) = \begin{cases}
6i - 3, & 1 \leq i \leq 2m + 1, \\
6i + 1, & 2m + 2 \leq i \leq 4m, \\
6i + 3, & i = 4m + 1,
\]

\[f^*(u_1u_{4m+2}) = 12m + 5,
\]

\[f^*(v_iv_{i+1}) = \begin{cases}
6i - 1, & 1 \leq i \leq 2m, \\
6i + 3, & 2m + 1 \leq i \leq 4m, \\
6i + 1, & i = 4m + 1,
\]

\[f^*(v_1v_{4m+2}) = 12m + 7 \text{ and}
\]

\[f^*(u_iu_i) = \begin{cases}
6i - 5, & 1 \leq i \leq 2m + 1, \\
6i - 1, & 2m + 2 \leq i \leq 4m + 2.
\]

Thus \(f \) is an odd sum labeling of \(P_2 \times C_p \). Whence \(P_2 \times C_p \) is an odd sum graph if \(p = 4m + 2 \).

\[\Box \]

References

Controllability of Fractional Stochastic Differential Equations
With State-Dependent Delay

Toufik Guendouzi

Laboratory of Stochastic Models, Statistic and Applications
Tahar Moulay University, PO.Box 138 En-Nasr, 20000 Saida, Algeria

E-mail: tf.guendouzi@gmail.com

Abstract: In this paper, the approximate controllability for a class of nonlinear fractional
stochastic differential equations with state-dependent delays in Hilbert space is studied. The
result is extended to study the approximate controllability of fractional stochastic systems
with state-dependent delays and resolvent operators. A set of sufficient conditions are es-

tablished to obtain the required result by employing semigroup theory, fixed point technique
and fractional calculus. In particular, the approximate controllability of nonlinear fractional
stochastic control systems is established under the assumption that the corresponding linear
control system is approximately controllable. Also, an example is presented to illustrate the
applicability of the obtained theory.

Key Words: Approximate controllability, stochastic fractional differential equations, fixed
point technique, state-dependent delay.

AMS(2010): 34A08, 93B05, 47H10

§1. Introduction

Controllability is one of the important fundamental concepts in mathematical control theory
and plays a vital role in both deterministic and stochastic control systems. In recent years,
various controllability problems for different kinds of dynamical systems have been studied in
many publications [1, 8, 9, 18, 19].. From the mathematical point of view, the problems of
exact and approximate controllability are to be distinguished. However, the concept of exact
controllability is usually too strong and has limited applicability. Approximate controllability is
a weaker concept than complete controllability and it is completely adequate in applications [7,
23].. Recently, Wang [32] derived a set of sufficient conditions for the approximate controllability
of differential equations with multiple delays by implementing some natural conditions such as
growth conditions for the nonlinear term and compactness of the semigroup. Sakthivel and
Anandhi [29] investigated the problem of approximate controllability for a class of nonlinear
impulsive differential equations with state-dependent delay by using semigroup theory and fixed

1Received June 16, 2013, Accepted November 27, 2013.
point technique.

On the other hand, the theory of fractional differential equations is emerging as an important area of investigation since it is richer in problems in comparison with corresponding theory of classical differential equations [17, 25, 26]. In fact, such models can be considered as an efficient alternative to the classical nonlinear differential models to simulate many complex processes. Recently, it has been proved that the differential models involving derivatives of fractional order arise in many engineering and scientific disciplines as the mathematical modeling of systems and processes in many fields, for instance, physics, chemistry, aerodynamics, electrodynamics of complex medium, and so on [15, 17]. In recent years, existence results for fractional differential equations have been investigated in several papers [5,3]. More recently, Dabas and Chauhan studied the existence and uniqueness of mild solution for an impulsive neutral fractional integro-differential equation with infinite delay.

In particular, the study of stochastic fractional differential equations has attracted great interest due to its applications in characterizing many problems in biology, electrical engineering and other areas of science. Many physical phenomena in evolution processes are modeled as stochastic fractional differential equations and existence results for such equations have been studied by several authors [4, 11, 30].

Most of the existing literature on controllability results for linear and nonlinear stochastic systems are without fractional derivatives [20, 21, 22, 24]. Only few papers deal with the controllability of fractional stochastic systems. Guendouzi and Hamada [12] studied the relative controllability of fractional stochastic dynamical systems with multiple delays in control. The authors derive a new set of sufficient conditions for the global relative controllability by fixed point technique and controllability Grammian matrix. Sakthivel et al. [28] discussed the approximate controllability of nonlinear fractional stochastic control system under the assumptions that the corresponding linear system is approximately controllable. Guendouzi and Idrissi [13] investigated the problem of approximate controllability for a class of dynamic control systems described by nonlinear fractional stochastic functional differential equations in Hilbert space driven by a fractional Brownian motion with Hurst parameter $H > 1/2$. Sakthivel et al. [27] studied the approximate controllability of neutral stochastic fractional integro-differential equation with infinite delay in a Hilbert space.

However, to the best of our knowledge, the approximate controllability problem for nonlinear fractional stochastic systems with state-dependent delay has not been investigated yet. Motivated by this consideration, in this paper we will study the approximate controllability problem for nonlinear fractional stochastic system, described by nonlinear fractional stochastic differential equations with state-dependent delay and control in Hilbert space, under the assumption that the associated linear system is approximately controllable. In fact, the results in this paper are motivated by the recent work of [29] and the fractional differential equations discussed in [6,28].

§2. Preliminaries and Basic Properties

Let \mathcal{H}, \mathcal{K} be two separable Hilbert spaces and $\mathcal{L}(\mathcal{K}, \mathcal{H})$ be the space of bounded linear operators
from \mathcal{K} into \mathcal{H}. For convenience, we will use the notation $\|\cdot\|_{\mathcal{H}}, \|\cdot\|_{\mathcal{K}}$ and $\|\cdot\|$ to denote the norms in \mathcal{H}, \mathcal{K} and $\mathcal{L}(\mathcal{K}, \mathcal{H})$ respectively, and use (\ldots) to denote the inner product of \mathcal{H} and \mathcal{K} without any confusion. Let $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \geq 0}, \mathbb{P})$ be a filtered complete probability space satisfying the usual condition, which means that the filtration is a right continuous increasing family and \mathcal{F}_0 contains all \mathbb{P}-null sets. $w = (w_t)_{t \geq 0}$ be a Q-Wiener process defined on $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \geq 0}, \mathbb{P})$ with the covariance operator Q such that $trQ < \infty$. We assume that there exists a complete orthonormal system $\{e_k\}_{k \geq 1}$ in \mathcal{K}, a bounded sequence of nonnegative real numbers λ_k such that $Qe_k = \lambda_ke_k$, $k = 1, 2, \ldots$ and a sequence $\{\beta_k\}_{k \geq 1}$ of independent Brownian motions such that

$$(w(t), e)_{\mathcal{K}} = \sum_{k=1}^{\infty} \sqrt{\lambda_k}(e_k, e)_{\mathcal{K}}\beta_k(t), \quad e \in \mathcal{K}, \ t \in [0, b].$$

Let $\mathcal{L}_2^0 = \mathcal{L}_2(Q^{1/2}\mathcal{K}, \mathcal{H})$ be the space of all Hilbert-Schmidt operators from $Q^{1/2}\mathcal{K}$ into \mathcal{H} with the inner product $\langle \psi, \pi \rangle_{\mathcal{L}_2^0} = tr[\psi Q \pi^*]$. Let $\mathcal{L}^2(\mathcal{F}_b, \mathcal{H})$ be the Banach space of all \mathcal{F}_b-measurable square integrable random variables with values in the Hilbert space \mathcal{H}, and $\mathcal{E}(\cdot)$ denote the expectation with respect to the measure \mathbb{P}.

The purpose of this paper is to investigate the approximate controllability for a class of nonlinear fractional stochastic differential equation with state-dependent delay and control of the form

$$^{c}D^\alpha_t[x(t) + g(t, x_\varepsilon(t, x_\varepsilon))] = A[x(t) + g(t, x_\varepsilon(t, x_\varepsilon))] + Bu(t) + f(t, x_\varepsilon(t, x_\varepsilon)) + \sigma(t, x_\varepsilon(t, x_\varepsilon)) \frac{dW(t)}{dt}, \quad t \in J$$

$$x_0 = \phi \in \mathcal{B},$$

where $^{c}D^\alpha_t$ is the Caputo fractional derivative of order α, $0 < \alpha < 1$; $x(.)$ takes the value in the separable Hilbert space \mathcal{H}; $A : \mathcal{D}(A) \subset \mathcal{H} \rightarrow \mathcal{H}$ is the infinitesimal generator of an α-resolvent family $S_\alpha(t)_{t \geq 0}$; the control function $u(.)$ is given in $\mathcal{L}_2^\alpha([0, b], \mathcal{U})$ of admissible control functions, \mathcal{U} is a Hilbert space. \mathcal{B} is a bounded linear operator from \mathcal{U} into \mathcal{H}. The history $x_1 : (-\infty, 0] \rightarrow \mathcal{H}$, $x_1(\theta) = x(t + \theta)$, $\theta \in [0, b]$, belongs to an abstract phase space \mathcal{B} defined axiomatically; $g : J \times \mathcal{B} \rightarrow \mathcal{H}$, $f : J \times \mathcal{B} \rightarrow \mathcal{H}$, $\sigma : J \times \mathcal{B} \rightarrow \mathcal{L}_2^0$ and $\varepsilon : J \times \mathcal{B} \rightarrow (-\infty, b]$ are appropriate functions to be specified later.

Let us recall the following known definitions. For more details see [17].

Definition 2.1 The fractional integral of order α with the lower limit 0 for a function f is defined as

$$I^\alpha f(t) = \frac{1}{\Gamma(\alpha)} \int_0^t \frac{f(s)}{(t-s)^{1-\alpha}} ds, \quad t > 0, \alpha > 0$$

provided the right-hand side is pointwise defined on $[0, \infty)$, where Γ is the gamma function.

Definition 2.2 Riemann-Liouville derivative of order α with lower limit zero for a function $f : [0, \infty) \rightarrow \mathbb{R}$ can be written as

$$^L D^\alpha f(t) = \frac{1}{\Gamma(n-\alpha)} \frac{d^n}{dt^n} \int_0^t \frac{f(s)}{(t-s)^{n+1-\alpha}} ds, \quad t > 0, n - 1 < \alpha < n. \quad (2.2)$$

Definition 2.3 The Caputo derivative of order α for a function $f : [0, \infty) \rightarrow \mathbb{R}$ can be written

$$^{c}D^\alpha f(t) = \frac{1}{\Gamma(n-\alpha)} \frac{d^n}{dt^n} \int_0^t \frac{f(s)}{(t-s)^{n+1-\alpha}} ds, \quad t > 0, n - 1 < \alpha < n.$$
where S is denoted by $\|X\|$. X is a Banach space of all bounded linear operators from C.

The Caputo derivative of order $\alpha > 0$ is defined as

$$L\{ \mathcal{C}^\alpha \} f(t) = s^\alpha \hat{f}(s) = \int_0^t (t-s)^{n-\alpha-1} f^n(s) ds = I^{n-\alpha} f^n(s), \quad t > 0, n - 1 < \alpha < n. \quad (2.3)$$

If $f(t) \in C^n[0, \infty)$, then

$$\mathcal{D}^\alpha f(t) = \frac{1}{\Gamma(n-\alpha)} \int_0^t (t-s)^{n-\alpha-1} f^n(s) ds = I^{n-\alpha} f^n(s), \quad t > 0, n - 1 < \alpha < n. \quad (2.4)$$

Obviously, the Caputo derivative of a constant is equal to zero. The Laplace transform of the Caputo derivative of order $\alpha > 0$ is given as

$$L\{ \mathcal{D}^\alpha \} f(t) = s^\alpha \hat{f}(s) - \sum_{k=0}^{n-1} s^{\alpha-k} f^{(k)}(0); \quad n - 1 \leq \alpha < n.$$

Definition 2.4 A two-parameter function of the Mittag-Leffler type is defined by the series expansion

$$E_{\alpha,\beta}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + \beta)} = \frac{1}{2\pi i} \int_C \frac{\mu^{\alpha-\beta} e^{\mu}}{\mu^\alpha - z} d\mu, \quad \alpha, \beta \in \mathbb{C}, \Re(\alpha) > 0,$$

where C is a contour which starts and ends at $-\infty$ and encircles the disc $|\mu| \leq |z|^{1/2}$ counter clockwise.

For short, $E_{\alpha}(z) = E_{\alpha,1}(z)$. It is an entire function which provides a simple generalization of the exponent function: $E_1(z) = e^z$ and the cosine function: $E_2(z^2) = \cos(h(z))$, $E_2(-z^2) = \cos(z)$, and plays a vital role in the theory of fractional differential equations. The most interesting properties of the Mittag-Leffler functions are associated with their Laplace integral

$$\int_0^\infty e^{-\lambda t^\beta} E_{\alpha,\beta}(\omega t^\alpha) dt = \frac{\lambda^{\alpha-\beta}}{\lambda^\alpha - \omega}, \quad \Re \lambda > \omega^{\frac{1}{\beta}}, \omega > 0,$$

and for more details see [17].

Definition 2.5([31]) A closed and linear operator A is said to be sectorial if there are constants $\omega \in \mathbb{R}$, $\theta \in \left[\frac{\pi}{2}, \pi\right]$, $M > 0$, such that the following two conditions are satisfied:

- $\rho(A) \subset \Sigma_{\theta, \omega} = \{ \lambda \in \mathbb{C} : \lambda \neq \omega, |\arg(\lambda - \omega)| < \theta \}$;
- $\|R(\lambda, A)\| \leq \frac{M}{|\lambda - \omega|}, \lambda \in \Sigma_{\theta, \omega}$.

Definition 2.6 Let A be a closed and linear operator with the domain $D(A)$ defined in a Banach space X. Let $\rho(A)$ be the resolvent set of A. We say that A is the generator of an α-resolvent family if there exist $\omega \geq 0$ and a strongly continuous function $S_{\alpha} : \mathbb{R}_+ \to L(X)$, where $L(X)$ is a Banach space of all bounded linear operators from X into X and the corresponding norm is denoted by $\|\cdot\|$, such that $\{\lambda^\alpha : \Re \lambda > \omega\} \subset \rho(A)$ and

$$(\lambda^\alpha I - A)^{-1} x = \int_0^\infty e^{\lambda t} S_{\alpha}(t)x dt, \quad \Re \lambda > \omega, x \in X, \quad (2.4)$$

where $S_{\alpha}(t)$ is called the α-resolvent family generated by A.

Definition 2.7 Let \(A \) be a closed and linear operator with the domain \(D(A) \) defined in a Banach space \(X \) and \(\alpha > 0 \). We say that \(A \) is the generator of a solution operator if there exist \(\omega \geq 0 \) and a strongly continuous function \(S_\alpha : \mathbb{R}_+ \rightarrow L(X) \) such that \(\{ \lambda^\alpha : \text{Re} \lambda > \omega \} \subset \rho(A) \) and

\[
\lambda^{\alpha-1}(\lambda^\alpha - A)^{-1}x = \int_0^\infty e^{\lambda t}S_\alpha(t)xdt, \quad \text{Re} \lambda > \omega, x \in X,
\] (2.5)

where \(S_\alpha(t) \) is called the solution operator generated by \(A \).

The concept of the solution operator is closely related to the concept of a resolvent family. For more details on \(\alpha \)-resolvent family and solution operators, we refer the reader to [17].

In this paper, we assume that the operator \(A \) is sectorial of type \(\omega \) with \(\pi(1-\alpha/2) < \theta < \pi \). Then \(A \) is the generator of a solution operator given by

\[
T_\alpha(t) = E_{\alpha,1}(At^\alpha) = \frac{1}{2\pi i} \int_{\partial B_r} e^{\lambda t}S_\alpha(t)xdt, \quad \text{Re} \lambda > \omega, x \in X,
\]

and the operator

\[
S_\alpha = t^{\alpha-1}E_{\alpha,\alpha}(At^\alpha) = \frac{1}{2\pi i} \int_{\partial B_r} e^{\lambda t}(\lambda^\alpha - A)^{-1}d\lambda
\]

is the \(\alpha \)-resolvent family generated by \(A \), where \(\partial B_r \) denotes the Bromwich path (see [6,31]).

Recently, it has been proven in [31] that if \(\alpha \in (0,1) \) and \(A \in \mathcal{A}_0(\theta_0, \omega_0) \) is a sectorial operator, then for any \(x \) in a Banach space \(X \) and \(t > 0 \), we have

\[
\|S_\alpha(t)\| \leq C e^{\omega t}(1 + t^{\alpha-1}), \quad t > 0, \ \omega > \omega_0,
\]

where \(C > 0 \) depending solely on \(\theta \) and \(\alpha \).

In this work, we will employ an axiomatic definition of the abstract phase space \(\mathcal{B} \) introduced by Hale and Kato [14]. We first define \(\mathcal{H}((-\infty, b]; \mathcal{H}) \) the Banach space of all continuous and \(\mathcal{F}_t \)-measurable \(\mathcal{H} \)-valued function \(x \).

Axiom 2.8 \(\mathcal{B} \) is a linear space that denotes the family of \(\mathcal{F}_0 \)-measurable function from \((-\infty, 0] \)

into \(\mathcal{H} \), endowed with norm \(\| \cdot \|_B \), which satisfies the following axioms:

1. If \(x \in \mathcal{H} \) is continuous on \([0, b], b > 0 \), and \(x_0 \in \mathcal{B} \), then for every \(t \in [0, b] \) the following conditions hold

 (1-1) \(x_t \in \mathcal{B} \);

 (1-2) \(\|x(t)\|_H \leq \delta \|x_t\|_B \);

 (1-3) \(\|x_t\|_B \leq \mu(t) \sup_{0 \leq s \leq t} \|x(s)\|_H + \nu(t) \|x_0\|_B \), where \(\delta > 0 \) is a constant; \(\mu, \nu : [0, \infty) \rightarrow [1, \infty) \), \(\mu \) is continuous, \(\nu \) is locally bounded; \(\delta, \mu \) and \(\nu \) are independent of \(x(\cdot) \).

2. For the function \(x(\cdot) \) in i., \(x_t \) is a \(\mathcal{B} \)-valued continuous functions on \([0, b] \);

3. The space \(\mathcal{B} \) is complete.

Let \(x_b(x_0; u) \) be the state of (2.1) at terminal time \(b \) corresponding to the control \(u \) and the initial value \(x_0 = \phi \in \mathcal{B} \). Introduce the set \(\mathcal{R}(b, \phi) = \{ x_b(\phi; u)(0) : u(\cdot) \in \mathcal{L}_f^2([0, b], \mathcal{U}) \} \), which is called the reachable set of system (1) at terminal time \(b \) and its closure in \(\mathcal{H} \) is denoted by \(\overline{\mathcal{R}}(b, \phi) \).
Definition 2.9 The system (2.1) is said to be approximately controllable on J if $\mathcal{R}(b, \phi) = \mathcal{H}$, that is, given an arbitrary $\epsilon > 0$ it is possible to steer from the point ϕ to within a distance ϵ from all points in the state space \mathcal{H} at time b.

In order to study the approximate controllability for the fractional control system (2.1), we introduce the approximate controllability of its linear part

$$
D_0^\alpha x(t) = Ax(t) + (Bu)(t), \quad t \in J,
$$

$$
x(0) = \phi \in \mathcal{B}.
$$

The approximate controllability for linear fractional control system (2.6) is a natural generalization of approximate controllability of linear first order control system [23]. It is convenient at this point to introduce the controllability operator associated with (2.6) as

$$
\Gamma^b_0 = \int_0^b \mathcal{S}_\alpha(b-s)BB^*\mathcal{S}_\alpha^*(b-s)ds,
$$

$$
R(\kappa, \Gamma^b_0) = (\kappa I + \Gamma^b_0)^{-1}, \quad \kappa > 0,
$$

where B^* denotes the adjoint of B and $\mathcal{S}_\alpha^*(t)$ is the adjoint of $\mathcal{S}_\alpha(t)$. It is straightforward that the operator Γ^b_0 is a linear bounded operator.

Lemma 2.10 ([23]) The linear fractional control system (2.6) is approximately controllable on $[0, b]$ if and only if $\kappa R(\kappa, \Gamma^b_0) \to 0$ as $\kappa \to 0^+$ in the strong operator topology.

In order to establish the result, we need the following assumptions:

H1 If $\alpha \in (0, 1)$ and $A \in \mathcal{A}^\alpha(\theta_0, \omega_0)$, then for $x \in \mathcal{H}$ and $t > 0$ we have $\|T_\alpha(t)\| \leq M e^{\omega t}$ and $\|S_\alpha(t)\| \leq C e^{\omega t}(1 + t^{\alpha-1})$, $\omega > \omega_0$. Thus we have

$$
\|T_\alpha(t)\| \leq \tilde{M}_T \quad \text{and} \quad \|S_\alpha(t)\| \leq t^{\alpha-1}\tilde{M}_S,
$$

where $\tilde{M}_T = \sup_{0 \leq t \leq b} \|T_\alpha(t)\|$, and $\tilde{M}_S = \sup_{0 \leq t \leq b} C e^{\omega t}(1 + t^{1-\alpha})$ (for more details, see [31]).

H2 The function $t \to \phi_t$ is well defined and continuous from the set $\mathcal{Z}(\varepsilon^-) = \{\varepsilon(s, \tau) : (s, \tau) \in J \times \mathcal{B}, \varepsilon(s, \tau) \leq 0\}$ into \mathcal{B} and there exists a continuous and bounded function $\varphi^\phi : \mathcal{Z}(\varepsilon^-) \to (0, \infty)$ such that, for every $t \in \mathcal{Z}(\varepsilon^-)$

$$
\|\phi_t\|_{\mathcal{B}} \leq \varphi^\phi(t)\|\phi\|_{\mathcal{B}}.
$$

H3 The function $g : J \times \mathcal{B} \to \mathcal{H}$ is continuous and there exists some constant $M_g > 0$ such that

$$
\mathbb{E} \|g(t, \xi)\|^2_{\mathcal{H}} \leq M_g \left(\|\xi\|^2_{\mathcal{B}} + 1\right), \quad \xi \in \mathcal{B},
$$

$$
\mathbb{E} \|g(t_2, \xi_2) - g(t_1, \xi_1)\|^2_{\mathcal{H}} \leq M_g \left(t_2 - t_1|^2 + \|\xi_2 - \xi_1\|^2_{\mathcal{B}}\right), \quad \xi_i \in \mathcal{B}, \quad i = 1, 2.
$$

H4 The function $f : J \times \mathcal{B} \to \mathcal{H}$ satisfies the following properties:

1. $f(t, \cdot) : \mathcal{B} \to \mathcal{H}$ is continuous for each $t \in J$ and for each $\xi \in \mathcal{B}$, $f(\cdot, \xi) : J \to \mathcal{H}$ is strongly measurable.
(2) there exist a positive integrable functions \(m \in L^1([0, b]) \) and a continuous nondecreasing function \(\Xi_f : [0, \infty) \to (0, \infty) \) such that for every \((t, \xi) \in J \times \mathcal{B}\), we have
\[
E\|f(t, \xi)\|^2_B \leq m(t)\Xi_f\left(\|\xi\|^2_B\right), \quad \liminf_{q \to \infty}\frac{\Xi_f(q)}{q} = \Lambda < \infty.
\]

(H5) The function \(\sigma : J \times \mathcal{B} \to L^0_2 \) satisfies the following properties:

1. \(\sigma(t, \cdot) : \mathcal{B} \to L^0_2 \) is continuous for each \(t \in J \) and for each \(\xi \in \mathcal{B} \), \(\sigma(\cdot, \xi) : J \to L^0_2 \) is strongly measurable;
2. there exist a positive integrable functions \(n \in L^1([0, b]) \) and a continuous nondecreasing function \(\Xi_2 : [0, \infty) \to (0, \infty) \) such that for every \((t, \xi) \in J \times \mathcal{B}\), we have
\[
E\|\sigma(t, \xi)\|^2_{L^2_\mathcal{B}} \leq n(t)\Xi_2\left(\|\xi\|^2_B\right), \quad \liminf_{q \to \infty}\frac{\Xi_2(q)}{q} = \Upsilon < \infty.
\]

(H6) For all \(\kappa > 0 \) such that
\[
\left[4M_\mu \mu^2 + 4\mu^2 \Sigma_1 \frac{b^{2\alpha}}{\alpha^2} \sup_{s \in J} m(s) + 4\mu^2 \Sigma_2 \frac{b^{2\alpha}}{b(2\alpha - 1)} \sup_{s \in J} n(s) \right]
\times \left[5 + 30\left(\Sigma_1^2 \Sigma_2^2\right) \frac{(b^{2\alpha})^2}{\kappa^2 \alpha^2} \right] < 1.
\]

Lemma 2.11([16]) Let \(x \in \mathcal{H} \) be continuous on \([0, b]\) and \(x_0 = \phi \). If (H2) holds, then
\[
\|x_s\|_{\mathcal{B}} \leq \mu^* \sup_{0 \leq \theta \leq \max(0, s)} \|x(\theta)\|_{\mathcal{H}} + (\nu^* + \varphi^*)\|\phi\|_{\mathcal{B}},
\]
where \(\varphi^* = \sup_{t \in \mathcal{Z}(\varepsilon)} \varphi^0(t) \), \(\nu^* = \sup_{t \in J} \nu(t) \), \(\mu^* = \sup_{t \in J} \mu(t) \).

The following lemma is required to define the control function.

Lemma 2.12([23]) For any \(\hat{x}_b \in L^2(\mathcal{F}_b, \mathcal{H}) \) there exists \(\tilde{\phi} \in L^2_\mathcal{F}(\Omega; L^2(J, L^0_2)) \) such that
\[
\hat{x}_b = \mathbf{E}\tilde{x}_b + \int_0^b \tilde{\phi}(s)dw(s).
\]

Now for any \(\kappa > 0 \) and \(\hat{x}_b \in L^2(\mathcal{F}_b, \mathcal{H}) \), we define the control function

\[
u^\kappa(t) = B^*S_\alpha^*(b-t)(\kappa I + \Gamma^b)\]^{-1}
\times \left\{ \mathbf{E}\tilde{x}_b + \int_0^b \tilde{\phi}(s)dw(s) - T_\alpha(b)[(\phi(0) + g(0, x_{\varepsilon(b, \phi)})] + g(b, x_{\varepsilon(b, x_b)}) \right\}
\]
\[-B^*S_\alpha^*(b-t)\int_0^b (\kappa I + \Gamma^b)\]^{-1}\left\{ \sigma(s, x_{\varepsilon(s, x_s)})ds \right\}
\[-B^*S_\alpha^*(b-t)\int_0^b (\kappa I + \Gamma^b)\]^{-1}\left\{ \sigma(s, x_{\varepsilon(s, x_s)})ds \right\}.\]
§3. **Controllability Results**

In this section, we study the approximate controllability results for the systems (2.1) where the operator A is a sectorial type ω with $\pi(1-\alpha/2) < \theta < \pi$. In particular, we establish approximate controllability of nonlinear fractional stochastic system (2.1) under the assumptions that the corresponding linear systems is approximately controllable.

Theorem 3.1 Assume that the assumptions (H1)-(H6) hold and $S_\alpha(t)$ is compact, then the fractional stochastic system (2.1) has at least one mild solution.

Proof Let $C((-\infty, b], \mathcal{H})$ be the space of all continuous \mathcal{H}-valued stochastic processes \(\{x(t), t \in (-\infty, b]) \}. \) Consider the space $\tilde{\mathcal{B}} = \{ x : x \in C((-\infty, b], \mathcal{H}), x(0) = \phi(0) \}$ endowed with seminorm $\| \cdot \|_{\tilde{\mathcal{B}}}$ defined by

$$
\| x \|_{\tilde{\mathcal{B}}} = \| \phi \|_{\mathcal{B}} + \sup_{-\infty < s \leq b} (E \| x(s) \|^2)^{\frac{1}{2}}, \quad x \in \tilde{\mathcal{B}},
$$

and the space $\tilde{\mathcal{H}}$ defined in the previous section endowed with the norm $\| x \|_{\tilde{\mathcal{H}}} = \sup_{t \in J} (E \| x(t) \|^2)^{\frac{1}{2}}$.

In what follows, we assume that $\varepsilon : [0, b] \times \mathbb{B} \rightarrow (-\infty, b]$ is continuous and $\varepsilon(t, x_t) = 0$ for $t = 0$. For $\kappa > 0$, define the operator $P : \tilde{\mathcal{B}} \rightarrow \tilde{\mathcal{B}}$ by

$$
(Px)(t) = T_\alpha(t)[\phi(0) + g(0, x_{\varepsilon(0, \phi)})] - g(t, x_{\varepsilon(t, x_t)}) + \int_{0}^{t} S_\alpha(t-s)Bu^\kappa(s) + f(s, x_{\varepsilon(s, x_s)})ds + \int_{0}^{t} S_\alpha(t-s)\sigma(s, x_{\varepsilon(s, x_s)})dw(s), \quad t \in J.
$$

It will be shown that the system (1) is approximately controllable if for all $\kappa > 0$ there exists a fixed point of the operator P.

For $\phi \in \mathcal{B}$, define

$$
y(t) = \begin{cases}
\phi(t), & t \in (-\infty, 0], \\
T_\alpha(t)\phi(0), & t \in J.
\end{cases}
$$

Then $y_0 = \phi$.

For each $z : J \rightarrow \mathcal{H}$ with $z(0) = 0$, we denote by \tilde{z} the function defined by

$$
\tilde{z}(t) = \begin{cases}
0, & t \in (-\infty, 0], \\
z(t), & t \in J.
\end{cases}
$$

If $x(\cdot)$ satisfies the system (2.1), then we can decompose $x(\cdot)$ as $x(t) = y(t) + \tilde{z}(t)$, which implies $x_{\varepsilon(t, x_t)} = y_{\varepsilon(t, x_t)} + \tilde{z}_{\varepsilon(t, x_t)}$, for $t \in J$ and the function $z(\cdot)$ satisfies

$$
z(t) = T_\alpha(t)g(0, \phi) - g(t, y_{\varepsilon(t, \tilde{z}_t)}) + \int_{0}^{t} S_\alpha(t-s)Bu^\kappa(s)ds + \int_{0}^{t} S_\alpha(t-s)f(s, y_{\varepsilon(s, \tilde{z}_s)} + \tilde{z}_{\varepsilon(s, \tilde{z}_s)})ds + \int_{0}^{t} S_\alpha(t-s)\sigma(s, y_{\varepsilon(s, \tilde{z}_s)} + \tilde{z}_{\varepsilon(s, \tilde{z}_s)})dw(s), \quad t \in J.
$$
where

\[u^\kappa(t) = B^* S^*_\alpha(b - t)(\kappa I + \Gamma^b_\alpha)^{-1} \]

\[
\times \left\{ E \hat{x}_b + \int_0^b \hat{\phi}(s) dw(s) - T_\alpha(b)[\phi(0) + g(0, \phi)] + g(b, y_{\xi(b, \bar{z}_b)} + \bar{z}_c(b, \bar{z}_b)) \right\}
\]

\[-B^* S^*_\alpha(b - t) \int_0^b (\kappa I + \Gamma^b_\alpha)^{-1} S_\alpha(b - s)f(s, y_{\xi(s, \bar{z}_s)} + \bar{z}_c(s, \bar{z}_s)) ds
\]

\[-B^* S^*_\alpha(b - t) \int_0^b (\kappa I + \Gamma^b_\alpha)^{-1} S_\alpha(b - s)\sigma(s, y_{\xi(s, \bar{z}_s)} + \bar{z}_c(s, \bar{z}_s)) dw(s). \]

Set \(\tilde{B}_0 = \{ z \in \tilde{B}, z_0 = 0 \in B \} \), and for any \(z \in \tilde{B}_0 \), we have

\[\| \tilde{z} \|_{\tilde{B}_0} = \| z_0 \|_B + \sup_{-\infty < s \leq b} (E \| x(s) \|^2)^{\frac{1}{2}} = \sup_{-\infty < s \leq b} (E \| x(s) \|^2)^{\frac{1}{2}}. \]

On the space \(\tilde{B}_0 \), consider a set \(B_q = \{ z \in \tilde{B}_0 : \| z \|_{\tilde{B}_0}^2 \leq q \} \) for some \(q \geq 0 \); then, for each \(q \), \(B_q \) is clearly a bounded closed convex set in \(\tilde{B}_0 \). For \(z \in B_q \), from Lemma 2.11, we see that

\[
\| \tilde{z}_t + y_t \|_B^2 \leq 2 \left(\| \tilde{z}_t \|_B^2 + \| y_t \|_B^2 \right)
\]

\[
\leq 4 \left(\mu^{\kappa^2} \sup_{0 \leq s \leq \max\{0, t\}} \int_{t \in Z(c) \cup J} E \| \tilde{z}(s) \|^2 + (\nu^* + \varphi^*)^2 \| \tilde{z}_0 \|_B^2 \right)
\]

\[
+ \mu^{\kappa^2} \sup_{0 \leq s \leq \max\{0, t\}} \int_{t \in Z(c) \cup J} E \| y(s) \|^2 + (\nu^* + \varphi^*)^2 \| y_0 \|_B^2 \right) \]

\[
\leq 4\mu^{\kappa^2} \left(q + \tilde{M}^2 E \| \phi(0) \|_B^2 \right) + 4(\nu^* + \varphi^*)^2 \| \phi \|_B^2. \]

Let \(\Phi: \tilde{B}_0 \rightarrow \tilde{B}_0 \) be the operator defined by \(\Phi z \) such that

\[
\Phi z(t) = \begin{cases}
0, & t \in (-\infty, 0]; \\
T_\alpha(t)g(0, \phi) - g(t, y_{\xi(t, \bar{z}_t)} + \bar{z}_c(t, \bar{z}_t)) + \int_0^t S_\alpha(t - s) Bu^\kappa(s) ds \\
+ \int_0^t S_\alpha(t - s)f(s, y_{\xi(s, \bar{z}_s)} + \bar{z}_c(s, \bar{z}_s)) ds \\
+ \int_0^t S_\alpha(t - s)\sigma(s, y_{\xi(s, \bar{z}_s)} + \bar{z}_c(s, \bar{z}_s)) dw(s), & t \in J.
\end{cases}
\]

Obviously, the operator \(\mathcal{P} \) has a fixed point if and only if \(\Phi \) has a fixed point. For the sake of convenience, we divide the proof into several steps.

Step 1 We show that, for each \(\kappa > 0 \), there exists a positive number \(q \) such that \(\Phi(B_q) \subset B_q \). If it is not true, then there exists \(\kappa > 0 \) such that for every \(q > 0 \) and \(t \in J \), there exists a function \(z^q(t) \in B_q \), but \(\Phi(z^q) \notin B_q \), that is, \(E \| (\Phi z^q)(t) \|^2_B > q \). For such \(\kappa > 0 \) and \(\bar{z} = z \) on
By Lemma 2.11 and assumptions (H1)-(H3), we have

\[I_1 = \mathbb{E} \left\| T_0(t)g(0, \phi) \right\|^2_{\mathcal{H}} + \mathbb{E} \left\| g(t, y_\varepsilon(t, \tilde{z}^y_{t})) + \tilde{z}^y_\varepsilon(t, \tilde{z}^y_{t}) \right\|^2_{\mathcal{H}} \leq \tilde{M}_2^2 M_g \left(1 + \| \phi \|^2_B \right) + \| y_\varepsilon(t, \tilde{z}^y_{t}) + \tilde{z}^y_\varepsilon(t, \tilde{z}^y_{t}) \|^2_B \]

(3.2)

\[J, \text{ we find that} \]

\[q \leq \mathbb{E} \left\| \Phi(z^y)(t) \right\|^2_{\mathcal{H}} \leq 5 \mathbb{E} \left\| T_0(t)g(0, \phi) \right\|^2_{\mathcal{H}} + 5 \mathbb{E} \left\| g(t, y_\varepsilon(t, \tilde{z}^y_{t})) + \tilde{z}^y_\varepsilon(t, \tilde{z}^y_{t}) \right\|^2_{\mathcal{H}}
+ 5 \mathbb{E} \left\| \int_0^t S_\alpha(t-s)B u^\varepsilon(s) ds \right\|^2_{\mathcal{H}} + 5 \mathbb{E} \left\| \int_0^t S_\alpha(t-s)f(s, y_\varepsilon(s, \tilde{z}^y_{s})) ds \right\|^2_{\mathcal{H}}
+ 5 \mathbb{E} \left\| \int_0^t S_\alpha(t-s)\sigma(s, y_\varepsilon(s, \tilde{z}^y_{s})) + \tilde{z}^y_\varepsilon(s, \tilde{z}^y_{s}) dw(s) \right\|^2_{\mathcal{H}}. \]

Further, by using (H1)-(H5), Hölder inequality, Eq.(3.1) and Lemma 2.11, we get

\[\mathbb{E} \left\| u^\varepsilon(s) \right\|_2 \leq \frac{1}{\kappa} M_b^2 b^{2\alpha} \tilde{M}_2^2 \left\{ 6 \mathbb{E} \tilde{b} + \int_0^b \tilde{\varphi}(s) dw(s) \right\}^2 + 6 \mathbb{E} \left\| T_0(b) \phi(0) \right\|^2
+ \mathbb{E} \left\| T_0(b)g(0, \phi) \right\|^2 + 6 \mathbb{E} \left\| g(b, y_\varepsilon(b, \tilde{z}_b)) + \tilde{z}_\varepsilon(b, \tilde{z}_b) \right\|^2
+ 6 \mathbb{E} \left\| \int_0^b S_\alpha(b-s) f(s, y_\varepsilon(s, \tilde{z}^y_{s})) ds \right\|^2_{\mathcal{H}} \]

(3.4)
Combining the estimates (3.2), (3.3) and (3.5) yields
\[q \leq 5 \tilde{M}_g^2 M_g \left(1 + \| \phi \|_{\mathcal{H}}^2 \right) + 5 M_g \left(1 + 4 \mu^2 (q + \tilde{M}_g^2 \mathbf{E} \| \phi(0) \|_{\mathcal{H}}^2) + 4(\nu^* + \varphi^*)^2 \| \phi \|_{\mathcal{H}}^2 \right) \\
+ 5 \tilde{M}_g^2 b^{2\alpha} \left(\frac{M_f}{\alpha^2} + \frac{M_g}{b(2\alpha - 1)} \right) + 5 \left(\tilde{M}_g^2 M_B^2 \right)^\frac{2}{\kappa^2} \left(\tilde{M}_g^2 M_B^2 \right)^\frac{b^{2\alpha}}{\kappa^2} \left[2 \left| \mathbf{E} \hat{e}_b \right|^2 + 2 \int_0^b \mathbf{E} \| \hat{\varphi}(s) \|^2 ds + \tilde{M}_g^2 M_g \left(1 + \| \phi \|_{\mathcal{H}}^2 \right) \right] \\
+ \tilde{M}_g^2 \| \phi \|_{\mathcal{H}}^2 + \tilde{M}_g^2 M_g \left(1 + \| \phi \|_{\mathcal{H}}^2 \right) + M_g \left(1 + 4 \mu^2 (q + \tilde{M}_g^2 \mathbf{E} \| \phi(0) \|_{\mathcal{H}}^2) + 4(\nu^* + \varphi^*)^2 \| \phi \|_{\mathcal{H}}^2 \right) \\
+ \tilde{M}_g^2 b^{2\alpha} \left(\frac{M_f}{\alpha^2} + \frac{M_g}{b(2\alpha - 1)} \right) \right]. \tag{3.6} \]

Dividing both sides of (3.6) by \(q \) and taking \(q \to \infty \), we obtain
\[
\left[4 M_g \mu^2 + 4 \mu^2 T \tilde{M}_g^2 \frac{b^{2\alpha}}{\kappa^2} \sup_{s \in J} \mathbf{m}(s) + 4 \mu^2 T \tilde{M}_g^2 \frac{b^{2\alpha}}{b(2\alpha - 1)} \sup_{s \in J} \mathbf{n}(s) \right] \\
\times \left[5 + 30 \left(\tilde{M}_g^2 M_B^2 \right)^\frac{2}{\kappa^2} \right] \geq 1,
\]
which is a contradiction by assumption (H6). Thus, for some \(q > 0 \), \(\Phi(B_q) \subset B_q \).

Step 2 We prove that for each \(\kappa > 0 \), the operator \(\Phi \) maps \(B_q \) into a relatively compact subset of \(B_q \). First we prove that the set \(V(t) = \{(\Phi z)(t) : z \in B_q\} \) is relatively compact in \(\mathcal{H} \) for every \(t \in J \). The case \(t = 0 \) is obvious.
For $0 < \epsilon < t \leq b$, we define an operator Φ^ϵ on B_q by

$$(\Phi^\epsilon z)(t) = T_\alpha(t)g(0, \phi) - g(t, y_{\epsilon(t, \bar{z}_1)} + \bar{z}_\epsilon(t, \bar{z}_1)) + S_\alpha(t - \epsilon)Bu^\epsilon(s)ds + S_\alpha(t - s - \epsilon)\sigma(s, y_{\epsilon(s, \bar{z}_1)} + \bar{z}_\epsilon(s, \bar{z}_1))dw(s).$$

Since $S_\alpha(t)$ is a compact operator, the set $V_\epsilon(t) = \{(\Phi^\epsilon z)(t) : z(.) \in B_q\}$ is relatively compact in \mathcal{H} for every $\alpha > 0$. Also, for every $z \in B_q$, we have

$$E\|\Phi z(t) - (\Phi^\epsilon z)(t)\|_\mathcal{H}^2 \
\leq 3E\left\| \int_{t-\epsilon}^t S_\alpha(t-s)Bu^\epsilon(s)ds \right\|_\mathcal{H}^2 + 3E\left\| \int_{t-\epsilon}^t S_\alpha(t-s)f(s, y_{\epsilon(s, \bar{z}_1)} + \bar{z}_\epsilon(s, \bar{z}_1))ds \right\|_\mathcal{H}^2 + 3E\left\| \int_{t-\epsilon}^t S_\alpha(t-s)\sigma(s, y_{\epsilon(s, \bar{z}_1)} + \bar{z}_\epsilon(s, \bar{z}_1))dw(s) \right\|_\mathcal{H}^2.$$
By assumptions \((H1), (H3)-(H5)\) and Hölder’s inequality, it follows that

\[
\begin{align*}
E\|(\Phi z)(t_2) - (\Phi z)(t_1)\|^2_\mathcal{H} & \leq 8M_g\|T_\alpha(t_2) - T_\alpha(t_1)\|^2 \left(1 + \|\phi\|^2_B\right) \\
+ & 8M_g \left(\|t_2 - t_1\|^2 + \|y_\epsilon(t_2, \tilde{z}_\epsilon) - y_\epsilon(t_1, \tilde{z}_\epsilon)\|\right) \\
+ & 8\tilde{M}_B^2M_\alpha^2(t_2 - t_1)\frac{\alpha}{\alpha} \int_{t_1}^{t_2} (t_2 - s)^{\alpha-1} E\|u^\kappa(s)\|^2 ds \\
+ & 8\epsilon M_B^2 \int_{t_1}^{t_2} (t_2 - s)^{\alpha-1} E\|u^\kappa(s)\|^2 ds \\
+ & 8\epsilon^2 M_B^2 \int_{t_1}^{t_2} (t_2 - s)^{\alpha-1} \left|m(s)\Xi_f(q') + n(s)\Xi_\sigma(q')\right| ds \\
+ & 8\tilde{M}_B^2(t_2 - t_1)^{\alpha} \int_{t_1}^{t_2} (t_2 - s)^{\alpha-1} \left|m(s)\Xi_f(q') + n(s)\Xi_\sigma(q')\right| ds.
\end{align*}
\]

Therefore, for \(\epsilon\) sufficiently small, the right-hand side of the above inequality tends to zero as \(t_1 \to t_2\), since the compactness of \(S_\alpha(t)\) implies the continuity in the uniform operator topology on \(J\). Thus, the set \(V = \{(\Phi z)(t) : z(\cdot) \in B_q\}\) is equicontinuous.

By using a procedure similar to that used in [2], we can easily prove that the map \(\Phi(\cdot)\) is continuous on \(B_q\) which completes the proof that \(\Phi(\cdot)\) is completely continuous. Hence from the Schauder fixed point theorem \(\Phi\) has a fixed point and consequently the equation (1) has a mild solution on \(J\).

\[\Box\]

Theorem 3.2 Assume that the assumptions of Theorem 3.1 hold and linear system (2.6) is approximately controllable on \(J\). In addition, the functions \(f, g\) and \(\sigma\) are uniformly bounded on their respective domains. Further, if \(S_\alpha(t)\) is compact, then the fractional control system (2.1) is approximately controllable on \(J\).

Proof Let \(x^\kappa(\cdot)\) be a fixed point of \(\Phi\) in \(B_q\). By using the stochastic Fubini theorem, it is easy to see that

\[
\begin{align*}
x^\kappa(b) &= \hat{x}_b - \kappa(\kappa I + \Gamma_s^b)^{-1} \left[E\hat{x}_b + \int_0^b \hat{\psi}(s)dw(s) - T_\alpha(b)[\phi(0) + g(0, \phi)] - g(b, x^\kappa_\epsilon(b, x^\kappa_\epsilon)) \right] \\
+ & \kappa \int_0^b (\kappa I + \Gamma_s^b)^{-1} S_\alpha(b-s)f(s, x^\kappa_\epsilon(s, x^\kappa_\epsilon)) ds \\
+ & \kappa \int_0^b (\kappa I + \Gamma_s^b)^{-1} S_\alpha(b-s)\sigma(s, x^\kappa_\epsilon(s, x^\kappa_\epsilon)) dw(s).
\end{align*}
\]

\[
(3.8)
\]
By the assumption on Theorem 3.2, we have
\[\|f(s, x_{c(s,x)}^\kappa)\|^2 + \|\sigma(s, x_{c(s,x)}^\kappa)\|^2 \leq N_1 \quad \text{and} \quad \|g(s, x_{c(s,x)}^\kappa)\|^2 \leq N_2. \]

If the linear system (2.6) is approximately controllable on every \([0, s], 0 \leq s \leq b\), then by Lemma 2.10, the approximate controllability of (2.6) is equivalent to convergence of the operator \(\kappa(\kappa I + \Gamma_b^\kappa)^{-1}\) to zero operator in the strong operator topology as \(\kappa \to 0^+\), and moreover \(\|\kappa(\kappa I + \Gamma_b^\kappa)^{-1}\| \leq 1\).

Then there is a subsequence denoted by \(\{f(s, x_{c(s,x)}^\kappa), \sigma(s, x_{c(s,x)}^\kappa)\}\) weakly converging to say \(\{f(s), \sigma(s)\}\). Thus, from the above equation, we have
\[
\mathbb{E}\|x^\kappa(b) - \hat{x}_b\|^2 \leq 7\|\kappa(\kappa I + \Gamma_b^\kappa)^{-1}[\mathbb{E}\hat{x}_b - T_\sigma(b)(\phi(0) + g(0, \phi))]\|^2
+ 7\mathbb{E}\left(\int_0^b \|\kappa(\kappa I + \Gamma_s^\kappa)^{-1}\dot{\varphi}(s)\|L_2^2 ds \right) + 7\mathbb{E}\|\kappa(\kappa I + \Gamma_b^\kappa)^{-1}g(b, x_{c(b,x)}^\kappa)\|^2
+ 7\mathbb{E}\left(\int_0^b \|\kappa(\kappa I + \Gamma_s^\kappa)^{-1}S_\sigma(b-s)[f(s, x_{c(s,x)}^\kappa) - f(s)]\|L_2^2 ds \right)^2
+ 7\mathbb{E}\left(\int_0^b \|\kappa(\kappa I + \Gamma_s^\kappa)^{-1}S_\sigma(b-s)[\sigma(s, x_{c(s,x)}^\kappa) - \sigma(s)]\|L_2^2 ds \right)^2
+ 7\mathbb{E}\left(\int_0^b \|\kappa(\kappa I + \Gamma_s^\kappa)^{-1}S_\sigma(b-s)\sigma(s)\|L_2^2 ds \right)^2.
\]

Using the Lebesgue dominated convergence theorem and the compactness of \(S_\sigma(t)\), we obtain \(\mathbb{E}\|x^\kappa(b) - \hat{x}_b\|^2 \to 0\) as \(\kappa \to 0^+\). This gives the approximate controllability of (1). Hence the proof is complete.

\[\square\]

The mathematical formulation of many physical phenomena contain integro-differential equations, these integro-differential equations arise in various applications such as viscoelasticity, heat equations, fluid dynamics, chemical kinetics and so on. Motivated by this consideration, in this paper we construct the fractional control system in the following integro-differential framework
\[
^cD_t^\alpha x(t) + g(t, x_{c(t,x)}^\alpha) = A x(t) + f(t, x_{c(t,x)}^\alpha) + \int_0^t G(t-s)x(s)ds + Bu(t)
+ \sigma(t, x_{c(t,x)}^\alpha) \frac{dw(t)}{dt},
\]
\[
(3.9)
\]
\[x_0 = \phi \in \mathcal{B}, \quad x'(0) = 0, \quad \alpha \in (0, 1), \quad t \in J := [0, b]\]

where \(A, (G(t))_{t \geq 0}\) are linear operators defined on Hilbert space \((\mathcal{H}, \| \cdot \|_\mathcal{H})\), and \(^cD_t^\alpha x(t)\) represent the Caputo derivative of order \(\alpha > 0\).

Further, we assume that the integro-differential abstract Cauchy problem
\[
^cD_t^\alpha x(t) = Ax(t) + \int_0^t G(t-s)x(s)ds
\]
\[x(0) = x_0, \quad x'(0) = 0, \quad \alpha \in (0, 1), \quad t \in J := [0, b], \quad \mathcal{B}\]

\[\square\]
has an associated α-resolvent operator of bounded linear operators $(\mathcal{S}_\alpha)_{t \geq 0}$ on \mathcal{H}.

One parameter family of bounded linear operators $(\mathcal{S}_\alpha)_{t \geq 0}$ on \mathcal{H} is called α-resolvent operator of (3.9) if the following conditions are verified.

1. The function $\mathcal{S}_\alpha(\cdot) : \mathbb{R}_+ \to \mathcal{L}(\mathcal{H})$ is strongly continuous and $\mathcal{S}_\alpha(0)x = x$ for all $x \in \mathcal{H}$ and $\alpha \in (0, 1)$.
2. For all $x \in \mathcal{D}(A)$, $x \in \mathcal{C}(\mathbb{R}_+, [\mathcal{D}(A)]) \cap \mathcal{C}'((0, \infty), \mathcal{H})$ and

\[
^cD_t^\alpha \mathcal{S}_\alpha(t)x = A\mathcal{S}_\alpha(t)x + \int_0^t G(t - s)\mathcal{S}_\alpha(s)xds
\]

\[
^cD_t^\alpha \mathcal{S}_\alpha(t)x = \mathcal{S}_\alpha(t)Ax + \int_0^t \mathcal{S}_\alpha(t - s)G(s)xds,
\]

for every $t \geq 0$.

Definition 3.3 Let $\alpha \in (0, 1)$, we define the family $\mathcal{S}_\alpha(t)$ by $\mathcal{S}_\alpha(t)x := \int_0^t \hat{J}_{\alpha - 1}(t - s)\mathcal{S}_\alpha(s)xds$, $x \in \mathcal{H}$ and $\hat{J}_0(t) = \Gamma(\eta), \eta \geq 0, t > 0$ and Γ is the gamma function.

Definition 3.4 An \mathcal{F}_t-adapted stochastic process $x : (\infty, b] \to \mathcal{H}$ is called a mild solution of the system (14) on J if $x_0 = \Phi_0$, $x_{z(t,x)} \in \mathcal{B, x_J} \in \mathcal{C}(J, \mathcal{H})$ and

\[
x(t) = \mathcal{S}_\alpha(t)g(0, \phi) - g(t, x_{z(t,x)}(t)) + \int_0^t \mathcal{S}_\alpha(t - s)Bu(s)ds
\]

\[+ \int_0^t \mathcal{S}_\alpha(t - s)f(s, y_{z(t,x)}(s), \bar{z}_{z(s,z)}(s))ds + \int_0^t \mathcal{S}_\alpha(t - s)\sigma(s, y_{z(t,x)}(s), \bar{z}_{z(s,z)}(s))dw(s), \quad t \in J.
\]

Theorem 3.5 Let the assumptions (H1)-(H6) hold, $Z(\cdot) \in \mathcal{C}((0, b]; L(\mathcal{H}))$ and $\mathcal{S}_\alpha(t)$ is compact. Further, if the linear system corresponding to (3.8) is approximately controllable on J, then the system (3.8) is approximately controllable.

Proof For all $\kappa > 0$, define the operator $\hat{\Phi}_z : \hat{\mathbb{B}}_0 \to \hat{\mathbb{B}}_0$ by $\hat{\Phi}_z$ such that

\[
\hat{\Phi}_z(t) = \begin{cases}
0, & t \in (-\infty, 0];
\mathcal{S}_\alpha(t)g(0, \phi) - g(t, \bar{z}_{z(t,x)}(t)) + \int_0^t \mathcal{S}_\alpha(t - s)Bu(s)ds
\end{cases}
\]

\[+ \int_0^t \mathcal{S}_\alpha(t - s)f(s, y_{z(t,x)}(s), \bar{z}_{z(s,z)}(s))ds
\]

\[+ \int_0^t \mathcal{S}_\alpha(t - s)\sigma(s, y_{z(t,x)}(s), \bar{z}_{z(s,z)}(s))dw(s), \quad t \in J,
\]

where $y_0 = \Phi, z : J \to \mathcal{H}$ and $\mathcal{S}_\alpha(t)$ is compact for $t \in J$. If we set $z(0) = 0$, and

\[
u^\kappa(t) = B^\kappa \mathcal{S}_\alpha(b - t)\left(\kappa \hat{I} + \Gamma_0^b\right)^{-1}
\]

\[\times \left\{ \mathbb{E} \tilde{x}_b + \int_0^b \hat{\Phi}(s)dw(s) - \mathcal{S}_\alpha(b)[\phi(0) + g(0, \phi)] + g(b, y_{z(b,\bar{z})} + \bar{z}_{z(b,\bar{z})})\right\}
\]

\[\left[-B^\kappa \mathcal{S}_\alpha(b - t) \mathcal{S}_\alpha(b - s) \mathcal{S}_\alpha(b - s) f(s, y_{z(s,\bar{z})} + \bar{z}_{z(s,\bar{z})})ds
\]

\[\left[-B^\kappa \mathcal{S}_\alpha(b - t) \mathcal{S}_\alpha(b - s) \mathcal{S}_\alpha(b - s) \sigma(s, y_{z(s,\bar{z})} + \bar{z}_{z(s,\bar{z})})dw(s).\right]
\]
One can easily show that the operator $\tilde{\Phi}$ has a fixed point by employing the technique used in Theorem 3.1 with some changes. Further, in order to prove the approximate controllability result, we assume that the functions g, f and σ are continuous and uniformly bounded. The proof of this theorem is similar to that of Theorem 3.2, and hence it is omitted. \hfill \Box

§4. An Example

Consider the following fractional stochastic partial differential equation with state-dependent delay and control of the form

$$\mathcal{C}D_\alpha^t \left[z(t, y) + \int_{-\infty}^t H(s-t)z(s-\varepsilon_1(t)\varepsilon_2(||z(t)||), y)ds \right] = \frac{\partial^2}{\partial y^2} z(t, y) + \int_{-\infty}^t H(s-t)z(s-\varepsilon_1(t)\varepsilon_2(||z(t)||), y)ds + \mu(t, y)$$

$$+ \int_{-\infty}^t K(s-t)z(s-\varepsilon_1(t)\varepsilon_2(||z(t)||), y)ds$$

$$+ \left[\int_{-\infty}^t V(s-t)z(s-\varepsilon_1(t)\varepsilon_2(||z(t)||), y)ds \right] \frac{d\beta(t)}{dt},$$

$$z(t, 0) = z(t, \pi) = 0, \quad t \in [0, 1], \quad z(\theta, y) = \phi(\theta, y), \quad \theta \leq 0, \quad y \in [0, \pi],$$

where $\beta(t)$ is a standard cylindrical Wiener process in \mathcal{H} defined on a stochastic space $(\Omega, \{\mathcal{F}_t\}, \mathcal{F}, \mathbb{P})$; $\mathcal{C}D_\alpha^t$ is the Caputo fractional derivative of order $0 < \alpha < 1$. To represent this system in the abstract form, we consider the spaces $\mathcal{H} = \mathcal{U} = L^2[0, \pi]$ and $\mathcal{B} = C_0 \times L^2(h, \mathcal{H})$ ($h : (-\infty, -r] \to \mathbb{R}$ be a positive function). We define the operator A by $Az = z''$ with the domain

$$\mathcal{D}(A) = \{z \in \mathcal{H}; z, z' \text{ are absolutely continuous}, \quad z'' \in \mathcal{H} \text{ and } z(0) = z(\pi) = 0\}.$$

Then A generates a strongly continuous semigroup $(S(t))_{t \geq 0}$ which is compact. Now we introduce the functions $g(t, \xi)(y) = \int_{-\infty}^0 a(-s)\xi(s, y)ds$ $f(t, \xi)(y) = \int_{-\infty}^0 \tilde{a}(-s)\xi(s, y)ds$ and $\sigma = (t, \xi)(y) = \int_{-\infty}^0 \tilde{a}(-s)\xi(s, y)ds$, here $\varepsilon(s, y) = \varepsilon_1(s)\varepsilon_2(||\xi(0)||)$. Further, define the bounded linear operator $B : \mathcal{U} \to \mathcal{H}$ by $Bu(t)(y) = \mu(t, y), \quad 0 \leq y \leq \pi, u \in \mathcal{U}$, where $\mu : [0, 1] \times [0, \pi] \to [0, \pi]$ is continuous. On the other hand, the linear system corresponding to (4.1) is approximately controllable (but not exactly controllable). Then, the system (4.1) can be written in the abstract form of (2.1) and all the conditions of Theorem 3.2 are satisfied. Further, if we impose suitable conditions on g, f, σ and B to verify assumptions of Theorem 3.2, then we can conclude that the fractional control system (16) is approximately controllable on $[0, b]$.

Acknowledgement

This work was supported by The National Agency of Development of University Research (ANDRU), Algeria (PNR-SMA 2011-2014).
References

A Note on Minimal Dominating Signed Graphs

P.Siva Kota Reddy

(Department of Mathematics, Siddaganga Institute of Technology, B. H. Road, Tumkur-572 103, India)

B.Prashanth

(Department of Mathematics, Acharya Institute of Technology, Soladevanahalli, Bangalore-560 090, India)

E-mail: redy_math@yahoo.com, pskreddy@sit.ac.in

Abstract: In this note, we study minimal dominating signed graphs and obtain structural characterization of minimal dominating signed graphs. Further, we characterize signed graphs S for which $MD(S) \sim CMD(S)$, where \sim denotes switching equivalence and $MD(S)$ and $CMD(S)$ are denotes the minimal dominating signed graph and common minimal dominating signed graph of S respectively.

Key Words: Signed graphs, balance, switching, complement, minimal dominating signed graphs, common minimal signed graphs, negation.

AMS(2010): 05C22

§1. Introduction

For standard terminology and notion in graph theory we refer the reader to Harary [5]; the non-standard will be given in this paper when required. We treat only finite simple graphs without self loops and isolates.

A signed graph is an ordered pair $S = (S^u, \sigma)$, where S^u is a graph $G = (V, E)$, called the underlying graph of S and $\sigma : E \rightarrow \{+,-\}$ is a function from the edge set E of S^u into the set $\{+,-\}$, called the signature (or sign in short) of S. Alternatively, the signed graph can be written as $S = (V, E, \sigma)$, with V, E, σ in the above sense. Let $E^+(S) = \{e \in E : \sigma(e) = +\}$ and $E^-(S) = \{e \in E : \sigma(e) = -\}$. The elements of $E^+(S)$ and $E^-(S)$ are called positive and negative edges of S, respectively. A signed graph is all-positive (respectively, all-negative) if all its edges are positive (negative).

A cycle in a signed graph S is said to be positive if it contains an even number of negative edges. A given signed graph S is said to be balanced if every cycle in S is positive (see [6]). In a signed graph $S = (S^u, \sigma)$, for any $A \subseteq E$ the sign $\sigma(A)$ is the product of the signs on the edges of A. For more new notions on signed graphs refer the papers ([11, 12, 15, 16], [18]-[24]).

A marked signed graph is an ordered pair $S_{\mu} = (S, \mu)$, where $S = (S^u, \sigma)$ is a signed graph and $\mu : V(S^u) \rightarrow \{+,-\}$ is a function from the vertex set $V(S^u)$ of S^u into the set $\{+,-\}$,

\[\text{Received August 22, 2013, Accepted November 28, 2013.} \]
called a \textit{marking} of S. In particular, σ induces a unique marking μ_σ defined by

$$\mu_\sigma(v) = \prod_{e \in E_v} \sigma(e),$$

where E_v is the set of edges incident at v in S, is called the \textit{canonical marking} of S. We shall denote by M_S the set of all markings of S. A signed graph S together with one of its markings μ is denoted by S_μ.

The following characterization of balanced signed graphs is well known.

\textbf{Proposition 1.1 (E. Sampathkumar [14])} A signed graph $S = (G, \sigma)$ is balanced if, and only if, there exists a marking μ of its vertices such that each edge uv in S satisfies $\sigma(uv) = \mu(u)\mu(v)$.

Given a marking μ of S, by switching S with respect to μ we mean changing the sign of every edge of S to its opposite whenever its end vertices are of opposite signs in S_μ. The signed graph obtained in this way is denoted by $S_\mu(S)$ and is called the μ-switched signed graph or just switched signed graph when the marking is clear from the context (Sampthkumar et al. [17]).

We say that signed graph S_1 \textit{switches to} signed graph S_2 (or that they are \textit{switching equivalent} to each other), written as $S_1 \sim S_2$, whenever there exists $\mu \in M_S$ such that $S_\mu(S_1) \cong S_2$, where “\cong” denotes the isomorphism between any two signed graphs in the standard sense. Note that $S_1 \sim S_2$ implies that $(S_1)^u \cong (S_2)^u$.

Two signed graphs $S_1 = (G, \sigma)$ and $S_2 = (G', \sigma')$ are said to be \textit{weakly isomorphic} (see [26]) or \textit{cycle isomorphic} (see [28]) if there exists an isomorphism $f : G \rightarrow G'$ such that the sign of every cycle Z in S_1 equals to the sign of $f(Z)$ in S_2. The following result will also be useful in our further investigation.

\textbf{Proposition 1.2 (T. Zaslavsky [28])} Two signed graphs S_1 and S_2 with the same underlying graph are switching equivalent if, and only if, they are cycle isomorphic.

In [17], the authors introduced the switching and cycle isomorphism for signed digraphs.

\textbf{§2. Minimal Dominating Signed Graph}

Mathematical study of domination in graphs began around 1960, there are some references to domination-related problems about 100 years prior. In 1862, de Jaenisch [3] attempted to determine the minimum number of queens required to cover an $n \times n$ chess board. In 1892, W. W. Rouse Ball [13] reported three basic types of problems that chess players studied during that time.

The study of domination in graphs was further developed in the late 1950s and 1960s, beginning with Berge [1] in 1958. Berge wrote a book on graph theory, in which he introduced the “coefficient of external stability”, which is now known as the domination number of a graph. Oystein Ore [10] introduced the terms “dominating set” and “domination number” in his book on graph theory which was published in 1962. The problems described above were studied
in more detail around 1964 by brothers Yaglom and Yaglom [27]. Their studies resulted in solutions to some of these problems for rooks, knights, kings, and bishops. A decade later, Cockayne and Hedetniemi [2] published a survey paper, in which the notation $\gamma(G)$ was first used for the domination number of a graph G. Since this paper was published, domination in graphs has been studied extensively and several additional research papers have been published on this topic.

Let $G = (V, E)$ be a graph. A set $D \subseteq V$ is a dominating set of G, if every vertex in $V - D$ is adjacent to some vertex in D. A dominating set D of G is minimal, if for any vertex $v \in D$, $D - \{v\}$ is not a dominating set of G (See, Ore [10]).

Let S be a finite set and $F = \{S_1, S_2, ..., S_n\}$ be a partition of S. Then the intersection graph $\Omega(F)$ of F is the graph whose vertices are the subsets in F and in which two vertices S_i and S_j are adjacent if and only if $S_i \cap S_j \neq \emptyset$, $i \neq j$.

Kulli and Janakiram [8] introduced a new class of intersection graphs in the field of domination theory. The minimal dominating graph $MD(G)$ of a graph G is the intersection graph defined on the family of all minimal dominating sets of vertices in G.

We now extend the notion of $MD(G)$ to the realm of signed graphs. The minimal dominating signed graph $MD(S)$ of a signed graph $S = (S^u, \sigma)$ is a signed graph whose underlying graph is $MD(G)$ and sign of any edge PQ in $MD(S)$ is $\mu(P)\mu(Q)$, where μ is the canonical marking of S, P and Q are any two minimal dominating sets of vertices in S^u. Further, a signed graph $S = (G, \sigma)$ is called minimal dominating signed graph, if $S \cong MD(S')$ for some signed graph S'. In this paper we will give a structural characterization of which signed graphs are common minimal dominating signed graph. The following result indicates the limitations of the notion $CMD(S)$ introduced above, since the entire class of unbalanced signed graphs is forbidden to be minimal dominating signed graphs.

Proposition 2.1 For any signed graph $S = (G, \sigma)$, its minimal dominating signed graph $MD(S)$ is balanced.

Proof Since sign of any edge PQ in $MD(S)$ is $\mu(P)\mu(Q)$, where μ is the canonical marking of S, by Proposition 1.1, $MD(S)$ is balanced. \hfill \square

For any positive integer k, the k^{th} iterated minimal dominating signed graph $MD(S)$ of S is defined as follows:

$$MD^0(S) = S, MD^k(S) = MD(MD^{k-1}(S))$$

Corollary 2.2 For any signed graph $S = (G, \sigma)$ and any positive integer k, $MD^k(S)$ is balanced.

Proposition 2.3 For any two signed graphs S_1 and S_2 with the same underlying graph, their minimal dominating signed graphs are switching equivalent.

Proof Suppose $S_1 = (S_1^u, \sigma)$ and $S_2 = (S_2^u, \sigma')$ be two signed graphs with $S_1^u \cong S_2^u$. By Proposition 2.1, $MD(S_1)$ and $MD(S_2)$ are balanced and hence, the result follows from Proposition 1.2. \hfill \square
In [25], the authors introduced the notion common minimal dominating signed graph of a signed graph as follows:

A common minimal dominating signed graph \(\text{CMD}(S) \) of a signed graph \(S = (G, \sigma) \) is such a signed graph whose underlying graph is \(\text{CMD}(G) \) and sign of any edge \(uv \) in \(\text{CMD}(S) \) is \(\mu(u)\mu(v) \), where \(\mu \) is the canonical marking of \(S \).

The following result restricts the class of minimal dominating graphs.

Proposition 2.4 For any signed graph \(S = (G, \sigma) \), its common minimal dominating signed graph \(\text{CMD}(S) \) is balanced.

We now characterize the signed graphs whose minimal dominating signed graphs and common minimal dominating signed graphs are switching equivalent. In case of graphs the following result is due to Kulli and Janakiram [9]:

Proposition 2.5 (Kulli and Janakiram [9]) If \(G \) is a \((p-3)\)-regular graph and every minimal dominating set of \(G \) is independent, then \(\text{MD}(G) \cong \text{CMD}(G) \).

Proposition 2.6 For any signed graph \(S = (G, \sigma) \), \(\text{MD}(S) \sim \text{CMD}(S) \) if, and only if, \(G \) is a \((p-3)\)-regular graph and every minimal dominating set of \(G \) is independent.

Proof Suppose \(\text{MD}(S) \sim \text{CMD}(S) \). This implies, \(\text{MD}(G) \cong \text{CMD}(G) \) and hence by Proposition 2.5, we see that the graph \(G \) must be \((p-3)\)-regular graph and every minimal dominating set of \(G \) is independent.

Conversely, suppose that \(G \) is \((p-3)\)-regular graph and every minimal dominating set of \(G \) is independent. Then \(\text{MD}(G) \cong \text{CMD}(G) \) by Proposition 2.5. Now, if \(S \) is a signed graph with underlying graph as \((p-3)\)-regular graph and every minimal dominating set of \(G \) is independent, by Propositions 2.1 and 2.4, \(\text{MD}(S) \) and \(\text{CMD}(S) \) are balanced and hence, the result follows from Proposition 1.2.

The notion of negation \(\eta(S) \) of a given signed graph \(S \) defined in [7] as follows:

\(\eta(S) \) has the same underlying graph as that of \(S \) with the sign of each edge opposite to that given to it in \(S \). However, this definition does not say anything about what to do with nonadjacent pairs of vertices in \(S \) while applying the unary operator \(\eta(\cdot) \) of taking the negation of \(S \).

Proposition 2.6 provides easy solutions to other signed graph switching equivalence relations, which are given in the following result.

Corollary 2.7 For any signed graph \(S = (G, \sigma) \), \(\text{MD}(\eta(S)) \sim \text{CMD}(\eta(S)) \) (or \(\text{MD}(S) \sim \text{CMD}(\eta(S)) \) or \(\text{MD}(\eta(S)) \sim \text{CMD}(\eta(S)) \)) if, and only if, \(G \) is a \((p-3)\)-regular graph and every minimal dominating set of \(G \) is independent.

For a signed graph \(S = (G, \sigma) \), the \(\text{MD}(S) \) is balanced (Proposition 2.1). We now examine, the conditions under which negation of \(\text{MD}(S) \) is balanced.
Proposition 2.8 Let \(S = (G, \sigma) \) be a signed graph. If \(MD(G) \) is bipartite then \(\eta(MD(S)) \) is balanced.

Proof Since, by Proposition 2.1, \(MD(S) \) is balanced, each cycle \(C \) in \(MD(S) \) contains even number of negative edges. Also, since \(MD(G) \) is bipartite, all cycles have even length; thus, the number of positive edges on any cycle \(C \) in \(MD(S) \) is also even. Hence \(\eta(MD(S)) \) is balanced. \(\square \)

§3. Characterization of Minimal Dominating Signed Graphs

The following result characterize signed graphs which are minimal dominating signed graphs.

Proposition 3.1 A signed graph \(S = (G, \sigma) \) is a minimal dominating signed graph if, and only if, \(S \) is balanced signed graph and its underlying graph \(G \) is a \(MD(G) \).

Proof Suppose that \(S \) is balanced and its underlying graph \(G \) is a minimal dominating graph. Then there exists a graph \(H \) such that \(MD(H) \cong G \). Since \(S \) is balanced, by Proposition 1.1, there exists a marking \(\mu \) of \(G \) such that each edge \(uv \) in \(S \) satisfies \(\sigma(uv) = \mu(u)\mu(v) \). Now consider the signed graph \(S' = (H, \sigma') \), where for any edge \(e \) in \(H \), \(\sigma'(e) \) is the marking of the corresponding vertex in \(G \). Then clearly, \(MD(S') \cong S \). Hence \(S \) is a common dominating signed graph.

Conversely, suppose that \(S = (G, \sigma) \) is a minimal dominating signed graph. Then there exists a signed graph \(S' = (H, \sigma') \) such that \(MD(S') \cong S \). Hence by Proposition 2.1, \(S \) is balanced. \(\square \)

References

A Note on Minimal Dominating Signed Graphs

Number of Spanning Trees for Shadow of Some Graphs

S.N. Daoud

Department of Mathematics, Faculty of Science, El-Minufiya University, Shebeen El-Kom, Egypt)

K.M. Mohamed

(Deartment of Mathematics, Faculty of Science, New Valley, Assuit University, Egypt)

E-mail: sa__ndaoud@yahoo.com, kamel16@yahoo.com

Abstract: In mathematics, one always tries to get new structures from given ones. This also applies to the realm of graphs, where one can generate many new graphs from a given set of graphs. In this paper we derive simple formulas of the complexity, number of spanning trees of shadow of some graphs, using linear algebra, Chebyshev polynomials and matrix analysis techniques.

Key Words: Complexity of graphs, number of spanning trees, shadow graphs, Chebyshev polynomials.

AMS(2010): 05C05, 05C50

§1. Introduction

In this work we deal with simple and finite undirected graphs $G = (V, E)$, where V is the vertex set and E is the edge set. For a graph G, a spanning tree in G is a tree which has the same vertex set as G. The number of spanning trees in G, also called, the complexity of the graph, denoted by $\tau(G)$, is a well-studied quantity (for long time). A classical result of Kirchhoff [16] can be used to determine the number of spanning trees for $G = (V, E)$. Let $V = \{v_1, v_2, \ldots, v_n\}$, then the Kirchhoff matrix H defined as $n \times n$ characteristic matrix $H = D - A$, where D is the diagonal matrix of the degrees of G and A is the adjacency matrix of G, $H = [a_{ij}]$ defined as follows:

(1) $a_{ij} = -1, v_i$ and v_j are adjacent and $i \neq j$;
(2) a_{ij} equals the degree of vertex v_i if $i = j$, and
(3) $a_{ij} = 0$ otherwise. All of co-factors of H are equal to $\tau(G)$.

There are other methods for calculating $\tau(G)$. Let $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_p$ denote the eigenvalues of H matrix of a p point graph. Then it is easily shown that $\mu_p = 0$. Furthermore, Kelmans and Chelnokov [15] shown that $\tau(G) = 1/p \prod_{k=1}^{p-1} \mu_k$. The formula for the number of
spanning trees in a d-regular graph G can be expressed as
$$
\tau(G) = 1/p \prod_{k=1}^{p-1} (d - \lambda_k)
$$
where $\lambda_0 = d, \lambda_1, \lambda_2, \ldots, \lambda_{p-1}$ are the eigenvalues of the corresponding adjacency matrix of the graph. However, for a few special families of graphs there exists simple formulas that make it much easier to calculate and determine the number of corresponding spanning trees especially when these numbers are very large. One of the first such result is due to Cayley [3] who showed that complete graph on n vertices, K_n has n^{n-2} spanning trees that he showed $\tau(K_n) = n^{n-2}$, $n \geq 2$. Another result, $\tau(K_{p,q}) = p^{q-1}q^{p-1}$, $p, q \geq 1$, where $K_{p,q}$ is the complete bipartite graph with bipartite sets containing p and q vertices, respectively. It is well known, as in e.g.,([4],[18]). Another result is due to Sedlacek [19] who derived a formula for the wheel on $n+1$ vertices, W_{n+1}, he showed that $\tau(W_{n+1}) = (3 + \sqrt{5})/2n + (3 - \sqrt{5})n - 2$ for $n \geq 3$. Sedlacek [20] also later derived a formula for the number of spanning trees in a Mobius ladder. The Mobius ladder M_n, $\tau(M_n) = \frac{n}{2}[[2 + \sqrt{3}]^n + (2 - \sqrt{3})^n + 2]$ for $n \geq 2$. Another class of graphs for which an explicit formula has been derived is based on a prism. Boesch, et al.[1] and [2]. Douad,(5-14) later derived formulas for the number of spanning trees for many graphs. Now, we can introduce the following lemma:

Lemma 1.1([5]) $\tau(G) = \frac{1}{n^2} \det (nI - \bar{D} + \bar{A})$, where \bar{A}, \bar{D} are the adjacency and degree matrices of \bar{G}, the complement of G, respectively and I is the $n \times n$ unit matrix.

The advantage of these formula is to express $\tau(G)$ directly as a determinant rather than in terms of cofactors as in Kirchhoff theorem or eigenvalues as in Kelmans and Chelnokov formula.

§2. Chebyshev Polynomials

In this section we introduce some relations concerning Chebyshev polynomials of the first and second kind which we use it in our computations. We begin from their definitions, Yuanping, et al. [21].

Let $A_n(x)$ be $n \times n$ matrix such that

$$
A_n(x) = \begin{pmatrix}
2x & -1 & 0 \\
-1 & 2x & -1 & 0 \\
& 0 & \ddots & \ddots \\
& & \ddots & \ddots & -1 \\
& & & 0 & -1 & 2x
\end{pmatrix},
$$

where all other elements are zeros. Further we recall that the Chebyshev polynomials of the first kind are defined by

$$
T_n(x) = \cos (n \arccos x).
$$

The Chebyshev polynomials of the second kind are defined by

$$
U_{n-1}(x) = \frac{1}{n} \frac{d}{dx} T_n(x) = \frac{\sin (n \arccos x)}{\sin (\arccos x)}.
$$
It is easily verified that
\[U_n(x) - 2xU_{n-1}(x) + U_{n-2}(x) = 0 . \]
(2.3)

It can then be shown from this recursion that by expanding \(\det A_n(x) \) one gets
\[U_n(x) = \det (A_n(x)), \quad n \geq 1 . \]
(2.4)

Furthermore, by using standard methods for solving the recursion (2.3), one obtains the explicit formula
\[U_n(x) = \frac{1}{2\sqrt{x^2 - 1}}[(x + \sqrt{x^2 - 1})^{n+1} - (x - \sqrt{x^2 - 1})^{n+1}], \quad n \geq 1, \]
(2.5)

where the identity is true for all complex \(x \) (except at \(x = \pm 1 \) where the function can be taken as the limit). The definition of \(U_n(x) \) easily yields its zeros and it can therefore be verified that
\[U_{n-1}(x) = 2n^{-1} \prod_{j=1}^{n-1} (x - \cos(\frac{j\pi}{n})). \]

One further notes that
\[U_{n-1}(-x) = (-1)^{n-1}U_{n-1}(x) \]

These two results yield another formula for \(U_n(x) \),
\[U_{n-1}^2(x) = 4^{n-1} \prod_{j=1}^{n-1} (x^2 - \cos^2(\frac{j\pi}{n})). \]

Finally, simple manipulation of the above formula yields the following, which also will be extremely useful to us latter:
\[U_{n-1}^2(\sqrt{\frac{x + 2}{4}}) = \prod_{j=1}^{n-1} (x - 2\cos(\frac{2j\pi}{n})). \]

Furthermore one can show that
\[U_{n-1}^2(x) = \frac{1}{2(1 - x^2)}[1 - T_{2n}] = \frac{1}{2(1 - x^2)}[1 - T_n(2x^2 - 1)]. \]

and
\[T_n(x) = \frac{1}{2}[(x + \sqrt{x^2 - 1})^n + (x - \sqrt{x^2 - 1})^n]. \]

Now let \(B_n(x), C_n(x), D_n(x) \) and \(E_n(x) \) be \(n \times n \) matrices.

Lemma 2.1([18])

(i)
\[
B_n(x) = \begin{pmatrix}
 x & -1 & 0 \\
 -1 & 1 + x & -1 & 0 \\
 0 & \ddots & \ddots & \ddots & 0 \\
 \ddots & \ddots & -1 & x + 1 & -1 \\
 0 & \ddots & -1 & x & 1 \\
\end{pmatrix} \implies \det (B_n(x)) = (x - 1)U_{n-1}(\frac{1 + x}{2}).
\]
Lemma 2.2([17]) Let $A \in F^{n \times n}$, $B \in F^{n \times m}$, $C \in F^{m \times n}$ and $D \in F^{m \times m}$ and assume that D is nonsingular matrix. Then

$$\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = (-1)^m \det (A - BD^{-1}C) \det D.$$

This formula gives some sort of symmetry in some matrices which facilitates our calculation of determinants.

§3. Complexity of Some Graphs

A shadow graph $D_2(G)$ of a graph G is obtained by taking two copies of G say G_1 and G_2 and join each vertex u_i in G_1 to the neighbors of the corresponding vertex v_i in G_2.
Theorem 3.1 Let P_n be a path graph of order n. Then

$$\tau(D_2(P_n)) = 2^{3n-4}; n \geq 2.$$

Proof Applying Lemma 1.1, we have

$$\tau(D_2(P_n)) = \frac{1}{(2n)^2} \det(2nI - \bar{D} + \bar{A})$$

$$= \frac{1}{(2n)^2} \det \begin{pmatrix} 3 & 0 & 1 & \cdots & 1 & 1 & 0 & 1 & \cdots & 1 \\ 1 & 5 & 0 & \ddots & \vdots & 0 & \ddots & \ddots & \ddots & \ddots \\ 1 & \ddots & \ddots & \ddots & \vdots & 1 & \ddots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 1 & \ddots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 1 & \ddots & \ddots & \ddots & \ddots \\ 1 & \cdots & 1 & 0 & 3 & 1 & \cdots & \cdots & \cdots & 0 & 1 \\ 1 & 0 & 1 & \cdots & 1 & 3 & 0 & 1 & \cdots & 1 \\ 0 & \cdots & \cdots & \cdots & \vdots & 0 & 5 & 0 & \ddots & \ddots & \ddots \\ 1 & \ddots & \ddots & \ddots & \vdots & 1 & \ddots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 1 & \ddots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 1 & \ddots & \ddots & \ddots & \ddots \\ 1 & \cdots & 1 & 0 & 1 & 1 & \cdots & 1 & 0 & 3 \\ \end{pmatrix}$$

$$= \frac{1}{(2n)^2} \det \begin{pmatrix} A & B \\ B & A \end{pmatrix} = \frac{1}{(2n)^2} \det(A + B) \cdot \det(A - B), (AB = BA).$$

A straightforward induction using properties of determinants and above mentioned definition of Chebyshev polynomial in Lemma 2.1, we have

$$\tau(D_2(P_n)) = \frac{1}{(2n)^2} \det \begin{pmatrix} 4 & 0 & 2 & \cdots & 2 \\ 0 & 6 & 0 & \ddots & \ddots \\ 2 & 0 & \ddots & \ddots & 2 \\ \vdots & \ddots & \ddots & \ddots & 6 \\ 2 & \cdots & 2 & 0 & 4 \end{pmatrix} \times \det \begin{pmatrix} 2 & 0 & \cdots & \cdots & 0 \\ 0 & 4 & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots & 4 \\ 0 & \cdots & \cdots & 0 & 2 \end{pmatrix}$$

$$= \frac{1}{(2n)^2} \times 2^n n^2 \times 2^2 \times 4^{n-2} = 2^{3n-4}. \Box$$

Theorem 3.2 Let C_n be a cycle graph of order n. Then

$$\tau(D_2(C_n)) = n2^{3n-2}, n \geq 3.$$
Applying Lemma 1.1, we have

\[\tau(D_2(C_n)) = \frac{1}{(2n)^2} \det(2nI - \bar{D} + \bar{A}) \]

\[= \frac{1}{(2n)^2} \det \begin{pmatrix} 5 & 0 & 1 & \cdots & 1 & 0 & 1 & \cdots & 1 & 0 \\ 0 & \ddots \\ \vdots & \ddots \\ 1 & \ddots \\ \vdots & \ddots \\ 1 & \ddots \\ 0 & 1 & \cdots & 1 & 0 & 5 & 0 & 1 & \cdots & 0 & 1 \\ 1 & 0 & 1 & \cdots & 1 & 0 & 5 & 0 & 1 & \cdots & 1 & 0 \\ 0 & \ddots \\ 1 & \ddots \\ \vdots & \ddots \\ 1 & \ddots \\ 0 & 1 & \cdots & 1 & 0 & 1 & 0 & 1 & \cdots & 1 & 0 & 5 \end{pmatrix} \]

\[= \frac{1}{(2n)^2} \det \begin{pmatrix} A & B \\ B & A \end{pmatrix} = \frac{1}{(2n)^2} \det(A + B) \cdot \det(A - B), (AB = BA). \]

A straightforward induction using properties of determinants and above mentioned definition of Chebyshev polynomial in Lemma 2.1, we have

\[\tau(D_2(C_n)) = \frac{1}{(2n)^2} \times 2^n n^3 \times 4^n = n2^{3n-2}. \]

\[\square \]

Theorem 3.3 Let \(K_n \) be a complete graph of order \(n \). Then

\[\tau(D_2(K_n)) = 2^{2n-2} n^{n-2} (n - 1)^n, n \geq 2. \]

Proof Applying Lemma 1.1, we have

\[\tau(D_2(K_n)) = \frac{1}{(2n)^2} \det(2nI - \bar{D} + \bar{A}) = \frac{1}{(2n)^2} \det \begin{pmatrix} A & I \\ I & A \end{pmatrix} \]

\[= \frac{1}{(2n)^2} \det(A + I) \times \det(A - I), \]

where

\[A = \begin{pmatrix} 2n - 1 & 0 & \cdots & \cdots & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\ 0 & \cdots & \cdots & \cdots & 0 & 2n - 1 \end{pmatrix} \]
Thus,

\[
\tau(D_2(K_n)) = \frac{1}{(2n)^2} \det \begin{pmatrix} 2n & 0 & \cdots & \cdots & 0 \\ 0 & \ddots & \ddots & \cdots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & \cdots & 2n \end{pmatrix}
\times \det \begin{pmatrix} 2n - 2 & 0 & \cdots & \cdots & 0 \\ 0 & \ddots & \ddots & \cdots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & \cdots & 2n - 2 \end{pmatrix}
\]

\[= \frac{1}{(2n)^2} \times (2n)^n(2n - 2)^n = 2^{n-2} n^{n-2} (n-1)^n. \]

Theorem 3.4 Let \(K_{n,m}\) be a complete bipartite graph. Then

\[
\tau(D_2(K_{n,m})) = 2^{n+m-2} n^{2m-1} m^{2n-1}
\]

Proof Applying Lemma 1.1, we have

\[
\tau(D_2(K_{n,m})) = \frac{1}{(2(m+n))^2} \det (2(m+n)I - \bar{D} + \bar{A})
\]

\[= \frac{1}{(2(m+n))^2} \det \begin{pmatrix} A & B \\ B & A \end{pmatrix} = \det(A + B) \times \det(A - B), (AB = BA)
\]

\[= \frac{1}{(2(m+n))^2} \]

\[
\times \det \begin{pmatrix} 2m+2 & 2 & \cdots & 2 & 0 & \cdots & \cdots & 0 \\ 2 & \ddots & \ddots & \vdots & \vdots & \ddots & \cdots & \vdots \\ \vdots & \ddots & \ddots & 2 & \vdots & \ddots & \cdots & \vdots \\ 2 & \cdots & 2 & 2m+2 & 0 & \cdots & \cdots & 0 \\ 0 & \cdots & \cdots & 0 & 2n+2 & 2 & \cdots & 2 \\ \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \cdots & \vdots \\ \vdots & \ddots & \ddots & 2 & \ddots & \ddots & \cdots & 2 \\ 0 & \cdots & \cdots & 0 & 2 & \cdots & 2n+2 \end{pmatrix}
\]
\[\times \det \begin{pmatrix} 2m & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & \ddots & \cdots & \ddots & \ddots & \cdots & \ddots \\ \vdots & \ddots & 0 & \ddots & \ddots & \ddots & \ddots \\ 0 & \cdots & 0 & 2m & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 2n & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & 0 & \ddots & \ddots & \ddots \\ 0 & \cdots & 0 & 0 & \cdots & 0 & 2n \end{pmatrix} = \frac{1}{(2(n + m))^2} \det \begin{pmatrix} 2m + 2 & 2 & \cdots & 2 \\ 2 & \ddots & \cdots & \vdots \\ \vdots & \ddots & \ddots & \ddots \\ 2 & \cdots & 2 & 2m + 2 \end{pmatrix} \times \det \begin{pmatrix} 2n + 2 & 2 & \cdots & 2 \\ 2 & \ddots & \cdots & \vdots \\ \vdots & \ddots & \ddots & \ddots \\ 2 & \cdots & 2 & 2n + 2 \end{pmatrix} \times \det \begin{pmatrix} 2m & 0 & \cdots & 0 \\ 0 & \ddots & \cdots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 2m \end{pmatrix} \times \det \begin{pmatrix} 2n & 0 & \cdots & 0 \\ 0 & \ddots & \cdots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 2n \end{pmatrix} = \frac{1}{(2(n + m))^2} \times 2^{2n+2m} (m + n)^2 (m)^{n-1} (n)^{m-1} m^n n^m \]

\[= 4^{m+n-1} (m)^{2n-1} (n)^{2m-1}. \]

Theorem 3.5 Let \(F_n \) be the the fan graph of order \(n \). Then

\[\tau(D_2(F_n)) = \frac{16 \times 6^{n-2} n}{\sqrt{5}} ((3 + \sqrt{5})^n - (3 - \sqrt{5})^n), n \geq 2. \]

Proof Applying Lemma 1.1, we have

\[\tau(D_2(F_n)) = \frac{1}{(2(n + 1))^2} \det(2n + 1)I - \bar{D} + \bar{A}) \]

\[= \frac{1}{(2(n + 1))^2} \times \]
\[
\begin{array}{cccccccccccccccccccc}
2n+1 & 0 & \cdots & \cdots & \cdots & 0 & 1 & 0 & \cdots & \cdots & \cdots & 0 \\
0 & 5 & 0 & 1 & \cdots & \cdots & 1 & 0 & 1 & 0 & \cdots & \cdots & 1 \\
\vdots & 0 & 7 & \ddots & \ddots & \ddots & \ddots & 0 & \ddots \\
\vdots & 1 & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & 1 & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
\vdots & \vdots & \ddots & 1 & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
\vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & 1 & \cdots & \cdots & \cdots & 1 & 0 & 5 & 0 & 1 & \cdots & \cdots & 1 & 0 & 1 \\
1 & 0 & \cdots & \cdots & \cdots & 0 & 2n+1 & 0 & \cdots & \cdots & \cdots & 0 \\
0 & 1 & 0 & 1 & \cdots & \cdots & 1 & 0 & 5 & 0 & 1 & \cdots & \cdots & 1 \\
\vdots & 0 & \ddots & \ddots & \ddots & \ddots & \ddots & 0 & \ddots \\
\vdots & 1 & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & 1 & \ddots \\
\vdots & \vdots & \ddots & 1 & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
\vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & 1 & \cdots & \cdots & 1 & 0 & 1 & 0 & 1 & \cdots & \cdots & 1 & 0 & 5
\end{array}
\times \det
\begin{array}{cccccccccccccccccccc}
2n+2 & 2 & \cdots & \cdots & \cdots & 0 & 0 & 4 & \cdots & \cdots & \cdots & 0 \\
2 & 6 & 0 & 2 & \cdots & 2 & 0 & 4 & \cdots & \cdots & \cdots & 0 \\
\vdots & 0 & 8 & \ddots & \ddots & \ddots & 0 & 4 & \ddots & \ddots & \ddots & \ddots \\
\vdots & 2 & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & 1 & \ddots \\
\vdots & \vdots & \ddots & 6 & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & 2 & \cdots & 2 & 0 & 6 & 0 & 0 & \cdots & \cdots & 0 & 4
\end{array}
\]

\[= \frac{1}{(2(n+1))^2} \det (A + B) \times \det (A - B), (AB = BA)\]

\[= \frac{1}{(2(n+1))^2} \det \left(\begin{array}{cccc}
3 & 0 & 1 & 1 \\
0 & 4 & 0 & 0 \\
1 & 0 & \ddots & \ddots \\
1 & \cdots & 1 & 0 & 3
\end{array} \right) \times (2n+1(n+1))\det \left(\begin{array}{cccc}
2 & 0 & \cdots & 0 \\
0 & 3 & \ddots & \ddots \\
\vdots & \ddots & \ddots & \ddots \\
\vdots & \ddots & \ddots & 3 & 0 \\
0 & \cdots & \cdots & 0 & 2
\end{array} \right) \]

\[\times (2n+1)n\det \left(\begin{array}{cccc}
2 & 0 & \cdots & 0 \\
0 & 3 & \ddots & \ddots \\
\vdots & \ddots & \ddots & \ddots \\
\vdots & \ddots & \ddots & 3 & 0 \\
0 & \cdots & \cdots & 0 & 2
\end{array} \right) \]
A straightforward induction using properties of determinants and above mentioned definition of Chebyshev polynomial in Lemma 2.1, we have

\[
\tau(D_2(F_n)) = \frac{1}{n+1} \times 2^{2n} \times 6^{n-2} \times n \times (n+1)U_{n-1}(\frac{3}{2}) = \frac{16 \times 6^{n-2}n}{\sqrt{5}}((3 + \sqrt{5})^n - (3 - \sqrt{5})^n).
\]

Theorem 3.6 Let \(W_n \) be the wheel graph. Then

\[
\tau(D_2(W_n)) = (6^n \times n)(3 + \sqrt{5})^n + (3 - \sqrt{5})^n - 2^{n+1}, n \geq 3.
\]

Proof Applying Lemma 1.1, we have

\[
\tau(D_2(W_n)) = \frac{1}{(2(n+1))^2} \det(2(n+1)I - \bar{D} + \bar{A}) = \frac{1}{2(n+1)^2}
\]

\[
\begin{pmatrix}
2n+1 & 0 & \cdots & \cdots & \cdots & 0 & 1 & 0 & \cdots & \cdots & \cdots & 0 \\
0 & 7 & 0 & 1 & \cdots & 1 & 0 & 0 & 1 & 0 & \cdots & 1 \\
\vdots & \vdots \\
\vdots & \vdots \\
\vdots & \vdots \\
\vdots & \vdots \\
0 & 0 & 1 & \cdots & 1 & 0 & 7 & 0 & \cdots & \cdots & 0 & 0 & 1 \\
1 & 0 & \cdots & \cdots & \cdots & 0 & 2n+1 & 0 & \cdots & \cdots & \cdots & 0 \\
0 & 1 & 0 & 1 & \cdots & 1 & 0 & 0 & 7 & 0 & 1 & \cdots & 1 \\
\vdots & \vdots \\
\vdots & \vdots \\
\vdots & \vdots \\
0 & 0 & 1 & \cdots & 1 & 0 & 0 & 0 & 1 & 0 & \cdots & 1 & 0
\end{pmatrix}
\times \det
\begin{pmatrix}
2n+2 & 0 & \cdots & \cdots & \cdots & 0 \\
0 & 8 & 0 & 2 & \cdots & 2 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 2 & \cdots & 2 & 0 & 8
\end{pmatrix}
\]

\[
= \frac{1}{(2n)^2} \det \begin{pmatrix} A & B \\ B & A \end{pmatrix} = \frac{1}{(2(n+1))^2} \det(A + B). \det (A - B), (AB = BA)
\]

\[
= \frac{1}{(2(n+1))^2} \det \begin{pmatrix} 2n+2 & 0 & \cdots & \cdots & \cdots & 0 \\ 0 & 8 & 0 & 2 & \cdots & 2 \\ \vdots & 0 & 8 & \cdots & \cdots & 2 \\ \vdots & 2 & \cdots & \cdots & \cdots & 2 \\ \vdots & 2 & \cdots & \cdots & \cdots & 0 \\ 0 & 0 & 2 & \cdots & 2 & 0 & 8 \end{pmatrix}
\]
$$\begin{pmatrix}
2n & 0 & \cdots & \cdots & \cdots & 0 \\
0 & 6 & 0 & \cdots & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & \cdots & 0 & 6 \\
\end{pmatrix} \times \det \begin{pmatrix}
4 & 0 & 1 & \cdots & 1 & 0 \\
0 & \ddots & \ddots & \ddots & \ddots & \vdots \\
1 & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
1 & \ddots & \ddots & \ddots & \ddots & 0 \\
0 & 1 & \cdots & 1 & 0 & 4 \\
\end{pmatrix}$$

$$= \frac{1}{(2(n+1))^2} \cdot (2^{n+1}(n+1)) \times \det \begin{pmatrix}
3 & 0 & \cdots & \cdots & 0 \\
0 & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
0 & \cdots & \cdots & 0 & 3 \\
\end{pmatrix} \times (2^{n+1}n) \times \det \begin{pmatrix}
\end{pmatrix}$$

A straightforward induction using properties of determinants and above mentioned definition of Chebyshev polynomial in Lemma 2.1, we have

$$\tau(D_2(W_n)) = \frac{1}{n+1} \times 2^{2n} \times 3^n \times n \times (n+1) [T_n\left(\frac{3}{2}\right) - 1]$$

$$= (n \times 6^n)[(3 + \sqrt{5})^n + (3 - \sqrt{5})^n - 2^{n+1}] . \hspace{1cm} \Box$$

§4. Conclusion

The number of spanning trees $\tau(G)$ in graphs (networks) is an important invariant. Its evaluation is not only interesting from a mathematical perspective, but also important for reliability of a network and designing electrical circuits. Some computationally hard problems such as the traveling salesman problem can be solved approximately by using spanning trees. Due to the high dependence in network design and reliability on graph theory, we obtained theorems with proofs in this paper.
References

Corrigendum

The authors of paper *Special Kinds of Colorable Complements in Graphs*, Vol.3, 2013, 35-43 should be B.Chaluvapaju, C.Nandeeshu Kumar and V.Chaitra.

The Editor Board of *International Journal of Mathematical Combinatorics*
Papers Published in IJMC, 2013

Vol.1, 2013

1. Global Stability of Non-Solvable Ordinary Differential Equations With Applications, Linfan Mao ... 01
2. m^{th}-Root Randers Change of a Finsler Metric, V.K.Chaubey and T.N.Pandey ... 38
3. Quarter-Symmetric Metric Connection On Pseudo-symmetric Lorentzian α-Sasaki Manifolds, C.Patra and A.Bhattacharyya ... 46
4. The Skew Energy of Cayley Digraphs of Cyclic Groups and Dihedral Groups, C.Adiga, S.N.Fathima and Haidar Ariamanesh ... 60
5. Equivalence of Kropina and Projective Change of Finsler Metric, H.S.Shukla, O.P.Pandey and B.N.Prasad ... 77
6. Geometric Mean Labeling Of Graphs Obtained from Some Graph Operations, A.Durat Baskar, S.Arockiaraj and B.Rajendran ... 85
7. 4-Ordered Hamiltonicity of the Complete Expansion Graphs of Cayley Graphs, Lian Ying, A Yongga, Fang Xiang and Sarula ... 99
8. On Equitable Coloring of Weak Product of Odd Cycles, Tayo Charles Adefokun and Dedorah Olayide Ajayi ... 109
9. Corrigendum: On Set-Semigraceful Graphs, Ullas Thomas and Sunil C Mathew ... 114

Vol.2, 2013

1. S-Denying a Theory, Floretin Smarandache ... 01
2. Non-Solvable Equation Systems with Graphs Embedded in \mathbb{R}^n, Linfan Mao ... 08
3. Some Properties of Birings, A.A.A.Agboola and B.Davvaz ... 24
4. Smarandache Directionally n-Signed Graphs–A Survey, P.Siva Kota Reddy ... 34
5. Characterizations of the Quaternionic Mannheim Curves In Euclidean space \mathbb{E}^4, O.Zekiokuyuch ... 44
6. Introduction to Bi hypergroups, B.Davvaz and A.A.A.Agboola ... 54
7. Smarandache Seminormal Subgroupoids, H.J.Siamwalla and A.S.Muktibodh ... 62
8. The Kropina-Randers Change of Finsler Metric and Relation Between Imbedding Class Numbers of Their Tangent Riemannian Spaces, H.S.Shukla, O.P.Pandey and Honey Dutt Joshi ... 74
9. The Bisector Surface of Rational Space Curves in Minkowski 3-Space, MustafaA Dede ... 84
10. A Note on Odd Graceful Labeling of a Class of Trees, Mathew Varkey T.K. and Shajahan A ... 91
11. Graph Folding and Incidence Matrices,
E.M.El-Kholy, El-Said R.Lashin and Salama N.Ddaoud 97

Vol.3,2013

1. Modular Equations for Ramanujans Cubic Continued Fraction And its Evaluations,
B.R.Srivatsa Kumar and G.N.Rrajapa .. 01
2. Semi-Symetric Metric Connection on a 3-Dimensional Trans-Sasakian Manifold,
K.Halder, D.Debnath and A.Bhattacharyya ... 16
4. On Mean Graphs, R.Vasuki and S.Arrockiaraj 22
5. Special Kinds of Colorable Complements in Graphs,
B.Chaluvapaju, C.Nandeeshukumar and V.Chaitra 35
6. Vertex Graceful Labeling-Some Path Related Graphs,
P.Selvaraju, P.Balagamesan and J.Renuka ... 44
7. Total Semirelib Graph, Manjunath Prasad K B and Venkanagouda M Goudar 50
8. On Some Characterization of Ruled Surface of a Closed Spacelike Curve with Spacelike
Binormalin Dual Lorentzian Space, Özcan Bektas and Süleyman Şenyurt 56
9. Some Prime Labeling Results of H-Class Graphs,
L.M.Sundaram, A.Nagarajan, S.Navaneethakrishnan and A.N.Murugan 69
10. On Mean Cordial Graphs, R.Ponraj and M.Sivakumar 78
12. Symmetric Hamilton Cycle Decompositions of Complete Graphs Plus a 1-Factor,
Abolape D.Akwu and Deborah O.A.Ajayi .. 91
13. Ratio by Using Coefficients of Fibonacci Sequence,
Megha Garg, Pertik Garg and Ravinder Kumar 96

Vol.4,2013

1. Finite Forms of Reciprocity Theorem of Ramanujan and its Generalizations,
D.D.Somashekara and K.Narasimha Murthy ... 01
2. The Jordan θ-Centralizers of Semiprime Gamma Rings with Involution,
M.F.Hoque and Nizhum Rahman ... 15
3. First Approximate Exponential Change of Finsler Metric,
T.N.Pandey, M.N.Tripathi and O.P.Pandey ... 31
4. Difference Cordiality of Some Derived Graphs,
R.Ponraj and S.Sathish Narayan .. 37
5. Computation of Four Orthogonal Polynomials Connected to Eulers Generating Function
of Factorials, R.Rangarajan and Shashikala P 49
6. On Odd Sum Graphs, S.Arrockiaraj and P.Mahalakshmi 58
7. Controllability of Fractional Stochastic Differential Equations With State-Dependent
Delay, Toufik Guendouzi ... 78
8. A Note on Minimal Dominating Signed Graphs,
P.Siva Kota Reddy and B.Prashanth ... 96
9. Number of Spanning Trees for Shadow of Some Graphs,
S.N. Daoud and K. Mohamed ... 103
To doubt everything or to believe everything are two equally convenient solutions; both dispense with the necessity of reflection.

By Henri Poincare, a French mathematician and theoretical physicist.
Author Information

Submission: Papers only in electronic form are considered for possible publication. Papers prepared in formats, viz., .tex, .dvi, .pdf, or.ps may be submitted electronically to one member of the Editorial Board for consideration in the International Journal of Mathematical Combinatorics (ISSN 1937-1055). An effort is made to publish a paper duly recommended by a referee within a period of 3 months. Articles received are immediately put the referees/members of the Editorial Board for their opinion who generally pass on the same in six week’s time or less. In case of clear recommendation for publication, the paper is accommodated in an issue to appear next. Each submitted paper is not returned, hence we advise the authors to keep a copy of their submitted papers for further processing.

Abstract: Authors are requested to provide an abstract of not more than 250 words, latest Mathematics Subject Classification of the American Mathematical Society, Keywords and phrases. Statements of Lemmas, Propositions and Theorems should be set in italics and references should be arranged in alphabetical order by the surname of the first author in the following style:

Books

Research papers

Figures: Figures should be drawn by TEXCAD in text directly, or as EPS file. In addition, all figures and tables should be numbered and the appropriate space reserved in the text, with the insertion point clearly indicated.

Copyright: It is assumed that the submitted manuscript has not been published and will not be simultaneously submitted or published elsewhere. By submitting a manuscript, the authors agree that the copyright for their articles is transferred to the publisher, if and when, the paper is accepted for publication. The publisher cannot take the responsibility of any loss of manuscript. Therefore, authors are requested to maintain a copy at their end.

Proofs: One set of galley proofs of a paper will be sent to the author submitting the paper, unless requested otherwise, without the original manuscript, for corrections after the paper is accepted for publication on the basis of the recommendation of referees. Corrections should be restricted to typesetting errors. Authors are advised to check their proofs very carefully before return.
Contents

Finite Forms of Reciprocity Theorem of Ramanujan and its Generalizations
BY D.D.SOMASHEKARA AND K.NARASIMHA MURTHY01

The Jordan θ-Centralizers of Semiprime Gamma Rings with Involution
BY M.F.HOQUE AND NIZHUM RAHMAN15

First Approximate Exponential Change of Finsler Metric
BY T.N.PANDEY, M.N.TRIPATHI AND O.P.PANDEY31

Difference Cordiality of Some Derived Graphs
BY R.PONRAJ AND S.SATHISH NARAYANAN37

Computation of Four Orthogonal Polynomials Connected to Eulers Generating
Function of Factorials BY R.RANGARAJAN AND SHASHIKALA P.49

On Odd Sum Graphs BY S.AROCKIARAJ AND P.MAHALAKSHMI58

Controllability of Fractional Stochastic Differential Equations With
State-Dependent Delay BY TOUFIK GUENDOUZI78

A Note on Minimal Dominating Signed Graphs
BY P.SIVA KOTA REDDY AND B.PRASHANTH96

Number of Spanning Trees for Shadow of Some Graphs
BY S.N.DAOUD AND K.MOHAMED ..103

Corrigendum ...115

Papers Published in IJMC, 2013 ..116

An International Journal on Mathematical Combinatorics