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§1. Introduction

In set theory, repetition of objects are not allowed in a collection. This perspective rendered set

almost irrelevant because many real life problems admit repetition. To remedy the handicap in

the idea of sets, the concept of multiset was introduced in [10] as a generalization of set wherein

objects repeat in a collection. Multiset is very promising in mathematics, computer science,

website design, etc. See [14, 15] for details.

Since algebraic structures like groupoids, semigroups, monoids and groups were built from

the idea of sets, it is then natural to introduce the algebraic notions of multiset. In [12], the term

multigroup was proposed as a generalization of group in analogous to some non-classical groups

such as fuzzy groups [13], intuitionistic fuzzy groups [3], etc. Although the term multigroup

was earlier used in [4, 11] as an extension of group theory, it is only the idea of multigroup in

[12] that captures multiset and relates to other non-classical groups. In fact, every multigroup

is a multiset but the converse is not necessarily true and the concept of classical groups is a

specialize multigroup with a unit count [5].

In furtherance of the study of multigroups, some properties of multigroups and the anal-

ogous of isomorphism theorems were presented in [2]. Subsequently, in [1], the idea of order

of an element with respect to multigroup and some of its related properties were discussed.

A complete account on the concept of multigroups from different algebraic perspectives was

outlined in [8]. The notions of upper and lower cuts of multigroups were proposed and some of

1Received April 26, 2017, Accepted November 2, 2017.
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their algebraic properties were explicated in [5]. In continuation to the study of homomorphism

in multigroup setting (cf. [2, 12]), some homomorphic properties of multigroups were explored

in [6]. In [9], the notion of multigroup actions on multiset was proposed and some results were

established. An extensive work on normal submultigroups and comultisets of a multigroup were

presented in [7].

In this paper, we explicate the notion of direct product of multigroups and its generaliza-

tion. Some homomorphic properties of direct product of multigroups are also presented. This

paper is organized as follows; in Section 2, some preliminary definitions and results are pre-

sented to be used in the sequel. Section 3 introduces the concept of direct product between two

multigroups and Section 4 considers the case of direct product of kth multigroups. Meanwhile,

Section 5 contains some homomorphic properties of direct product of multigroups.

§2. Preliminaries

Definition 2.1([14]) Let X = {x1, x2, · · · , xn, · · · } be a set. A multiset A over X is a cardinal-

valued function, that is, CA : X → N such that for x ∈ Dom(A) implies A(x) is a cardinal

and A(x) = CA(x) > 0, where CA(x) denoted the number of times an object x occur in A.

Whenever CA(x) = 0, implies x /∈ Dom(A).

The set of all multisets over X is denoted by MS(X).

Definition 2.2([15]) Let A, B ∈ MS(X), A is called a submultiset of B written as A ⊆ B if

CA(x) ≤ CB(x) for ∀x ∈ X. Also, if A ⊆ B and A 6= B, then A is called a proper submultiset

of B and denoted as A ⊂ B. A multiset is called the parent in relation to its submultiset.

Definition 2.3([12]) Let X be a group. A multiset G is called a multigroup of X if it satisfies

the following conditions:

(i) CG(xy) ≥ CG(x) ∧ CG(y)∀x, y ∈ X;

(ii) CG(x−1) = CG(x)∀x ∈ X,

where CG denotes count function of G from X into a natural number N and ∧ denotes minimum,

respectively.

By implication, a multiset G is called a multigroup of a group X if

CG(xy−1) ≥ CG(x) ∧ CG(y), ∀x, y ∈ X.

It follows immediately from the definition that,

CG(e) ≥ CG(x), ∀x ∈ X,

where e is the identity element of X .

The count of an element in G is the number of occurrence of the element in G. While the
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order of G is the sum of the count of each of the elements in G, and is given by

|G| =
n∑

i=1

CG(xi), ∀xi ∈ X.

We denote the set of all multigroups of X by MG(X).

Definition 2.4([5]) Let A ∈ MG(X). A nonempty submultiset B of A is called a submulti-

group of A denoted by B ⊑ A if B form a multigroup. A submultigroup B of A is a proper

submultigroup denoted by B ⊏ A, if B ⊑ A and A 6= B.

Definition 2.5([5]) Let A ∈MG(X). Then the sets A[n] and A(n) defined as

(i) A[n] = {x ∈ X | CA(x) ≥ n, n ∈ N} and

(ii) A(n) = {x ∈ X | CA(x) > n, n ∈ N}
are called strong upper cut and weak upper cut of A.

Definition 2.6([5]) Let A ∈MG(X). Then the sets A[n] and A(n) defined as

(i) A[n] = {x ∈ X | CA(x) ≤ n, n ∈ N} and

(ii) A(n) = {x ∈ X | CA(x) < n, n ∈ N}
are called strong lower cut and weak lower cut of A.

Definition 2.7([12]) Let A ∈MG(X). Then the sets A∗ and A∗ are defined as

(i) A∗ = {x ∈ X | CA(x) > 0} and

(ii) A∗ = {x ∈ X | CA(x) = CA(e)}, where e is the identity element of X.

Proposition 2.8([12]) Let A ∈MG(X). Then A∗ and A∗ are subgroups of X.

Theorem 2.9([5]) Let A ∈MG(X). Then A[n] is a subgroup of X ∀ n ≤ CA(e) and A[n] is a

subgroup of X ∀ n ≥ CA(e), where e is the identity element of X and n ∈ N.

Definition 2.10([7]) Let A, B ∈ MG(X) such that A ⊆ B. Then A is called a normal

submultigroup of B if for all x, y ∈ X, it satisfies CA(xyx−1) ≥ CA(y).

Proposition 2.11([7]) Let A, B ∈MG(X). Then the following statements are equivalent:

(i) A is a normal submultigroup of B;

(ii) CA(xyx−1) = CA(y)∀x, y ∈ X;

(iii) CA(xy) = CA(yx)∀x, y ∈ X.

Definition 2.12([7]) Two multigroups A and B of X are conjugate to each other if for all

x, y ∈ X, CA(x) = CB(yxy−1) and CB(y) = CA(xyx−1).

Definition 2.13([6]) Let X and Y be groups and let f : X → Y be a homomorphism. Suppose

A and B are multigroups of X and Y , respectively. Then f induces a homomorphism from A

to B which satisfies
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(i) CA(f−1(y1y2)) ≥ CA(f−1(y1)) ∧ CA(f−1(y2)) ∀y1, y2 ∈ Y ;

(ii) CB(f(x1x2)) ≥ CB(f(x1)) ∧ CB(f(x2)) ∀x1, x2 ∈ X,

where

(i) the image of A under f , denoted by f(A), is a multiset of Y defined by

Cf(A)(y) =






∨
x∈f−1(y) CA(x), f−1(y) 6= ∅

0, otherwise

for each y ∈ Y and

(ii) the inverse image of B under f , denoted by f−1(B), is a multiset of X defined by

Cf−1(B)(x) = CB(f(x)) ∀x ∈ X.

Proposition 2.14([12]) Let X and Y be groups and f : X → Y be a homomorphism. If

A ∈MG(X), then f(A) ∈MG(Y ).

Corollary 2.15([12]) Let X and Y be groups and f : X → Y be a homomorphism. If B ∈
MG(Y ), then f−1(B) ∈MG(X).

§3. Direct Product of Multigroups

Given two groups X and Y , the direct product, X×Y is the Cartesian product of ordered pair

(x, y) such that x ∈ X and y ∈ Y , and the group operation is component-wise, so

(x1, y1)× (x2, y2) = (x1x2, y1y2).

The resulting algebraic structure satisfies the axioms for a group. Since the ordered pair

(x, y) such that x ∈ X and y ∈ Y is an element of X × Y , we simply write (x, y) ∈ X × Y . In

this section, we discuss the notion of direct product of two multigroups defined over X and Y ,

respectively.

Definition 3.1 Let X and Y be groups, A ∈ MG(X) and B ∈ MG(Y ), respectively. The

direct product of A and B depicted by A×B is a function

CA×B : X × Y → N

defined by

CA×B((x, y)) = CA(x) ∧ CB(y)∀x ∈ X, ∀y ∈ Y.

Example 3.2 Let X = {e, a} be a group, where a2 = e and Y = {e′, x, y, z} be a Klein 4-group,

where x2 = y2 = z2 = e′. Then

A = [e5, a]
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and

B = [(e′)6, x4, y5, z4]

are multigroups of X and Y by Definition 2.3. Now

X × Y = {(e, e′), (e, x), (e, y), (e, z), (a, e′), (a, x), (a, y), (a, z)}

is a group such that

(e, x)2 = (e, y)2 = (e, z)2 = (a, e′)2 = (a, x)2 = (a, y)2 = (a, z)2 = (e, e′)

is the identity element of X × Y . Then using Definition 3.1,

A×B = [(e, e′)5, (e, x)4, (e, y)5, (e, z)4, (a, e′), (a, x), (a, y), (a, z)]

is a multigroup of X × Y satisfying the conditions in Definition 2.3.

Example 3.3 Let X and Y be groups as in Example 3.2. Let

A = [e5, a4]

and

B = [(e′)7, x9, y6, z5]

be multisets of X and Y , respectively. Then

A×B = [(e, e′)5, (e, x)5, (e, y)5, (e, z)5, (a, e′)4, (a, x)4, (a, y)4, (a, z)4].

By Definition 2.3, it follows that A × B is a multigroup of X × Y although B is not a

multigroup of Y while A is a multigroup of X .

From the notion of direct product in multigroup context, we observe that

|A×B| < |A||B|

unlike in classical group where |X × Y | = |X ||Y |.

Theorem 3.4 Let A ∈MG(X) and B ∈MG(Y ), respectively. Then for all n ∈ N, (A×B)[n] =

A[n] × B[n].

Proof Let (x, y) ∈ (A×B)[n]. Using Definition 2.5, we have

CA×B((x, y)) = (CA(x) ∧CB(y)) ≥ n.

This implies that CA(x) ≥ n and CB(y) ≥ n, then x ∈ A[n] and y ∈ B[n]. Thus,

(x, y) ∈ A[n] ×B[n].
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Also, let (x, y) ∈ A[n] ×B[n]. Then CA(x) ≥ n and CB(y) ≥ n. That is,

(CA(x) ∧ CB(y)) ≥ n.

This yields us (x, y) ∈ (A×B)[n]. Therefore, (A×B)[n] = A[n] ×B[n] ∀n ∈ N. 2
Corollary 3.5 Let A ∈MG(X) and B ∈MG(Y ), respectively. Then for all n ∈ N, (A×B)[n] =

A[n] × B[n].

Proof Straightforward from Theorem 3.4. 2
Corollary 3.6 Let A ∈MG(X) and B ∈MG(Y ), respectively. Then

(i) (A×B)∗ = A∗ ×B∗;

(ii) (A× B)∗ = A∗ ×B∗.

Proof Straightforward from Theorem 3.4. 2
Theorem 3.7 Let A and B be multigroups of X and Y , respectively, then A×B is a multigroup

of X × Y .

Proof Let (x, y) ∈ X × Y and let x = (x1, x2) and y = (y1, y2). We have

CA×B(xy) = CA×B((x1, x2)(y1, y2))

= CA×B((x1y1, x2y2))

= CA(x1y1) ∧CB(x2y2)

≥ ∧(CA(x1) ∧ CA(y1), CB(x2) ∧ CB(y2))

= ∧(CA(x1) ∧ CB(x2), CA(y1) ∧ CB(y2))

= CA×B((x1, x2)) ∧ CA×B((y1, y2))

= CA×B(x) ∧ CA×B(y).

Also,

CA×B(x−1) = CA×B((x1, x2)
−1) = CA×B((x−1

1 , x−1
2 ))

= CA(x−1
1 ) ∧ CB(x−1

2 ) = CA(x1) ∧ CB(x2)

= CA×B((x1, x2)) = CA×B(x).

Hence, A×B ∈MG(X × Y ). 2
Corollary 3.8 Let A1, B1 ∈ MG(X1) and A2, B2 ∈ MG(X2), respectively such that A1 ⊆ B1

and A2 ⊆ B2. If A1 and A2 are normal submultigroups of B1 and B2, then A1×A2 is a normal

submultigroup of B1 ×B2.

Proof By Theorem 3.7, A1×A2 is a multigroup of X1×X2. Also, B1×B2 is a multigroup

of X1×X2. We show that A1×A2 is a normal submultigroup of B1×B2. Let (x, y) ∈ X1×X2
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such that x = (x1, x2) and y = (y1, y2). Then we get

CA1×A2(xy) = CA1×A2((x1, x2)(y1, y2))

= CA1×A2((x1y1, x2y2))

= CA1(x1y1) ∧ CA2(x2y2)

= CA1(y1x1) ∧ CA2(y2x2)

= CA1×A2((y1x1, y2x2))

= CA1×A2((y1, y2)(x1, x2))

= CA1×A2(yx).

Hence A1 ×A2 is a normal submultigroup of B1 ×B2 by Proposition 2.11. 2
Theorem 3.9 Let A and B be multigroups of X and Y , respectively. Then

(i) (A×B)∗ is a subgroup of X × Y ;

(ii) (A× B)∗ is a subgroup of X × Y ;

(iii) (A×B)[n], n ∈ N is a subgroup of X × Y , ∀ n ≤ CA×B(e, e′);

(iv) (A×B)[n], n ∈ N is a subgroup of X × Y , ∀ n ≥ CA×B(e, e′).

Proof Combining Proposition 2.8, Theorem 2.9 and Theorem 3.7, the results follow. 2
Corollary 3.10 Let A, C ∈ MG(X) such that A ⊆ C and B, D ∈ MG(Y ) such that B ⊆ D,

respectively. If A and B are normal, then

(i) (A×B)∗ is a normal subgroup of (C ×D)∗;

(ii) (A× B)∗ is a normal subgroup of (C ×D)∗;

(iii) (A×B)[n], n ∈ N is a normal subgroup of (C ×D)[n], ∀ n ≤ CA×B(e, e′);

(iv) (A×B)[n], n ∈ N is a normal subgroup of (C ×D)[n], ∀ n ≥ CA×B(e, e′).

Proof Combining Proposition 2.8, Theorem 2.9, Theorem 3.7 and Corollary 3.8, the results

follow. 2
Proposition 3.11 Let A ∈MG(X), B ∈MG(Y ) and A×B ∈MG(X × Y ). Then ∀(x, y) ∈
X × Y , we have

(i) CA×B((x−1, y−1)) = CA×B((x, y));

(ii) CA×B((e, e′)) ≥ CA×B((x, y));

(iii) CA×B((x, y)n) ≥ CA×B((x, y)), where e and e′ are the identity elements of X and Y ,

respectively and n ∈ N.

Proof For x ∈ X, y ∈ Y and (x, y) ∈ X × Y , we get

(i) CA×B((x−1, y−1)) = CA(x−1) ∧ CB(y−1) = CA(x) ∧CB(y) = CA×B((x, y)).

Clearly, CA×B((x−1, y−1)) = CA×B((x, y)) ∀(x, y) ∈ X × Y .
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(ii)

CA×B((e, e′)) = CA×B((x, y)(x−1, y−1))

≥ CA×B((x, y)) ∧CA×B((x−1, y−1))

= CA×B((x, y)) ∧CA×B((x, y))

= CA×B((x, y)) ∀(x, y) ∈ X × Y.

Hence, CA×B((e, e′)) ≥ CA×B((x, y)).

(iii)

CA×B((x, y)n) = CA×B((xn, yn))

= CA×B((xn−1, yn−1)(x, y))

≥ CA×B((xn−1, yn−1)) ∧ CA×B((x, y))

≥ CA×B((xn−2, yn−2)) ∧ CA×B((x, y)) ∧CA×B((x, y))

≥ CA×B((x, y)) ∧CA×B((x, y)) ∧ ... ∧CA×B((x, y))

= CA×B((x, y)),

which implies that CA×B((x, y)n) = CA×B((xn, yn)) ≥ CA×B((x, y)) ∀(x, y) ∈ X × Y . 2
Theorem 3.12 Let A and B be multisets of groups X and Y , respectively. Suppose that e and

e′ are the identity elements of X and Y , respectively. If A×B is a multigroup of X × Y , then

at least one of the following statements hold.

(i) CB(e′) ≥ CA(x) ∀x ∈ X;

(ii) CA(e) ≥ CB(y) ∀y ∈ Y .

Proof Let A×B ∈MG(X × Y ). By contrapositive, suppose that none of the statements

holds. Then suppose we can find a in X and b in Y such that

CA(a) > CB(e′) and CB(b) > CA(e).

From these we have

CA×B((a, b)) = CA(a) ∧ CB(b)

> CA(e) ∧ CB(e′)

= CA×B((e, e′)).

Thus, A × B is not a multigroup of X × Y by Proposition 3.11. Hence, either CB(e′) ≥
CA(x) ∀x ∈ X or CA(e) ≥ CB(y) ∀y ∈ Y . This completes the proof. 2
Theorem 3.13 Let A and B be multisets of groups X and Y , respectively, such that CA(x) ≤
CB(e′) ∀x ∈ X, e′ being the identity element of Y . If A×B is a multigroup of X × Y, then A

is a multigroup of X.
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Proof Let A × B be a multigroup of X × Y and x, y ∈ X . Then (x, e′), (y, e′) ∈ X × Y .

Now, using the property CA(x) ≤ CB(e′) ∀x ∈ X , we get

CA(xy) = CA(xy) ∧ CB(e′e′)

= CA×B((x, e′)(y, e′))

≥ CA×B((x, e′)) ∧ CA×B((y, e′))

= ∧(CA(x) ∧ CB(e′), CA(y) ∧CB(e′))

= CA(x) ∧ CA(y).

Also,

CA(x−1) = CA(x−1) ∧CB(e′−1) = CA×B((x−1, e′−1))

= CA×B((x, e′)−1) = CA×B((x, e′))

= CA(x) ∧ CB(e′) = CA(x).

Hence, A is a multigroup of X . This completes the proof. 2
Theorem 3.14 Let A and B be multisets of groups X and Y , respectively, such that CB(x) ≤
CA(e) ∀x ∈ Y , e being the identity element of X. If A×B is a multigroup of X × Y, then B is

a multigroup of Y .

Proof Similar to Theorem 3.13. 2
Corollary 3.15 Let A and B be multisets of groups X and Y , respectively. If A × B is a

multigroup of X × Y , then either A is a multigroup of X or B is a multigroup of Y .

Proof Combining Theorems 3.12− 3.14, the result follows. 2
Theorem 3.16 If A and C are conjugate multigroups of a group X, and B and D are conjugate

multigroups of a group Y . Then A×B ∈MG(X ×Y ) is a conjugate of C ×D ∈MG(X ×Y ).

Proof Since A and C are conjugate, it implies that for g1 ∈ X , we have

CA(x) = CC(g−1
1 xg1) ∀x ∈ X.

Also, since B and D are conjugate, for g2 ∈ Y , we get

CB(y) = CD(g−1
2 yg2) ∀y ∈ Y.
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Now,

CA×B((x, y)) = CA(x) ∧CB(y) = CC(g−1
1 xg1) ∧ CD(g−1

2 yg2)

= CC×D((g−1
1 xg1), (g

−1
2 yg2))

= CC×D((g−1
1 , g−1

2 )(x, y)(g1, g2))

= CC×D((g1, g2)
−1(x, y)(g1, g2)).

Hence, CA×B((x, y)) = CC×D((g1, g2)
−1(x, y)(g1, g2)). This completes the proof. 2

§4. Generalized Direct Product of Multigroups

In this section, we defined direct product of kth multigroups and obtain some results which

generalized the results in Section 3.

Definition 4.1 Let A1, A2, · · · , Ak be multigroups of X1, X2, · · · , Xk, respectively. Then the

direct product of A1, A2, · · · , Ak is a function

CA1×A2×···×Ak : X1 ×X2 × · · · ×Xk → N

defined by

CA1×A2×···×Ak(x) = CA1(x1) ∧ CA2(x2) ∧ · · · ∧ CAk−1(xk−1) ∧ CAk(xk)

where x = (x1, x2, · · · , xk−1, xk), ∀x1 ∈ X1, ∀x2 ∈ X2, · · · , ∀xk ∈ Xk. If we denote A1, A2, · · · , Ak

by Ai, (i ∈ I), X1, X2, · · · , Xk by Xi, (i ∈ I), A1×A2×· · ·×Ak by
∏k

i=1 Ai and X1×X2×· · ·×Xk

by
∏k

i=1 Xi. Then the direct product of Ai is a function

C∏k
i=1 Ai

:

k∏

i=1

Xi → N

defined by

C∏k
i=1 Ai

((xi)i∈I) = ∧i∈ICAi((xi)) ∀xi ∈ Xi, I = 1, · · · , k.

Unless otherwise specified, it is assumed that Xi is a group with identity ei for all i ∈ I,

X =
∏k

i∈I Xi, and so e = (ei)i∈I .

Theorem 4.2 Let A1, A2, · · · , Ak be multisets of the sets X1, X2, · · · , Xk, respectively and let

n ∈ N. Then

(A1 ×A2 × · · · ×Ak)[n] = A1[n] ×A2[n] × · · · ×Ak[n].

Proof Let (x1, x2, · · · , xk) ∈ (A1 ×A2 × · · · ×Ak)[n]. From Definition 2.5, we have

CA1×A2×···×Ak((x1, x2, · · · , xk)) = (CA1(x1) ∧ CA2(x2) ∧ · · · ∧CAk(xk)) ≥ n.
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This implies that CA1(x1) ≥ n, CA2(x2) ≥ n, · · · , CAk(xk) ≥ n and x1 ∈ A1[n], x2 ∈
A2[n], · · · , xk ∈ Ak[n]. Thus, (x1, x2, · · · , xk) ∈ A1[n] ×A2[n] × · · · ×Ak[n].

Again, let (x1, x2, · · · , xk) ∈ A1[n]×A2[n]× · · ·×Ak[n]. Then xi ∈ Ai[n], for i = 1, 2, · · · , k,

CA1(x1) ≥ n, CA2(x2) ≥ n, · · · , CAk(xk) ≥ n. That is,

(CA1(x1) ∧ CA2(x2) ∧ · · · ∧CAk(xk)) ≥ n.

Implies that

(x1, x2, · · · , xk) ∈ (A1 ×A2 × ...×Ak)[n].

Hence, (A1 ×A2 × · · · ×Ak)[n] = A1[n] ×A2[n] × · · · ×Ak[n]. 2
Corollary 4.3 Let A1, A2, · · · , Ak be multisets of the sets X1, X2, · · · , Xk, respectively and let

n ∈ N. Then

(i) (A1 ×A2 × · · · ×Ak)[n] = A
[n]
1 ×A

[n]
2 × · · · ×A

[n]
k ;

(ii) (A1 ×A2 × · · · ×Ak)∗ = A∗
1 ×A∗

2 × · · · ×A∗
k;

(iii) (A1 ×A2 × · · · ×Ak)∗ = A1∗ ×A2∗ × · · · ×Ak∗.

Proof Straightforward from Theorem 4.2. 2
Theorem 4.4 Let A1, A2, · · · , Ak be multigroups of the groups X1, X2, · · · , Xk, respectively.

Then A1 ×A2 × · · · ×Ak is a multigroup of X1 ×X2 × · · · ×Xk.

Proof Let (x1, x2, · · · , xk), (y1, y2, · · · , yk) ∈ X1 ×X2 × · · · ×Xk. We get

CA1×···×Ak((x1, · · · , xk)(y1, · · · , yk))

= CA1×···×Ak((x1y1, · · · , xkyk))

= CA1(x1y1) ∧ · · · ∧ CAk(xkyk)

≥ (CA1(x1) ∧CA1(y1)) ∧ · · · ∧ (CAk(xk) ∧ CAk(yk))

= ∧(∧(CA1 (x1), CA1(y1)), · · · ,∧(CAk(xk), CAk(yk))

= ∧(∧(CA1 (x1), · · · , CAk(xk)),∧(CA1 (y1), · · · , CAk(yk)))

= CA1×···×Ak((x1, · · · , xk)) ∧ CA1×···×Ak((y1, · · · , yk)).

Also,

CA1×···×Ak((x1, · · · , xk)−1) = CA1×···×Ak((x−1
1 , · · · , x−1

k ))

= CA1(x
−1
1 ) ∧ · · · ∧ CAk(x−1

k )

= CA1(x1) ∧ · · · ∧ CAk(xk)

= CA1×···×Ak((x1, · · · , xk))

Hence, A1 ×A2 × · · · ×Ak is a multigroup of X1 ×X2 × · · · ×Xk. 2
Corollary 4.5 Let A1, A2, · · · , Ak and B1, B2, · · · , Bk be multigroups of X1, X2, · · · , Xk, re-
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spectively, such that A1, A2, · · · , Ak ⊆ B1, B2, · · · , Bk. If A1, A2, · · · , Ak are normal submulti-

groups of B1, B2, · · · , Bk, then A1×A2×· · ·×Ak is a normal submultigroup of B1×B2×· · ·×Bk.

Proof By Theorem 4.4, A1 × A2 × · · · × Ak is a multigroup of X1, X2, · · · , Xk. Also,

B1 ×B2 × · · · ×Bk is a multigroup of X1, X2, · · · , Xk.

Let (x1, x2, · · · , xk), (y1, y2, · · · , yk) ∈ X1 ×X2 × · · · ×Xk. Then we get

CA1×···×Ak((x1, · · · , xk)(y1, · · · , yk)) = CA1×···×Ak((x1y1, · · · , xkyk))

= CA1(x1y1) ∧ · · · ∧ CAk(xkyk)

= CA1(y1x1) ∧ · · · ∧ CAk(ykxk)

= CA1×···×Ak((y1x1, · · · , ykxk))

= CA1×···×Ak((y1, · · · , yk)(x1, · · · , xk)).

Thus, A1 × · · · ×Ak is a normal submultigroup of B1 × · · · ×Bk by Proposition 2.11. 2
Theorem 4.6 If A1, A2, · · · , Ak are multigroups of X1, X2, · · · , Xk, respectively, then

(i) (A1 ×A2 × · · · ×Ak)∗ is a subgroup of X1 ×X2 × · · · ×Xk;

(ii) (A1 ×A2 × · · · ×Ak)∗ is a subgroup of X1 ×X2 × · · · ×Xk;

(iii) (A1 ×A2× · · · ×Ak)[n], n ∈ N is a subgroup of X1×X2× · · · ×Xk, ∀n ≤ CA1(e1)∧
CA2(e2) ∧ · · · ∧ CAk(ek);

(iv) (A1 ×A2 × · · · ×Ak)[n], n ∈ N is a subgroup of X1×X2 × · · · ×Xk, ∀ n ≥ CA1(e1)∧
CA2(e2) ∧ · · · ∧ CAk(ek).

Proof Combining Proposition 2.8, Theorem 2.9 and Theorem 4.4, the results follow. 2
Corollary 4.7 Let A1, A2, · · · , Ak and B1, B2, · · · , Bk be multigroups of X1, X2, · · · , Xk such

that A1, A2, · · · , Ak ⊆ B1, B2, · · · , Bk. If A1, A2, · · · , Ak are normal submultigroups of B1, B2,

· · · , Bk, then

(i) (A1 ×A2 × · · · ×Ak)∗ is a normal subgroup of (B1 ×B2 × · · · ×Bk)∗;

(ii) (A1 ×A2 × · · · ×Ak)∗ is a normal subgroup of (B1 ×B2 × · · · ×Bk)∗;

(iii) (A1 × A2 × · · · × Ak)[n], n ∈ N is a normal subgroup of (B1 × B2 × · · · × Bk)[n],

∀ n ≤ CA1(e1) ∧ CA2(e2) ∧ · · · ∧ CAk(ek);

(iv) (A1 × A2 × · · · × Ak)[n], n ∈ N is a normal subgroup of (B1 × B2 × · · · × Bk)[n],

∀ n ≥ CA1(e1) ∧ CA2(e2) ∧ · · · ∧ CAk(ek).

Proof Combining Proposition 2.8, Theorem 2.9, Theorem 4.4 and Corollary 4.5, the results

follow. 2
Theorem 4.8 Let A1, A2, · · · , Ak and B1, B2, · · · , Bk be multigroups of groups X1, X2, · · · , Xk,

respectively. If A1, A2, · · · , Ak are conjugate to B1, B2, · · · , Bk, then the multigroup A1 ×A2 ×
· · ·×Ak of X1×X2×· · ·×Xk is conjugate to the multigroup B1×B2×· · ·×Bk of X1×X2×· · ·×Xk.

Proof By Definition 2.12, if multigroup Ai of Xi conjugates to multigroup Bi of Xi, then



Direct Product of Multigroups and Its Generalization 13

exist xi ∈ Xi such that for all yi ∈ Xi,

CAi(yi) = CBi(x
−1
i yixi), i = 1, 2, · · · , k.

Then we have

CA1×···×Ak((y1, · · · , yk)) = CA1(y1) ∧ · · · ∧ CAk(yk)

= CB1(x
−1
1 y1x1) ∧ · · · ∧ CBk(x−1

k ykxk)

= CB1×···×Bk((x−1
1 y1x1, · · · , x−1

k ykxk)).

This completes the proof. 2
Theorem 4.9 Let A1, A2, · · · , Ak be multisets of the groups X1, X2, · · · , Xk, respectively. Sup-

pose that e1, e2, · · · , ek are identities elements of X1, X2, · · · , Xk, respectively. If A1×A2×· · ·×
Ak is a multigroup of X1 ×X2 × · · · ×Xk, then for at least one i = 1, 2, · · · , k, the statement

CA1×A2×···×Ai−1×Ai+1×···×Ak((e1, e2, · · · , ei−1, ei+1, · · · , ek)) ≥ CAi((xi)), ∀xi ∈ Xi

holds.

Proof Let A1 ×A2 × · · · ×Ak be a multigroup of X1 ×X2 × · · · ×Xk. By contraposition,

suppose that for none of i = 1, 2, · · · , k, the statement holds. Then we can find (a1, a2, · · · , ak) ∈
X1 ×X2 × · · · ×Xk, respectively, such that

CAi((ai)) > CA1×A2×···×Ai−1×Ai+1×···×Ak((e1, e2, · · · , ei−1, ei+1, · · · , ek)).

Then we have

CA1×···×Ak((a1, · · · , ak)) = CA1(a1) ∧ · · · ∧ CAk(ak)

> CA1×···×Ai−1×Ai+1×···×Ak((e1, · · · , ei−1, ei+1, · · · , ek))

= CA1(e1) ∧ · · · ∧ CAi−1(ei−1) ∧ CAi+1(ei+1) ∧ · · · ∧ CAk(ek)

= CA1(e1) ∧ · · · ∧ CAk(ek)

= CA1×···×Ak((e1, ..., ek)).

So, A1 × A2 × ... × Ak is not a multigroup of X1 × X2 × · · · × Xk. Hence, for at least one

i = 1, 2, · · · , k, the inequality

CA1×···×Ai−1×Ai+1×···×Ak((e1, · · · , ei−1, ei+1, · · · , ek)) ≥ CAi((xi))

is satisfied for all xi ∈ Xi. 2
Theorem 4.10 Let A1, A2, · · · , Ak be multisets of the groups X1, X2, · · · , Xk, respectively, such

that

CAi((xi)) ≤ CA1×A2×···×Ai−1×Ai+1×···×Ak((e1, e2, · · · , ei−1, ei+1, · · · , ek))
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∀xi ∈ Xi, ei being the identity element of Xi. If A1 × A2 × · · · × Ak is a multigroup of

X1 ×X2 × · · · ×Xk, then Ai is a multigroup of Xi.

Proof Let A1×A2×· · ·×Ak be a multigroup of X1×X2×· · ·×Xk and xi, yi ∈ Xi. Then

(e1, · · · , ei−1, xi, ei+1, · · · , ek), (e1, · · · , ei−1, yi, ei+1, · · · , ek) ∈ X1 ×X2 × · · · ×Xk.

Now, using the given inequality, we have

CAi((xiyi)) = CAi((xiyi)) ∧CA1×···×Ai−1×Ai+1×···×Ak((e1, · · · , ei−1, ei+1, · · · , ek)

(e1, · · · , ei−1, ei+1, · · · , ek))

= CA1×···×Ai×···×Ak((e1, · · · , xi, · · · , ek)(e1, · · · , yi, · · · , ek))

≥ CA1×···×Ai×···×Ak((e1, · · · , xi, · · · , ek)) ∧ CA1×···×Ai×···×Ak((e1, · · · , yi, · · · , ek))

= ∧(CAi((xi)) ∧ CA1×···×Ai−1×Ai+1×···×Ak((e1, · · · , ei−1, ei+1, · · · , ek)), CAi((yi))

∧CA1×···×Ai−1×Ai+1×···×Ak((e1, · · · , ei−1, ei+1, · · · , ek))

= CAi((xi)) ∧ CAi((yi)).

Also,

CAi((x
−1
i )) = CAi((x

−1
i )) ∧CA1×···×Ai−1×Ai+1×···×Ak((e−1

1 , · · · , e−1
i−1, e−1

i+1, · · · , e−1
k ))

= CA1×···×Ai×···×Ak((e−1
1 , · · · , x−1

i , · · · , e−1
k ))

= CA1×···×Ai×···×Ak((e1, · · · , xi, · · · , ek)−1)

= CA1×···×Ai×···×Ak((e1, · · · , xi, · · · , ek))

= CAi((xi)) ∧ CA1×···×Ai−1×Ai+1×···×Ak((e1, · · · , ei−1, ei+1, · · · , ek))

= CAi((xi)).

Hence, Ai ∈MG(Xi). 2
Theorem 4.11 Let A1, A2, · · · , Ak be multisets of the groups X1, X2, · · · , Xk, respectively, such

that

CA1×A2×···×Ai−1×Ai+1×···×Ak((x1, x2, · · · , xi−1, xi+1, · · · , xk)) ≤ CAi((ei))

for ∀(x1, x2, · · · , xi−1, xi+1, · · · , xk) ∈ X1 × X2 × · · · × Xi−1 × Xi+1 × · · · × Xk, ei being the

identity element of Xi. If A1 × A2 × · · · × Ak is a multigroup of X1 × X2 × · · · × Xk, then

A1×A2×· · ·×Ai−1×Ai+1×· · ·×Ak is a multigroup of X1×X2×· · ·×Xi−1×Xi+1×· · ·×Xk.

Proof Let A1×A2×· · ·×Ak be a multigroup of X1×X2×· · ·×Xk and (x1, x2, · · · , xi−1,

xi+1, · · · , xk), (y1, y2, · · · , yi−1, yi+1, · · · , yk) ∈ X1 ×X2 × · · · ×Xi−1 ×Xi+1 × · · · ×Xk. Then

(x1, · · · , xi−1, ei, xi+1, · · · , xk), (y1, · · · , yi−1, ei, yi+1, · · · , yk) ∈ Xi.



Direct Product of Multigroups and Its Generalization 15

Using the given inequality, we arrive at

CA1×···×Ai−1×Ai+1×···×Ak((x1, · · · , xi−1, xi+1, · · · , xk)(y1, · · · , yi−1, yi+1, · · · , yk))

= CA1×···×Ai−1×Ai+1×···×Ak((x1, · · · , xi−1, xi+1, · · · , xk)(y1, · · · , yi−1, yi+1, · · · , yk))

∧CAi((ei)) = CA1×···×Ai×···×Ak((x1, · · · , ei, · · · , xk)(y1, · · · , ei, · · · , yk))

≥ CA1×···×Ai×···×Ak((x1, · · · , ei, · · · , xk)) ∧ CA1×···×Ai×···×Ak((y1, · · · , ei, · · · , yk))

= ∧(CAi((ei)) ∧ CA1×···×Ai−1×Ai+1×···×Ak((x1, · · · , xi−1, xi+1, · · · , xk)), CAi ((ei))

∧CA1×···×Ai−1×Ai+1×···×Ak((y1, · · · , yi−1, yi+1, · · · , yk))) = CA1×···×Ai−1×Ai+1×···×Ak

((x1, · · · , xi−1, xi+1, · · · , xk)) ∧ CA1×···×Ai−1×Ai+1×···×Ak((y1, y2, · · · , yi−1, yi+1, · · · , yk)).

Again,

CA1×···×Ai−1×Ai+1×···×Ak((x−1
1 , · · · , x−1

i−1, x−1
i+1, · · · , x−1

k ))

= CA1×···×Ai−1×Ai+1×···×Ak((x−1
1 , · · · , x−1

i−1, x−1
i+1, · · · , x−1

k )) ∧ CAi((e
−1
i ))

= CA1×···×Ai×···×Ak((x−1
1 , · · · , e−1

i , · · · , x−1
k ))

= CA1×···×Ai×···×Ak((x1, · · · , ei, · · · , xk)−1) = CA1×···×Ai×···×Ak((x1, · · · , ei, · · · , xk))

= CA1×···×Ai−1×Ai+1×···×Ak((x1, · · · , xi−1, xi+1, · · · , xk)) ∧ CAi((ei))

= CA1×···×Ai−1×Ai+1×···×Ak((x1, · · · , xi−1, xi+1, · · · , xk)).

Hence, A1 × A2 × · · · × Ai−1 × Ai+1 × · · · × Ak is the multigroup of X1 ×X2 × · · · ×Xi−1 ×
Xi+1 × · · · ×Xk. 2
§5. Homomorphism of Direct Product of Multigroups

In this section, we present some homomorphic properties of direct product of multigroups.

This is an extension of the notion of homomorphism in multigroup setting (cf. [6, 12]) to direct

product of multigroups.

Definition 5.1 Let W×X and Y ×Z be groups and let f : W×X → Y ×Z be a homomorphism.

Suppose A×B ∈MS(W ×X) and C ×D ∈MS(Y × Z), respectively. Then

(i) the image of A×B under f , denoted by f(A×B), is a multiset of Y × Z defined by

Cf(A×B)((y, z)) =






∨
(w,x)∈f−1((y,z)) CA×B((w, x)), f−1((y, z)) 6= ∅

0, otherwise,

for each (y, z) ∈ Y × Z;

(ii) the inverse image of C ×D under f , denoted by f−1(C ×D), is a multiset of W ×X

defined by

Cf−1(C×D)((w, x)) = CC×D(f((w, x))) ∀(w, x) ∈W ×X.
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Theorem 5.2 Let W, X, Y, Z be groups, A ∈ MS(W ), B ∈ MS(X), C ∈ MS(Y ) and D ∈
MS(Z). If f : W ×X → Y × Z is a homomorphism, then

(i) f(A×B) ⊆ f(A)× f(B);

(ii) f−1(C ×D) = f−1(C)× f−1(D).

Proof (i) Let (w, x) ∈W ×X . Suppose ∃ (y, z) ∈ Y × Z such that

f((w, x)) = (f(w), f(x)) = (y, z).

Then we get

Cf(A×B)((y, z)) = CA×B(f−1((y, z)))

= CA×B((f−1(y), f−1(z)))

= CA(f−1(y)) ∧ CB(f−1(z))

= Cf(A)(y) ∧ Cf(B)(z)

= Cf(A)×f(B)((y, z))

Hence, we conclude that, f(A×B) ⊆ f(A)× f(B).

(ii) For (w, x) ∈ W ×X , we have

Cf−1(C×D)((w, x)) = CC×D(f((w, x)))

= CC×D((f(w), f(x)))

= CC(f(w)) ∧ CD(f(x))

= Cf−1(C)(w) ∧ Cf−1(D)(x)

= Cf−1(C)×f−1(D)((w, x)).

Hence, f−1(C ×D) ⊆ f−1(C) × f−1(D).

Similarly,

Cf−1(C)×f−1(D)((w, x)) = Cf−1(C)(w) ∧ Cf−1(D)(x)

= CC(f(w)) ∧ CD(f(x))

= CC×D((f(w), f(x)))

= CC×D(f((w, x)))

= Cf−1(C×D)((w, x)).

Again, f−1(C)× f−1(D) ⊆ f−1(C ×D). Therefore, the result follows. 2
Theorem 5.3 Let f : W ×X → Y × Z be an isomorphism, A, B, C and D be multigroups of

W, X, Y and Z, respectively. Then the following statements hold:

(i) f(A×B) ∈MG(Y × Z);

(ii) f−1(C) × f−1(D) ∈MG(W ×X).
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Proof (i) Since A ∈ MG(W ) and B ∈ MG(X), then A× B ∈ MG(W ×X) by Theorem

3.7. From Proposition 2.14 and Definition 5.1, it follows that, f(A×B) ∈MG(Y × Z).

(ii) Combining Corollary 2.15, Theorem 3.7, Definition 5.1 and Theorem 5.2, the result

follows. 2
Corollary 5.4 Let X and Y be groups, A ∈MG(X) and B ∈MG(Y ). If

f : X ×X → Y × Y

be homomorphism, then

(i) f(A×A) ∈MG(Y × Y );

(ii) f−1(B ×B) ∈MG(X ×X).

Proof Straightforward from Theorem 5.3. 2
Proposition 5.5 Let X1, X2, · · · , Xk and Y1, Y2, · · · , Yk be groups, and

f : X1 ×X2 × · · · ×Xk → Y1 × Y2 × · · · × Yk

be homomorphism. If A1×A2× · · · ×Ak ∈MG(X1×X2× · · ·×Xk) and B1×B2× · · ·×Bk ∈
MG(Y1 × Y2 × · · · × Yk), then

(i) f(A1 ×A2 × · · · ×Ak) ∈MG(Y1 × Y2 × · · · × Yk);

(ii) f−1(B1 ×B2 × · · · ×Bk) ∈MG(X1 ×X2 × · · · ×Xk).

Proof Straightforward from Corollary 5.4. 2
§6. Conclusions

The concept of direct product in groups setting has been extended to multigroups. We lucidly

exemplified direct product of multigroups and deduced several results. The notion of generalized

direct product of multigroups was also introduced in the case of finitely kth multigroups. Finally,

homomorphism and some of its properties were proposed in the context of direct product of

multigroups.
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Abstract: A complex system S consists m components, maybe inconsistence with m ≥ 2,
such as those of biological systems or generally, interaction systems and usually, a system
with contradictions, which implies that there are no a mathematical subfield applicable.
Then, how can we hold on its global and local behaviors or reality? All of us know that there
always exists universal connections between things in the world, i.e., a topological graph

−→
G

underlying components in S . We can thereby establish mathematics over graphs
−→
G1,

−→
G2, · · ·

by viewing labeling graphs
−→
GL1

1 ,
−→
GL2

2 , · · · to be globally mathematical elements, not only
game objects or combinatorial structures, which can be applied to characterize dynamic
behaviors of the system S on time t. Formally, a continuity flow

−→
GL is a topological graph

−→
G

associated with a mapping L : (v, u) → L(v, u), 2 end-operators A+
vu : L(v, u) → LA+

vu (v, u)
and A+

uv : L(u, v) → LA+
uv (u, v) on a Banach space B over a field F with L(v, u) = −L(u, v)

and A+
vu(−L(v, u)) = −LA+

vu (v, u) for ∀(v, u) ∈ E
(−→

G
)

holding with continuity equations

∑

u∈NG(v)

LA+
vu (v, u) = L(v), ∀v ∈ V

(−→
G
)

.

The main purpose of this paper is to extend Banach or Hilbert spaces to Banach or Hilbert

continuity flow spaces over topological graphs
{−→

G1,
−→
G2, · · ·

}
and establish differentials on

continuity flows for characterizing their globally change rate. A few well-known results such

as those of Taylor formula, L’Hospital’s rule on limitation are generalized to continuity flows,
and algebraic or differential flow equations are discussed in this paper. All of these results

form the elementary differential theory on continuity flows, which contributes mathematical

combinatorics and can be used to characterizing the behavior of complex systems, particu-
larly, the synchronization.

Key Words: Complex system, Smarandache multispace, continuity flow, Banach space,

Hilbert space, differential, Taylor formula, L’Hospital’s rule, mathematical combinatorics.

AMS(2010): 34A26, 35A08, 46B25, 92B05, 05C10, 05C21, 34D43, 51D20.

§1. Introduction

A Banach or Hilbert space is respectively a linear space A over a field R or C equipped with a

complete norm ‖ · ‖ or inner product 〈 · , · 〉, i.e., for every Cauchy sequence {xn} in A , there

1Received May 5, 2017, Accepted November 6, 2017.
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exists an element x in A such that

lim
n→∞

‖xn − x‖A = 0 or lim
n→∞

〈xn − x, xn − x〉
A

= 0

and a topological graph ϕ(G) is an embedding of a graph G with vertex set V (G), edge set

E(G) in a space S , i.e., there is a 1 − 1 continuous mapping ϕ : G → ϕ(G) ⊂ S with

ϕ(p) 6= ϕ(q) if p 6= q for ∀p, q ∈ G, i.e., edges of G only intersect at vertices in S , an embedding

of a topological space to another space. A well-known result on embedding of graphs without

loops and multiple edges in Rn concluded that there always exists an embedding of G that all

edges are straight segments in Rn for n ≥ 3 ([22]) such as those shown in Fig.1.

Fig.1

As we known, the purpose of science is hold on the reality of things in the world. However,

the reality of a thing T is complex and there are no a mathematical subfield applicable unless

a system maybe with contradictions in general. Is such a contradictory system meaningless

to human beings? Certain not because all of these contradictions are the result of human

beings, not the nature of things themselves, particularly on those of contradictory systems in

mathematics. Thus, holding on the reality of things motivates one to turn contradictory systems

to compatible one by a combinatorial notion and establish an envelope theory on mathematics,

i.e., mathematical combinatorics ([9]-[13]). Then, Can we globally characterize the behavior of a

system or a population with elements≥ 2, which maybe contradictory or compatible? The answer

is certainly YES by continuity flows, which needs one to establish an envelope mathematical

theory over topological graphs, i.e., views labeling graphs GL to be mathematical elements

([19]), not only a game object or a combinatorial structure with labels in the following sense.

Definition 1.1 A continuity flow
(−→

G ; L, A
)

is an oriented embedded graph
−→
G in a topological

space S associated with a mapping L : v → L(v), (v, u) → L(v, u), 2 end-operators A+
vu :

L(v, u)→ LA+
vu(v, u) and A+

uv : L(u, v)→ LA+
uv (u, v) on a Banach space B over a field F-L(v, u)A+

vu A+
uv

L(v) L(u)

v u
Fig.2
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with L(v, u) = −L(u, v) and A+
vu(−L(v, u)) = −LA+

vu(v, u) for ∀(v, u) ∈ E
(−→

G
)

holding with

continuity equation ∑

u∈NG(v)

LA+
vu (v, u) = L(v) for ∀v ∈ V

(−→
G
)

such as those shown for vertex v in Fig.3 following

-
-

-

-
-

-
L(v)

L(u1)

L(u2)

L(u3)

L(u4)

L(u5)

L(u6)

L(u1, v)

L(u2, v)

L(u3, v)

L(v, u4)

L(v, u5)

L(v, u6)

u1

u2

u3

v

u4

u5

u6

A1

A2

A3

A4

A5

A6

Fig.3

with a continuity equation

LA1(v, u1) + LA2(v, u2) + LA3(v, u3)− LA4(v, u4)− LA5(v, u5)− LA6(v, u6) = L(v),

where L(v) is the surplus flow on vertex v.

Particularly, if L(v) = ẋv or constants vv, v ∈ V
(−→

G
)
, the continuity flow

(−→
G ; L, A

)

is respectively said to be a complex flow or an action A flow, and
−→
G-flow if A = 1V , where

ẋv = dxv/dt, xv is a variable on vertex v and v is an element in B for ∀v ∈ E
(−→

G
)
.

Clearly, an action flow is an equilibrium state of a continuity flow
(−→

G ; L, A
)
. We have

shown that Banach or Hilbert space can be extended over topological graphs ([14],[17]), which

can be applied to understanding the reality of things in [15]-[16], and we also shown that

complex flows can be applied to hold on the global stability of biological n-system with n ≥ 3

in [19]. For further discussing continuity flows, we need conceptions following.

Definition 1.2 Let B1, B2 be Banach spaces over a field F with norms ‖ · ‖1 and ‖ · ‖2,

respectively. An operator T : B1 → B2 is linear if

T (λv1 + µv2) = λT (v1) + µT (v2)

for λ, µ ∈ F, and T is said to be continuous at a vector v0 if there always exist such a number
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δ(ε) for ∀ǫ > 0 that

‖T (v)−T (v0)‖2 < ε

if ‖v − v0‖1 < δ(ε) for ∀v, v0, v1, v2 ∈ B1.

Definition 1.3 Let B1, B2 be Banach spaces over a field F with norms ‖ · ‖1 and ‖ · ‖2,

respectively. An operator T : B1 → B2 is bounded if there is a constant M > 0 such that

‖T (v)‖2 ≤M ‖v‖1 , i.e.,
‖T(v)‖2

‖v‖1
≤M

for ∀v ∈ B and furthermore, T is said to be a contractor if

‖T (v1)−T (v2)‖ ≤ c ‖v1 − v2)‖

for ∀v1, v2 ∈ B with c ∈ [0, 1).

We only discuss the case that all end-operators A+
vu, A+

uv are both linear and continuous.

In this case, the result following on linear operators of Banach space is useful.

Theorem 1.4 Let B1, B2 be Banach spaces over a field F with norms ‖·‖1 and ‖·‖2, respectively.

Then, a linear operator T : B1 → B2 is continuous if and only if it is bounded, or equivalently,

‖T‖ := sup
0 6=v∈B1

‖T(v)‖2

‖v‖1
< +∞.

Let
{−→

G1,
−→
G2, · · ·

}
be a graph family. The main purpose of this paper is to extend Ba-

nach or Hilbert spaces to Banach or Hilbert continuity flow spaces over topological graphs{−→
G1,
−→
G2, · · ·

}
and establish differentials on continuity flows, which enables one to characterize

their globally change rate constraint on the combinatorial structure. A few well-known results

such as those of Taylor formula, L’Hospital’s rule on limitation are generalized to continuity

flows, and algebraic or differential flow equations are discussed in this paper. All of these

results form the elementary differential theory on continuity flows, which contributes math-

ematical combinatorics and can be used to characterizing the behavior of complex systems,

particularly, the synchronization.

For terminologies and notations not defined in this paper, we follow references [1] for

mechanics, [4] for functionals and linear operators, [22] for topology, [8] combinatorial geometry,

[6]-[7],[25] for Smarandache systems, Smarandache geometries and Smaarandache multispaces

and [2], [20] for biological mathematics.

§2. Banach and Hilbert Flow Spaces

2.1 Linear Spaces over Graphs

Let
−→
G1,
−→
G2, · · · ,

−→
Gn be oriented graphs embedded in topological space S with

−→
G =

n⋃
i=1

−→
G i,



Hilbert Flow Spaces with Differentials over Graphs 23

i.e.,
−→
G i is a subgraph of

−→
G for integers 1 ≤ i ≤ n. In this case, these is naturally an embedding

ι :
−→
G i →

−→
G .

Let V be a linear space over a field F . A vector labeling L :
−→
G → V is a mapping with

L(v), L(e) ∈ V for ∀v ∈ V (
−→
G ), e ∈ E(

−→
G). Define

−→
GL1

1 +
−→
GL2

2 =
(−→

G1 \
−→
G2

)L1 ⋃(−→
G1
⋂−→

G2

)L1+L2 ⋃(−→
G2 \

−→
G1

)L2

(2.1)

and

λ · −→GL =
−→
Gλ·L (2.2)

for ∀λ ∈ F . Clearly, if , and
−→
GL,
−→
GL1

1 ,
−→
GL2

2 are continuity flows with linear end-operators

A+
vu and A+

uv for ∀(v, u) ∈ E
(−→

G
)
,
−→
GL1

1 +
−→
GL2

2 and λ · −→GL are continuity flows also. If we

consider each continuity flow
−→
GL

i a continuity subflow of
−→
G L̂, where L̂ :

−→
G i = L(

−→
G i) but

L̂ :
−→
G \ −→G i → 0 for integers 1 ≤ i ≤ n, and define O :

−→
G → 0, then all continuity flows,

particularly, all complex flows, or all action flows on oriented graphs
−→
G1,
−→
G2, · · · ,

−→
Gn naturally

form a linear space, denoted by

(〈−→
G i, 1 ≤ i ≤ n

〉V

; +, ·
)

over a field F under operations (2.1)

and (2.2) because it holds with:

(1) A field F of scalars;

(2) A set
〈−→

G i, 1 ≤ i ≤ n
〉V

of objects, called continuity flows;

(3) An operation “+”, called continuity flow addition, which associates with each pair of

continuity flows
−→
GL1

1 ,
−→
GL2

2 in
〈−→

G i, 1 ≤ i ≤ n
〉V

a continuity flows
−→
GL1

1 +
−→
GL2

2 in
〈−→

G i, 1 ≤ i ≤ n
〉V

,

called the sum of
−→
GL1

1 and
−→
GL2

2 , in such a way that

(a) Addition is commutative,
−→
GL1

1 +
−→
GL2

2 =
−→
GL2

2 +
−→
GL1

1 because of

−→
GL1

1 +
−→
GL2

2 =
(−→

G1 −
−→
G2

)L1 ⋃(−→
G1
⋂−→

G2

)L1+L2 ⋃(−→
G2 −

−→
G1

)L2

=
(−→

G2 −
−→
G1

)L2 ⋃(−→
G1
⋂−→

G2

)L2+L1 ⋃(−→
G1 −

−→
G2

)L1

=
−→
GL2

2 +
−→
GL1

1 ;

(b) Addition is associative,
(−→

GL1
1 +

−→
GL2

2

)
+
−→
GL3

3 =
−→
GL1

1 +
(−→

GL2
2 +

−→
GL3

3

)
because if we

let

L+
ijk(x) =






Li(x), if x ∈ −→G i \
(−→

G j

⋃−→
Gk

)

Lj(x), if x ∈ −→G j \
(−→

G i

⋃−→
Gk

)

Lk(x), if x ∈ −→Gk \
(−→

G i

⋃−→
G j

)

L+
ij(x), if x ∈

(−→
G i

⋂−→
G j

)
\ −→Gk

L+
ik(x), if x ∈

(−→
G i

⋂−→
Gk

)
\ −→G j

L+
jk(x), if x ∈

(−→
G j

⋂−→
Gk

)
\ −→G i

Li(x) + Lj(x) + Lk(x) if x ∈ −→G i

⋂−→
G j

⋂−→
Gk

(2.3)
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and

L+
ij(x) =






Li(x), if x ∈ −→G i \
−→
G j

Lj(x), if x ∈ −→G j \
−→
G i

Li(x) + Lj(x), if x ∈ −→G i

⋂−→
G j

(2.4)

for integers 1 ≤ i, j, k ≤ n, then

(−→
GL1

1 +
−→
GL2

2

)
+
−→
GL3

3 =
(−→

G1
⋃−→

G2

)L+
12

+
−→
GL3

3 =
(−→

G1
⋃−→

G2
⋃−→

G3

)L+
123

=
−→
GL1

1 +
(−→

G2
⋃−→

G3

)L+
23

=
−→
GL1

1 +
(−→

GL2
2 +

−→
GL3

3

)
;

(c) There is a unique continuity flow O on
−→
G hold with O(v, u) = 0 for ∀(v, u) ∈ E

(−→
G
)

and

V
(−→

G
)

in
〈−→

G i, 1 ≤ i ≤ n
〉V

, called zero such that
−→
GL +O =

−→
GL for

−→
GL ∈

〈−→
G i, 1 ≤ i ≤ n

〉V

;

(d) For each continuity flow
−→
GL ∈

〈−→
G i, 1 ≤ i ≤ n

〉V

there is a unique continuity flow
−→
G−L such that

−→
GL +

−→
G−L = O;

(4) An operation “·, called scalar multiplication, which associates with each scalar k in F

and a continuity flow
−→
GL in

〈−→
G i, 1 ≤ i ≤ n

〉V

a continuity flow k ·−→GL in V , called the product

of k with
−→
GL, in such a way that

(a) 1 · −→GL =
−→
GL for every

−→
GL in

〈−→
G i, 1 ≤ i ≤ n

〉V

;

(b) (k1k2) ·
−→
GL = k1(k2 ·

−→
GL);

(c) k · (−→GL1
1 +

−→
GL2

2 ) = k · −→GL1
1 + k · −→GL2

2 ;

(d) (k1 + k2) ·
−→
GL = k1 ·

−→
GL + k2 ·

−→
GL.

Usually, we abbreviate

(〈−→
G i, 1 ≤ i ≤ n

〉V

; +, ·
)

to
〈−→

G i, 1 ≤ i ≤ n
〉V

if these operations

+ and · are clear in the context.

By operation (1.1),
−→
GL1

1 +
−→
GL2

2 6=
−→
GL1

1 if and only if
−→
G1 6�

−→
G2 with L1 :

−→
G1 \

−→
G2 6→ 0 and−→

GL1
1 +
−→
GL2

2 6=
−→
GL2

2 if and only if
−→
G2 6�

−→
G1 with L2 :

−→
G2\

−→
G1 6→ 0, which allows us to introduce

the conception of linear irreducible. Generally, a continuity flow family {−→GL1
1 ,
−→
GL2

2 , · · · ,
−→
GLn

n }
is linear irreducible if for any integer i,

−→
G i 6�

⋃

l 6=i

−→
G l with Li :

−→
G i \

⋃

l 6=i

−→
G l 6→ 0, (2.5)

where 1 ≤ i ≤ n. We know the following result on linear generated sets.

Theorem 2.1 Let V be a linear space over a field F and let
{−→

GL1
1 ,
−→
GL2

2 , · · · ,
−→
GLn

n

}
be an

linear irreducible family, Li :
−→
G i → V for integers 1 ≤ i ≤ n with linear operators A+

vu,

A+
uv for ∀(v, u) ∈ E

(−→
G
)
. Then,

{−→
GL1

1 ,
−→
GL2

2 , · · · ,
−→
GLn

n

}
is an independent generated set of
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〈−→
G i, 1 ≤ i ≤ n

〉V

, called basis, i.e.,

dim
〈−→

G i, 1 ≤ i ≤ n
〉V

= n.

Proof By definition,
−→
GLi

i , 1 ≤ i ≤ n is a linear generated of
〈−→

G i, 1 ≤ i ≤ n
〉V

with

Li :
−→
G i → V , i.e.,

dim
〈−→

G i, 1 ≤ i ≤ n
〉V

≤ n.

We only need to show that
−→
GLi

i , 1 ≤ i ≤ n is linear independent, i.e.,

dim
〈−→

G i, 1 ≤ i ≤ n
〉V

≥ n,

which implies that if there are n scalars c1, c2, · · · , cn holding with

c1
−→
GL1

1 + c2
−→
GL2

2 + · · ·+ cn
−→
GLn

n = O,

then c1 = c2 = · · · = cn = 0. Notice that {−→G1,
−→
G2, · · · ,

−→
Gn} is linear irreducible. We are easily

know
−→
Gi \

⋃
l 6=i

−→
G l 6= ∅ and find an element x ∈ E(

−→
Gi \

⋃
l 6=i

−→
G l) such that ciLi(x) = 0 for integer

i, 1 ≤ i ≤ n. However, Li(x) 6= 0 by (1.5). We get that ci = 0 for integers 1 ≤ i ≤ n. 2
A subspace of

〈−→
G i, 1 ≤ i ≤ n

〉V

is called an A0-flow space if its elements are all continuity

flows
−→
GL with L(v), v ∈ V

(−→
G
)

are constant v. The result following is an immediately

conclusion of Theorem 2.1.

Theorem 2.2 Let
−→
G,
−→
G1,
−→
G2, · · · ,

−→
Gn be oriented graphs embedded in a space S and V

a linear space over a field F . If
−→
Gv,
−→
Gv1

1 ,
−→
Gv2

2 , · · · ,
−→
Gvn

n are continuity flows with v(v) =

v, vi(v) = vi ∈ V for ∀v ∈ V
(−→

G
)
, 1 ≤ i ≤ n, then

(1)
〈−→

Gv

〉
is an A0-flow space;

(2)
〈−→

Gv1
1 ,
−→
Gv2

2 , · · · ,
−→
Gvn

n

〉
is an A0-flow space if and only if

−→
G1 =

−→
G2 = · · · =

−→
Gn or

v1 = v2 = · · · = vn = 0.

Proof By definition,
−→
Gv1

1 +
−→
Gv2

2 and λ
−→
Gv are A0-flows if and only if

−→
G1 =

−→
G1 or

v1 = v2 = 0 by definition. We therefore know this result. 2
2.2 Commutative Rings over Graphs

Furthermore, if V is a commutative ring (R; +, ·), we can extend it over oriented graph family

{−→G1,
−→
G2, · · · ,

−→
Gn} by introducing operation + with (2.1) and operation · following:

−→
GL1

1 ·
−→
GL2

2 =
(−→

G1 \
−→
G2

)L1 ⋃(−→
G1
⋂−→

G2

)L1·L2 ⋃(−→
G2 \

−→
G1

)L2

, (2.6)
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where L1 · L2 : x → L1(x) · L2(x), and particularly, the scalar product for Rn, n ≥ 2 for

x ∈ −→G1
⋂−→

G2.

As we shown in Subsection 2.1,

(〈−→
G i, 1 ≤ i ≤ n

〉R

; +

)
is an Abelian group. We show

(〈−→
G i, 1 ≤ i ≤ n

〉R

; +, ·
)

is a commutative semigroup also.

In fact, define

L×
ij(x) =






Li(x), if x ∈ −→G i \
−→
G j

Lj(x), if x ∈ −→G j \
−→
G i

Li(x) · Lj(x), if x ∈ −→G i

⋂−→
G j

Then, we are easily known that
−→
GL1

1 ·
−→
GL2

2 =
(−→

G1
⋃−→

G2

)L×
12

=
(−→

G1
⋃−→

G2

)L×
21

=
−→
GL2

2 ·
−→
GL1

1

for ∀−→GL1
1 ,
−→
GL2

2 ∈
(〈−→

G i, 1 ≤ i ≤ n
〉R

; ·
)

by definition (2.6), i.e., it is commutative.

Let

L×
ijk(x) =






Li(x), if x ∈ −→G i \
(−→

G j

⋃−→
Gk

)

Lj(x), if x ∈ −→G j \
(−→

G i

⋃−→
Gk

)

Lk(x), if x ∈ −→Gk \
(−→

G i

⋃−→
G j

)

Lij(x), if x ∈
(−→

G i

⋂−→
G j

)
\ −→Gk

Lik(x), if x ∈
(−→

G i

⋂−→
Gk

)
\ −→G j

Ljk(x), if x ∈
(−→

G j

⋂−→
Gk

)
\ −→G i

Li(x) · Lj(x) · Lk(x) if x ∈ −→G i

⋂−→
G j

⋂−→
Gk

Then,

(−→
GL1

1 ·
−→
GL2

2

)
· −→GL3

3 =
(−→

G1
⋃−→

G2

)L×
12 · −→GL3

3 =
(−→

G1
⋃−→

G2
⋃−→

G3

)L×
123

=
−→
GL1

1 ·
(−→

G2
⋃−→

G3

)L×
23

=
−→
GL1

1 ·
(−→

GL2
2 ·
−→
GL3

3

)
.

Thus, (−→
GL1

1 ·
−→
GL2

2

)
· −→GL3

3 =
−→
GL1

1 ·
(−→

GL2
2 ·
−→
GL3

3

)

for ∀−→GL,
−→
GL1

1 ,
−→
GL2

2 ∈
(〈−→

G i, 1 ≤ i ≤ n
〉R

; ·
)

, which implies that it is a semigroup.

We are also need to verify the distributive laws, i.e.,

−→
GL3

3 ·
(−→

GL1
1 +

−→
GL2

2

)
=
−→
GL3

3 ·
−→
GL1

1 +
−→
GL3

3 ·
−→
GL2

2 (2.7)

and (−→
GL1

1 +
−→
GL2

2

)
· −→GL3

3 =
−→
GL1

1 ·
−→
GL3

3 +
−→
GL2

2 ·
−→
GL3

3 (2.8)
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for ∀−→G3,
−→
G1,
−→
G2 ∈

(〈−→
G i, 1 ≤ i ≤ n

〉R

; +, ·
)

. Clearly,

−→
GL3

3 ·
(−→

GL1
1 +

−→
GL2

2

)
=
−→
GL3

3 ·
(−→

G1
⋃−→

G2

)L+
12

=
(−→

G3

(−→
G1
⋃−→

G2

))L×
3(21)

=
(−→

G3
⋃−→

G1

)L×
31 ⋃(−→

G3
⋃−→

G2

)L×
32

=
−→
GL3

3 ·
−→
GL1

1 +
−→
GL3

3 ·
−→
GL2

2 ,

which is the (2.7). The proof for (2.8) is similar. Thus, we get the following result.

Theorem 2.3 Let (R; +, ·) be a commutative ring and let
{−→

GL1
1 ,
−→
GL2

2 , · · · ,
−→
GLn

n

}
be a linear

irreducible family, Li :
−→
G i → R for integers 1 ≤ i ≤ n with linear operators A+

vu, A+
uv for

∀(v, u) ∈ E
(−→

G
)
. Then,

(〈−→
G i, 1 ≤ i ≤ n

〉R

; +, ·
)

is a commutative ring.

2.3 Banach or Hilbert Flow Spaces

Let {−→GL1
1 ,
−→
GL2

2 , · · · ,
−→
GLn

n } be a basis of
〈−→

G i, 1 ≤ i ≤ n
〉V

, where V is a Banach space with a

norm ‖ · ‖. For ∀−→GL ∈
〈−→

G i, 1 ≤ i ≤ n
〉V

, define

∥∥∥
−→
GL
∥∥∥ =

∑

e∈E
(−→

G
)
‖L(e)‖ . (2.9)

Then, for ∀−→G,
−→
GL1

1 ,
−→
GL2

2 ∈
〈−→

G i, 1 ≤ i ≤ n
〉V

we are easily know that

(1)
∥∥∥
−→
GL
∥∥∥ ≥ 0 and

∥∥∥
−→
GL
∥∥∥ = 0 if and only if

−→
GL = O;

(2)
∥∥∥
−→
GξL

∥∥∥ = ξ
∥∥∥
−→
GL
∥∥∥ for any scalar ξ;

(3)
∥∥∥
−→
GL1

1 +
−→
GL2

2

∥∥∥ ≤
∥∥∥
−→
GL1

1

∥∥∥+
∥∥∥
−→
GL2

2

∥∥∥ because of

∥∥∥
−→
GL1

1 +
−→
GL2

2

∥∥∥ =
∑

e∈E
(−→

G1\
−→
G2

)
‖L1(e)‖

+
∑

e∈E
(−→

G1
⋂ −→

G2

)
‖L1(e) + L2(e)‖+

∑

e∈E
(−→

G2\
−→
G1

)
‖L2(e)‖

≤




∑

e∈E
(−→

G1\
−→
G2

)
‖L1(e)‖+

∑

e∈E
(−→

G1
⋂ −→

G2

)
‖L1(e)‖





+




∑

e∈E
(−→

G2\
−→
G1

)
‖L2(e)‖+

∑

e∈E
(−→

G1
⋂ −→

G2

)
‖L2(e)‖



 =
∥∥∥
−→
GL1

1

∥∥∥+
∥∥∥
−→
GL2

2

∥∥∥ .

for ‖L1(e) + L2(e)‖ ≤ ‖L1(e)‖ + ‖L2(e)‖ in Banach space V . Therefore, ‖ · ‖ is also a norm
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on
〈−→

G i, 1 ≤ i ≤ n
〉V

.

Furthermore, if V is a Hilbert space with an inner product 〈·, ·〉, for ∀−→GL1
1 ,
−→
GL2

2 ∈
〈−→

G i, 1 ≤ i ≤ n
〉V

,

define

〈−→
GL1

1 ,
−→
GL2

2

〉
=

∑

e∈E
(−→

G1\
−→
G2

)
〈L1(e), L1(e)〉

+
∑

e∈E
(−→

G1
⋂ −→

G2

)
〈L1(e), L2(e)〉+

∑

e∈E
(−→

G2\
−→
G1

)
〈L2(e), L2(e)〉 . (2.10)

Then we are easily know also that

(1) For ∀−→GL ∈
〈−→

G i, 1 ≤ i ≤ n
〉V

,

〈−→
GL,
−→
GL
〉

=
∑

e∈E
(−→

G
)
〈L(e), L(e)〉 ≥ 0

and
〈−→

GL,
−→
GL
〉

= 0 if and only if
−→
GL = O.

(2) For ∀−→GL1 ,
−→
GL2 ∈

〈−→
G i, 1 ≤ i ≤ n

〉V

,

〈−→
GL1

1 ,
−→
GL2

2

〉
=
〈−→

GL2
2 ,
−→
GL1

1

〉

because of

〈−→
GL1

1 ,
−→
GL2

2

〉
=

∑

e∈E
(−→

G1\
−→
G2

)
〈L1(e), L1(e)〉+

∑

e∈E
(−→

G1
⋂ −→

G2

)
〈L1(e), L2(e)〉

+
∑

e∈E
(−→

G2\
−→
G1

)
〈L2(e), L2(e)〉

=
∑

e∈E
(−→

G1\
−→
G2

)
〈L1(e), L1(e)〉+

∑

e∈E
(−→

G1
⋂ −→

G2

)
〈L2(e), L1(e)〉

+
∑

e∈E
(−→

G2\
−→
G1

)
〈L2(e), L2(e)〉 =

〈−→
GL2

2 ,
−→
GL1

1

〉

for 〈L1(e), L2(e)〉 = 〈L2(e), L1(e)〉 in Hilbert space V .

(3) For
−→
GL,
−→
GL1

1 ,
−→
GL2

2 ∈
〈−→

G i, 1 ≤ i ≤ n
〉V

and λ, µ ∈ F , there is

〈
λ
−→
GL1

1 + µ
−→
GL2

2 ,
−→
GL
〉

= λ
〈−→

GL1
1 ,
−→
GL
〉

+ µ
〈−→

GL2
2 ,
−→
GL
〉
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because of

〈
λ
−→
GL1

1 + µ
−→
GL2

2 ,
−→
GL
〉

=
〈−→

GλL1
1 +

−→
GµL2

2 ,
−→
GL
〉

=

〈(−→
G1 \

−→
G2

)λL1 ⋃(−→
G1
⋂−→

G2

)λL1+µL2 ⋃(−→
G2 \

−→
G1

)µL2

,
−→
GL

〉
.

Define L1λ2µ :
−→
G1
⋃−→

G2 → V by

L1λ2µ(x) =






λL1(x), if x ∈ −→G1 \
−→
G2

µL2(x), if x ∈ −→G2 \
−→
G1

λL1(x) + µL2(x), if x ∈ −→G2
⋂−→

G1

Then, we know that

〈
λ
−→
GL1

1 + µ
−→
GL2

2 ,
−→
GL
〉

=
∑

e∈E
((−→

G1
⋃ −→

G2

)
\−→G

)

〈
L1λ2µ(e), L1λ2µ(e)

〉

+
∑

e∈E
((−→

G1
⋃ −→

G2

) ⋂ −→
G
)

〈
L1λ2µ(e), L(e)

〉

+
∑

e∈E
(−→

G\
(−→

G1
⋃ −→

G2

))
〈L(e), L(e)〉 .

and

λ
〈−→

GL1
1 ,
−→
GL
〉

+ µ
〈−→

GL2
2 ,
−→
GL
〉

=
∑

e∈E
(−→

G1\
−→
G
)
〈λL1(e), λL1(e)〉+

∑

e∈E
(−→

G1
⋂ −→

G
)
〈λL1(e), L(e)〉

+
∑

e∈E
(−→

G\−→G1

)
〈L(e), L(e)〉+

∑

e∈E
(−→

G2\
−→
G
)
〈µL2(e), µL2(e)〉

+
∑

e∈E
(−→

G2
⋂ −→

G
)
〈µL2(e), L(e)〉+

∑

e∈E
(−→

G\−→G2

)
〈L(e), L(e)〉 .

Notice that

∑

e∈E
((−→

G1
⋃ −→

G2

)
\−→G

)

〈
L1λ2µ(e), L1λ2µ(e)

〉

=
∑

e∈E
(−→

G1\
−→
G
)
〈λL1(e), λL1(e)〉+

∑

e∈E
(−→

G2\
−→
G
)
〈µL2(e), µL2(e)〉

+
∑

e∈E
((−→

G1
⋃ −→

G2

) ⋂ −→
G
)

〈
L1λ2µ(e), L(e)

〉
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=
∑

e∈E
(−→

G1
⋂ −→

G
)
〈λL1(e), L(e)〉+

∑

e∈E
(−→

G2
⋂ −→

G
)
〈µL2(e), L(e)〉

+
∑

e∈E
(−→

G\−→G2

)
〈L(e), L(e)〉

=
∑

e∈E
(−→

G\−→G1

)
〈L(e), L(e)〉+

∑

e∈E
(−→

G\−→G2

)
〈L(e), L(e)〉 .

We therefore know that

〈
λ
−→
GL1

1 + µ
−→
GL2

2 ,
−→
GL
〉

= λ
〈−→

GL1
1 ,
−→
GL
〉

+ µ
〈−→

GL2
2 ,
−→
GL
〉

.

Thus,
−→
GV is an inner space

If {−→GL1
1 ,
−→
GL2

2 , · · · ,
−→
GLn

n } is a basis of space
〈−→

G i, 1 ≤ i ≤ n
〉V

, we are easily find the exact

formula on L by L1.L2, · · · , Ln. In fact, let

−→
GL = λ1

−→
GL1

1 + λ2
−→
GL2

2 + · · ·+ λn
−→
GLn

n ,

where (λ1, λ2, · · · , λn) 6= (0, 0, · · · , 0), and let

L̂ :

(
i⋂

l=1

−→
Gkl

)
\




⋃

s6=kl,··· ,ki

−→
Gs



→
i∑

l=1

λkl Lkl

for integers 1 ≤ i ≤ n. Then, we are easily knowing that L̂ is nothing else but the labeling L

on
−→
G by operation (2.1), a generation of (2.3) and (2.4) with

∥∥∥
−→
GL
∥∥∥ =

n∑

i=1

∑

e∈E
(−→

G i

)

∥∥∥∥∥

i∑

l=1

λkl Lkl(e)

∥∥∥∥∥ , (2.11)

〈−→
GL,
−→
G′L′

〉
=

n∑

i=1

∑

e∈E
(−→

G i

)

〈
i∑

l=1

λkl L
1
kl

(e),

i∑

s=1

λ′
ks

L2
ks

〉
, (2.12)

where
−→
G′L′

= λ′
1
−→
GL1

1 + λ′
2
−→
GL2

2 + · · ·+ λ′
n

−→
GLn

n and
−→
G i =

(
i⋂

l=1

−→
Gkl

)
\




⋃

s6=kl,··· ,ki

−→
Gs



 .

We therefore extend the Banach or Hilbert space V over graphs
−→
G1,
−→
G2, · · · ,

−→
Gn following.

Theorem 2.4 Let
−→
G1,
−→
G2, · · · ,

−→
Gn be oriented graphs embedded in a space S and V a Banach

space over a field F . Then
〈−→

G i, 1 ≤ i ≤ n
〉V

with linear operators A+
vu, A+

uv for ∀(v, u) ∈

E
(−→

G
)

is a Banach space, and furthermore, if V is a Hilbert space,
〈−→

G i, 1 ≤ i ≤ n
〉V

is a

Hilbert space too.
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Proof We have shown,
〈−→

G i, 1 ≤ i ≤ n
〉V

is a linear normed space or inner space if V is a

linear normed space or inner space, and for the later, let

∥∥∥
−→
GL
∥∥∥ =

√〈−→
GL,
−→
GL
〉

for
−→
GL ∈

〈−→
G i, 1 ≤ i ≤ n

〉V

. Then
〈−→

G i, 1 ≤ i ≤ n
〉V

is a normed space and furthermore, it is

a Hilbert space if it is complete. Thus, we are only need to show that any Cauchy sequence is

converges in
〈−→

G i, 1 ≤ i ≤ n
〉V

.

In fact, let
{−→

H Ln
n

}
be a Cauchy sequence in

〈−→
G i, 1 ≤ i ≤ n

〉V

, i.e., for any number ε > 0,

there always exists an integer N(ε) such that

∥∥∥
−→
H Ln

n −
−→
HLm

m

∥∥∥ < ε

if n, m ≥ N(ε). Let G V be the continuity flow space on
−→
G =

n⋃
i=1

−→
G i. We embed each

−→
HLn

n to

a
−→
G L̂ ∈ −→G V by letting

L̂n(e) =





Ln(e), if e ∈ E (Hn)

0, if e ∈ E
(−→

G \ −→Hn

)
.

Then

∥∥∥
−→
G L̂n −−→G L̂m

∥∥∥ =
∑

e∈E
(−→

Gn\−→Gm

)
‖Ln(e)‖+

∑

e∈E
(−→

Gn
⋂ −→

Gm

)
‖Ln(e)− Lm(e)‖

+
∑

e∈E
(−→

Gm\−→Gn

)
‖−Lm(e)‖ =

∥∥∥
−→
HLn

n −−→HLm
m

∥∥∥ ≤ ε.

Thus,
{−→

G L̂n

}
is a Cauchy sequence also in

−→
G V . By definition,

∥∥∥L̂n(e)− L̂m(e)
∥∥∥ ≤

∥∥∥
−→
G Ln −−→G Lm

∥∥∥ < ε,

i.e., {Ln(e)} is a Cauchy sequence for ∀e ∈ E
(−→

G
)
, which is converges on in V by definition.

Let

L̂(e) = lim
n→∞

L̂n(e)

for ∀e ∈ E
(−→

G
)
. Then it is clear that lim

n→∞
−→
G L̂n =

−→
G L̂, which implies that {−→G L̂n}, i.e.,

{−→
HLn

n

}
is converges to

−→
G L̂ ∈ −→G V , an element in

〈−→
G i, 1 ≤ i ≤ n

〉V

because of L̂(e) ∈ V for

∀e ∈ E
(−→

G
)

and
−→
G =

n⋃
i=1

−→
G i. 2
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§3. Differential on Continuity Flows

3.1 Continuity Flow Expansion

Theorem 2.4 enables one to establish differentials and generalizes results in classical calculus in

space
〈−→

G i, 1 ≤ i ≤ n
〉V

. Let L be kth differentiable to t on a domain D ⊂ R, where k ≥ 1.

Define

d
−→
GL

dt
=
−→
G

dL
dt and

t∫

0

−→
GLdt =

−→
G

t∫

0
Ldt

.

Then, we are easily to generalize Taylor formula in
〈−→

G i, 1 ≤ i ≤ n
〉V

following.

Theorem 3.1(Taylor) Let
−→
GL ∈

〈−→
G i, 1 ≤ i ≤ n

〉R×R
n

and there exist kth order derivative of

L to t on a domain D ⊂ R, where k ≥ 1. If A+
vu, A+

uv are linear for ∀(v, u) ∈ E
(−→

G
)
, then

−→
GL =

−→
GL(t0) +

t− t0

1!

−→
GL′(t0) + · · ·+ (t− t0)

k

k!

−→
GL(k)(t0) + o

(
(t− t0)

−k −→
G
)

, (3.1)

for ∀t0 ∈ D , where o
(
(t− t0)

−k −→G
)

denotes such an infinitesimal term L̂ of L that

lim
t→t0

L̂(v, u)

(t− t0)
k

= 0 for ∀(v, u) ∈ E
(−→

G
)

.

Particularly, if L(v, u) = f(t)cvu, where cvu is a constant, denoted by f(t)
−→
GLC with LC :

(v, u)→ cvu for ∀(v, u) ∈ E
(−→

G
)

and

f(t) = f(t0) +
(t − t0)

1!
f ′(t0) +

(t − t0)2

2!
f ′′(t0) + · · · +

(t − t0)k

k!
f (k)(t0) + o

(
(t − t0)k

)
,

then

f(t)
−→
GLC = f(t) · −→GLC .

Proof Notice that L(v, u) has kth order derivative to t on D for ∀(v, u) ∈ E
(−→

G
)
. By

applying Taylor formula on t0, we know that

L(v, u) = L(v, u)(t0) +
L′(v, u)(t0)

1!
(t− t0) + · · ·+ L(k)(v,u)(t0)

k!
+ o

(
(t− t0)

k
)

if t→ t0, where o
(
(t− t0)

k
)

is an infinitesimal term L̂(v, u) of L(v, u) hold with

lim
t→t0

L̂(v, u)

(t− t0)
t = 0
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for ∀(v, u) ∈ E
(−→

G
)
. By operations (2.1) and (2.2),

−→
GL1 +

−→
GL2 =

−→
GL1+L2 and λ

−→
GL =

−→
Gλ

−→
L

because A+
vu, A+

uv are linear for ∀(v, u) ∈ E
(−→

G
)
. We therefore get

−→
GL =

−→
GL(t0) +

(t− t0)

1!

−→
GL′(t0) + · · ·+ (t− t0)

k

k!

−→
GL(k)(t0) + o

(
(t− t0)

−k −→G
)

for t0 ∈ D , where o
(
(t− t0)

−k−→
G
)

is an infinitesimal term L̂ of L, i.e.,

lim
t→t0

L̂(v, u)

(t− t0)
t = 0

for ∀(v, u) ∈ E
(−→

G
)
. Calculation also shows that

f(t)
−→
GLC(v,u) =

−→
Gf(t)LC(v,u) =

−→
G

(
f(t0)+ (t−t0)

1! f ′(t0)···+ (t−t0)k

k! f(k)(t0)+o((t−t0)k)
)

cvu

= f(t0)cvu
−→
G +

f ′(t0)(t− t0)

1!
cvu
−→
G +

f”(t0)(t− t0)
2

2!
cvu
−→
G

+ · · ·+ f (k)(t0) (t− t0)
k

k!
cvu
−→
G + o

(
(t− t0)

k
)−→

G

=

(
f(t0) +

(t− t0)

1!
f ′(t0) · · ·+

(t− t0)
k

k!
f (k)(t0) + o

(
(t− t0)

k
))

cvu
−→
G

= f(t)cvu
−→
G = f(t) · −→GLC(v,u),

i.e.,

f(t)
−→
GLC = f(t) · −→GLC .

This completes the proof. 2
Taylor expansion formula for continuity flow

−→
GL enables one to find interesting results on−→

GL such as those of the following.

Theorem 3.2 Let f(t) be a k differentiable function to t on a domain D ⊂ R with 0 ∈ D and

f(0
−→
G) = f(0)

−→
G . If A+

vu, A+
uv are linear for ∀(v, u) ∈ E

(−→
G
)
, then

f(t)
−→
G = f

(
t
−→
G
)

. (3.2)

Proof Let t0 = 0 in the Taylor formula. We know that

f(t) = f(0) +
f ′(0)

1!
t +

f ′′(0)

2!
t2 + · · ·+ f (k)(0)

k!
tk + o

(
tk
)

.
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Notice that

f(t)
−→
G =

(
f(0) +

f ′(0)

1!
t +

f ′′(0)

2!
t2 + · · ·+ f (k)(0)

k!
tk + o

(
tk
))−→

G

=
−→
Gf(0)+ f′(0)

1! t+ f′′(0)
2! t2+···+ f(k)(0)

k! tk+o(tk)

= f(0)
−→
G +

f ′(0)t

1!

−→
G + · · ·+ f (k)(0)tk

k!

−→
G + o

(
tk
)−→

G

and by definition,

f
(

t
−→
G
)

= f
(
0
−→
G
)

+
f ′(0)

1!

(
t
−→
G
)

+
f ′′(0)

2!

(
t
−→
G
)2

+ · · ·+ f (k)(0)

k!

(
t
−→
G
)k

+ o

((
t
−→
G
)k
)

= f
(
0
−→
G
)

+
f ′(0)

1!
t
−→
G +

f ′′(0)

2!
t2−→G + · · ·+ f (k)(0)

k!
tk−→G + o

(
tk
)−→

G

because of
(

t
−→
G
)i

=
−→
G ti

= ti−→G for any integer 1 ≤ i ≤ k. Notice that f(0
−→
G) = f(0)

−→
G . We

therefore get that

f(t)
−→
G = f

(
t
−→
G
)

. 2
Theorem 3.2 enables one easily getting Taylor expansion formulas by f

(
t
−→
G
)
. For example,

let f(t) = et. Then

et−→G = et
−→
G (3.3)

by Theorem 3.5. Notice that (et)
′
= et and e0 = 1. We know that

et
−→
G = et−→G =

−→
G +

t

1!

−→
G +

t2

2!

−→
G + · · ·+ tk

k!

−→
G + · · · (3.4)

and

et
−→
G · es

−→
G =

−→
Get · −→G es

=
−→
Get·es

=
−→
Get+s

= e(t+s)
−→
G , (3.5)

where t and s are variables, and similarly, for a real number α if |t| < 1,

(−→
G + t

−→
G
)α

=
−→
G +

αt

1!

−→
G + · · ·+ α(α − 1) · · · (α− n + 1)tn

n!

−→
G + · · · (3.6)

3.2 Limitation

Definition 3.3 Let
−→
GL,
−→
GL1

1 ∈
〈−→

G i, 1 ≤ i ≤ n
〉V

with L, L1 dependent on a variable t ∈
[a, b] ⊂ (−∞, +∞) and linear continuous end-operators A+

vu for ∀(v, u) ∈ E
(−→

G
)
. For t0 ∈

[a, b] and any number ε > 0, if there is always a number δ(ε) such that if |t − t0| ≤ δ(ε)

then
∥∥∥
−→
GL1

1 −
−→
GL
∥∥∥ < ε, then,

−→
GL1

1 is said to be converged to
−→
GL as t → t0, denoted by

lim
t→t0

−→
GL1

1 =
−→
GL. Particularly, if

−→
GL is a continuity flow with a constant L(v) for ∀v ∈ V

(−→
G
)

and t0 = +∞,
−→
GL1

1 is said to be
−→
G-synchronized.
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Applying Theorem 1.4, we know that there are positive constants cvu ∈ R such that

‖A+
vu‖ ≤ c+

vu for ∀(v, u) ∈ E
(−→

G
)
.

By definition, it is clear that

∥∥∥
−→
GL1

1 −
−→
GL
∥∥∥

=
∥∥∥∥
(−→

G1 \
−→
G
)L1

∥∥∥∥ +
∥∥∥∥
(−→

G1

⋂−→
G
)L1−L

∥∥∥∥ +
∥∥∥∥
(−→

G \
−→
G1

)−L
∥∥∥∥

=
∑

u∈NG1\G(v)

∥∥∥∥LA′+
vu

1 (v, u)
∥∥∥∥ +

∑

u∈NG1
⋂

G(v)

∥∥∥∥

(
LA′+

vu
1 − LA+

vu
vu

)
(v, u)

∥∥∥∥ +
∑

u∈NG\G1 (v)

∥∥∥−LA+
vu (v, u)

∥∥∥

≤
∑

u∈NG1\G(v)

c+
vu‖L1(v, u)‖ +

∑

u∈NG1
⋂

G(v)

c+
vu‖ (L1 − L) (v, u)‖ +

∑

u∈NG\G1 (v)

c+
vu‖ − L(v, u)‖.

and ‖L(v, u)‖ ≥ 0 for (v, u) ∈ E
(−→

G
)

and E
(−→

G1

)
. Let

cmax
G1G =

{
max

(v,u)∈E(G1)
c+
vu, max

(v,u)∈E(G1)
c+
vu

}
.

If
∥∥∥
−→
GL1

1 −
−→
GL
∥∥∥ < ε, we easily get that ‖L1(v, u)‖ < cmax

G1Gε for (v, u) ∈ E
(−→

G1 \
−→
G
)
,

‖(L1 − L)(v, u)‖ < cmax
G1Gε for (v, u) ∈ E

(−→
G1
⋂−→

G
)

and ‖ − L(v, u)‖ < cmax
G1Gε for (v, u) ∈

E
(−→

G \ −→G1

)
.

Conversely, if ‖L1(v, u)‖ < ε for (v, u) ∈ E
(−→

G1 \
−→
G
)
, ‖(L1 − L)(v, u)‖ < ε for (v, u) ∈

E
(−→

G1
⋂−→

G
)

and ‖ − L(v, u)‖ < ε for (v, u) ∈ E
(−→

G \ −→G1

)
, we easily know that

∥∥∥
−→
GL1

1 −
−→
GL
∥∥∥ =

∑

u∈NG1\G(v)

∥∥∥L
A′+

vu
1 (v, u)

∥∥∥+
∑

u∈NG1
⋂

G(v)

∥∥∥
(

L
A′+

vu
1 − L

A+
vu

vu

)
(v, u)

∥∥∥

+
∑

u∈NG\G1(v)

∥∥∥−LA+
vu(v, u)

∥∥∥

≤
∑

u∈NG1\G(v)

c+
vu‖L1(v, u)‖+

∑

u∈NG1
⋂

G(v)

c+
vu‖ (L1 − L) (v, u)‖

+
∑

u∈NG\G1(v)

c+
vu‖ − L(v, u)‖

<
∣∣∣
−→
G1 \

−→
G
∣∣∣ cmax

G1Gε +
∣∣∣
−→
G1
⋂−→

G
∣∣∣ cmax

G1Gε +
∣∣∣
−→
G \ −→G1

∣∣∣ cmax
G1Gε =

∣∣∣
−→
G1
⋃−→

G
∣∣∣ cmax

G1Gε.

Thus, we get an equivalent condition for lim
t→t0

−→
GL1

1 =
−→
GL following.

Theorem 3.4 lim
t→t0

−→
GL1

1 =
−→
GL if and only if for any number ε > 0 there is always a number δ(ε)

such that if |t − t0| ≤ δ(ε) then ‖L1(v, u)‖ < ε for (v, u) ∈ E
(−→

G1 \
−→
G
)
, ‖(L1 − L)(v, u)‖ < ε

for (v, u) ∈ E
(−→

G1
⋂−→

G
)

and ‖ − L(v, u)‖ < ε for (v, u) ∈ E
(−→

G \ −→G1

)
,i.e.,

−→
GL1

1 −
−→
GL is an

infinitesimal or lim
t→t0

(−→
GL1

1 −
−→
GL
)

= O.
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If lim
t→t0

−→
GL, lim

t→t0

−→
G1

L1 and lim
t→t0

−→
G2

L2 exist, the formulas following are clearly true by defi-

nition:

lim
t→t0

(−→
G1

L1 +
−→
G2

L2
)

= lim
t→t0

−→
G1

L1 + lim
t→t0

−→
G2

L2 ,

lim
t→t0

(−→
G1

L1 · −→G2
L2
)

= lim
t→t0

−→
G1

L1 · lim
t→t0

−→
G2

L2 ,

lim
t→t0

(−→
GL ·

(−→
G1

L1 +
−→
G2

L2
))

= lim
t→t0

−→
GL · lim

t→t0

−→
G1

L1 + lim
t→t0

−→
GL · lim

t→t0

−→
G2

L2 ,

lim
t→t0

((−→
G1

L1 +
−→
G2

L2
)
· −→GL

)
= lim

t→t0

−→
G1

L1 · lim
t→t0

−→
GL + lim

t→t0

−→
G2

L2 · lim
t→t0

−→
GL

and furthermore, if lim
t→t0

−→
G2

L2 6= O, then

lim
t→t0

(−→
G1

L1

−→
G2L2

)
= lim

t→t0

(−→
G1

L1 · −→G2
L−1

2

)
=

lim
t→t0

−→
G1

L1

lim
t→t0

−→
G2L2

.

Theorem 3.5(L’Hospital’s rule) If lim
t→t0

−→
G1

L1 = O, lim
t→t0

−→
G2

L2 = O and L1, L2 are differentiable

respect to t with lim
t→t0

L′
1(v, u) = 0 for (v, u) ∈ E

(−→
G1 \

−→
G2

)
, lim

t→t0
L′

2(v, u) 6= 0 for (v, u) ∈

E
(−→

G1
⋂−→

G2

)
and lim

t→t0
L′

2(v, u) = 0 for (v, u) ∈ E
(−→

G2 \
−→
G1

)
, then,

lim
t→t0

(−→
G1

L1

−→
G2L2

)
=

lim
t→t0

−→
G1

L′
1

lim
t→t0

−→
G2

L′
2

.

Proof By definition, we know that

lim
t→t0

(−→
G1

L1

−→
G2L2

)
= lim

t→t0

(−→
G1

L1 · −→G2
L−1

2

)

= lim
t→t0

(−→
G1 \

−→
G2

)L1 (−→
G1
⋂−→

G2

)L1·L−1
2
(−→

G2 \
−→
G1

)L2

= lim
t→t0

(−→
G1
⋂−→

G2

)L1·L−1
2

= lim
t→t0

(−→
G1
⋂−→

G2

) L1
L−1

2

=
(−→

G1
⋂−→

G2

) lim
t→t0

L1
L−1

2 =
(−→

G1
⋂−→

G2

)
lim

t→t0
L′

1

lim
t→t0

L′−1
2

=
(−→

G1 \
−→
G2

) lim
t→t0

L′
1
(−→

G1
⋂−→

G2

) lim
t→t0

L′
1 · lim

t→t0
L′−1

2
(−→

G2 \
−→
G1

) lim
t→t0

L′
2

=
−→
G

lim
t→t0

L′
1

1 · −→G
lim

t→t0
L′−1

2

2 =
lim
t→t0

−→
G

L′
1

1

lim
t→t0

−→
G

L′
2

2

.

This completes the proof. 2
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Corollary 3.6 If lim
t→t0

−→
GL1 = O, lim

t→t0

−→
GL2 = O and L1, L2 are differentiable respect to t with

lim
t→t0

L′
2(v, u) 6= 0 for (v, u) ∈ E

(−→
G
)
, then

lim
t→t0

(−→
GL1

−→
GL2

)
=

lim
t→t0

−→
GL′

1

lim
t→t0

−→
GL′

2

.

Generally, by Taylor formula

−→
GL =

−→
GL(t0) +

t− t0

1!

−→
GL′(t0) + · · ·+ (t− t0)

k

k!

−→
GL(k)(t0) + o

(
(t− t0)

−k −→G
)

,

if L1(t0) = L′
1(t0) = · · · = L

(k−1)
1 (t0) = 0 and L2(t0) = L′

2(t0) = · · · = L
(k−1)
2 (t0) = 0 but

L
(k)
2 (t0) 6= 0, then

−→
GL1

1 =
(t− t0)

k

k!

−→
G

L
(k)
1 (t0)

1 + o
(
(t− t0)

−k−→
G1

)
,

−→
GL2

2 =
(t− t0)

k

k!

−→
G

L
(k)
2 (t0)

2 + o
(
(t− t0)

−k−→G2

)
.

We are easily know the following result.

Theorem 3.7 If lim
t→t0

−→
G1

L1 = O, lim
t→t0

−→
G2

L2 = O and L1(t0) = L′
1(t0) = · · · = L

(k−1)
1 (t0) = 0

and L2(t0) = L′
2(t0) = · · · = L

(k−1)
2 (t0) = 0 but L

(k)
2 (t0) 6= 0, then

lim
t→t0

−→
G1

L1

−→
GL2

2

=
lim
t→t0

−→
G

L
(k)
1 (t0)

1

lim
t→t0

−→
G

L
(k)
2 (t0)

2

.

Example 3.8 Let
−→
G1 =

−→
G2 =

−→
C n, A+

vivi+1
= 1, A+

vivi−1
= 2 and

fi =
f1 +

(
2i−1 − 1

)
F (x)

2i−1 +
n!

(2n + 1)et

for integers 1 ≤ i ≤ n in Fig.4. - ?���6
v1 v2

v3vi
vi+1vn

f1

f2

f3fi

fn

Fig.4
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Calculation shows That

L(vi) = 2fi+1 − fi = 2× f1 +
(
2i − 1

)
F (x)

2i
− f1 +

(
2i−1 − 1

)
F (x)

2i−1

= F (x) +
n!

(2n + 1)et
.

Calculation shows that lim
t→∞

L(vi) = F (x), i.e., lim
t→∞

−→
C L

n =
−→
C L̂

n , where, L̂(vi) = F (x) for

integers 1 ≤ i ≤ n, i.e.,
−→
C L

n is
−→
G -synchronized.

§4. Continuity Flow Equations

A continuity flow
−→
GL is in fact an operator L :

−→
G → B determined by L(v, u) ∈ B for

∀(v, u) ∈ E
(−→

G
)
. Generally, let

[L]m×n =





L11 L12 · · · L1n

L21 L22 · · · L2n

· · · · · · · · · · · ·
Lm1 Lm2 · · · Lmn





with Lij :
−→
G → B for 1 ≤ i ≤ m, 1 ≤ j ≤ n, called operator matrix. Particularly, if for integers

1 ≤ i ≤ m, 1 ≤ j ≤ n, Lij :
−→
G → R, we can also determine its rank as the usual, labeled the

edge (v, u) by Rank[L]m×n for ∀(v, u) ∈ E
(−→

G
)

and get a labeled graph
−→
GRank[L]. Then we

get a result following.

Theorem 4.1 A linear continuity flow equations






x1
−→
GL11 + x2

−→
GL12 + · · ·+ xn

−→
GLn1 =

−→
GL1

x1
−→
GL21 + x2

−→
GL22 + · · ·+ xn

−→
GL2n =

−→
GL2

· · · · · · · · · · · · · · · · · · · · · · · ·
x1
−→
GLn1 + x2

−→
GLn2 + · · ·+ xn

−→
GLnn =

−→
GLn

(4.1)

is solvable if and only if −→
GRank[L] =

−→
GRank[L], (4.2)

where

[L] =





L11 L12 · · · L1n

L21 L22 · · · L2n

· · · · · · · · · · · ·
Ln1 Ln2 · · · Lnn




and

[
L
]

=





L11 L12 · · · L1n L1

L21 L22 · · · L2n L2

· · · · · · · · · · · ·
Ln1 Ln2 · · · Lnn Ln




.
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Proof Clearly, if (4.1) is solvable, then for ∀(v, u) ∈ E
(−→

G
)
, the linear equations






x1L11(v, u) + x2L12(v, u) + · · ·+ xnLn1(v, u0 = L1(v, u)

x1L21(v, u) + x2L22(v, u) + · · ·+ xnL21(v, u0 = L2(v, u)

· · · · · · · · · · · · · · · · · · · · · · · ·
x1Ln1(v, u) + x2Ln2(v, u) + · · ·+ xnLnn(v, u0 = Ln(v, u)

is solvable. By linear algebra, there must be

Rank





L11(v, u) L12(v, u) · · · L1n(v, u)

L21(v, u) L22(v, u) · · · L2n(v, u)

· · · · · · · · · · · ·
Ln1(v, u) Ln2(v, u) · · · Lnn(v, u)




=

Rank





L11(v, u) L12(v, u) · · · L1n(v, u) L1(v, u)

L21(v, u) L22(v, u) · · · L2n(v, u) L2(v, u)

· · · · · · · · · · · ·
Ln1(v, u) Ln2(v, u) · · · Lnn(v, u) Ln(v, u)




,

which implies that −→
GRank[L] =

−→
GRank[L].

Conversely, if the (4.2) is hold, then for ∀(v, u) ∈ E
(−→

G
)
, the linear equations






x1L11(v, u) + x2L12(v, u) + · · ·+ xnLn1(v, u0 = L1(v, u)

x1L21(v, u) + x2L22(v, u) + · · ·+ xnL21(v, u0 = L2(v, u)

· · · · · · · · · · · · · · · · · · · · · · · ·
x1Ln1(v, u) + x2Ln2(v, u) + · · ·+ xnLnn(v, u0 = Ln(v, u)

is solvable, i.e., the equations (4.1) is solvable. 2
Theorem 4.2 A continuity flow equation

λs−→GLs + λs−1−→GLs−1 + · · ·+−→GL0 = O (4.3)

always has solutions
−→
GLλ with Lλ : (v, u) ∈ E

(−→
G
)
→ {λvu

1 , λvu
2 , · · · , λvu

s }, where λvu
i , 1 ≤ i ≤ s

are roots of the equation

αvu
s λs + αvu

s−1λs−1 + · · ·+ αvu
0 = 0 (4.4)

with Li : (v, u)→ αv,u
i , αvu

s 6= 0 a constant for (v, u) ∈ E
(−→

G
)

and 1 ≤ i ≤ s.

For (v, u) ∈ E
(−→

G
)
, if nvu is the maximum number i with Li(v, u) 6= 0, then there are
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∏

(v,u)∈E
(−→

G
) nvu solutions

−→
GLλ , and particularly, if Ls(v, u) 6= 0 for ∀(v, u) ∈ E

(−→
G
)
, there are

s

∣∣∣E
(−→

G
)∣∣∣

solutions
−→
GLλ of equation (4.3).

Proof By the fundamental theorem of algebra, we know there are s roots λvu
1 , λvu

2 , · · · , λvu
s

for the equation (4.3). Whence, Lλ
−→
G is a solution of equation (4.2) because of

(
λ
−→
G
)s

· −→GLs +
(

λ
−→
G
)s−1

· −→GLs−1 + · · ·+
(

λ
−→
G
)0
· −→GL0

=
−→
GλsLs +

−→
Gλs−1Ls−1 + · · ·+−→Gλ0L0 =

−→
GλsLs+λs−1Ls−1+···+L0

and

λsLs + λs−1Ls−1 + · · ·+ L0 : (v, u)→ αvu
s λs + αvu

s−1λs−1 + · · ·+ αvu
0 = 0,

for ∀(v, u) ∈ E
(−→

G
)
, i.e.,

(
λ
−→
G
)s

· −→GLs +
(

λ
−→
G
)s−1

· −→GLs−1 + · · ·+
(

λ
−→
G
)0
· −→GL0 = 0

−→
G = O.

Count the number of different Lλ for (v, u) ∈ E
(−→

G
)
. It is nothing else but just nvu.

Therefore, the number of solutions of equation (4.3) is
∏

(v,u)∈E
(−→

G
) nvu. 2

Theorem 4.3 A continuity flow equation

d
−→
GL

dt
=
−→
GLα · −→GL (4.5)

with initial values
−→
GL
∣∣∣
t=0

=
−→
GLβ always has a solution

−→
GL =

−→
GLβ ·

(
etLα
−→
G
)

,

where Lα : (v, u)→ αvu, Lβ : (v, u)→ βvu are constants for ∀(v, u) ∈ E
(−→

G
)
.

Proof A calculation shows that

−→
G

dL
dt =

d
−→
GL

dt
=
−→
GLα · −→GL =

−→
GLα·L,

which implies that
dL

dt
= αvuL (4.6)

for ∀(v, u) ∈ E
(−→

G
)
.

Solving equation (4.6) enables one knowing that L(v, u) = βvuetαvu for ∀(v, u) ∈ E
(−→

G
)
.
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Whence, the solution of (4.5) is

−→
GL =

−→
GLβetLα

=
−→
GLβ ·

(
etLα
−→
G
)

and conversely, by Theorem 3.2,

d
−→
GLβetLα

dt
=
−→
G

d(LβetLα)
dt =

−→
GLαLβetLα

=
−→
GLα · −→GLβetLα

,

i.e.,

d
−→
GL

dt
=
−→
GLα · −→GL

if
−→
GL =

−→
GLβ ·

(
etLα
−→
G
)
. This completes the proof. 2

Theorem 4.3 can be generalized to the case of L : (v, u)→ Rn, n ≥ 2 for ∀(v, u) ∈ E
(−→

G
)
.

Theorem 4.4 A complex flow equation

d
−→
GL

dt
=
−→
GLα · −→GL (4.7)

with initial values
−→
GL
∣∣∣
t=0

=
−→
GLβ always has a solution

−→
GL =

−→
GLβ ·

(
etLα
−→
G
)

,

where Lα : (v, u) →
(
α1

vu, α2
vu, · · · , αn

vu

)
, Lβ : (v, u) →

(
β1

vu, β2
vu, · · · , βn

vu

)
with constants

αi
vu, βi

vu, 1 ≤ i ≤ n for ∀(v, u) ∈ E
(−→

G
)
.

Theorem 4.5 A complex flow equation

−→
GLαn · dn−→GL

dtn
+
−→
GLαn−1 · dn−1−→GL

dtn−1 + · · ·+−→GLα0 · −→GL = O (4.8)

with Lαi : (v, u) → αvu
i constants for ∀(v, u) ∈ E

(−→
G
)

and integers 0 ≤ i ≤ n always has a

general solution
−→
GLλ with

Lλ : (v, u)→
{

0,

s∑

i=1

hi(t)e
λvu

i t

}

for (v, u) ∈ E
(−→

G
)
, where hmi(t) is a polynomial of degree≤ mi−1 on t, m1+m2+· · ·+ms = n

and λvu
1 , λvu

2 , · · · , λvu
s are the distinct roots of characteristic equation

αvu
n λn + αvu

n−1λn−1 + · · ·+ αvu
0 = 0
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with αvu
n 6= 0 for (v, u) ∈ E

(−→
G
)
.

Proof Clearly, the equation (4.8) on an edge (v, u) ∈ E
(−→

G
)

is

αvu
n

dnL(v, u)

dtn
+ αvu

n−1
dn−1L(v, u)

dtn−1 + · · ·+ α0 = 0. (4.9)

As usual, assuming the solution of (4.6) has the form
−→
GL = eλt−→G . Calculation shows that

d
−→
GL

dt
= λeλt−→G = λ

−→
G,

d2−→GL

dt2 = λ2eλt−→G = λ2−→G,

· · · · · · · · · · · · · · · · · · · · · · · · ,

dn−→GL

dtn
= λneλt−→G = λn−→G.

Substituting these calculation results into (4.8), we get that

(
λn−→GLαn + λn−1−→GLαn−1 + · · ·+−→GLα0

)
· −→GL = O,

i.e., −→
G(λn·Lαn +λn−1·Lαn−1+···+Lα0)·L = O,

which implies that for ∀(v, u) ∈ E
(−→

G
)
,

λnαvu
n + λn−1αvu

n−1 + · · ·+ α0 = 0 (4.10)

or

L(v, u) = 0.

Let λvu
1 , λvu

2 , · · · , λvu
s be the distinct roots with respective multiplicities mvu

1 , mvu
2 , · · · , mvu

s

of equation (4.8). We know the general solution of (4.9) is

L(v, u) =

s∑

i=1

hi(t)e
λvu

i t

with hmi(t) a polynomial of degree≤mi−1 on t by the theory of ordinary differential equations.

Therefore, the general solution of (4.8) is
−→
GLλ with

Lλ : (v, u)→
{

0,

s∑

i=1

hi(t)e
λvu

i t

}

for (v, u) ∈ E
(−→

G
)
. 2
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§5. Complex Flow with Continuity Flows

The difference of a complex flow
−→
GL with that of a continuity flow

−→
GL is the labeling L on a

vertex is L(v) = ẋv or xv. Notice that

d

dt




∑

u∈NG(v)

LA+
vu (v, u)



 =
∑

u∈NG(v)

d

dt
LA+

vu (v, u)

for ∀v ∈ V
(−→

G
)
. There must be relations between complex flows

−→
GL and continuity flows

−→
GL.

We get a general result following.

Theorem 5.1 If end-operators A+
vu, A+

uv are linear with

[∫ t

0
, A+

vu

]
=

[∫ t

0
, A+

uv

]
= 0 and

[
d

dt
, A+

vu

]
=

[
d

dt
, A+

uv

]
= 0 for ∀(v, u) ∈ E

(−→
G
)
, and particularly, A+

vu = 1V , then
−→
GL ∈

〈−→
G i, 1 ≤ i ≤ n

〉R×R
n

is a continuity flow with a constant L(v) for ∀v ∈ V
(−→

G
)

if and only if
∫ t

0

−→
GLdt is such a continuity flow with a constant one each vertex v, v ∈ V

(−→
G
)
.

Proof Notice that if A+
vu = 1V , there always is

[∫ t

0
, A+

vu

]
= 0 and

[
d

dt
, A+

vu

]
= 0, and by

definition, we know that

[∫ t

0
, A+

vu

]
= 0 ⇔

∫ t

0
◦A+

vu = A+
vu ◦

∫ t

0
,

[
d

dt
, A+

vu

]
= 0 ⇔ d

dt
◦A+

vu = A+
vu ◦

d

dt
.

If
−→
GL is a continuity flow with a constant L(v) for ∀v ∈ V

(−→
G
)
, i.e.,

∑

u∈NG(v)

LA+
vu (v, u) = v for ∀v ∈ V

(−→
G
)

,

we are easily know that

∫ t

0




∑

u∈NG(v)

LA+
vu (v, u)



 dt =
∑

u∈NG(v)

(∫ t

0

◦A+
vu

)
L(v, u)dt =

∑

u∈NG(v)

(
A+

vu ◦

∫ t

0

)
L(v, u)dt

=
∑

u∈NG(v)

A+
vu

(∫ t

0

L(v, u)dt
)

=
∫ t

0

vdt

for ∀v ∈ V
(−→

G
)

with a constant vector

∫ t

0
vdt, i.e.,

∫ t

0

−→
GLdt is a continuity flow with a

constant flow on each vertex v, v ∈ V
(−→

G
)
.

Conversely, if

∫ t

0

−→
GLdt is a continuity flow with a constant flow on each vertex v, v ∈
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V
(−→

G
)
, i.e.,

∑

u∈NG(v)

A+
vu ◦

∫ t

0
L(v, u)dt = v for ∀v ∈ V

(−→
G
)

,

then

−→
GL =

d

(∫ t

0

−→
GLdt

)

dt

is such a continuity flow with a constant flow on vertices in
−→
G because of

d

(
∑

u∈NG(v)
LA+

vu(v, u)

)

dt
=

∑

u∈NG(v)

d

dt
◦A+

vu ◦
∫ t

0
L(v, u)dt

=
∑

u∈NG(v)

A+
vu ◦

d

dt
◦
∫ t

0
L(v, u)dt =

∑

u∈NG(v)

L(v, u)A+
vu =

dv

dt

with a constant flow
dv

dt
on vertex v, v ∈ V

(−→
G
)
. This completes the proof. 2

If all end-operators A+
vu and A+

uv are constant for ∀(v, u) ∈ E
(−→

G
)
, the conditions

[∫ t

0
, A+

vu

]
=

[∫ t

0
, A+

uv

]
= 0 and

[
d

dt
, A+

vu

]
=

[
d

dt
, A+

uv

]
= 0 are clearly true. We immediately get a conclu-

sion by Theorem 5.1 following.

Corollary 5.2 For ∀(v, u) ∈ E
(−→

G
)
, if end-operators A+

vu and A+
uv are constant cvu, cuv for

∀(v, u) ∈ E
(−→

G
)
, then

−→
GL ∈

〈−→
G i, 1 ≤ i ≤ n

〉R×R
n

is a continuity flow with a constant L(v)

for ∀v ∈ V
(−→

G
)

if and only if

∫ t

0

−→
GLdt is such a continuity flow with a constant flow on each

vertex v, v ∈ V
(−→

G
)
.
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Abstract: We have considered the β−change of Finsler metric L given by L = f(L, β)
where f is any positively homogeneous function of degree one in L and β. Here β = bi(x, y)yi,

in which bi are components of a covariant h-vector in Finsler space F n with metric L. We

have obtained that due to this change of Finsler metric, the imbedding class of their tangent
Riemannian space is increased at the most by two.
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§1. Introduction

Let (Mn, L) be an n-dimensional Finsler space on a differentiable manifold Mn, equipped with

the fundamental function L(x, y). In 1971, Matsumoto [2] introduced the transformation of

Finsler metric given by

L(x, y) = L(x, y) + β(x, y), (1.1)

L
2
(x, y) = L2(x, y) + β2(x, y), (1.2)

where β(x, y) = bi(x)yi is a one-form on Mn. He has proved the following.

Theorem A. Let (Mn, L) be a locally Minkowskian n-space obtained from a locally Minkowskian

n-space (Mn, L) by the change (1.1). If the tangent Riemannian n-space (Mn
x , gx) to (Mn, L) is

of imbedding class r, then the tangent Riemannian n-space (Mn
x , gx) to (Mn, L) is of imbedding

class at most r + 2.

Theorem B. Let (Mn, L) be a locally Minkowskian n-space obtained from a locally Minkowskian

n-space (Mn, L) by the change (1.2). If the tangent Riemannian n-space (Mn
x , gx) to (Mn, L) is

of imbedding class r, then the tangent Riemannian n-space (Mn
x , gx) to (Mn, L) is of imbedding

class at most r + 1.

Theorem B is included in theorem A due to the phrase “at most ”.

In [6] Singh, Prasad and Kumari Bindu have proved that the theorem A is valid for Kropina

1Received April 18, 2017, Accepted November 8, 2017.
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change of Finsler metric given by

L(x, y) =
L2(x, y)

β(x, y)
.

In [3], Prasad, Shukla and Pandey have proved that the theorem A is also valid for expo-

nential change of Finsler metric given by

L(x, y) = Leβ/L.

Recently Prasad and Kumari Bindu [5] have proved that the theorem A is valid for

β−change [7] given by

L(x, y) = f(L, β),

where f is any positively homogeneous function of degree one in L, β and β is one-form.

In all these works it has been assumed that bi(x) in β is a function of positional coordinate

only.

The concept of h−vector has been introduced by H.Izumi. The covariant vector field

bi(x, y) is said to be h−vector if ∂bi
∂yj is proportional to angular metric tensor.

In 1990, Prasad, Shukla and Singh [4] have proved that the theorem A is valid for the

transformation (1.1) in which bi in β is h−vector.

All the above β−changes of Finsler metric encourage the authors to check whether the

theorem A is valid for any change of Finsler metric by h−vector.

In this paper we have proved that the theorem A is valid for the β−change of Finsler metric

given by

L(x, y) = f(L, β), (1.3)

where f is positively homogeneous function of degree one in L, β and

β(x, y) = bi(x, y)yi. (1.4)

Here bi(x, y) are components of a covariant h−vector satisfying

∂bi

∂yj
= ρhij , (1.5)

where ρ is any scalar function of x, y and hij are components of angular metric tensor. The

homogeneity of f gives

Lf1 + βf2 = f, (1.6)

where the subscripts 1 and 2 denote the partial derivatives with respect to L and β respectively.

Differentiating (1.6) with respect to L and β respectively, we get

Lf11 + βf12 = 0 and Lf12 + βf22 = 0.
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Hence, we have
f11

β2 = −f12

βL
=

f22

L2

which gives

f11 = β2ω, f22 = L2ω, f12 = −βLω, (1.7)

where Weierstrass function ω is positively homogeneous function of degree −3 in L and β.

Therefore

Lω1 + βω2 + 3ω = 0. (1.8)

Again ω1 and ω2 are positively homogeneous function of degree - 4 in L and β, so

Lω11 + βω12 + 4ω1 = 0 and Lω21 + βω22 + 4ω2 = 0. (1.9)

Throughout the paper we frequently use equation (1.6) to (1.9) without quoting them.

§2. An h−Vector

Let bi(x, y) be components of a covariant vector in the Finsler space (Mn, L). It is called an

h−vector if there exists a scalar function ρ such that

∂bi

∂yj
= ρhij , (2.1)

where hij are components of angular metric tensor given by

hij = gij − lilj = L
∂2L

∂yi ∂yj
.

Differentiating (2.1) with respect to yk, we get

∂̇j ∂̇kbi = (∂̇kρ)hij + ρL−1{L2∂̇i∂̇j ∂̇kL + hij lk},

where ∂̇i stands for ∂
∂yi .

The skew-symmetric part of the above equation in j and k gives

(∂̇kρ + ρL−1lk)hij − (∂̇jρ + ρL−1lj)hik = 0.

Contracting this equation by gij , we get

(n− 2)[∂̇kρ + ρL−1lk] = 0,

which for n > 2, gives

∂̇kρ = − ρ

L
lk, (2.2)

where we have used the fact that ρ is positively homogeneous function of degree −1 in yi, i.e.,
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∂ρ
∂yj yj = −ρ.

We shall frequently use equation (2.2) without quoting it in the next article.

§3. Fundamental Quantities of (Mn, L)

To find the relation between fundamental quantities of (Mn, L) and (Mn, L), we use the fol-

lowing results

∂̇iβ = bi, ∂̇iL = li, ∂̇j li = L−1hij . (3.1)

The successive differentiation of (1.3) with respect to yi and yj give

li = f1li + f2bi, (3.2)

hij =
fp

L
hij + fL2wmimj , (3.3)

where

p = f1 + Lf2ρ, mi = bi −
β

L
li.

The quantities corresponding to (Mn, L) will be denoted by putting bar on the top of those

quantities.

From (3.2) and (3.3) we get the following relations between metric tensors of (Mn, L) and

(Mn, L)

gij =
fp

L
gij − L−1{β(f1f2 − fβLω) + Lρff2}lilj

+(fL2ω + f2
2 )bibj + (f1f2 − fβLω)(libj + ljbi). (3.4)

The contravariant components of the metric tensor of (Mn, L) will be obtained from (3.4)

as follows:

gij =
L

fp
gij +

Lv

f3pt
lilj − L4ω

fpt
bibj − L2u

f2pt
(libj + ljbi), (3.5)

where, we put bi = gijbj, li = gij lj, b2 = gijbibj and

u = f1f2 − fβLω + Lρf2
2 ,

v = (f1f2 − fβLω)(fβ +△f2L2) + Lρf2{f(f + L2ρf2)

+L2△(f2
2 + fL2ω)}

and

t = f1 + L3ω△+ Lf2ρ, △ = b2 − β2

L2 . (3.6)
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Putting q = f1f2 − fβLω + Lρ(f2
2 + fL2ω), s = 3f2ω + fω2, we find that

(a) ∂̇if =
f

L
li + f2mi

(b) ∂̇if1 = −βLωmi

(c) ∂̇if2 = L2ωmi

(d) ∂̇ip = −Lω(β − ρL2)mi

(e) ∂̇iω = −3ω

L
li + ω2mi

(f) ∂̇ib
2 = −2C..i + 2ρmi

(g) ∂̇i△ = −2C..i −
2

L2 (β − ρL2)mi, (3.7)

(a) ∂̇iq = −(β − ρL2)sLmi

(b) ∂̇it = −2L3ωC..i + [L3△ω2 − 3(β − ρL2)Lω]mi

(c) ∂̇is = −3s

L
li + (4f2ω2 + 3ω2L2 + fω22)mi (3.8)

where “.” denotes the contraction with bi, viz. C..i = Cjkib
jbk.

Differentiating (3.4) with respect to yk and using (d that

mil
i = 0, mim

i = △ = mib
i, hijmj = hijbj = mi, (3.10)

where mi = gijmj = bi − β
L li.

To find C
i

jk = gihCjhk we use (3.5), (3.9), (3.10) and get

C
i

jk = Ci
jk +

q

2fp
(hjkmi + hi

jmk + hi
kmj) +

sL3

2fp
mjmkmi − L

ft
C.jkni

− Lq△
2f2pt

hjkni − 2Lq + L4△s

2f2pt
mjmkni, (3.11)

where ni = fL2ωbi + uli.

Corresponding to the vectors with components ni and mi, we have the following:

Cijkmi = C.jk, Cijkni = fL2ωC.jk, min
i = fL2ω△. (3.12)

To find the v-curvature tensor of (Mn, L) with respect to Cartan’s connection, we use the

following:

Ch
ijhhk = Cijk , hi

khk
j = hi

j , hijni = fL2ωmj . (3.13)

The v-curvature tensors Shijk of (Mn, L) is defined as

Shijk = C
r

hkChjr − C
r

hjCikr . (3.14)

From (3.9)–(3.14), we get the following relation between v-curvature tensors of (Mn, L)
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and (Mn, L):

Shijk =
fp

L
Shijk + dhjdik − dhkdij + EhkEij − EhjEik, (3.15)

where

dij = P C.ij −Qhij + Rmimj , (3.16)

Eij = Shij + T mimj , (3.17)

P = L

(
fpω

t

)1/2

, Q =
pq

2L2
√

fpωt
, R =

L(2ωq − sp)

2
√

fωpt
,

S =
q

2L2
√

fω
, T =

L(sp− ωq)

2p
√

fω
.

§4. Imbedding Class Numbers

The tangent vector space Mn
x to Mn at every point x is considered as the Riemannian n-

space (Mn
x , gx) with the Riemannian metric gx = gij(x, y)dyidyj . Then the components of the

Cartan’s tensor are the Christoffel symbols associated with gx:

Ci
jk =

1

2
gih(∂̇kgjh + ∂̇jghk − ∂̇hgjk).

Thus Ci
jk defines the components of the Riemannian connection on Mn

x and v-covariant deriva-

tive, say

Xi|j = ∂̇jXi −XhCh
ij

is the covariant derivative of covariant vector Xi with respect to Riemannian connection Ci
jk on

Mn
x . It is observed that the v-curvature tensor Shijk of (Mn, L) is the Riemannian Christoffel

curvature tensor of the Riemannian space (Mn, gx) at a point x. The space (Mn, gx) equipped

with such a Riemannian connection is called the tangent Riemannian n-space [2].

It is well known [1] that any Riemannian n-space V n can be imbedded isometrically in a

Euclidean space of dimension n(n+1)
2 . If n + r is the lowest dimension of the Euclidean space

in which V n is imbedded isometrically, then the integer r is called the imbedding class number

of V n. The fundamental theorem of isometric imbedding ([1] page 190) is that the tangent

Riemannian n-space (Mn
x , gx) is locally imbedded isometrically in a Euclidean (n + r)−space if

and only if there exist r−number ǫP = ±1, r−symmetric tensors H(P )ij and r(r−1)
2 covariant

vector fields H(P,Q)i = −H(Q,P )i; P, Q = 1, 2, · · · , r, satisfying the Gauss equations

Shijk =
∑

P

ǫP {H(P )hjH(P )ik −H(P )ijH(P )hk}, (4.1)

The Codazzi equations

H(P )ij |k −H(P )ik|j =
∑

Q

ǫQ{H(Q)ijH(Q,P )k −H(Q)ikH(Q,P )j}, (4.2)
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and the Ricci-Kühne equations

H(P,Q)i|j −H(P,Q)j |i +
∑

R

ǫR{H(R,P )iH(R,Q)j −H(R,P )jH(R,Q)i}

+ ghk{H(P )hiH(Q)kj −H(P )hjH(Q)ki} = 0. (4.3)

The numbers ǫP = ±1 are the indicators of unit normal vector NP to Mn and H(P )ij are

the second fundamental tensors of Mn with respect to the normals NP . Thus if gx is assumed

to be positive definite, there exists a Cartesian coordinate system (zi, up) of the enveloping

Euclidean space En+r such that ds2 in En+r is expressed as

ds2 =
∑

i

(dzi)2 +
∑

p

ǫp(dup)2.

§5. Proof of Theorem A

In order to prove the theorem A, we put

(a) H(P )ij =

√
fp

L
H(P )ij , ǫP = ǫP , P = 1, 2, · · · , r

(b) H(r+1)ij = dij , ǫr+1 = 1

(c) H(r+2)ij = Eij , ǫr+2 = −1. (5.1)

Then it follows from (3.15) and (4.1) that

Shijk =

r+2∑

λ=1

ǫλ{H(λ)hjH(λ)ik −H(λ)hkH(λ)ij},

which is the Gauss equation of (Mn
x , gx).

Moreover, to verify Codazzi and Ricci Kühne equation of (Mn
x , gx), we put

(a) H(P,Q)i = −H(Q,P )i = H(P,Q)i, P, Q = 1, 2, , · · · , r

(b) H(P,r+1)i = −H(r+1,P )i =
L
√

Lω√
t

H(P ).i, P = 1, 2, · · · , r

(c) H(P,r+2)i = −H(r+2,P )i = 0, P = 1, 2, · · · , r.

(d) H(r+1,r+2)i = −H(r+2,r+1)i =
sp− 2qω

2fω
√

pt
mi. (5.2)

The Codazzi equations of (Mn
x , gx) consists of the following three equations:

(a) H(P )ij‖k −H(P )ik‖j =
∑

Q

ǫQ{H(Q)ijH(Q,P )k −H(Q)ikH(Q,P )j}

+ ǫr+1{H(r+1)ijH(r+1,P )k −H(r+1)ikH(r+1,P )j}
+ ǫr+2{H(r+2)ijH(r+2,P )k −H(r+2)ikH(r+2,P )k} (5.3)
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(b) H(r+1)ij‖k −H(r+1)ik‖j =
∑

Q

ǫQ{H(Q)ijH(Q,r+1)k −H(Q)ikH(Q,r+1)j}

+ǫr+2{H(r+2)ijH(r+2,r+1)k −H(r+2)ikH(r+2,r+1)j},

(c) H(r+2)ij‖k −H(r+2)ik‖j =
∑

Q

ǫQ{H(Q)ijH(Q,r+2)k −H(Q)ikH(Q,r+2)j}

+ǫr+1{H(r+1)ijH(r+1,r+2)k −H(r+1)ikH(r+1,r+2)j}.

where ‖i denotes v-covariant derivative in (Mn, L), i.e. covariant derivative in tangent Rieman-

nian n-space (Mn
x , gx) with respect to its Christoffel symbols C

i

jk. Thus

Xi‖j = ∂̇jXi −XhC
h

ij .

To prove these equations we note that for any symmetric tensor Xij satisfying Xij li =

Xij lj = 0, we have from (3.11),

Xij‖k −Xik‖j = Xij |k −Xik|j −
q

2ft
(hikX.j − hijX.k)

+
L3ω

t
(C.ikX.j − C.ijX.k)− q

2fp
(Xijmk −Xikmj)

+
L3(2qω − sp)

2fpt
(X.jmk −X.kmj) mi. (5.4)

Also if X is any scalar function, then X‖j = X |j = ∂̇jX.

Verification of (5.3)(a) In view of (5.1) and (5.2), equation (5.3)a is equivalent to

(√
fp

L
H(P )ij

)∥∥∥
k
−
(√

fp

L
H(P )ik

)∥∥∥
j

=

√
fp

L
.
∑

Q

ǫQ{H(Q)ijH(Q,P )k −H(Q)ikH(Q,P )j} −
L
√

Lω√
t
{dijH(P ).k − dikH(P ).j}. (5.5)

Since

(√
fp
L

)∥∥∥
k

= ∂̇k

(√
fp
L

)
= q

2
√

fLp
mk, applying formula (5.4) for H(P )ij , we get

(√
fp

L
H(P )ij

)∥∥∥
k
−
(√

fp

L
H(P )ik

)∥∥∥
j

=

√
fp

L
{H(P )ij |k −H(P )ik|j}

− q

2ft

√
fp

L
{hikH(P ).j − hijH(P ).k}+

L3ω

t

√
fp

L
{C.ikH(p).j − C.ijH(p).k}

+
L2
√

L(2qω − sp)

2t
√

fp
{H(P ).jmk −H(P ).kmj}mi. (5.6)

Substituting the values of

(√
fp
L H(P )ij

)∥∥∥
k
−
(√

fp
L H(P )ik

)∥∥∥
j

from (5.6) and the values

of dij from (3.16) in (5.5) we find that equation (5.5) is identically satisfied due to equation
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(4.2).

Verification of (5.3)(b) In view of (5.1) and (5.2), equation (5.3)b is equivalent to

dij‖k − dik‖j = L

√
fωp

t

∑

Q

ǫQ{H(Q)ijH(Q).k −H(Q)ikH(Q).j}

+
sp− 2qω

2fω
√

pt
{Eijmk − Eikmj}. (5.7)

To verify (5.7), we note that

C.ij |k − C.ik|j = −bhShijk (5.8)

hij |k − hik|j = L−1(hij lk − hiklj), (5.9)

mi|k = −C.ik −
(

β

L2 − ρ

)
hik −

1

L
limk. (5.10)

∂̇k(fωp) = −2L−1fωplk + (qω + fpω2)mk. (5.11)

Contracting (3.16) with bi and using (3.10), we find that

d.j = L

√
fωp

t
C..j +

q(2L3ω△− p)− L3△sp

2L2
√

fωpt
mj . (5.12)

Applying formula (5.4) for dij and substituting the values of d.j from (5.12) and dij from

(3.16), we get

dij‖k − dik‖j= dij |k − dik|j −
Lq
√

fωp

2ft3/2 (hikC..j − hijC..k)

+
L4ω(2qω − sp)

2
√

fωp.t3/2 (C..jmk − C..kmj)mi

+
L4ω
√

fωp

t3/2 (C.ikC..j − C.ijC..k)

+
L4ω△(3qω − sp)

2
√

fωp.t3/2 (C.ikmj − C.ijmk)

−Lq△(3qω − sp)

4f
√

fωp.t3/2 (hikmj − hijmk). (5.13)

From (3.16), we obtain

dij |k − dik|j = P (C.ij |k − C.ik|j)−Q(hij |k − hik|j)
+R(mi|kmj + mj |kmi −mi|jmk −mk|jmi)

+(∂̇kP )C.ij − (∂̇jP )C.ik − (∂̇kQ)hij + (∂̇jQ)hik)

+(∂̇kR)mimj − (∂̇jR)mimk). (5.14)
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Since,

∂̇kP =
L4ω
√

fωp

t3/2 C..k +

[
Lfp{pω2 + 3Lω2(β − ρL2)}

2
√

fωp.t3/2

+
Lqω

2
√

fωpt

]
mk,

∂̇kQ =
Lpqω

2
√

fωp.t3/2 C..k −
pq

2L3
√

fωpt
lk

− (β − ρL2)(qω + sp)

2L
√

fωpt
mk −

pq(qω + fpω2)

4L2(fωp)3/2
√

t
mk

+
pq{3ω(β − ρL2)− L2△ω2}

4L
√

fωp t3/2 mk (5.15)

and

∂̇kR =
L4ω(2qω − sp)

2
√

fωp.t3/2 C..k −
2qω − sp

2
√

fωpt
lk + term containing mk,

where we have used the equations (3.6), (3.7) and (3.8).

From equations (5.8)–(5.15), we have

dij |k − dik|j = L

√
fωp

t
(−bhShijk)

+
L4ω△(3qω − sp)

2
√

fωp.t3/2 (C.ijmk − C.ikmj)

+
L4ω
√

fωp

t3/2 (C.ijC..k − C.ikC..j)

+
Lωpq

2
√

fωp.t3/2 (hikC..j − hijC..k)

+
pq[qωt + f(L3ω△+ t){3Lω2(β − ρL2) + pω2}]

4L2(fωpt)3/2 ×

(hijmk − hikmj) +
L4ω(2qω − sp)

2
√

fωp.t3/2 (C..kmj − C..jmk) mi. (5.16)

Substituting the value of dij |k − dik|j from (5.16) in (5.13), then value of dij‖k − dik‖j
thus obtained in (5.7), and using equations (4.1) and (3.17), it follows that equation (5.7) holds

identically.

Verification of (5.3)(c) In view of (5.1) and (5.2), equation (5.3)c is equivalent to

Eij‖k − Eik‖j =
sp− 2qω

2fω
√

pt
(dijmk − dikmj). (5.17)

Contracting (3.17) by bi and using equation (3.10), we find that

E.j =
pq + L3△(sp− qω)

2L2p
√

fω
mj . (5.18)



56 O.P.Pandey and H.S.Shukla

Applying formula (5.4) for Eij and substituting the value of E.j from (5.18) and the value

of Eij from (3.17), we get

Eij‖k − Eik‖j = Eij |k − Eik|j +
qL△(sp− 2qω)

4fpt
√

fω
(hijmk − hikmj)

+
Lω{pq + L3△(sp− qω)}

2pt
√

fω
(C.ikmj − C.ijmk). (5.19)

From (3.17), we get

Eij |k − Eik|j = S(hij |k − hik|j) + T {mi|kmj + mj|kmi

−mi|jmk −mk|jmi}+ (∂̇kS)hij

−(∂̇jS)hik + (∂̇kT )mimj − (∂̇jT )mimk. (5.20)

Now,

(∂̇kS) = − q

2L3
√

fω
lk −

[
(β − ρL2)s

2L
√

fω
+

q(fω2 + f2ω)

4L2(fω)3/2

]
mk (5.21)

and

(∂̇kT ) = −sp− qω

2p
√

fω
lk + term containing mk,

where we have used the equations (3.7) and (3.8).

From equation (5.9)–(5.11), (5.20) and (5.21), we get

Eij |k − Eik|j =
L(sp− qω)

2p
√

fω
(C.ijmk − C.ikmj)

− q(sp− 2qω)

4L2p(fω)3/2 (hijmk − hikmj). (5.22)

Substituting the value of Eij |k−Eik|j from (5.22) in (5.19), then the value of Eij‖k−Eik‖j
thus obtained in (5.17), and then using (3.16) in the right-hand side of (5.17), we find that the

equation (5.17) holds identically.

This completes the proof of Codazzi equations of (Mn
x , gx). The Ricci Kühne equations of

(Mn
x , gx) consist of the following four equations

(a) H(P,Q)i‖j −H(P,Q)j‖i +
∑

R

ǫR{H(R,P )iH(R,Q)j

−H(R,P )jH(R,Q)i}+ ǫr+1{H(r+1,P )iH(r+1,Q)j

−H(r+1,P )jH(r+1,Q)i}+ ǫr+2{H(r+2,P )iH(r+2,Q)j

−H(r+2,P )jH(r+2,Q)i}+ ghk{H(P )hiH(Q)kj

−H(P )hjH(Q)ki} = 0, P, Q = 1, 2, · · · , r (5.23)
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(b) H(P,r+1)i‖j −H(P,r+1)j‖i +
∑

R

ǫR{H(R,P )iH(R,r+1)j −H(R,P )jH(R,r+1)i}

+ ǫr+2{H(r+2,P )iH(r+2,r+1)j −H(r+2,P )jH(r+2,r+1)i}
+ ghk{H(P )hiH(r+1)kj −H(P )hjH(r+1)ki} = 0, P = 1, 2, · · · , r

(c) H(P,r+2)i‖j −H(P,r+2)j‖i +
∑

R

ǫR{H(R,P )iH(R,r+2)j −H(R,P )jH(R,r+2)i}

+ ǫr+1{H(r+1,P )iH(r+1,r+2)j −H(r+1,P )jH(r+1,r+2)i}
+ ghk{H(P )hiH(r+2)kj −H(P )hjH(r+2)ki} = 0, P = 1, 2, · · · , r

(d) H(r+1,r+2)i‖j −H(r+1,r+2)j‖i +
∑

R

ǫR{H(R,r+1)iH(R,r+2)j −H(R,r+1)j

×H(R,r+2)i}+ ghk{H(r+1)hiH(r+2)kj −H(r+1)hjH(r+2)ki} = 0.

Verification of (5.23)(a) In view of (5.1) and (5.2), equation (5.23)a is equivalent to

H(P,Q)i‖j −H(P,Q)j‖i +
∑

R

ǫR{H(R,P )iH(R,Q)j −H(R,P )jH(R,Q)i}

+
L3ω

t
{H(P ).iH(Q).j −H(P ).jH(Q).i}+ ghk{H(P )hiH(Q)kj

−H(P )hjH(Q)ki}
fp

L
= 0. P, Q = 1, 2, . . . , r. (5.24)

Since H(P )ij li = 0 = H(P )jil
i, from (3.5), we get

ghk{H(P )hiH(Q)kj −H(P )hjH(Q)ki}
fp

L
= ghk{H(P )hiH(Q)kj

−H(P )hjH(Q)ki} −
L3ω

t
{H(P ).iH(Q).j −H(P ).jH(Q).i}.

Also, we have H(P,Q)i‖j − H(P,Q)j‖i = H(P,Q)i|j − H(P,Q)j |i. Hence equation (5.24) is

satisfied identically by virtue of (4.3).

Verification of (5.23)(b) In view of (5.1) and (5.2), equation (5.23)b is equivalent to

(
L
√

Lω√
t

H(P ).i

)∥∥∥
j
−
(

L
√

Lω√
t

H(P ).j

)∥∥∥
i

+
L
√

Lω√
t

∑

R

ǫR{H(R,P )iH(R).j −H(R,P )jH(R).i}

+ ghk{H(P )hidkj −H(P )hjdki}
√

fp

L
= 0. P, Q = 1, 2, · · · , r. (5.25)

Since bh|j = ghkC.jk, H(P )hil
i = 0, we have

H(P ).i‖j −H(P ).j‖i = H(P ).i|j −H(P ).j|i = {H(P )hi|j −H(P )hj |i}bh

−ghk{H(P )hiC.kj −H(P )hjC.ki} (5.26)
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(
L
√

Lω√
t

)∥∥∥
j

= ∂̇j

(
L
√

Lω√
t

)

=
L4ω
√

Lω

t3/2 C..j +
L
√

Lω

2ωt3/2 {pω2 + 3Lω2(β − ρL2)}mj (5.27)

and

ghk{H(P )hidkj −H(P )hjdki}
√

fp

L
=

√
L

fp
ghk ×

{H(P )hidkj −H(P )hjdki} −
L3ω
√

L

t
√

fp
{H(P ).id.j −H(P ).jd.i}. (5.28)

After using (3.16) and (5.12) the equation (5.28) may be written as

ghk{H(P )hidkj −H(P )hjdki}
√

fp

L
=

L
√

Lω√
t

ghk ×

{H(P )hiC.kj −H(P )hjC.ki} −
L4ω
√

Lω

t3/2 {H(P ).iC..j −H(P ).jC..i}

−L
√

Lω

2ωt3/2 [pω2 + 3Lω2(β − ρL2)]{H(P ).imj −H(P ).jmi}. (5.29)

From (4.2), (5.26)–(5.29) it follows that equation (5.25) holds identically.

Verification of (5.23)(c) In view of (5.1) and (5.2), equation (5.23)c is equivalent to

L
√

Lω(2qω − sp)

2fωt
√

p
{H(P ).imj −H(P ).jmi}

+ghk{H(P )hiEkj −H(P )hjEki}
√

fp

L
= 0, (5.30)

Since Ekj lk = 0 = Ejklk, from (3.5), we find that the value of ghk{H(P )hiEkj−H(P )hjEki}
is √

L

fp
.ghk{H(P )hiEkj −H(P )hjEki} −

L3ω
√

L

t
√

fp
{H(P ).iE.j −H(P ).jE.i},

which, in view of (3.17) and (5.18), is equal to

−L
√

Lω(2qω − sp)

2fωt
√

p
{H(P ).imj −H(P ).jmi}.

Hence equation (5.30) is satisfied identically.

Verification of (5.23)(d) In view of (5.1) and (5.2), equation (5.23)d is equivalent to

(Nmi)‖j − (Nmj)‖i + ghk(dhiEkj − dhjEki) = 0, (5.31)

where N = sp−2qω
2fω

√
pt

.
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Since dhil
h = 0, Ekj lk = 0, from (3.5), we find that the value of ghk{dhiEkj − dhjEki} is

L

fp
ghk{dhiEkj − dhjEki} −

L4ω

fpt
{d.iE.j − d.jE.i},

which, in view of (3.16), (3.17), (5.12) and (5.18), is equal to

−L3(2qω − sp)

2f
√

p.t3/2 {C..imj − C..jmi}.

Also,

(Nmi)‖j − (Nmj)‖i = N(mi‖j −mj‖i) + (∂̇jN)mi − (∂̇iN)mj .

Since mi‖j −mj‖i = mi|j −mj |i = L−1(ljmi − limj) and

∂̇jN = − 2qω − sp

2Lfω
√

pt
lj +

L3(sp− 2qω)

2f
√

p.t3/2 C..j,

we have

(Nmi)‖j − (Nmj)‖i =
L3(sp− 2qω)

2f
√

p.t3/2 (C..jmi − C..imj). (5.32)

Hence equation (5.31) is satisfied identically. Therefore Ricci Kühne equations of (Mn
x , gx)

given in (5.23) are satisfied.

Hence the Theorem A given in introduction is satisfied for the β−change (1.3) of Finsler

metric given by h−vector. 2
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Abstract: In classical group theory, two elements composed yield another element. This

theory, definitely, has limitations in its use in the study of atomic reactions and reproduction

in organisms where two elements composed can yield more than one. In this paper, we
partly give a review of some properties of hyperstructures with some examples in chemical

sciences. On the other hand, we also construct some examples of hyperstructures in genotype,
extending the works of Davvaz (2007) to blood genotype. This is to motivate new and

collaborative researches in the use of hyperstructures in these related fields.

Key Words: Genotype as a hyperstructure, hypergroup, offspring.

AMS(2010): 20N20, 92D10.

§1. Introduction

The theory of hyperstructures began in 1934 by F. Marty. In his presentation at the 8th

congress of Scandinavian Mathematicians, he illustrated the definition of hypergroup and some

applications, giving some of its uses in the study of groups and some functions. It is a kind of

generalization of the concept of abstract group and an extension of well-known group theory

and as well leading to new areas of study.

The study of hypergroups now spans to the investigation and studying of subhyper-

groups, relations defined on hyperstructures, cyclic hypergroups, canonical hypergroups, P-

hypergroups, hyperrings, hyperlattices, hyperfields, hypermodules and Hν -structures but to

mention a few.

A very close concept to this is that of HX Group which was developed by Li [11] in

1985. There have been various studies linking HX Groups to hyperstructures. In the late 20th

century, the theory experienced more development in the applications to other mathematical

theories such as character theory of finite groups, combinatorics and relation theory. Researchers

like P. Corsini, B. Davvaz, T. Vougiouklis, V. Leoreanu, but to mention a few, have done very

extensive studies in the theory of hyperstructures and their uses.

§2. Definitions and Examples of Hyperstrutures

Definition 2.1 Let H be a non empty set. The operation ◦ : H × H −→ P∗(H) is called a

1Received May 13, 2017, Accepted November 12, 2017.
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hyperoperation and (H, ◦) is called a hypergroupoid, where P∗(H) is the collection of all non

empty subsets of H. In this case, for A, B ⊆ H, A ◦B = ∪{a ◦ b|a ∈ A, b ∈ B}.

Remark 2.1 A hyperstructure is a set on which a hyperoperation is defined. Some major

kinds of hyperstructures are hypergroups, HX groups, Hν groups, hyperrings and so on.

Definition 2.2 A hypergroupoid (H, ◦) is called a semihypergroup if

(a ◦ b) ◦ c = a ◦ (b ◦ c) ∀a, b, c ∈ H (Associativity)

.

Definition 2.3 A hypergroupoid (H, ◦) is called a quasihypergroup if

a ◦H = H = H ◦ a ∀a ∈ H (Reproduction Axiom).

Definition 2.4 A hypergroupoid (H, ◦) is called a hypergroup if it is both a semihypergroup and

quasihypergroup.

Example 2.1 (1) For any group G, if the hyperoperation is defined on the cosets, it generally

yields a hypergroup.

(2) If we partition H = {1,−1, i,−i} by K∗ = {{1,−1}, {i,−i}}, then (H/K∗, ◦) is a

hypergroup.

(3)([8]) Let (G, +) = (Z, +) be an abelian group with an equivalence relation ρ partitioning

G into x = {x,−x}. Then, if x ◦ y = {x + y, x− y} ∀x, y ∈ G/ρ, (G/ρ, ◦) is a hypergroup.

Definition 2.5 A hypergroupoid (H, ◦) is called a Hν group if it satisfies

(1) (a ◦ b) ◦ c ∩ a ◦ (b ◦ c) 6= ∅ ∀a, b, c ∈ H (W eak Associativity);

(2) a ◦H = H = H ◦ a ∀a ∈ H (Reproduction Axiom).

Remark 2.2 An Hν group may not be a hypergroup. A subset K ⊆ H is called a subhy-

pergroup if (K, ◦) is also a hypergroup. A hypergroup (H, ◦) is said to have an identity e if

∀a ∈ H a ∈ e ◦ a ∩ a ◦ e 6= ∅.

Example 2.2 Davvaz [8] has given an example of a Hν group as the chemical reaction

A2 + B2 energy←−−−→ 2AB

in which A◦ and B◦ are the fragments of A2, B2, AB and H = {A◦, B◦, A2, B2, AB}.

Definition 2.6 Let G be a group and ◦ : G×G −→ P∗(G) a hyperoperation. Let C ⊆ P∗(G)

and A, B ∈ C. If C, under the product A ◦B = ∪{a ◦ b|a ∈ A, b ∈ B}, is a group, then (C, ◦) is

a HX group on G with unit element E ⊆ C such that E ◦A = A = A ◦ E ∀A ∈ C.

It is important to study HX group separately because some hypergroups exist but are not
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HX groups. An example is ({{0}, (0, +∞), (−∞, 0)}, +); it a hypergroup but not a HX group.

Note that if the unit element E of the quotient group of G by E is a normal subgroup of G,

then the quotient group is a HX group.

Definition 2.7 If for the identity element e ∈ G we have e ∈ E, then (C, ◦) is a regular HX

group on G.

Theorem 2.1([10]) If C is a HX group on G, then ∀A, B ∈ C

(1) |A| = |B|;
(2) A ∩B 6= ∅ =⇒ |A ∩B| = |E|.

Remark 2.3 Corsini [4] has shown that a HX group, also referred to as Chinese Hyper-

structure is a Hν Group and that, under some condition, is a hypergroup. But, trivially, a

hypergroup is a Hν Group since only that associativity was relaxed in a hypergroup to obtain

a Hν Group. Besides, Onasanya [12] has shown that no additional condition is needed by a

Chinese Hyperstructure, that is a HX group, to become a hypergroup.

§3. Applications and Occurrences of Hyperstrutures in Biological and

Chemical Sciences

The chain reactions that occur between hydrogen and halogens, say iodine (I), give interesting

examples of hyperstructures [8]. This can be seen in Table 1. Many properties of these reactions

can be seen from the study of hyperstructures.

Table 1. Reaction of Hydrogen with Iodine

+ Ho Io H2 I2 HI

Ho Ho, H2 Ho, Io, HI Ho, H2 Ho, Io, HI, I2 Ho, Io, H2, HI

Io Io, Ho, HI Io, I2 Io, Ho, HI, H2 Io, I2 Ho, Io, HI, I2

H2 Ho, H2 Ho, Io, HI, H2 Ho, H2 Ho, Io, HI, H2, I2 Ho, Io, H2, HI

I2 Io, Ho, I2, HI Io, I2 Ho, Io, HI, H2, I2 Io, I2 Ho, Io, HI, I2

HI Ho, Io, H2, HI Ho, Io, HI, I2 Ho, Io, HI, H2 Ho, Io, HI, I2 Ho, Io, HI, I2, H2

Let G = {Ho, Io, H2, I2, HI} so that (G, ◦) is such that ∀A, B ∈ G, we have that A◦B are

the possible product(s) representing the reaction between A and B. Then, (G, ◦) is a Hv-group.

The subsets G1 = {Ho, H2} and G2 = {Io, I2} are the only Hv-subgroups of (G, ◦) and indeed

they are trivial hypergroups.

Davvaz [6] has the following examples: Dismutation is a kind of chemical reaction. Com-

proportionation is a kind of dismutation in which two different reactants of the same element

having different oxidation numbers combine to form a new product with intermediate oxidation

number. An example is the reaction

Sn + Sn4+ → 2Sn2+.



A Note on Hyperstructres and Some Applications 63

In this reaction, letting G = {Sn, Sn2+, Sn4+}, the following table shows all possible occur-

rences.

Table 2. Dismutation Reaction of Tin

◦ Sn Sn2+ Sn4+

Sn Sn Sn, Sn2+ Sn2+

Sn2+ Sn, Sn2+ Sn2+ Sn2+, Sn4+

Sn4+ Sn2+ Sn2+, Sn4+ Sn4+

While it is agreeable that (G, ◦) is weak associative as claimed by [6], we say further

that it is a Hν group. Also, while ({Sn, Sn2+}, ◦) is agreed to be a hypergroup, we say that

({Sn2+, Sn4+}, ◦) is not just a Hν semigroup as claimed by [6] but a Hν group.

Furthermore, Cu(0), Cu(I), Cu(II) and Cu(III) are the four oxidation states of copper. Its

different species can react with themselves (without energy) as defined below

(1) Cu3+ + Cu+ 7→ Cu2+;

(2) Cu3+ + Cu 7→ Cu2+ + Cu+.

Table 3. Redox (Oxidation-Reduction) reaction of Copper

◦ Cu Cu+ Cu2+ Cu3+

Cu Cu Cu, Cu+ Cu, Cu2+ Cu+, Cu2+

Cu+ Cu, Cu+ Cu+ Cu+, Cu2+ Cu2+

Cu2+ Cu, Cu2+ Cu+, Cu2+ Cu2+ Cu2+, Cu3+

Cu3+ Cu+, Cu2+ Cu2+ Cu2+, Cu3+ Cu3+

Let G = {Cu, Cu+, Cu2+, Cu3+}. Then (G, ◦) is weak associative and

Cu+ ◦X = X ◦ Cu+ 6= X

so that (G, ◦) is an Hv semigroup. {Cu, Cu+}, {Cu, Cu2+} {Cu+, Cu2+} and {Cu2+, Cu3+}
are hypergroups with respect to ◦. From Table 4 we also have that ({Cu, Cu+, Cu2+}, ◦) is a

hypergroup.

Table 4. Another Redox reaction of Cu

◦ Cu Cu+ Cu2+

Cu Cu Cu, Cu+ Cu, Cu2+

Cu+ Cu, Cu+ Cu+ Cu+, Cu2+

Cu2+ Cu, Cu2+ Cu+, Cu2+ Cu2+

It should be noted that {Cu, Cu+}, {Cu, Cu2+} and {Cu+, Cu2+} are subhypergroups of

({Cu, Cu+, Cu2+}, ◦).
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§4. Identities of Hyperstructures

Definition 4.1([8]) The set Ip = {e ∈ H |∃x ∈ H such that x ∈ x ◦ e ∪ e ◦ x} is refered to as

partial identities of H.

Definition 4.2([3]) An element e ∈ H is called the right (analogously the left) identity of H if

x ∈ x ◦ e(x ∈ e ◦ x) ∀x ∈ H. It is called an identity of H if it is both right and left identity.

Definition 4.3([3]) A hypergroup H is semi regular if each x ∈ H has at least one right and

one left identity.

It can be seen that every right or left identity of H is in Ip.

4.1 Blood Genotype as a Hyperstructure

Let G = {AA, AS, SS} and the hyperoperation ⊕ denote mating. The blood genotype is a kind

of hyperstructure.

Table 5. Genotype Table [12]

⊕ AA AS SS

AA {AA} {AA, AS} {AS}
AS {AA, AS} {AA, AS, SS} {AS, SS}
SS {AS} {AS, SS} {SS}

In Table 5, {AA} ⊕G 6= G 6= G⊕ {AA}; the reproduction axiom is not satisfied. Also, it

is weak associative. It is a Hν semigroup.

Note that a lot has been discussed on the occurrence of hyperstructure algebra in inheri-

tance [7]. For most of the monohybrid and dihybrid crossing of the pea plant, they are hyper-

groups in the second generation. Take for instance, the monohybrid Crossing in the Pea Plant ,

the parents has the RR(Round) and rr(Wrinkled) genes. The first generation has Rr(Round).

The second generation has RR(Round), Rr(Round) and rr(Wrinkled). Now consider the set

G = {R, W}; R for Round and W for Wrinkled. Crossing this generation under the operation

⊕ for mating, [7] already established it is a hypergroup.

In the following section, a little more information about their properties would be given

and an extension to cases which are hypergroups in earlier generations are made.

§5. Main Results

5.1 Hyperstructures in Group Theory

The following example is a construction of an HX group which is also a hypergroup and a Hν

Group by Remark 2.1.

Example 5.1 Let us partition (Z10, +) by ρ = {{0, 5}, {1, 6}, {2, 7}, {3, 8}, {4, 9}}. Then we
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can see that E = {0, 5} is a normal subgroup of (Z10, +) and that E2 = E. (Z10/ρ, ◦) is also a

regular HX group since 0 ∈ E.

We give some further clarifications on Table 5, that this is a Hν cyclic semigroup, with

generator {AS}. It has no Hν subsemigroups. The set of partial identites Ip of (G,⊕) is G

itself by Definition 4.1, and the identity (which is both right and left identity) of G is {AS} by

Definition 4.2. Then, (G,⊕) is also a semi regular hypergroupoid by Defnition 4.3. Note that

if the parents’ genotype are {AA, AS} or {AA, SS} or {AS, SS}, the first generations of each

of these are Hν semigroups. These can be seen in the tables below.

Table 6. Parents with the genotype AA and AS

⊕ AA AS

AA {AA} {AA, AS}
AS {AA, AS} {AA, AS, SS}

The first generation H1 = {AA, AS, SS} is a Hν semigroup under ⊕.

Table 7. Parents with the genotype AA and SS

⊕ AA SS

AA {AA} {AS}
SS {AS} {SS}

The first generation H2 = {AA, AS, SS} is a Hν semigroup under ⊕.

Table 8. Parents with the genotype AA and SS

⊕ AS SS

AS {AA, AS, SS} {AS, SS}
SS {AS, SS} {SS}

The first generation H3 = {AA, AS, SS} is a Hν semigroup under ⊕.

It is established in this work that the case of crossing between organism which have lethal

genes (i.e. the genes that cause the death of the carrier at homozygous condition), such as the

crossing of mice parents with traits Yellow(Y y) and Grey(yy), is a semi regular hypergroup at

all generations, including the parents’ generation. However, the parents with traits Yellow(Y y)

and Yellow(Y y) have their first generation and the generations of all other offsprings to be semi

regular hypergyoups. These are summarized in the tables below.

Table 9. Parents with the genotype Yellow(Y y) and Grey(yy)

⊕ Y y yy

Y y {Y y, yy} {Y y, yy}
yy {Y y, yy} {yy}
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They produce the offspring Y y and yy like themselves in the first generation in the ratio

2:3. Let G = {Y y, yy}, (G,⊕) is a semi regular hypergroup.

Table 10. Parents with the genotype Yellow(Y y) and Yellow(Y y)

⊕ Y y Y y

Y y {Y y, yy} {Y y, yy}
Y y {Y y, yy} {yy}

They produce the offspring Y y and yy in the first generation in the ratio 2:1 but is not a

hypergroupoid for the occurrence of yy. But crossing this first generation produces the result of

Table 9, showing that the first generation with ⊕ is a hypergroup. This same result is obtained

for all other generations in this crossing henceforth.

It is important to note that the monohybrid and dihybrid mating of pea plant considered

in [7] are not just hypergroups but semi regular hypergroups. The particular case mentioned

above has a right and a left identity I = {W}.

§6. Conclusions

The following is just to make some conclusions. Far reaching ones can be made from the in-

depth studies and applications of the theory of hyperstructures. The algebraic properties of

these hyperstructures can be used to gain insight into what happens in the biological situations

and chemical reactions which they have modelled. For instance, the weak associativity, in case

it is a case of Hν group, of some of the chemical reactions suggests that, given reactants A, B,

and C, one must be careful in the order of mixture as you may not always have the same

product when A + B is done before adding C as in when B + C is done before adding A. In

other words, A+(B +C) does not always equal (A+B)+C. Moreover, the strong associativity,

in the case of hypergroup, indicates that same products are obtained in both orders.

From blood the genotype table of G = {AA, AS, SS}, reproduction axiom is not satisfied

with the element {SS}, meaning that if marriages are only contracted between any member of

the group and someone with {SS} genotype, all offsprings shall be carriers of sickle cell in all

subsequent generations. Besides, its weak associativity property indicates that if there were to

be marriages between individuals with genotypes A, B, and C so that those with the genotypes

A and B marry and produce offsprings which now marry those with genotype C, then some of

the offsprings of this marriage will always have the same genotype as some of the offsprings of

those with genotype A marrying the offsprings produced by the marriages of people with the

genotypes B and C.

If the operation ⊕ denotes cross breeding, it should also be noted that genetic crossing (in

terms of genotype or phenotype) is not always, at the parents level, a hyperstructure. This is

because in the collection of all traits P∗(T ) of Parents, there sometimes will be trait A and

trait B which combine to form a trait C but such that C /∈ P∗(T ). An example is in the

incomplete dominance reported when Mendel crossed the four O’ clock plant (Mirabilis jalapa)

which produced an intermediate flower colour (Pink) from parents having Red and White
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colours. Not even at any generation will it be a hyperstructure as long as there is incomplete

dominance. Hence, the theory of hyperstructures should not be applied in this case.
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become Lie algebras under the commutator [f, g] = fg − gf . We obtain a nonassociative
Gröbner-Shirshov basis for the free algebra LA(X) with a generating set X of the above va-

riety. As an application, we get a monomial basis for LA(X). We also give a characterization
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§1. Introduction

In 1948, A. A. Albert introduced a new family of (nonassociative) algebras whose commutator

algebras are Lie algebras [1]. These algebras are called Lie-admissible algebras, and they arise

naturally in various areas of mathematics and mathematical physics such as differential geome-

try of affine connections on Lie groups. Examples include associative algebras, pre-Lie algebras

and so on.

Let k〈X〉 be the free associative algebra generated by X . It is well known that the Lie

subalgebra, generated X , of k〈X〉 is a free Lie algebra (see for example [6]). Friedrichs [15]

has given a characterization of Lie elements among the set of noncommutative polynomials. A

proof of characterization theorem was also given by Magnus [18], who refers to other proofs by

P. M. Cohn and D. Finkelstein. Later, two short proofs of the characterization theorem were

given by R. C. Lyndon [17] and A. I. Shirshov [21], respectively.

Pre-Lie algebras arise in many areas of mathematics and physics. As was pointed out by

D. Burde [8], these algebras first appeared in a paper by A. Cayley in 1896 (see [9]). Survey

[8] contains detailed discussion of the origin, theory and applications of pre-Lie algebras in

geometry and physics together with an extensive bibliography. Free pre-Lie algebras had already
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been studied as early as 1981 by Agrachev and Gamkrelidze [2]. They gave a construction of

monomial bases for free pre-Lie algebras. Segal [20] in 1994 gave an explicit basis (called good

words in [20]) for a free pre-Lie algebra and applied it for the PBW-type theorem for the

universal pre-Lie enveloping algebra of a Lie algebra. Linear bases of free pre-Lie algebras were

also studied in [3, 10, 11, 14, 25]. As a special case of Segal’s latter result, the Lie subalgebra,

generated by X , of the free pre-Lie algebra with generating set X is also free. Independently,

this result was also proved by A. Dzhumadil’daev and C. Löfwall [14]. M. Markl [19] gave a

simple characterization of Lie elements in free pre-Lie algebras as elements of the kernel of a

map between spaces of trees.

Gröbner bases and Gröbner-Shirshov bases were invented independently by A.I. Shirshov

for ideals of free (commutative, anti-commutative) non-associative algebras [22, 24], free Lie

algebras [23, 24] and implicitly free associative algebras [23, 24] (see also [4, 5, 12, 13]), by H.

Hironaka [16] for ideals of the power series algebras (both formal and convergent), and by B.

Buchberger [7] for ideals of the polynomial algebras.

In this paper, we study a class of Lie-admissible algebras. These algebras are nonassociative

algebras which satisfy the following identities: (xy)z = (yx)z, x(yz) = x(zy). Let LA(X) be

the free algebra with a generating set X of the above variety. We obtain a nonassociative

Gröbner-Shirshov basis for the free algebra LA(X). Using the Composition-Diamond lemma of

nonassociative algebras, we get a monomial basis for LA(X). Let S(X) be the Lie subalgebra,

generated by X , of LA(X). We get a linear basis of S(X). As a corollary, we show that

S(X) is not a free Lie algebra when the cardinality of X is greater than 1. We also give a

characterization of the elements of S(X) among the elements of LA(X). For the completeness

of this paper, we formulate the Composition-Diamond lemma for free nonassociative algebras

in Section 2.

§2. Composition-Diamond Lemma for Nonassociative Algebras

Let X be a well ordered set. Each letter x ∈ X is a nonassociative word of degree 1. Sup-

pose that u and v are nonassociative words of degrees m and n respectively. Then uv is a

nonassociative word of degree m + n. Denoted by |uv| the degree of uv, by X∗ the set of all

associative words on X and by X∗∗ the set of all nonassociative word on X . If u = (p(v)q),

where p, q ∈ X∗, u, v ∈ X∗∗, then v is called a subword of u. Denote u by u|v, if this is the case.

The set X∗∗ can be ordered by the following way: u > v if either

(1) |u| > |v|; or

(2) |u| = |v| and u = u1u2, v = v1v2, and either

(2a) u1 > v1; or

(2b) u1 = v1 and u2 > v2.

This ordering is called degree lexicographical ordering and used throughout this paper.

Let k be a field and M(X) be the free nonassociative algebra over k, generated by X . Then
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each nonzero element f ∈M(X) can be presented as

f = αf +
∑

i

αiui,

where f > ui, α, αi ∈ k, α 6= 0, ui ∈ X∗∗. Then f , α are called the leading term and leading

coefficient of f respectively and f is called monic if α = 1. Denote by d(f) the degree of f ,

which is defined by d(f) = |f̄ |.
Let S ⊂M(X) be a set of monic polynomials, s ∈ S and u ∈ X∗∗. We define S-word (u)s

in a recursive way:

(i) (s)s = s is an S-word of s-length 1;

(ii) If (u)s is an S-word of s-length k and v is a nonassociative word of degree l, then

(u)sv and v(u)s

are S-words of s-length k + l.

Note that for any S-word (u)s = (asb), where a, b ∈ X∗, we have (asb) = (a(s̄)b).

Let f, g be monic polynomials in M(X). Suppose that there exist a, b ∈ X∗ such that

f̄ = (a(ḡ)b). Then we define the composition of inclusion

(f, g)f̄ = f − (agb).

The composition (f, g)f̄ is called trivial modulo (S, f̄), if

(f, g)f̄ =
∑

i

αi(aisibi)

where each αi ∈ k, ai, bi ∈ X∗, si ∈ S, (aisibi) an S-word and (ai(s̄i)bi) < f̄ . If this is the

case, then we write (f, g)f̄ ≡ 0 mod(S, f̄). In general, for p, q ∈M(X) and w ∈ X∗∗, we write

p ≡ q mod(S, w)

which means that p − q =
∑

αi(aisibi), where each αi ∈ k, ai, bi ∈ X∗, si ∈ S, (aisibi) an

S-word and (ai(s̄i)bi) < w.

Definition 2.1([22,24]) Let S ⊂ M(X) be a nonempty set of monic polynomials and the

ordering > defined as before. Then S is called a Gröbner-Shirshov basis in M(X) if any

composition (f, g)f̄ with f, g ∈ S is trivial modulo (S, f̄), i.e., (f, g)f̄ ≡ 0 mod(S, f̄).

Theorem 2.2([22,24]) (Composition-Diamond lemma for nonassociative algebras) Let S ⊂
M(X) be a nonempty set of monic polynomials, Id(S) the ideal of M(X) generated by S and

the ordering > on X∗∗ defined as before. Then the following statements are equivalent:

(i) S is a Gröbner-Shirshov basis in M(X);

(ii) f ∈ Id(S)⇒ f̄ = (a(s̄)b) for some s ∈ S and a, b ∈ X∗, where (asb) is an S-word;
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(iii) Irr(S) = {u ∈ X∗∗|u 6= (a(s̄)b) a, b ∈ X∗, s ∈ S and (asb) is an S-word} is a linear

basis of the algebra M(X | S) = M(X)/Id(S).

§3. A Nonassociative Gröbner-Shirshov Basis for the Algebra LA(X)

Let LA be the variety of nonassociative algebras which satisfy the following identities: (xy)z =

(yx)z, x(yz) = x(zy). Let LA(X) be the free algebra with a generating set X of the variety

LA. It’s clear that the free algebra LA(X) is isomorphic to M(X |(uv)w − (vu)w, w(uv) −
w(vu), u, v, w ∈ X∗∗).

Theorem 3.1 Let S = {(uv)w − (vu)w, w(uv) − w(vu), u > v, u, v, w ∈ X∗∗}. Then S is a

Gröbner-Shirshov basis of the algebra M(X | (uv)w − (vu)w, w(uv) − w(uv), u, v, w ∈ X∗∗).

Proof It is clear that Id(S) is the same as the ideal generated by the set {(uv)w −
(vu)w, w(uv) − w(vu), u, v, w ∈ X∗∗} of M(X). Let f123 = (u1u2)u3 − (u2u1)u3, g123 =

v1(v2v3) − v1(v3v2), u1 > u2, v2 > v3, ui, vi ∈ X∗∗, 1 ≤ i ≤ 3. Clearly, f123 = (u1u2)u3

and g123 = v1(v2v3). Then all possible compositions in S are the following:

(c1) (f123, f456)(u1|(u4u5)u6 u2)u3 ;

(c2) (f123, f456)(u1u2|(u4u5)u6 )u3 ;

(c3) (f123, f456)(u1u2)u3|(u4u5)u6
;

(c4) (f123, f456)((u4u5)u6)u3 , u1u2 = (u4u5)u6;

(c5) (f123, f456)(u1u2)u3 , (u1u2)u3 = (u4u5)u6;

(c6) (f123, g123)(u1|v1(v2v3)u2)u3 ;

(c7) (f123, g123)(u1u2|v1(v2v3))u3 ;

(c8) (f123, g123)(u1u2)u3|v1(v2v3) ;

(c9) (f123, g123)(v1(v2v3))u3 , u1u2 = v1(v2v3);

(c10) (f123, g123)(u1u2)(v2v3), u1u2 = v1, u3 = v2v3;

(c11) (g123, f123)v1|(u1u2)u3 (v2v3);

(c12) (g123, f123)v1(v2|(u1u2)u3 v3);

(c13) (g123, f123)v1(v2v3|(u1u2)u3 );

(c14) (g123, f123)v1((u1u2)u3), v2v3 = (u1u2)u3;

(c15) (g123, g456)v1|v4(v5v6)(v2v3);

(c16) (g123, g456)v1(v2|v4(v5v6)v3);

(c17) (g123, g456)v1(v2v3|v4(v5v6));

(c18) (g123, g456)v1(v4(v5v6)), v2v3 = v4(v5v6);

(c19) (g123, g456)v1(v2v3), v1(v2v3) = v4(v5v6).

The above compositions in S all are trivial module S. Here, we only prove the following

cases: (c1), (c4), (c9), (c10), (c14), (c18). The other cases can be proved similarly.

(f123, f456)(u1|(u4u5)u6 u2)u3 ≡(u2u1|(u4u5)u6)u3 − (u′
1|(u5u4)u6 u2)u3

≡(u2u′
1|(u5u4)u6)u3 − (u′

1|(u5u4)u6 u2)u3 ≡ 0,
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(f123, f456)((u4u5)u6)u3 , u1u2 = (u4u5)u6 =(u6(u4u5))u3 − ((u5u4)u6)u3

≡(u6(u5u4))u3 − ((u5u4)u6)u3 ≡ 0,

(f123, g123)(v1(v2v3))u3 , u1u2 = v1(v2v3) =((v2v3)v1)u3 − (v1(v3v2))u3

≡((v3v2)v1)u3 − (v1(v3v2))u3 ≡ 0,

(f123, g123)(u1u2)(v2v3), u1u2 = v1, u3 = v2v3 =(u2u1)(v2v3)− (u1u2)(v3v2)

≡(u2u1)(v3v2)− (u2u1)(v3v2) = 0,

(g123, f123)v1((u1u2)u3), v2v3 =(u1u2)u3 = v1(u3(u1u2))− v1((u2u1)u3)

≡v1(u3(u2u1))− v1((u2u1)u3) ≡ 0,

(g123, g456)v1(v4(v5v6)), v2v3 =(v4(v5v6)) = v1((v5v6)v4)− v1(v4(v6v5))

≡v1((v6v5)v4)− v1(v4(v6v5)) ≡ 0.

Therefore S is a Gröbner-Shirshov basis of the algebra M(X |(uv)w − (vu)w, w(uv) −
w(uv), u, v, w ∈ X∗∗). 2
Definition 3.2 Each letter xi ∈ X is called a regular word of degree 1. Suppose that u = vw

is a nonassociative word of degree m, m > 1. Then u = vw is called a regular word of degree m

if it satisfies the following conditions:

(S1) both v and w are regular words;

(S2) if v = v1v2, then v1 ≤ v2;

(S3) if w = w1w2, then w1 ≤ w2.

Lemma 3.3 Let N(X) be the set of all regular words on X. Then Irr(S) = N(X).

Proof Suppose that u ∈ Irr(S). If |u| = 1, then u = x ∈ N(X). If |u| > 1 and u = vw,

then by induction v, w ∈ N(X). If v = v1v2, then v1 ≤ v2, since u ∈ Irr(S). If w = w1w2, then

w1 ≤ w2, since u ∈ Irr(S). Therefore u ∈ N(X).

Suppose that u ∈ N(X). If |u| = 1, then u = x ∈ Irr(S). If u = vw, then v, w are regular

and by induction v, w ∈ Irr(S). If v = v1v2, then v1 ≤ v2, since u ∈ N(X). If w = w1w2, then

w1 ≤ w2, since u ∈ N(X). Therefore u ∈ Irr(S). 2
From Theorems 2.2, 3.1 and Lemma 3.3, the following result follows.

Theorem 3.4 The set N(X) of all regular words on X forms a linear basis of the free algebra

LA(X).
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§4. A Characterization Theorem

Let X be a well ordered set, S(X) the Lie subalgebra, generated by X , of LA(X) under the

commutator [f, g] = fg−gf . Let T = {[xi, xj ]|xi > xj , xi, xj ∈ X} where [xi, xj ] = xixj−xjxi.

Lemma 5.1 The set X
⋃

T forms a linear basis of the Lie algebra S(X).

Proof Let u ∈ X
⋃

T . If u = xi, then ū = xi. If u = [xi, xj ], xi > xj , then u = xixj − xjxi

and thus ū = xixj . Then we may conclude that if u, v ∈ X
⋃

T and u 6= v, then ū 6= v̄. Therefore

the elements in X
⋃

T are linear independent. Since [[f, g], h] = (fg)h−(gf)h−h(fg)+h(gf) =

0 = −[h, [f, g]], then all the Lie words with degree ≥ 3 equal zero. Therefore, the set X
⋃

T

forms a linear basis of the Lie algebra S(X). 2
Corollary 5.2 Let |X | > 1. Then the Lie subalgebra S(X) of LA(X) is not a free Lie algebra.

Theorem 5.3 An element f(x1, x2, · · · , xs) of the algebra LA(X) belongs to S(X) if and only

if d(f) < 3 and the relations xix
′
j = x′

jxi,i, j = 1, 2, · · · , n imply the equation f(x1 + x′
1, x2 +

x′
2, · · · , xs + x′

s) = f(x1, x2, · · · , xs) + f(x′
1, x′

2, · · · , x′
s).

Proof Suppose that an element f(x1, x2, · · · , xs) of the algebra LA(X) belongs to S(X).

From Lemma 4.1, it follows that d(f) < 3 and it suffices to prove that if u(x1, x2, · · · , xs) ∈
X
⋃

T , then the relations xix
′
j = x′

jxi imply the equation u(x1 + x′
1, x2 + x′

2, · · · , xs + x′
s) =

u(x1, x2, · · · , xs) + u(x′
1, x′

2, · · · , x′
s). This holds since d(f) < 3 and [x′

i, xj ] = [xj , x′
i] = 0,

x′
i, xj , 1 ≤ i, j ≤ s.

Let d1 be an element of the algebra LA(X) that does not belong to S(X). If d̄1 = xixj

where xi > xj , then let d2 = d1 − [xi, xj ]. Clearly, d2 is also an element of the algebra LA(X)

that does not belong to S(X). Then after a finite number of steps of the above algorithm, we

will obtain an element dt whose leading term is ut where ut = xpxq, xp ≤ xq. It’s easy to see

that in the expression

dt(x1 + x′
1, x2 + x′

2, · · · , xs + x′
s)− dt(x1, x2, · · · , xs)− dt(x

′
1, x′

2, · · · , x′
s)

the element x′
qxp occurs with nonzero coefficient. 2
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§1. Introduction

A Galilean space is a three dimensional complex projective space, where {w, f, I1, I2} consists

of a real plane w (the absolute plane), real line f ⊂ w (the absolute line) and two complex

conjugate points I1, I2 ∈ f (the absolute points). We shall take as a real model of the space

G3, a real projective space P3 with the absolute {w, f} consisting of a real plane w ⊂ G3 and a

real line f ⊂ w on which an elliptic involution ε has been defined. The Galilean scalar product

between two vectors a = (a1, a2, a3) and b = (b1, b2, b3) is defined [3]

(a.b)G =





a1b1, if a1 6= 0 or b1 6= 0,

a2b2 + a3b3, if a1 = b1 = 0.

and the Galilean vector product is defined

(a ∧ b)G =






∣∣∣∣∣∣∣∣

0 e2 e3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣∣
, if a1 6= 0 or b1 6= 0,

∣∣∣∣∣∣∣∣

e1 e2 e3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣∣
, if a1 = b1 = 0.

1Received May 4, 2017, Accepted November 16, 2017.
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Let α : I → G3, I ⊂ R be an unit speed curve in Galilean space G3 parametrized by the

invariant parameter s ∈ I and given in the coordinate form

α (s) = (s, y (s) , z (s)). Then the curvature and the torsion of the curve α are given by

κ (s) = ‖α′′ (s)‖ , τ (s) =
1

κ2 (s)
Det (α′ (s) , α′′ (s) , α′′′ (s))

respectively. The Frenet frame {t, n, b} of the curve α is given by

t (s) = α′ (s) = (1, y′ (s) , z′ (s)) ,

n (s) =
α′′ (s)

‖α′′ (s)‖ =
1

κ (s)
(1, y′′ (s) , z′′ (s)) ,

b (s) = (t (s) ∧ n (s))G =
1

κ (s)
(1,−z′′ (s) , y′′ (s)) ,

where t (s) , n (s) and b (s) are called the tangent vector, principal normal vector and binormal

vector, respectively. The Frenet formulas for α (s) given by [3] are





t′ (s)

n′ (s)

b′ (s)



 =





0 κ (s) 0

0 0 τ (s)

0 −τ (s) 0









t (s)

n (s)

b (s)



 . (1.1)

The binormal motion of curves in the Galilean 3-space is equivalent to the nonlinear Schrödinger

equation (NLS−) of repulsive type

iqb + qss −
1

2
|〈q, q〉|2 q̄ = 0 (1.2)

where

q = κ exp

(∫ s

0
σds

)
, σ=κexp

(∫ s

0
rds

)
. (1.3)

§2. Basic Properties of Intrinsic Geometry

Intrinsic geometry of the nonlinear Schrodinger equation was investigated in E3 by Rogers and

Schief. According to anholonomic coordinates, characterization of three dimensional vector

field was introduced in E3 by Vranceau [5], and then analyse Marris and Passman [3].

Let φ be a 3-dimensional vector field according to anholonomic coordinates in G3. The

t , n , b is the tangent, principal normal and binormal directions to the vector lines of φ. In-

trinsic derivatives of this orthonormal triad are given by following

δ

δs





t

n

b



 =





0 κ 0

0 0 τ

0 −τ 0









t

n

b



 (2.1)
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δ

δn





t

n

b



 =





0 θns (Ωb + τ)

−θns 0 −divb

− (Ωb + τ) divb 0









t

n

b



 (2.2)

δ

δb





t

n

b



 =





0 − (Ωn + τ) θbs

(Ωn + τ) 0 divn

−θbs −divn 0









t

n

b



 , (2.3)

where δ
δs , δ

δn and δ
δb are directional derivatives in the tangential, principal normal and binormal

directions in G3. Thus, the equation (2.1) show the usual Serret-Frenet relations, also (2.2) and

(2.3) give the directional derivatives of the orthonormal triad {t , n , b} in the n- and b-directions,

respectively. Accordingly,

grad = t
δ

δs
+ n

δ

δn
+ b

δ

δb
, (2.4)

where θbs and θns are the quantities originally introduced by Bjorgum in 1951 [2] via

θns = n · δt
δn

, θbs = b · δt
δb

. (2.5)

From the usual Serret Frenet relations in G3, we obtain the following equations

divt = (t
δ

δs
+ n

δ

δn
+ b

δ

δb
)t = t(κn) + n

δt
δn

+ b
δt
δb

= θns + θbs, (2.6)

divn = (t
δ

δs
+ n

δ

δn
+ b

δ

δb
)n = t(τb) + n

δn
δn

+ b
δn
δb

= b
δn
δb

, (2.7)

divb = (t
δ

δs
+ n

δ

δn
+ b

δ

δb
)b = t(−τn) + n

δb
δn

+ b
δb
δb

= n
δb
δn

. (2.8)

Moreover, we get

curlt =

(
t × δ

δs
+ n × δ

δn
+ b × δ

δb

)
t

= t × (κn) + n × δt
δn

+ b × δt
δb

=

[
δt
δn

b − δt
δb

n
]

(1, 0, 0) + κb

⇒ curlt = Ωs (1, 0, 0) + κb, (2.9)

where

Ωs = t · curlt = b · δt
δn
− n · δt

δb
(2.10)

is defined the abnormality of the t-field. Firstly, the relation (2.9) was obtained in E3 by
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Masotti. Also, we find

curln =

(
t × δ

δs
+ n × δ

δn
+ b × δ

δb

)
n

= t × (τb) + n × δn
δn

+ b × δn
δb

=

[
t · δn

δb
− τ

]
n +

(
b

δn
δn

)
(1, 0, 0)−

(
t

δn
δn

)
b

⇒ curln = − (divb) (1, 0, 0) + Ωnn + θnsb, (2.11)

where

Ωn = n · curln = t · δn
δb
− τ (2.12)

is defined the abnormality of the n-field and

curlb =

(
t × δ

δs
+ n × δ

δn
+ b × δ

δb

)
b

= t × (−τn) + n ×
[(

t
δb
δn

)
t
]

+ b ×
[(

t
δb
δb

)
t +

(
n

δb
δb

)
n
]

= −
[
τ + t · δb

δn

]
b +

(
t

δb
δb

)
n +

(
b

δn
δb

)
(1, 0, 0),

⇒ curlb = Ωbb − θbsn + (divn) (1, 0, 0) , (2.13)

where

Ωb = b · curlb = −
(

τ + t · δb
δn

)
(2.14)

is defined the abnormality of the b-field. By using the identity curlgradϕ = 0, we have

(
δ2ϕ

δnδb
− δ2ϕ

δbδn

)
t +

(
δ2ϕ

δbδs
− δ2ϕ

δsδb

)
n +

(
δ2ϕ

δsδn
− δ2ϕ

δnδs

)
b

+
δϕ

δs
curlt +

δϕ

δn
curln +

δϕ

δb
curlb = 0. (2.15)

Substituting (2.9), (2.11) and (2.13) in (2.15), we find

δ2φ

δnδb
− δ2φ

δnδb
= −δφ

δs
Ωs +

δφ

δn
(divb)− δφ

δb
(divn)

δ2φ

δbδs
− δ2φ

δsδb
= −δφ

δn
Ωn +

δφ

δb
θbs

δ2φ

δsδn
− δ2φ

δnδs
= −δφ

δs
κ− δφ

δn
θns −

δφ

δb
Ωb. (2.16)

By using the linear system (2.1), (2.2) and (2.3) we can write the following nine relations

in terms of the eight parameters κ, τ, Ωs, Ωn, divn ,divb, θns and θbs. But we take (2.20),



Intrinsic Geometry of the Special Equations in Galilean 3−Space G3 79

(2.21) and (2.22) relations for this work.

δ

δb
θns +

δ

δn
(Ωn + τ) = (divn) (Ωs − 2Ωn − 2τ) + (θbs − θns) divb + κΩs, (2.17)

δ

δb
(Ωn − Ωs + τ) +

δ

δn
θbs = divn (θns − θbs) + divb (Ωs − 2Ωn − 2τ) , (2.18)

δ

δb
(divb) +

δ

δn
(divn) = (τ + Ωn) (τ + Ωn − Ωs)− θnsθbs − τΩs

− (divb)2 − (divn)2 , (2.19)

δ

δs
(τ + Ωn) +

δκ

δb
= −Ωnθns − (2τ + Ωn) θbs, (2.20)

δ

δs
θbs = −θ2

bs + κdivn − Ωn (τ + Ωn − Ωs) + τ (τ + Ωn) , (2.21)

δ

δs
(divn)− δτ

δb
= −Ωn (divb)− θbs (κ + divn) , (2.22)

δκ

δn
− δ

δs
θns = κ2 + θ2

ns + (τ + Ωn) (3τ + Ωn)− Ωs (2τ + Ωn) , (2.23)

δ

δs
(τ + Ωn − Ωs) = −θns (Ωn − Ωs) + θbs (−2τ − Ωn + Ωs) + κdivb, (2.24)

δτ

δn
+

δ

δs
(divb) = −κ (Ωn − Ωs)− θnsdivb + (divn) (−2τ + Ωn + Ωs) . (2.25)

§3. General Properties

The relation
δn
δn

= κnnn = −θnst − (divb) b (3.1)

gives that the unit normal to the n-lines and their curvatures are given, respectively, by

nn =
−θnst − (divb) b
‖−θns − (divb) b‖ =

−θnst − (divb) b
−θns

, (3.2)

κn = −θns. (3.3)

In addition, from the relation (2.11) can be written,

curln = Ωnn + κnbn, (3.4)

where

bn = n × nn =
− (divb) (1, 0, 0) + θnsb

−θns
(3.5)
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gives the unit binormal to the n-lines. Similarly, the relation

δb
δb

= κbnb = −θbst − (divn) n (3.6)

gives that the unit normal to the b-lines and their curvature are given, respectively, by

nb =
θbst + (divn) n

θbs
, (3.7)

κb = −θbs. (3.8)

Moreover, from the relation (2.13) we can be written as

curlb = Ωbb + κbbb, (3.9)

where

bb = b × nb =
θbsn − (divn) (1, 0, 0)

θbs
(3.10)

is the unit binormal to the b-line. To determine the torsions of the n-lines and b-lines, we take

the relations
δbn

δn
= −τnnn, (3.11)

δbb

δb
= −τbnb, (3.12)

respectively. Thus, from (3.11) we have

− δ

δn
(ln |κn|) (divb)− δ

δn
(divb)− θns (Ωb + τ) = τnθns, (3.13)

− δ

δn
ln |κn| θns +

δ

δn
θns = τn (divb) . (3.14)

Accordingly,

τn =






− (Ωb + τ) + divb
θns

δ
δn ln

∣∣ θns
divb

∣∣ if divb 6= 0, θns 6= 0

− (Ωb + τ) if divb = 0, θns 6= 0

or θns = 0, divb 6= 0.

(3.15)

Similarly, from (3.12) we have

− δ

δb
(ln κb) (divn) +

δ

δb
(divn)− θbs (Ωn + τ) = τbθbs, (3.16)

δ

δb
(ln κb) θbs −

δ

δb
θbs = τb (divn) . (3.17)
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Thus,

τb =






− (Ωn + τ)− (divn)
θbs

δ
δb ln

∣∣ θbs
divn

∣∣ if divn 6= 0, θbs 6= 0,

(Ωn + τ) if divn = 0, θbs 6= 0

or θbs = 0, divn 6= 0.

(3.18)

Also, we obtain an important relation

Ωs − τ =
1

2
(Ωs + Ωn + Ωb) (3.19)

is obtained by combining the equations (2.10), (2.12) and (2.14). Ωs, Ωn and Ωb are defined

the total moments of the t , n and b congruences, respectively.

In conclusion, we see that the relation (3.19) has cognate relations

Ωn − τn =
1

2
(Ωn + Ωnn + Ωbn) , (3.20)

Ωb − τb =
1

2
(Ωb + Ωnb + Ωbb) , (3.21)

where

Ωnn = nn · curlnn, Ωbn = bn · curlbn,

Ωnb = nb · curlnb, Ωbb = bb · curlbb.
(3.22)

§4. The Nonlinear Schrödinger Equation

In geometric restriction

Ωn = 0 (4.1)

imposed. Here, our purpose is to obtain the nonlinear Schrodinger equation with such a restric-

tion in G3. The condition indicate the necessary and sufficient restriction for the existence of a

normal congruence of Σ surfaces containing the s-lines and b-lines. If the s-lines and b-lines are

taken as parametric curves on the member surfaces U = constant of the normal congruence,

then the surface metric is given by [4]

IU = ds2 + g (s, b) db2. (4.2)

where g11 = g(s, s), g12 = g(s, b), g22 = g(b, b), and

gradU = t
δ

δs
+ b

δ

δb
= t

∂

∂s
+

b
g1/2

∂

∂b
. (4.3)

Therefore, from equation (2.1) and (2.3), we have

∂

∂s





t

n

b



 =





0 κ 0

0 0 τ

0 −τ 0









t

n

b



 (4.4)
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g−1/2 ∂

∂b





t

n

b



 =





0 − (Ωn + τ) θbs

(Ωn + τ) 0 divn

−θbs −divn 0









t

n

b



 . (4.5)

Also, if r shows the position vector to the surface then (4.4) and (4.5) implies that

rbs =
∂t
∂b

= g1/2 [−τn + θbsb] (4.6)

and

rsb =
∂

∂s

(
g1/2b

)
= −g1/2τn +

∂g1/2

∂s
b. (4.7)

Thus, we obtain

θbs =
1

2

∂ ln g

∂s
. (4.8)

In the case Ωn = 0, the compatibility conditions equations (2.20)-(2.22) become the non-

linear system
∂τ

∂s
+

∂κ

∂b
= −2τθbs, (4.9)

∂

∂s
θbs = −θ2

bs + κdivn + τ2, (4.10)

∂

∂s
(divn)− ∂τ

∂b
= −θbs(κ + divn). (4.11)

The Gauss-Mainardi-Codazzi equations become with (4.8)

∂

∂s
(g1/2divn) + κ

∂

∂s
(g1/2)− ∂τ

∂b
= 0, (4.12)

∂

∂s
(gτ) + g1/2 ∂κ

∂b
= 0, (4.13)

(g1/2)ss = g1/2(κdivn + τ2). (4.14)

With elimination of divn of between (4.12) and (4.14), we have

∂τ

∂b
=

∂

∂s

[(
g1/2)

ss
− τ2g1/2

κ

]
+ κ

∂

∂s

(
g1/2

)
. (4.15)

If we accept

g1/2 = λκ,

where λ varies only in the direction normal congruence, then λb → b, thus the pair equations

(4.13) and (4.15) reduces to

κb = 2κsτ + κτs, (4.16)

τb =

(
τ2 − κss

κ
+

κ2

2

)

s

. (4.17)
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By using equations (4.16) and (4.17), we obtain

iqb + qss −
1

2
|〈q, q〉|2 q̄ − Φ (b) q = 0, (4.18)

where Φ (b) =
(

τ2 − κss
κ + κ2

2

)

s=s0
. This is nonlinear Schrodinger equation of repulsive type.
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Abstract: Graonac defined the second ABC index as

ABC2(G) =
∑

vivj∈E(G)

√
1
ni

+
1

nj
−

2
ninj

.

Dae Won Lee defined the third ABC index as

ABC3(G) =
∑

vivj∈E(G)

√
1
ei

+
1
ej

−
2

eiej

and studied lower and upper bounds. In this paper, we defined a new index which is called
third ABC Coindex and it is defined as

ABC3(G) =
∑

vivj /∈E(G)

√
1
ni

+
1
nj

−
2

ninj

and we found some lower and upper bounds on ABC3(G) index.

Key Words: Molecular graph, the third atom - bond connectivity (ABC3) index, the
third atom - bond connectivity co-index (ABC3).

AMS(2010): 05C40, 05C99.

§1. Introduction

The topological indices plays vital role in chemistry, pharmacology etc [1]. Let G = (V, E) be

a simple connected graph with vertex set V (G) = {v1, v2, · · · , vn} and the edge set E(G), with

|V (G)| = n and |E(G)| = m. Let u, v ∈ V (G) then the distance between u and v is denoted by

d(u, v) and is defined as the length of the shortest path in G connecting u and v.

The eccentricity of a vertex vi ∈ V (G) is the largest distance between vi and any other

vertex vj of G. The diameter d(G) of G is the maximum eccentricity of G and radius r(G) of

G is the minimum eccentricity of G.

1Received May 17, 2017, Accepted November 19, 2017.



Some Lower and Upper Bounds on the Third ABC Co-index 85

The Zagreb indices have been introduced by Gutman and Trinajstic [2]-[5]. They are

defined as,

M1(G) =
∑

vi∈V (G)

di
2, M2(G) =

∑

vivj∈V (G)

didj .

The Zagreb co-indices have been introduced by Doslic [6],

M1(G) =
∑

vivj /∈E(G)

(d2
i + dj

2), M2(G) =
∑

vivj /∈E(G)

(didj).

Similarly Zagreb eccentricity indices are defined as

E1(G) =
∑

vi∈V (G)

ei
2, E2(G) =

∑

vivj∈V (G)

eiej .

Estrada et al. defined atom bond connectivity index [7-10]

ABC(G) =
∑

vivj∈E(G)

√
1

di
+

1

dj
− 2

didj

and Graovac defined second ABC index as

ABC2(G) =
∑

vivj∈E(G)

√
1

ni
+

1

nj
− 2

ninj
,

which was given by replacing di, dj to ni, nj where ni is the number of vertices of G whose

distance to the vertex vi is smaller than the distance to the vertex vj [11-14].

Dae and Wan Lee defined the third ABC index [16]

ABC3(G) =
∑

vivj∈E(G)

√
1

ei
+

1

ej
− 2

eiej
.

In this paper, we have defined the third ABC co - index; ABC3(G) as

ABC3(G) =
∑

vivj /∈E(G)

√
1

ei
+

1

ej
− 2

eiej

found some lower and upper bounds on ABC3(G).

§2. Lower and Upper Bounds on ABC3(G) Index

Calculation shows clearly that

(i) ABC3(Kn) = 0;

(ii) ABC3(K1,n−1) =
1

2

(
n

2

)
;
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(iii) ABC3(C2n) = 2(n− 3)
√

n− 2;

(iv) ABC3(C2n+1) = n(n− 3)

√
4n− 12

(n− 1)2 .

Theorem 2.1 Let G be a simple connected graph. Then ABC3(G) ≥ 1√
E2(G)

, where E2(G) is

the second zagreb eccentricity coindex.

Proof Since G ≇ Kn, it is easy to see that for every e = vivj in E(G), ei + ej ≥ 3. By the

definition of ABC3 coindex

ABC3(G) =
∑

vivj /∈E(G)

√
1

ei
+

1

ej
− 2

eiej

≥
∑

vivj /∈E(G)

1
√

eiej
≥ 1√ ∑

vivj /∈E(G)
eiej

=
1√

E2(G)
. 2

Theorem 2.2 Let G be a connected graph with m edges, radius r = r(G) ≥ 2, diameter

d = d(G). Then, √
2m

d

√
d− 1 ≤ ABC3(G) ≤

√
2m

r

√
r − 1

with equality holds if and only if G is self-centered graph.

Proof For 2 ≤ r ≤ ei, ej ≤ d,

1

ei
+

1

ej
− 2

eiej
≥ 1

ei
+

1

ej
(1− 2

ej
) (as ej ≤ d, 1− 2

ei
≥ 0 =

1

d
+

1

ej
(1− 2

d
))

≥ 1

d
+

1

d
(1 − 2

d
) (as ei ≤ d and (1− 2

d
) ≥ 0)

≥ 1

d
+

1

d
− 2

d2

≥ 2

d
− 2

d2 ≥
2

d2 (d− 1)

with equality holds if and only if ei = ej = d.

Similarly we can easily show that,

1

ei
+

1

ej
− 2

eiej
≤ 2

r2 (r − 1)

for 2 ≤ r ≤ ei, ej ≤ d with equality holding if and only if ei = ej = r. 2
The following lemma can be verified easily.

Lemma 2.1 Let (a1, a2, · · · , an) be a positive n-tuple such that there exist positive numbers
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A, a satisfying 0 < a ≤ ai ≤ A. Then,

n
n∑

i=1
ai

2

(
n∑

i=1
ai)2

≤ 1

4
(
√

A�a +
√

a�A)2

with equality holds if and only if a = A or q =
A�a

(A�a) + 1
n is an integer and q of numbers ai

coincide with a and the remaining n− q of the a′
is coincide with A(6= a).

Theorem 2.3 Let G be a simple connected graph with m edges, r = r(G) ≥ 2, d = d(G).

Then,

ABC3(G) =

√√√√ 4m
√

(r − 1)(d− 1)

rd(1
r

√
r − 1 + 1

d

√
d− 1)2E2(G)

.

Proof By Theorem 2.2 we know that

√
2

d

√
d− 1 ≤

√
1

ei
+

1

ej
− 2

eiej
≤
√

2

r

√
r − 1, vivj /∈ E(G). (2.1)

Also by Lemma 2.3 we have

a ≤ ai ≤ A. (2.2)

Let

a =

√
2

d

√
d− 1 and ai =

√
1

ei
+

1

ej
− 2

eiej
, vivj /∈ E(G)

and

A =

√
2

r

√
r − 1.

in equations (2.1) and (2.2). We therefore know that

n
n∑

i=1
ai

2

(
∑

ai)
2 ≤

1

4

(√
A

a
+

√
a

A

)2

,

i.e.,

(
∑

ai)
2

n
∑

a2
i

≥ 4
1

(√
A
a +

√
a
A

)2 ,

which implies that

(∑
ai

)2
≥ 4n

∑
a2

i(√
A
a +

√
a
A

)2 ≥
4n
∑

a2
i[√

A√
a

+
√

a√
A

]2 ≥
4n
∑

a2
i[

A+a√
an

]2 ≥
4n
∑

a2
i aA

[A + a]2
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and




∑

vivj∈E(G)

√
1

ei
+

1

ej
− 2

eiej




2

≥ 4n
√

2
d

√
d− 1

√
2

r

√
r − 1

[√
2

r

√
r − 1 +

√
2

d

√
r − 1

]2

∑

vivj /∈E(G)

(
1

ei
+

1

ej
− 2

eiej

)

≥
8n
rd

√
d− 1

√
r − 1

2
r

[√
r−1
r +

√
d−1
d

]2

∑

vivj /∈E(G)

(
1

ei
+

1

ej
− 2

eiej

)
.

Therefore

8n
√

(r − 1)(d− 1)

rd
[√

r−1
r +

√
d−1
d

]2

∑(
1

ei
+

1

ej
− 2

eiej

)
=

8n
rd

√
(r − 1)(d− 1)

2
r

[√
r−1
r +

√
d−1
d

]2

∑

vivj

(
1

ei
+

1

ej
− 2

eiej

)
.

We know that ∑

vivj /∈E(G)

(
1

ei
+

1

ej
− 2

eiej

)
≥ 1

E2(G)

from Theorem 2.1. Thus,

∑

vivj /∈E(G)




√

1

ei
+

1

ej
− 2

eiej

2

 ≥ 4m×
√

(r − 1)(d− 1)

rd
( 1

r

√
r − 1 + 1

d

√
d− 1

)E2(G),

∑

vivj /∈E(G)

√(
1

ei
+

1

ej
− 2

eiej

)
≥
√√√√ 4m

√
(r − 1)(d− 1)

rd
(

1
r

√
r − 1 + 1

d
√

d−1

)
E2(G)

. 2
Theorem 2.4 Let G be a simple connected graph with n vertices and m edges. Then,

1√
n2m− nM1(G) + M2(G)

≤ ABC3(G) ≤ 1√
2

√
2nm2 − nM1(G)− 2m2.

Proof From Theorem 2.1,

∑

vivj /∈E(G)

√
1

ei
+

1

ej
− 2

eiej
≥ 1√ ∑

vivj /∈E(G)
eiej

.

Since ei ≤ (n− di), we know that

1√ ∑
vivj /∈E(G)

eiej

≥ 1√∑
(n− di)(n− dj)

=
1√∑

(n2 − ndi − ndj + didj)

=
1√

mn2 − nM1(G) + M2(G)
.

This completes the lower bound.
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Now, since G ≇ Kn, eiej ≥ 2 for vivj /∈ E(G), we get that

∑

vivj /∈E(G)

√
1

ei
+

1

ej
− 2

eiej
≤ 1√

2

∑

vivj /∈E(G)

√
ei + ej − 2.

By Cachy-Schwarz inequality, we also know that

1√
2

∑

vivj /∈E(G)

√
ei + ej − 2 ≤ 1√

2

√ ∑

vivj /∈E(G)

1
∑

vivj /∈E(G)

(ei + ej − 2).

Since ei ≤ n− di for vi ∈ V (G), we get that

1√
2

√ ∑

vivj /∈E(G)

1
∑

vivj /∈E(G)

(ei + ej − 2)

≤ 1√
2

√
m

∑

vivj /∈E(G)

(n− di + n− dj − 2)

≤ 1√
2

√√√√√m




∑

vivj /∈E(G)

2n−
∑

vivj /∈E(G)

(di + dj)− 2
∑

vivj /∈E(G)

1





=
1√
2

√
m
[
2nm−M1(G)− 2m

]

=
1√
2

√
2m2n−mM1(G) − 2m2. 2
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Abstract: The k-distance degree index (Nk-index) of a graph G have been introduced in

[11], and is defined as Nk(G) =
∑diam(G)

k=1

(∑
v∈V (G) dk(v)

)
· k, where dk(v) = |Nk(v)| =

|{u ∈ V (G) : d(v, u) = k}| is the k-distance degree of a vertex v in G, d(u, v) is the distance
between vertices u and v in G and diam(G) is the diameter of G. In this paper, we extend

the study of Nk-index of a graph for other graph operations. Exact formulas of the Nk-index
for corona G ◦ H and neighborhood corona G ⋆ H products of connected graphs G and H

are presented. An explicit formula for the splitting graph S(G) of a graph G is computed.
Also, the Nk-index formula of the join G + H of two graphs G and H is presented. Finally,

we generalize the Nk-index formula of the join for more than two graphs.

Key Words: Vertex degrees, distance in graphs, k-distance degree, Smarandachely k-
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§1. Introduction

In this paper, we consider only simple graph G = (V, E), i.e., finite, having no loops no multiple

and directed edges. A graph G is said to be connected if there is a path between every pair of its

vertices. As usual, we denote by n = |V | and m = |E| to the number of vertices and edges in a

graph G, respectively. The distance d(u, v) between any two vertices u and v of G is the length

of a minimum path connecting them. For a vertex v ∈ V and a positive integer k, the open k-

distance neighborhood of v in a graph G is Nk(v/G) = {u ∈ V (G) : d(u, v) = k} and the closed

k-neighborhood of v is Nk[v/G] = Nk(v)∪{v}. The k-distance degree of a vertex v in G, denoted

by dk(v/G) (or simply dk(v) if no misunderstanding) is defined as dk(v/G) = |Nk(v/G)|, and

generally, a Smarandachely k-distance degree dk(v/G : S) of v on vertex set S ⊂ V (G) is

dk(v/G) = |Nk(v/G : S)|, where Nk(v/G : S) = {u ∈ V (G)\S : d(u, v) = k}. Clearly,

dk(v/G : ∅) = dk(v/G) and d1(v/G) = d(v/G) for every v ∈ V (G). A vertex of degree equals

to zero in G is called an isolated vertex and a vertex of degree one is called a pendant vertex.

The graph with just one vertex is referred to as trivial graph and denoted K1. The complement

1Received January 10, 2017, Accepted, November 23, 2017.
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G of a graph G is a graph with vertex set V (G) and two vertices of G are adjacent if and

only if they are not adjacent in G. A totally disconnected graph Kn is one in which no two

vertices are adjacent (that is, one whose edge set is empty). If a graph G consists of s ≥ 2

disjoint copies of a graph H , then we write G = sH . For a vertex v of G, the eccentricity

e(v) = max{d(v, u) : u ∈ V (G)}. The radius of G is rad(G) = min{e(v) : v ∈ V (G)} and

the diameter of G is diam(G) = max{e(v) : v ∈ V (G)}. For any terminology or notation not

mention here, we refer the reader to the books [3, 5].

A topological index of a graph G is a numerical parameter mathematically derived from

the graph structure. It is a graph invariant thus it does not depend on the labeling or pictorial

representation of the graph and it is the graph invariant number calculated from a graph repre-

senting a molecule. The topological indices of molecular graphs are widely used for establishing

correlations between the structure of a molecular compound and its physic-chemical proper-

ties or biological activity. The topological indices which are definable by a distance function

d(., .) are called a distance-based topological index. All distance-based topological indices can

be derived from the distance matrix or some closely related distance-based matrix, for more

information on this matter see [2] and a survey paper [20] and the references therein.

There are many examples of such indices, especially those based on distances, which are

applicable in chemistry and computer science. The Wiener index (1947), defined as

W (G) =
∑

{u,v}⊆V (G)

d(u, v)

is the first and most studied of the distance based topological indices [19]. The hyper-Wiener

index,

W W (G) =
1

2

∑

{u,v}⊆V

(d(u, v) + d2(u, v))

was introduced in (1993) by M. Randic [14]. The Harrary index

H(G) =
∑

{u,v}⊆V

1

d2(u, v)

was introduced in (1992) by Mihalic et al. [10]. In spite of this, the Harary index is nowadays

defined [8, 12] as

H(G) =
∑

{u,v}⊆V

1

d(u, v)
.

The Schultz index

S(G) =
∑

{u,v}⊆V

(d(u) + d(v))d(u, v)

was introduced in (1989) by H. P. Schultz [16]. A. Dobrynin et al. in (1994) also proposed the

Schultz index and called it the degree distance index and denoted DD(G) [1]. S. Klavzar and
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I Gutman, motivated by Schultz index, introduced in (1997) the second kind of Schultz index

S∗(G) =
∑

{u,v}⊆V

d(u)d(v)d(u, v)

called modified Schultz (or Gutman) index of G [9]. The eccentric connectivity index

ξc =
∑

v∈V

d(v)e(v)

was proposed by Sharma et al. [17]. For more details and examples of distance-based topological

indices, we refer the reader to [2, 20, 13, 6] and the references therein.

Recently, The authors in [11], have been introduced a new type of graph topological index,

based on distance and degree, called k-distance degree of a graph, for positive integer number

k ≥ 1. Which, for simplicity of notion, referred as Nk-index, denoted by Nk(G) and defined by

Nk(G) =

diam(G)∑

k=1




∑

v∈V (G)

dk(v)



 · k

where dk(v) = dk(v/G) and diam(G) is the diameter of G. They have obtained some basic

properties and bounds for Nk-index of graphs and they have presented the exact formulas for

the Nk-index of some well-known graphs. They also established the Nk-index formula for a

cartesian product of two graphs and generalize this formula for more than two graphs. The k-

distance degree index, Nk(G), of a graph G is the first derivative of the k-distance neighborhood

polynomial, Nk(G, x), of a graph evaluated at x = 1,see ([18]).

The following are some fundamental results which will be required for many of our argu-

ments in this paper and which are finding in [11].

Lemma 1.1 For n ≥ 1, Nk(Kn) = Nk(K1) = 0.

Theorem 1.2 For any connected graph G of order n with size m and diam(G) = 2, Nk(G) =

2n(n− 1)− 2m.

Theorem 1.3 For any connected nontrivial graph G, Nk(G) is an even integer number.

In this paper, we extend our study of Nk-index of a graph for other graph operations.

Namely, exact formulas of the Nk-index for corona G ◦ H and neighborhood corona G ⋆ H

products of connected graphs G and H are presented. An explicit formula for the splitting

graph S(G) of a graph G is computed. Also, the Nk-index formula of the join G + H of two

graphs G and H is presented. Finally, we generalize the Nk-index formula of the join for more

than two graphs.

§2. The Nk-Index of Corona Product of Graphs

The corona of two graphs was first introduced by Frucht and Harary in [4].
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Definition 2.1 Let G and H be two graphs on disjoint sets of n1 and n2 vertices, respectively.

The corona G ◦H of G and H is defined as the graph obtained by taking one copy of G and n1

copies of H, and then joining the ith vertex of G to every vertex in the ith copy of H.

It is clear from the definition of G ◦H that

n = |V (G ◦H)| = n1 + n1n2,

m = |E(G ◦H)| = m1 + n1(n2 + m2)

and

diam(G ◦H) = diam(G) + 2,

where m1 and m2 are the sizes of G and H , respectively. In the following results, Hj , for

1 ≤ j ≤ n1, denotes the copy of a graph H which joining to a vertex vj of a graph G,i.e.,

Hj = {vj} ◦H , D = diam(G) and dk(v/G) denotes the degree of a vertex v in a graph G. Note

that in general this operation is not commutative.

Theorem 2.2 Let G and H be connected graphs of orders n1 and n2 and sizes m1 and m2,

respectively. Then

Nk(G ◦H) =
(
1 + 2n2 + n2

2
)

Nk(G) + 2n1n2 (n1 + n1n2 − 1)− 2n1m2.

Proof Let G and H be connected graphs of orders n1 and n2 and sizes m1 and m2,

respectively and let D = diam(G), n = |V (G◦H)| and m = |E(G◦H)|. Then by the definition

of G ◦H and for every 1 ≤ k ≤ diam(G ◦H), we have the following cases.

Case 1. For every v ∈ V (G),

dk(v/G ◦H) = dk(v/G) + n2dk−1(v/G).

Case 2. For every u ∈ Hj, 1 ≤ j ≤ n1,

• d1(u/G ◦Hj) = 1 + d1(u/H);

• d2(u/G ◦Hj) = d1(vj/G) + (n2 − 1)− d1(u/H);

• dk(u/G ◦Hj) = dk−1(vj/G) + n2dk−2(vj/G), for every 3 ≤ k ≤ D + 2.

Since for every v ∈ V (G ◦ H) either v ∈ V (G) or v ∈ V (Hj), for some 1 ≤ j ≤ n1, it

follows that for 1 ≤ k ≤ diam(G ◦H),

∑

v∈V (G◦H)

dk(v/G ◦H) =
∑

v∈V (G)

dk(v/G ◦H) +

n1∑

j=1

∑

u∈V (Hj )

dk(u/G ◦Hj).
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Hence, by using the hypothesis above

Nk(G ◦H) =

diam(G◦H)∑

k=1

[
∑

v∈V (G◦H)

dk(v/G ◦H)

]
k

=

D+2∑

k=1

[
∑

v∈V (G)

dk(v/G ◦H) +

n1∑

j=1

∑

u∈V (Hj )

dk(u/G ◦Hj)

]
k

=

D+2∑

k=1

[
∑

v∈V (G)

(
dk(v/G) + n2dk−1(v/G)

)]
.k +

D+2∑

k=1

[
n1∑

j=1

∑

u∈V (Hj )

dk(u/G ◦Hj)

]
k

=
D+2∑

k=1

( ∑

v∈V (G)

dk(v/G)
)

.k + n2

D+2∑

k=1

( ∑

v∈V (G)

dk−1(v/G)
)

k

+

n1∑

j=1

∑

u∈V (Hj )

(
1 + d1(u/Hj)

)
+

n1∑

j=1

∑

u∈V (Hj)

(
d1(vj/G) + (n2 − 1)− d(u/Hj)

)
2

+

D+2∑

k=3

[
n1∑

j=1

∑

u∈V (Hj)

(
dk−1(vj/G) + n2dk−2(vj/G)

)]
k

Set x = x1 + x2, where

x1 =

D+2∑

k=1

( ∑

v∈V (G)

dk(v/G)
)

k

=

D∑

k=1

( ∑

v∈V (G)

dk(v/G)
)

k +
( ∑

v∈V (G)

dD+1(v/G)
)
(D + 1) +

( ∑

v∈V (G)

dD+2(v/G)
)
(D + 2)

=

D∑

k=1

( ∑

v∈V (G)

dk(v/G)
)

k + 0 + 0 = Nk(G).

x2 = n2

D+2∑

k=1

( ∑

v∈V (G)

dk−1(v/G)
)

k

= n2

[
(
∑

v∈V (G)

d0(v/G))1 + (
∑

v∈V (G)

d1(v/G)).2 + · · ·+ (
∑

v∈V (G)

dD(v/G))(D + 1)

+ (
∑

v∈V (G)

dD+1(v/G))(D + 2)

]
= n2

[
n1 +

D∑

k=1

(
∑

v∈V (G)

dk(v/G))(k + 1) + 0

]

= n2

[
n1 +

D∑

k=1

(
∑

v∈V (G)

dk(v/G))k +
D∑

k=1

(
∑

v∈V (G)

dk(v/G))1

]

= n2

[
n1 + Nk(G) + n1(n1 − 1)

]
.
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Thus, x = (1 + n2)Nk(G) + n2
1n2. Also, set y = y1 + y2 + y3, where

y1 =

n1∑

j=1

∑

u∈V (Hj )

(1 + d1(u/H))1 = n1n2 + 2n1m2,

y2 =

n1∑

j=1

∑

u∈V (Hj )

(d1(vj/G) + (n2 − 1)− d1(u/H))2 = 2(2m1n2 + n1n2(n2 − 1)− 2n1m2)

and

y3 =

D+2∑

k=3

[
n1∑

j=1

∑

u∈V (Hj )

(
dk−1(vj/G) + n2dk−2(vj/G)

)]
k

=
D+2∑

k=3

[
n1∑

j=1

∑

u∈V (Hj )

(
dk−1(vj/G)

)]
k + n2

D+2∑

k=3

[
n1∑

j=1

∑

u∈V (Hj)

(
dk−2(vj/G)

)]
k

= n2

[
D+2∑

k=3

( n1∑

j=1

(dk−1(vj/G)
)

k

]
+ n2

2

[
D+2∑

k=3

( n1∑

j=1

(dk−2(vj/G)
)

k

]
.

Now set y3 = y′
3 + y′′

3 , where

y′
3 = n2

[
D+2∑

k=3

(

n1∑

j=1

(dk−1(vj/G))

]
.k

= n2

[
(
∑

v∈V (G)

d2(v/G))3 + (
∑

v∈V (G)

d2(v/G))4 + · · ·+ (
∑

v∈V (G)

dD(v/G))(D + 1) + 0

]

= n2

[
D∑

k=1

(
∑

v∈V (G)

dk(v/G))(k + 1)− (
∑

v∈V (G)

d1(v/G))2

]

= n2

[
D∑

k=1

(
∑

v∈V (G)

dk(v/G))k +
D∑

k=1

(
∑

v∈V (G)

dk(v/G))1− (
∑

v∈V (G)

d1(v/G))2

]

= n2Nk(G) + n1n2(n1 − 1)− 4m1n2,

and similarly

y′′
3 = n2

2

[
D+2∑

k=3

( n1∑

j=1

(dk−2(vj/G)
)

k

]
= n2

2

[
D∑

k=1

(
∑

v∈V (G)

dk(v/G))(k + 2)

]

= n2
2Nk(G) + 2n1n2

2(n1 − 1).

Thus, y3 = (n2
2 + n2)Nk(G) + n1n2(n1 − 1)− 4m1n2 + 2n1n2

2(n1 − 1).

Accordingly,

y = (n2
2 + n2)Nk(G) + 2n2

1n2
2 + n2

1n2 − 2n1n2 − 2n1m2
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and

Nk(G ◦H) = x + y.

Therefore,

Nk(G ◦H) = (1 + 2n2 + n2
2)Nk(G) + 2n1n2(n1n2 + n1 − 1)− 2n1m2. 2

Corollary 2.3 Let G be a connected graph of order n ≥ 2 and size m ≥ 1. Then

(1) Nk(K1 ◦G) = 2(n2 −m);

(2) Nk(G ◦K1) = 4Nk(G) + 2n(2n− 1);

(3) Nk(G◦Kp) = (1+2p+p2)Nk(G)+2pn(pn+n−1), where Kp is a totally disconnected

graph with p ≥ 2 vertices.

§3. The Nk-Index of Neighborhood Corona Product of Graphs

The neighborhood corona was introduced in [7].

Definition 3.1 Let G and H be connected graphs of orders n1 and n2, respectively. Then the

neighborhood corona of G and H, denoted by G ⋆ H, is the graph obtained by taking one copy

of G and n1 copies of H, and joining every neighbor of the ith vertex of G to every vertex in

the ith copy of H.

It is clear from the definition of G ◦H that

• In general G ⋆ H is not commutative.

• When H = K1, G ⋆ H = S(G) is the splitting graph defined in [?].

• When G = K1, G ⋆ H = G ∪H .

• n = |V (G ⋆ H)| = n1 + n1n2

• diam(G ⋆ H) =





3, if diam(G) ≤ 3;

diam(G), if diam(G) ≥ 3;

In the following results, Hj , for 1 ≤ j ≤ n1, denotes the jth copy of a graph H which corre-

sponding to a vertex vj of a graph G, i.e., Hj = {vj} ⋆ H , D = diam(G) and dk(v/G) denotes

the degree of a vertex v in a graph G.

Theorem 3.2 Let G and H be connected graphs of orders and sizes n1, n2, m1 and m2 respec-

tively such that diam(G) ≥ 3. Then

Nk(G ⋆ H) = (1 + 2n2 + n2
2)Nk(G) + 2n2

2(n1 + m1) + 2n1(n2 −m2).
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Proof Let G and H be connected graphs of orders and sizes n1, m1, n2 and m2 respectively

and let {v1, v2, · · · , vn1} and {u1, u2, · · · , un2} be the vertex sets of G and H respectively. Then

for every w|inv(G ⋆ H) either w = v ∈ V (G) or w = u ∈ V (H). Since, for every v ∈ V (G),

|N1(v/G ⋆ H)| = |N1(v/G)|+ |V (H)||N1(v/G)|
d1(v/G ⋆ H) = d1(v/G) + n2d1(v/G)

= (1 + n2)d1(v/G)

and for every u ∈ V (Hj), 1 ≤ j ≤ n1

|N1(u/G ⋆ Hj)| = |N1(u/H)|+ |N1(vj/G)|,
d1(u/G ⋆ Hj) = d1(u/H) + d1(vj/G).

Thus, for ever w ∈ V (G ⋆ H)

∑

w∈V (G⋆H)

d1(w/G ⋆ H) =
∑

v∈V (G)

d1(v/G ⋆ H) +

n1∑

j=1

∑

u∈V (Hj )

d1(u/G ⋆ Hj)

=
∑

v∈V (G)

(1 + n2)d1(v/G) +

n1∑

j=1

∑

u∈V (Hj )

(d1(u/Hj) + d1(vj/G))

= (1 + n2)
∑

v∈V (G)

d1(v/G) +

n1∑

j=1

2m2 + n2

n1∑

i=1

d1(vj/G)

= (1 + 2n2)
∑

v∈V (G)

d1(v/G) + 2n− 1m2.

Similarly, we obtain

|N2(vj/G ⋆ H)| = |N2(vj/G)|+ |V (Hj)|+ |V (Hj)||N2(vj/G)|,
d2(vj/G ⋆ H) = d2(vj/G) + n2 + n2d2(v/G)

= (1 + n2)d2(v/G) + n2

for every vj ∈ V (G), 1 ≤ j ≤ n1, and

|N2(u/G ⋆ Hj)| = (|V (Hj)| − 1)− |N1(u/Hj)|+ |{vj}|
+|V (Hj)||N2(vj/G)|+ |N2(vj/G)|

d2(u/G ⋆ Hj) = (n2 − 1)− d1(u/H) + 1 + n2d2(vj/G) + d2(v/G)

= n2 + d1(u/H) + (1 + n2)d2(vj/G)
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for every u ∈ Hj , 1 ≤ j ≤ n1. Thus, for ever w ∈ V (G ⋆ H),

∑

w∈V (G⋆H)

d2(w/G ⋆ H) =
∑

v∈V (G)

d2(v/G ⋆ H) +

n1∑

j=1

∑

u∈V (Hj )

d2(u/G ⋆ Hj)

=
∑

v∈V (G)

[
(1 + n2)d1(v/G) + n2

]

+

n1∑

j=1

∑

u∈V (Hj )

[
n2 + d1(u/H) + (1 + n2)d1(vj/G)

]

= (1 + n2 + n2
2)

∑

v∈V (G)

d2(v/G) + n1n2
2 + n1n2 − 2n1m2.

Also, for every v ∈ V (G), d3(v/G ⋆ H) = (1 + n2)d3(v/G) and for every u ∈ V (Hj),

d3(u/G ⋆ Hj) = n2d1(vj/G) + (1 + n2)d3(vj/G).

Hence, For every w ∈ V (G ⋆ H),

d3(w/G ⋆ H) = (1 + n2 + n2
2)

∑

v∈V (G)

d3(v/G)

+n2
2

∑

v∈V (G)

d1(v/G).

By continue in same process we get, for every 4 ≤ k ≤ diam(G ⋆ H), that is, for every

v ∈ V (G),

dk(v/G ⋆ H) = (1 + n2)dk(v/G)

and for every u ∈ V (Hj),

dk(u/G ⋆ Hj) = (1 + n + 2)dk(vj/G),

and hence for every w ∈ V (G ⋆ H),

dk(w/G ⋆ H) = (1 + 2n2 + n2
2)dk(v/G).

Accordingly,

Nk(G ⋆ H) =

D∑

k=1

(
∑

w∈V (G⋆H)

dk(w/G ⋆ H)) k

=
∑

w∈V (G⋆H)

d1(w/G ⋆ H))1 +
∑

w∈V (G⋆H)

d2(w/G ⋆ H))2 + · · ·

+
∑

w∈V (G⋆H)

dD(w/G ⋆ H)) D
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=
[
(1 + 2n2)

∑

v∈V (G)

d1(v/G) + 2n1m2

]
1

+
[
(1 + 2n2 + n2

2)
∑

v∈V (G)

d2(v/G) + n1n2
2 + n1n2

− 2n1m2

]
2 +

[
(1 + 2n2 + n2

2)
∑

v∈V (G)

d3(v/G) + n2
2

∑

v∈V (G)

d1(v/G)
]

3

+
[
(1 + 2n2 + n2

2)
∑

v∈V (G)

d4(v/G)
]

4 + · · ·+
[
(1 + 2n2 + n2

2)
∑

v∈V (G)

dD(v/G)
]

D

= (1 + 2n2 + n2
2)
[ ∑

v∈V (G)

d1(v/G) 1 +
∑

v∈V (G)

d2(v/G) 2 + · · ·+
∑

v∈V (G)

dD(v/G) D
]

+
[
(−n2

2

∑

v∈V (G)

d1(v/G) + 2n1m2) 1 + (n1n2
2 + n1n2 − 2n1m2) 2

+ (n2
2

∑

v∈V (G)

d1(v/G)) 3

= (1 + 2n2 + n2
2)Nk(G) + 2n2

2(n1 + m1) + 2n1(n2 −m2). 2
Corollary 3.3 Let G be a connected graph of order n ≥ 2 and size m and let S(G) be the

splitting graph of G. Then

Nk(S(G)) = 4Nk(G) + 2(2n + m).

§4. The Nk-Index of Join of Graphs

Definition 4.1([5]) Let G1 and G2 be two graphs with disjoint vertex sets V (G1) and V (G2)

and edge sets E(G1) and E(G2). Then the join G1 + G2 of G1 and G2 is the graph with vertex

set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2) ∪ {uv|u ∈ V (G1)&v ∈ V (G2)}.

Definition 4.2 It is clear that, G1 + G2 is a connected graph, n = |V (G1 + G2)| = |V (G1)|+
|V (G2)|, m = |E(G1 + G2)| = |V (G1)||V (G2)| + |E(G1)| + |E(G2)| and diam(G1 + G2) ≤ 2.

Furthermore, diam(G1 + G2) = 1 if and only if G1 and G2 are complete graphs. We denote by

dk(v/G) to the k-distance degree of a vertex v in a graph G.

Theorem 4.2 Let G and H be connected graphs of order n1 and n2 and size m1 and m2,

respectively. Then

Nk(G + H) = 4

(
n1 + n2

2

)
− 2(n1n2 + m1 + m2).

Proof The proof is an immediately consequences of Theorem 1.2. 2
Since, For any connected graph G, G+K1 = K1 +G = K1 ◦G then the next result follows
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Corollary 2.3.

Corollary 4.3 For any connected graph G with n vertices and m edges,

Nk(G + K1) = 2(n2 −m).

The join of more than two graphs is defined inductively as following,

G1 + G2 + · · ·+ Gt = (G1 + G2 + · · ·+ Gt−1) + Gt

for some positive integer number t ≥ 2. We denote by
∑t

i=1 Gi to G1 + G2 + · · · + Gt. It is

clear for this definition that

• n = |V (
∑t

i=1 Gi)| =
∑t

i=1 |V (Gi)|.

• m = |E(
∑t

i=1 Gi)| =
∑t

i=1 |E(Gi)|+
∑t

i=2 |V (Gi)|
(∑i−1

j=1 |V (Gj)|
)
.

• diam(
∑t

i=1 Gi) ≤ 2.

Accordingly, we can generalize Theorem 4.2 by using Theorem 1.2 as following.

Theorem 4.4 For some positive integer number t ≥ 2, let G1, G2, · · · , Gt be connected graphs

of orders n1, n2, · · · , nt and sizes m1, m2, · · · , mt, respectively. Then

Nk(

t∑

i=1

Gi) = 4

(∑t
i=1 ni

2

)
− 2

[
t∑

i=1

mi +

t∑

i=2

ni

( i−1∑

j=1

nj

)]
.
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§1. Introduction

Let G be a connected graph with a vertex set V (G) = {v1, v2, · · · , vn} and edge set E(G) =

{e1, e2, · · · , em}, where |V (G)| = n and |E(G)| = m. The degree of a vertex v in G is the

number of edges incident to it and denoted by degG(v). If degG(v) = 1, then v is called a

pendent vertex or a terminal vertex. The distance between the vertices vi and vj in G is equal

to the length of the shortest path joining them and is denoted by d(vi, vj |G).

The Wiener index W = W (G) of a graph G is defined as the sum of the distances between

all pairs of vertices of G, that is

W = W (G) =
∑

1≤i<j≤n

d(ui, vj |G).

This molecular structure descriptor was put forward by Harold Wiener [29] in 1947. Details

on its chemical applications and mathematical properties can be found in [5, 12, 21, 28].

The Hosoya polynomial of a graph was introduced in Hosoya’s seminal paper [16] in 1988

and received a lot of attention afterwards. The polynomial was later independently introduced

and considered by Sagan et al. [22] under the name Wiener polynomial of a graph. Both

names are still used for the polynomial but the term Hosoya polynomial is nowadays used by

the majority of researchers. The main advantage of the Hosoya polynomial is that it contains a

wealth of information about distance based graph invariants. For instance, knowing the Hosoya

polynomial of a graph, it is straight forward to determine the Wiener index of a graph as the

first derivative of the polynomial at the point λ = 1. Cash [2] noticed that the hyper-Wiener

1Received December 8, 2016, Accepted November 21, 2017.
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index can be obtained from the Hosoya polynomial in a similar simple manner.

Estrada et al. [6] studied the chemical applications of Hosoya polynomial. The Hosoya

polynomial of a graph is a distance based polynomial introduced by Hosoya [15] in 1988 under

the name Wiener polynomial. However today it is called the Hosoya polynomial [8, 11, 17, 18,

23, 27]. For a connected graph G, the Hosoya polynomial denoted by H(G, λ) is defined as

H(G, λ) =
∑

k≥1

d(G, k)λk =
∑

1≤i<j≤n

λd(vi,vj |G). (1.1)

where d(G, k) is the number of pairs of vertices of G that are at distance k and λ is the

parameter.

The Hosoya polynomial has been obtained for trees, composite graphs, benzenoid graphs,

tori, zig-zag open-ended nano-tubes, certain graph decorations, armchair open-ended nan-

otubes, zigzag polyhex nanotorus, nanotubes, pentachains, polyphenyl chains, the circum-

coronene series, Fibonacci and Lucas cubes, Hanoi graphs, and so forth. These can be found

in [4].

Recently the terminal Wiener index T W (G) was put forward by Gutman et al. [10]. The

terminal Wiener index T W (G) of a connected graph G is defined as the sum of the distances

between all pairs of its pendant vertices. Thus if VT (G) = v1, v2, . . . , vk is the number of

pendant vertices of G, then

T W (G) =
∑

1≤i<j≤k

d(vi, vj |G).

The recent work on terminal Wiener index can be found in [3, 9, 14, 20, 24]. In analogy

of (1.1), the terminal Hosoya polynomial T H(G, λ) was put forward by Narayankar et al. [19]

and is defined as follows: if v1, v2, . . . , vk are the pendant vertices of G, then

T H(G, λ) =
∑

k≥1

dT (G, k)λk =
∑

1≤i<j≤n

λd(vi,vj |G),

where dT (G, k) is the number of pairs of pendant vertices of the graph G that are at distance

k. It is easy to check that

T W (G) =
d

dλ
(T H(G, λ))|λ=1.

In [19], the terminal Hosoya polynomial of thorn graph is obtained. In this paper we

generalize the results obtained in [19].

§2. Terminal Hosoya Polynomial of Thorn Graphs

Definition 2.1 Let G be a connected n-vertex graph with vertex set V (G) = {v1, v2, · · · , vn}.
The thorn graph GP = G(p1, p2, · · · , pn : k) is the graph obtained by attaching pi paths of length

k to the vertex vi for i = 1, 2, · · · , n of a graph G. The pi paths of length k attached to the

vertex vi will be called the thorns of vi.
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A thorn graph Gp = G(2, 1, 3, 2 : 3) obtained from G by attaching paths of length 3 is

shown in Fig.1. Notice that the concept of thorny graph was introduced by Gutman [7] and

eventually found a variety of applications [1, 25, 26, 27].

Theorem 2.2 For a thorn graph GP = G(p1, p2, . . . , pn : k), the terminal Hosoya polynomial

is

T H(GP , λ) =
n∑

i=1

(
pi

2

)
λ2k +

∑

1≤i<j≤n

pipjλ2k+d(vi,vj |G). (2.1)

Proof Consider pi path of length k attached to a vertex vi, i = 1, 2, · · · , n. Each of these

are at distance 2k. Thus for each vi, there are
(
pi
2

)
pairs of vertices which are distance 2k. This

leads to the first term of (2.1).

For the second term of (2.1), consider pi thorns vi
1, vi

2, · · · , vi
pi

attached to the vertex vi

and pj thorns vj
1, vj

2, · · · , vj
pj

attached to the vertex vj of G, i 6= j. In GP ,

d(vi
m, vj

l |GP ) = 2k + d(v,vj |G), m = 1, 2, · · · , pi and l = 1, 2, · · · , pj.

Since there are pi × pj pairs of paths of length k of such kind, their contribution to

T H(GP , λ) is equal to pipjλ2k+d(vi,vj |G), i 6= j. This leads to the second term of (2.1). 2
Corollary 2.3 Let G be a connected graph with n vertices. If pi = p > 0, i = 1, 2, · · · , n. Then

T H(GP , λ) =
np(p− 1)

2
λ2k + p2λ2k

∑

1≤i<j≤n

λd(v,vj |G). (2.2)

Corollary 2.4 Let G be a complete graph on n vertices. If pi = p > 0, i = 1, 2, · · · , n. Then

T H(GP , λ) =
np(p− 1)

2
λ2k +

p2n(n− 1)

2
λ2k+1.

Proof If G is a complete graph then d(v,vj |G) = 1 for all vi, vj ∈ V (G), i 6= j. Therefore
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from (2.2)

T H(GP , λ) =
np(p− 1)

2
λ2k + p2λ2k

∑

1≤i<j≤n

λ

=
np(p− 1)

2
λ2k +

p2n(n− 1)

2
λ2k+1.

This completes the proof. 2
Corollary 2.5 Let G be a connected graph with n vertices and m edges. If diam(G) ≤ 2 and

pi = p > 0, i = 1, 2, . . . , n. Then

T H(GP , λ) =
np(p− 1)

2
λ2k + p2λ2k+1m +

(
n(n− 1)

2
−m

)
p2λ2k+2.

Proof Since diam(G) ≤ 2, there are m pairs of vertices at distance 1 and
(
n
2

)
−m pairs of

vertices are at distance 2 in G. Therefore from (2.2)

T H(GP , λ) =
np(p− 1)

2
λ2k + p2λ2k




∑

m

λ +
∑

(n
2)−m

λ2





=
n(p− 1)

2
λ2k + p2λ2k

[
mλ +

(
n(n− 1)

2
−m

)
λ2
]

=
np(p− 1)

2
λ2k + p2λ2k+1m +

(
n(n− 1)

2
−m

)
p2λ2k+2.

This completes the proof. 2
Bonchev and Klein [1] proposed the terminology of thorn trees, where the parent graph is

a tree. In a thorn tree if the parent graph is a path then it is a caterpiller [13].

Definition 2.6 Let Pl be path on l vertices, l ≥ 3 labeled as u1, u2, · · · , ul, where ui is adjacent

to ui+1, i = 1, 2, · · · , (l− 1). Let TP = T (p1, p2, · · · , pl : k) be a thorn tree obtained from Pl by

attaching pi ≥ 0 path of length k to ui, i = 1, 2, · · · , l.

b b b bP4 :

b b b b

b

b b

b b

b

b

b b

b b

b

TP :

Fig. 2

A thorn graph TP = T (2, 1, 0, 3 : 2) obtained from T by attaching paths of length 2 is

shown in Fig.2.
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Theorem 2.7 For a thorn tree TP = T (p1, p2, · · · , pl : k) of order n ≥ 3, the terminal Hosoya

polynomial is

T h(TP , λ) = a1λ + a2λ2 + . . . + a2k+1λ2k+1,

where

a1 = 0

a2k =

l∑

i=1

(
pi

2

)

a2k+l−j =

j∑

i=1

pipi+l−j j = 1, 2, . . . , (l − 1).

Proof Notice that there is no pair of pendant vertices which are at distance 1 and there

are
(
pi
2

)
pairs of pendant vertices of which are at distance 2k in T . Therefore a1 = 0 and

a2k =

l∑

i=1

(
pi

2

)
.

For ak, 2 ≤ k ≤ l, d(u, v|T ) = 2k + l − j, where u and v are the vertices of TP . There are

pi× pi+l−j pairs of pendant vertices which are at distance 2k + l− j, where j = 1, 2, · · · , n− 1.

Therefore

a2k+l−j =

j∑

i=1

pipi+l−j . 2
Definition 2.8 Let Sn = K1,n−1 be the star on n-vertices and let u1, u2, · · · , un−1 be the

pendant vertices of the star Sn and un be the central vertex. Let SP = S(p1, p2, · · · , pn−1 : k)

be the thorn star obtained from Sn by attaching pi paths of length k to the vertex ui, i =

1, 2, · · · , (n− 1) and pi ≥ 0.

Theorem 2.9 The terminal Hosoya polynomial of thorn star SP defined in Definition 2.8 is

T H(SP , λ) = a1λ + a2λ2 + a3λ3 + . . . + a2kλ2k + a2k+2λ2k+2,

where

a1 = 0

a2k =

n∑

i=1

(
pi

2

)

a2k+2 =
∑

1≤i<j≤n

pipj.

Proof There are no pair of pendant vertices which are at odd distance. Therefore, a2k+1 = 0

and the further proof follows from Theorem 2.7. 2
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Definition 2.10 Let Cn be the n-vertex cycle labeled consecutively as u1, u2, · · · , un, n ≥ 3.

and let CP = C(p1, p2, · · · , pn : k) be the thorn ring obtained from Cn by attaching pi paths of

length k to the vertex ui, i = 1, 2, · · · , n.

Theorem 2.11 The terminal Hosoya polynomial of thorn ring CP defined in Definition 2.10

is

T H(C, λ) = a1λ + a2λ2 + . . . + a2kλ2k + a2k+1λ2k+1,

where

a1 = 0

a2k =
n∑

i=1

(
pi

2

)

a2k+1 =

n∑

i=1

(2k + d(vi, vj |G))pipj .

Proof The proof is analogous to that of Theorem 2.7. 2
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§1. Introduction

In this research work, we concerned about connected, simple graphs which are finite, undirected

with no loops and multiple edges. Throughout this paper, for a graph G = (V, E), we denote

p = |V (G)| and q = |E(G)|. The complement of G, denoted by G, is a simple graph on the

same set of vertices V (G) in which two vertices u and v are adjacent if and only if they are not

adjacent in G. The open neighborhood and the closed neighborhood of u are denoted by N(u) =

{v ∈ V : uv ∈ E} and N [u] = N(u)∪{u}, respectively. The degree of a vertex u in G, is denoted

by deg(u), and is defined to be the number of edges incident with u, shortly deg(u) = |N(u)|.
The maximum and minimum degrees of G are defined by ∆(G) = max{deg(u) : u ∈ V (G)}
and δ(G) = min{deg(u) : u ∈ V (G)}, respectively. If δ = ∆ = k for any graph G, we say G

is a regular graph of degree k. The distance between any two vertices u and v in G denoted

by d(u, v) is the number of edges of the shortest path joining u and v. The eccentricity e(u)

of a vertex u in G is the maximum distance between u and any other vertex v in G, that is

e(u) = max{d(u, v), v ∈ V (G)}.
The path, wheel, cycle, star and complete graphs with p vertices are denoted by Pp, Wp,

Cp, Sp and Kp, respectively, and Kr,m is the complete bipartite graph on r + m vertices. All

the definitions and terminologies about graph in this paper available in [6].

1Received March 29, 2017, Accepted November 25, 2017.
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The Zagreb indices have been introduced by Gutman and Trinajestic [5].

M1(G) =
∑

u∈V (G)

[
deg(u)

]2
=

∑

u∈V (G)

∑

v∈N(u)

deg(v) =
∑

uv∈E(G)

[
deg(u) + deg(v)

]
.

M2(G) =
∑

uv∈E(G)

deg(u)deg(v) =
1

2

∑

u∈V (G)

deg(u)
∑

v∈N(u)

deg(v).

Here, M1(G) and M2(G) denote the first and the second Zagreb indices, respectively. For more

details about Zagreb indices, we refer to [2, 4, 9, 13, 11, 12, 7, 10, 8].

Let u ∈ V (G). The distance eccentricity neighborhood of u denoted by NDe(u) is defined

as NDe(u) = {v ∈ V (G) : d(u, v) = e(u)}. The cardinality of NDe(u) is called the distance

eccentricity degree of the vertex u in G and denoted by degDe(u), and NDe[u] = NDe(u)∪ {u},
note that if u has a full degree in G, then deg(u) = degDe(u). And generally, a Smarandachely

distance eccentricity neighborhood NS
De(u) of u on subset S ⊂ V (G) is defined to be NS

De(u) =

{v ∈ V (G)\S : dG\S(u, v) = e(u)} with Smarandachely distance eccentricity
∣∣NS

De(u)
∣∣. Clearly,∣∣N∅

De(u)
∣∣ = degDe(u). The maximum and minimum distance eccentricity degree of a vertex

in G are denoted respectively by ∆De(G) and δDe(G), that is ∆De(G) = maxu∈V |NDe(u)|,
δDe(G) = minu∈V |NDe(u)|. Also, we denote to the set of vertices of G which have eccentricity

equal to α by V α
e (G) ⊆ V (G), where α = 1, 2, · · · , diam(G). In this paper, we introduce the

distance eccentricity Zagreb indices of graphs. Exact values for some families of graphs and

some graph operations are obtained.

§2. Distance Eccentricity Zagreb Indices of Graphs

In this section, we define the first and second distance eccentricity Zagreb indices of connected

graphs and study some standard graphs.
v1

v2

v3 v4

Fig.1

Definition 2.1 Let G = (V, E) be a connected graph. Then the first and second distance

eccentricity Zagreb indices of G are defined by

MDe
1 (G) =

∑

u∈V (G)

[
degDe(u)

]2
,

MDe
2 (G) =

∑

uv∈E(G)

degDe(u)degDe(v).
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Example 2.2 Let G be a graph as in Fig.1. Then

(i) MDe
1 (G) =

∑

u∈V (G)

[
degDe(u)

]2
=

4∑

i=1

(
degDe(vi)

)2

=
(
degDe(v1)

)2
+
(
degDe(v2)

)2
+
(
degDe(v3)

)2
+
(
degDe(v4)

)2

=
(
2
)2

+
(
3
)2

+
(
1
)2

+
(
1
)2

= 15.

(ii) MDe
2 (G) =

∑

uv∈E(G)

degDe(u)degDe(v)

=degDe(v1)degDe(v2) + degDe(v2)degDe(v3) + degDe(v2)degDe(v4)

+ degDe(v3)degDe(v4) = 13.

Calculation immediately shows results following.

Proposition 2.3 (i) For any path Pp with p ≥ 2, MDe
1 (Pp) =





p + 3, p is odd,

p, p is even;

(ii) For p ≥ 3, MDe
1 (Cp) =





4p, p is odd,

p, p is even;

(iii) MDe
1 (Kp) = M1(Kp) = p

(
p− 1

)2
;

(iv) For r, m ≥ 2, MDe
1 (Kr,m) = r

(
r − 1

)2
+ m

(
m− 1

)2
;

(v) For p ≥ 3, MDe
1 (Sp) = (p− 1)

(
p− 2

)2
+
(
p− 1

)2
;

(vi) For p ≥ 5, MDe
1 (Wp) = (p− 1)

(
p− 4

)2
+
(
p− 1

)2
.

Proposition 2.4 (i) For p ≥ 2, MDe
2 (Pp) =





p + 1, p is odd,

p− 1, p is even;

(ii) For p ≥ 3, MDe
2 (Cp) =





4p, p is odd,

p, p is even;

(iii) MDe
2 (Kp) = M2(Kp) = p(p−1)

2

(
p− 1

)2
;

(iv) For r, m ≥ 2, MDe
2 (Kr,m) = rm

(
r − 1

)(
m− 1

)
;

(v) For p ≥ 3, MDe
2 (Sp) =

(
p− 1

)2
(p− 2);

(vi) For p ≥ 5, MDe
2 (Wp) = (p− 1)(p− 4)(2p− 5).

Proposition 2.5 For any graph G with e(v) = 2, ∀ v ∈ V (G),

(i) MDe
1 (G) = M1(G);

(ii) MDe
2 (G) = q(p− 1)2 − (p− 1)M1(G) + M2(G).

Proof Since e(v) = 2, ∀v ∈ V (G), then degDe
G (v) = degG(v). Hence the result. 2

Corollary 2.6 For any k-regular (p, q)-graph G with diameter two,

(i) MDe
1 (G) = p(p− k − 1)2;

(ii) MDe
2 (G) = 1

2 pk(p− k − 1)2.
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§3. Distance Eccentricity Zagreb Indices for Some Graph Operations

In this section, we compute the first and second distance eccentricity Zagreb indices for some

graph operations.

Cartesian Product. The Cartesian product of two graphs G1 and G2, where |V (G1)| =
p1, |V (G2)| = p2 and |E(G1)| = q1, |E(G2)| = q2 is denoted by G1� G2 has the vertex set

V (G1)×V (G2) and two vertices (u, u′) and (v, v′) are connected by an edge if and only if either

([u = v and u′v′ ∈ E(G2)]) or ([u′ = v′ and uv ∈ E(G1)]). By other words, |E(G1� G2)| =
q1p2 + q2p1. The degree of a vertex (u, u′) of G1� G2 is as follows:

degG1� G2(u, u′) = degG1(u) + degG2(u
′).

The Cartesian product of more than two graphs is denoted by
∏n

i=1 Gi

(∏n
i=1 Gi =

G1� G2� . . . � Gn = (G1� G2� . . . � Gn−1)� Gn

)
, in which any two vertices u = (u1, u2, . . . , un)

and v = (v1, v2, . . . , vn) are adjacent in
∏n

i=1 Gi if and only if ui = vi, ∀i 6= j and ujvj ∈ E(Gj),

where i, j = 1, 2, . . . , n. If G1 = G2 = · · · = Gn = G, we have the n-th Cartesian power of G,

which is denoted by Gn.

Lemma 3.1([8]) Let G =
∏n

i=1 Gi and let u = (u1, u2, · · · , un) be a vertex in V (G). Then

e(u) =

n∑

i=1

e(ui).

Lemma 3.2 Let G =
∏n

i=1 Gi and let u = (u1, u2, . . . , un) be a vertex in G. Then

degDe
G (u) =

n∏

i=1

degDe
Gi

(ui).

Proof Since e(u) =
∑n

i=1 e(ui) (Lemma 3.1), then each distance eccentricity neighbor of

u1 in G1 corresponds degDe
G2

(u2) vertices in G2 and each distance eccentricity neighbor of u2 in

G2 corresponds degDe
G3

(u3) vertices in G3 and so on. Thus by using the Principle of Account

degDe
G (u) = degDe

G1
(u1)degDe

G2
(u2) · · · degDe

Gn
(un). 2

Theorem 3.3 Let G =
∏n

i=1 Gi. Then

(i) MDe
1 (G) =

n∏

i=1

MDe
1 (Gi);

(ii) MDe
2 (G) =

n∑

j=1

n∏

i=1
i6=j

MDe
1 (Gi)M

De
2 (Gj).

Proof Let u = (u1, u2, · · · , un) and v = (v1, v2, · · · , vn) be any two vertices in V (G). Then
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(i) MDe
1 (G) =

∑

u∈V (G)

(
degDe

G (u)
)2

=
∑

u∈V (G)

(
degDe

G1
(u1)degDe

G2
(u2) . . . degDe

Gn
(un)

)2

=
∑

u1∈V (G1)

∑

u2∈V (G2)

. . .
∑

un∈V (Gn)

(
degDe

G1
(u1)

)2(
degDe

G2
(u2)

)2
. . .
(
degDe

Gn
(un)

)2

=

n∏

i=1

MDe
1 (Gi).

(ii) To prove the second distance eccentricity Zagreb index we will use the mathematical

induction. First, if n = 2, then

MDe
2 (G1� G2) =

∑

(u1,u2)(v1,v2)∈E(G1� G2)

degDe
G1

(u1)degDe
G1

(v1)degDe
G2

(u2)degDe
G2

(v2)

=
∑

u1∈V (G1)

∑

(u1,u2)(u1,v2)∈E(G1� G2)

(
degDe

G1
(u1)

)2
degDe

G2
(u2)degDe

G2
(v2)

+
∑

u2∈V (G2)

∑

(u1,u2)(v1,u2)∈E(G1� G2)

(
degDe

G2
(u2)

)2
degDe

G1
(u1)degDe

G1
(v1)

=MDe
1 (G1)M

De
2 (G2) + MDe

1 (G2)M
De
2 (G1)

=
2∑

j=1

2∏

i=1
i6=j

MDe
1 (Gi)M

De
2 (Gj).

Now, suppose the claim is true for n− 1. Then

MDe
2
(
�

n−1
i=1 Gi� Gn

)
=MDe

1
(
�

n−1
i=1 Gi

)
MDe

2 (Gn) + MDe
1 (Gn)MDe

2
(
�

n−1
i=1 Gi

)

=

n−1∏

i=1

MDe
1 (Gi)M

De
2 (Gn) + MDe

1 (Gn)

n−1∑

j=1

n−1∏

i=1
i6=j

MDe
1 (Gi)M

De
2 (Gj)

=

n∑

j=1

n∏

i=1
i6=j

MDe
1 (Gi)M

De
2 (Gj). 2

Composition. The composition G = G1[G2] of two graphs G1 and G2 with disjoint vertex

sets V (G1) and V (G2) and edge sets E(G1) and E(G2), where |V (G1)| = p1, |E(G1)| = q1 and

|V (G2)| = p2, |E(G2)| = q2 is the graph with vertex set V (G1)× V (G2) and any two vertices

(u, u′) and (v, v′) are adjacent whenever u is adjacent to v in G1 or u = v and u′ is adjacent

to v′ in G2. Thus, |E(G1[G2])| = q1p2
2 + q2p1. The degree of a vertex (u, u′) of G1[G2] is as

follows:

degG1[G2](u, u′) = p2degG1(u) + degG2(u
′).

Lemma 3.4([8]) Let G = G1[G2] and e(v) 6= 1, ∀ v ∈ V (G1). Then eG((u, u′)) = eG1(u).

Lemma 3.5 Let G = G1[G2] and e(v) 6= 1, ∀ v ∈ V (G1). Then

degDe
G (u, u′) =





p2degDe

G1
(u) + degG2

(u′), if u ∈ V 2
e (G1);

p2degDe
G1

(u), otherwise.
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Proof From Lemma 3.4, we have eG(u, u′) = eG1(u). Therefore, NDe
G (u, u′) = {(x, x′) ∈

V (G) : d
(
(u, u′), (x, x′)

)
= eG1(u)}. Now, if u /∈ V 2

e (G1), then NDe
G (u, u′) = {(x, x′) ∈ V (G) :

x ∈ NDe
G1

(u)} and hence, degDe
G (u, u′) = p2degDe

G1
(u) and if u ∈ V 2

e (G1), then degDe
G (u, u′) =

p2degDe
G1

(u) + degG2
(u′) (note that all the vertices of the copy of G2 with the projection u ∈

V (G1) which are not adjacent to (u, u′) have distance two from (u, u′)). 2
Theorem 3.6 Let G = G1[G2] and e(v) 6= 1, ∀ v ∈ V (G1). Then

MDe
1 (G) = p3

2MDe
1 (G1) + |V 2

e (G1)|M1(G2) + 4p2q2
∑

u∈V 2
e (G1)

degDe
G1

(u).

Proof By definition, we know that

MDe
1 (G) =

∑

(u,u′)∈V (G)

(
degDe

G (u, u′)
)2

=
∑

u∈V (G1)

∑

u′∈V (G2)

(
degDe

G (u, u′)
)2

=
∑

u∈V 2
e (G1)

∑

u′∈V (G2)

(
p2degDe

G1
(u) + degG2

(u′)
)2

+
∑

u∈V (G1)−V 2
e (G1)

∑

u′∈V (G2)

(
p2degDe

G1
(u)
)2

=
∑

u∈V (G1)

∑

u′∈V (G2)

(
p2degDe

G1
(u)
)2

+
∑

u∈V 2
e (G1)

M1(G2)

+
∑

u∈V 2
e (G1)

∑

u′∈V (G2)

2p2degG2
(u′)degDe

G1
(u)

=p3
2MDe

1 (G1) + |V 2
e (G1)|M1(G2) + 4p2q2

∑

u∈V 2
e (G1)

degDe
G1

(u). 2
Theorem 3.7 Let G = G1[G2] and e(v) 6= 1 or 2, ∀ v ∈ V (G1). Then

MDe
2 (G) = p4

2MDe
2 (G1) + p2

2q2MDe
1 (G1).

Proof By deifnition, we know that

MDe
2 (G) =

1
2

∑

(u,u′)∈V (G)

degDe
G (u, u′)

∑

(v,v′)∈NG(u,u′)

degDe
G (v, v′)

=
1
2

∑

u∈V (G1)

∑

u′∈V (G2)

degDe
G (u, u′)

[ ∑

v∈NG1 (u)

∑

v′∈V (G2)

degDe
G (v, v′) +

∑

v′∈NG2 (u′)

degDe
G (u, v′)

]

=
1
2

∑

u∈V (G1)

∑

u′∈V (G2)

p2degDe
G1 (u)

[ ∑

v∈NG1 (u)

∑

v′∈V (G2)

p2degDe
G1 (v) +

∑

v′∈NG2 (u′)

p2degDe
G1 (u)

]

=p4
2MDe

2 (G1) + p2
2q2MDe

1 (G1).

This completes the proof. 2
Disjunction and Symmetric Difference. The disjunction G1 ∨ G2 of two graphs G1

and G2 with |V (G1)| = p1, |E(G1)| = q1 and |V (G2)| = p2, |E(G2)| = q2 is the graph with
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vertex set V (G1) × V (G2) in which (u, u′) is adjacent to (v, v′) whenever u is adjacent to v in

G1 or u′ is adjacent to v′ in G2. So, |E(G1 ∨G2)| = q1p2
2 + q2p2

1− 2q1q2. The degree of a vertex

(u, u′) of G1 ∨G2 is as follows:

degG1∨G2(u, u′) = p2degG1(u) + p1degG2(u
′)− degG1(u)degG2(u

′).

Also, the symmetric difference G1⊕G2 of G1 and G2 is the graph with vertex set V (G1)×V (G2)

in which (u, u′) is adjacent to (v, v′) whenever u is adjacent to v in G1 or u′ is adjacent to v′ in

G2, but not both. From definition one can see that, |E(G1 ⊕G2)| = q1p2
2 + q2p2

1 − 4q1q2. The

degree of a vertex (u, u′) of G1 ⊕G2 is as follows:

degG1⊕G2(u, u′) = p2degG1(u) + p1degG2(u
′)− 2degG1(u)degG2(u

′).

The distance between any two vertices of a disjunction or a symmetric difference cannot exceed

two. Thus, if e(v) 6= 1, ∀ v ∈ V (G1) ∪ V (G2), the eccentricity of all vertices is constant and

equal to two. We know the following lemma.

Lemma 3.8 Let G1 and G2 be two graphs with e(v) 6= 1, ∀ v ∈ V (G1) ∪ V (G2). Then

(i) degDe
G1∨G2

(u, u′) = degG1∨G2
(u, u′);

(ii) degDe
G1⊕G2

(u, u′) = degG1⊕G2
(u, u′).

Theorem 3.9 Let G1 and G2 be two graphs with e(v) 6= 1, ∀ v ∈ V (G1) ∪ V (G2). Then

(i) MDe
1 (G1 ∨ G2) = M1(G1 ∨ G2);

(ii) MDe
2 (G1 ∨ G2) = qG1∨G2(p1p2 − 1)2 − (p1p2 − 1)M1(G1 ∨ G2) + M2(G1 ∨ G2).

Proof The proof is straightforward by Proposition 2.5. 2
Theorem 3.10 Let G1 and G2 be any two graphs with e(v) 6= 1, ∀ v ∈ V (G1) ∪ V (G2). Then

(i) MDe
1 (G1 ⊕ G2) = M1(G1 ⊕ G2);

(ii) MDe
2 (G1 ⊕ G2) = qG1⊕G2(p1p2 − 1)2 − (p1p2 − 1)M1(G1 ⊕ G2) + M2(G1 ⊕ G2).

Proof The proof is straightforward by Proposition 2.5. 2
Join. The join G1 + G2 of two graphs G1 and G2 with disjoint vertex sets |V (G1)| =

p1, |V (G2)| = p2 and edge sets |E(G1)| = q1, |E(G2)| = q2 is the graph on the vertex set

V (G1) ∪ V (G2) and the edge set E(G1) ∪ E(G2) ∪ {u1u2 : u1 ∈ V (G1); u2 ∈ V (G2)}. Hence,

the join of two graphs is obtained by connecting each vertex of one graph to each vertex of the

other graph, while keeping all edges of both graphs. The degree of any vertex u ∈ G1 + G2 is

given by

degG1+G2(u) =





degG1(u) + p2, if u ∈ V (G1);

degG2(u) + p1, if u ∈ V (G2).

By using the definition of the join graph G =
n∑

i=1

Gi, we get the following lemma.
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Lemma 3.11 Let G =
n∑

i=1

Gi and u ∈ V (G). Then

degDe
G (u) =





|V (G)| − 1, u ∈ V 1

e (Gi);

pi − 1− degGi(u), u ∈ V (Gi)− V 1
e (Gi), for i = 1, 2, . . . , n.

Theorem 3.12 Let G =

n∑

i=1

Gi. Then

MDe
1 (G) =

(
|V (G)| − 1

)2
n∑

i=1

|V 1
e (Gi)|+

n∑

i=1

[
M1(Gi) + pi

(
pi − 1

)2 − 4qi(pi − 1)

]
.

Proof By definition,

MDe
1 (G) =

∑

u∈V (G)

[
degDe

G (u)
]2

=

n∑

i=1

∑

u∈V (Gi)

[
degDe

G (u)
]2

=

n∑

i=1

∑

u∈V 1
e (Gi)

[
degDe

G (u)
]2

+

n∑

i=1

∑

u∈V (Gi)−V 1
e (Gi)

[
pi − 1− degGi(u)

]2

=
(
|V (G)| − 1

)2
n∑

i=1

|V 1
e (Gi)|+

n∑

i=1

M1(Gi).

This completes the proof. 2
Theorem 3.13 Let G =

n∑

i=1

Gi. Then

MDe
2 (G) =

1

2

(
|V (G)| − 1

) n∑

i=1

|V 1
e (Gi)|

[
(|V (G)| − 1)

(
− 1 +

n∑

j=1

|V 1
e (Gj)|

)

+ 2

n∑

j=1

(
p2

j − pj − 2qj

)]
+

n∑

i=1

[
qi(pi − 1)2 − (pi − 1)M1(Gi) + M2(Gi)

]

+

n−1∑

i=1

(
p2

i − pi − 2qi

) n∑

j=i+1

(
p2

j − pj − 2qj

)
.

Proof By definition, we get that

MDe
2 (G) =

∑

uv∈E(G)

degDe
G (u)degDe

G (v) =
1
2

∑

u∈V (G)

degDe
G (u)

∑

v∈NG(u)

degDe
G (v)
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=
1
2

n∑

i=1

∑

u∈V (Gi)

degDe
G (u)

[ ∑

v∈NGi (u)

degDe
G (v) +

n∑

j=1
j 6=i

∑

v∈V (Gj)

degDe
G (v)

]

=
1
2

n∑

i=1

∑

u∈V 1
e (Gi)

(
|V (G)| − 1

)[(
|V (G)| − 1

)(
|V 1

e (Gi)| − 1
)

+
∑

v∈V (Gi)−V 1
e (Gi)

degGi
(v)

+
n∑

j=1
j 6=i

[(
|V (G)| − 1

)
|V 1

e (Gj)| +
∑

v∈V (Gj )−V 1
e (Gj )

degGj
(v)
]]

+
1
2

n∑

i=1

∑

u∈V (Gi)−V 1
e (Gi)

degGi
(u)
[(

|V (G)| − 1
)
|V 1

e (Gi)| +
∑

v∈NGi (u)−V 1
e (Gi)

degGi
(v)

+
n∑

j=1
j 6=i

[(
|V (G)| − 1

)
|V 1

e (Gj)| +
∑

v∈V (Gj )−V 1
e (Gj )

degGj
(v)
]]

=
1
2
(
|V (G)| − 1

) n∑

i=1

|V 1
e (Gi)|

[
(|V (G)| − 1)

(
− 1 +

n∑

j=1

|V 1
e (Gj)|

)

+
n∑

j=1

(
p2

j − pj − 2qj

)]
+

1
2

n∑

i=1

(
p2

i − pi − 2qi

)[(
|V (G)| − 1

) n∑

j=1

|V 1
e (Gj)|

+
n∑

j=1
j 6=i

(
p2

j − pj − 2qj

)]
+

n∑

i=1

[
qi(pi − 1)2 − (pi − 1)M1(Gi) + M2(Gi)

]

=
1
2
(
|V (G)| − 1

) n∑

i=1

|V 1
e (Gi)|

[
(|V (G)| − 1)

(
− 1 +

n∑

j=1

|V 1
e (Gj)|

)

+ 2
n∑

j=1

(
p2

j − pj − 2qj

)]
+

n∑

i=1

[
qi(pi − 1)2 − (pi − 1)M1(Gi) + M2(Gi)

]

+
n−1∑

i=1

(
p2

i − pi − 2qi

) n∑

j=i+1

(
p2

j − pj − 2qj

)
.

Note that, the equality

1

2

n∑

i=1

(
p2

i − pi − 2qi

) n∑

j=1
j 6=i

(
p2

j − pj − 2qj

)
=

n−1∑

i=1

(
p2

i − pi − 2qi

) n∑

j=i+1

(
p2

j − pj − 2qj

)
,

is applied in the previous calculation. 2
Corollary 3.14 If Gi (i = 1, 2, · · · , n) has no vertices of full degree (V 1

e (Gi) = φ), then

(i) MDe
1
( n∑

i=1

Gi

)
=

n∑

i=1

M1(Gi);

(ii) MDe
2
( n∑

i=1

Gi

)
=

n∑

i=1

[
qi(pi − 1)2 − (pi − 1)M1(Gi) + M2(Gi)

]

+

n−1∑

i=1

(
p2

i − pi − 2qi

) n∑

j=i+1

(
p2

j − pj − 2qj

)
.
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Corona Product. The corona product G1◦G2 of two graphs G1 and G2, where |V (G1)| =
p1, |V (G2)| = p2 and |E(G1)| = q1, |E(G2)| = q2 is the graph obtained by taking |V (G1)|
copies of G2 and joining each vertex of the i-th copy with vertex u ∈ V (G1). Obviously,

|V (G1 ◦ G2)| = p1(p2 + 1) and |E(G1 ◦ G2)| = q1 + p1(q2 + p2). It follows from the definition

of the corona product G1 ◦ G2, the degree of each vertex u ∈ G1 ◦ G2 is given by

degG1◦G2(u) =





degG1(u) + p2, if u ∈ V (G1);

degG2(u) + 1, if u ∈ V (G2).

We therefore know the next lemma.

Lemma 3.15 Let G = G1 ◦ G2 be a connected graph and let u ∈ V (G). Then

degDe
G (u) =





p2degDe

G1
(u), u ∈ V (G1);

p2degDe
G1

(v), u ∈ V (G)− V (G1), where v ∈ V (G1) is adjacent to u.

Theorem 3.16 Let G = G1 ◦ G2 be a connected graph. Then

(i) MDe
1 (G) = p2

2(p2 + 1)MDe
1 (G1);

(ii) MDe
2 (G) = p2

2MDe
2 (G1) + p2

2(q2 + p2)M
De
1 (G1).

Proof By definition, calculation shows that

(i) MDe
1 (G) =

∑

u∈V (G)

[
degDe

G (u)
]2

=
∑

u∈V (G1)

[
degDe

G (u)
]2

+
∑

v∈V (G1)

∑

u∈V (G2)

[
degDe

G (u)
]2

=
∑

u∈V (G1)

[
p2degDe

G1
(u)
]2

+
∑

v∈V (G1)

∑

u∈V (G2)

[
p2degDe

G1
(v)
]2

=p2
2MDe

1 (G1) + p3
2MDe

1 (G1).

(ii) MDe
2 (G) =

1

2

∑

u∈V (G)

degDe(u)
∑

v∈N(u)

degDe(v)

=
1

2

∑

u∈V (G1)

degDe
G (u)

[ ∑

v∈NG1 (u)

degDe
G (v) +

∑

v∈V (G2)

degDe
G (v)

]

+
1

2

∑

v∈V (G1)

∑

u∈V (G2)

degDe
G (u)

[ ∑

w∈NG2(u)

degDe
G (w) + degDe

G (v)

]

=
1

2

∑

u∈V (G1)

p2degDe
G1

(u)

[ ∑

v∈NG1 (u)

p2degDe
G1

(v) + p2
2degDe

G1
(u)

]

+
1

2

∑

v∈V (G1)

∑

u∈V (G2)

p2degDe
G1

(v)

[
p2degDe

G1
(v)degG2(u) + p2degDe

G1
(v)

]

=p2
2MDe

2 (G1) + p2
2(q2 + p2)M

De
1 (G1).

This completes the proof. 2
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Example 3.17 For any cycle Cp1 and any path Pp2 ,

(i) MDe
1 (Cp1 ◦ Pp2) =





4p1p2

2(p2 + 1), p1 is odd;

p1p2
2(p2 + 1), p1 is even.

(ii) MDe
2 (Cp1 ◦ Pp2 ) =





8p1p3

2, p1 is odd;

2p1p3
2, p1 is even.

Example 3.18 For any two cycles Cp1 and Cp2 ,

(i) MDe
1 (Cp1 ◦ Cp2) =





4p1p2

2(p2 + 1), p1 is odd;

p1p2
2(p2 + 1), p1 is even.

(ii) MDe
2 (Cp1 ◦ Cp2 ) =





4p1p2

2(2p2 + 1), p1 is odd;

p1p2
2(2p2 + 1), p1 is even.
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Abstract: In this paper we introduce the clique-to-clique C − C′ monophonic path, the
clique-to-clique monophonic distance dm(C, C′), the clique-to-clique C − C′ monophonic,

the clique-to-clique monophonic eccentricity em3 (C), the clique-to-clique monophonic radius
Rm3 , and the clique-to-clique monophonic diameter Dm3 of a connected graph G, where

C and C′ are any two cliques in G. These parameters are determined for some standard
graphs. It is shown that Rm3 ≤ Dm3 for every connected graph G and that every two positive

integers a and b with 2 ≤ a ≤ b are realizable as the clique-to-clique monophonic radius and
the clique-to-clique monophonic diameter, respectively, of some connected graph. Further

it is shown that for any three positive integers a, b, c with 3 ≤ a ≤ b ≤ c are realizable as

the clique-to-clique radius, the clique-to-clique monophonic radius, and the clique-to-clique
detour radius, respectively, of some connected graph and also it is shown that for any three

positive integers a, b, c with 4 ≤ a ≤ b ≤ c are realizable as the clique-to-clique diameter, the
clique-to-clique monophonic diameter, and the clique-to-clique detour diameter, respectively,

of some connected graph. The clique-to-clique monophonic center Cm3(G) and the clique-
to-clique monophonic periphery Pm3 (G) are introduced. It is shown that the clique-to-clique

monophonic center a connected graph does not lie in a single block of G.

Key Words: Clique-to-clique distance, clique-to-clique detour distance, clique-to-clique
monophonic distance.

AMS(2010): 05C12.

§1. Introduction

By a graph G = (V, E) we mean a finite undirected connected simple graph. For basic graph

theoretic terminologies, we refer to Chartrand and Zhang [2]. If X ⊆ V , then 〈X〉 is the

subgraph induced by X . A clique C of a graph G is a maximal complete subgraph and we

denote it by its vertices. A u− v path P beginning with u and ending with v in G is a sequence

of distinct vertices such that consecutive vertices in the sequence are adjacent in G. A chord of

a path u1, u2, ..., un in G is an edge uiuj with j ≥ i + 2. For a graph G, the length of a path is

the number of edges on the path. In 1964, Hakimi [3] considered the facility location problems

as vertex-to-vertex distance in graphs. For any two vertices u and v in a connected graph G, the

1Received August 17, 2016, Accepted November 26, 2017.
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distance d(u, v) is the length of a shortest u− v path in G. For a vertex v in G, the eccentricity

of v is the distance between v and a vertex farthest from v in G. The minimum eccentricity

among the vertices of G is its radius and the maximum eccentricity is its diameter, denoted by

rad(G) and diam(G) respectively. A vertex v in G is a central vertex if e(v) = rad(G) and the

subgraph induced by the central vertices of G is the center Cen(G) of G. A vertex v in G is

a peripheral vertex if e(v) = diam(G) and the subgraph induced by the peripheral vertices of

G is the periphery P er(G) of G. If every vertex of a graph is central vertex then G is called

self-centered.

In 2005, Chartrand et. al. [1] introduced and studied the concepts of detour distance in

graphs. For any two vertices u and v in a connected graph G, the detour distance D(u, v) is

the length of a longest u− v path in G. For a vertex v in G, the detour eccentricity of v is the

detour distance between v and a vertex farthest from v in G. The minimum detour eccentricity

among the vertices of G is its detour radius and the maximum detour eccentricity is its detour

diameter, denoted by radD(G) and diamD(G) respectively. Detour center, detour self-centered

and detour periphery of a graph are defined similarly to the center, self-centered and periphery

of a graph respectively.

In 2011, Santhakumaran and Titus [7] introduced and studied the concepts of monophonic

distance in graphs. For any two vertices u and v in G, a u−v path P is a u−v monophonic path

if P contains no chords. The monophonic distance dm(u, v) from u to v is defined as the length

of a longest u − v monophonic path in G. For a vertex v in G, the monophonic eccentricity

of v is the monophonic distance between v and a vertex farthest from v in G. The minimum

monophonic eccentricity among the vertices of G is its monophonic radius and the maximum

monophonic eccentricity is its monophonic diameter, denoted by radm(G) and diamm(G) re-

spectively. Monophonic center, monophonic self-centered and monophonic periphery of a graph

are defined similar to the center and periphery respectively of a graph.

In 2002, Santhakumaran and Arumugam [6] introduced the facility locational problem

as clique-to-clique distance d(C, C′) in graphs as follows. Let ζ be the set of all cliques in a

connected graph G the clique-to-clique distance is defined by d(C, C′) = min{d(u, v) : u ∈ C, v ∈
C′}. For our convenience a C − C′ path of length d(C, C′) is called a clique-to-clique C − C′

geodesic or simply C − C′ geodesic. The clique-to-clique eccentricity e3(C) of a clique C in G

is the maximum clique-to-clique distance from C to a clique C′ ∈ ζ in G. The minimum clique-

to-clique eccentricity among the cliques of G is its clique-to-clique radius and the maximum

clique-to-clique eccentricity is its clique-to-clique diameter, denoted by r3 and d3 respectively.

A clique C in G is called a clique-to-clique central clique if e3(C) = r3 and the subgraph induced

by the clique-to-clique central cliques of G are clique-to-clique center of G. A clique C in G

is called a clique-to-clique peripheral clique if e3(C) = d3 and the subgraph induced by the

clique-to-clique peripheral cliques of G are clique-to-clique periphery of G. If every clique of G

is clique-to-clique central clique then G is called clique-to-clique self-centered.

In 2015, Keerthi Asir and Athisayanathan [4] introduced and studied the concepts of clique-

to-clique detour distance D(C, C′) in graphs as follows. Let ζ be the set of all cliques in a

connected graph G and C, C′ ∈ ζ in G. A clique-to-clique C−C′ path P is a u− v path, where

u ∈ C and v ∈ C′, in which P contains no vertices of C and C′ other than u and v and the
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clique-to-clique detour distance, D(C, C′) is the length of a longest C−C′ path in G. A C−C′

path of length D(C, C′) is called a C −C′ detour. The clique-to-clique detour eccentricity of a

clique C in G is the maximum clique-to-clique detour distance from C to a clique C′ ∈ ζ in G.

The minimum clique-to-clique detour eccentricity among the cliques of G is its clique-to-clique

detour radius and the maximum clique-to-clique detour eccentricity is its clique-to-clique detour

diameter, denoted by R3 and D3 respectively. The clique-to-clique detour center CD3(G), the

clique-to-clique detour self-centered, the clique-to-clique detour periphery PD3(G) are defined

similar to the clique-to-clique center. the clique-to-clique self-centered and the clique-to-clique

periphery of a graph respectively.

These motivated us to introduce the concepts of clique-to-clique monophonic distance in

graphs and investigate certain results related to clique-to-clique monophonic distance and other

distances in graphs. These ideas have intresting applications in channel assignment problem

in radio technologies and capture different aspects of certain molecular problems in theoretical

chemistry. Also there are useful applications of these concepts to security based communication

network design. In a social network a clique represents a group of individuals having a common

interest. Thus the clique-to-clique monophonic centrality have intresting application in social

networks. Throughout this paper, G denotes a connected graph with at least two vertices.

§2. Clique-to-Clique Monophonic Distance

Definition 2.1 Let ζ be the set of all cliques in a connected graph G and C, C′ ∈ ζ. A clique-

to-clique C − C′ path P is said to be a clique-to-clique C − C′ monophonic path if P contains

no chords in G. The clique-to-clique monophonic distance dm(C, C′) is the length of a longest

C − C′ monophonic path in G. A C − C′ monophonic path of length dm(C, C′) is called a

clique-to-clique C − C′ monophonic or simply C − C′ monophonic.

Example 2.2 Consider the graph G given in Fig 2.1. For the cliques C = {u, w} and C′ = {v, z}
in G, the C − C′ paths are P1 : u, v, P2 : w, x, z and P3 : w, x, y, z. Now P1 and P2 are C − C′

monophonic paths, while P3 is not so. Also the clique-to-clique distance d(C, C′) = 1, the

clique-to-clique monophonic distance dm(C, C′) = 2, and the clique-to-clique detour distance

D(C, C′) = 3. Thus the clique-to-clique monophonic distance is different from both the clique-

to-clique distance and the clique-to-clique detour distance. Now it is clear that P1 is a C − C′

geodesic, P2 is a C − C′ monophonic, and P3 is a C − C′ detour.

x

u

z

w

v

y

Fig.2.1
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Keerthi Asir and Athisayanathan [4] showed that for any two cliques C and C′ in a non-

trivial connected graph G of order n, 0 ≤ d(C, C′) ≤ D(C, C′) ≤ n − 2. Now we have the

following theorem.

Theorem 2.3 For any two cliques C and C′ in a non-trivial connected graph G of order n,

0 ≤ d(C, C′) ≤ dm(C, C′) ≤ D(C, C′) ≤ n− 2.

Proof By definition d(C, C′) ≤ dm(C, C′). If P is a unique C − C′ path in G, then

d(C, C′) = dm(C, C′) = D(C, C′). Suppose that G contains more than one C −C′ path. Let Q

be a longest C − C′ path in G.

Case 1. If Q does not contain a chord, then dm(C, C′) = D(C, C′).

Case 2. If Q contains a chord, then dm(C, C′) < D(C, C′). 2
Remark 2.4 The bounds in Theorem 2.3 are sharp. If G = K2, then 0 = d(C, C) = dm(C, C) =

D(C, C) = n− 2. Also if G is a tree, then d(C, C′) = dm(C, C′) = D(C, C′) for every cliques C

and C′ in G and the graph G given in Fig. 2.1, 0 < d(C, C′) < dm(C, C′) < D(C, C′) < n− 2.

Theorem 2.5 Let C and C′ be any two adjacent cliques (C 6= C′) in a connected graph G.

Then dm(C, C′) = n− 2 if and only if G is a cycle Cn(n > 3).

Proof Assume that G is cycle Cn : u1, u2, · · · , un−1, un, u1(n ≥ 4). Since any edge in G

is a clique, without loss of generality we assume that C = {u1, u2}, C′ = {un, u1} be any two

adjacent cliques. Then there exists two distinct C −C′ paths, say P1 and P2 such that P1 : u1

is a trivial C −C′ path of length 0 and P2 : u2, u3, · · · , un−1, un is C −C′ monophonic path of

length n− 2. It is clear that dm(C, C′) = n − 2. Conversely assume that for any two distinct

adjacent cliques C and C′ in a connected graph G, dm(C, C′) = n − 2. We prove that G is a

cycle. Suppose that G is not a cycle. Then G must be either a tree or a cyclic graph.

Case 1. If G is a tree, then C −C′ path is trivial. So that dm(C, C′) = 0 < n− 2, which is a

contradiction.

Case 2. If G is a cyclic graph, then G must contain a cycle Cd : x1, x2, · · · , xd, x1 of length

d < n. If C = {x1, x2} and C′ = {xn, x1} then dm(C, C′) < n− 2, which is a contradiction. 2
Since the length of a clique-to-clique monophonic path between any two cliques in Kn,m is

2, we have the following theorem.

Theorem 2.6 Let Kn,m(n ≤ m) be a complete bipartite graph with the partition V1, V2 of

V (Kn,m) such that |V1| = n and |V2| = m. Let C and C′ be any two cliques in Kn,m, then

dm(C, C′) = 2.

Since every tree has unique clique-to-clique monophonic path, we have the following theo-

rem.

Theorem 2.7 If G is a tree, then d(C, C′) = dm(C, C′) = D(C, C′) for every cliques C and

C′ in G.



Clique-to-Clique Monophonic Distance in Graphs 125

The converse of the Theorem 2.7 is not true. For the graph G obtained from a complete

bipartite graph K2,n(n ≥ 2) by joining the vertices of degree n by an edge. In such a graph

every clique C is isomorphic to K3 and so for any two cliques C and C′, d(C, C′) = dm(C, C′) =

D(C, C′) = 0, but G is not tree.

§3. Clique-to-Clique Monophonic Center

Definition 3.1 Let G be a connected graph and let ζ be the set of all cliques in G. The

clique-to-clique monophonic eccentricity em3(C) of a clique C in G is defined by em3(C) =

max {dm(C, C′) : C′ ∈ ζ}. A clique C′ for which em3(C) = dm(C, C′) is called a clique-to-clique

monophonic eccentric clique of C. The clique-to-clique monophonic radius of G is defined as,

Rm3 = radm3 (G) = min {em3(C) : C ∈ ζ} and the clique-to-clique monophonic diameter of G is

defined as, Dm3 = diamm3(G) = max {em3(C) : C ∈ ζ}. A clique C in G is called a clique-to-

clique monophonic central clique if em3(C) = Rm3 and the clique-to-clique monophonic center

of G is defined as, Cm3(G) = Cenm3(G) = 〈{C ∈ ζ : em3(C) = Rm3}〉. A clique C in G is

called a clique-to-clique monophonic peripheral clique if em3(C) = Dm3 and the clique-to-clique

monophonic periphery of G is defined as, Pm3(G) = P erm3(G) = 〈{C ∈ ζ : em3(C) = Dm3}〉.
If every clique of G is a clique-to-clique monophonic central clique, then G is called a clique-

to-clique monophonic self centered graph.

Example 3.2 For the graph G given in Fig.3.1, the set of all cliques are given by, ζ =

{C1, C2, C3, C4, C5, C6, C7, C8, C9} where C1 = {v1, v2, v3}, C2 = {v3, v4}, C3 = {v4, v5, v6},
C4 = {v6, v7}, C5 = {v7, v8}, C6 = {v8, v10}, C7 = {v9, v10}, C8 = {v4, v9}, C9 = {v10, v11, v12,

v13, v14}.

v3

v1

v2

v4

v5 v6 v7

v8

v10v9

v13v14

v12

v11

Fig.3.1

The clique-to-clique eccentricity e3(C), the clique-to-clique detour eccentricity eD3(C), the
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clique-to-clique monophonic eccentricity em3(C) of all the cliques of G are given in Table 1.

Cliques C C1 C2 C3 C4 C5 C6 C7 C8 C9

e3(C) 3 2 2 2 3 3 2 2 3

em3(C) 5 4 4 5 4 4 5 4 5

eD3(C) 6 5 4 5 5 5 6 5 6

Table 1

The clique-to-clique monophonic eccentric clique of all the cliques of G are given in Table

2.

Cliques C Clique-to-Clique Monophonic Eccentric Cliques

C1 C4, C5, C6, C7, C9

C7 C1, C2, C3, C8

C9 C1, C2, C3, C8

Table 2

The clique-to-clique radius r3 = 2, the clique-to-clique diameter d3 = 3, the clique-to-

clique detour radius R3 = 4, the clique-to-clique detour diameter D3 = 6, the clique-to-clique

monophonic radius Rm3 = 4 and the clique-to-clique monophonic diameter Dm3 = 5. Also

it is clear that the clique-to-clique center C3(G) = 〈{C2, C3, C4, C7, C8}〉, the clique-to-clique

periphery P3(G) = 〈{C1, C5, C6, C9}〉, the clique-to-clique detour center CD3(G) = 〈{C3}〉, the

clique-to-clique detour periphery PD3(G) = 〈{C1, C7, C9}〉, the clique-to-clique monophonic

center Cm3(G) = 〈{C2, C3, C5, C6, C8}〉, the clique-to-clique monophonic periphery Pm3(G) =

〈{C1, C4, C7, C9}〉.

The clique-to-clique monophonic radius Rm3 and the clique-to-clique monophonic diameter

Dm3 of some standard graphs are given in Table 3.

Graph G Kn Pn(n ≥ 3) Cn(n ≥ 4) Wn(n ≥ 5) Kn,m(m ≥ n)

Rm3 0 ⌊n−3
2 ⌋ n− 2 n− 3 2

Dm3 0 n− 3 n− 2 n− 3 2

Table 3

Remark 3.3 The complete graph Kn, the cycle Cn, the wheel Wn and the complete bipartite

graph Kn,m are the clique-to-clique monophonic self centered graphs.

Remark 3.4 In a connected graph G, C3(G), CD3(G), Cm3(G) and P3(G), PD3(G), Pm3(G)

need not be same. For the graph G given in Fig 3.1, it is shown that C3(G), CD3(G), Cm3(G)

and P3(G), PD3(G), Pm3(G) are distinct.
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Theorem 3.5 Let G be a connected graph of order n. Then

(i) 0 ≤ e3(C) ≤ em3(C) ≤ eD3(C) ≤ n− 2 for every clique C in G;

(ii) 0 ≤ r3 ≤ Rm3 ≤ R3 ≤ n− 2;

(iii) 0 ≤ d3 ≤ Dm3 ≤ D3 ≤ n− 2.

Proof This follows from Theorem 2.3. 2
Remark 3.6 The bounds in Theorem 3.5(i) are sharp. If G = K2, then 0 = e3(C) = em3(C) =

eD3(C) = n − 2. Also if G is a tree, then e3(C) = em3(C) = eD3(C) for every clique C in G

and the graph G given in Fig. 2.1, e3(C) < em3(C) < eD3(C), where C = {u, w}.

In [1, 2] it is shown that in a connected graph G, the radius and diameter are related

by rad(G) ≤ diam(G) ≤ 2rad(G), the detour radius and detour diameter are related by

radD(G) ≤ diamD(G) ≤ 2radD(G), and Santhakumaran et. al. [7]showed that the monophonic

radius and monophonic diameter are related by radm(G) ≤ diamm(G). Also Santhakumaran

et. al. [6] showed that the clique-to-clique radius and clique-to-clique diameter are related by

r3 ≤ d3 ≤ 2r3+1 and Keerthi Asir et. al. [4] showed that the upper inequality does not hold for

the clique-to-clique detour distance. The following example shows that the similar inequality

does not hold for the clique-to-clique monophonic distance.

Remark 3.7 For the graph G of order n ≥ 7 obtained by identifying the central vertex of

the wheel Wn−1 = K1 + Cn−2 and an end vertex of the path P2. It is easy to verify that

Dm3 > 2Rm3 and Dm3 > 2Rm3 + 1.

Ostrand [5] showed that every two positive integers a and b with a ≤ b ≤ 2a are realizable

as the radius and diameter respectively of some connected graph, Chartrand et. al. [1] showed

that every two positive integers a and b with a ≤ b ≤ 2a are realizable as the detour radius and

detour diameter respectively of some connected graph, and Santhakumaran et. al. [7] showed

that every two positive integers a and b with a ≤ b are realizable as the monophonic radius and

monophonic diameter respectively of some connected graph. Also Santhakumaran et. al. [6]

showed that every two positive integers a and b with a ≤ b ≤ 2a+1 are realizable as the clique-

to-clique radius and clique-to-clique diameter respectively of some connected graph. Keerthi

Asir et. al. [4] showed that every two positive integers a and b with 2 ≤ a ≤ b are realizable

as the clique-to-clique detour radius and clique-to-clique detour diameter respectively of some

connected graph. Now we have a realization theorem for the clique-to-clique monophonic radius

and the clique-to-clique monophonic diameter for some connected graph.

Theorem 3.8 For each pair a, b of positive integers with 2 ≤ a ≤ b, there exists a connected

graph G with Rm3 = a and Dm3 = b.

Proof Our proof is divided into cases following.

Case 1. a = b.

Let G = Ca+2 : u1, u2, · · · , ua+2, u1 be a cycle of order a + 2. Then em3(uiui+1) = a for

1 ≤ i ≤ a + 2. It is easy to verify that every clique S in G with em3(S) = a. Thus Rm3 = a
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and Dm3 = b as a = b.

ua+1
ua

u2

ua+2

v1

u1

u3

v2 v3 vb−a+2

Fig. 3.2

Case 2. 2 ≤ a < b ≤ 2a.

Let Ca+2 : u1, u2, · · · , ua+2, u1 be a cycle of order a + 2 and Pb−a+2 : v1, v2, · · · , vb−a+2 be

a path of order b− a + 2. We construct the graph G of order b + 3 by identifying the vertex u1

of Ca+2 and v1 of Pb−a+2 as shown in Fig. 3.2. It is easy to verify that

em3(uiui+1) =





b− i + 2, if 2 ≤ i ≤

⌈
a+2

2

⌉

b− a + i− 1, if
⌈

a+2
2

⌉
< i ≤ a + 1,

and em3(vivi+1) = a+i−1 if 2 ≤ i ≤ b−a+1, em3(u2u3) = em3(ua+1ua+2) = em3(ub−aub−a+1) =

b, em3(u1u2) = em3(u1ua+2) = em3(v1v2) = a. It is easy to verify that there is no clique S in G

with em3(S) < a and there is no clique S′ in G with em3(S
′) > b. Thus Rm3 = a and Dm3 = b

as a < b.

Case 3. a < b > 2a.

Let G be a graph of order b + 2a + 4 obtained by identifying the central vertex of the

wheel Wb+3 = K1 + Cb+2 and an end vertex of the path P2a+2, where K1 : v1, Cb+1 :

u1, u2, · · · , ub+2, u1 and P2a+2 : v1, v2, · · · , v2a+2. The resulting graph G is shown in Fig.3.3.

u1

ub+2

v1 v2 v3 va va+1 v2a+2

Fig. 3.3
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It is easy to verify that em3(v1uiui+1) = b if 1 ≤ i ≤ b + 2 and

em3(vivi+1) =





2a− i, if 1 ≤ i ≤ a,

i− 1, if a < i < 2a + 2.

It is also easy to verify that there is no clique S in G with em3(S) < a and there is no

clique S′ in G with em3(S
′) > b. Thus Rm3 = a and Dm3 = b as b > 2a. 2

Santhakumaran et. al. [7] showed that every three positive integers a, b and c with 3 ≤ a ≤
b ≤ c are realizable as the radius, monophonic radius and detour radius respectively of some

connected graph. Now we have a realization theorem for the clique-to-clique radius, clique-

to-clique monophonic radius and clique-to-clique detour radius respectively of some connected

graph.

Theorem 3.9 For any three positive integers a, b, c with 3 ≤ a ≤ b ≤ c, there exists a connected

graph G such that r3 = a, Rm3 = b, R3 = c.

Proof The proof is divided into cases following.

Case 1. a = b = c.

Let P1 : u1, u2, · · · , ua+2 and P2 : v1, v2, . . . , va+2 be two paths of order a+2. We construct

the graph G of order 2a+4 by joining u1 in P1 and v1 in P2 by an edge. It is easy to verify that

e3(u1v1) = em3(u1v1) = eD3(u1v1) = a, e3(uiui+1) = em3(uiui+1) = eD3(uiui+1) = a+i if 1 ≤
i ≤ a + 1.

It is also easy to verify that there is no clique S in G with e3(S) < a, em3(S) < b and

eD3(S) < c. Thus r3 = a, Rm3 = b and R3 = c as a = b = c.

Case 2. 3 ≤ a ≤ b < c.

Let P1 : u1, u2, · · · , ua+2 and P2 : v1, v2, · · · , va+2 be two paths of order a + 2. Let

Q1 : w1, w2, . . . , wb−a+3 and Q2 : z1, z2, · · · , zb−a+3 be two paths of order b − a + 3. Let

K1 : x1, x2, · · · , xc−b+1 and K2 : y1, y2, · · · , yc−b+1 be two complete graphs of order c − b + 1.

We construct the graph G of order 2c + 4 as follows: (i) identify the vertices u1 in P1 with w1

in Q1 and also identify the vertices v1 in P2 with z1 in Q2; (ii) identify the vertices u3 in P1

with wb−a+3 in Q1 and also identify the vertices zb−a+3 in Q2 with v3 in P2; (iii) identify the

vertices ua+1 in P1 with x1 in K1 and also identify the vertices xc−b+1 in K1 with ua in P1;

(iv) identify the vertices va+1 in P2 with y1 in K2 and also identify the vertices yc−b+1 in K2

with va in P2; (v) join each vertex wi(2 ≤ i ≤ b − a + 2) in Q1 with u2 in P1 and join each

vertex zi(2 ≤ i ≤ b− a + 2) in Q2 with v2 in P2 (vi) join u1 in P1 with v1 in P2. The resulting

graph G is shown in Fig.3.4.
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v1

v2 v3

v4

va va+1 va+2

z2

z3

zb−a+2

wb−a+2

w3

w2

u3

u4

u2

u1
ua ua+1 ua+2

Kc−b+1

Kc−b+1

Fig.3.4

It is easy to verify that e3(u1v1) = a,

e3(u2wiwi+1) =





a + 1, if i = 1,

a + 2, if 2 ≤ i ≤ b− a + 2,

e3(v2zizi+1) =





a + 1, if i = 1,

a + 2, if 2 ≤ i ≤ b− a + 2,

e3(uiui+1) =





a + i, if 3 ≤ i < a,

2a + 1, if i = a + 1,

e3(vivi+1) =





a + i, if 3 ≤ i < a,

2a + 1, if i = a + 1,

e3(K1) = 2a, e3(K2) = 2a, em3(u1v1) = b,

and em3(u2wiwi+1) = b + i, if 1 ≤ i ≤ b− a + 2, em3(v2zizi+1) = b + i, if 1 ≤ i ≤ b− a + 2,

em3(uiui+1) =





2b− a + i, if 3 ≤ i < a,

2b + 1, if i = a + 1,

em3(vivi+1) =





2b− a + i, if 3 ≤ i < a,

2b + 1, if i = a + 1,

em3(K1) = 2b, em3(K2) = 2b, eD3(u1v1) = c,



Clique-to-Clique Monophonic Distance in Graphs 131

eD3(u2wiwi+1) = c + i, if 1 ≤ i ≤ b− a + 2, eD3(v2zizi+1) = c + i, if 1 ≤ i ≤ b− a + 2,

eD3(uiui+1) =





c + b− a + 1 + i, if 3 ≤ i < a,

c + b + 2, if i = a + 1,

eD3(vivi+1) =





c + b− a + 1 + i, if 3 ≤ i < a,

c + b + 2, if i = a + 1,

eD3(K1) = c + b + 1, eD3(K2) = c + b + 1.

It is also easy to verify that there is no clique S in G with e3(S) < a, em3(S) < b and

eD3(S) < c. Thus r3 = a, Rm3 = b and R3 = c as a ≤ b < c.

Case 3. 3 ≤ a < b = c.

Let P1 : u1, u2, · · · , ua, ua+2 and P2 : v1, v2, · · · , va, va+2 be two paths of order a + 2.

Let Q1 : w1, w2, · · · , wb−a+3 and Q2 : z1, z2, · · · , zb−a+3 be two paths of order b − a + 3. Let

Ei : xi(3 ≤ i ≤ b − a + 2) and Fi : yi(3 ≤ i ≤ b − a + 2) be 2(b − a) copies of K1. We

construct the graph G of order 4b − 2a + 6 as follows: (i) identify the vertices u1 in P1 with

w1 in Q1 and also identify the vertices v1 in P2 with z1 in Q2; (ii) identify the vertices u3 in

P1 with wb−a+3 in Q1 and also identify the vertices zb−a+3 in Q2 with v3 in P2 (iii) join each

vertex xi(3 ≤ i ≤ b − a + 2) with wi(3 ≤ i ≤ b − a + 2) and u1 and also join each vertex

yi(3 ≤ i ≤ b − a + 2) with zi(3 ≤ i ≤ b − a + 2) and v1 (iv) join u1 in P1 with v1 in P2. The

resulting graph G is shown in Fig. 3.5.

v1

v2 v3

v4

va+1 va+2

z2

z3

zb−a+2

wb−a+2

w3

w2

u3

u4

u2

x3

xb−a+2

y3

yb−a+2

u1
ua+1 ua+2

Fig.3.5
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It is easy to verify that e3(u1v1) = a,

e3(wiwi+1) =






a + 1, if i = 1,

a + 2, if i = 2,

a + 3, if 3 ≤ i ≤ b − a + 2,

and e3(uiui+1) = a + i, if 1 ≤ i ≤ a + 1, e3(u1xi) = a + 1, if 3 ≤ i ≤ b − a + 2,

e3(wixi) = a + 2, if 3 ≤ i ≤ b− a + 2, em3(u1v1) = b,

em3(wiwi+1) =






b + 1, if i = 1

2b− a + 5− i, if 2 ≤ i ≤
⌊

b−a+5
2

⌋

b + i, if
⌊

b−a+5
2

⌋
< i ≤ b− a + 2

em3(uiui+1) =






b + 1, if i = 1,

2b− a + 3, if i = 2,

2b− a + i, if 3 ≤ i ≤ a + 1,

and em3(u1xi) = b + 1, if 3 ≤ i ≤ b− a + 2,

em3(wixi) =





2b− a + 6− i, if 3 ≤ i ≤

⌊
b−a+5

2

⌋
,

b + i, if
⌊

b−a+5
2

⌋
< i ≤ b− a− 2,

and eD3(u1v1) = c,

eD3(wiwi+1) =






c + 1, if i = 1,

2c− a + 5− i, if 2 ≤ i ≤
⌊

b−a+5
2

⌋
,

c + i, if
⌊

b−a+5
2

⌋
< i ≤ b− a + 2,

eD3(uiui+1) =






c + 1, if i = 1,

2c− a + 3, if i = 2,

2c− a + i, if 3 ≤ i ≤ a + 1,

and eD3(u1xi) = c + 1, if 3 ≤ i ≤ b− a + 2,

eD3(wixi) =





2c− a + 6− i, if 3 ≤ i ≤

⌊
b−a+5

2

⌋
,

c + i, if
⌊

b−a+5
2

⌋
< i ≤ b− a + 2.

It is easy to verify that there is no clique S in G with e3(S) < a, em3(S) < b and eD3(S) < c.

Thus r3 = a, Rm3 = b and R3 = c as a < b = c. 2
Santhakumaran et. al. [7] showed that every three positive integers a, b and c with 5 ≤ a ≤

b ≤ c are realizable as the diameter, monophonic diameter and detour diameter respectively of
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some connected graph. Now we have a realization theorem for the clique-to-clique diameter,

clique-to-clique monophonic diameter and clique-to-clique detour diameter respectively of some

connected graph.

Theorem 3.10 For any three positive integers a, b, c with 4 ≤ a ≤ b ≤ c, there exists a connected

graph G such that d3 = a, Dm3 = b and D3 = c.

Proof The proof is divided into cases following.

Case 1. a = b = c.

Let G = Pa+3 : u1, u2, · · · , ua+3 be a path. Then

e3(uiui+1) = em3(uiui+1) = eD3(uiui+1) =





a− i + 1, if 1 ≤ i ≤

⌊
a+1

2

⌋
,

i− 2, if
⌊

a+1
2

⌋
< i ≤ a + 2.

It is easy to verify that there is no clique S in G with e3(S) > a, em3(S) > b and eD3(S) > c.

Thus d3 = a, Dm3 = b and D3 = c as a = b = c.

Case 2. 4 ≤ a ≤ b < c.

Let P1 : u1, u2, · · · , ua+2 be a path of order a+2. Let P2 : w1, w2, · · · , wb−a+3 be a path of

order b − a + 3. Let P3 : x1, x2 be a path of order 2. Let K1 : y1, y2, · · · , yc−b+1 be a complete

graph of order c − b + 1. We construct the graph G of order c + 3 as follows: (i) identify the

vertices u1 in P1, w1 in P2 with x1 in P3 and identify the vertices u3 in P1 with wb−a+3 in P2;

(ii) identify the vertices ua+1 in P1 with y1 in K1 and identify the vertices ua in P1 with yc−b+1

in K1; (iii) join each vertex wi(2 ≤ i ≤ b− a + 2) in P2 with u2 in P1. The resulting graph G

is shown in Fig.3.6. It is easy to verify

wb−a+2

w3

w2

u3 u4u2

x1

x2

ua ua+1 ua+2

Kc−b+1

Fig.3.6

that e3(x1x2) = a, e3(K1) = a− 1,

e3(uiui+1) =





a− i, if 3 ≤ i ≤

⌊
a
2

⌋
,

i− 1, if
⌊

a
2

⌋
< i ≤ a,
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e3(u2wiwi+1) =





a− 1, if 1 ≤ i ≤ b− a + 1,

a− 2, if i = b− a + 2,

and em3(x1x2) = b, em3(K1) = b− 1,

em3(uiui+1) =





b− a + i− 1, if 3 ≤ i ≤ a for b− a + i ≥ a− i,

a− i, if 3 ≤ i ≤ a for b− a + i ≤ a− i,

em3(u2wiwi+1) =






b− i, if 1 ≤ i ≤
⌊

b
2

⌋
for

⌊
b
2

⌋
< b− a + 3,

i− 1, if
⌊

b
2

⌋
< i ≤ b− a + 3 for

⌊
b
2

⌋
≤ b− a + 3,

b− i, if 1 ≤ i ≤ b − a + 3 for
⌊

b
2

⌋
≥ b − a + 3,

and eD3(x1x2) = c, eD3(K1) = b,

eD3(uiui+1) =





b− a + i, if 3 ≤ i ≤ a for b− a + i ≥ c− b + a− i− 1,

c− b + a− i− 1, if 3 ≤ i ≤ a for b− a + i ≤ c− b + a− i− 1,

eD3(u2wiwi+1) =






c− i− 1, if 1 ≤ i ≤
⌊

b
2

⌋
for

⌊
b
2

⌋
< c− b + 1,

i− 1, if
⌊

b
2

⌋
< i ≤ b− a + 3 for

⌊
b
2

⌋
≤ c− b + 1,

c− i− 1, if 1 ≤ i ≤ b− a + 3 for
⌊

b
2

⌋
≥ c− b + 1

It is easy to verify that there is no clique S in G with e3(S) > a, em3(S) > b and eD3(S) > c.

Thus d3 = a, Dm3 = b and D3 = c as a ≤ b < c.

Case 3. 4 ≤ a < b = c.

Let P1 : u1, u2, · · · , ua+2 be a path of order a + 2. Let P2 : w1, w2, . . . , wb−a+3 be a path

of order b− a + 3. Let P3 : x1, x2 be a path of order 2. Let Ei : xi(3 ≤ i ≤ b− a + 2) be a b− a

copies of K1. We construct the graph G of order 2b− a + 4 as follows: (i) identify the vertices

u1 in P1,w1 in P2 with x1 in P3 and also identify the vertices u3 in P1 with wb−a+3 in P2; (ii)

join each vertex xi(3 ≤ i ≤ b − a + 2) with u3 in P1 and wi in P2. The resulting graph G is

shown in Fig.3.7.

wb−a+2

wb−a+1

x3

xb−a+2

w2

u3 u4u2

x1

x2

ua+1 ua+2

Fig.3.7
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It is easy to verify that e3(x1x2) = a,

e3(uiui+1) =





a− i, if 1 ≤ i ≤

⌊
a
2

⌋
,

i− 1, if
⌊

a
2

⌋
< i ≤ a,

e3(u3xi) = a− 2, if 3 ≤ i ≤ b − a + 2,

e3(wiwi+1) =






a, if 1 ≤ i ≤ b− a,

a− 1, if i = b− a + 1,

a− 2, if i = b− a + 2,

and e3(xiwi−1) = a− 1, if 3 ≤ i ≤ b− a + 2, em3(x1x2) = b,

em3(u3xi) =





b − a + 2, if 3 ≤ i ≤ b− a + 2 for b− a + 3 ≥ a− 2,

a− 2, if 3 ≤ i ≤ b− a + 2 for b− a + 3 ≤ a− 2,

em3(uiui+1) =






b, if i = 1,

b− a + 2, if i = 2 for b− a + 3 ≥ a− 2 ,

a− 2, if i = 2 for b− a + 3 ≤ a− 2 ,

b− a + i− 1, if 3 ≤ i ≤ a for b− a + 3 ≥ a− 2 ,

a− i, if 3 ≤ i ≤ a for b− a + 3 ≤ a− 2 ,

em3(wiwi+1) =






b− i, if 1 ≤ i ≤
⌊

b−a+1
2

⌋
,

a + i− 1, if
⌊

b−a+1
2

⌋
< i ≤ b − a + 1,

i− 1, if i = b− a + 2 for i ≥ a− 2,

a− 2, if i = b− a + 2 for i ≤ a− 2,

em3(xiwi−1) =





em3(wi−2wi−1) if 3 ≤ i ≤

⌊
b−a+3

2

⌋
,

em3(wi−1wi) if
⌊

b−a+3
2

⌋
< i ≤ b− a + 2,

eD3(x1x2) = c,

eD3(uiui+1) =






c, if i = 1,

c− a + 2, if i = 2 for b− a + 3 ≥ a− 2 ,

a− 2, if i = 2 for b− a + 3 ≤ a− 2 ,

c− a + i− 1, if 3 ≤ i ≤ a for b− a + 3 ≥ a− 2 ,

a− i, if 3 ≤ i ≤ a for b− a + 3 ≤ a− 2 ,
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eD3(wiwi+1) =






c− i, if 1 ≤ i ≤
⌊

b−a+1
2

⌋
,

a + i− 1, if
⌊

b−a+1
2

⌋
< i ≤ b− a + 1,

i− 1, if i = b− a + 2 for i ≥ a− 2,

a− 2, if i = b− a + 2 for i ≤ a− 2

eD3(xiwi−1) =





eD3(wi−2wi−1) if 3 ≤ i ≤

⌊
b−a+3

2

⌋
,

eD3(wi−1wi) if
⌊

b−a+3
2

⌋
< i ≤ b− a + 2,

eD3(u3xi) =





c− a + 2, if 3 ≤ i ≤ b− a + 2 for b− a + 3 ≥ a− 2,

a− 2, if 3 ≤ i ≤ b− a + 2 for b− a + 3 ≤ a− 2.

It is easy to verify that there is no clique S in G with e3(S) > a, em3(S) > b and eD3(S) > c.

Thus d3 = a, Dm3 = b and D3 = c as a < b = c. 2
In [2], it is shown that the center of every connected graph G lies in a single block of

G, Chartrand et. al. [1] showed that the detour center of every connected graph G lies in a

single block of G, and Santhakumaran et. al. [7] showed that the monophonic center of every

connected graph G lies in a single block of G. But Keerthi Asir et. al. [4] showed that the

clique-to-clique detour center of every connected graph G does not lie in a single block of G.

However the similar result is not true for the clique-to-clique monophonic center of a graph.

Remark 3.11 The clique-to-clique monophonic center of every connected graph G does not

lie in a single block of G. For the Path P2n+1, the clique-to-clique monophonic center is always

P3, which does not lie in a single block.

We leave the following open problems.

Problem 3.12 Does there exist a connected graph G such that e3(C) 6= em3(C) 6= eD3(C) for

every clique C in G?

Problem 3.13 Is every graph a clique-to-clique monophonic center of some connected graph?

Problem 3.14 Characterize clique-to-clique monophonic self-centered graphs.
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of G and with vertices u, v ∈ V (N(G)) adjacent if u ∈ V and v is an open neighborhood set
containing u. In this paper, we obtain the domination number, the total domination number
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§1. Introduction

Let G = (V, E) be a simple graph with |V (G)| = n vertices and |E(G)| = m edges. The neigh-

borhood of a vertex u is denoted by NG(u) and its degree |NG(u)| by degG(u). The minimum

and maximum degree of a graph G are denoted by δ = δ(G) and ∆ = ∆(G), respectively. The

open neighborhood of a set S ⊆ G is the set N(S) =
⋃

v∈V (G) N(v), and the closed neighbor-

hood of S is the set N [S] = N(S) ∪ S. A cut-vertex of a graph G is any vertex u ∈ V (G) for

which induced subgraph G\{u} has more components than G. A vertex with degree 1 is called

an end-vertex [1].

A dominating set is a set D of vertices of G such that every vertex outside D is dominated

by some vertex of D. The domination number of G, denoted by γ(G), is the minimum size of a

dominating set of G, and generally, a vertex set Dk
S of G is a Smarandachely dominating k-set

if each vertex of G is dominated by at least k vertices of S. Clearly, if k = 1, such a set Dk
S is

nothing else but a dominating set of G. A dominating set D is a total dominating set of G if

every vertex of the graph is adjacent to at least one vertex in D. The total domination number

of G, denoted by γt(G) is the minimum size of a total dominating set of G. A dominating

1Received December 26, 2016, Accepted November 27, 2017.
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set D is called an independent dominating set if D is an independent set. The independent

domination number of G denoted by γi(G) is the minimum size of an independent dominating

set of G [1].

The join of two graphs G1 and G2, denoted by G1 + G2, is the graph with vertex set

V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2) ∪ {uv |u ∈ V (G1) and v ∈ V (G2)}. The corona

of two graphs G1 and G2 is the graph G = G1 ◦ G2 formed from one copy of G1 and |V (G1)|
copies of G2, where the ith vertex of G1 is adjacent to every vertex in the ith copy of G2. For

every v ∈ V (G1), Gv
2 is the copy of G2 whose vertices are attached one by one to the vertex

v. The corona G ◦K1, in particular, is the graph constructed from a copy of G, where for each

vertex v ∈ V (G), a new vertex v′ and a pendant edge vv′ are added [2].

We use Kn, Cn and Pn to denote a complete graph, a cycle and a path of the order n,

respectively. A complete bipartite graph denotes by Km,n and the graph K1,n of order n + 1 is

a star graph with one vertex of degree n and n end-vertices.

The neighborhood graph N(G) of a graph G is the graph with the vertex set V ∪ S where

S is the set of all open neighborhood sets of G and two vertices u and v in N(G) are adjacent

if u ∈ V and v is an open neighborhood set containing u. In Figure 1, a graph G and its

neighborhood graph are shown. The open neighborhood sets in graph G are N(1) = {2, 3, 4},
N(2) = {1, 3}, N(3) = {1, 2} and N(4) = {1} [3].

Figure 1 The graph G and the neighborhood graph of G.

In this paper, we determine the domination number, total domination number and inde-

pendent domination number for the neighborhood graph of a graph G. Also, we consider the

join graph and the corona graph of two neighborhood graphs and investigate some parameters

of domination of these graphs.

§2. Lemma and Preliminaries

In the text follows we recall some results that establish the domination number, the total

domination number and the independent domination number for graphs, that are of interest
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for our work.

Lemma 2.1([3]) If G be a graph without isolated vertex of order n and the size of m, then

N(G) is a bipartite graph with 2n vertices and 2m edges.

Lemma 2.2([3]) If T be a tree with n ≥ 2, then N(T ) = 2T .

Lemma 2.3 ([3]) For a cycle Cn with n ≥ 3 vertices,

N(Cn) =





2Cn if n is even,

C2n if n is odd.

Lemma 2.4 ([3])

(i) For 1 ≤ m ≤ n, N(Km,n) = 2Km,n;

(ii) For n ≥ 1, N(K̄n) = K̄n;

(iii) A graph G is a r-regular if and only if N(G) is a r-regular graph.

Lemma 2.5 ([1]) Let γ(G) be the domination number of a graph G, then

(i) For n ≥ 3, γ(Cn) = γ(Pn) = ⌈n
3 ⌉;

(ii) γ(Kn) = γ(K1,n) = 1;

(iii) γ(Km,n) = 2;

(iv) γ(K̄n) = n.

Lemma 2.6 ([4]) If T be a tree of order n and l end-vertices, then

γ(T ) ≥ n− l + 2

3
.

Lemma 2.7 ([5]) Let G be a r-regular graph of order n. Then

γ(G) ≥ n

r + 1
.

Lemma 2.8 ([6]) Let γt be the total domination number of G. Then

(i) γt(Kn) = γt(Kn,m) = 2;

(ii) γt(Pn) = γt(Cn) =






n
2 if n ≡ 0 (mod 4),

n+2
2 if n ≡ 2 (mod 4),

n+1
2 otherwise.

(iiii) Let T be a nontrivial tree of order n and l end-vertices, then

γt(T ) ≥ n− l + 2

2
;

(iv) Let G be a graph , then γt(G) ≥ 1 + |C|
2 , where C is the set of cut-vertices of G.
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Lemma 2.9 ([7]) Let γi be the independent domination number of G. Then

(i) γi(Pn) = γi(Cn) =
⌈

n
3

⌉
;

(ii) γi(Kn,m) = min{n, m};
(iii) For a graph G with n vertices and the maximum degree ∆,

⌈ n

1 + ∆

⌉
≤ γi(G) ≤ n−∆.

(iv) If G is a bipartite graph of order n without isolated vertex, then

γi(G) ≤ n

2
;

(v) For any tree T with n vertices and l end-vertices,

γi(T ) ≤ n + l

3
.

Lemma 2.10 ([8]) For any graph G, χ(G) ≤ △(G) + 1 where χ(G) is the chromatic number

of G.

Lemma 2.11 ([9]) For any graph G, κ(G) ≤ δ(G), where κ(G) is the connectivity of G.

§3. The Domination Number, the Total Domination Number and the

Independent Domination Number on N(G)

In this section, we propose the obtained results of some parameters of domination on a neigh-

borhood graph.

Theorem 3.1 Let the neighborhood graph of G be N(G), then

(i) γ(N(Pn)) = 2
⌈

n
3

⌉
;

(ii) γ(N(Cn)) =





2⌈n

3 ⌉ if n is even,
⌈2n

3

⌉
if n is odd.

(iii) γ(N(K1,n)) = γ(N(Kn)) = 2;

(iv) For 2 ≤ n ≤ m, γ(N(Kn,m)) = 4;

(v) For n ≥ 2, γ(N(K̄n)) = 2n.

Proof (i) Using Lemma 2.2, for n ≥ 2, N(Pn) = 2Pn. So, it is sufficient to consider a

dominating set of Pn. By Lemma 2.5(i), γ(Pn) =
⌈

n
3

⌉
. Therefore,

γ(N(Pn)) = 2γ(Pn) = 2
⌈n

3

⌉
.

(ii) If n is even then by Lemma 2.3, N(Cn) = 2Cn. So, we consider a cycle Cn of order n
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and using Lemma 2.5(i), we have

γ(N(Cn)) = 2γ(Cn) = 2
⌈n

3

⌉
.

If n is odd, then since N(Cn) is a cycle of order 2n so, γ(N(Cn)) = γ(C2n) =
⌈2n

3

⌉
.

The segments on (iii), (iv) and (v) can be obtained similarly by applying Lemma 2.1,

Lemma 2.4 and Lemma 2.5. 2
Theorem 3.2 Let T be a tree of order n with l end-vertices. Then

2

3
(n− l + 2) ≤ γ(N(T )) ≤ n.

Proof Using Lemma 2.2, for every tree T , N(T ) = 2T . So, we consider a tree T to

investigate its domination number. Thus, by Lemma 2.6, for every tree T of order n with l

end-vertices,

γ(T ) ≥ n− l + 2

3
.

Therefore,

γ(N(T )) = 2γ(T ) ≥ 2
(n− l + 2

3

)
.

Since T is without isolated vertices so, N(T ) is a graph without any isolated vertex. There-

fore, V (T ) ⊆ V (N(T )) is a dominating set of N(T ). Thus, γ(N(T )) ≤ n. It completes the

result. 2
Theorem 3.3 Let G be a r-regular graph. Then,

γ(N(G)) ≥ 2n

r + 1
.

Proof Using Lemma 2.5(iii), since G is an r-regular graph so, N(G) is a r-regular graph

too. According to Lemma 2.1 and Lemma 2.7, we have

γ(N(G)) ≥ 2n

r + 1
. 2

Theorem 3.4 Let N(G) be a neighborhood graph of G. Then for every vertex x ∈ V (G),

degG(x) is equal with degN(G)(x).

Proof Assume x ∈ V (G) and degG(x) = k. So, the neighborhood set of x is N(x) =

{y1, · · · , yk} where yi ∈ V (G). In graph N(G), x is adjacent to a vertex such as N(u) that

consists x. Then, x is adjacent to N(yi) for every 1 ≤ i ≤ k. Thus, degree of x is k in N(G).

Therefore, degG(x) = degN(G)(x). 2
Theorem 3.5 Let γ(N(G)) be the domination number of N(G). For any graph G of order n
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with the maximum degree ∆(G),

⌈ 2n

1 + ∆(G)

⌉
≤ γ(N(G)) ≤ 2n−∆(G).

Proof Let D be a dominating set of N(G). Each vertex of D can dominate at most itself

and ∆(N(G)) other vertices. Since by Theorem 3.4, ∆(N(G)) = ∆(G) so,

γ(N(G)) = |D| ≥
⌈ 2n

1 + ∆(G)

⌉
.

Now, let v be a vertex with the maximum degree ∆(N(G)) and N [v] be a closed neighbor-

hood set of v in N(G). Then v dominates N [v] and the vertices in V (N(G)) \ N [v] dominate

themselves.

Hence, V (N(G)) \N [v] is the dominating set of cardinality 2n−∆(N(G)). So,

γ(N(G)) ≤ 2n−∆(N(G)) = 2n−∆(G). 2
We establish a relation between the domination number of N(G) and the chromatic number

χ(G) of the graph G.

Theorem 3.6 For any graph G,

γ(N(G)) + χ(G) ≤ 2n + 1.

Proof By Theorem 3.5, γ(N(G)) ≤ 2n −∆(G) and by Lemma 2.10, χ(G) ≤ ∆(G) + 1.

Thus,

γ(N(G)) + χ(G) ≤ 2n + 1. 2
We obtain a relation between the domination number of N(G) and the connectivity κ(G)

of G following.

Theorem 3.7 For any graph G,

γ(N(G)) + κ(G) ≤ 2n.

Proof By Theorem 3.5, γ(N(G)) ≤ 2n − ∆(G) and by Lemma 2.11, κ(G) ≤ δ(G).

Therefore,

γ(N(G)) + κ(G) ≤ 2n−∆(G) + δ(G),

since, δ(G) ≤ ∆(G) so,

γ(N(G)) + κ(G) ≤ 2n. 2
The following theorem is an easy consequence of the definition of N(G), Lemmas 2.2–2.4
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and Lemma 2.8.

Theorem 3.8 Let the neighborhood graph of G be N(G) and γt(N(G)) be the total domination

number of N(G). Then

(i) γt(N(Pn)) = γt(N(Cn)) =






n if n ≡ 0 (mod 4),

n + 2 if n ≡ 2 (mod 4),

n + 1 otherwise,

(ii) For every n, m ≥ 1, γt(N(Km,n)) = 4;

(iii) For n ≥ 2, γt(N(Kn)) = 4.

Theorem 3.9 Let G be a graph of order n without isolated vertices and with the maximum

degree ∆. Then,

γt(N(G)) ≥ 2n

∆
.

Proof Let D be a total dominating set of N(G). Then, every vertex of V (N(G)) is

adjacent to some vertices of D. Since, every v ∈ D can have at most ∆(N(G)) neighborhood,

it follows that ∆(N(G))γt(N(G)) ≥ |V (N(G))| = 2n. By Theorem 3.4, ∆(N(G)) = ∆(G) = ∆

so, ∆γt(N(G)) ≥ 2n. Therefore,

γt(N(G)) ≥ 2n

∆
. 2

Theorem 3.10 Let T be a nontrivial tree of order n and l end-vertices. Then,

γt(N(T )) ≥ n + 2− l.

Proof Using Lemma 2.2, N(T ) = 2T and so, γt(N(T )) = 2γt(T ). By Lemma 2.8(iv),

γt(T ) ≥ n + 2− l

2
.

Therefore,

γt(N(T )) = 2γt(T ) ≥ 2
(n + 2− l

2

)
= n + 2− l. 2

Theorem 3.11 Let G be a graph with x cut-vertices. Then,

γt(N(G)) ≥ 1 + x.

Proof Let C be the set of cut-vertices of N(G). Since for every cut-vertex u of G, u and

N(u) are both cut-vertices in N(G) so, |C| = 2x. By Lemma 2.8(iv), γt(N(G)) ≥ 1 + |C|
2 .

Therefore, we have

γt(N(G)) ≥ 1 +
|C|
2

= 1 +
2x

2
= 1 + x. 2

Theorem 3.12 Let γi(G) be the independent domination number of G. Then
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(i) γi(N(Kn,m)) = 2m;

(ii) γi(N(K1,n)) = 2;

(iii) γi(N(K̄n)) = 2n;

(iv) γi(N(Pn)) = 2⌈n
3 ⌉;

(v) γi(N(Cn)) =





2
⌈

n
3

⌉
if n is even,

⌈2n
3

⌉
if n is odd.

Proof The theorem easily proves using Lemma 2.3, Lemma 2.4(i, ii), Lemma 2.5 and

Lemma 2.9(i, ii). 2
Theorem 3.13 For a graph G with n vertices and the maximum degree ∆,

⌈ 2n

1 + ∆

⌉
≤ γi(N(G)) ≤ 2n−∆.

Proof It is easy to see that N(G) is a graph of order 2n and the maximum degree ∆. So,

using Lemma 2.9(iii) we have the result. 2
We establish a relation between the independent domination number of N(G) and the

chromatic number χ(G) of G.

Theorem 3.14 For any graph G,

γi(N(G)) + χ(G) ≤ 2n + 1.

Proof By Theorem 3.13, γi(N(G)) ≤ 2n−∆(G) and by Lemma 2.10, χ(G) ≤ ∆(G) + 1.

So,

γi(N(G)) + χ(G) ≤ 2n + 1. 2
The following theorem is the relation between the independent domination number of N(G)

and the connectivity κ(G) of G.

Theorem 3.15 For any graph G,

γi(N(G)) + κ(G) ≤ 2n.

Proof By Theorem 3.13, γi(N(G)) ≤ 2n−∆(G) and by Lemma 2.11, κ(G) ≤ δ(G). So,

γi(N(G)) + κ(G) ≤ 2n−∆(G) + δ(G) ≤ 2n. 2
Theorem 3.16 Let G be a simple graph of order n and without any isolated vertex. Then

γi(N(G)) ≤ n.
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Proof For every graph G with n vertices, N(G) is a bipartite graph of order 2n. Since G

doesn’t have any isolated vertex so, N(G) is a graph without isolated vertex. Thus, by Lemma

2.9(iv) we have

γi(N(G)) ≤ 2n

2
= n. 2

Theorem 3.17 Let T be a tree with n vertices and l end-vertices without isolated vertices.

Then

γi(N(T )) ≤ 2

3
(n + 2l).

Proof For every tree T , N(T ) = 2T . Let v be an end-vertex of G. Then, the corresponding

vertices of v and N(v) are end-vertices in N(G). Thus, if T has l end-vertices then 2l end-

vertices are in N(T ). So, by Lemma 2.9(v) we have

γi(N(T )) = 2γi(T ) ≤ 2
(n + 2l

3

)
. 2

§4. The Results of the Combination of Neighborhood Graphs

In this section, we consider two graphs G1 and G2 and study the join and the corona of their

neighborhood graphs in two cases. In Section 4.1, we consider two cases for the join of graphs: i)

the neighborhood graph of G1+G2 that denotes by N(G1+G2), ii) the join of two graphs N(G1)

and N(G2). So, the domination number, the total domination number and the independent

domination number of these graphs are obtained. In Section 4.2, we study the domination

number, the total domination number and the independent domination number on two cases

of the corona graphs: i) N(G1 ◦G2) and ii) N(G1) ◦N(G2).

4.1 The Join of Neighborhood Graphs

Let G1 be a simple graph of order n1 with m1 edges and G2 be a simple graph with n2 vertices

and m2 edges. By the definition of the join of two graphs, G1 + G2 has n1 + n2 vertices and

m1 + m2 + m1m2 edges. So, the neighborhood graph of G1 + G2 has 2(n1 + n2) vertices and

2m edges where m = m1 + m2 + m1m2. For every x ∈ V (G1 + G2) that x ∈ V (G1), we have

degG1+G2(x) = degG1(x) + n2. Also, if y ∈ V (G1 + G2) and y ∈ V (G2) then degG1+G2(y) =

degG2(y) + n1. On the other hand, using Theorem 3.4 we know that degG(x) = degN(G)(x).

So, degG1+G2(x) = degN(G1+G2)(x). Thus, if x ∈ V (G1), then degN(G1+G2)(x) = degG1(x)+n2

and if y ∈ V (G2) then degN(G1+G2)(y) = degG2(y) + n1.

Now, let G1 and G2 be simple graphs without any isolated vertex. Thus, the join of N(G1)

and N(G2) denotes N(G1) + N(G2) of order 2(n1 + n2). Also, N(G1 + G2) has 2m1 + 2m2 +

4m1m2 edges. Therefore, E(N(G1)+N(G2)) = E(N(G1 +G2))+2m1m2. Also, we can obtain

for every x ∈ V (N(G1)), degN(G1)+N(G2)(x) = degN(G1)(x) + 2n2 and for every y ∈ V (G2),

degN(G1)+N(G2)(y) = degN(G2)(y) + 2n1.
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Theorem 4.1 Let G1 and G2 be simple graphs without isolated vertex. If order of G1 is n1

and ∆(G1) ≥ n1 − 1, then

γ(N(G1 + G2)) = γi(N(G1 + G2)) = 2.

Proof Let x ∈ V (G1) be a vertex with the maximum degree at least n1−1. So, x dominates

n1 − 1 vertices of G1. Let D = {x, NG1+G2(x)} and NG1+G2(x) be the open neighborhood set

of x in G1 + G2. Since, every vertex of G1 is adjacent to all of vertices of G2 in G1 + G2 so, the

degree of x in G1 + G2 is n1 + n2 − 1 and x dominates n1 + n2 − 1 in N(G1 + G2). Similarity,

NG1+G2(x) dominates n1 + n2 − 1 vertices of N(G1 + G2). So, γ(N(G1 + G2)) = |D| = 2.

Since, x and NG1+G2(x) are not adjacent in N(G1 + G2). Thus, D is an independent

dominating set in N(G1 + G2). Therefore, γi(N(G1 + G2)) = 2. 2
Theorem 4.2 Let G1 and G2 be simple graphs without isolated vertices. Then

2 ≤ γ(N(G1 + G2)) ≤ 4.

Proof It is clearly to obtain γ(N(G1 + G2)) ≥ 2. Let S = {x, NG1+G2(x), y, NG1+G2(y)}
where x ∈ V (G1) and y ∈ V (G2). Then, x dominates all of vertices of G2 in G1 + G2 and so,

all of vertices of N(G1 + G2) that are the corresponding set to the neighborhoods of V (G2).

Similarity, y ∈ V (G2) dominates n1 vertices of N(G1 + G2). It is shown that S is a dominating

set of N(G1 + G2). Therefore, the result holds. 2
Theorem 4.3 For graphs G1 and G2,

γt(N(G1 + G2)) = 4.

Proof Assume S = {x, NG1+G2(x), y, NG1+G2(y)} where x ∈ V (G1) and y ∈ V (G2). The

vertex of NG1+G2(x) in N(G1 + G2) is the corresponding vertex to the neighborhood of x in

G1. So, x dominates all of the vertices of G1 and y dominates all of vertices of G2. It is clearly

to see that x is adjacent to NG1+G2(y) and y is adjacent to NG1+G2(x). Therefore, S is a total

dominating set of N(G1 + G2) and we have γt(N(G1 + G2)) ≤ |S| = 4.

Let D be a total dominating set of N(G1 + G2) that |D| ≤ 3. We can assume that

D = {x, y, z}. Thus, we have the following cases.

Case 1. If x, y, z ∈ V (G1 + G2), then since V (N(G1 + G2)) = V (G1 + G2) ∪ S so, all of the

vertices S are dominated by D where S is the set of all open neighborhood sets of G1 + G2.

But, each of vertices of V (G1 + G2) in V (N(G1 + G2)) is not dominated by D. Thus, it is a

contradiction.

Case 2. Let one of vertices of D be in V (G1+G2) and remained vertices be in S of N(G1+G2).

Without loss of generality suppose that x ∈ V (G1). So, x ∈ V (G1 + G2) and y, z ∈ S. since x
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doesn’t dominate NG1+G2(x) and y, z don’t dominate the corresponding vertices to y and z in

V (G1 + G2) so, D is not the dominate set in N(G1 + G2). So, it is a contradiction.

Therefore, γt(N(G1 + G2)) ≥ 4. 2
Theorem 4.4 For graphs G1 and G2,

(i) γ(N(G1) + N(G2)) = 2;

(ii) γt(N(G1) + N(G2)) = 2.

Proof Using the definition of the total dominating set and the structure of the join of two

graphs, the result is hold. 2
4.2 The Corona of Neighborhood Graphs

In this section, the results of the investigating of the corona on the neighborhood graphs are

proposed.

Theorem 4.5 Let G be a connected graph of order m and H any graph of order n. Then

γ(N(G) ◦N(H)) = 2m.

Proof According to the definition of the corona G and H , for every v ∈ N(G), V (v +

N(H)v)∩V (N(G)) = {v} in which N(H)v is copy of N(H) whose vertices are attached one by

one to the vertex v. Thus, {v} is a dominating set of v + N(H)v for v ∈ V (N(G)). Therefore,

V (N(G)) is a dominating set of N(G) ◦N(H) and γ(N(G) ◦N(H)) ≤ 2m.

Let D be a dominating set of N(G) ◦ N(H). We show that D ∩ V (v + N(H)v) is a

dominating set of v + N(H)v for every v ∈ V (N(G)).

If v ∈ D, then {v} is a dominating set of v + N(H)v. It follows that V (v + N(H)v) ∩D

is a dominating set of v + N(H)v. If v /∈ D and let x ∈ V (v + N(H)v) \D with x 6= v. Since,

D is a dominating set of N(G) ◦ N(H), there exists y ∈ D such that xy ∈ E(N(G) ◦ N(H)).

Then, y ∈ V (N(H)v) ∩D and xy ∈ E(v + N(H)v). Therefore, it completes the result.

Since D ∩ V (v + N(H)v) is a dominating set of v + N(H)v for every v ∈ V (N(G)) so,

γ(N(G) ◦N(H)) = |D| ≥ 2m. It completes the proof. 2
Theorem 4.6 Let G be a connected graph of order m and H any graph of order n. Then

γt(N(G) ◦N(H)) = 2m.

Proof It is easily to obtain that V (N(G)) is a total dominating set for N(G) ◦N(H). So,

γt(N(G) ◦N(H)) ≤ 2m.

Let D be a total dominating set of N(G) ◦N(H). Then, for every v ∈ V (N(G)), |V (v +

N(H)v) ∩D| ≥ 1. So, γt((N(G) ◦N(H)) = |D| ≥ 2m. Therefore, γt(N(G) ◦N(H)) = 2m. 2
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Theorem 4.7 Let G be a simple graph of order n without isolated vertex. Then

γi(N(G) ◦K1) = 2n.

Proof It is clearly that there exists 2n end-vertices in N(G) ◦K1. Since, the set of these

end-vertices is the dominating set and the independent set in N(G)◦K1 so, the result holds. 2
Theorem 4.8 Let G be a simple graph without isolated vertex. Then

N(G ◦K1) ∼= N(G) ◦K1.

Proof Two graphs are isomorphism, if there exists the function bijection between the

vertex sets of these graphs. So, we consider the function f : V (N(G ◦K1)) −→ V (N(G) ◦K1)

where for every u and v in V (N(G◦K1)) if uv ∈ E(N(G◦K1)) then f(u)f(v) ∈ E(N(G)◦K1).

It means that there exists an one to one correspondence between the vertex sets and the edge

sets of N(G ◦K1) and N(G) ◦K1. We easily obtain the following results:

For N(G ◦ K1), |V (N(G ◦ K1))| = 2|V (G ◦ K1)| = 2(2n) = 4n and |E(N(G ◦ K1))| =

2|E(G ◦K1)| = 2(m + n). Also, for graph N(G) ◦K1, we have

|V (N(G) ◦K1)| = 2|V (N(G))| = 4n,

|E(N(G) ◦K1)| = 2n + |E(N(G))| = 2n + 2m = 2(n + m).

For any x ∈ V (N(G ◦ K1)) with degN(G◦K1)(x) = 1, then x /∈ V (G) and x ∈ V (N(G)).

On the other hand, if y ∈ V (N(G) ◦ K1) and degN(G)◦K1(y) = 1 then, y /∈ V (N(G)). Thus,

x ∈ N(G ◦ K1) is corresponding to y in N(G) ◦ K1. Also, using Theorem 3.4, if x ∈ V (G),

then degN(G◦K1)(x) = degG◦K1(x) and degN(G)◦K1(x) = degG◦K1(x). Therefore, if x ∈ V (G)

then, the degree of x in N(G ◦K1) is equal with the degree of x in N(G) ◦K1. These results

are shown that there exists an one to one correspondence between two graphs N(G) ◦K1 and

N(G ◦K1). 2
Theorem 4.8 is shown that the obtained results on some parameters of domination of two

graphs N(G ◦K1) and N(G) ◦K1 are equal. So, Theorems 4.5–4.7 hold for N(G ◦K1) for any

graph G.
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Abstract: A graph with n vertices is said to admit a prime labeling if it’s vertices are

labeled with distinct integers 1, 2, · · · , n such that for edge xy , the labels assigned to x
and y are relatively prime. The graph that admits a prime labeling is said to be prime.

G. Sethuraman has introduced concept of supersubdivision of a graph. In the light of this
concept, we have proved that supersubdivision by K2,2 of star, cycle and ladder are prime.
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§1. Introduction

We consider finite undirected graphs without loops, also without multiple edges. G Sethuraman

and P. Selvaraju [2] have introduced supersubdivision of graphs and proved that there exists

a graceful arbitrary supersubdivision of Cn, n ≥ 3 with certain conditions. Alka Kanetkar has

proved that grids are prime [1]. Some results on prime labeling for some cycle related graphs

were established by S.K. Vaidya and K.K.Kanani [6]. It was appealing to study prime labeling

of supersubdivisions of some families of graphs.

§2. Definitions

Definition 2.1(Star) A star Sn is the complete bipartite graph K1,n a tree with one internal

node and n leaves, for n > 1.

Definition 2.2(Ladder) A ladder Ln is defined by Ln = Pn ×P2 here Pn is a path of length n

, × denotes Cartesian product. Ln has 2n vertices and 3n− 2 edges.

Definition 2.3(Cycle) A cycle is a graph with an equal number of vertices and edges where

vertices can be placed around circle so that two vertices are adjacent if and only if they appear

1Received January 9, 2017, Accepted November 28, 2017.
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consecutively along the circle. The cycle is denoted by Cn.

Definition 2.4(Subdivision of a Graph) Let G be a graph with p vertices and q edges. A graph

H is said to be a subdivision of G if H is obtained by subdividing every edge of G exactly once.

H is denoted by S(G). Thus, |V | = p + q and |E| = 2q.

Definition 2.5(Supersubdivision of a Graph) Let G be a graph with p vertices and q edges. A

graph H is said to be a supersubdivision of G if it is obtained from G by replacing every edge

e of G by a complete bipartite graph K2,m. H is denoted by SS(G). Thus, |V | = p + mq and

|E| = 2mq.

Definition 2.6(Prime Labelling) A prime labeling of a graph is an injective function f :

V (G)→ {1, 2, · · · , |V (G)|} such that for every pair of adjacent vertices u and v, gcd (f (u) , f (v))

= 1 i.e.labels of any two adjacent vertices are relatively prime. A graph is said to be prime if it

has a prime labeling.

Generally, a labeling is called Smarandachely prime on a graph H by Smarandachely denied

axiom ([5], [8]) if there is such a labeling f : V (G) → {1, 2, · · · , |V (G)|} on G that for every

edge uv not in subgraphs of G isomorphic to H, gcd (f (u) , f (v)) = 1.

For a complete bipartite graph K2,m, we call the part consisting of two vertices, the 2

vertices part of K(2,m) and the part consisting of m vertices, the m-vertices part of K2,m in this

paper.

§3. Main Results

Theorem 3.1 A supersubdivision of Sn, i.e. SS (Sn) is prime for m = 2.

Proof Let u be the internal node i.e.centre vertex. Let v1, v2, · · · , vn be endpoints. Let

v1
i , v2

i , i = 1, 2, · · · , n be vertices of graph K2,2 replacing edge uvi. Here, |V | = 3n + 1.

Let f : V → {1, 2, . . . , 3n + 1} be defined as follows:

f (u) = 1,

f (vi) = 3i, i = 1, 2, · · · , n,

f
(
v1

i

)
= 3i− 1, i = 1, 2, · · · , n,

f
(
v2

i

)
= 3i + 1, i = 1, 2, · · · , n.

As f (u) = 1, gcd
(
f (u) , f

(
v1

i

))
= 1 and gcd

(
f (u) , f

(
v2

i

))
= 1.

As successive integers are coprime, gcd
(
f
(
v1

i

)
, f (vi)

)
= (3i− 1, 3i) = 1 and gcd

(
f
(
v2

i

)
,

f (vi)) = (3i + 1, 3i) = 1. Thus SS (Sn) is prime. 2
Let Cn be a cycle of length n. Let c1, c2, · · · , cn be the vertices of cycle. Let ck

i,i+1, k = 1, 2

be the vertices of the bipartite graph that replaces the edge cici+1 for i = 1, 2, · · · , n − 1 Let

ck
n,1, k = 1, 2 be the vertices of the bipartite graph that replaces the edge cnc1. To illustrate

these notations a figure is shown below.
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c1

c2

c3

c4 c5

c6

c7

c1
1,2

c2
1,2

c1
2,3c2

2,3

c1
3,4

c2
3,4

c1
4,5

c2
4,5

c1
5,6

c2
5,6

c1
6,7
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6,7

c1
7,1

c2
7,1

Fig.1 Graph with n = 7 with general vertex labels

Theorem 3.2 A supersubdivision of Cn, i.e. SS (Cn) is prime for m = 2.

Proof Let p1, p2, · · · , pk be primes such that 3 ≤ p1 < p2 < p3 · · · < pk < 3n such that if

p is any prime from 3 to 3n then p = pi for some i between 1 to k.

Define S2 = {S2i/S2i = 2i, i ∈ N such that S2i ≤ 3n}. Choose greatest i such that pi ≤ n

and denote it by l. Let Sp1 = {Sp1i
/Sp1i

= p1× i, i ∈ {2, 3, · · · , n}\{pl, pl−1, · · · , pl−(n−k−2)}.
Define f : V → {1, 2, . . . , 3n} using following algorithm.

Case 1. n = 3 to 8.

In this case, k = n.

Step 1. f (cr) = pr for r = 1, 2, · · · , k and f
(
c1

1,2
)

= 1.

Step 2. Choose greatest i, such that 2pi < 3n and denote it by r. Define Spj for

j = 2, 3, · · · , r such that Spji−1
< Spji

to be Spj =
{

Spji
/Spji

= pj × i, i ∈
{

2, 3, · · · ,
⌈

3n
pj

⌉}}
.

Step 3. For i = 2, 3, · · · , n, k = 1, 2. Label ck
i,i+1 using elements of Spj in increasing order

starting from j = 1, 2, · · · , r and then by elements of S2 in increasing order.

Step 4. Choose greatest i such that 2i ≤ 3n. Label ck
n,1, k = 1, 2 as 2i−1, 2i−2.

Step 5. Label c2
1,2 as 2i.

Case 2. n = 9 to 11

In this case, k + 1 = n.

Step 1. f (cr) = pr for r = 1, 2, . . . , k and f (cn) = 1.

Step 2. Choose greatest i, such that 2pi < 3n and denote it by r. Define Spj for

j = 2, 3, · · · , r such that Spji−1
< Spji

to be Spj =
{

Spji
/Spji

= pj × i, i ∈
{

2, 3, · · · ,
⌈

3n
pj

⌉}}
.
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Step 3. For i = 2, 3, · · · , n and k = 1, 2, label ck
i,i+1 using elements of Spj in increasing

order starting from j = 1, 2, . . . , r and then by elements of S2 in increasing order.

Step 4. Choose greatest i such that 2i ≤ 3n. Label ck
n,1, k = 1, 2 as 2i−2, 2i−3.

Step 5. Label ck
1,2, k = 1, 2 as 2i and 2i−1.

Case 3. n ≥ 12.

Step 1. f (cr) = pr for r = 1, 2, · · · , k.

Step 2. f (ck+1) = 1.

For j = 1, 2, · · · , n− k − 2, f (cn−j) = 3pl−j .

Step 3. Choose greatest i, such that 2pi < 3n and denote it by r. Define Spj for

j = 2, 3, · · · , r such that Spji−1
< Spji

to be

Spj =

{
Spji

/Spji
= pj × i, i ∈

{
2, 3, · · · ,

⌈
3n

pj

⌉
}\

j−1⋃

r=1

{k × pr/k ∈ N

}}
.

Step 4. For i = 2, 3, · · · , n and k = 1, 2. Label ck
i,i+1 using elements of Spj in increasing

order starting from j = 1, 2, . . . , r and then by elements of S2 in increasing order.

Step 5. Choose greatest i such that 2i ≤ 3n. Label ck
n,1, k = 1, 2 as 2i−2, 2i−3.

Step 6. Label ck
1,2, k = 1, 2 as 2i and 2i−1.

In this case, labels of vertices c1, c2, · · · , ck are prime . Vertices ck+1, to cn get labels

which are multiples by 3 of pl, pl−1, · · · , pl−(n−k−2). Apart from these labels and 3 itself, we

have k − 1 more multiples of 3. Thus k − 1 vertices of the type cj
i,i+1, 2 ≤ i ≤

⌈
k−1

2

⌉
, j = 1, 2

will get labels as multiples of 3. And hence are relatively prime to labels of corresponding c′is.

Similarly, for multiples of 5, 7 and so on. Thus, SS (Cn) is prime. 2
Theorem 3.3 A supersubdivision of Ln, i.e. SS (Ln) is prime for m = 2.

Proof Let u1, u2, · · · .un and v1, v2, · · · , vn be the vertices of the two paths in Ln. Let

uiui+1, vivi+1 for i = 1, 2, · · · , n − 1 and uivi for i = 1, 2, · · · , n − 1, n be the edges of

Ln. Let xk
i , k = 1, 2 be the vertices of bipartite graph K2,2 replacing the edge uiui+1, i =

1, 2, · · · , n− 1. Let yk
i , k = 1, 2, · · · , m be the vertices of the bipartite graph K2,2 replacing the

edge vn−ivn−i−1, i = 1, 2, · · · , n− 1. Let wk
i , k = 1, 2 be the vertices of the bipartite graph K2,2

replacing the edge uivi for i = 1, 2, · · · , n− 1, n.

Thus, |V | = 2n + 2n + 2(n− 1)+ 2(n− 1) = 8n− 4. Let p1, p2, · · · , pk be primes such that

3 ≤ p1 < p2 < p3 · · · < pk < 3n such that if p is any prime between 3 to 3n then p = pi for

some i between 1 to k. Choose greatest i, such that 2pi < 8n− 4 and denote it by r.

Define Spj for j = 2, 3, · · · , r such that Spji−1
< Spji

to be

Spj =

{
Spji

/Spji
= pj × i, i ∈

{
2, 3, · · · ,

⌈
8n− 4

pj

⌉}
\

j−1⋃

r=1

{k × pr/k ∈ N}
}

.

Define S2 =
{

S2i/S2i = 2i, i ∈ N such that S2i ≤ 3n
}

and a labeling from V → {1, 2, · · · , 8n−
4} as follows.
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Case 1. n = 2.

In this case, k = 2n. Let X = {w1
2, w2

2 , y1
1 , y2

1 , w1
1 , w2

1 , x2
1} be an ordered set. Define Sp1

such that Sp1 =
{

Sp1i
/Sp1i

= p1 × i = 3× i, i ∈
{

2, 3, · · · ,
⌈

8n−4
pj

⌉}}
.

Step 1. f (ur) = pr for r = 1, 2.

Step 2. f (vn−r) = pn+r+1 for r = 0, 1.

Step 3. f
(
x1

1
)

= 1.

Step 4. Label elements of X in order by using elements of Spj in increasing order starting

with j = 1, 2, · · · , r and then using elements of S2 in increasing order.

Case 2. n = 3 and 6.

In this case, k = 2n+1. Let X = {x1
2, x2

2, x1
3, · · · , x1

n−1, x2
n−1, y1

1 , y2
1 , y1

2, · · · , y1
n−1, y2

n−1, w1
1 ,

w2
1 , w1

2 , · · · , w1
n, w2

n} be an ordered set. Define Sp1 such that

Sp1 =

{
Sp1i

/Sp1i
= p1 × i = 3× i, i ∈

{
2, 3, · · · ,

⌈
8n− 4

pj

⌉}}
.

Step 1. f (ur) = pr for r = 1, 2, · · · , n.

Step 2. f (vn−r) = pn+r+1 for r = 0, 1, · · · , n− 1.

Step 3. f
(
x1

1
)

= 1 and f
(
x2

1
)

= pk.

Step 4. Label elements of X in order by using elements of Spj in increasing order starting

with j = 1, 2, · · · , r and then using elements of S2 in increasing order.

Case 3. n = 4, 5 and 7 to 11.

In this case, k = 2n. Let X = {x1
2, x2

2, x1
3, · · · , x1

n−1, x2
n−1, y1

1 , y2
1 , y1

2 , · · · , y1
n−1, y2

n−1, w1
1, w2

1 ,

w1
2 , · · · , w1

n, w2
n, x2

1} be an ordered set. Define Sp1 such that

Sp1 =

{
Sp1i

/Sp1i
= p1 × i = 3× i, i ∈

{
2, 3, · · · ,

⌈
8n− 4

pj

⌉}}
.

Step 1. f (ur) = pr for r = 1, 2, · · · , n.

Step 2. f (vn−r) = pn+r+1 for r = 0, 1, . . . , n− 1.

Step 3. f
(
x1

1
)

= 1.

Step 4. Label elements of X in order by using elements of Spj in increasing order starting

with j = 1, 2, · · · , r and then using elements of S2 in increasing order.

Case 4. n ≥ 12.

Let X = {x1
2, x2

2, x1
3, · · · , x1

n−1, x2
n−1, y1

1, y2
1 , y1

2 , · · · , y1
n−1, y2

n−1, w1
n, w2

n, w1
n−1, · · · , w1

1 , w2
1}

be an ordered set. Choose greatest i, such that pi ≤
⌈8n−4

3

⌉
and denote it by l.

Step 1. f (ur) = pr for r = 1, 2, · · · , n.

Step 2. f (vr) = 3pl−(r−1) for r = 1, 2, · · · , 2n− k.

Step 3. f (vn−r) = pn+r+1 for r = 0, 1, · · · , n− (2n− k + 1).

Step 4. Sp1 =
{

Sp1i
/Sp1i

= p1 × i, i ∈
{
2, 3, · · · ,

⌈8n−4
3

⌉}}
\
{

pl, pl−1, · · · , pl−(2n−k−1)
}
.
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Step 5. Label elements of X in order by using elements of Spj in increasing order starting

with j = 1, 2, · · · , r and then using elements of S2 in increasing order.

Step 6. Choose greatest i such that 2i ≤ 3n. Label x1
1, x2

1 as 2i and 2i−1.

In the above labeling, vertices u′
is and v′

is receive prime labels. Vertices x′
is, y′

is,w
′
is

adjacent to u′
is,v

′
is are labeled with numbers which are multiples of 3 followed by multiples of

5 and so on. Since m = 2(small), labels are not multiples of respective primes. Thus SS (Ln)

prime. 2
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We know nothing of what will happen in future, but by the analogy of past
experience.

By Abraham Lincoln, an American president.
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