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Abstract: The aim of the paper is to study ∗-Ricci tensor in generalized Sasakian space

form. We study the generalized Sasakian space form admitting ∗-conformal η- Ricci soliton

and analyse the behaviour of the soliton. Also, we prove ∗-Ricci semi-symmetric and Pseudo

∗-Ricci semisymmetric generalized Sasakian space forms are ∗-Ricci flat.
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§1. Introduction

The generalized Sasakian space forms have been investigated by numerous researchers like

Alegre and Carriazo [6-8]. Thereafter generalized Sasakian spaceform [GSSF] have been studied

by many authors [10, 16, 19, 36, 37].

An almost contact metric manifold M is a GSSF if there exist three functions f1, f2, f3 on

M such that curvature tensor R is given by

R(X1, X2)X3 =f1{g(X2, X3)X1 − g(X1, X3)X2}+ f2{g(X1, φX3)φX2

− g(X2, φX3)φX1 + 2g(X1, φX2)φX3}

+ f3{η(X1)η(X3)X2 − η(X2)η(X3)X1

+ g(X1, X3)η(X2)ξ − g(X2, X3)η(X1)ξ} (1.1)

for any vector fields X1, X2, X3 on M . In such a case we represent the manifold as M(f1, f2, f3).

1Received July 23, 2023, Accepted December 3, 2023.
2Corresponding author: P. Siva Kota Reddy, pskreddy@jssstuniv.in
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If f1 =
c+ 3

4
, f2 =

c− 1

4
and f3 =

c− 1

4
, then a GSSF with Sasakian structure develops

Sasakian-space-forms.

A self-similizing elucidation to the Ricci flow [14,15] is said to be a Ricci soliton [42] in

case it moves by only a one parameter family of diffeomorphism and scaling. Ricci soliton has

been studied by many authors (See [1, 3, 9, 11, 12, 18,31C 34, 38, 39]) and is defined as:

LV g + 2Ric+ 2λg = 0. (1.2)

The η-Ricci soliton [12] and the Conformal η-Ricci soliton [26] are defined respectively as

LV g + 2Ric = 2λg + 2µη ⊗ η, (1.3)

LV g + 2Ric+

[
2λ−

(
P +

2

n

)]
g + 2µη ⊗ η = 0, (1.4)

where LV is the Lie derivative in the direction of V , Ric is the Ricci tensor, g is the Riemannian

metric, V is a vector field, and λ and µ are parameters. The Ricci soliton is said to be

shrinking, steady and expanding if λ is negative, zero and positive, respectively. Some related

developments can be found in [1, 2, 4, 13, 20C24, 28C35, 38C41].

§2. Preliminaries

A (2n+1)-dim Riemannian manifold (M, g) is called an almost compact manifold if the following

results hold [6]

−X1 + η(X1)ξ = φ2(X1), (2.1)

1 = η(ξ), (2.2)

g(X1, ξ) = η(X1), η(φξ) = 0, (2.3)

g(φX1, φX2) = g(X1, X2)− η(X1)η(X2), (2.4)

g(X1, φX2) = −g(φX1, X2), (2.5)

g(φX1, X1) = 0, (2.6)

(∇X1
η)(X2) = g(∇X1

ξ,X2), (2.7)

∇X1
ξ = −βφX1, (2.8)

for all X1 ∈ TM and a function β such that ξβ = 0.

In view of (2.8), we get

(∇X1η)(X2) = g(∇X1ξ,X2) = −βg(φX1, X2). (2.9)
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For a (GSSF )2n+1, we have

R(X1, X2)ξ = (f1 − f3)[η(X2)X1 − η(X1)X2], (2.10)

R(ξ,X1)X2 = (f1 − f3)[g(X1, X2)ξ − η(X2)X1], (2.11)

g(R(ξ,X1)X2, ξ) = (f1 − f3)g(φX1, φX2), (2.12)

R(ξ,X1)ξ = (f1 − f3)φ2X1, (2.13)

S(X1, X2) = (2nf1 + 3f2 − f3)g(X1, X2)− (3f2 + (2n− 1)f3)η(X1)η(X2), (2.14)

where S is the Ricci tensor and r is the scalar curvature tensor of the space-forms.

§3. ∗-Ricci Tensor in GSSF

Let M be an GSSF with Ricci tensor S. The ∗-Ricci tensor and ∗-scalar curvature of M are

defined by

S∗(X1, X2) =

2n+1∑
i=1

R(X1, ei, φei, φX2), r∗ =

2n+1∑
i=1

S∗(ei, ei) (3.1)

for all X1, X2 ∈ TM , where e1, · · · , e2n+1 is an orthonormal basis of the tangent space TM .

By using the first Bianchi identity and (3.1) we get

S∗(X1, X2) =
1

2

2n+1∑
i=1

g(φR(X1, φX2)ei, ei). (3.2)

Let M is a GSSF, replace X3 = φX3 in (1.1) and taking inner product with φW , and then

using (2.1) and (2.2) the resultant equation becomes

R(X1, X2, φX3, φW ) = f1{g(X2, φX3)g(X1, φW )− g(X1, φX3)g(X2, φW )}

+ f2{−g(X1, X3)g(φX2, φW ) + η(X1)η(X3)g(φX2, φW )

+ g(X2, X3)g(φX1, φW )− η(X2)η(X3)g(φX1, φW )

− 2g(X1, φX2)g(X3, φW )}. (3.3)

Let [ei]
2n+1
i=1 be an orthonormal basis of the tangent space at each point of the manifold.

Then setting X2 = X3 = ei in (3.3) and proceeding summation over 1 ≤ i ≤ 2n + 1 and also

by using (2.1) and (2.3), we get

R(X1, ei, φei, φW ) = f1g(φX1, φW ) + f2(2n+ 1)g(φX1, φW ). (3.4)

Hence, we have the following result.
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Theorem 3.1 In a GSSF M(f1, f2, f3), the ∗-Ricci tensor is obtained by

S∗(X1,W ) = [f1 + (2n+ 1)f2]g(X1,W )− [f1 + (2n+ 1)f2]η(X1)η(W ). (3.5)

The following corollary is immediate.

Corollary 3.1 A GSSF M(f1, f2, f3) is an ∗-η-Einstein manifold.

§4. ∗-Ricci Semisymmetric GSSF

A GSSF M(f1, f2, f3) is called Ricci semisymmetric if R(X1, X2) · S = 0 for all X1, X2 ∈ TM .

Similarly, we define ∗-Ricci semisymmetric by R(X1, X2) · S∗ = 0.

Let us consider a GSSF M(f1, f2, f3) that satisfies

R(X1, X2) · S∗ = 0. (4.1)

From (4.1), we have

S∗(R(X1, X2)U1, V1) + S∗(U1, R(X1, X2)V1) = 0. (4.2)

Substituting X1 = U1 = ξ we get

S∗(R(ξ,X2)ξ, V1) + S∗(ξ,R(ξ,X2)V1) = 0. (4.3)

Using S∗ = 0 and S∗(X1, ξ) = 0 and (2.10) in (4.3) we obtain

(f1 − f3)S∗(X2, V1) = 0, (4.4)

which gives either (f1 − f3) 6= 0 or S∗(X2, V1) = 0. Hence, we have the following theorem.

Theorem 4.1 Let M be a GSSF is ∗-Ricci semisymmetric. Then either f1 6= f3 or M(f1, f2, f3)

is ∗-Ricci flat.

§5. φ-Pseudo ∗-Ricci Symmetric GSSF

Definition 5.1 A GSSF M is called φ-pseudo Ricci symmetric if the ∗-Ricci operator Q∗

satisfies

φ2((∇X1
Q∗)(X2)) = 2K(X1)Q∗(X2) +K(X2)Q∗X1 + S∗(X2, X1)ρ, (5.1)

for any vector field X1, X2 where K is a non-zero 1-form.

If, in particular, K = 0 then manifold is called φ-∗-Ricci symmetric [27]. Let us take a

GSSF M , which is φ-pseudo ∗-Ricci symmetric. Then by virtue of (2.1), it follows from (5.1)
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that

−(∇X1
Q∗)(X2) + η(∇X1

Q∗)(X2)ξ = 2K(X1)Q∗(X2) +K(X2)Q∗X1 + S∗(X2, X1)ρ, (5.2)

from which it follows that

−g((∇X1Q
∗)(X2), X3) + S∗(Q∇X1X2, X3) + η((∇X1Q

∗)(X2))η(X3)

= 2K(X1)S∗(X2, X3) +K(X2)S∗(X1, X3). (5.3)

Take X2 = ξ in (5.3) and use (2.8), (3.5) to get

−βS∗(φX1, X3) + η((∇X1
Q∗)(ξ))η(X3) = K(ξ)S∗(X1, X3). (5.4)

Put X3 = φX3 in (5.4) and use (3.5)

−βFg(φX1, φX3) = K(ξ)Fg(X1, X3). (5.5)

By using (2.4) and (3.5), then contracting (5.5) on top of X1 and X3, we obtain

r∗ =
K(ξ)F (2n+ 1)

β
. (5.6)

Hence, we have the following theorem.

Theorem 5.1 If GSSF M is a φ-pseudo ∗ Ricci symmetric, then

r∗ =
K(ξ)F (2n+ 1)

β
.

In particular, if K = 0, In view of (3.5) and (5.5), we obtain

βS∗(X1, X3) = 0. (5.7)

Hence, we have the following corollary.

Corollary 5.1 A φ-∗-Ricci symmetric GSSF is ∗-Ricci flat provided β 6= 0.

§6. ∗-Conformal η-Ricci Soliton in GSSF

Definition 6.1 The ∗-Conformal η-Ricci soliton is defined as

LV g + 2Ric∗ +

[
2λ−

(
P +

2

n

)]
g + 2µη ⊗ η = 0, (6.1)

where LV is the Lie derivative along the vector field V , λ and µ are constants, Ric∗ is the

∗-Ricci tensor, P is a scalar non- dynamical field and n is the dimension of manifold.
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Let M be a GSSF admiting ∗-conformal η-Ricci soliton (g, v, λ, µ). When V = ξ in (6.1),

Lξg(X1, X2) + 2S∗(X1, X2) +

[
2λ−

(
P +

2

n

)]
g(X1, X2) + 2µη(X1)η(X2) = 0. (6.2)

This can be written as

g(∇X1ξ,X2) + g(X1,∇X2ξ) + 2S∗(X1, X2)

+

[
2λ−

(
P +

2

n

)]
g(X1, X2) + 2µη(X1)η(X2) = 0. (6.3)

Using (2.8) in (6.3), we get

g(−βφX1, X2) + g(X1,−βφX2) + 2S∗(X1,2 )

+

[
2λ−

(
P +

2

n

)]
g(X1, X2) + 2µη(X1)η(X2) = 0. (6.4)

Since M is a GSSF, making use of (2.5) in (6.4), we know

S∗(X1, X2) = −
[
λ− 1

2

(
P +

2

n

)]
g(X1, X2)− µη(X1)η(X2). (6.5)

From (6.5), we have the ∗-scalar curvature

r∗ = −
[
λ− 1

2

(
P +

2

n

)
+ µ

]
(2n+ 1),

which is a constant. In view of (3.5) and (6.5), we have[
λ− 1

2

(
P +

2

n

)]
g(X1, X2) + µη(X1)η(X2)

+[f1 + (2n+ 1)f2]g(X1, X2)− [f1 + (2n+ 1)f2]η(X)η(X2) = 0. (6.6)

Using X1 by φX1 in (6.6), we have{
(f1 + (2n+ 1)f2) +

(
λ− 1

2

(
P +

2

n

))}
g(φX1, X2) = 0. (6.7)

Interchanging X1 and X2 we obtain{
(f1 + (2n+ 1)f2) +

(
λ− 1

2

(
P +

2

n

))}
g(φX2, X1) = 0. (6.8)

Solving (6.7) and (6.8), we get

λ =
1

2

(
P +

2

n

)
− F, (6.9)

where F = (f1 + (2n+ 1)f2). Thus, we have the following theorem.
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Theorem 6.1 Let M be a GSSF admitting ∗-conformal η-Ricci soliton. Then, the nature of

soliton is

(1) steady when P = 2F − 2

n
;

(2) expanding when P > 2F − 2

n
;

(3) shrinking when P < 2F − 2

n
.

Making use of (6.9) in (6.5), the following corollary is immediate.

Corollary 6.1 If a GSSF M(f1, f2, f3) admitting a ∗-conformal η-Ricci soliton, then M is

Sasaki-∗-η-Einstein.

Setting X1 = ξ in (6.6), we get[
λ− 1

2

(
P +

2

n

)
+ µ

]
η(X2) = 0. (6.10)

Take X2 = ξ in (6.10) we obtain

µ = −
[
λ− 1

2

(
P +

2

n

)]
. (6.11)

Making use of (6.9) and (6.11) in (6.5) we have

S∗(X1, X2) = Fg(X1, X2)−
[
λ− 1

2

(
P +

2

n

)]
η(X1)η(X2). (6.12)

In view of (6.12) and (5.7), by putting X1 = X2 = ξ, we have the following corollary.

Corollary 6.2 If a ∗-conformal η-Ricci soliton on a φ-psuedo ∗-Ricci symmetric GSSF, then

the nature of soliton is

(1) steady when P = 2F − 2

n
;

(2) expanding when P > 2F − 2

n
;

(3) shrinking when P < 2F − 2

n
.

Definition 6.2 A GSSF is said to be ∗-weakly symmetric if there exists 1-form A,B,C,D,E

on M such that the condition

(∇X1
S∗)(X3,W1) =A(X1)S∗(X3,W1) +B(R(X1, X3)W1)

+ C(X3)S∗(X1,W1) +D(W1)S∗(X1, X3) + E(R(X1,W1)X3), (6.13)

where the 1-form E is defined by E(X1) = g(X1, V1), ∀x ∈ χ(M).

Definition 6.3([11]) A GSSF is said to be ∗-weakly Ricci-symmetric if there exists 1-form
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ε, σ, E on M such that the condition

(∇X1
S∗)(X2, X3) = ε(X1)S∗(X2, X3) + σ(X2)S∗(X1, X3) + E(X3)S∗(X1, X2), (6.14)

holds for all vector fields X1, X2, X3,W ∈ χ(M). If ε = σ = E, then M is said to be pseudo

Ricci-symmetric.

Let M be a weakly symmetric GSSF. Then substituting W = ξ in (6.13), we have

(∇X1
S∗)(X3, ξ) = A(X1)S∗(X3, ξ) +B(R(X1, X3)ξ)

+C(X3)S∗(X1, ξ) +D(ξ)S∗(X1, X3) + E(R(X1, ξ)X3). (6.15)

In view of (2.10) and (6.12), equation (6.15) reduces to

(∇X1
S∗)(X3, ξ) = A(X1)

{
Fη(Z)−

[
λ− 1

2

(
P +

2

n

)]
η(X3)

}
+B(f1 − f3){η(Z)X − η(X1)X3}

+C(X3)

{
Fη(X1)−

[
λ− 1

2

(
P +

2

n

)]
η(X1)

}
+D(ξ)

{
Fg(X1, X3)−

[
λ− 1

2

(
P +

2

n

)]
η(X1)η(X3)

}
+E(R(X1, ξ)X3). (6.16)

Considering the covariant derivative of the ∗-Ricci tensor S∗ along the vector field X1, we

obtain

(∇X1
S∗)(X3, ξ) = ∇X1

S∗(X3, ξ)− S∗(∇X1
X3, ξ)− S∗(X3,∇X1

ξ). (6.17)

By the use of (2.8) and (6.12) above equation takes the form

(∇X1S
∗)(X3, ξ) = −B

{
λ− 1

2

(
P +

2

n

)}
g(φX1, X3). (6.18)

In view of (6.16) and (6.18), we obtain

A(X1)

{
Fη(X3)−

[
λ− 1

2

(
P +

2

n

)]
η(X3)

}
+B(f1 − f3) {η(X3)X1 − η(X1)X3}

+C(Z)

{
Fη(X1)−

[
λ− 1

2

(
P +

2

n

)]
η(X1)

}
+D(ξ)

{
Fg(X1, X3)−

[
λ− 1

2

(
P +

2

n

)]
η(X1)η(X3)

}
+E(R(X1, ξ)X3) = −B

{
λ− 1

2

(
P +

2

n

)}
g(φX1, X3). (6.19)

Setting X1 = X3 = ξ in (6.19) and on simplification, it yields{
F +

[
λ− 1

2

(
P +

2

n

)]}
{A(ξ) + C(ξ) +D(ξ)} = 0 (6.20)
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which implies that the vanishing of the 1-form A + C + D over the vector field ξ is necessary

in order that M is a Ricci soliton on weakly symmetric GSSF. As similar to the previous

calculation, it can be easily shown that{
F +

[
λ− 1

2

(
P +

2

n

)]}
{A(ξ) + C(ξ) +D(ξ)} = 0

holds for arbitrary vector field X1 on M . This gives the following theorem.

Theorem 6.2 If (g, ξ, λ, µ) is a ∗-conformal η-Ricci soliton on a weakly symmetric GSSF, then

the sum of 1-form is zero everywhere, provided

F + (λ− 1

2
(P +

2

n
)) 6= 0.

Suppose that M is a ∗- weakly Ricci symmetric GSSF. Taking X3 = ξ in (6.14) and by

use of (6.12), we have

(∇X1
S∗)(X2, ξ) = ε(X1)

{
F +

[
λ− 1

2

(
P +

2

n

)]}
η(X2)

+σ(X2)

{
F +

[
λ− 1

2

(
P +

2

n

)]}
η(X1)

+E(ξ)

{
Fg(X1, X2) +

[
λ− 1

2

(
P +

2

n

)]
η(X1)η(X2)

}
. (6.21)

Again replacing X3 by X2 in (6.18), we get

(∇X1
S∗)(X2, ξ) = −B

{
λ− 1

2

(
P +

2

n

)}
g(φX1, X2). (6.22)

Comparing equations (6.21) and (6.22), we get

ε(X1)

{
F +

[
λ− 1

2

(
P +

2

n

)]}
η(X2) + σ(X2)

{
F +

[
λ− 1

2

(
P +

2

n

)]}
η(X1)

+E(ξ)

{
Fg(X1, X2) +

[
λ− 1

2

(
P +

2

n

)]
η(X1)η(X2)

}
= −B

{
λ− 1

2

(
P +

2

n

)}
g(φX1, X2). (6.23)

Setting X1 = X2 = ξ in (6.23), we have{
F +

[
λ− 1

2

(
P +

2

n

)]}
{ε(ξ) + σ(ξ) + E(ξ)} = 0. (6.24)

Again, putting X1 = ξ in (6.23), we have{
F +

[
λ− 1

2

(
P +

2

n

)]}
σ(X2) = σ(ξ)

{
F +

[
λ− 1

2

(
P +

2

n

)]}
. (6.25)
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Replacing X2 with X1, it yields{
F +

[
λ− 1

2

(
P +

2

n

)]}
σ(X1) = σ(ξ)

{
F +

[
λ− 1

2

(
P +

2

n

)]}
. (6.26)

If we take X2 = ξ in (6.23), we get{
F +

[
λ− 1

2

(
P +

2

n

)]}
ε(X1) = ε(ξ)

{
F +

[
λ− 1

2

(
P +

2

n

)]}
. (6.27)

Similarly, we have{
F +

[
λ− 1

2

(
P +

2

n

)]}
E(X1) = E(ξ)

{
F +

[
λ− 1

2

(
P +

2

n

)]}
. (6.28)

Adding (6.26), (6.27) and (6.28) and using (6.24), we get{
F +

[
λ− 1

2

(
P +

2

n

)]}
{σ(X1) + ε(X1) + ρ(X1)} = 0,

for all X1 ∈ χ(M). Thus, we have the following result.

Theorem 6.3 Let M be a ∗-weakly Ricci symmetric GSSF admits ∗-conformal η- Ricci soliton.

Then the sum of 1-forms is zero, i.e., ε+σ+ρ = 0 everywhere, provided F+(λ− 1
2 (P+ 2

n )) 6= 0.

§7. Conclusions

In this paper, the generalized Sasakian space form admitting ∗-conformal η- Ricci soliton has

been studied and the behaviour of the soliton is analysed. Also, it is proved that the ∗-Ricci

semi-symmetric and the pseudo ∗-Ricci semisymmetric generalized Sasakian space forms are

∗-Ricci flat.
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Abstract: The number of spanning trees is an important quantity characterizing the reli-

ability of a network (graph). Generally, the number of spanning trees in a network can be

obtained directly by calculating a related determinant corresponding to the network. How-

ever, for a large network, evaluating the relevant determinant is intractable. In this paper,

we investigated the number of spanning trees in three sequences of families of graphs of the

same average degree 16
3

. We used the electrically equivalent transformations and rules of

weighted generating function which avoids the laborious computation of the determinant for

counting the number of spanning trees. Finally, we determined the entropy of our studied

graphs.

Key Words: Number of spanning trees, electrically equivalent transformations, entropy.

AMS(2010): 05C30, 05C50, 05C63.

§1. Introduction

The counting spanning trees in networks (graphs) is a fascinating and central issue in statistical

physics, because of its inherent relevance to diverse aspects in related fields. For instance, the

number of spanning trees is an important measure of reliability of a network [1], [2]. Again, for

example, it is exactly the number of recurrent configurations of the Abelian sand-pile models

[3],[4], which have been studied extensively in the past two decades as a paradigm of the

self-organized criticality [5]. On the other hand, the problem of spanning trees has numerous

connections with other interesting problems associated with networks, such as dimer coverings

[8], Potts model [7] random walks [8], origin of fractality for fractal scale-free networks [8, 9]

and many others.

The number of spanning trees τ(G) of a finite connected undirected graph G is an acyclic

(n− 1) - edge spanning sub-graph.

There exist various methods for finding this number. Kirchhoff’s matrix tree theorem

named after Gustav Kirchhoff[10] is a theorem about the number of spanning trees in a graph,

1Received September 9, 2023, Accepted December 5, 2023.
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showing that this number can be computed in polynomial time from the determinant of a

submatrix of the Laplacian matrix of the graph; specifically, the number is equal to any co-

factor of the Laplacian matrix.

Another method to count the complexity of a graph is using Laplacian eigenvalues. Let

G be a connected graph with k vertices. Kelmans and Chelnoknoy [11] derived the following

formula:

τ(G) =
1

k

k−1∏
i=1

µi, (1.1)

where k = µ1 ≥ µ2 ≥ · · · ≥ µk = 0 are the eigenvalues of the Kirchhoff matrix L.

Degenerating the graph through successive elimination of contraction of its edges represent

the core of another way to compute the complexity of a graph [12, 13, 14]. If G = (V,E) is a

multigraph with e ∈ E, then G.e is the graph obtained from G by contracting the degree until

its endpoints are a single vertex. The formula for computing the number of spanning trees of

a multigraph G is given by:

τ(G) = τ(G− e) + τ(G.e). (1.2)

This formula is beautiful but not practically useful (grows exponentially with the size of the

graph- may be as many as 2|E(G)| terms. For a summary of further results for calculating umber

of spanning trees of graphs, see [15, 16, 17, 18].

§2. Electrically Equivalent Transformations

To begin with, we briefly review the electrically equivalent transformation technique introduced

in [19, 20, 21, 22]. An edge-weighted graph G (with the weight function ω : E(G) → [0,∞))

can be considered as an electrical network with the weights being the conductances of the

corresponding edges. The weighted number of spanning trees in G is defined as follows:

Let G be an edge weighted graph, G′ be the corresponding electrically equivalent graph,

τ(G) denotes the weighted number of spanning trees G.

(1) Parallel edges: If two parallel edges with conductances u and v in G are merged into a

single edge with conductances u+ v in G′, then τ (G′) = τ(G).

(2) Serial edges: If two serial edges with conductances u and v in G are merged into a

single edge with conductance uv
u+v in G′, then τ (G′) = 1

u+v τ(G).

(3) t− Y transformation: If a triangle with conductances u, v and w in G is changed into

an electrically equivalent star graph with conductances

x =
uv + vw + wu

u
, y =

uv + vw + wu

v
and z =

uv + vw + wu

w

in H ′, then τ (G′) = (uv+vw+wu)2

uvw τ(G).

(4) Y − t transformation: If a star graph with conductances u, v and w in G is changed

into an electrically equivalent triangle with conductances

x =
vw

u+ v + w
, y =

uw

u+ v + w
and z =

uv

u+ v + w
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in G′, then τ (G′) = 1
u+v+w τ(G).

In this work, we compute the number of spanning trees of three sequences of graphs of the

same average degree we named it En, Fn and Hn respectively.

§3. Number of Spanning Trees in the Sequences of En Graph

Consider the sequence of graphs E1,E2, · · · ,En constructed as shown in Figure 1. According to

this construction, the number of total vertices |V (En)| and edges |E (En)| are |V (En)| = 9n−6

and |E (En)| = 24n− 21, n = 1, 2, · · · . The average degree of En is 16/3 in the large n limit.

Figure 1. Some sequences of graph En

Theorem 3.1 For n ≥ 1, the number of spanning trees in sequence of the graph En is given by

1

27
× 16n−4 (256− 13× 64n)

2
.

Proof We use the electrically equivalent transformation to transform Ei to Ei−1. Figures

2-6 illustrate the transformation process from E2 to E1.

Figure 2
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Figure 3

Figure 4

Figure 5
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Figure 6

Using the properties given in Section 2, we have the following transformations:

τ (G1) =

[
1

2

]3

τ (E2) , τ (G2) = τ (G1) , τ (G3) =

[
1

3

]3

τ (G2) ,

τ (G4) = τ (G3) , τ (G5) = (9x2 + 3) τ (G4) , τ (G6) =

[
3

9x2 + 11

]3

τ (G5) ,

τ (G7) = τ (G6) , τ (G8) =
(9x2 + 11)

24 (3x2 + 1)
τ (G7) and τ (E1) = τ (G8) .

Combining these nine transformations, we get

τ (E2) = 16 (18x2 + 22)
2
τ (E1) , (3.1)

where

τ (E1) = 3× (16)n−1x2
1

[
n∏
i=2

(18xi + 22)

]2

.

Further,

τ (En) =

n∏
i=2

16 (18x2 + 22)
2
, (3.2)

where xi−1 = 43xi+49
18xi+22 , i = 2, 3, · · · , n. Its characteristic equation is 18µ2 − 21µ − 49 = 0,

which have two roots µ1 = −7
6 and µ2 = 7

3 . Subtracting these two roots into both sides of



Number of Spanning Trees of Sequence of Some Families of Graphs That Have the Same Average Degree and Their Entropies 19

xi−1 = 43xi+49
18xi+22 , we get

xi−1 +
7

6
=

43xi + 49

18xi + 22
+

7

6
=

64
(
xi + 7

6

)
(18xi + 22)

. (3.3)

xi−1 −
7

3
=

43xi + 49

18xi + 22
− 7

3
=

(
xi − 7

3

)
(18xi + 22)

. (3.4)

Let yi =
xi+

7
6

xi− 7
3

. Then by Eqs.(3.3) and (3.4), we get yi−1 = (64)yi and yi = (64)n−iyn.

Therefore,

xi =
(64)n−i

(
7
3

)
yn + 7

6

(64)n−iyn−1
.

Thus

x1 =
(64)n−1

(
7
3

)
yn + 7

6

(64)n−1yn−1
. (3.5)

Using the expression xn−1 = 43xn+49
18xn+22 and denoting the coefficients of 43xn + 49 and

18xn + 22 as σn and δn we have

18xn + 22 = σ0 (43xn + 49) + δ0 (18xn + 22) ,

18xn−1 + 22 =
σ1 (43xn + 49) + δ1 (18xn + 22)

σ0 (43xn + 49) + δ0 (18xn + 22)
,

...

18xn−i + 22 =
σi (43xn + 49) + δi (18xn + 22)

σi−1 (43xn + 49) + δi−1 (18xn + 22)
′ , (3.6)

18xn−(i+1) + 22 =
σi+1 (43xn + 49) + δi+1 (18xn + 22)

σi (43xn + 49) + δi (18xn + 22)
, (3.7)

...

18x2 + 22 =
σn−2 (43xn + 49) + δn−2 (18xn + 22)

σn−3 (43xn + 49) + δn−3 (18xn + 22)
′ .

Substituting Eq.(3.6) into Eq.(3.2), we obtain

τ (En) = 3× (16)n−1x2
1 [σn−2 (43xn + 49) + σn−2 (18xn + 22)]

2
, (3.8)

where σ0 = 0, δ0 = 1 and σ1 = 18, δ1 = 22.

By the expression xn−1 = 43xn+49
18xn+22 and Eqs.(3.6) and (3.7), we have

σi+1 = 65σi − 64σi−1; δi+1 = 65δi − 64δi−1. (3.9)

The characteristic equation of Eq.(3.9) is γ2 − 65γ + 64 = 0 which have two roots γ1 = 64

and γ2 = 1. The general solutions of Eq. (3.9) are σi = a1γ
i
1 + a2γ

i
2; δi = b1γ

i
1 + b2γ

i
2. Using
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the initial conditions σ0 = 0, δ0 = 1 and σ1 = 18, δ1 = 22, yields

σi =
2

7
(64)i − 2

7
; bi =

1

3
(64)i +

2

3
. (3.10)

If xn = 1, it means that En without any electrically equivalent transformation. Plugging

Eq.(3.10) into Eq.(3.8), we have

τ (En) = 3× (16)n−1x2
1

[
832

21
(64)n−2 +

8

21

]2

, n ≥ 2. (3.11)

When n = 1, τ(E) = 3 which satisfies Eq.(3.11). Therefore, the number of spanning trees

in the sequence of the graph En is given by

τ (En) = 3× (16)n−1x2
1

[
832

21
(64)n−2 +

8

21

]2

, n ≥ 1, (3.12)

where

x1 =
91(64)n−1 − 28

39(64)n−1 + 24
, n ≥ 1. (3.13)

Inserting Eq.(3.13) into Eq.(3.12) we obtain the result. �

§4. Number of Spanning Trees in the Sequences of Fn Graph

Consider the sequence of graphs F1, F2, · · · ,Fn constructed as shown in Figure 7. According

to this construction, the number of total vertices |V ( Fn)| and edges |E ( Fn)| are |V (Fn)| =

9n−6 and |E ( Fn)| = 24n−21, n = 1, 2, · · · . The average degree of Fn is
16

3
in the large n limit.

Figure 7. Some sequences of graph Fn

Theorem 4.1 For n ≥ 1, the number of spanning trees in the sequence of Fn graph is given

by
An
Bn

, where

An =

(
400n−3

(
(85− 21

√
15)(2(4 +

√
15))n + (8− 2

√
15)n(85 + 21

√
15)

)2 (
−61(321 + 83

√
15)
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+(31 + 8
√

15)n(951 + 365
√

15)
)2

)
,

Bn = 3
(

61(31 + 8
√

15) + (64 + 5
√

15)(31 + 8
√

15)n
)2

.

Proof We use the electrically equivalent transformation to transform Fi to Fi−1. Figures

8-13 illustrate the transformation process from F2 to F1.

Figure 8

Figure 9
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Figure 10

Figure 11

Figure 12
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Figure 13

Using the properties given in Section 2, we have the following the transformations:

τ (G1) =

[
1

2

]3

τ (F2) , τ (G2) = τ (G1) , τ (G3) =

[
(2x2 + 1)

2

x2

]3

τ (G2) ,

τ (G4) =

[
1

4x2 + 3

]3

τ (G3) , τ (G5) =

[
x2

4x2 + 3

]3

τ (G4), τ (G6) = τ (G5) ,

τ (G7) = 9

[
(2x2 + 1)

2

4x2 + 3

]
τ (G6) , τ (G8) =

[
(4x2 + 1) (4x2 + 3)

(2x2 + 1)
2

(12x2 + 11)

]3

τ (G7) ,

τ (G9) = τ (G8) , τ (G10) =
(12x2 + 11) (4x2 + 3)

72 (2x2 + 1)
2 τ (G9) and τ (F1) = τ (G10) .

Combining these eleven transformations, we have

τ (F2) = 16 (24x2 + 22)
2
τ (F1) . (4.1)

Further

τ (Fn) =

n∏
i=2

16 (24x2 + 22)
2
τ (F1) = 3× (16)n−1x2

1

[
n∏
i=2

(24xi + 22)

]2

, (4.2)

where xi−1 = 58xi+49
24xi+22 , i = 2, 3, . . . , n. Its characteristic equation is 24µ2 − 36µ− 49 = 0, which

have two roots µ1 = 9−5
√

15
12 and µ2 = 9+5

√
15

12 . Subtracting these two roots into both sides of

xi−1 = 58xi+49
24xi+22 , we get

xi−1 −
9− 5

√
15

12
=

58xi + 49

24xi + 22
− 9− 5

√
15

12
= 10(4 +

√
15)

(
xi − 9−5

√
15

12

)
(24xi + 22)

, (4.3)

xi−1 −
9 + 5

√
15

12
=

58xi + 49

24xi + 22
− 9 + 5

√
15

12
= 10(4−

√
15)

(
xi − 9+5

√
15

12

)
(24xi + 22)

. (4.4)
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Let yi =
xi− 9−5

√
15

12

xi− 9+5
√

15
12

. Then by Eqs.(4.3) and (4.4), we get yi−1 = (31 + 8
√

15)yi and

yi = (31 + 8
√

15)n−iyn. Therefore

xi =
(31 + 8

√
15)n−i

(
9+5
√
15

12

)
yn − 9−5

√
15

12

(31 + 8
√

15)n−iyn − 1
.

Thus

x1 =
(31 + 8

√
15)n−1

(
9+5
√
15

12

)
yn − 9−5

√
15

12

(31 + 8
√

15)n−1yn − 1
. (4.5)

Using the expression xn−1 = 58xn+49
24xn+22 and denoting the coefficients of 58xn + 49 and

24xn + 22 as σn and δn we have

24xn + 22 = σ0 (58xn + 49) + δ0 (24xn + 22) ,

24xn−1 + 22 =
σ1 (58xn + 49) + δ1 (24xn + 22)

σ0 (58xn + 49) + δ0 (24xn + 22)
,

...

24xn−i + 22 =
σi (58xn + 49) + δi (24xn + 22)

σi−1 (58xn + 49) + δi−1 (24xn + 22)
, (4.6)

24xn−(i+1) + 22 =
σi+1 (58xn + 49) + δi+1 (24xn + 22)

σi (58xn + 49) + δi (24xn + 22)
, (4.7)

...

24x2 + 22 =
σn−2 (58xn + 49) + δn−2 (24xn + 22)

σn−3 (58xn + 49) + δn−3 (24xn + 22)

Substituting Eq.(4.6) into Eq.(4.2), we obtain

τ (Fn) = 3× (16)n−1x2
1 [σn−2 (58xn + 49) + σn−2 (24xn + 22)]

2
, (4.8)

where σ0 = 0, δ0 = 1 and σ1 = 24, δ1 = 22.

By the expression xn−1 = 58xn+49
24xn+22 and Eqs.(4.6) and (4.7), we have

σi+1 = 80σi − 100σi−1; δi+1 = 80δi − 100δi−1. (4.9)

The characteristic equation of Eq.(4.9) is γ2 − 80γ + 100 = 0 which have two roots γ1 =

10(4 +
√

15) and γ2 = 10(4−
√

15).

The general solutions of Eq.(4.9) are σi = a1γ
i
1 + a2γ

i
2; δi = b1γ

i
1 + b2γ

i
2. Using the initial

conditions σ0 = 0, δ0 = 1 and σ1 = 24, δ1 = 22, yields

σi =
2
√

15

25
(10(4 +

√
15))i − 2

√
15

25
(10(4−

√
15))i,

bi =

(
25− 3

√
15

50

)
(10(4 +

√
15))i +

(
25 + 3

√
15

50

)
(10(4−

√
15))i. (4.10)

If xn = 1, it means that Fn without any electrically equivalent transformation. Plugging



Number of Spanning Trees of Sequence of Some Families of Graphs That Have the Same Average Degree and Their Entropies 25

Eq.(4.10) into Eq.(4.8), we have

τ (Fn) = 3× (16)n−1x21

[(
115 + 29

√
15

5

)
(40 + 10

√
15)n−2

+

(
115− 29

√
15

5

)
(40− 10

√
15)n−2

]2

(4.11)

for integer n ≥ 2. When n = 1, τ (F1) = 3 which satisfies Eq.(4.11). Therefore, for , n ≥ 1, the

number of spanning trees in the sequence of the graph Fn is given by

τ (Fn) = 3× (16)n−1x21

[(
115 + 29

√
15

5

)
(40 + 10

√
15)n−2

+

(
115− 29

√
15

5

)
(40− 10

√
15)n−2

]2

, (4.12)

where

x1 =
(31 + 8

√
15)n−1(951 + 365

√
15) + 61(9− 5

√
15)

(31 + 8
√

15)n−1(64 + 5
√

15) + 732
, n ≥ 1. (4.13)

Inserting Eq.(4.13) into Eq.(4.12), we obtain the result. �

§5. Number of Spanning Trees in the Sequences of Hn Graph

Consider the sequence of graphs H1,H2, · · · ,Hn constructed as shown in Figure 14. According to

this construction, the number of total vertices |V (Hn)| and edges |E (Hn)| are |V (Hn)| = 9n−6

and |E (Hn)| = 24n − 21 for integers n = 1, 2, · · · . The average degree of Hn is in the large n

limit which is
16

3
.

Figure 14. Some sequences of Hn

Theorem 5.1 For n ≥ 1, the number of spanning trees in the sequence of Hn is given by

2
n−15

(115 +
√

13209)
2n ×

(
−76(−63 +

√
13209) +

(
1

8
(13217− 115

√
13209)

)1−n
(8421 + 97

√
13209)

)2

×

(
29563− 257

√
13209 +

(
1
8 (13217− 115

√
13209)

)n
(29563 + 257

√
13209)

)2(
58159227

(
38 + 8−n(325 +

√
13209)(13217 + 115

√
13209)n−1

)2
) .

Proof We use the electrically equivalent transformation to transform Hi to Hi−1. Figures
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15-19 illustrate the transformation process from H2 to H1. Using the properties given in Section

2, we have the following the transformations:

τ (G1) =

[
1

2

]3

τ (H2) , τ (G2) = τ (G1) , τ (G3) = 9x2τ (G2) , τ (G4) =

[
1

3x2 + 2

]3

τ (G3) ,

τ (G5) = τ (G4) , τ (G6) =

(
3x2 + 2

18x2

)
τ (G5) , τ (G7) = τ (G6) , τ (G8) = 9

(
5x2 + 3

3x2 + 2

)
τ (G7) ,

τ (G9) =

[
3x2 + 2

21x2 + 13

]3

τ (G8) , τ (G10) = τ (G9) , τ (G11) =

[
21x2 + 13

18 (5x2 + 3)

]
τ (G10), τ (H1) = τ (G11) .

Figure 15

Figure 16
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Figure 17

Figure 18

Figure 19
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Combining these twelve transformations, we get

τ (H2) = 8 (42x2 + 26)
2
τ (H1) . (5.1)

Further

τ (Hn) =

n∏
i=2

8 (42x2 + 26)
2
τ (H1) = 3× (8)n−1x2

1

[
n∏
i=2

(42xi + 26)

]2

, (5.2)

where xi−1 = 89xi+55
42xi+26 , i = 2, 3, . . . , n. Its characteristic equation is 42µ2 − 63µ− 55 = 0, which

have two roots µ1 = 63−
√

13209
84 and µ2 = 63+

√
13209

84 . Subtracting these two roots into both

sides of xi−1 = 89xi+55
42xi+26 , we get

xi−1 −
63−

√
13209

84
= (115 +

√
13209)

(
xi − 68−

√
13209

84

)
2 (42xi + 26)

, (5.3)

xi−1 −
63 +

√
13209

84
= (115−

√
13209)

(
xi − 68+

√
13209

84

)
2 (42xi + 26)

. (5.4)

Let yi =
xi− 63−

√
18209

84

xi− 63+
√

18209
84

. Then by Eqs.(5.3) and (5.4), we get yi−1 =
(

13217+115
√

13209
8

)
yi

and yi =
(

13217+115
√

13209
8

)n−i
yn. Therefore

xi =

(
13217+115

√
13209

B

)n−i (
63+
√

13209
84

)
yn − 63−

√
13209

84(
13217+115

√
13209

8

)n−i
yn − 1

.

Thus

x1 =

(
13217+115

√
13209

8

)n−1 (
63+
√

13209
84

)
yn − 63−

√
13209

84(
13217+115

√
13209

8

)n−1

yn − 1
. (5.5)

Using the expression xn−1 = 89xn+55
42xn+26 and denoting the coefficients of 89xn + 55 and

42xn + 26 as σn and δn we have

42xn + 26 = σ0 (89xn + 55) + δ0 (42xn + 26) ,

42xn−1 + 26 =
σ1 (89xn + 55) + δ1 (42xn + 26)

σ0 (89xn + 55) + δ0 (42xn + 26)
,

42xn−2 + 26 =
σ2 (89xn + 55) + δ2 (42xn + 26)

σ1 (89xn + 55) + δ1 (24xn + 26)
,

...

42xn−i + 26 =
σi (89xn + 55) + δi (42xn + 26)

σi−1 (89xn + 55) + δi−1 (42xn + 26)
, (5.6)

42xn−(i+1) + 26 =
σi+1 (89xn + 55) + δi+1 (42xn + 26)

σi (89xn + 55) + δi (42xn + 26)
, (5.7)
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...

42x2 + 26 =
σn−2 (89xn + 55) + δn−2 (42xn + 26)

σn−3 (89xn + 55) + δn−3 (42xn + 26)
. (5.8)

Substituting Eq.(5.6) into Eq.(5.2), we obtain

τ (Hn) = 3× (8)n−1x2
1 [σn−2 (89xn + 55) + σn−2 (42xn + 26)]

2
, (5.9)

where σ0 = 0, δ0 = 1 and σ1 = 42, δ1 = 26.

By the expression xn−1 = 89xn+55
42xn+26 and Eqs.(5.6), (5.7), we have

σi+1 = 115σi − 4σi−1; δi+1 = 115δi − 4δi−1

The characteristic equation of Eq.(5.9) is γ2 − 115γ + 4 = 0 which have two roots

γ1 =

(
115 +

√
13209

2

)
and γ2 =

(
115−

√
13209

2

)
.

The general solutions of Eq.(5.9) are σi = a1γ
i
1 + a2γ

i
2; δi = b1γ

i
1 + b2γ

i
2. Using the initial

conditions σ0 = 0, δ0 = 1 and σ1 = 42, δ1 = 26, yields

σi =
2
√

13209

629

(
115 +

√
13209

2

)i
− 2
√

13209

629

(
115−

√
13209

2

)i
,

δi =

(
629− 3

√
13209

1258

)(
115 +

√
13209

2

)i
+

(
629 + 3

√
13209

1258

)(
115−

√
13209

2

)i
. (5.10)

If xn = 1, it means that Hn without any electrically equivalent transformation. Plugging

Eq.(5.10) into Eq.(5.8), we have

τ (Hn) = 3× (8)n−1x2
1 ×

(21386 + 186
√

13209

629

)(
115 +

√
13209

2

)n−2

+

(
21386− 186

√
13209

629

)(
115−

√
13209

2

)n−2
2

(5.11)

for integers n ≥ 2. When n = 1, τ (H1) = 3 which satisfies Eq.(5.11). Therefore, the number of

spanning trees in the sequence of the graph Hn is given by

τ (Hn) = 3× (8)n−1x2
1

(21386 + 186
√

13209

629

)(
115 +

√
13209

2

)n−2

+

(
21386− 186

√
13209

629

)(
115−

√
13209

2

)n−2
2

(5.12)
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for integers n ≥ 1, where

x1 =

(
13217+115

√
13209

B

)n−1

(8421 + 97
√

13209) + 76(63−
√

13209)

21
(

13217+115
√

13209
8

)n−1

(325 +
√

13209) + 6384
, n ≥ 1. (5.13)

Inserting Eq.(5.13) into Eq.(5.12) we obtain the result. �

§6. Numerical Results

An illustration on the numbers of spanning trees in graphs En, Fn and Hn are listed in Table

1 following.

n τ (En) τ (Fn) τ (Hn)

1 3 3 3

2 406272 549552 497664

3 26879275008 54966988800 52627418112

4 1761820718333952 5452053012480000 5564612377337856

5 115462949411396517888 540704118669312000000 588379800446293966848

6 7566980125843657045573632 53623893196800000000000000 62212920881826474870964224

Table 1

§7. Spanning Tree Entropy

After having explicit Formulas for the number of spanning trees of the sequence of the three

families of graphs En, Fn and Hn, we can calculate its spanning tree entropy Z which is a

finite number and a very interesting quantity characterizing the network structure, defined as

in [23, 24] as

Z(G) = lim
n→∞

ln τ(G)

|V (G)|
. (7.1)

for a graph G. Particularly, we know that

Z (En) =
16

9
(ln 2) = 1.232261654

Z (Fn) =
1

9
(ln[1600] + 2 ln[4 +

√
15]) = 1.278292561,

Z (Hn) = ln[2]− 2

9
(ln[115−

√
13209]) = 1.285411179.

Now we compare the value of entropy in our graphs with other graphs. The entropy of the

graph Hn is larger than the entropy of the graph En and the graph Fn. In addition the entropy

of the families En, Fn and Hn which have average degree 16/3 is larger than the entropy of

fractal scale free lattice [25] which has the entropy1.040 and 3-prism graph of average degree 4

which has entropy1.0445 [26] and two dimensional Sierpinski gasket [27] which has the entropy
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1.166 of the same average degree 4 but the entropy of the families En, En and Hn is smaller

than the entropy of Apollonian graph [28] which has the entropy 1.3540 of average degree 6.

§8. Conclusions

In this work, we enumerated the number of spanning trees in the sequences of three sequences

of graphs of average degree 16/3 using electrically equivalent transformations. An advantage of

this method lies in the avoidance of laborious computation of Laplacian spectra that is needed

for a generic method for determining spanning trees.
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§1. Introduction

Molodtstov dealt with uncertainity and unclear objects using notions of soft set theory [2]. A

new set combining the soft sets and fuzzy sets, was then developed and proved to be more

effective by Maji.et al [2]. Akram and Nawaz dealed with properties of fuzzy soft graphs [3].

Torra.V in [4] defined the hesitancy fuzzy sets. The order and size in fuzzy graphs was found

by Nagoor Gani and Basheer [11]. Gani and Radha [10] worked on regular fuzzy graphs.

The concept of constant intuitionistic Fuzzy graph dealt by Karunambigai et.al [5]. Santhi

Maheswari and Sekar worked on regular FG in [15], [16]. [9] introduced constant hesitancy fuzzy

graph and established some concepts. Pathinathan et.al developed Hesitancy fuzzy graphs [7],

and also defined regular hesitancy fuzzy graph [8]. Hesitancy fuzzy soft graphs notions were

given by Rajeswari [6].

This article deals with degree of vertex and edge in HFSG. The concept of regular and

constant are observed over these HFSG and its characteristics are dealt with.

§2. Preliminaries

Definition 2.1 A fuzzy graph G, contains a nonempty set V with functions σ : V → [0, 1] and

µ : V × V → [0, 1]: ∀ u, v ∈ V , µ(uv) ≤ σ(u) ∧ σ(v), where σ and µ are fuzzy vertex set and

1Received September 20, 2023, Accepted December 6, 2023.
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edge set respectively in G.

Generally, let NG = (A,B) be neutrosophic fuzzy graph, i.e., let A = (TA, IA, FA) be a

neutrosophic fuzzy relation on B = (TB , IB , FB), which is a neutrosophic fuzzy set on set V . If

FA = 0 and FB = 0, then such a neutrosophic fuzzy graph is nothing else but a fuzzy graph.

Definition 2.2 The pair (F,A) is soft set over the universal set, where A ⊆ E and F : a →
P(U). That is a soft set over U is parametered collection of subsets of U .

Definition 2.3 An FSG G̃ is a 4-tuple, such that

(1) G ∗ is crisp graph;

(2) A is the parameter set;

(3) (F̃ ,A ) is fuzzy soft set over vertex set V;

(4) (K̃ ,A ) is fuzzy soft set over edge set E.

Then,
(
F̃ (a), K̃ (a)

)
is fuzzy (sub)graph of G ∗,∀ a ∈ A and can be denoted as H̃ (a).

The membership value of the edge in an FSG is given as

K̃(a)(xy) ≤ min
{
F̃ (a)(x), F̃ (a)(y)

}
.

Definition 2.4 If G̃ is an FSG, then the vetex degree is

dG̃(u) =
∑
ai∈A

(
∑
u 6=v

K̃ (ai)(uv)).

Definition 2.5 If G̃ is an FSG, then edge degree of uv is given as

dG̃(uv) = dG̃(u) + dG̃(v)− 2(
∑
ai∈A

K̃ (ai)(uv)).

Definition 2.6 Let U be the universal set and E be set of parameters, then HF(U) is set of all

hesitant fuzzy sets over U. Then, the pair (F,E) is hesitant fuzzy soft set if F (e) ∈ HF (U), for

every e ∈ E.

Definition 2.7 A hesitancy fuzzy graph G̃ = (Ṽ , E) such that µ1 : Ṽ → [0, 1] (membership),

γ1 : Ṽ → [0, 1] (non membership), β1 : Ṽ → [0, 1] (hesitancy membership), also µ1 +γ1 +β1 = 1

for all vertices.

Also E ⊆ Ṽ × Ṽ , where µ1 : Ṽ × Ṽ → [0, 1], γ1 : Ṽ × Ṽ → [0, 1], β1 : Ṽ × Ṽ → [0, 1] such

that

µ2(uv) ≤ ∧[µ1(u), µ1(v)],

γ2(uv) ≤ ∨[γ1(u), γ1(v)],

β2(uv) ≤ ∧[β1(u), β1(v)]

and 0 ≤ µ2(uv) + γ2(uv) + β2(uv) ≤ 1 for all edges.
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Definition 2.8 For a HFSG, its order is

o(G̃) =

 ∑
ai∈A,vi∈V

µ1(vi),
∑

ai∈A,vi∈V
γ1(vi),

∑
ai∈A,vi∈V

β1(vi)

 .

Definition 2.9 The size of a HFSG is

s(G̃) =

 ∑
ai∈A,vivj∈E

µ2(vivj),
∑

ai∈A,vivj∈E
γ2(vivj),

∑
ai∈A,vivj∈E

β2(vivj)

 .

§3. Degree in HFSG

Definition 3.1 Let G̃ be a hesitancy fuzzy soft graph (HFSG). Then,

dµ(u) =
∑
ai∈A

(
∑
u6=v

K̃(ai)µ2(uv)),

dγ(u) =
∑
ai∈A

(
∑
u6=v

K̃(ai)γ2(uv)),

dβ(u) =
∑
ai∈A

(
∑
u6=v

K̃(ai)β2(uv)).

Therefore, dG̃(u) = (dµ(u), dγ(u), dβ(u)) .

Definition 3.2 Let G̃ be a HFSG, then total degree of the vertex v ∈ V is given as

tdG̃(v) =

(
dµ(v) +

∑
ai∈A

(µ1(v)), dγ(v) +
∑
ai∈A

(γ1(v)), dβ(v) +
∑
ai∈A

(β1(v))

)
.

Example 3.3 Consider the following HFSG, we demonstrate the above definition.

Figure 3.1
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The degree of the vertices are found as dG̃(u) = (0.4, 0.5, 0.5), dG̃(v) = (0.6, 0.7, 0.9),

dG̃(w) = (0.7, 0.8, 0.7), dG̃(x) = (0.4, 0.4, 0.2).

The total degree is found as tdG̃(u) = (1.1, 1.0, 1.0), tdG̃(v) = (1.1, 1.0, 1.6), tdG̃(w) =

(1.2, 1.5, 1.0), tdG̃(x) = (1.1, 0.9, 0.5).

§4. Constant HFSG

Definition 4.1 If degree of all the vertices are same, then the HFSG is called constant HFSG

(c-HFSG). That is, if, G̃ is a HFSG and if dµ(xi) = k1, dγ(xi) = k2 and dβ(xi) = k3, ∀xi ∈ V .

Then G̃ is said to be (k1, k2, k3)- HFSG or c-HFSG of degree (k1, k2, k3).

Example 4.2 The following is a constant-HFSG.

Figure 4.1

The degree of the vetices are dG̃(u1) = (0.6, 0.5, 0.4), dG̃(u2) = (0.6, 0.5, 0.4), dG̃(u3) =

(0.6, 0.5, 0.4), dG̃(u4) = (0.6, 0.5, 0.4). Here dµ(ui) = 0.6, dγ(ui) = 0.5, dβ(ui) = 0.4, for all

ui ∈ V . Therefore, it is c-HFSG.

Definition 4.3 Let G̃ be a HFSG, it is said to be totally constant HFSG (tc-HFSG), if the total

degree of all the vertices are same. That is, if a HFSG, having total degree of all its vertices as

(l1, l2, l3), then it is (l1, l2, l3)- totally constant HFSG.

Example 4.4 The following graph illustrates a totally constant HFSG.

Figure 4.2

The total degree of all the vertices are found to be (0.8, 0.8, 0.6). That is tdµ(vi) = 0.8,

tdγ(vi = 0.8), tdβ(vi) = 0.6, for all vi ∈ V . Therefore it is tc-HFSG.
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Remark 4.5 A c-HFSG need not be tc-HFSG and vice versa.

Example 4.6 Consider the example 4.2, which is (0.6,0.5,0.4)-constant HFSG. But while find-

ing the total degree of all the vertices, we have tdG̃(u1) = (1.2, 1.2, 0.9), tdG̃(u2) = (1.4, 1.0, 0.6),

tdG̃(u3) = (1.4, 1.0, 0.6), tdG̃(u4) = (0.9, 0.7, 0.6). It is not same, hence it is not totally constant-

HFSG.

While taking the example 4.4, which is totally constant-HFSG. But the degree of its vertices

are dG̃(u) = (0.5, 0.4, 0.3), dG̃(v) = (0.1, 0.2, 0.2), dG̃(w) = (0.2, 0.2, 0.1), dG̃(x) = (0.2, 0, 0.1),

which are not same, thus it is not constant-HFSG.

Theorem 4.7 Let G̃ be a c-HFSG. And if
∑

ai∈A,vi∈V
F̃ (ai)(vi) is a constant function for all

vertices, then G̃ is totally constant-HFSG.

Proof Suppose G̃ is constant-HFSG, also given that
∑

ai∈A,vi∈V
F̃ (ai)(vi) is a constant

function. Then∑
ai∈A,ui∈V

F̃ (ai)(µ1(ui)) = m1,
∑
ai∈A

F̃ (ai)(γ1(ui)) = m2,
∑
ai∈A

F̃ (ai)(β1(ui)) = m3,

for ∀ui ∈ V.
Since G̃ is c-HFSG, let it be (t1, t2, t3)− constant HFSG. This implies that dG̃(µ)(ui) = t1,

dG̃(γ)(ui) = t2, dG̃(β)(ui) = t3, ∀ui ∈ V .

Then, the total degree of the vertices are

tdG̃(ui) = dG̃(µ)(ui) +
∑
ai∈A

F̃ (ai)(µ1(ui)), dG̃(γ)(ui)

+
∑
ai∈A

F̃ (ai)(γ1(ui)), dG̃(β)(ui) +
∑
ai∈A

F̃ (ai)(β1(ui))

⇒ tdG̃(ui) = (t1 +m1, t2 +m2, t3 +m3) ,∀ui ∈ V.

Therefore, it is totally constant HFSG. �

Note 4.8 For a HFSG G̃, its order is given by

o(G̃) =
∑
ai∈A

o(H(ai)).

Note 4.9 For a HFSG G̃, its size is

s(G̃) =
∑
ai∈A

∑
uv∈E

(µ2, γ2, β2)(uv).

Result 4.10 The size of a c-HFSG or a (k1, k2, k3) c-HFSG is given by[
hk1

2
,
hk2

2
,
hk3

2

]
,
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where h =
∣∣∣G̃∣∣∣.

Observation 4.11 The following are observed using the above defined graphs.

(1) Let G̃ be a (l1, l2, l3) totally constant-HFSG, then

2s(G̃) + o(G̃) = (hl1, hl2, hl3),

where h = |V |.

(2) For G̃ be a (t1, t2, t3) c-HFSG and (l1, l2, l3) tc-HFSG, then the order is given as

o(G̃) = (h(l1 − t1), h(l2 − t2), h(l3 − t3)) ,

where h = |V |.

§5. Regular HFSG

Definition 5.1 A HFSG G̃ is regular, when (dµ, dγ , dβ) (degree) of all the vertices are the

same constant. That is, if G̃ is a ((µ1i, γ1i, β1i), (µ2i, γ2i, β2i)) HFSG and if dµ(vi) = dβ(vi) =

dβ(vi) = m, ∀v ∈ V and ainA, then G̃ is m-regular HFSG.

Example 5.2 Examine the following example.

Figure 5.1

In this the degree of all the vertices are found to be dG̃(u) = (0.5, 0.5, 0.5), dG̃(v) =

(0.5, 0.5, 0.5), dG̃(w) = (0.5, 0.5, 0.5), dG̃(x) = (0.5, 0.5, 0.5). Here dµ(vi) = 0.5, dγ(vi) = 0.5,

dβ(vi) = 0.5, for all vi ∈ V . Therefore it is regular HFSG or 0.5-regular HFSG.

Definition 5.3 A HFSG G̃ is totally regular, when total degree of all vertices are the alike.

That is if tdµ(vi) = tdβ(vi) = tdβ(vi) = k, ∀v ∈ V and a ∈ A, ⇒ G̃ is k-totally regular HFSG.

Example 5.4 Consider the graph in Figure 5.2 following.
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Figure 5.2

In this the total degree of all the vertices are found as tdG̃(u) = (0.8, 0.8, 0.8), tdG̃(v) =

(0.8, 0.8, 0.8), tdG̃(w) = (0.8, 0.8, 0.8), tdG̃(x) = (0.8, 0.8, 0.8). Here tdµ(vi) = 0.8, tdγ(vi) = 0.8,

tdβ(vi) = 0.8, for all vi ∈ V . Therefore it is totally regular HFSG or 0.8-totally regular HFSG.

Definition 5.5 Let G̃ be a hesitancy fuzzy soft graph. The degree of the edge uv in E is defined

as

degG̃(uv) = dG̃(u) + dG̃(v)− 2((µ2, γ2, β2)(uv)).

Definition 5.6 Let G̃ be a HFSG. The total degree of the edge uv in E is defined as

tdegG̃(uv) = dG̃(u) + dG̃(v)− ((µ2, γ2, β2)(uv)).

Example 5.7 We consider the below hesitancy fuzzy soft graph.

Figure 5.3

The degree of the edges are deg(uv) = (0.8, 0.8, 0.5), deg(vw) = (0.9, 1.1, 0.7), deg(vx) =

(0.9, 1.1, 0.6). The total degree of the edges are tdeg(uv) = (1.3, 1.5, 0.9), tdeg(vw) = (1.3, 1.5, 0.9),

tdeg(vx) = (1.3, 1.5, 0.9).

Definition 5.8 A HFSG G̃ is edge regular, if the edge degree of all the edges are alike. That is

degG̃µ2(vivj) = degG̃γ2(vivj) = degG̃β2(vivj) = p.

Then, G̃ is called p-edge regular HFSG.
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Definition 5.9 A HFSG G̃ is edge totally regular, if the total edge degree of all the edges are

alike. That is,

tdegG̃µ2(vivj) = tdegG̃γ2(vivj) = tdegG̃β2
(vivj) = r.

Then, G̃ is called r- totally edge regular hesitancy fuzzy soft graph.

Example 5.10 We use below graph to explain the definition.

Figure 5.4

The edge degree are given as degG̃(uv) = (0.9, 0.9, 0.9), degG̃(vw) = (0.9, 0.9, 0.9), degG̃(wx) =

(0.9, 0.9, 0.9), degG̃(vx) = (0.9, 0.9, 0.9). Therefore the graph is 0.9-edge regular HFSG.

Example 5.11 The following graph demonstrates the above definition.

Figure 5.5

The total edge degree are found as tdegG̃(uv) = (0.9, 0.9, 0.9), tdegG̃(vw) = (0.9, 0.9, 0.9),

tdegG̃(wu) = (0.9, 0.9, 0.9). Thus the graph is 0.9-totally edge regular HFSG.

Remark 5.12 A HFSG which is edge regular, not necessarily be total edge regular and vice

versa.

Remark 5.13 A regular HFSG can be constant HFSG, but the converse not necessarily true.

Remark 5.114 A totally regular HFSG can be totally constant HFSG, but converse may not

be true.

Theorem 5.15 Suppose G̃ is a HFSG and if its subgraphs H(ai), ai ∈ A are fuzzy cycles of

even length, with membership values of alternate edges alike, then G̃ is constant HFSG.

Proof Consider the subgraphs of G̃, H(ai), ai ∈ A. Let us take only two parameters a1

and a2, such that the membership value of edges in H(a1) and H(a2) are alternatively same.
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Let the membership value of the edges, ei in H(a1) is (l1,m1, n1) and (l2,m2, n2), when

i is odd and even respectively. And for edges ej in H(a2), the membership value is (p1, q1, r1)

and (p2, q2, r2), when j is odd and even respectively. Then we have, the degree of vertices as

dG̃(vi) = (l1 + p1 + l2 + p2,m1 + q1 +m2 + q2, n1 + r1 + n2 + r2)

for all vi ∈ V , which

⇒ (dµ(G̃), dγ(G̃), dβ(G̃))(vi) = constant

for all vi ∈ V . Thus, it is c-HFSG. �

Theorem 5.16 If G̃, a c-HFSG satisfying the conditions of above theorem, then it is totally

constant HFSG, when (µ1, γ1, β1) is constant for all the vertices.

Proof Suppose G̃ is c-HFSG, then we have (dµ(G̃), dγ(G̃), dβ(G̃))(vi) = constant for all

vi ∈ V . Also given that (µ1, γ1, β1) is constant for all vertices, then the total degree of all the

vertices is also constant, since

tdG̃(v) =

(
dµ(v) +

∑
ai∈A

(µ1(v)), dγ(v) +
∑
ai∈A

(γ1(v)), dβ(v) +
∑
ai∈A

(β1(v))

)
,

which ⇒ G̃ is totally constant HFSG. �

Theorem 5.17 Suppose G̃ is a HFSG and if its subgraphs H(ai), ai ∈ A are fuzzy cycles of

any length and if
∑

ai∈A,ei∈E
K(ai)(ei), are alike and same constant for all the edges, then G̃ is

regular HFSG.

Proof Given G̃ is a HFSG and also
∑

ai∈A,ei∈E
K(ai)(ei) are alike and same constant for all

edges. Let us consider any two subgraphs of G̃ with parameters set a1 and a2, then we have∑
ai∈A,ei∈E

K(ai)(ei) = (m,m,m).

Then, the degree of the vertices are dG̃(vi) = (2m, 2m, 2m) for all vi ∈ V. This implies that G̃

is regular-HFSG. �

Theorem 5.18 Suppose G̃ is a HFSG and its subgraphs are fuzzy cylcles of any length and if∑
ai∈A,ei∈E

K(ai)(ei),
∑

ai∈A,vi∈V
F (ai)(vi)

are alike and same constant for all edges and vertices respectively, then G̃ is both regular and

totally regular hesitancy fuzzy soft graph.
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Proof Let us consider G̃ such that ∑
ai∈A,ei∈E

K(ai)(ei)

are alike and same constant for all vertices, then by above theorem, G̃ is regular HFSG. Let it

be (m,m,m) regular HFSG.

Let ∑
ai∈A,vi∈V

F (ai)(vi) = (k, k, k)

for all vertices. Considering the total degree of all the vertices, it is found that

tdG̃(vi) = (m+ k,m+ k,m+ k)⇒ G̃

is totally regular HFSG. �
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§1. Introduction

Berwald introduced a connection coefficient Cijk(x, ẋ) defined by

Cijk(x, ẋ)
def
=

∂2Gi

∂xj∂xk
(1.1)

and accordingly the covariant derivative of an arbitrary covariant vector i X in the sense of

Berwald is given by Rund [4]

Xi
(j) =

∂Xi

∂xj
− ∂Xi

∂ẋh
∂Gh

∂ẋj
+GijhX

h. (1.2)

The functions Gi appearing in (1.2) are positively homogeneous of degree two in its direc-

tional arguments ẋj and satisfies the following identities

Gihkrẋ
r = Gihkrẋ

k = Gikkrẋ
h, Gihkẋ

h = 0 and Gikẋ
k = 2Gi. (1.3)

The geodesic deviation has been defined in the following form

∂2Zj

∂u2
+Hj

k(x, ẋ)xk = 0, (1.4)

where the vector Zi is called the variation vector and the tensor Hi
k(x, ẋ) is being defined by

Hjik = 2∂kG
i − ∂h∂̇kGiẋh + 2GiklG

l − ∂̇lGi∂̇kGl. (1.5)

1Received September 9, 2023, Accepted December 8, 2023.
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The tensors defined by

Hi
jk(x, ẋ) =

1

3

(
∂Hi

k

∂ẋj
−
∂Hi

j

∂ẋk

)
and Hi

jkl =
∂Hi

jl

∂ẋk
(1.6)

are respectively termed as Berwalds deviation tensor and Berwalds curvature tensor and they

satisfy the following

Hk
khj = Hjh −Hhj , Hiẋ

i = (n− 1)H, Hj
kiẋ

k = Hj
i = Hj

ikẋ
k. (1.7)

The projective covariant derivative of an arbitrary tensor T ij (x, ẋ) is given by Misra [2] as

T ij((k)) = ∂kT
i
j − ∂̇sT sj Πi

rkẋ
r + Thj Πi

hk − T ihΠh
jk, (1.8)

where

Πi
jk(x, ẋ)

def
= Gijk −

1

n+ 1

(
2δi(jG

r
<r>k) + ẋiGirkg

)
(1.9)

are called projective connection coefficient and these coefficients are symmetric in its lower

indices. Involving the projective covariant derivative ,we have the following commutation for-

mulae

∂h

(
T ij((k))

)
−
(
∂hT

i
j

)
((k))

= T sj Πi
shk − T isΠs

jhk,

2T i[((h))((k))] = −∂̇rT ijQrshkẋs + T sjQ
i
shk − T isQsjhk. (1.10)

where,

Qihjk
def
= 2

{
∂[kΠi

j]h −Πi
rh[jΠ

r
k] + Πr

h[jΠ
i
k]r

}
. (1.11)

is called the projective entity and satisfies the following relations

Qihjk +Qijkh +Qikhj = 0,

Qihjk((s)) +Qihks((j)) +Qihsj((k)) = 0,

Qiijk = Qjk, Qijk =
2

3
∂̇[jQk]i ,

Qihjk = ∂̇hQ
i
jk, Qiijk = Qijk, Qikẋk = 0,

Qijk = −Qikj and Qihkẋ
h = Qik. (1.12)

The projective connection coefficient Πi
jk(x, ẋ) satisfies the following relations

Πi
hkr − ∂̇hΠi

kr, Πi
hk = ∂̇hΠi

k,

Πi
hkrẋ

h = 0 and Πi
hkẋ

h = Πi
k. (1.13)
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§2. NonCAffine Infinitesimal Projective Transformation

In view of the Berwalds covariant derivative [4], the Lie-derivative of a tensor field T ij (x, ẋ) and

the connection parameter Gijk(x, ẋ) are given as under [7] following

LνT ij (x, ẋ) = T ij(h)ν
h +

(
∂̇hT

i
j

)
νh(s)ẋ

s + T ihν
h
(j), (2.1)

LνGijk(x, ẋ) = νi(j)(k)H
i
jkhν

h +Gisjkv
s
(r)ẋ

r. (2.2)

where Hi
jkh(x, ẋ) has been defined by (1.6).

We also have the following communication formula from [7]

∂̇l
(
LνT ij

)
− Lν

(
∂̇lT

i
j

)
= 0, (2.3)

LνT ij(k) −
(
LνT ij

)
(k)

= T ijLνGikh −
(
∂̇hT

i
j

)
LνGhksẋs, (2.4)(

LνGijh
)

(k)
−
(
LνGikj

)
(j)

= LνHi
hjk + (LνGrkl)Girjhẋl −

(
LνGrjl

)
Girkhẋ

l. (2.5)

Now, we give the following definitions which will be used in the later discussions.

Definition 2.1 A Finsler space Fn is said to admit an affine motion [3] provided there exists

a vector vi(x) such that

(L)νG
i
jk(x, ẋ) = 0. (2.6)

Definition 2.2 A Finsler space is said to be symmetric [1] if the Berwalds curvature tensor

field Hi
hjk(x, ẋ) satisfies the relation

Hi
hjk(m) = 0 (2.7)

The following relations also hold good in such a symmetric Finsler space

Hi
jk(m) = 0, Hi

j(m) = 0 and H(m) = 0. (2.8)

We now consider an infinitesimal point transformation

xi = xi + vi(x)dt (2.9)

where, vi(x) stands for a non-zero contravariant vector field defined over the domain of the

space and dt is an infinitesimal point constant. If such a transformation transforms the system

of geodesics into the same system then such a transformation in Fn is termed as infinitesimal

projective transformation. It has been mentioned in [3] that the necessary and sufficient con-

dition in order that the infinitesimal point transformation given by (2.9) be an infinitesimal

projective transformation is given by the following equation

LρGijk = G
i

jk −Gijk = δikpk + δikpj − gjkgildl, (2.10)
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where, pk(x, ẋ) and dl(x, ẋ) are covariant vectors and satisfy the following identities

∂̇jp = pj , phk = ∂̇h∂̇kp, phkẋ
h = pk,

phkẋ
hẋk = p, ∂̇jd = dj , dhk = ∂̇h∂̇kd,

dhkẋ
h = dk and dhkẋ

hẋk = d, (2.11)

Keeping in mind the formula (2.5), the Lie-derivative of Hi
hjk can be expressed in the

following form

LρHi
hjk =

(
LρGijh

)
(k)
−
(
LρGikh

)
(j)

+ (LρGril) ẋlGirhk. (2.12)

Using (2.10) and (1.3) in (2.12), we get

LρHi
hjk = δijph(k) − δikph(j) + δihpj(k) − δihpk(j) − gjhgildl(k) + gkhg

ildl(j)

+gklg
rmGirjhdmẋ

l − gijgrmGirkhdmẋl. (2.13)

We multiply (2.13) by ẋhẋj and thereafter note (2.11) and the homogeneity property of

Hi
hjk(x, ẋ) and get

LρHi
k = 2ẋip(k) − δikp(j)ẋ

j − ẋipk(j)ẋ
j − gjhgildl(k)ẋ

hẋj + gkhg
ildl(j)ẋ

hẋj . (2.14)

Now, allow a contraction in (2.14) with respect to the indices i, k and thereafter use

equations (1.7), (2.11) and get

LρH = −p(j)ẋ
j +

1

n− 1

(
d(j)ẋ

j − gjhgildl(i)ẋhẋj
)
. (2.15)

With the help of (2.15) and (2.14), we get(
LρHi

k − LρHδik
)

= 3ẋip(k) − δikpk(j)ẋ
j + gkhg

ildl(j)ẋ
hẋj

− 1

n− 1

{
dkẋ

i + (2− n)gjhg
ildl(k)ẋhẋ

j
}
. (2.16)

Differentiate (2.16) partially with respect to ẋr and thereafter allow a contraction in the

resulting equation with respect to the indices i and r, we get the following

Lρ∂̇rHr
k − Lρ∂̇kH = (3n+ 2)pk − (n+ 3)pk(j) + dk(j)ẋ

j + gkhg
rlẋh{drl(j) + dlr}

+
5− n
n− 1

× dk + 2ẋhẋj × Clsl
grs
×
{

2− n
n− 1

× grhdl(k) − gkhdl(j)
}

(2.17)

after making use of (1.7) and (2.11).

The underlined equation

G
i
(x, ẋ) = Gi(a, ẋ)− P (s, ẋ)ẋi (2.18)
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represents the most general modification of the function i G which will leave (2.18) unchanged.

Thus, we say that the equation (2.18) defines the projective change [4] of the function Gi(x, ẋ).

The tensor defined by

W j
k (x, ẋ) = Hj

k −Hδ
j
k −

1

n+ 1

(
∂̇lH

j
k − δ

j
kH
)
ẋl (2.19)

is invariant under the projective change (2.18) and therefore it is regarded as projective deviation

tensor. This deviation tensor also satisfies the following identities

W j
j = 0, ∂̇kW

j
h ẋ

h = −W j
k and ∂̇iW

i
k = 0. (2.20)

The Lie-derivative of the projective deviation tensor W i
j (x, ẋ) in view of (2.16) and (2.17)

can be written in the following form

LρW i
k =

1

n+ 1

{
p(k)ẋ

i + 2pk(j)ẋ
iẋj +

4− n
n− 1

d(k)ẋ
i

−ẋi
[
dk(j)ẋ

j + gkhg
rl(drl(j) + dl(r)) + 2ẋhẋj

Clsr
grs

(
2− n
n− 1

grhdl(k) − gkhdl(j)
)]}

−δikp(j)ẋ
j + gkhg

ildl(j)ẋ
hẋj +

2− n
n− 1

gjhg
ildl(k)ẋ

hẋj . (2.21)

We now apply the commutation formula given by (2.4) to the projective deviation tensor

W i
j (x, ẋ) and get

LρW i
j(r) −

(
LρW i

j

)
(r)

= Wh
j LρGirh −W i

hLρGhjr −
(
∂̇hW

i
j

) (
LρGhrs

)
ẋs. (2.22)

Using (2.2) and (2.3) in (2.22), we get

LρW i
j(r) −

(
LρW i

j

)
(r)

= W i
j

(
δirpr − grhgildl

)
−W i

rpj − 2W i
jpr

+ghldl

[
W i
hgjr +

(
∂̇hW

i
j

)
grsẋ

s −
(
∂̇rW

i
j

)
p
]
. (2.23)

We now allow a contraction in (2.23) with respect to the indices i and r and thereafter use

(2.20) and get

LρW i
j(i) −

(
LρW i

j

)
(i)

= (n− 2)Wh
j ph −Wh

j dh + ghldl

{
W i
hgji +

(
∂̇hW

i
j

)
gisẋ

s
}
. (2.24)

Now, transvect ẋr in (2.23) and thereafter use (2.3) and (2.20), we get[
LρW i

j(r) −
(
LρW i

j

)
(r)

]
ẋr = Wh

j ẋ
iph − 4W i

jp−Wh
j grhg

ildlẋ
r + ghldlẋ

r

+ghldlẋ
r
[
W i
hgjr + (∂̇hW

i
j )grsẋ

s
]
). (2.25)

We now make an assumption that the space under consideration is symmetric one, i.e.,

W i
j(r) = 0 and as such under this assumption the equations (2.24) and (2.25) can alternatively
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be written in the following forms(
LρW i

j

)
(r)

= (2− n)W i
jpr +W i

jdr − ghldl
[
W i
hdri +

(
∂̇hW

i
j

)
grsẋ

s
]

(2.26)

and(
LρW i

j

)
(r)
ẋr = W i

jp−Wh
j ẋ

iph +Wh
j grhg

ildlẋ
r − ghldlẋr

[
W i
hgjr +

(
∂̇hW

i
j

)
grsẋ

s
]
. (2.27)

We propose to eliminate the term Wh
j ph with the help of (2.26) and (2.27) and the result

of elimination will give the following

M i
j =

{
Wh
j dh − ghldl

[
W r
hgjr +

(
∂̇W i

j

)
grsẋ

s
]}

ẋi, (2.28)

where,

M i
j =

(
LρW i

j

)
(r)
ẋr + (2− n)

(
LρW i

j

)
(r)
ẋr. (2.29)

At this stage, if we assume that the Finsler space Fn admits a projective motion which will be

characterized by

LρGijk = 0. (2.30)

Therefore, in such a case, with the help of (2.10) and (2.30) we shall easily arrive at the

conclusion that the vectors p(x, ẋ) and d(x, ẋ) should separately vanish.

With the help of all these observations, we can therefore state the following conclusions.

Theorem 2.1 In a Finsler space Fn, the equation (2.28) always holds provided the space

under consideration admits a nonCaffine infinitesimal transformation such that the Berwalds

covariant derivative of W i
j remains an invariant.

Theorem 2.2 In a Finsler space Fn, M
i
j = 0 (where M i

j has been given by (2.29)) provided the

space under consideration admits an affine infinitesimal transformation such that the Berwalds

covariant derivative of W i
j remains an invariant.

Theorem 2.3 In a Finsler space Fn, the equation (2.28) necessarily holds provided the space

under consideration is symmetric one and it admits a non-affine infinitesimal transformation.

Theorem 2.4 In a Finsler space Fn, the equation (2.26) necessarily holds provided the space

under consideration is symmetric.

§3. Infinitesimal Special Projective Transformation

In view of the projective covariant derivative as has been given by (1.8) and the projective

connection coefficient Πi
jk(x, ẋ) as has been given by (1.9), the Lie-derivatives of an arbitrary

tensor T ij (x, ẋ) and the projective connection coefficient are respectively given by

LρT ij (x, ẋ) = T ij((r))v
r +

(
∂̇sT

i
j

)
vs((r))ẋ

r − T rj vi((r)) + T irv
r
((j)) (3.1)
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and

LvΠi
mk(x, ẋ) = vi((m))((k)) +Qimkrv

r +
(
∂̇rΠ

i
mk

)
vr((s))ẋ

s. (3.2)

In the operators Lv, ∂̇ and (( )), we have the following commutation formulae

∂̇ρ
(
LνT ij

)
− Lν

(
∂̇ρT

i
j

)
= 0,

(
LνT ij

)
((r))
− LνT ij((r)) = T ijLνΠl

lr − T il LνΠl
rj −

(
∂̇lT

i
j

)
LνΠl

rmẋ
m and(

LνΠi
hj

)
((k))
−
(
LνΠi

hk

)
((j))

= LνQihkj +
(
LνΠl

jb

)
Πi
hklẋ

b +
(
LνΠl

kb

)
Πi
jhlẋ

b. (3.3)

In order that the infinitesimal point transformation given by (2.9) may define an infinites-

imal special projective transformation, it is necessary and sufficient that [3]

LνΠi
jk = Π

i

jk −Πi
jk = δijbk + δikbj − gjkgilcl, (3.4)

where, bk(x, ẋ) and cl(x, ẋ) are covariant vectors and they satisfy the following relations

∂̇jb = bj , bhk = ∂̇h∂̇kb, bhkẋ
h = bk,

bhkẋ
hẋk = b, ∂̇j = cj , cjk = ∂̇j ∂̇kc,

chkẋ
h = ck, and chkẋ

hẋk = c. (3.5)

Using (3.4), (3.5) and the commutation formula given by (3.3), the Lie-derivative of the

projective entity Qihjk(x, ẋ0 can be written in the following form

LνQihjk = δijbh((k)) + δihbj((k)) − gjhgilcl((k)) − gjh((k))g
ilcl

−gjhgil((k))cl − δ
i
kbh((j)) − δihbk((j)) + gkhg

ilcl((j))

+gkh((j))g
ilcl + gkhg

il
((j))cl − δ

r
kbΠ

i
rjh + gklg

rmcmΠi
rjhẋ

l

+bδrjΠi
rkh − gjlgrmcmẋiΠi

rhk. (3.6)

Now, transvect ẋhẋj in (3.6) and therefore use (1.12) and (1.13) together, we get

LνQik = 2ẋib((k)) − δikb((j))ẋj + ẋhẋj
[
gkh

(
gil((j))cl + gilcl((j))

)
− gjh

(
gil((k))cl + gilcl((k))

)
− gjh((k))g

ilcl

]
. (3.7)

We allow a contraction in (3.6) with respect to the indices i and k and thereafter transvect-

ing the equation thus obtained by ẋhẋj , we get

LνQhj ẋhẋj = (1− n)b((j))ẋ
j + c((j))ẋ

j + gilclẋ
hẋj

(
gih((j)) − gjh((i))

)
−gjhẋhẋj

(
gilcl((i)) + gil((i))cl

)
+ gihg

il
((j))clẋ

hẋj . (3.8)
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where we have taken into account (1.12).

We now eliminate b((j))ẋ
j using (3.7), (3.8) and get

Lik(x, ẋ) = 2(1− n)b((k))ẋ
i − bk((j))ẋ

iẋj

+gkhẋ
hẋj

(
gil((j))cl + gilcl((j))

)
−gil((k))cl − g

ilcl((k)) + c((j))ẋ
jδik + gilclẋ

hẋjδik
(
gih((j)) − gjh((i))

)
−gjhẋhẋjδik

(
gilcl((i)) − gil((i))cl

)
+ gihg

il
((j))clẋ

hẋj , (3.9)

where,

Lik
def
= LνQik + δikLνQhj ẋhẋj . (3.10)

We apply the commutation formula (3.36) to the projective deviation tensor W i
j (x, ẋ) and

thereafter use (3.4) and (3.5) to get(
LνW i

j

)
((r))
− LνW i

j((r)) = W l
jδ
i
rbl −W l

jgrlg
ipcp −W i

rbj +W i
l grjg

lpcp

−
(
∂̇rW

i
j

)
b− 2W i

j br −
(
∂̇rW

i
j

)
glmg

lpcpẋ
m. (3.11)

Allow a contraction in (3.11) with respect to the indices i and r, we get(
LνW i

j

)
((i))
− LνW i

j((i)) = (n− 2)W l
jbl −W l

jcl + glpcp

(
W i
l gij −

(
∂̇W i

j

)
gimẋ

m
)
. (3.12)

Now, transvect (3.11) by ẋr and thereafter use (3.5), we get((
LνW i

j

)
((i))
− LνW i

j((r))

)
ẋr = W l

jblẋ
i − 4W i

j b−W l
jgrlg

ipcpẋ
r

+W i
l grjg

lpcpẋ
r −

(
∂̇lW

i
j

)
grmg

lpcpẋ
rẋm. (3.13)

We make the supposition that the infinitesimal special projective transformation given by

(3.4) leaves invariant the projective covariant derivative of the projective deviation tensor, i.e.,

LνW i
j((r)) = 0. (3.14)

As a result of this supposition, the equations (3.12) and (3.13) can respectively be expressed

in the following alternative form(
LνW i

j

)
((i))

= (n− 2)W l
jbl −W l

jcl + glpcp

(
gijW

i
l −

(
∂̇lW

i
j

)
gimẋ

m
)

(3.15)

and(
LνW i

j

)
((r))

= W l
jblẋ

i− 4W i
j b−W l

jgrlg
ipcpẋ

r +W i
l grjg

ipcpẋ
r −
(
∂̇W i

j

)
grmg

lpcpẋ
rẋm. (3.16)

We now propose to eliminate W l
jbl with the help of (3.15) and (3.16), the result of elimi-
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nation gives the following

Bij(x, ẋ) = ẋj
{
−W l

jcl + glpcp

[
W k
l gkj −

(
∂̇lW

r
j

)
grmẋ

m
]}

+ (n− 2)

×
[
4W i

j b+W l
jgrlg

ipcpẋ
r −W i

l grjg
lpcpẋ

r +
(
∂̇W i

j

)
grmg

lpcpẋ
rẋm

]
, (3.17)

where,

Bij(x, ẋ)
def
=
(
LνW i

j

)
((r))

ẋr − (n− 2)
(
LνW i

j

)
((r))

ẋr. (3.18)

In order that the space under consideration may admit a special projective affine motion,

we always have

LνΠi
jh = 0. (3.19)

Using (3.4) and (3.19), we easily arrive at the conclusion that the vectors b(x, ẋ) and c(x, ẋ)

must separately vanish.

In the light of all these observations, we can therefore state results following.

Theorem 3.1 In a Finsler space Fn, the equation (3.17) always holds provided the space under

consideration admits a non-affine infinitesimal special projective transformation such that the

projective covariant derivative of projective deviation tensor W i
j remains an invariant.

Theorem 3.2 In a Finsler space Fn, B
i
j(x, ẋ) given by (3.18) always vanishes provided the space

under consideration admits an affine infinitesimal special projective transformation such that

the projective covariant derivative of the projective deviation tensor W i
j remains an invariant.

If the Finsler space Fn under consideration be assumed to be symmetric one i.e., W i
j((r)) =

0, then under such an assumption the equation (3.14) will always hold. Therefore, we can state

the result following.

Theorem 3.3 In a symmetric Finsler space Fn, the equation (3.17) always holds provided the

space under consideration admits a non-affine infinitesimal special projective transformation

characterized by (3.4).

Theorem 3.4 In a symmetric Finsler space Fn, B
i
j characterized by (3.18) always vanishes

provided the space under consideration admits an affine infinitesimal special projective trans-

formation.

§4. Conclusion

The present communication has been divided into three sections of which the first section is

introductory, the second section deals with non-affine infinitesimal transformations, and in this

section, we have derived conditions which will hold when the space under consideration admits

non-affine as well as an affine infinitesimal transformation and in the sequel have established

the conditions which will hold when the space is symmetric and it admits an affine as well

as non-affine infinitesimal transformation. The third section deals with infinitesimal special
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projective transformation. Like the previous section, in this section we have established the

conditions which will hold when the space under consideration is symmetric and it admits a

non-affine as well as an affine infinitesimal special projective transformation too.

References

[1] Misra R.B., A symmetric Finsler space, Tensor (N.S.), 24(1972), 346-350.

[2] Misra R.B., The projective transformation in a Finsler space, Ann.De La Soc.Sci.De Brux-

elles, 80(1966), 227-239.

[3] Pande H.D. and Kumar A., Special infinitesimal projective transformation in a Finsler

space, Accad.Naz.Dei.Lincei Rend, 58(3-4)(1974), 190-193.

[4] Rund H., The Differential Geometry of Finsler of Finsler Spaces, Springer Verlag, Berlin

1959.

[5] Sinha R.S., On projective motion in a Finsler space with recurrent curvature, Tensor

(N.S.), 1,21(1970), 124-126.

[6] Takano K., On projective motion in Finsler space with bi-recurrent curvature, Tensor

(N.S.), 12(1962), 28-32.

[7] Yano K., The Theory of Lie-Derivatives and Its Applications, North Holand Publ.Co.(1957),

Amesterdam, Holland.



International J.Math. Combin. Vol.4(2023), 54-62

An Explicit Formula for the Number of Subgroup

Chains of the Group Zpn × A3

Mike Ogiugo1, M. EniOluwafe2, Amit Sehgal3, S. A. Adebisi4 and P. A. Adetunji5

1. Department of Mathematics, Yaba College of Technology, Nigeria

2. Department of Mathematics, University of Ibadan, Nigeria

3. Department of Mathematics, Pt.Neki Ram Sharma Government College, Rohtak

4,5. Department of Mathematics, University of Lagos, Nigeria

E-mail: ekpenogiugo@gmail.com, michael.enioluwafe@gmail.com,

amit sehgal iit@yahoo.com, adesinasunday@yahoo.com, padetunji@unilag.edu.ng

Abstract: In this paper, we establish a recursive formula for the number of chains of

subgroups in the subgroup lattice of the groups formed by the Cartesian products of cyclic

groups of prime power order with alternating groups of degree 3. The subgroup chains

were characterised by an enumerative technique derived from the set of representatives of

isomorphism classes of subgroups with their sizes.

Key Words: Subgroup, alternating group, chains of subgroup, fuzzy subgroup.

AMS(2010): 20D06, 20D30, 20E15.

§1. Introduction

The study of chains of subgroups describes the set containing all chains of subgroups of G, which

ends with G.A formula for the lattice of a finite cyclic group, for several chains of subgroups, was

given by Tărnăuceanu and Bentea [5] by giving its one variable generating function. J.M. Oh

in his paper [3] determined the number of subgroups of a finite cyclic group of 4n by giving its

multivariable generating function. The problem of counting chains of subgroups in the lattice

of subgroups for any given group G got the attention of researchers, especially classifying fuzzy

subgroups of finite groups under a natural equivalence relation (see [7], [2]).

In this paper, we follow to obtain the number of chains subgroups of the group Zpn ×A3.

In this regard, in Section 2, we present some preliminary definitions and necessary results on

subgroup chains and fuzzy subgroups, which we will need in the next sections. In Sections 3,

4, and 5, we deal with the explicit formula for the number of subgroup chains of the group

Zpn ×A3, for any prime number, by generating recurrence relation with constant coefficients.

§2. Preliminaries

The chain of subgroups method describes the set of all chains of subgroups of that end in

G. Suppose that the group G is finite, and let µ : G 7→ [0, 1] be a fuzzy subgroup of G. Put
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µ(G) = {α1, α2, · · · , αr} and assume that α1<α2< · · ·<αr . Then µ determines the following

chain of subgroups of G which ends in G:

µGα1 ⊂ µGα2 ⊂ · · · ⊂ µGαm = G

Moreover, for any x ∈ G and i = 1, r, we have

µ(x) = αi ⇔ i = max{j|x ∈ µGαj} ⇔ x ∈ µGαi \ µGα1−r

A necessary and sufficient condition for two fuzzy subgroups µ, η of G to be equivalent

to ∼ has been identified in Volf [2004], i.e., µ ∼ η if and only if µ and η have the same set of

level subgroups, that is, they determine the same chain of subgroups. This result shows that

there exists a bijection between the equivalence classes of fuzzy subgroups of G and the set of

chains of subgroups of G that end in G. Clearly, any group with at least two elements has more

distinct fuzzy subgroups than subgroups.

Also, the problem of counting all distinct fuzzy subgroups of G can be translated into a

combinatorial problem on the subgroup lattice L(G) of G, that is computing the number of

all chains of subgroups of G that terminate in G.If δ(G) denotes the number of all chains of

subgroups of G that terminate in G, then δ(G) is the number of chains of subgroups of length

one of G ending in G plus the number of chains of subgroups of length more than one of the

group G, which end in G. Hence,

δ(G) = n(H1) ∗ δ(H1) + n(H1) ∗ δ(H2) + n(H3)δ(H3) + · · ·+ n(Hα)δ(Hα)

=
∑

Hi∈Iso(G)

δ(Hi)× n(Hi)

= 2 +
∑

distict Hi∈Iso(G)

δ(Hi)× n(Hi),

where Iso(G) is the set of representatives of isomorphism classes of subgroups of G and n(H)

denotes the size of the isomorphism class with representative H.

Let fixes δ(H1) = δ(Hα) = 1, because δ(H1) = δ(Hα) in general , for which H1 is the

trivial group of G and Hα is the improper subgroup of G. For any Hi ∈ Iso(G) and i = 1, α,

δ(G) =
∑

distictH∈Iso(G)

δ(H)× n(H). (2.1)

In this paper, (2.1) is used to obtain the number of subgroup chains of G because the

number of all distinct fuzzy subgroup of G under the natural equivalence relation ∼ is equal to

the number of subgroup chains of G that terminates in G (see Ogiugo and Amit, 2020).

§3. The Number of Chains of Subgroups of Z2n ×A3 with n ≥ 1

Proposition 3.1 The number of subgroup chains of the group Z2 ×A3 is 6.
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Proof Let G be Z2 ×A3, it has the following set of representatives of isomorphism classes

of subgroups with sizes [e, 1], [Z2, 1], [Z3, 1] and [Z2 ×A3, 1]. So

δ(G) = δ(He) + δ(Z2) + δ(Z3) + 1 = 1 + 2 + 2 + 1 = 6. �

Proposition 3.2 The number of chains of subgroups of Z4 ×A3 is 16.

Proof Let G be Z4 ×A3, It has the following set of representatives of isomorphism classes

of subgroups with respective sizes [e, 1], [Z2, 1], [Z3, 1], [Z4, 1], [Z6, 1] and [Z4 ×A3, 1]. So,

δ(Z4 ×A3) = δ(He) + δ(Z2) + δ(Z3) + δ(Z4) + δ(Z6) + 1

= 1 + 2 + 2 + 4 + 6 + 1 = 16.

This completes the proof. �

Proposition 3.3 The number of chains of subgroups of Z8 ×A3 is 40.

Proof Z8×A3 has the following set of representatives of isomorphism classes of subgroups

with respective sizes [e, 1], [Z2, 1],[Z3, 1], [Z4, 1], [Z6, 1], [Z8, 1], [Z12, 1] and [Z8 ×A3, 1]. So,

δ(Z8 ×A3) = δ(He) + δ(Z2) + δ(Z3) + δ(Z4) + δ(Z6) + δ(Z8) + δ(Z12) + 1 = 40. �

Proposition 3.4 The number of chains of subgroups of Z16 ×A3 is 96.

Proof Z16×A3 has the following set of representatives of isomorphism classes of subgroups

with respective sizes [e, 1], [Z2, 1],[Z3, 1], [Z4, 1], [Z6, 1], [Z8, 1], [Z12, 1], [Z16, 1], [Z24, 1] and

[(Z16 ×A3), 1]. So,

δ(Z16 ×A3) = δ(He) + δ(Z2) + δ(Z3) + δ(Z4) + δ(Z6) + δ(Z8)

+δ(Z12) + δ(Z16) + δ(Z24) + 1 = 96.

This completes the proof. �

Theorem 3.5 Let G be Z2n × A3,where n ≥ 1 the number of chains of subgroups of G is

2n(2 + n).

Proof Z2n × A3 as 2n and 3 are relatively prime , the divisors of 2n × 3 are 1, 3, 2i and

2i × 3, where i = 1, 2, · · · , n. These, then generate the list of cyclic groups of orders 1, 3, 2i,

2i× 3, respectively for where i = 1, 2, · · · , n. Thus, we have the following set of representatives

of isomorphism classes of subgroups with respective sizes:

[e, 1],

[Z2, 1] , [Z22 , 1], [Z22 , 1] · · · [Z2n , 1],

[Z3, 1], [Z2.3, 1], [Z4.3, 1], [Z8.3, 1], [Z16.3, 1] · · · [Z2n.3, 1].
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So,

δ(Z2n ×A3) = δ(He) + δ(Z2) + δ(Z4) + δ(Z8) + δ(Z16) + · · ·+ δ(Z2n) + δ(Z3)

+δ(Z6) + δ(Z12) + δ(Z24) + δ(Z48) + · · ·+ δ(Z2n.3) + 1.

We establish recurrence relation for Z2n ×A3, where n ≥ 1, i.e.,

δ(Z2n ×A3) = 1 +

n∑
j=1

δ(Z2j ) +

n−1∑
j=1

δ(Z2j ×A3) + 1. (3.1)

Change n to n− 1 in (3.1), we get

δ(Z2n−1 ×A3) = 1 +

n−1∑
j=1

δ(Z2j ) +

n−2∑
j=1

δ(Z2j ×A3) + 1. (3.2)

From (3.1) and (3.2), we get

δ(Z2n ×A3)− 2δ(Z2n−1 ×A3) = δ(Z2n),

δ(Z2n ×A3)− 2δ(Z2n−1 ×A3) = 2n. (3.3)

To find the solution of recurrence relation in (3.3), let δ(Z2n ×A3) = Xn. Then,

Xn − 2Xn−1 = 2n.

We find the solution of recurrence relation in (3.3). Its characteristic solution (C.S) is

Xn = A2n and its particular solution (P.S) is Xn = nB2n of recurrence relation in (3.3). From

(3.3), we have

nB2n − 2B(n− 1)2n−1 = 2n

nB2n −B(n− 1)2n = 2n

nB − (n− 1)B = 1

��nB −��nB +B = 1⇒ B = 1

Therefore, the general solution of recurrence relation in (3.3) is

Xn = A2n + n2n. (3.4)

Consider the case of n = 1 and X1 = 6. In this case we get, 6 = 2A+ 2, A = 2 and finally,

δ(Z2n ×A3) = 2.2n + n2n.

Using a recurrence relation solution, we therefore obtain

δ(Z2n ×A3) = 2n(2 + n). �
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Corollary 3.6 Let n be the positive integer defined in Theorem 3.5 and let δ(G) be the number

of subgroup chains of G. Then, if n = 2, G = Z4 ×A3), then δ(G) = 22(2 + 2), δ(G) = 16 and

if n = 3, G = Z8 ×A3), then δ(G) = 23(3 + 2), δ(G) = 40.

§4. The Number of Chains of Subgroups of Z3n ×A3 with n ≥ 1

Proposition 4.1 The number of subgroup chains of Z3 ×A3 is 10.

Proof Let G be Z3 ×A3, it has the following set of representatives of isomorphism classes

of subgroups with respective sizes [e, 1], [Z3, 4] and [(Z3 ×A3), 1]. Then,

δ(G) = δ(He) + 4δ(Z3) + 1 = 10. �

Proposition 4.2 The number of Subgroup chains of Z9 ×A3 is 32.

Proof Let G be Z9 ×A3, it has the following set of representatives of isomorphism classes

of subgroups with respective sizes [e, 1], [Z3, 4], [Z3 ×A3, 1], [Z9, 3] and [Z9 ×A3, 1]. Then,

δ(G) = δ(He) + 4δ(Z3) + δ(Z3 ×A3) + 3δ(Z9) + 1 = 32. �

Proposition 4.3 The number of subgroup chains of Z27 ×A3 is 88.

Proof Let G be Z27×A3, it has the following set of representatives of isomorphism classes

of subgroups with respective sizes [e, 1], [Z3, 4], [Z3 × A3, 1], [Z9 × A3, 1], [Z9, 3], [Z27, 3] and

[(Z27 ×A3), 1]. Then,

δ(G) = δ(He) + 4δ(Z3) + δ(Z3 ×A3) + δ(Z9 ×A3) + 3δ(Z9) + 3δ(Z27) + 1 = 88. �

Theorem 4.4 Let G be Z3n × A3 where n ≥ 1, then the number of Chains of Subgroups of G

is (3n+ 2)2n.

Proof The order of the group Z3n×A3 is not relatively prime for any n, we have the divisors

of 3n × 3 are 1, 3, 3j and 3j × 3, where j = 1, 2, · · ·n.So that , we obtain cyclic subgroups of

Z3n ×A3 of order 1 and order 3j respectively, that is identity group and Z3j , j = 1, 2, · · ·n and

non-cyclic Abelian subgroupsZ3j ×Z3 of 3j × 3,j = 1, 2, · · · . Thus, we have the following set of

representatives of isomorphism classes of subgroups with respective sizes

[e, 1], [Z3, 4],

[Z3 ×A3, 1], [Z9 ×A3, 1], · · · , [Z3n−1 ×A3, 1],

[Z9, 3], [Z27, 3], [Z81, 3], · · · , [Z3n , 3].

δ(Z3n ×A3) = 1 + 4δ(Z3) + 3

n∑
j=1

δ(Z3j ) +

n−1∑
j=1

δ(Z3j ×A3) + 1. (4.1)
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We establish recurrence relation for Z3n ×A3 where n ≥ 2, Let’s rewrite equation (4.1) as

δ(Z3n ×A3) = 1 + 4 ∗ δ(Z3) + 3 ∗
n∑
j=2

δ(Z3j ) +

n−1∑
j=1

δ(Z3j ×A3) + 1. (4.2)

Change n to n− 1 in (4.1), we get

δ(Z3n−1 ×A3) = 1 + 4 ∗ δ(Z3) + 3 ∗
n−1∑
j=2

δ(Z3j ) +

n−2∑
j=1

δ(Z3j ×A3) + 1. (4.3)

From (4.1) and (4.2), we get

δ(Z3n ×A3)− 2δ(Z3n−1 ×A3) = 3δ(Z3n).

To find the solution of recurrence relation in (4.3), let δ(Z3n ×A3) = Xn. Then,

Xn − 2Xn−1 = 3(2n).

Its characteristic solution (C.S) is Xn = 3C2n and its particular solution (P.S) is Xn =

3nD2n. So that

3nD2n − 3(n− 1)D2n = 3(2n)

3nD − 3(n− 1)D = 3

���3nD −���3nD + 3D = 3

3D = 3⇒ D = 1.

The general solution in this case is with the C.S given by 3C2n. So that we obtain for the

general solution:

Xn = 3C2n + 3n2n.

Consider the case of n = 1, X1 = 10. In this case we get 10 = 6C + 6, i.e., C = 4
6 = 2

3 . So

that the general solution becomes

Xn = 3× 2

3
× 2n + 3n2n

= 2n+1 + 3n2n = 2n(2 + 3n).

Therefore,

δ(Z3n ×A3) = (3n+ 2)2n.

Here, we obtained the formula in case of p = 3 because 3n and 3 are not relatively prime. �

Corollary 4.5 Let n be the positive integer defined in Theorem 4.4 and let δ(G) be the number

of subgroup chains of G. If n = 2 G = Z9 × A3), then δ(G) = 22(3.2 + 2), δ(G) = 32 and if

n = 3 G = Z27 ×A3), then δ(G) = 23(3× 3 + 2) = 88.
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§5. The number of Chains of Subgroups of Zpn ×A3 with n ≥ 1 and p ≥ 5

Proposition 5.1 The number of subgroup chains of Z5 ×A3 is 6.

Proof Let G be Z5×A3. It has the following set of representatives of isomorphism classes

of subgroups with respective sizes [e, 1],[Z3, 1] and [Z5, 1] and [Z5 ×A3, 1]. Then,

δ(G) = 1 + δ(Z3) + δ(Z5) + 1 = 6. �

Proposition 5.2 The number of subgroup chains of Z25 ×A3 is 16.

Proof Let G be Z25×A3. It has the following set of representatives of isomorphism classes

of subgroups with respective sizes [e, 1], [Z3, 1], [Z5, 1], [Z5 × A3, 1], [Z25, 1] and [Z25 × A3, 1].

Then,

δ(G) = δ(He) + δ(Z3) + δ(Z5) + δ(Z5 ×A3) + δ(Z25) + 1 = 16. �

Proposition 5.3 The number of subgroup chains of Z7 ×A3 is 6.

Proof Let G be Z7×A3. It has the following set of representatives of isomorphism classes

of subgroups with respective sizes [e, 1], [Z3, 1] and [Z7, 1] and [Z7 ×A3, 1]. Then,

δ(G) = 1 + δ(Z3) + δ(Z5) + 1 = 6. �

Proposition 5.4 The number of subgroup chains of Z49 ×A3 is 6.

Proof Let G be Z49×A3. It has the following set of representatives of isomorphism classes

of subgroups with respective sizes [e, 1], [Z3, 1], [Z7, 1], [[Z7 × A3, 1], [Z49, 1] and [Z49 × A3, 1].

Then,

δ(G) = δ(He) + δ(Z3) + δ(Z7) + δ(Z7 ×A3) + δ(Z49) + 1 = 16. �

Theorem 5.5 Let G be Zpn × A3 where n ≥ 1 and p ≥ 5, then the number of chains of

subgroups of G is (n+ 2)2n.

Proof As 5 and 3 are relatively prime, the order of Zpn ×A3 is 5× 3, which is cyclic with

cyclic subgroups of order 1, 3, 5, 5.× 3 where

n({1}) = n(Z3) = n(Z5) = n(Z15) = 1

and

δ({1}) = 1, δ(Z3) = 2, δ(Z5) = 2, δ(Z15) = 6.

Similarly, as 52 and 3 are relatively prime, the order of the group Z52 × A3) is 52 × 3,

which is cyclic with cyclic subgroups 1, 3, 5, 52, 5× 3, 52 × 3. Thus, we have the following set of

representatives of isomorphism classes of subgroups with respective sizes

[e, 1], [Z3, 1],

[Zp ×A3, 1], [Zp2 ×A3, 1], · · · [Zpn−1 ×A3, 1]

[Zp, 1], [Zp2 , 1], · · · [Zpn , 1].
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We establish recurrence relation for Zpn ×A3 where n ≥ 1 and p ≥ 5,

δ(Zpn ×A3) = 1 + δ(Z3) +

n∑
j=1

δ(Zpj ) +

n−1∑
j=1

δ(Zpj ×A3) + 1. (5.1)

Change n to n− 1 in (5.1), we get

δ(Zpn−1 ×A3) = 1 + δ(Z3) +

n−1∑
j=1

δ(Zpj ) +

n−2∑
j=1

δ(Zpj ×A3) + 1. (5.2)

From (5.1) and (5.2), we get

δ(Zpn ×A3)− 2δ(Zpn−1 ×A3) = δ(Zpn).

Since δ(Zpn) = 2n for all p and n in the literature, let δ(Zpn ×A3) = Xn. Then,

Xn − 2Xn−1 = 2n. (5.3)

We find the solution of recurrence relation in (5.3). Its characteristic solution (C.S) is

Xn = E2n and particular solution (P.S) is Xn = nF2n. So that (5.3) becomes

nF2n − (n− 1)F2n = 2n

nF − (n− 1)F = 1

��nF −��nF + F = 1⇒ F = 1

The general solution is with the C.S given by E2n in this case. So that we obtain for the

general solution

Xn = E2n + n2n.

Consider the case when n = 1, X1 = 6. In this case, we get

6 = 2E + 2, i.e., E = 2.

So that the general solution becomes

Xn = 2× 2n + n2n

= 2n+1 + n2n = 2n(2 + n).

Therefore,

δ(Zpn ×A3) = (n+ 2)2n.

Here we obtained this formula for the case p = 5, 7, 11 · · · because for p ≥ 5, n ≥ 1.pn and 3

are relatively prime. �
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Corollary 5.6 Let n be the positive integer defined in Theorem 5.5 and let δ(G) be the number

of subgroup chains of G. For n = 2, if G = Z(25 × A3) then δ(G) = 22(2 + 2) = 16, if

G = Z(49 × A3) then δ(G) = 22(2 + 2) = 16 and for n = 3, if G = Z(125 × A3) then

δ(G) = 23(3 + 2) = 40, if G = Z(343×A3) then δ(G) = 23(3 + 2) = 40.

§6. Conclusion

We have determined explicit formulas for the number of the subgroup chains in the lattice of

subgroups of the group Zpn × A3, p is any prime number and it is also the number of distinct

fuzzy subgroups of Zpn ×A3 concerning the natural equivalence relation (see e.g [7]).
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Abstract: Using only combinatorial technique, we give a formula for classification of the

defining equation of flag variety F`n(C). The formula uses the theory of complete geometric

graph based on the indexing set of the monomials of the ideal. In particular, we give a

generating function to count the number of classes. The size of each class is also determined.

We describe the procedure of obtaining the equations using a complete geometric graph and

lastly, we give a formula to count these equations.
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§1. Introduction

Let V be an n-dimension vector space over the field of complex numbers. By a flag F in V , we

mean a sequence of subspaces:

F• : {0} ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn = V such that dim Fi = i.

The set of all such flags in V is called the flag variety and denoted by F`n(C). By fixing

a basis e1, e2, . . . , en, we let E• to denote the standard flag spanned by

E• = 〈e1〉 ⊂ 〈e1, e2〉 ⊂ · · · ⊂ 〈e1, e2, . . . , en〉.

The variety can also be described by considering the general linear group GL(n,C) consist-

ing of all non-singular n× n matrices and let B be the subset of all invertible upper triangular

matrices. A flag F• can be constructed by allowing Fi be the span of the first i columns of a

given matrix Z in GL(n,C). The matrices Z1 and Z2 are equivalent, that is, give the same flag

if and only if there is an upper triangular matrix Y in B such that Z2 = Y Z1. This defines an

equivalence relation on GL(n,C). Thus F`n(C) = GL(n,C)/B. The precise implication is that

the general linear group GL(n,C) acts transitively on F`n(C) and the stabilizer of standard

flag is the Borel subgroup and hence the identification of F(n) with G/B. Therefore, F`n(C)

is viewed as a homogeneous space. More is true F`n(C) is a smooth projective variety being a

closed subvariety of the product of Grassmanians
∏n−1
k=1 Gr(k, n). This gives rise to the Plücker

1Received July 25, 2023, Accepted December 10, 2023.
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embedding

F`n(C) ↪→ P(n1)−1 × P(n2)−1 × · · · × P( n
n−1)−1.

The image of F`n(C) via the embedding is cut out by Plücker relations (see [1]). These

relations generate the homogeneous ideal of F`n(C) which we denote by I, indeed I is minimally

generated by these quadrics. It is well known that each flag F• can be represented by n × n-

matrix A = (aij) in which the subspace Fi is spanned by the first i rows. The relations that

a point must satisfy in order to lie in the image of F`n(C) via the embedding are called the

Plücker relations. This is achieved by defining the map

φn : K[pα : ∅ 6= α ⊆ {1, . . . , n}] −→ K[aij : 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n]

sending each variable pα to the determinant submatrix of A with row indices 1, . . . , | α | and

column indices in α. It turns out that the ideal In of F`n(C) is the kernel of φn. This

homogeneous ideal is minimally generated by the Plücker relations. These relations which are

quadrics are the equations defining the variety F`n(C) (See [9],[1]).

Our interest is in the classification of these equations using complete geometric graphs.

Specifically, we give a formula that partitions the equations by exploiting some similar properties

shared by them. This ultimately allows us to know the number of equations in each subdivision

thereby counts the generators for each ideal In. We plan a sequel paper to exploit this technique

to give the degeneration of flag variety F`n(C). Let T be a collection of points in the plane in

general position. By geometric graph on T, we mean a graph G whose vertices are the elements

of T in which two are said to be adjacent if they are joined by a line segment. Our interest is

in a graph where every pair of vertices is adjacent. This is called a complete geometric graph

and is denoted by Kn, n is the number of vertices. The number of edges of Kn is n(n−1)
2 which

turns out to be the dimension of flag variety F`n(C). In section 2, we give some background

and results relevant to our discussion. In section 3, we describe the procedure to obtain the

relations in the complete geometric digraph, Kn and also compute the relations in K3 and K4.

In section 4, we give the classifications of relations in Kn and the class size. We also give

generating functions on the classifications and the number of classes in any Kn. This gives the

classification of the equations defining flag varieties F`n(C).

§2. Complete Geometric Directed Graphs

In this section we give some definitions on geometric graphs and trees (see [5], [4], [2], [3], [6],

[8], [7], [10] for details).

Definition 2.1 Let Kn be a complete geometric digraph with a n points and let σ ⊂ [n]. xσ is

said to be a point if |σ| = 1, a line if |σ| = 2, a triangle if |σ| = 3 and so on.

Remark 2.2 All the xσ’s for which |σ| ≥ 3 are empty, that is, they have no interior points.

Example 2.3 (i) For n = 3, the complete geometric digraph is
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Figure 1

(ii) For n = 4, the complete geometric digraph is

Figure 2

Given a complete geometric digraph Kn, let Fm = {xσ : |σ| = m,σ ⊆ [n]}, F1 set of points,

F2 set of lines and so on. Let fm = #Fm.

Definition 2.4 (i) A walk in Kn is a sequence of vertices v0, v1, · · · , vk and sequence of edges

(vi, vi+1) ∈ F2. If vi are distinct, then we have a path and if (v0, vk) ∈ F2, then v0, v1, · · · , vk, v0

is a cycle. The length of a path or cycle is the number of edges in it.

(ii) A tree is a connected graph without any cycles. The edges of a tree are called branches

and the degree 1(number of edges incident with the vertex) vertex are called leaves.

(iii) A spanning tree T of a connected graph Kn is the subgraph of Kn containing all the

vertices of Kn. A chord is an edge of a graph that is not in a given spanning tree.

(iv) A rooted tree T with the vertex set V is the tree that has a specially designated vertex

v1 ∈ V . The root of any spanning tree is defined as the vertex with highest degree.

Remark 2.5 (i) For any spanning tree T of Kn, the number of branches is called the rank,

r and the number of chords is called the nullity, µ (cyclomatic number or first Betti number).

r = n− 1 and µ = (n−1)(n−2)
2 .

(ii) There are nn−2 spanning tree in a complete graph and n (n− 1)-valent spanning trees

since there are only n vertices with degree n− 1.
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Lemma 2.6 Let C be the set of flag varieties and B be the set of complete geometric digraphs,

there is a bijection

α : C −→ B

F ln(C) 7−→ Kn.

Theorem 2.7 Given a complete geometric digraph Kn, then fm is given by the coefficient of

Pn(t) =

n∑
|σ|=1

( n

|σ|

)
t|σ|.

Proof Given a complete geometric digraph, Kn with points indexed by [n], let σ ⊆ [n] and

|σ| = r. For r = 1, we have a point and the number of choice of selection is
(
n

1

)
and for r = 2

we have a line and the number of choice of selection is
(
n

2

)
. Continuing until r = n, we have(

n

n

)
. Then this can be generalised as

(
n

1

)
t+
(
n

2

)
t2 + · · ·+

(
n

r

)
tr + · · ·+

(
n

n

)
tn

where the power of t is |σ| and the coefficient of t is the number of such σ. �

Theorem 2.7 gives the size of Fm for 1 ≤ m ≤ n in Kn.

n f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

1 1

2 2 1

3 3 3 1

4 4 6 4 1

5 5 10 10 5 1

6 6 15 20 15 6 1

7 7 21 35 35 21 7 1

8 8 28 56 70 56 28 8 1

9 9 36 84 126 126 84 36 9 1

10 10 45 120 210 252 210 120 45 10 1

Table 1. Statistics of fm in Kn
Let Ω be the union of all Fm, we defined an ordering on Ω as follows:

Given σ, ρ ⊆ [n] such that σ = {a1 < · · · < am} and ρ = {b1 < · · · < br}. Let xσ ≤ xρ in

the poset P if m ≥ r and σi ≤ ρi for all i = 1, · · · , r.

Let O = {xσxτ + lower terms : 1 ≤ |σ| ≤ n− 2 and 2 ≤ |τ | ≤ n− 1} be the set of relations

between xσ’s and xτ ’s.
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Theorem 2.8 Given xσ in Kn such that |σ| = 3 (i.e xσ is a triangle), then xσ can be expressed

as a linear combination of xτi which sum to zero for |τi| = 2, τi ⊂ σ and
⋂
τi = ∅. Moreover,

the number of summands is |σ|.

Proof Given a complete geometric digraph, Kn with points indexed by [n]. Suppose σ ⊂ [n]

with |σ| > 2, xσ is a subgraph of Kn, there is a closed path in xσ (xσ are line segments), which

is the sum of xτi and
⋂
τi = ∅ and the number of such τi is |σ|. �

Remark 2.9 (i) The sign of xτi in Theorem 2.8 is negative if the distance of τ is |σ| − 1,

otherwise positive.

(ii) Theorem 2.8 gives the relation of the paths in xσ.

Example 2.10 Given the complete geometric digraph K3. Then triangle, x{1,2,3} with lines

x{1,2}, x{2,3} and x{1,3}, can be expressed as

x{1,2,3} = x{1,2} + x{2,3} − x{1,3} = 0.

Remark 2.11 From Example 2.10, x{1,3} is called the equivalent path and can be expressed

as x{1,3} = x{1,2} + x{2,3}.

Corollary 2.12 Every xτ such that |τ | > 3 can be expressed as a linear combination of xαi
such that |αi| = 3 and αi ⊂ τ .

Example 2.13 Given the complete geometric digraph K4. Then x{1,2,3,4} with lines x{1,2},

x{2,3}, x{3,4} and x{1,4}. Then we have x[4] = x{1,2} + x{2,3} + x{3,4} − x{1,4} = 0.

x[4] can be decompose into triangles as follows:

x[4] = x{1,2,3} − x{1,2,4} + x{1,3,4} − x{2,3,4}.

The branches (for |αi| = 2) in the spanning trees of Kn are related. The relation is given

by the theorem below which generalizes for |αi| ≥ 2.

Theorem 2.14 Given Kn and σ ⊂ [n] such that |σ| ≥ 3, then xτσ, the linear combination of

xαi such that τ ⊂ αi ⊂ σ is given by

xτσ =

|σ|−1∑
i=1

(−1)i+1xαi

for 2 ≤ |αi| ≤ |σ| and 1 ≤ |τ | ≤ |σ| − 1.

Proof Given a complete geometric digraph, Kn with vertices indexed by [n]. Since σ
⋂
αi =

τ , then xτσ is the sum of all subgraphs of xσ containing the subgraph xτ . �

Remark 2.15 Theorem 2.14 gives the relation of the branches in the spanning trees of Kn.

Example 2.16 In a complete geometric digraph Kn with points indexed [4] = {1, 2, 3, 4}, then

x
{1}
[3] = x{1,2} − x{1,3}.
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§3. Computation of the Relations in Kn

In this section we give the procedure for computing the relations in a complete geometric

digraph Kn for n ≤ 6. Given a complete geometric digraph Kn, the order is n and size is rn
2 ,

where r is the rank of Kn. The relations in Kn is defined by its complete subgraphs, that is,

the cycle, C3 and the spanning trees in the complete subgraphs, Kn(n ≥ 4) of Kn. Since K1

and K2 has no cycles, they have no relation. So 3 ≤ n ≤ 6, given Kn and Λσ,τ ∈ O as follows:

(1) For |σ| = 2 and |τ | = 1, any cycle C3 in Kn contains three binary spanning trees and

each has exactly one chord. These chords are the paths in C3 which are linearly related as

defined by Theorem 2.8 and each chord in the relation is multiplied by the root of its tree.

(2) For |σ| = 2 and |τ | = 2, any complete geometric subgraph K4 of Kn contains four

3-valent spanning trees and each has three chords. The branches are linearly related as defined

by Theorem 2.14 and each branch in the relation is multiplied by the chord not adjacent to it.

Any of the four 3-valent spanning tree of a K4 gives the same relation.

(3) For |σ| = 3 and |τ | = 1, any complete geometric subgraph K4 of Kn contains four

3-valent spanning trees and each has three chords which formed a triangle. These triangle are

linearly related as defined by Theorem 2.8 and is multiplied by the root of its spanning tree.

(4) For |σ| = 3, |τ | = 2 and any branch in any 3-valent spanning tree of K4, there exist a

C3 formed by a chord and the other branches. The branches are linearly related as defined by

Theorem 2.14 and each is multiplied by its corresponding C3. This is repeated for each 3-valent

spanning tree.

(5) For integers n ≥ 5, consider all the complete geometric subgraphs, K5 of Kn. For any

branch in any 4-valent spanning tree of K5, there is exactly one C3 formed by the chords not

adjacent to the branch. Applying to Theorem 2.14 to the branches and multiplying each branch

by these C3, we realize the graph relation.

(6) For |σ| = 3 and |τ | = 3, consider all the complete geometric subgraphs, K5 of Kn. There

are six chords in any 4-valent spanning tree of K5 with three pairs of non-adjacent chords. For

any pair, we have two C3 formed by the chords with the branches. Applying to Theorem 2.14

to the C3 in each pair containing the branch highest leave (label-wise), we multiply each C3 in

the relation with it corresponding pair.

(7) For integers n ≥ 6, consider all the complete geometric subgraphs, K6 of Kn. For any

two branches in any 5-valent spanning tree of K6, there is exactly one C3(non-adjacent C3)

formed by the chords not adjacent to these branches. There are exactly five of such relations in

any of the 5-valent spanning tree, applying to Theorem 2.14 to the C3 formed by a chord with

these branches and multiplying each by the non-adjacent C3, we realize the graph relation.

(8) For |σ| = 4 and |τ | = 1, consider all the complete geometric subgraphs, K5 of Kn.

Taking root of each 4-valent spanning tree of K5 to multiply the C4 formed by the chords with

the leaves. The C4 in each 4-valent spanning tree are linearly related as defined by Theorem

2.8.

(9) For |σ| = 4 and |τ | = 2, consider all the complete geometric subgraphs, K5 of Kn. For

any branch in any 4-valent spanning tree of K5, there is a C4 formed by the chords with the

leaves. These branches are linearly related as defined by Theorem 2.14 and each is multiplied
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it corresponding C4. This is repeated for each 4-valent spanning tree.

(10) For integers n ≥ 6, consider all the complete geometric subgraphs, K6 of Kn. For

any branch in any 5-valent spanning tree of K5, there is exactly one C4 formed by the chords

not adjacent to the branch. Applying to Theorem 2.14 to the branches and multiplying each

branch by this C4, we realize the graph relation.

(11) For |σ| = 4 and |τ | = 3, consider all the complete geometric subgraphs, K5 of Kn.

For any branch in any 4-valent spanning tree of K5, we have three C3 containing that branch,

a chord and one other branch. For each C3, there is a C4 containing that branch, two chords

and one other branch These C3 are linearly related as defined by Theorem 2.14 and each C3

is multiplied by the corresponding C4. This is repeated for each branch in all the 4-valent

spanning tree.

(12) For integers n ≥ 6, consider all the complete geometric subgraphs, K6 of Kn. For any

branch in any 5-valent spanning tree of K6, we have four C3 containing that branch, a chord

and one other branch. For each C3, there is a C4 formed by four chords in the leave of that

branch and other three branches not in the C3. These triangles are linearly related as defined

by Theorem 2.14 and each C3 is multiplied by the corresponding C4. Also for each C3, there is

a C4 formed by two branches and two chords in the leave of other branches not in the triangle.

These C3 are linearly related as defined by Theorem 2.14 and each C3 is multiplied by the

corresponding C4. This is repeated for each branch in all the 5-valent spanning tree.

We also consider all the complete geometric subgraphs, K7 of Kn. For any branch in any

6-valent spanning tree of K7, we have five C3 containing that branch, a chord and one other

branch. For each C3, there is a C4 formed by four chords not adjacent to any of the branches

in the C3. These C3 are linearly related as defined by Theorem 2.14 and each C3 is multiplied

by the corresponding C4. This is repeated for each branch in all the 6-valent spanning tree.

Example 3.1 For n = 3, the relation is define by the points and lines of the graph in Figure

1. The relation is derived as follows:

Since K3 is a C3, then it contains three binary spanning trees and each has exactly one

chord. These chords are the paths in C3 which are linearly related as defined by Theorem 2.8.

x{1,3} = x{1,2} + x{2,3}

each chord in the relation is multiplied by the root of its tree, we have

x{1,2}x{3} − x{1,3}x{2} + x{2,3}x{1} = 0

The equations above give the relation for K3.

Example 3.2 For n = 4, the relations are define by the points, lines and triangles of the

graph in Figure 2. The set of points, F1 is {x{1}, x{2}, x{3}, x{4}}, the set of lines, F2 is

{x{1,2}, x{1,3}, x{1,4}, x{2,3}, x{2,4}, x{3,4}} and the set of C3, F3 is

{x{1,2,3}, x{1,2,4}, x{1,3,4}, x{2,3,4}}.
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The relations are given below

x{1,2}x{3} − x{1,3}x{2} + x{2,3}x{1} = 0,

x{1,2}x{4} − x{1,4}x{2} + x{2,4}x{1} = 0,

x{1,3}x{4} − x{1,4}x{3} + x{3,4}x{1} = 0,

x{2,3}x{4} − x{2,4}x{3} + x{3,4}x{2} = 0,

x{2,3}x{1,4} − x{2,4}x{1,3} + x{3,4}x{1,2} = 0,

x{2,3,4}x{1} − x{1,3,4}x{2} + x{1,2,4}x{3} − x{1,2,3}x{4} = 0,

x{1,3,4}x{1,2} − x{1,2,4}x{1,3} + x{1,2,3}x{1,4} = 0,

x{2,3,4}x{1,2} − x{1,3,4}x{2,3} + x{1,2,3}x{2,4} = 0,

x{2,3,4}x{1,3} − x{1,3,4}x{2,3} + x{1,2,3}x{3,4} = 0,

x{2,3,4}x{1,4} − x{1,3,4}x{2,4} + x{1,2,4}x{3,4} = 0.

§4. Classifications of the Equations Defining Flag Varieties

In this section, we give the classifications of the relations in a complete geometric graphs.

Theorem 4.1 Given Λσ,τ ∈ O, if σ ∩ τ 6= ∅, then σ and τ have at most n − 3 points of

intersection and 3 ≤ |σ|+ |τ | ≤ 2n− 3.

Proof Given any relation in Λσ,τ such α, τ ⊂ [n] then 1 ≤ |σ| ≤ n− 2 and 2 ≤ |τ | ≤ n− 1.

If α ∩ τ 6= ∅ and τ * σ, then there is at least one point in σ not in τ . Therefore n− 3 possible

points of intersection. It also follows from the bound on |σ| and |τ | that 3 ≤ |σ|+ |τ | ≤ 2n− 3.

�

The number of terms in any relation in Kn is bounded below by the size of C3 and above by n,

which is capture in Theorem 4.2 following.

Theorem 4.2 In a complete geometric digraph Kn, there are at least three terms and at most

n terms in any relations.

Proof This follows from Theorems 2.8 and 2.14. �

K3 has one relation which contain three terms, K4 has ten relations out of which nine

relations have three terms each and one relation has four terms and K5 has sixty-six relations

out of which forty-five relations have three terms each, fifteen relation have four terms each and

one relation has five terms.

Theorem 4.3 In a complete geometric digraph Kn, if the elements of Fm form a relation then

fm ≥
(

n

n−2

)
.
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Proof Given a complete geometric digraph, Kn. Suppose the elements of Fm form relations

then by Theorem 4.1, m ≤ n− 2, which implies that

fm ≥
(

n

n−2

)
. �

Consider the complete geometric digraph, K3, it contains no relations between lines and

lines since f2 = 3 but K4 contains one relation between lines and lines since f2 = 6.

Suppose we wish to classify the relations in Kn as points and lines relations, lines and lines

relations, points and C3 relations, lines and C3 relations, and so on. For any Kn, the number

of relations in any of such classification is given by the following theorem.

Theorem 4.4 In a complete geometric digraph Kn, for any Eσ,τ ⊂ O, the cardinality of Eσ,τ

(Ei,j = #Eσ,τ ) is given by

Ei,j =


(

n

i−1

)( n

j+1

)
, if i < j

(
n

i−2

)( n

j+2

)
, if i = j

for |σ| = i and |τ | = j.

Proof Given Eσ,τ ⊂ O in Kn such that σ = {σ1, · · · , σi} and τ = {τ1, · · · , τi} for σ, τ ⊆ [n]

and σ * τ . Let Ei,j = #Eσ,τ , there exist two cases for Ei,j .

Case 1. If i < j, then either σ ∩ τ 6= ∅ or σ ∩ τ = ∅ . Suppose σ ∩ τ 6= ∅, then i + j ≥ n.

Since σ * τ , then there is a distinct element in σ not in τ . This element is moved to τ , thereby

increasing |τ | by 1 and reducing |σ| by 1. Then the choice of selection of στ is
(

n

i−1

)( n

j+1

)
.

But if σ ∩ τ = ∅, then i + j ≤ n. So a distinct element of σ is moved to τ , thereby increasing

|τ | by 1 and reducing |σ| by 1. Hence the choice of selection of στ is
(

n

i−1

)( n

j+1

)
.

Case 2. If i = j, then either σ ∩ τ 6= ∅ or σ ∩ τ = ∅ . Suppose σ ∩ τ 6= ∅, then i + j ≥ n.

Since σ * τ , then there are two distinct elements in σ not in τ . These elements are moved

to τ , thereby increasing |τ | by 2 and reducing |σ| by 2. Then the choice of selection of στ is(
n

i−2

)( n

j+2

)
. But if σ ∩ τ = ∅, then i + j ≤ n. So, the two distinct elements of σ are moved

to τ , thereby increasing |τ | by 2 and reducing |σ| by 2. Hence the choice of selection of στ is(
n

i−2

)( n

j+2

)
. This completes the proof. �

Example 4.5 Consider relations of K4, E{1,2} =
(

4

0

)(
4

3

)
= 4, E{2,2} =

(
4

0

)(
4

4

)
= 1,

E{1,3} =
(

4

0

)(
4

4

)
= 1 and E{2,3} =

(
4

1

)(
4

4

)
= 4.

Theorem 4.4 gives the number of relations in any class (Eσ,τ ). The following theorem gives

a generating functions classifying the relations in Kn.

Theorem 4.6 In a complete geometric digraph Kn, for any Eσ,τ ⊂ O such that |σ| = r and
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|τ | = m, then the cardinality of Eσ,τ in O for a fixed m is given by

γ{m}n (q) =

m−1∑
r=1

(
n

m+1

)(
n

r−1

)
q(r,m) +

(
n

m+2

)(
n

m−2

)
q(m,m)

for 2 ≤ m ≤ n− 1, n ≥ 3.

Proof Given a complete geometric digraph, Kn. For Eσ,τ ⊂ O such that |σ| = r and

|τ | = m. Then, either r < m or r = m in O. So, from Theorem 4.4, by fixing m and 1 ≤ r ≤ m
we can express the number of relation q(r,m) as a generating function γ

{m}
n (q) for integers

2 ≤ m ≤ n− 1. �

Example 4.7 In K3, n = 3, m = 2, then we have

γ
{2}
3 (q) = q(1,2).

In K4, n = 4, m = 2, 3, then we have

γ
{2}
4 (q) = 4q(1,2) + q(2,2),

γ
{3}
4 (q) = q(1,3) + 4q(2,3).

In K5, n = 5, m = 2, 3, 4, then we have

γ
{2}
5 (q) = 10q(1,2) + 5q(2,2),

γ
{3}
5 (q) = 5q(1,3) + 25q(2,3) + 5q(3,3),

γ
{4}
5 (q), = q(1,4) + 5q(2,4) + 10q(3,4).

Total number of relations in Kn, for n = 3, 4 and 5 are 1, 10 and 66 respectively.

Theorem 4.8 In a complete geometric digraph Kn, for any Eσ,τ ⊂ O such that |σ| = i and

|τ | = j, then the cardinality of Eσ,τ in O is given by

Mn(q) =

n−1∑
j=2

j−1∑
i=1

(
n

i−1

)( n

j+1

)
q(i,j) +

n−2∑
r=2

(
n

r−2

)(
n

r+2

)
q(r,r)

for n ≥ 3.

Proof Given a complete geometric digraph, Kn, for any Eσ,τ ⊂ O and n ≥ 3. By Theorem

4.6, the sum over all possible γ
{i}
n (q) equals Mn(q) for n ≥ 3. �

Example 4.9 In K3, n = 3,

M3(q) = q(1,2).

In K4, n = 4,

M4(q) = 4q(1,2) + q(1,3) + 4q(2,3) + q(2,2).
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In K5, n = 5,

M5(q) = 10q(1,2) + 5q(1,3) + 25q(2,3) + q(1,4) + 5q(2,4) + 10q(3,4) + 5q(2,2) + 5q(3,3).

Theorem 4.10 In a complete geometric digraph Kn, the number of classes in Kn is two less

than the size of Kn for n ≥ 3.

Proof Given Kn, from Theorem 4.8 the number of terms in Mn(q) gives the number of

classes in Kn. The number of terms is n(n−1)
2 − 2 which is less than the size of Kn. �

Remark 4.11 (i) The coefficient of q(k,k) equals q(k−1,k+1) for k ≥ 2. Also q(i+r,i+m) and

q(r,m) have equal coefficient for m+ r < n and 1 ≤ i ≤ n− 3.

(ii) The number of equations defining flag varieties F`n(C) is given by

Mn =

n−1∑
j=2

j−1∑
i=1

(
n

i−1

)( n

j+1

)
+

n−2∑
r=2

(
n

r−2

)(
n

r+2

)
with values for small number n in Table 2.

Order(n) Size Number of relations(Mn) Number of Classes

3 3 1 1

4 6 10 4

5 10 66 8

6 15 365 13

7 21 1835 19

8 28 8705 26

9 36 39748 34

10 45 176740 43

11 55 770914 53

12 66 3314601 64

13 78 14094822 76

14 91 59418623 89

15 105 248756927 103

16 120 1035577973 118

17 136 4291186292 134

18 153 17713099208 151

19 171 72878464142 169

20 190 299021980928 188

Table 2. Statistics of a complete geometric digraph
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Abstract: An (a, d)-edge-antimagic graceful labeling is a bijection g from V (G) ∪ E(G)

into {1, 2, · · · , |V (G)| + |E(G)|} such that for each edge xy ∈ E(G), |g(x) + g(y) − g(xy)|
form an arithmetic progression starting from a and having a common difference d. An (a, d)-

edge-antimagic graceful labeling is called super (a, d)-edge-antimagic graceful if g(V (G)) =

{1, 2, · · · , |V (G)|}. A graph that admits an super (a, d)-edge-antimagic graceful labeling is

called a super (a, d)-edge-antimagic graceful graph. In this paper, we prove the super (a, d)

edge antimagic gracefulness of regular graphs. Later, we study the non-regular graph is

super (a, 1)-edge-antimagic graceful graph. Finally, we find super edge-antimagic graceful

labeling of some classes of graphs.

Key Words: Labelling, (a, d)-edge-antimagic total labeling, Smarandachely edge-

antimagic total labeling, (a, d)-edge-antimagic graceful labeling, super(a, d)-edge-antimagic

graceful labeling.

AMS(2010): 05C78.

§1. Introduction

Throughout this paper, we only concern with connected, undirected simple graphs of order p

and size q. We denote by V (G) and E(G) the set of vertices and the set of edges of a graph G,

respectively.

Let |V (G)| = p and |E(G)| = q be the number of vertices and the number of edges of G,

respectively. General references for graph-theoretic notions are [1,10].

A labeling of a graph is any map that carries some set of graph elements to numbers.

Hartsfield and Ringel [4] introduced the concept of an antimagic labeling and they defined an

antimagic labeling of a (p, q) graph G as a bijection f from E(G) to the set {1, 2, · · · , q} such

that the sums of label of the edges incident with each vertex v ∈ V (G) are distinct.

An (a, d)-edge-antimagic total labeling was introduced by Simanjuntak, Bertault and Miller

in [9]. This labeling is the extension of the notions of edge-magic labeling, see [5,6].

For a graph G = (V,E), a bijection g from V (G) ∪ E(G) into {1, 2, · · · , |V (G)|+ |E(G)|}
is called an (a, d)-edge-antimagic total labeling of G if the edge-weights w(xy) = g(x) + g(y) +

g(xy), xy ∈ E(G), form an arithmetic progression starting from a and having a common differ-

1Received June 12, 2023, Accepted December 10, 2023.
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ence d. Generally, let H ≺ G be a typical subgraph of G with |V (G−H)| = a′, |E(G−H)| = b′.

If there is an (a′, d′)-edge-antimagic total labeling g′ on G − H, such a labeling g′ is called a

Smarandachely edge-antimagic total labeling. Particularly, let H = ∅ or a typical graph in K2,

P3, C3 or S1,3. We get the (a, d)-edge-antimagic total labeling or nearly (a, d)-edge-antimagic

total labeling of G.

The (a, 0)-edge-antimagic total labelings are usually called edge-magic in the literature.

An (a, d)-edge antimagic total labeling is called super if the smallest possible labels appear on

the vertices.

In [7] Marimuthu et al. introduced an edge magic graceful labeling of a graph. They

presented some properties of super edge magic graceful graphs and proved some classes of

graphs are super edge magic graceful. In [8] Marimuthu and Krishnaveni introduced super edge

antimagic graceful labeling.

An (a, d)-edge-antimagic graceful labeling is defined as a one-to-one mapping from V (G)∪
E(G) into the set {1, 2, 3, · · · , p + q} so that the set of edge-weights of all edges in G is equal

to {a, a+ d, a+ 2d, · · · , a+ (q − 1)d}, for two integers a ≥ 0 and d > 0.

An (a, d)-edge-antimagic graceful labeling g is called super (a, d)-edge-antimagic graceful if

g(V (G)) = {1, 2, · · · , p} and g(E(G)) = {p+1, p+2, · · · , p+q}. A graph G is called (a, d)-edge-

antimagic graceful or super (a, d)-edge-antimagic graceful if there exists an (a, d)-edge-antimagic

graceful or a super (a, d)-edge-antimagic graceful labeling of G.

Baca et al. [2] proved super (a, 1)-edge-antimagic total labeling of regular graphs. In [3]

Baca et.al proved some classes of graphs like Frienship graphs, Fan graphs and Wheel graphs

has super edge-antimagic graceful labeling. In this paper, we study super (a, d)-edge-antimagic

graceful labeling of regular graphs. We also prove some classes of graphs, including friendship

graphs, cycles and fan graphs has super (a, d)-edge-antimagic graceful labeling.

§2. Main Results

Theorem 2.1 If G is a connected super (a, d)-edge-antimagic graceful graph, then d ≤ 2.

Proof Let G be a connected super (a, d)-edge-antimagic graceful graph. Suppose that

d ≥ 3. There exists a bijection g : V (G)∪E(G)→ {1, 2, · · · , p+ q} which is a super (a, d)-edge-

antimagic graceful labeling with the set of edge-weights.

W = {w(xy) : w(xy) = |g(x) + g(y)− g(xy)|, xy ∈ E(G)}

= {a, a+ d, a+ 2d, · · · , a+ (q − 1)d}.

It is easy to see that the minimum possible edge-weight in a super (a, d)-edge-antimagic

graceful labeling is at least |1 + p− (p+ 1)| = 0.

We observe that a ≥ 0. On the other hand, the maximum edge-weight is no more than

|1+2−(p+q)| = p+q−3. Therefore, a+(q−1)d ≤ p+q−3. This shows that (q−1)d ≤ p+q−3.
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Hence,

d ≤ p+ q − 3

q − 1
⇒ 3 ≤ d ≤ p+ q − 3

q − 1

⇒ 3 ≤ p+ q − 3

q − 1
⇒ 3 ≤ p− 2

q − 1
+ 1⇒ 2 ≤ p− 2

q − 1

⇒ 2 ≤ p− 2

p− 1− 1
(since the size of every connected graph of order p is at least p− 1)

⇒ 2 ≤ 1,

a contradiction. Hence, d ≤ 2. �

Theorem 2.2 Let G be a connected (p, q)−graph which is not a tree. If G has a super (a, d)-

edge-antimagic graceful labeling then d = 1.

Proof Assume that G has a super (a, d)-edge-antimagic graceful labeling f : V (G) ∪
E(G) −→ {1, 2, · · · , p + q} and {w(uv) : uv ∈ E(G)} = {a, a + d, a + 2d, · · · , a + (q − 1)d} is

the set of edge-weights. The minimum possible edge-weight a ≥ 0. The maximum edge-weight

is no more than p+ q − 3. Thus a+ (q − 1)d ≤ p+ q − 3. and

d ≤ p+ q − 3

q − 1
. (2.1)

But, p ≤ q (Since G is not a tree T). Then, (2.1) gives d < 2. �

§3. Super (a, d)-Edge-Antimagic Graceful Labeling of Regular Graphs

Proposition 3.1(Petersen theorem) Let G be a 2r−regular graph. Then there exists a 2−factor
in G.

Notice that after removing edges of the 2 − factor guaranteed by the Petersen theo-

rem we have again an even regular graph. Thus, by induction, an even regular graph has

a 2−factorization.

The construction in the following theorem allows us to find a super (a, 1)− edge-antimagic

graceful labeling of any even regular graph. Notice that the construction does not require the

graph to be connected. In the following theorem we denote [a, b] is the set of consecutive integers

{a, a+ 1, · · · , b}.

Theorem 3.2 Let G be a graph on p vertices that can be decomposed into two factors G1 and

G2. If G1 is edge-empty or if G1 is a super (0,1)-edge-antimagic graceful graph and G2 is a

2r-regular graph then G is super (0,1)-edge-antimagic graceful.

Proof First we start with the case when G1 is not edge-empty. Since G1 is a super

(0,1)-edge-antimagic graceful graph with p vertices and q edges, there exists a total labeling f :

V (G1)∪E(G1) −→ [1, p+q] such that {
∣∣f(x)+f(y)−f(xy)

∣∣ : xy ∈ E(G)} = {0, 1, 2 · · · , q−1}.



78 P.Krishnaveni

By the Petersen theorem there exists a 2−factorization of G2. We denote the 2−factors by Fj ,

j = 1, 2, · · · , r. Let V (G) = V (G1) = V (Fj) for all j and E(G)= Urj=1E(Fj)
⋃
E(G1). Each

factor Fj is a collection of cycles. We order and orient the cycles arbitrarily. Now by the symbol

eoutj (vi) we denote the unique outgoing arc from the vertex vi in the factor Fj . We define a

total labeling g of G in the way that g(v) = f(v) for v ∈ V (G), g(e) = f(e) for e ∈ E(G1) and

g(e) = q+ jp+ f(vi) for e = eoutj (vi). Then, the vertices are labeled by the first p integers. The

edges of G1 by the next q labels and the edges of G2 by consecutive integers starting at p+q+1.

Thus g is a bijection V (G) ∪ E(G) −→ {1, 2 · · · , p + q + pr} Since
∣∣E(G)|= q + pr. It is not

difficult to verify that g is a super (0, 1)-edge-antimagic graceful labeling of G. The weights of

the edges e in E(G1) is wg(e)= wf (e). The weights form the progression 0, 1, 2, · · · , q − 1. For

convenience, we denote by vk the unique vertex such that vivk = eoutj (vi) in Fj . The weights of

the edges in Fj , j = 1, 2, · · · , r are

wg(e
out
j (vi)) = wg(vivk) =

∣∣g(vi)− (q + jp+ f(vi)) + g(vk)|

=
∣∣f(vi)− (q + jp+ f(vi)) + f(vk)| =

∣∣− q − jp+ f(vk)|

=
∣∣− (q + jp− f(vk))|

for all i = 1, 2, · · · , p and j = 1, 2, · · · , r. Since Fj is a factor, the set {f(vk) : vk ∈ Fj} =

[1, p]. Hence we have that the set of edge-weights in the factor Fj is [q + (j − 1)p, q + jp − 1]

and thus the set of all edge-weights in G is [0, q + rp − 1]. If G1 is edge-empty it is enough to

take q = 0. and proceed with the labeling of factors Fj . �

By taking an edge-empty graph G1 we have the following theorem.

Theorem 3.3 All even regular graphs of order p with at least one edge are super (0, 1)-edge-

antimagic graceful.

The disjoint union of m ≥ 1 copies of a graph G is denoted by mG.

Theorem 3.4 Let k,m be positive integers. Then the graph kP2 ∪mK1 is super (0, 1)-edge-

antimagic graceful.

Proof We denote the vertices of the graph G ∼= kP2∪mK1 by the symbols v1, v2, · · · , v2k+m

in such a way that E(G)= {vivk+m+i : i = 1, 2, · · · , k} and the remaining vertices are denoted

arbitrarily by the unused symbols. We define the labeling f : V (G)∪E(G) −→ {1, 2, · · · , 3k+m}
in the following way f(vj) = j for j = 1, 2, · · · , 2k + m, f(vivk+m+i) = 2k + m + i for i =

1, 2, · · · , k. It is easy to see that f is a bijection and that the vertices of G are labeled by the

smallest possible numbers. For the edge-weights we get wf (vivk+m+i) = |f(vi) + f(vk+m+i)−
f(vivk+m+i)| = k-i for i = 1, 2, · · · , k. Thus, f is a super (0, 1)-edge-antimagic graceful labeling

of G. �

Now by taking m = 0 and observing that the number of vertices in kP2 is 2k, then we

immediately obtain the following corollary.

Corollary 3.5 If G is an odd regular graph on p vertices that has a 1− factor then G is super
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(0, 1)-edge-antimagic graceful.

§4. Friendship Graphs

The friendship graph Fn is a set of n triangles having a common center vertex and otherwise

disjoint. Let c denote the center vertex. For the ith triangle, let xi and yi denote the other two

vertices.

Theorem 4.1 Every friendship graph Fn, n ≥ 1, has super (a, 1)-edge-antimagic graceful la-

beling.

Proof Label the vertices and edges of Fn by the following functions g1 and g2 respectively.

g1(c) = n+ 1, g1(xi) = i, g1(yi) = 2n+ 2− i for 1 ≤ i ≤ n,

g2(xic) = 3n+ 2i, g2(yic) = 5n+ 3− 2i, g2(xiyi) = 2n+ 1 + i.

Notice that, in this labeling a = 0. It is easy to verify that the set of edge-weights consists

of the consecutive integers {0, 1, 2, · · · , 3n− 1} and we arrive at the desired result. �

Figure 1 illustrates the proof of Theorem 4.1.s
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Figure 1. A (0, 1)-super edge-antimagic graceful labeling of F4.

§5. Cycles

Theorem 5.1 For n ≥ 3, the cycle Cn has super (a, 1)-edge-antimagic graceful labeling.

Proof Let a cycle Cn be defined as follows:

V (Cn) = {p1, p2, · · · , pn} and

E(Cn) = {pipi+1 : i = 1, 2, · · · , n− 1} ∪ {pnp1}.
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Also, define the vertex labeling f1 : V (Cn) → {1, 2, · · · , n} and the edge labeling f2 :

E(Cn)→ {n+ 1, n+ 2, · · · , n+ n} in the following way.

f1(vi) = i, 1 ≤ i ≤ n;

f2(vivi+1) = n+ 1 + i for 1 ≤ i ≤ n− 1;

f2(vnv1) = n+ 1.

Combining the vertex labeling f1 and the edge labeling f2 given above, we obtain a total

labeling. The set of edge-weights consists of the consecutive integers {0, 1, 2, · · · , n− 1}. �

An illustration of Theorem 5.1 is given in Figure 2.s
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Figure 2. A (0, 1)-super edge-antimagic graceful labeling of C5.

§6. Fans

A fan Fn, n ≥ 2 is a graph obtained by joining all vertices of path Pn to a further vertex

called the center. Thus Fn contains n + 1 vertices, say, c, x1, x2, · · · , xn and 2n − 1 edges say

cxi, 1 ≤ i ≤ n and xixi+1, 1 ≤ i ≤ n− 1.

Theorem 6.1 The fan Fn is super (a, 1)-edge-antimagic graceful if 2 ≤ n ≤ 6 and d = 1.

Proof Label the vertices of Fn by g : V (Fn)→ {1, 2, · · · , n+ 1} as follows:

If n = 2, let the labels of vertices be g(x1) = 1, g(x2) = 2 and g(c) = 3; If n = 3,

let the labels be g(x1) = 1, g(x2) = 2, g(x3) = 4 and g(c) = 3; If n = 4, let the labels

be g(x1) = 1, g(x2) = 2, g(x3) = 4, g(x4) = 5 and g(c) = 3; If n = 5, let the labels be

g(x1) = 2, g(x2) = 1, g(x3) = 3, g(x4) = 5, g(x5) = 6 and g(c) = 4, and if n = 6, let the labels

be g(x1) = 2, g(x2) = 1, g(x3) = 3, g(x4) = 5, g(x5) = 7, g(x6) = 6 and g(c) = 4. Generally, let

Wg = {wg(qi) = 2 + i : 1 ≤ i ≤ 2n − 1} be the set of edge-weights of edges qi ∈ Fn and label

the edges of Fn by g1 : E(Fn)→ {n+ 2, n+ 3, · · · , 3n} where

g1(qi) =

 n+ 1 + i+1
2 if i is odd,

2n+ 1 + i
2 if i is even.

Combining the vertex labeling g and the edge labeling g1 gives a super (a, 1)-edge-antimagic
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graceful labeling where

W = {|wg(qi)− g1(qi)| : 1 ≤ i ≤ 2n− 1}

is the set of edge-weights. �

A (0, 1)-super edge-antimagic graceful labeling of the fan F3 is given in Figure 3.
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Figure 3. A (0, 1)-super edge-antimagic graceful labeling of F3.
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§1. Introduction

The sum of squares function, denoted by rk(n), gives the number of representations of n as a

sum of k squares, where zeros and distinguishing signs and order are allowed. For example, 5

can be written as a sum of two squares in the following ways

5 = (−2)2 + (−1)2 = (−2)2 + (1)2

= (2)2 + (−1)2 = (2)2 + (1)2

= (−1)2 + (−2)2 = (−1)2 + (2)2

= (1)2 + (−2)2 = (1)2 + (2)2.

So, r2(5) = 8.

The generating function for rk(n) is given by

θ(q)k =

∞∑
n=0

(−1)n rk(n) qn, (1.1)

1Received September 30, 2023, Accepted December 11, 2023.
1Corresponding author: pskreddy@jssstuniv.in; pskreddy@sjce.ac.in



A Note on Congruences for the Sum of Squares and Triangular Numbers 83

where

θ(q) :=

∞∑
n=−∞

(−1)nqn
2

(|q| < 1).

By Gauss’s formula [1, formula 7.324], we know that

θ(q) =

∞∏
j=1

1− qj

1 + qj
=
∏
n≥1

(1− q2n)(1− q2n−1)2 (|q| < 1). (1.2)

For any positive integer n, the numbers n(n + 1)/2 are the triangular numbers. The sum

of triangular numbers function, denoted by tk(n), gives the number of representations of n as a

sum of r triangular numbers where representations with different orders are counted as unique.

For instance, t2(7) = 2 since 7 = 1 + 6 = 6 + 1.

The generating function for tk(n) is given by

Ψk(q) =

∞∑
n=0

tk(n) qn, (1.3)

where

Ψ(q) :=

∞∑
n=0

qn(n+1)/2 = 1 + q + q3 + q6 + · · · (|q| < 1).

By Gauss’s formula [1, Eq.7. 321 on p.6], we have

Ψ(q) =

∞∏
j=1

(1− q2j)2

(1− qj)
=

∞∏
j=1

(1 + qj)2 (1− qj) |q| < 1. (1.4)

2. Some Congruences for rk(n) and tk(n)

Lemma 2.1 Let S1(n) =
∑

odd d|n
2
d , where

∑
odd d|n denotes the sum over all odd divisors d

of n. Then

rk(n) =
−k
n

n∑
j=1

(−1)j j S1(j) rk(n− j) (k, n ≥ 1). (2.1)

Proof Taking logarithm on both sides of equation (1.2), we have

log θ(q) =

∞∑
j=1

log(1− qj)−
∞∑
j=1

log(1 + qj)

= −
∞∑
j=1

∞∑
l=1

qlj

l
+

∞∑
j′=1

∞∑
l′=1

ql
′j′(−1)l

′

l′

= −
∞∑
n=1

qn

∑
d|n

1− (−1)d

d

 .
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From the equation (1.1), we get

log

{ ∞∑
n=0

(−1)n rk(n) qn

}
= −k

∞∑
n=1

S1(n) qn.

Differentiating the preceding equation with respect to q gives

∞∑
n=1

(−1)n rk(n)n qn−1 = −k
∞∑
n=1

S1(n)n qn−1
∞∑
n=0

(−1)n rk(n) qn.

Comparing coefficients of qn on both sides of the above equation we get equation (2.1). �

Lemma 2.2 Let S2(n) =
∑
d|n

1+2 (−1)d

d , where
∑
d|n denotes sum over all divisors d of n.

Then

tk(n) =
−k
n

n∑
j=1

j S2(j) tk(n− j) (k, n ≥ 1). (2.2)

Proof Taking logarithm on both sides of equation (1.4), we have

log(Ψ(q)) =

∞∑
j=1

2 log(1 + qj) +

∞∑
j=1

log(1− qj)

= −
∞∑
j=1

∞∑
l=1

2
(−1)l qlj

l
−
∞∑
j′=1

∞∑
l′=1

ql
′j′

l′

= −
∞∑
n=1

qn
∑
d|n

1 + 2 (−1)d

d
.

Then, we proceed as in the proof of the preceding lemma to arrive at equation (2.2). �

From equations (2.1) and (2.2), we deduce the following theorem.

Theorem 2.3 Let n and k be integers such that (n, k) = 1. Then

rk(n) ≡ 0 (mod k), (2.3)

and

tk(n) ≡ 0 (mod k). (2.4)

From equations (1.2) and (1.4), we deduce the following theorem.

Theorem 2.4 For all primes p, we have

rkp(np) ≡ rk(n) (mod p), (2.5)
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and

tkp(np) ≡ tk(n) (mod p). (2.6)

Theorem 2.5 If p is a prime number, then

rp+1(n) ≡
∑
j

r1(t) (mod p), (2.7)

where j is an integer and t = (n− j2)/p is integer.

Proof Using

θ(q) :=

∞∑
n=−∞

(−1)nqn
2

(|q| < 1),

we have
∞∑
n=0

(−1)n rp+1(n) qn =

∞∑
n=0

(−1)n rp(n) qn
∞∑

n=−∞
(−1)nqn

2

Comparing coefficients of qn on both sides in the above equation, we have

rp+1(n) =
∑
j

rp(n− j2).

Now from equation (2.3), we know that rp(n−j2) ≡ 0 (mod p) if p and n−j2 are co-prime.

Also, from equation (2.5), when (n− j2) is divisible by p, we have

rp(n− j2) ≡ r1(t) (mod p),

where t = (n− j2)/p. �

Proceeding as in the proof of above theorem, we deduce the following theorem.

Theorem 2.6 If p is a prime number, then

tp+1(n) ≡
∑
j

t1(t) (mod p), (2.8)

where j is positive integer and t =
(
n− j(j+1)

2

)
/p is integer.

References

[1] N. J. Fine, Basic Hypergeometric Series and Applications, American Mathematical Soc.,

1988.

[2] J. M. Gandhi, Congruences for pr(n) and Ramanujan’s τ -function, Amer. Math. Monthly

70, No. 3 (1963) 265–274.



International J.Math. Combin. Vol.4(2023), 86-94

Pair Difference Cordial Labeling of Double

Cone, Double Step Grid, Double Arrow and Shell Related Graphs

R. Ponraj

Department of Mathematics, Sri Paramakalyani College, Alwarkurichi–627 412, India

A. Gayathri

Research scholar

Department of Mathematics, Manonmaniam Sundaranar University, Abhishekapati, Tirunelveli–627 012, India

E-mail: ponrajmaths@gmail.com, gayugayathria555@gmail.com

Abstract: In this paper we investigate the pair difference cordial labeling behaviour of

double cone,double step grid,sun flower, shell graph and double arrow graph.

Key Words: Pair difference cordial labeling, double cone, double step grid, sun flower, shell

graph, double arrow graph, Smarandachely pair difference cordial labeling, Smarandachely

pair difference cordial labeling graph.

AMS(2010): 05C78.

§1. Introduction

In this paper we consider only finite, undirected and simple graphs. Cordial labeling was

introduced by Cachit [1] in the year 1987. Also cordial related labeling technique was studied

in [1,2,3,4,5,6,7,8,9,10,11]. In this sequal the notion of pair difference cordial labeling of a graph

was introduced in [14], which is defined as follows:

Let G = (V,E) be a (p, q) graph and let

ρ =

 p
2 , if p is even

p−1
2 , if p is odd

and L = {±1,±2,±3, · · · ,±ρ} be the set of labels. Consider a mapping f : V −→ L by

assigning different labels in L to the different elements of V when p is even and different labels

in L to p− 1 elements of V and repeating a label for the remaining one vertex when p is odd.

Such a labeling is said to be a pair difference cordial labeling if for each edge uv of G there exists

a labeling |f(u)− f(v)| such that
∣∣∆f1 −∆fc1

∣∣ ≤ 1, where ∆f1 and ∆fc1
respectively denote the

number of edges labeled with 1 and number of edges not labeled with 1. A graph G for which

there exists a pair difference cordial labeling is called a pair difference cordial graph.

1Received April 28, 2023, Accepted December 12, 2023.
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Generally, let H ≺ G be a typical subgraph of G. If there is a pair difference cordial

labeling on graph G−H. Then, we say G is Smarandachely pair difference cordial labeling on

H and G is called a Smarandachely pair difference cordial labeling graph on H. Particularly, if

H = ∅ such a Smarandachely pair difference cordial labeling is nothing else but a pair difference

cordial labeling on G.

The pair difference cordial labeling behavior of several graphs like path, cycle, star, wheel,

triangular snake, alternate triangular snake, butterfly etc have been investigated in [14-24]. In

this paper we investigate the pair difference cordial labeling behavior of double cone,double

step grid,sun flower, shell graph and double arrow graph. Terms not defined here are follow

from Gallian [12] and Harary [13].

§2. Preliminaries

Definition 2.1([13]) The subdivision graph S(G) of a graph G is obtained by replacing each

edge uv by a path uvw.

Definition 2.2([12]) Take the tha paths Pn, Pn, Pn−1, · · · , P2 on n, n, n − 2, n − 4, · · · , 4, 2
vertices and arrange them centrally horizontal where n is even and n 6= 2. A graph obtained by

joining vertical vertices of given successive paths is known as a double step grid of size n. It is

denoted by DStn.

For illustration, DStn is shown in Figure 1.

Pi(H)− ith path horizontal wise Pi(V )− ith path vertical wise

Figure 1

Definition 2.3([13]) Double arrow graphs obtained from Pn × Pn by joinin two vertices u, v

with first and last copy of the path Pn.Let ai,j be the vertices of prism Pn × Pn.

Definition 2.4([12]) The graph Cn + 2K1 is called the double cone graph.

Definition 2.5([12]) The sunflower graph SFn is obtained by taking a wheel Wn = Cn + K1

where Cn is the cycle a1a2a3 · · · ana1 , V (K1) = {a} and the new vertices b1, b2, b3, · · · , bn where

bi is join by the vertices bibi+1(modn).

Definition 2.6([12]) A shell graph is defined as a cycle Cn : a1a2a3 · · · ana1 with (n−3) chords
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sharing a common end point called the apex. Shell graph are denoted as C(n,n−3). A shell Sn

is also called fan Fn−1.

Definition 2.7([25]) An ice cream graph is obtained by combining a shell graph and a path

P2 graaph keeping a1 and an common where n > 3 sharing common end point called the apex

vertex a0. It is denoted by ICn.

§3. Main Results

Theorem 3.1 A double step grid DStn is pair difference cordial for all even values of n ≥ 4.

Proof First we consider the paths P2, P3, P4, · · · , Pn
2

from left to right. Assign the labels

1, 2 respectively to the vertices of the path P2 from top to bottom and assign the labels 3, 4, 5

respectively to the vertices of the path P3 from bottom to top. Now assign the labels 6, 7, 8, 9

to the vertices of the path P4 from top to bottom and assign the labels 10, 11, 12, 13, 14 to the

vertices of the path P5 from bottom to top. Proceeding like this until we reach the path Pn
2

.

Next, we consider the paths P2, P3, P4, · · · , Pn
2

from right to left. Assign the labels

−1,−2 respectively to the vertices of the path P2 from top to bottom and assign the label-

s −3,−4,−5 respectively to the vertices of the path P3 from bottom to top. Now assign the

labels −6,−7,−8, −9 to the vertices of the path P4 from top to bottom and assign the labels

−10,−11,−12,−13,−14 to the vertices of the path P5 from bottom to top. Proceeding like

this until we reach the path Pn
2

.

For illustration, DSt8 is shown in Figure 2.

Figure 2

This completes the proof. �

Theorem 3.2 A double cone graph DCn is not pair difference cordial for all values of n ≥ 3.

Proof There are two cases arises.

Case 1. n is even.

The maximum possible number of edges get the label 1 is ∆f1 = n
2 + 2 + 2 where n

2 edges

from cycle, 2 edges from edges end with K1 and next 2 edges from edges end with another K1.
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Therefore ∆f1 = n
2 + 4 and |E(DCn)| = 3n. This implies that ∆f1

c = 3n − n
2 + 4 = 5n+8

2 .

Hence |∆f1 −∆f1
c| = 2n > 1, which is a contradiction.

Case 2. n is odd.

The maximum possible number of edges get the label 1 is ∆f1 = n+1
2 + 2 + 2 where n+1

2

edges from cycle, 2 edges from edges end with K1 and next 2 edges from edges end with another

K1. Therefore ∆f1 = n+1
2 +4 and |E(DCn)| = 3n. This gives that ∆f1

c = 3n− n+1
2 +4 = 5n+9

2 .

Hence |∆f1 −∆f1
c| = 2n > 1, which is a contradiction.

Hence, a double cone graph DCn is not pair difference cordial for all values of n ≥ 3. �

Theorem 3.3 A double arrow graph DAn is pair difference cordial for all values of n ≥ 2.

Proof Take the vertex set and edge set from Definition 2.3. There are two cases arises.

Case 1. n is even.

Consider the n
2
th row. That is consider the vertices an

2 ,1
, an

2 ,2
, an

2 ,3
, · · · , an

2 ,n
. Assign

the labels 1, 2, 3, · · · , n to the vertices an
2 ,1

, an
2 ,2

, an
2 ,3
, · · · , an

2 ,n
respectively and next consider

the n−2
2

th
row. Assign the labels n + 1, n + 2, n + 3, · · · , 2n to the vertices an−2

2 ,1, an−2
2 ,2,

an−2
2 ,3, · · · , an−2

2 ,n. Now assign the labels 2n+ 1, 2n+ 2, 2n+ 3, · · · , 3n to the vertices an−4
2 ,1,

an−4
2 ,2, an−4

2 ,3, · · · , an−4
2 ,n respectively. Proceeding like this until we reach the first row. Note

that the vertices a1,1, a1,2, a1,3, · · · , a1,n gets the labels n
2 + 1, n2 + 2, n2 + 3, · · · , n2 + n.

Consider the n+2
2

th
row. That is consider the vertices an+2

2 ,1, an+2
2 ,2, an+2

2 ,3, · · · , an+2
2 ,n.

Assign the labels −1,−2,−3, · · · ,−n to the vertices an+2
2 ,1, an+2

2 ,2, an+2
2 ,3, · · · , an+2

2 ,n respec-

tively and next consider the n+4
2

th
row. Assign the labels −(n+1),−(n+2),−(n+3), · · · ,−2n

to the vertices an+4
2 ,1, an+4

2 ,2, an+4
2 ,3, · · · , an+4

2 ,n. Now assign the labels −(2n + 1),−(2n +

2),−(2n+ 3), · · · ,−3n to the vertices an+6
2 ,1, an+6

2 ,2, an+6
2 ,3, · · · , an+6

2 ,n respectively. Proceed-

ing like this until we reach the nth row. Note that the vertices an,1, an,2, an,3, · · · , an,n gets

the labels

−(
n

2
+ 1),−(

n

2
+ 2),−(

n

2
+ 3), · · · ,−(

n

2
+ n),

and finally assign the labels n
2 + n,−(n2 + n) to the vertices u, v respectively.

Case 2. n is odd.

Consider the n−1
2

th
row. That is consider the vertices an−1

2 ,1, an−1
2 ,2, an−1

2 ,3, · · · , an−1
2 ,n.

Assign the labels 1, 2, 3, · · · , n to the vertices an−1
2 ,1, an−1

2 ,2, an−1
2 ,3, · · · , an−1

2 ,n respectively

and next consider the n−3
2

th
row. Assign the labels n + 1, n + 2, n + 3, · · · , 2n to the vertices

an−3
2 ,1, an−3

2 ,2, an−3
2 ,3, · · · , an−3

2 ,n. Now assign the labels 2n+ 1, 2n+ 2, 2n+ 3, · · · , 3n to the

vertices an−5
2 ,1, an−5

2 ,2, an−5
2 ,3, · · · , an−5

2 ,n respectively. Proceeding like this until we reach the

first row. Note that the vertices a1,1, a1,2, a1,3, · · · , a1,n gets the labels

n

2
+ 1,

n

2
+ 2,

n

2
+ 3, · · · , n

2
+ n.

Consider the n+1
2

th
row. That is consider the vertices an+1

2 ,1, an+1
2 ,2, an+1

2 ,3, · · · , an+1
2 ,n.

Assign the labels −1,−2,−3, · · · ,−n to the vertices an+1
2 ,1, an+1

2 ,2, an+1
2 ,3, · · · , an+1

2 ,n respec-
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tively and next consider the n+3
2

th
row. Assign the labels −(n+1),−(n+2),−(n+3), · · · ,−2n

to the vertices an+3
2 ,1, an+3

2 ,2, an+3
2 ,3, · · · , an+3

2 ,n. Now assign the labels −(2n + 1),−(2n +

2),−(2n + 3), · · · ,−3n to the vertices an+5
2 ,1, an+5

2 ,2, an+5
2 ,3, · · · , an+5

2 ,n respectively. Pro-

ceeding like this until we reach the (n − 1)th row. Note that the vertices an−1,1, an−1,2,

an−1,3, · · · , an−1,n gets the labels−(n−1
2 + 1),−(n−1

2 + 2),−(n−1
2 + 3), · · · ,−(n−1

2 +n). Finally

assign the labels

(
n− 1

2
+ n+ 1), (

n− 1

2
+ n+ 2), (

n− 1

2
+ n+ 3), · · · , (n− 1

2
+
n− 1

2
),

−(
n− 1

2
+ n+ 1),−(

n− 1

2
+ n+ 2),−(

n− 1

2
+ n+ 3), · · · ,−(

n− 1

2
+
n− 3

2
)

respectively and assign the labels n
2 + n− 1,−(n−1

2 + n−1
2 ) to the vertices u, v.

Table 1 given below establishes that this vertex labeling is a pair difference cordial labeling

of DAn for all values of n ≥ 2.

Nature of n ∆f1 ∆fc1

n is even n2 n2

n is odd n2 n2

Table 1

For illustration, DA5 is shown in Figure 3.

Figure 3

This completes the proof. �

Theorem 3.4 A sunflower graph SFn is pair difference cordial for all values of n ≥ 3.

Proof Take the vertex set and edge set from Definition 2.5. There are two cases arises.
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Case 1. n is even.

Assign the label 2 to the vertex a. Next assign the labels 1, 3, 5, · · · , n− 1 to the vertices

a1, a2, a3, · · · , an2 respectively and assign the labels 2, 4, 6, · · · , n respectively to the vertices

b1, b2, b3, · · · , bn2 .

Now we assign the labels −1,−3,−5, · · · ,−(n− 1) to the vertices an+2
2

,an+4
2

,an+6
2
, · · · , an

respectively and assign the labels −2,−4,−6, · · · ,−n respectively to the vertices bn+2
2

, bn+4
2

,

bn+6
2

, · · · , bn.

Case 2. n is odd.

Assign the label 2 to the vertex a. Next assign the labels 1, 3, 5, · · · , n to the vertices

a1, a2, a3, · · · , an+1
2

respectively and assign the labels 2, 4, 6, · · · , n−1 respectively to the vertices

b1, b2, b3, · · · , bn−1
2

.

Now we assign the labels −1,−3,−5, · · · ,−(n) to the vertices an+3
2

, an+5
2

, an+7
2
, · · · , an

respectively and assign the labels −2,−4,−6, · · · ,−(n − 1) respectively to the vertices bn+1
2

,

bn+3
2

, bn+5
2
, · · · , bn.

Notices that Table 2 given below establishes that this vertex labeling is a pair difference

cordial labeling of SFn for all values of n ≥ 3.

Nature of n ∆f1 ∆fc1

n is even 2n 2n

n is odd 2n 2n

Table 2

This completes the proof. �

Theorem 3.5 A shell graph C(n,n−3) is pair difference cordial for all values of n ≥ 3.

Proof Let us take vertex set and edge set from Definition 2.6 Assign the labels 1, 2, 3, · · · , n2
respectively to the vertices a1, a2, a3, · · · , an2 and assign the labels −1,−2,−3, · · · ,−n2 to the

vertices an+2
2

,an+4
2

,an+6
2
, · · · , an respectively. �

Theorem 3.6 A butterfly graph with shell order m,m is pair difference cordial for all values

of m ≥ 3.

Proof Assign the labels 1, 2, 3, · · · , n respectively to the vertices a1, a2, a3, · · · , an and

assign the labels −1,−2,−3, · · · ,−n to the vertices a1, a2, a3, · · · , an respectively. �

Theorem 3.7 A graph obtained by joining two copies of shell graph by a path of arbitrary

length is pair difference cordial.

Proof Let G be the graph obtained by joining two copies of shell graph by a path of length.

Let a1, a2, a3, · · · , an be the successive vertices of 1st copy of shell graph and let b1, b2, b3, · · · , bn
be the successive vertices of 2nd copy of shell graph. Let c1, c2, c3, · · · , ck be the successive

vertices of path Pk with c1 = a1 and ck = b1.
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There are two cases arises.

Case 1. k is odd.

Assign the labels 1, 2,−1,−2 respectively to the vertices c1, c2, c3, c4 and assign the la-

bels 3, 4,−3,−4 to the vertices c5, c6, c7, c8 respectively. Next assign the labels 1, 2,−1,−2

respectively to the vertices c9, c10, c11, c12 and assign the labels 5, 6,−5,−6 to the vertices

c13, c14, c15, c16 respectively. Proceeding like this until we reach cn−1.

Now, we assign the labels

k + 1

2
,
k + 3

2
,
k + 5

2
, · · · , 2n+ k − 1

2

respectively to these vertices a2, a3, a4, · · · , an−1 and

−k + 1

2
,−k + 3

2
,−k + 5

2
, · · · ,−2n+ k − 1

2

respectively to the vertices b2, b3, b4, · · · , bn−1. Finally assign the label −k−1
2 to the vertex cn.

Case 2. k is even.

Assign the labels 1, 2,−1,−2 respectively to the vertices c1, c2, c3, c4 and assign the la-

bels 3, 4,−3,−4 to the vertices c5, c6, c7, c8 respectively. Next assign the labels 1, 2,−1,−2

respectively to the vertices c9, c10, c11, c12 and assign the labels 5, 6,−5,−6 to the vertices

c13, c14, c15, c16 respectively. Proceeding like this until we reach cn.

Now, we assign the labels

k + 2

2
,
k + 4

2
,
k + 6

2
, · · · , 2n+ k − 2

2

respectively to these vertices a2, a3, a4, · · · , an−1 and

−k + 2

2
,−k + 4

2
,−k + 6

2
, · · · ,−2n+ k − 2

2

respectively to the vertices b2, b3, b4, · · · , bn−1 and get the result. �

Theorem 3.8 An ice cream graph ICn is pair difference cordial for n ≥ 3.

Proof Take the vertex set and edge set from Definition 2.5. There are two cases arises.

Case 1. n is even.

Assign the labels

1, 2, 3, · · · , n
2

to the vertices a1, a2, a3, · · · , an2 and assign the labels

−1,−2,−3, · · · ,−n
2

to the vertices an+2
2

, an+4
2

,an+6
2
, · · · , an. Finally assign the labels n+2

2 ,−n+2
2 to the vertices
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v0, v.

Case 2. n is odd.

Assign the labels

1, 2, 3, · · · , n+ 1

2

to the vertices a1, a2, a3, · · · , an+1
2

and assign the labels

−1,−2,−3, · · · ,−n− 1

2

to the vertices an+3
2

,an+5
2

,an+7
2
, · · · , an. Finally assign the labels n+1

2 ,1 to the vertices v0, v.

For illustration, IC5 is shown in Figure 4.

Figure 4

This completes the proof. �
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Abstract: The stenosis and non-Newtonian property of the fluid in the blood flow represent

the behavior of Herschel- Buckley fluid. In a tapered tube model all the vessels which

carry blood towards the tissues are considered as long, slowly tapering cones rather than

cylinders. Since the blood flow consist of two regions in which one is central region, consist

of concentrated blood cells and its behavior is non-Newtonian and other region is peripheral

layer of plasma which represent the Newtonian behavior of fluid motion. In present paper, we

have considered the flow of blood through a uniform tapered tube which obeys the Bingham

fluid model and obtained the condition for the wall shear stress and pressure gradient.

Further in various graphs we represent the variation of shear stress at the wall and pressure

gradient with respect to suspension concentration and tapered angle over the flow rate range

0.01 to 0.1 cc/sec.

Key Words: Newtonian fluid, blood flow, wall shear stress, tapered vessel, stenosis, Bing-

ham model.

AMS(2010): 76D03, 76A05.

§1. Introduction

Womersley [14] introduced the concept of a tapered tube model for blood vessel and considered

that all the vessels which carry blood towards the tissues should be long, slowly tapering cones

rather than cylinders. Further Charm and Kurland [4] have examined the nature of blood

flow in non-uniform capillary tubes which are relatively large diameter where the influence of

a marginal gap is negligible, experimental values agree well with the anticipated value. But

in cylindrical tubes where the influence of a marginal gap becomes important, the calculated

and anticipated values diverge unless the probable gap width based on formulas validated in

straight tubes. This conditions strongly suggests that marginal layers develop in tapered tubes

similar to those in straight tubes.

Oka [9] has calculated the pressure development in a non-Newtonian flow through a tapered

tube and obtained the distribution of pressure through tapered tube for Power law, Bingham

1Received July 1, 2023, Accepted December 14, 2023.



96 Arun Kumar Pandey and V. K. Chaubey

body and Casson fluids. Chaturani and Pralhad [5] and Kumar and Kumar [5] have studied

a steady laminar flow of blood in a uniform tapered tube by assuming blood as a polar fluid

and obtained the analytical expressions for wall shear stress, pressure drop, total angular and

axial velocities. Bagchi [1], Bugliarello and Sevilla [2], Chan [3], Chaturani and Palanisamy [6],

Jianncing [7], Pappu and Bagchi [10], Pries and Secomb [11], Sakamoto et al. [12] and Singh

and Kumar [13] have discussed the role of plasma peripheral layer on blood flow in capillaries.

In the present paper we have considered an anomalous behavior of blood flow through

uniform tapered tubes and to understanding the complex rheological characteristics of blood

flow we also considered Bingham blood model and obtained the expressions for the wall shear

stress and pressure gradient. Further in various graphs we represent the variation of shear stress

at the wall and pressure gradient with respect to suspension concentration and tapered angle

over the flow rate range 0.01 to 0.1 cc/sec.

§2. The Mathematical Model

We considered a steady laminar flow of incompressible viscous non-Newtonian fluid model in a

uniformly tapered tube of circular cross-section and the problem investigated under following

assumptions:

(i) Taper angle is very small;

(ii) The motion is steady axisymmetric and in the z-direction;

(iii) No body forces act in the fluid;

(iv) The motion is so slow that inertia term can be neglected;

(v) Pressure gradient is a function of axial co-ordinates only.

Further a section of tapered vessel is shown in Figure 1.

Figure 1. Geometry of the vessel

The radius of the tapered tube R(z) is given by

R(z) = Rθ − z tanφ

where Rθ is the tube radius at z = 0, φ is the tapered angle and z the axis of the tapered tube.



A Mathematical Modal for Bingham Flow Properties of Blood in Narrow Tapered Tube 97

2.1. Governing Equations. The governing equations in cylindrical co-ordinate system

(r, z, θ), which mathematically describe the laminar flow problem of an incomressible fluid are

given by the continuity equation

∂Vz
∂z

+
∂Vr
∂r

+
Vr
r

+
1

r

∂Vθ
∂θ

= 0 (2.1)

and the momentum equations

ρ
DVz
Dt

= −∂p
∂z

+
∂

∂z
(2µ

∂Vz
∂z

) +
1

r

∂

∂θ
[µ(

1

r

∂Vz
∂θ

+
∂Vθ
∂z

)] +

∂

∂r
[µ(

∂Vr
∂z

+
∂Vz
∂r

)] +
µ

r
(
∂Vr
∂z

+
∂Vz
∂r

), (2.2)

where D
Dt = ∂

∂t + Vr
∂
∂r + Vz

∂
∂z + Vθ

r
∂
∂θ .

Making use of the assumptions (ii), we have

∂

∂t
= 0,

∂

∂θ
= 0, Vr = Vθ = 0, Vz = V (r). (2.3)

Using equation (2.3) in equation (2.2), we find the equations of motion and continuity for

fully developed steady viscous incompressible laminar flow under no-body forces as

0 = −∂p
∂z

+
1

r

∂

∂r
(rτrz), (2.4)

0 =
∂p

∂r
, (2.5)

∂V

∂z
= 0, (2.6)

where p is the pressure, V is the axial velocity and τrz = (µ∂V∂r ) the shear stress normal to r in

z-direction.

2.2. Constitutive Equation. The constitutive equation for the shear stress τ and strain

rate γ̇ is given by

τ = τ0 + µγ̇; τ ≥ τ0, and γ̇ = 0; τ ≤ τ0, (2.7)

where τ0 is the yield stress, µ the coefficient of viscosity and γ̇ the shear strain rate.

2.3. Boundary Conditions. The appropriate boundary conditions are given by

V = 0 at r = R(z), (2.8)

τrz = τw at r = R(z), (2.9)

V = Vp at r = Rp, (2.10)

τrz is finite at r = 0, (2.11)

where Rp is the plug radius and Vp the plug velocity.
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2.4. Solution for Velocities, Volume Flow Rate and Wall Shear Stress.

(1) Velocities. Integrating equation (2.4) with the boundary condition (2.11), we get

τrz =
r

2

∂p

∂z
. (2.12)

Making use of the equation (7) in equation (12), we have velocity equations as

dV

dr
=

1

µ
(
∂p

∂z

r

2
− τ0); Rp ≤ r ≤ R(z), (2.13)

dVp
dr

= 0; 0 ≤ r ≤ Rp. (2.14)

The plug flow exists whenever the shear stress does not exceed yield stress. Solving equa-

tions (2.13) and (2.14) with boundary conditions (2.8) to (2.10), we get

V =
τw(z)

2µ
R(z)[1− r2

R2(z)
− 2β(1− r

R(z)
)], (2.15)

Vp =
τw(z)

2µ
R(z)(1− β)2, (2.16)

where β = τ0
τw(z) .

(2) Volume Flow Rate and Wall Shear Stress. The volume flow rate Q is given by

Q = Q1 +Q2, (2.17)

where Q1 and Q2 are given by

Q1 =

∫ Rp

0

2πVprdr = πVpR
2
p, (2.18)

Q2 =

∫ R(z)

Rp

2πV rdr. (2.19)

Now substituting the values of Vp and V from equations (2.15) and (2.16) in equations

(2.18) and (2.19), we obtain

Q1 =
π

2

τw(z)

µ
R3(z)(1− β)2, (2.20)

Q2 =
π

2µ
τw(z)R3(z)[

1

2
− 2

3
β − β2 + 2β3 − 5

6
β4]. (2.21)

Using equations (2.20) and (2.21) in equation (2.17), we have

Q =
π

4µ
τw(z)R3(z)(1− 4

3
β) (2.22)

in where higher order of β are neglected.

Now from equation (2.12) and (2.22) with boundary condition (2.9), the pressure gradient
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is obtained as
∂p

∂z
=

8µQ

πR4(z)
(1 +

4

3
β). (2.23)

From equation (2.22) we have the shear stress at the wall as

τw(z) =
4µQ

πR3(z)
(1 +

4

3
β). (2.24)

Now using equations (2.23) and (2.24), we have

τw(z) =
R(z)

2

∂p

∂z
. (2.25)

Therefore, by the equations (2.23) and (2.24) we obtain that the pressure and the shear

stress at the wall increases when R(z) decreases.

§3. Results and Discussion

The pressure gradient and shear stress at the wall are given by the equation (2.23) and (2.25)

respectively in which we observe that τwz and ∂p/∂z changes with z (along the tube axis),

i.e. pressure gradient and wall shear stress increases with decrease in the radius of the tapered

tube. Therefore we should not take the pressure gradient to be constant. Some authors have

proposed a micro polar fluid model for blood flow through a small tapered tube and have

assumed pressure gradient to be constant throughout the investigation, which is not true.

We consider the radius of tapered vessel Rθ = 100µm. The variation of pressure gradient

and shear stress at the wall are calculated, with the help of equations (2.23) and (2.24) for the

flow rate over the range 0.02 to 0.10 cc/sec, for different tapered angles (10 6 θ 6 20) and the

suspension concentrations 20%, 30% and 40% .

Figure 2. Variation of pressure gradient with flow rate for different suspension concentrations

(Z = 0.10cm, φ = 1.40, Rθ = 0.01cm)
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Figures 2, 3 and 4 show the variation of pressure gradient with flow rate for different sus-

pension concentration, different tapered angle and different axial distance. From these Figures

it is clear that pressure gradient increases with increase in axial distance, tapered angle and

suspension concentration.

Figure 3. Variation of pressure gradient with flow rate for different tapered angles

(H = 4%, Rθ = 0.01cm, z = 0.10cm)

Figure 4. Variation of pressure gradient with axial distance for different flow rates

(Rθ = 0.01cm,H = 40%, φ = 1.40)

Now, Figures 5, 6 and 7 show the variation of shear stress at the wall with flow rate Q for

different angles, axial distances and concentrations.
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Figure 5. Variation of wall shear stress with flow rate for different tapered angles

(H = 40%, Rθ = 0.01cm, z = 0.10cm)

Figure 6. Variation of wall shear stress with axial distance for different flow rates

(H = 40%, φ = 1.40, Rθ = 0.01cm)

Figure 7. Variation of wall shear stress with flow rate for different hematocrit

(φ = 1.40, z = 0.1cm,Rθ = 0.01cm)
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From the above figures, it is clear that shear stress at wall increases with suspension

concentration and tapered angles. τwz is an increasing function of axial distance. Thus, for

known flow rate, the shear stress can be calculated at any point of the tapered tube. These

fluid dynamics results could be very useful in understanding the vascular fluid mechanics. Now

from Figures 8, 9 and 10 we have, for Newtonian fluid β = 0, the variation of pressure gradient

with flow rate Q for different suspension concentrations, tapered angles and axial distances.

We observe that the values of pressure gradient are less than those for Bingham fluid model.

From these Figures, the same trends for pressure gradient are obtained as for Bingham fluids.

Figure 8. Variation of pressure gradient with flow rate different suspension concentration

(Newtonian fluid with φ = 1.40, z = 0.10cm,Rθ = 0.01cm, β = 0.0)

Figure 9. Variation of pressure gradient with flow rate for different tapered angles

(Newtonian fluid with H = 40%, Rθ = 0.01cm, z = 0.10cm, β = 0.0)
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Figure 10. Variation of pressure gradient with axial distance for different flow rates

(Newtonian fluid with H = 40%, Rθ = 0.01cm, φ = 1.40, β = 0.0)
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Hüseyin Budak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4. Monophonic Graphoidal Covering Number of Corona Product Graph of Some Standard

Graphs with the Wheel

P. Titus, S. Santha Kumari and M. Sambasivam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
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Famous Words

The combinatorial conjecture for mathematical science is not so much a mathematical

conjecture name as a philosophical thought corresponding to the combinatorial notion of things,

aiming at promoting human recognition of things in the universe and developing science.

By Linfan MAO, a Chinese mathematician, philosophical critic.
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