On n-Polynomial P-Function and Related Inequalities

İmdat İşcan and Mahir Kadakal

(Department of Mathematics, Faculty of Arts and Sciences, Giresun University, 28200, Giresun-Turkey)

E-mail: imdati@yahoo.com, mahirkadakal@gmail.com

Abstract: In this paper, we introduce and study the concept of n-polynomial P-function and establish Hermite-Hadamard’s inequalities for this type of functions. In addition, we obtain some new Hermite-Hadamard type inequalities for functions whose first derivative in absolute value is n-polynomial P-function by using Hölder and power-mean integral inequalities. Some applications to special means of real numbers are also given.

Key Words: n-polynomial convexity, n-polynomial P-function, Hermite-Hadamard inequality.

§1. Preliminaries

Let $f : I \rightarrow \mathbb{R}$ be a convex function. Then the following inequalities hold

$$f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_a^b f(x) dx \leq \frac{f(a) + f(b)}{2}$$ \hspace{1cm} (1.1)

for all $a, b \in I$ with $a < b$. Both inequalities hold in the reversed direction if the function f is concave. This double inequality is well known as the Hermite-Hadamard inequality \[^5\]. Note that some of the classical inequalities for means can be derived from Hermite-Hadamard integral inequalities for appropriate particular selections of the mapping f.

In \[^4\], Dragomir et al. gave the following definition and related Hermite-Hadamard integral inequalities as follow:

Definition 1.1 A nonnegative function $f : I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ is said to be P-function if the inequality

$$f(tx + (1-t)y) \leq f(x) + f(y)$$

holds for all $x, y \in I$ and $t \in (0, 1)$.

Theorem 1.1 Let $f \in P(I)$, $a, b \in I$ with $a < b$ and $f \in L_1[a, b]$. Then

$$f\left(\frac{a+b}{2}\right) \leq \frac{2}{b-a} \int_a^b f(x) dx \leq 2\left[f(a) + f(b)\right].$$ \hspace{1cm} (1.2)

\[^1\] Received May 15, 2020, Accepted September 3, 2020.
In [10], Tekin et al. gave the following definition and related Hermite-Hadamard integral inequalities as follow:

Definition 1.2 Let \(n \in \mathbb{N} \). A non-negative function \(f : I \subset \mathbb{R} \to \mathbb{R} \) is called \(n \)-polynomial convex function if for every \(x, y \in I \) and \(t \in [0, 1] \),

\[
 f (tx + (1 - t)y) \leq \frac{1}{n} \sum_{s=1}^{n} [1 - (1 - t)^s] f(x) + \frac{1}{n} \sum_{s=1}^{n} [1 - t^s] f(y) .
\]

Theorem 1.2 ([10]) Let \(f : [a, b] \to \mathbb{R} \) be a \(n \)-polynomial convex function. If \(a < b \) and \(f \in L[a, b] \), then the following Hermite-Hadamard type inequalities hold:

\[
 \frac{1}{2} \left(\frac{n}{n + 2^{-n} - 1} \right) f \left(\frac{a + b}{2} \right) \leq \frac{1}{b - a} \int_{a}^{b} f(x) dx \leq \left(\frac{f(a) + f(b)}{n} \right) \sum_{s=1}^{n} \frac{s}{s + 1} .
\]

The main purpose of this paper is to introduce the concept of \(n \)-polynomial \(P \)-function which is connected with the concepts of \(P \)-function and \(n \)-polynomial convex function and establish some new Hermite-Hadamard type inequality for these classes of functions. In recent years many authors have studied error estimations Hermite-Hadamard type inequalities; for refinements, counterparts, generalizations, for some related papers see [1, 2, 3, 4, 6, 7, 8, 9, 10].

§2. Definition of \(n \)-Polynomial \(P \)-Function

In this section, we introduce a new concept, which is called \(n \)-polynomial \(P \)-function and we give by setting some algebraic properties for the \(n \)-polynomial \(P \)-function, as follows:

Definition 2.1 Let \(n \in \mathbb{N} \). A non-negative function \(f : I \subset \mathbb{R} \to \mathbb{R} \) is called \(n \)-polynomial \(P \)-function if for every \(x, y \in I \) and \(t \in [0, 1] \),

\[
 f (tx + (1 - t)y) \leq \frac{1}{n} \sum_{s=1}^{n} [2 - t^s - (1 - t)^s] [f(x) + f(y)] .
\]

We will denote by \(POLP (I) \) the class of all \(n \)-polynomial \(P \)-functions on interval \(I \). Notice that every \(n \)-polynomial \(P \)-function is a \(h \)-convex function with the function

\[
 h(t) = \frac{1}{n} \sum_{s=1}^{n} [2 - t^s - (1 - t)^s] .
\]

Therefore, if \(f, g \in POLC (I) \), then

(i) \(f + g \in POLC (I) \) and for \(c \in \mathbb{R} \ (c \geq 0) \) \(cf \in POLC (I) \) (see [11], Proposition 9).

(ii) If \(f \) and \(g \) be a similarly ordered functions on \(I \), then \(fg \in POLCP (I) \). (see [11], Proposition 10).
Also, if \(f : I \to J \) is a convex and \(g \in \text{POLCP}(J) \) and nondecreasing, then \(g \circ f \in \text{POLCP}(I) \) (see [11], Theorem 15).

Remark 2.1 We note that if \(f \) satisfies (2.1), then \(f \) is a nonnegative function. Indeed, if we rewrite the inequality (2.1) for \(t = 0 \), then

\[
f(y) \leq f(x) + f(y)
\]

for every \(x, y \in I \). Thus we have \(f(x) \geq 0 \) for all \(x \in I \).

Proposition 2.1 Every nonnegative \(P \)-function is also a \(n \)-polynomial \(P \)-function.

Proof The proof is clear from the following inequalities

\[
t \leq \frac{1}{n} \sum_{s=1}^{n} [1 - (1 - t)^s] \quad \text{and} \quad 1 - t \leq \frac{1}{n} \sum_{s=1}^{n} [1 - t^s]
\]

for all \(t \in [0, 1] \) and \(n \in \mathbb{N} \). In this case, we can write

\[
1 \leq \frac{1}{n} \sum_{s=1}^{n} [2 - t^s - (1 - t)^s].
\]

Therefore, the desired result is obtained. \(\square \)

We can give the following corollary for every nonnegative convex function is also a \(P \)-function.

Corollary 2.1 Every nonnegative convex function is also a \(n \)-polynomial \(P \)-function.

Theorem 2.1 Let \(b > a \) and \(f_\alpha : [a, b] \to \mathbb{R} \) be an arbitrary family of \(n \)-polynomial \(P \)-function and let \(f(x) = \sup_\alpha f_\alpha(x) \). If \(J = \{ u \in [a, b] : f(u) < \infty \} \) is nonempty, then \(J \) is an interval and \(f \) is a \(n \)-polynomial \(P \)-function on \(J \).

Proof Let \(t \in [0, 1] \) and \(x, y \in J \) be arbitrary. Then

\[
f(tx + (1 - t)y) = \sup_\alpha f_\alpha(tx + (1 - t)y)
\]

\[
\leq \sup_\alpha \left[\frac{1}{n} \sum_{s=1}^{n} (2 - t^s - (1 - t)^s) [f_\alpha(x) + f_\alpha(y)] \right]
\]

\[
\leq \frac{1}{n} \sum_{s=1}^{n} (2 - t^s - (1 - t)^s) \left[\sup_\alpha f_\alpha(x) + \sup_\alpha f_\alpha(y) \right]
\]

\[
= \frac{1}{n} \sum_{s=1}^{n} (2 - t^s - (1 - t)^s) [f(x) + f(y)] < \infty.
\]

This shows simultaneously that \(J \) is an interval, since it contains every point between any two of its points, and that \(f \) is a \(n \)-polynomial \(P \)-function on \(J \). \(\square \)
§3. Hermite-Hadamard Inequality for \(n \)-Polynomial \(P \)-Functions

The goal of this paper is to establish some inequalities of Hermite-Hadamard type for \(n \)-polynomial \(P \)-functions. In this section, we will denote by \(L[a, b] \) the space of (Lebesgue) integrable functions on \([a, b]\).

Theorem 3.1 Let \(f : [a, b] \to \mathbb{R} \) be a \(n \)-polynomial \(P \)-function. If \(a < b \) and \(f \in L[a, b] \), then the following Hermite-Hadamard type inequalities hold

\[
\frac{1}{4} \left(\frac{n}{n + 2^{-n} - 1} \right) f\left(\frac{a + b}{2} \right) \leq \frac{1}{b - a} \int_a^b f(x) dx \leq \left(\frac{f(a) + f(b)}{n} \right) \sum_{s=1}^n \frac{2s}{s+1}. \tag{3.1}
\]

Proof From the property of the \(n \)-polynomial \(P \)-function of \(f \), we get

\[
f\left(\frac{a + b}{2} \right) = f\left(\frac{[ta + (1-t)b] + [(1-t)a + tb]}{2} \right) = f\left(\frac{1}{2} [ta + (1-t)b] + \frac{1}{2} [(1-t)a + tb] \right) \leq \frac{1}{n} \sum_{s=1}^n \left[2 - 2 \left(\frac{1}{2} \right)^s \right] \left[f\left(ta + (1-t)b \right) + f\left((1-t)a + tb \right) \right].
\]

By taking integral in the last inequality with respect to \(t \in [0,1] \), we deduce that

\[
f\left(\frac{a + b}{2} \right) \leq \frac{1}{n} \sum_{s=1}^n \left[2 - 2 \left(\frac{1}{2} \right)^s \right] \left[\int_0^1 f\left(ta + (1-t)b \right) dt + \int_0^1 f\left((1-t)a + tb \right) dt \right] = \frac{4}{b - a} \left(\frac{n + 2^{-n} - 1}{n} \right) \int_a^b f(x) dx.
\]

By using the property of the \(n \)-polynomial \(P \)-function of \(f \), if the variable is changed as \(x = ta + (1-t)b \), then

\[
\frac{1}{b - a} \int_a^b f(x) dx = \int_0^1 f\left(ta + (1-t)b \right) dt \leq \int_0^1 \left[\frac{1}{n} \sum_{s=1}^n [2 - t^s - (1-t)^s] \left[f(a) + f(b) \right] \right] dt = \frac{f(a) + f(b)}{n} \sum_{s=1}^n \int_0^1 [2 - t^s - (1-t)^s] dt = \left[\frac{f(a) + f(b)}{n} \right] \sum_{s=1}^n \frac{2s}{s+1},
\]

where

\[
\int_0^1 [2 - t^s - (1-t)^s] dt = \frac{2s}{s+1}.
\]

This completes the proof of theorem. \(\square \)
Remark 3.1 In case of $n = 1$, the inequality (3.1) coincides with the the inequality (1.2).

§4. New Inequalities for n-Polynomial P-Functions

The main purpose of this section is to establish new estimates that refine Hermite-Hadamard inequality for functions whose first derivative in absolute value is n-polynomial P-function. Dragomir and Agarwal [3] used the following lemma.

Lemma 4.1[3] Let $f : I^o \subseteq \mathbb{R} \to \mathbb{R}$ be a differentiable mapping on I^o, $a, b \in I^o$ with $a < b$. If $f' \in L[a, b]$, then

$$\frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x) dx = \frac{b-a}{2} \int_0^1 (1 - 2t) f'(ta + (1-t)b) dt.$$

Theorem 4.1 it Let $f : I \to \mathbb{R}$ be a differentiable mapping on I^o, $a, b \in I^o$ with $a < b$ and assume that $f' \in L[a, b]$. If $|f'|$ is n-polynomial P-function on interval $[a, b]$, then the following inequality

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x) dx \right| \leq \frac{b-a}{n} \sum_{s=1}^n \left\{ \frac{(s^2 + s + 2)^2 - 2}{(s + 1)(s + 2)^2} \right\} A (|f'(a)|, |f'(b)|)$$

holds for $t \in [0, 1]$.

Proof Using Lemma 4.1 and the inequality

$$|f'(ta + (1-t)b)| \leq \frac{1}{n} \sum_{s=1}^n (2 - t^s - (1 - t)^s) ||f'(a)|| + ||f'(b)||,$$

we get

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x) dx \right| \leq \frac{b-a}{2} \int_0^1 (1 - 2t) f'(ta + (1-t)b) dt$$

$$\leq \frac{b-a}{2} \int_0^1 |1 - 2t| \left(\frac{1}{n} \sum_{s=1}^n (2 - t^s - (1 - t)^s) ||f'(a)|| + ||f'(b)|| \right) dt$$

$$\leq \frac{b-a}{2n} [||f'(a)|| + ||f'(b)||] \sum_{s=1}^n \int_0^1 |1 - 2t| (2 - t^s - (1 - t)^s) dt$$

$$= \frac{b-a}{n} \sum_{s=1}^n \left\{ \frac{(s^2 + s + 2)^2 - 2}{(s + 1)(s + 2)^2} \right\} A (|f'(a)|, |f'(b)|),$$

where

$$\int_0^1 |1 - 2t| (2 - t^s - (1 - t)^s) dt = \frac{(s^2 + s + 2)^2 - 2}{(s + 1)(s + 2)^2}.$$
and A is the arithmetic mean. This completes the proof of theorem. \hfill \Box

Corollary 4.1 If we take $n = 1$ in the inequality (4.1), we get the following inequality

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x)dx \right| \leq \frac{b-a}{2} A(|f'(a)|, |f'(b)|).$$ \hspace{1cm} (4.2)

Theorem 4.2 Let $f : I \to \mathbb{R}$ be a differentiable mapping on I, $a, b \in I$ with $a < b$ and assume that $f' \in L[a, b]$. If $|f'|^q$, $q > 1$, is an n-polynomial P-function on interval $[a, b]$, then the following inequality holds for $t \in [0, 1]$.

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x)dx \right| \leq \frac{b-a}{2} \left(\frac{1}{p+1} \right)^{\frac{1}{p}} \left(\frac{4}{n} \sum_{s=1}^{n} \frac{s}{s+1} \right)^{\frac{1}{q}} \left(A^{\frac{1}{q}}(|f'(a)|^q, |f'(b)|^q) \right),$$ \hspace{1cm} (4.3)

where $\frac{1}{p} + \frac{1}{q} = 1$ and A is the arithmetic mean.

Proof Using Lemma 4.1, Hölder’s integral inequality and the following inequality

$$|f'(ta + (1-t)b)|^q \leq \frac{1}{n} \sum_{s=1}^{n} (2 - t^s - (1-t)^s) \left[|f'(a)|^q + |f'(b)|^q \right]$$

which is the n-polynomial P-function of $|f'|^q$, we get

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x)dx \right| \leq \frac{b-a}{2} \left(\int_0^1 |1 - 2t|^p dt \right)^{\frac{1}{p}} \left(\int_0^1 |f'(ta + (1-t)b)|^q dt \right)^{\frac{1}{q}}$$

$$\leq \frac{b-a}{2} \left(\frac{1}{p+1} \right)^{\frac{1}{p}} \left(\frac{4}{n} \sum_{s=1}^{n} \frac{s}{s+1} \right)^{\frac{1}{q}} \left(\frac{1}{n} \sum_{s=1}^{n} (2 - t^s - (1-t)^s) \right)^{\frac{1}{q}}$$

$$= \frac{b-a}{2} \left(\frac{1}{p+1} \right)^{\frac{1}{p}} \left(\frac{4}{n} \sum_{s=1}^{n} \frac{s}{s+1} \right)^{\frac{1}{q}} A^{\frac{1}{q}}(|f'(a)|^q, |f'(b)|^q)$$

where

$$\int_0^1 |1 - 2t|^p dt = \frac{1}{p+1}, \quad \int_0^1 (2 - t^s - (1-t)^s) dt = \frac{2s}{s+1}.$$

This completes the proof of theorem. \hfill \Box
Corollary 4.2 If we take $n = 1$ in the inequality (4.3), we get the following inequality

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x)dx \right| \leq (b-a) \left[\frac{1}{2(2^{q+1})} \right]^{\frac{1}{q}} A^{\frac{1}{q}} (|f'(a)|^q, |f'(b)|^q).$$

Theorem 4.3 Let $f : I \subseteq \mathbb{R} \to \mathbb{R}$ be a differentiable mapping on I, $a,b \in I$ with $a < b$ and assume that $f' \in L[a,b]$. If $|f'|^q, q \geq 1$, is an n-polynomial P-function on the interval $[a,b]$, then the following inequality holds for $t \in [0,1]$.

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x)dx \right| \leq \frac{b-a}{2^{\frac{q}{2}} - \frac{1}{4}} \left(\sum_{s=1}^{n} \left(\frac{s^2 + s + 2}{s(s + 1)(2^s - 1)} \right)^{\frac{1}{q}} \right)^{\frac{1}{q}} \leq \frac{b-a}{2^{\frac{q}{2}} - \frac{1}{4}} \left(\sum_{s=1}^{n} \left(\frac{s^2 + s + 2}{s(s + 1)(2^s - 1)} \right)^{\frac{1}{q}} \right)^{\frac{1}{q}} A^{\frac{1}{q}} (|f'(a)|^q, |f'(b)|^q).$$

Proof From Lemma 4.1, well known power-mean integral inequality and the property of the n-polynomial P-function of $|f'|^q$, we obtain

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x)dx \right| \leq \frac{b-a}{2^{\frac{q}{2}} - \frac{1}{4}} \left(\sum_{s=1}^{n} \left(\frac{s^2 + s + 2}{s(s + 1)(2^s - 1)} \right)^{\frac{1}{q}} \right)^{\frac{1}{q}}$$

$$\leq \frac{b-a}{2^{\frac{q}{2}} - \frac{1}{4}} \left(\sum_{s=1}^{n} \left(\frac{s^2 + s + 2}{s(s + 1)(2^s - 1)} \right)^{\frac{1}{q}} \right)^{\frac{1}{q}} A^{\frac{1}{q}} (|f'(a)|^q, |f'(b)|^q)$$

where

$$\int_0^1 |1 - 2t|dt = \frac{1}{2},$$

$$\int_0^1 |1 - (1-t)| dt = \frac{(s^2 + s + 2)2^s - 2}{(s+1)(s+2)2^s}.$$

This completes the proof of theorem.

Corollary 4.3 Under the assumption of Theorem 4.3, If we take $q = 1$ in the inequality (4.4), then we get the following inequality

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x)dx \right| \leq \frac{b-a}{n} \left(\sum_{s=1}^{n} \left(\frac{s^2 + s + 2}{s(s + 1)(2^s)} \right) \right) A (|f'(a)|, |f'(b)|)$$

This inequality coincides with the inequality (4.1).
Corollary 4.4 Under the assumption of Theorem 4.3, If we take $n = 1$ in the inequality (4.4), then we get the following inequality

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x)dx \right| \leq \frac{b-a}{2^{2-q}} A^\frac{1}{q} \left(|f'(a)|^q, |f'(b)|^q \right).$$

which is identical to the inequality in [1, Theorem 2.3].

Corollary 4.5 Under the assumption of Theorem 4.3, If we take $n = 1$ and $q = 1$ in the inequality (4.4), then we get the following inequality

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(x)dx \right| \leq \frac{b-a}{2} A(|f'(a)|, |f'(b)|).$$

This inequality coincides with the inequality (4.2).

§5. Applications for Special Means

Throughout this section, for shortness, the following notations will be used for special means of two nonnegative numbers a, b with $b > a$.

1. The arithmetic mean

$$A := A(a, b) = \frac{a + b}{2}, \quad a, b \geq 0,$$

2. The geometric mean

$$G := G(a, b) = \sqrt{ab}, \quad a, b \geq 0,$$

3. The harmonic mean

$$H := H(a, b) = \frac{2ab}{a + b}, \quad a, b > 0,$$

4. The logarithmic mean

$$L := L(a, b) = \begin{cases} \frac{b-a}{\ln b - \ln a}, & a \neq b \\ a, & a = b \end{cases}; \quad a, b > 0$$

5. The p-logarithmic mean

$$L_p := L_p(a, b) = \begin{cases} \left(\left(\frac{b^{p+1} - a^{p+1}}{(p+1)(b-a)} \right) \right)^\frac{1}{p}, & a \neq b, p \in \mathbb{R} \setminus \{-1, 0\} \\ a, & a = b \end{cases}; \quad a, b > 0.$$
6. The identric mean

\[I := I(a, b) = \frac{1}{e} \left(\frac{b^b}{a^a} \right)^{\frac{1}{b-a}}, \quad a, b > 0, \]

These means are often used in numerical approximation and in other areas. However, the following simple relationships

\[H \leq G \leq L \leq I \leq A. \]

are known in the literature. It is also known that \(L_p \) is monotonically increasing over \(p \in \mathbb{R} \), denoting \(L_0 = I \) and \(L_{-1} = L \).

Proposition 5.1 Let \(a, b \in [0, \infty) \) with \(a < b \) and \(n \in (-\infty, 0) \cup [1, \infty) \setminus \{-1\} \). Then, the following inequalities are obtained:

\[\frac{1}{4} \left(\frac{n}{n + 2^{-n} - 1} \right) A^n(a, b) \leq L^n_n(a, b) \leq A(a^n, b^n) \frac{2^n}{n} \sum_{s=1}^{n} \frac{2s}{s + 1}. \]

Proof The assertion follows from the inequalities (3.1) for the function \(f(x) = x^n, \; x \in [0, \infty). \)

Proposition 5.2 Let \(a, b \in (0, \infty) \) with \(a < b \). Then, the following inequalities are obtained

\[\frac{1}{4} \left(\frac{n}{n + 2^{-n} - 1} \right) A^{-1}(a, b) \leq L^{-1}(a, b) \leq \frac{2}{n} H^{-1}(a, b) \sum_{s=1}^{n} \frac{2s}{s + 1}. \]

Proof The assertion follows from the inequalities (3.1) for the function \(f(x) = x^{-1}, \; x \in (0, \infty). \)

Proposition 5.3 Let \(a, b \in (0, 1] \) with \(a < b \). Then, the following inequalities are obtained

\[\frac{2 \ln G(a, b)}{n} \sum_{s=1}^{n} \frac{2s}{s + 1} \leq \ln I(a, b) \leq \frac{1}{4} \left(\frac{n}{n + 2^{-n} - 1} \right) \ln A(a, b). \]

Proof The assertion follows from the inequalities (3.1) for the function \(f(x) = -\ln x, \; x \in (0, 1]. \)

References

(2012), 129-134.

