International J.Math. Combin. Vol.3(2023), 89-94

On Equitable Associate Symmetric *n*-Sigraphs

K. M. Manjula

(Department of Mathematics, Government First Grade College, Channarayapatna-573 116, India)

C. N. Harshavardhana

(Department of Mathematics, Government First Grade College for Women, Holenarasipura-573 211, India)

S. Vijay

(Department of Mathematics, Government Science College, Hassan-573 201, India)

E-mail: manjula.km.gowda@gmail.com, cnhmaths@gmail.com, vijayshivanna82@gmail.com

Abstract: In this paper we introduced a new notion equitable associate symmetric *n*-sigraph of a symmetric *n*-sigraph and its properties are obtained. Further, we discuss structural characterization of equitable associate symmetric *n*-sigraphs.

Key Words: Symmetric *n*-sigraphs, Smarandachely symmetric *n*-marked graph, symmetric *n*-marked graphs, Smarandachely symmetric *n*-marked graph, balance, switching, equitable associate *n*-sigraphs, Smarandachely equitable dominating set, complementation.

AMS(2010): 05C22.

§1. Introduction

Unless mentioned or defined otherwise, for all terminology and notion in graph theory the reader is refer to [2]. We consider only finite, simple graphs free from self-loops.

Let $n \ge 1$ be an integer. An *n*-tuple (a_1, a_2, \dots, a_n) is symmetric, if $a_k = a_{n-k+1}, 1 \le k \le n$. Let $H_n = \{(a_1, a_2, \dots, a_n) : a_k \in \{+, -\}, a_k = a_{n-k+1}, 1 \le k \le n\}$ be the set of all symmetric *n*-tuples. Note that H_n is a group under coordinate wise multiplication, and the order of H_n is 2^m , where $m = \lceil \frac{n}{2} \rceil$.

A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair $S_n = (G, \sigma)$ ($S_n = (G, \mu)$), where G = (V, E) is a graph called the underlying graph of S_n and $\sigma : E \to H_n$ ($\mu : V \to H_n$) is a function. Generally, a Smarandachely symmetric n-sigraph (Smarandachely symmetric n-marked graph) for a subgraph H is such a graph that G - E(H) is symmetric nsigraph (symmetric n-marked graph). For example, let H be a path $P_2 \succ G$ or a cycle $C_3 \prec G$. Certainly, if $H = \emptyset$, a Smarandachely symmetric n-sigraph (or Smarandachely symmetric nsigraph) is nothing else but a symmetric n-sigraph (or symmetric n-marked graph).

In this paper by an n-tuple/n-sigraph/n-marked graph we always mean a symmetric n-tuple/symmetric n-sigraph/symmetric n-marked graph.

¹Received June 18, 2023, Accepted August 24, 2023.

²Corresponding author: cnhmaths@gmail.com

An *n*-tuple (a_1, a_2, \dots, a_n) is the *identity n*-tuple, if $a_k = +$, for $1 \leq k \leq n$, otherwise it is a *non-identity n*-tuple. In an *n*-sigraph $S_n = (G, \sigma)$ an edge labelled with the identity *n*-tuple is called an *identity edge*, otherwise it is a *non-identity edge*. Further, in an *n*-sigraph $S_n = (G, \sigma)$, for any $A \subseteq E(G)$ the *n*-tuple $\sigma(A)$ is the product of the *n*-tuples on the edges of A.

In [2], the authors defined two notions of balance in *n*-sigraph $S_n = (G, \sigma)$ as follows (See also R. Rangarajan and P.S.K.Reddy [4]):

Definition 1.1 Let $S_n = (G, \sigma)$ be an *n*-sigraph. Then,

(i) S_n is identity balanced (or i-balanced), if product of n-tuples on each cycle of S_n is the identity n-tuple, and

(ii) S_n is balanced, if every cycle in S_n contains an even number of non-identity edges.

Observation 1.2 An *i*-balanced *n*-sigraph need not be balanced and conversely.

The following characterization of i-balanced n-sigraphs is obtained in [8].

Theorem 1.3 (E. Sampathkumar et al. [8]) An n-sigraph $S_n = (G, \sigma)$ is i-balanced if, and only if, it is possible to assign n-tuples to its vertices such that the n-tuple of each edge uv is equal to the product of the n-tuples of u and v.

Let $S_n = (G, \sigma)$ be an *n*-sigraph. Consider the *n*-marking μ on vertices of S_n defined as follows: each vertex $v \in V$, $\mu(v)$ is the *n*-tuple which is the product of the *n*-tuples on the edges incident with v. Complement of S_n is an *n*-sigraph $\overline{S_n} = (\overline{G}, \sigma^c)$, where for any edge $e = uv \in \overline{G}, \sigma^c(uv) = \mu(u)\mu(v)$. Clearly, $\overline{S_n}$ as defined here is an *i*-balanced *n*-sigraph due to Proposition 1 in [10].

In [8], the authors also have defined switching and cycle isomorphism of an *n*-sigraph $S_n = (G, \sigma)$ as follows (See also [3, 5 - 7, 10 - 20]):

Let $S_n = (G, \sigma)$ and $S'_n = (G', \sigma')$, be two *n*-sigraphs. Then S_n and S'_n are said to be *isomorphic*, if there exists an isomorphism $\phi : G \to G'$ such that if uv is an edge in S_n with label (a_1, a_2, \dots, a_n) then $\phi(u)\phi(v)$ is an edge in S'_n with label (a_1, a_2, \dots, a_n) .

Given an *n*-marking μ of an *n*-sigraph $S_n = (G, \sigma)$, switching S_n with respect to μ is the operation of changing the *n*-tuple of every edge uv of S_n by $\mu(u)\sigma(uv)\mu(v)$. The *n*-sigraph obtained in this way is denoted by $S_{\mu}(S_n)$ and is called the μ -switched *n*-sigraph or just switched *n*-sigraph. Further, an *n*-sigraph S_n switches to *n*-sigraph S'_n (or that they are switching equivalent to each other), written as $S_n \sim S'_n$, whenever there exists an *n*-marking of S_n such that $S_{\mu}(S_n) \cong S'_n$.

Two *n*-sigraphs $S_n = (G, \sigma)$ and $S'_n = (G', \sigma')$ are said to be *cycle isomorphic*, if there exists an isomorphism $\phi : G \to G'$ such that the *n*-tuple $\sigma(C)$ of every cycle C in S_n equals to the *n*-tuple $\sigma(\phi(C))$ in S'_n .

We make use of the following known result (see [8]).

Theorem 1.4 (E. Sampathkumar et al. [8]) Given a graph G, any two n-sigraphs with G as underlying graph are switching equivalent if, and only if, they are cycle isomorphic.

Let $S_n = (G, \sigma)$ be an *n*-sigraph. Consider the *n*-marking μ on vertices of S defined as follows: each vertex $v \in V$, $\mu(v)$ is the product of the *n*-tuples on the edges incident at v. Complement of S is an *n*-sigraph $\overline{S_n} = (\overline{G}, \sigma')$, where for any edge $e = uv \in \overline{G}$, $\sigma'(uv) = \mu(u)\mu(v)$. Clearly, $\overline{S_n}$ as defined here is an *i*-balanced *n*-sigraph due to Theorem 1.3.

§2. Equitable Associate *n*-Sigraph of an *n*-Sigraph

A subset D of $V(\Gamma)$ is called an *equitable dominating set* of a graph Γ , if for every $v \in V - D$ there exists a vertex $v \in D$ such that $uv \in E(\Gamma)$ and $|d(u) - d(v)| \leq 1$. The minimum cardinality of such a dominating set is denoted by γ_e and is called equitable domination number of Γ . A vertex $u \in V$ is said to be *degree equitable* with a vertex $v \in V$ if $|deg(u) - deg(v)| \leq 1$ (see [21]) and to be *Smarandachely degree equitable* if $|deg(u) - deg(v)| \geq 2$.

Generally, a subset D of V is called an *equitable dominating set* if for every $v \in V - D$ there exists a vertex $u \in D$ such that $uv \in E(G)$ and $|deg(u) - deg(v)| \leq 1$ and a Smarandachely equitable dominating set if for every $v \in V - D$ there exists a vertex $u \in D$ such that $uv \in E(G)$ and $|deg(u) - deg(v)| \leq 2$. Further, a vertex $u \in V$ is said to be degree equitable with a vertex $v \in V$ if $|deg(u) - deg(v)| \leq 1$ and Smarandachely degree equitable if $|deg(u) - deg(v)| \geq 1$.

In [1], Dharmalingam introduced a new class of intersection graphs in the field of domination theory. The equitable associate graphs is denoted by $\mathcal{E}(G)$ is the graph which has the same vertex set as G with two vertices u and v are adjacent if and only if u and v are adjacent and degree equitable in G.

Motivated by the existing definition of complement of an n-sigraph, we extend the notion of equitable associate graphs to n-sigraphs as follows:

The equitable associate n-sigraph $\mathcal{E}(S_n)$ of an n-sigraph $S_n = (G, \sigma)$ is an n-sigraph whose underlying graph is $\mathcal{E}(G)$ and the n-tuple of any edge uv is $\mathcal{E}(S_n)$ is $\mu(u)\mu(v)$, where μ is the canonical n-marking of S_n . Further, an n-sigraph $S_n = (G, \sigma)$ is called equitable associate n-sigraph, if $S_n \cong \mathcal{E}_t(S'_n)$ for some n-sigraph S'_n . The following result indicates the limitations of the notion $\mathcal{E}(S_n)$ as introduced above, since the entire class of *i*-unbalanced n-sigraphs is forbidden to be equitable associate n-sigraphs.

Theorem 2.1 For any n-sigraph $S_n = (G, \sigma)$, its equitable associate n-sigraph $\mathcal{E}(S_n)$ is ibalanced.

Proof Since the *n*-tuple of any edge uv in $\mathcal{E}(S_n)$ is $\mu(u)\mu(v)$, where μ is the canonical *n*-marking of S_n , by Theorem 1.1, $\mathcal{E}(S_n)$ is *i*-balanced.

For any positive integer k, the k^{th} iterated equitable associate n-sigraph $\mathcal{E}(S_n)$ of S_n is defined as follows:

$$(\mathcal{E})^0(S_n) = S_n, \quad (\mathcal{E})^k(S_n) = \mathcal{E}((\mathcal{E})^{k-1}(S_n)).$$

Corollary 2.2 For any n-sigraph $S_n = (G, \sigma)$ and any positive integer k, $(\mathcal{E})^k(S_n)$ is i-balanced.

The following result characterize n-sigraphs which are equitable associate n-sigraphs.

Theorem 2.3 An n-sigraph $S_n = (G, \sigma)$ is an equitable associate n-sigraph if, and only if, S_n is i-balanced n-sigraph and its underlying graph G is an equitable associate graph.

Proof Suppose that S_n is *i*-balanced and G is a $\mathcal{E}(G)$. Then there exists a graph H such that $\mathcal{E}(H) \cong G$. Since S_n is *i*-balanced, by Theorem 1.3, there exists an *n*-marking μ of G such that each edge uv in S_n satisfies $\sigma(uv) = \mu(u)\mu(v)$. Now consider the *n*-sigraph $S'_n = (H, \sigma')$, where for any edge e in H, $\sigma'(e)$ is the *n*-marking of the corresponding vertex in G. Then clearly, $\mathcal{E}(S'_n) \cong S_n$. Hence S_n is an equitable associate *n*-sigraph.

Conversely, suppose that $S_n = (G, \sigma)$ is an equitable associate *n*-sigraph. Then there exists an *n*-sigraph $S'_n = (H, \sigma')$ such that $\mathcal{E}(S'_n) \cong S_n$. Hence G is the $\mathcal{E}(G)$ of H and by Theorem 2.1, S_n is *i*-balanced.

In [1], the author characterized graphs for which $\overline{\mathcal{E}(G)} \cong \mathcal{E}(\overline{G})$.

Theorem 2.4 (K. M. Dharmalingam [1]) For any graph G = (V, E), $\overline{\mathcal{E}(G)} \cong \mathcal{E}(\overline{G})$ if and only if every edge of G is equitable.

We now characterize n-sigraphs whose complementary equitable associate n-sigraphs and equitable associate n-sigraphs are switching equivalent.

Theorem 2.5 For any n-sigraph $S_n = (G, \sigma)$, $\overline{\mathcal{E}(S_n)} \sim \mathcal{E}(\overline{S_n})$ if and only if every edge of G is equitable.

Proof Suppose $\overline{\mathcal{E}(S_n)} \sim \mathcal{E}(\overline{S_n})$. This implies, $\overline{\mathcal{E}(G)} \cong \mathcal{E}(\overline{G})$ and hence by Theorem 2.4, every edge of G is equitable.

Conversely, suppose that every edge of G is equitable. Then $\overline{\mathcal{E}(G)} \cong \mathcal{E}(\overline{G})$ by Theorem 2.4. Now, if S_n is an *n*-sigraph with each edge of G is equitable, by the definition of complementary *n*-sigraph and Theorem 2.1, $\overline{\mathcal{E}(S_n)}$ and $\mathcal{E}(\overline{S_n})$ are *i*-balanced and hence, the result follows from Theorem 1.4.

Theorem 2.6 For any two n-sigraphs S_n and S'_n with the same underlying graph, their equitable associate n-sigraphs are switching equivalent.

Proof Suppose $S_n = (G, \sigma)$ and $S'_n = (G', \sigma')$ be two *n*-sigraphs with $G \cong G'$. By Theorem 2.1, $\mathcal{E}(S_n)$ and $\mathcal{E}(S'_n)$ are *i*-balanced and hence, the result follows from Theorem 1.4. \Box

For any $m \in H_n$, the *m*-complement of $a = (a_1, a_2, \dots, a_n)$ is: $a^m = am$. For any $M \subseteq H_n$, and $m \in H_n$, the *m*-complement of M is $M^m = \{a^m : a \in M\}$.

For any $m \in H_n$, the *m*-complement of an *n*-sigraph $S_n = (G, \sigma)$, written (S_n^m) , is the same graph but with each edge label $a = (a_1, a_2, \dots, a_n)$ replaced by a^m .

For an *n*-sigraph $S_n = (G, \sigma)$, the $\mathcal{E}(S_n)$ is *i*-balanced. We now examine, the condition under which *m*-complement of $\mathcal{E}(S_n)$ is *i*-balanced, where for any $m \in H_n$.

Theorem 2.7 Let $S_n = (G, \sigma)$ be an n-sigraph. Then, for any $m \in H_n$, if $\mathcal{E}(G)$ is bipartite then $(\mathcal{E}(S_n))^m$ is i-balanced.

Proof Since, by Theorem 2.1, $\mathcal{E}(S_n)$ is *i*-balanced, for each $k, 1 \leq k \leq n$, the number of *n*-tuples on any cycle C in $\mathcal{E}(S_n)$ whose k^{th} co-ordinate are - is even. Also, since $\mathcal{E}(G)$ is bipartite, all cycles have even length; thus, for each $k, 1 \leq k \leq n$, the number of *n*-tuples on any cycle C in $\mathcal{E}(S_n)$ whose k^{th} co-ordinate are + is also even. This implies that the same thing is true in any *m*-complement, where for any $m, \in H_n$. Hence $(\mathcal{E}(S_n))^t$ is *i*-balanced. \Box

Notice that Theorem 2.6 provides an easy solutions to other n-sigraph switching equivalence relations, which are given in the following results.

Corollary 2.8 For any two n-sigraphs S_n and S'_n with the same underlying graph, $\mathcal{E}(S_n)$ and $\mathcal{E}((S'_n)^m)$ are switching equivalent.

Corollary 2.9 For any two n-sigraphs S_n and S'_n with the same underlying graph, $\mathcal{E}((S_n)^m)$ and $\mathcal{E}(S'_n)$ are switching equivalent.

Corollary 2.10 For any two n-sigraphs S_n and S'_n with the same underlying graph, $\mathcal{E}((S_n)^m)$ and $\mathcal{E}((S'_n)^m)$ are switching equivalent.

Corollary 2.11 For any two n-sigraphs $S_n = (G, \sigma)$ and $S'_n = (G', \sigma')$ with the $G \cong G'$ and G, G' are bipartite, $(\mathcal{E}(S_n))^m$ and $\mathcal{E}(S'_n)$ are switching equivalent.

Corollary 2.12 For any two n-sigraphs $S_n = (G, \sigma)$ and $S'_n = (G', \sigma')$ with the $G \cong G'$ and G, G' are bipartite, $\mathcal{E}(S_n)$ and $(\mathcal{E}(S'_n))^m$ are switching equivalent.

Corollary 2.13 For any two n-sigraphs $S_n = (G, \sigma)$ and $S'_n = (G', \sigma')$ with the $G \cong G'$ and G, G' are bipartite, $(\mathcal{E}(S_1))^m$ and $(\mathcal{E}(S_2))^m$ are switching equivalent.

Corollary 2.14 For any n-sigraph $S_n = (G, \sigma)$, $S_n \sim \mathcal{E}((S_n)^m)$ if and only if G is K_n and S_n is i-balanced.

Acknowledgements

The authors would like to thank the referees for their invaluable comments and suggestions which led to the improvement of the manuscript.

References

- K. M. Dharmalingam, Equitable associate graph of a graph, Bull. Int. Math. Virtual Inst., 2(1) (2012), 109-116.
- [2] F. Harary, Graph Theory, Addison-Wesley Publishing Co., 1969.
- [3] V. Lokesha, P.S.K.Reddy and S. Vijay, The triangular line n-sigraph of a symmetric nsigraph, Advn. Stud. Contemp. Math., 19(1) (2009), 123-129.
- [4] R. Rangarajan and P.S.K.Reddy, Notions of balance in symmetric n-sigraphs, Proceedings of the Jangjeon Math. Soc., 11(2) (2008), 145-151.
- [5] R. Rangarajan, P.S.K.Reddy and M. S. Subramanya, Switching Equivalence in Symmetric

n-Sigraphs, Adv. Stud. Comtemp. Math., 18(1) (2009), 79-85.

- [6] R. Rangarajan, P.S.K.Reddy and N. D. Soner, Switching equivalence in symmetric nsigraphs-II, J. Orissa Math. Sco., 28 (1 & 2) (2009), 1-12.
- [7] R. Rangarajan, P.S.K.Reddy and N. D. Soner, mth Power Symmetric n-Sigraphs, Italian Journal of Pure & Applied Mathematics, 29(2012), 87-92.
- [8] E. Sampathkumar, P.S.K.Reddy, and M. S. Subramanya, Jump symmetric n-sigraph, Proceedings of the Jangjeon Math. Soc., 11(1) (2008), 89-95.
- [9] E. Sampathkumar, P.S.K.Reddy, and M. S. Subramanya, The Line n-sigraph of a symmetric n-sigraph, Southeast Asian Bull. Math., 34(5) (2010), 953-958.
- [10] P.S.K.Reddy and B. Prashanth, Switching equivalence in symmetric n-sigraphs-I, Advances and Applications in Discrete Mathematics, 4(1) (2009), 25-32.
- [11] P.S.K.Reddy, S. Vijay and B. Prashanth, The edge C₄ n-sigraph of a symmetric n-sigraph, Int. Journal of Math. Sci. & Engg. Appl., 3(2) (2009), 21-27.
- [12] P.S.K.Reddy, V. Lokesha and Gurunath Rao Vaidya, The Line n-sigraph of a symmetric n-sigraph-II, Proceedings of the Jangjeon Math. Soc., 13(3) (2010), 305-312.
- [13] P.S.K.Reddy, V. Lokesha and Gurunath Rao Vaidya, The Line n-sigraph of a symmetric n-sigraph-III, Int. J. Open Problems in Computer Science and Mathematics, 3(5) (2010), 172-178.
- [14] P.S.K.Reddy, V. Lokesha and Gurunath Rao Vaidya, Switching equivalence in symmetric n-sigraphs-III, Int. Journal of Math. Sci. & Engg. Appls., 5(1) (2011), 95-101.
- [15] P.S.K.Reddy, B. Prashanth and Kavita. S. Permi, A Note on Switching in Symmetric n-Sigraphs, Notes on Number Theory and Discrete Mathematics, 17(3) (2011), 22-25.
- [16] P.S.K.Reddy, M. C. Geetha and K. R. Rajanna, Switching Equivalence in Symmetric n-Sigraphs-IV, Scientia Magna, 7(3) (2011), 34-38.
- [17] P.S.K.Reddy, K. M. Nagaraja and M. C. Geetha, The Line n-sigraph of a symmetric nsigraph-IV, International J. Math. Combin., 1 (2012), 106-112.
- [18] P.S.K.Reddy, M. C. Geetha and K. R. Rajanna, Switching equivalence in symmetric nsigraphs-V, International J. Math. Combin., 3 (2012), 58-63.
- [19] P.S.K.Reddy, K. M. Nagaraja and M. C. Geetha, The Line n-sigraph of a symmetric nsigraph-V, Kyungpook Mathematical Journal, 54(1) (2014), 95-101.
- [20] P.S.K.Reddy, R. Rajendra and M. C. Geetha, Boundary n-Signed Graphs, Int. Journal of Math. Sci. & Engg. Appls., 10(2) (2016), 161-168.
- [21] V. Swaminathan and K. M. Dharmalingam, Degree equitable domination on graphs, Kragujevac J. Math., 35 (1)(2011), 191-197.