On Equitable Associate Symmetric n-Sigraphs

K. M. Manjula
(Department of Mathematics, Government First Grade College, Channarayapatna-573 116, India)
C. N. Harshavardhana
(Department of Mathematics, Government First Grade College for Women, Holenarasipura-573 211, India)
S. Vijay
(Department of Mathematics, Government Science College, Hassan-573 201, India)
E-mail: manjula.km.gowda@gmail.com, cnhmaths@gmail.com, vijayshivanna82@gmail.com

Abstract

In this paper we introduced a new notion equitable associate symmetric n sigraph of a symmetric n-sigraph and its properties are obtained. Further, we discuss structural characterization of equitable associate symmetric n-sigraphs.

Key Words: Symmetric n-sigraphs, Smarandachely symmetric n-marked graph, symmetric n-marked graphs, Smarandachely symmetric n-marked graph, balance, switching, equitable associate n-sigraphs, Smarandachely equitable dominating set, complementation.
AMS(2010): 05C22.

§1. Introduction

Unless mentioned or defined otherwise, for all terminology and notion in graph theory the reader is refer to [2]. We consider only finite, simple graphs free from self-loops.

Let $n \geq 1$ be an integer. An n-tuple $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ is symmetric, if $a_{k}=a_{n-k+1}, 1 \leq$ $k \leq n$. Let $H_{n}=\left\{\left(a_{1}, a_{2}, \cdots, a_{n}\right): a_{k} \in\{+,-\}, a_{k}=a_{n-k+1}, 1 \leq k \leq n\right\}$ be the set of all symmetric n-tuples. Note that H_{n} is a group under coordinate wise multiplication, and the order of H_{n} is 2^{m}, where $m=\left\lceil\frac{n}{2}\right\rceil$.

A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair $S_{n}=(G, \sigma)\left(S_{n}=\right.$ (G, μ)), where $G=(V, E)$ is a graph called the underlying graph of S_{n} and $\sigma: E \rightarrow H_{n}$ $\left(\mu: V \rightarrow H_{n}\right)$ is a function. Generally, a Smarandachely symmetric n-sigraph (Smarandachely symmetric n-marked graph) for a subgraph H is such a graph that $G-E(H)$ is symmetric n sigraph (symmetric n-marked graph). For example, let H be a path $P_{2} \succ G$ or a cycle $C_{3} \prec G$. Certainly, if $H=\emptyset$, a Smarandachely symmetric n-sigraph (or Smarandachely symmetric n sigraph) is nothing else but a symmetric n-sigraph (or symmetric n-marked graph).

In this paper by an n-tuple/n-sigraph/ n-marked graph we always mean a symmetric n tuple/symmetric n-sigraph/symmetric n-marked graph.

[^0]An n-tuple $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ is the identity n-tuple, if $a_{k}=+$, for $1 \leq k \leq n$, otherwise it is a non-identity n-tuple. In an n-sigraph $S_{n}=(G, \sigma)$ an edge labelled with the identity n-tuple is called an identity edge, otherwise it is a non-identity edge. Further, in an n-sigraph $S_{n}=(G, \sigma)$, for any $A \subseteq E(G)$ the n-tuple $\sigma(A)$ is the product of the n-tuples on the edges of A.

In [2], the authors defined two notions of balance in n-sigraph $S_{n}=(G, \sigma)$ as follows (See also R. Rangarajan and P.S.K.Reddy [4]):

Definition 1.1 Let $S_{n}=(G, \sigma)$ be an n-sigraph. Then,
(i) S_{n} is identity balanced (or i-balanced), if product of n-tuples on each cycle of S_{n} is the identity n-tuple, and
(ii) S_{n} is balanced, if every cycle in S_{n} contains an even number of non-identity edges.

Observation 1.2 An i-balanced n-sigraph need not be balanced and conversely.
The following characterization of i-balanced n-sigraphs is obtained in [8].
Theorem 1.3 (E. Sampathkumar et al. [8]) An n-sigraph $S_{n}=(G, \sigma)$ is i-balanced if, and only if, it is possible to assign n-tuples to its vertices such that the n-tuple of each edge uv is equal to the product of the n-tuples of u and v.

Let $S_{n}=(G, \sigma)$ be an n-sigraph. Consider the n-marking μ on vertices of S_{n} defined as follows: each vertex $v \in V, \mu(v)$ is the n-tuple which is the product of the n-tuples on the edges incident with v. Complement of S_{n} is an n-sigraph $\overline{S_{n}}=\left(\bar{G}, \sigma^{c}\right)$, where for any edge $e=u v \in \bar{G}, \sigma^{c}(u v)=\mu(u) \mu(v)$. Clearly, $\overline{S_{n}}$ as defined here is an i-balanced n-sigraph due to Proposition 1 in [10].

In [8], the authors also have defined switching and cycle isomorphism of an n-sigraph $S_{n}=(G, \sigma)$ as follows (See also [3, 5-7, 10-20]):

Let $S_{n}=(G, \sigma)$ and $S_{n}^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$, be two n-sigraphs. Then S_{n} and S_{n}^{\prime} are said to be isomorphic, if there exists an isomorphism $\phi: G \rightarrow G^{\prime}$ such that if $u v$ is an edge in S_{n} with label $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ then $\phi(u) \phi(v)$ is an edge in S_{n}^{\prime} with label $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$.

Given an n-marking μ of an n-sigraph $S_{n}=(G, \sigma)$, switching S_{n} with respect to μ is the operation of changing the n-tuple of every edge $u v$ of S_{n} by $\mu(u) \sigma(u v) \mu(v)$. The n-sigraph obtained in this way is denoted by $\mathcal{S}_{\mu}\left(S_{n}\right)$ and is called the μ-switched n-sigraph or just switched n-sigraph. Further, an n-sigraph S_{n} switches to n-sigraph S_{n}^{\prime} (or that they are switching equivalent to each other), written as $S_{n} \sim S_{n}^{\prime}$, whenever there exists an n-marking of S_{n} such that $\mathcal{S}_{\mu}\left(S_{n}\right) \cong S_{n}^{\prime}$.

Two n-sigraphs $S_{n}=(G, \sigma)$ and $S_{n}^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$ are said to be cycle isomorphic, if there exists an isomorphism $\phi: G \rightarrow G^{\prime}$ such that the n-tuple $\sigma(C)$ of every cycle C in S_{n} equals to the n-tuple $\sigma(\phi(C))$ in S_{n}^{\prime}.

We make use of the following known result (see [8]).
Theorem 1.4 (E. Sampathkumar et al. [8]) Given a graph G, any two n-sigraphs with G as underlying graph are switching equivalent if, and only if, they are cycle isomorphic.

Let $S_{n}=(G, \sigma)$ be an n-sigraph. Consider the n-marking μ on vertices of S defined as follows: each vertex $v \in V, \mu(v)$ is the product of the n-tuples on the edges incident at v. Complement of S is an n-sigraph $\overline{S_{n}}=\left(\bar{G}, \sigma^{\prime}\right)$, where for any edge $e=u v \in \bar{G}$, $\sigma^{\prime}(u v)=\mu(u) \mu(v)$. Clearly, $\overline{S_{n}}$ as defined here is an i-balanced n-sigraph due to Theorem 1.3.

§2. Equitable Associate n-Sigraph of an n-Sigraph

A subset D of $V(\Gamma)$ is called an equitable dominating set of a graph Γ, if for every $v \in V-D$ there exists a vertex $v \in D$ such that $u v \in E(\Gamma)$ and $|d(u)-d(v)| \leq 1$. The minimum cardinality of such a dominating set is denoted by γ_{e} and is called equitable domination number of Γ. A vertex $u \in V$ is said to be degree equitable with a vertex $v \in V$ if $|\operatorname{deg}(u)-\operatorname{deg}(v)| \leq 1$ (see [21]) and to be Smarandachely degree equitable if $|\operatorname{deg}(u)-\operatorname{deg}(v)| \geq 2$.

Generally, a subset D of V is called an equitable dominating set if for every $v \in V-D$ there exists a vertex $u \in D$ such that $u v \in E(G)$ and $|\operatorname{deg}(u)-\operatorname{deg}(v)| \leq 1$ and a Smarandachely equitable dominating set if for every $v \in V-D$ there exists a vertex $u \in D$ such that $u v \in E(G)$ and $|\operatorname{deg}(u)-\operatorname{deg}(v)| \geq 2$. Further, a vertex $u \in V$ is said to be degree equitable with a vertex $v \in V$ if $|\operatorname{deg}(u)-\operatorname{deg}(v)| \leq 1$ and Smarandachely degree equitable if $|\operatorname{deg}(u)-\operatorname{deg}(v)| \geq 1$.

In [1], Dharmalingam introduced a new class of intersection graphs in the field of domination theory. The equitable associate graphs is denoted by $\mathcal{E}(G)$ is the graph which has the same vertex set as G with two vertices u and v are adjacent if and only if u and v are adjacent and degree equitable in G.

Motivated by the existing definition of complement of an n-sigraph, we extend the notion of equitable associate graphs to n-sigraphs as follows:

The equitable associate n-sigraph $\mathcal{E}\left(S_{n}\right)$ of an n-sigraph $S_{n}=(G, \sigma)$ is an n-sigraph whose underlying graph is $\mathcal{E}(G)$ and the n-tuple of any edge $u v$ is $\mathcal{E}\left(S_{n}\right)$ is $\mu(u) \mu(v)$, where μ is the canonical n-marking of S_{n}. Further, an n-sigraph $S_{n}=(G, \sigma)$ is called equitable associate n-sigraph, if $S_{n} \cong \mathcal{E}_{t}\left(S_{n}^{\prime}\right)$ for some n-sigraph S_{n}^{\prime}. The following result indicates the limitations of the notion $\mathcal{E}\left(S_{n}\right)$ as introduced above, since the entire class of i-unbalanced n-sigraphs is forbidden to be equitable associate n-sigraphs.

Theorem 2.1 For any n-sigraph $S_{n}=(G, \sigma)$, its equitable associate n-sigraph $\mathcal{E}\left(S_{n}\right)$ is i balanced.

Proof Since the n-tuple of any edge $u v$ in $\mathcal{E}\left(S_{n}\right)$ is $\mu(u) \mu(v)$, where μ is the canonical n-marking of S_{n}, by Theorem 1.1, $\mathcal{E}\left(S_{n}\right)$ is i-balanced.

For any positive integer k, the $k^{\text {th }}$ iterated equitable associate n-sigraph $\mathcal{E}\left(S_{n}\right)$ of S_{n} is defined as follows:

$$
(\mathcal{E})^{0}\left(S_{n}\right)=S_{n}, \quad(\mathcal{E})^{k}\left(S_{n}\right)=\mathcal{E}\left((\mathcal{E})^{k-1}\left(S_{n}\right)\right)
$$

Corollary 2.2 For any n-sigraph $S_{n}=(G, \sigma)$ and any positive integer $k,(\mathcal{E})^{k}\left(S_{n}\right)$ is i-balanced.
The following result characterize n-sigraphs which are equitable associate n-sigraphs.

Theorem 2.3 An n-sigraph $S_{n}=(G, \sigma)$ is an equitable associate n-sigraph if, and only if, S_{n} is i-balanced n-sigraph and its underlying graph G is an equitable associate graph.

Proof Suppose that S_{n} is i-balanced and G is a $\mathcal{E}(G)$. Then there exists a graph H such that $\mathcal{E}(H) \cong G$. Since S_{n} is i-balanced, by Theorem 1.3, there exists an n-marking μ of G such that each edge $u v$ in S_{n} satisfies $\sigma(u v)=\mu(u) \mu(v)$. Now consider the n-sigraph $S_{n}^{\prime}=\left(H, \sigma^{\prime}\right)$, where for any edge e in $H, \sigma^{\prime}(e)$ is the n-marking of the corresponding vertex in G. Then clearly, $\mathcal{E}\left(S_{n}^{\prime}\right) \cong S_{n}$. Hence S_{n} is an equitable associate n-sigraph.

Conversely, suppose that $S_{n}=(G, \sigma)$ is an equitable associate n-sigraph. Then there exists an n-sigraph $S_{n}^{\prime}=\left(H, \sigma^{\prime}\right)$ such that $\mathcal{E}\left(S_{n}^{\prime}\right) \cong S_{n}$. Hence G is the $\mathcal{E}(G)$ of H and by Theorem 2.1, S_{n} is i-balanced.

In [1], the author characterized graphs for which $\overline{\mathcal{E}(G)} \cong \mathcal{E}(\bar{G})$.
Theorem 2.4 (K. M. Dharmalingam [1]) For any graph $G=(V, E), \overline{\mathcal{E}(G)} \cong \mathcal{E}(\bar{G})$ if and only if every edge of G is equitable.

We now characterize n-sigraphs whose complementary equitable associate n-sigraphs and equitable associate n-sigraphs are switching equivalent.

Theorem 2.5 For any n-sigraph $S_{n}=(G, \sigma), \overline{\mathcal{E}\left(S_{n}\right)} \sim \mathcal{E}\left(\overline{S_{n}}\right)$ if and only if every edge of G is equitable.

Proof Suppose $\overline{\mathcal{E}\left(S_{n}\right)} \sim \mathcal{E}\left(\overline{S_{n}}\right)$. This implies, $\overline{\mathcal{E}(G)} \cong \mathcal{E}(\bar{G})$ and hence by Theorem 2.4, every edge of G is equitable.

Conversely, suppose that every edge of G is equitable. Then $\overline{\mathcal{E}(G)} \cong \mathcal{E}(\bar{G})$ by Theorem 2.4. Now, if S_{n} is an n-sigraph with each edge of G is equitable, by the definition of complementary n-sigraph and Theorem 2.1, $\overline{\mathcal{E}\left(S_{n}\right)}$ and $\mathcal{E}\left(\overline{S_{n}}\right)$ are i-balanced and hence, the result follows from Theorem 1.4.

Theorem 2.6 For any two n-sigraphs S_{n} and S_{n}^{\prime} with the same underlying graph, their equitable associate n-sigraphs are switching equivalent.

Proof Suppose $S_{n}=(G, \sigma)$ and $S_{n}^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$ be two n-sigraphs with $G \cong G^{\prime}$. By Theorem 2.1, $\mathcal{E}\left(S_{n}\right)$ and $\mathcal{E}\left(S_{n}^{\prime}\right)$ are i-balanced and hence, the result follows from Theorem 1.4.

For any $m \in H_{n}$, the m-complement of $a=\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ is: $a^{m}=a m$. For any $M \subseteq H_{n}$, and $m \in H_{n}$, the m-complement of M is $M^{m}=\left\{a^{m}: a \in M\right\}$.

For any $m \in H_{n}$, the m-complement of an n-sigraph $S_{n}=(G, \sigma)$, written $\left(S_{n}^{m}\right)$, is the same graph but with each edge label $a=\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ replaced by a^{m}.

For an n-sigraph $S_{n}=(G, \sigma)$, the $\mathcal{E}\left(S_{n}\right)$ is i-balanced. We now examine, the condition under which m-complement of $\mathcal{E}\left(S_{n}\right)$ is i-balanced, where for any $m \in H_{n}$.

Theorem 2.7 Let $S_{n}=(G, \sigma)$ be an n-sigraph. Then, for any $m \in H_{n}$, if $\mathcal{E}(G)$ is bipartite then $\left(\mathcal{E}\left(S_{n}\right)\right)^{m}$ is i-balanced.

Proof Since, by Theorem 2.1, $\mathcal{E}\left(S_{n}\right)$ is i-balanced, for each $k, 1 \leq k \leq n$, the number of n-tuples on any cycle C in $\mathcal{E}\left(S_{n}\right)$ whose $k^{\text {th }}$ co-ordinate are - is even. Also, since $\mathcal{E}(G)$ is bipartite, all cycles have even length; thus, for each $k, 1 \leq k \leq n$, the number of n-tuples on any cycle C in $\mathcal{E}\left(S_{n}\right)$ whose $k^{t h}$ co-ordinate are + is also even. This implies that the same thing is true in any m-complement, where for any $m, \in H_{n}$. Hence $\left(\mathcal{E}\left(S_{n}\right)\right)^{t}$ is i-balanced.

Notice that Theorem 2.6 provides an easy solutions to other n-sigraph switching equivalence relations, which are given in the following results.

Corollary 2.8 For any two n-sigraphs S_{n} and S_{n}^{\prime} with the same underlying graph, $\mathcal{E}\left(S_{n}\right)$ and $\mathcal{E}\left(\left(S_{n}^{\prime}\right)^{m}\right)$ are switching equivalent.

Corollary 2.9 For any two n-sigraphs S_{n} and S_{n}^{\prime} with the same underlying graph, $\mathcal{E}\left(\left(S_{n}\right)^{m}\right)$ and $\mathcal{E}\left(S_{n}^{\prime}\right)$ are switching equivalent.

Corollary 2.10 For any two n-sigraphs S_{n} and S_{n}^{\prime} with the same underlying graph, $\mathcal{E}\left(\left(S_{n}\right)^{m}\right)$ and $\mathcal{E}\left(\left(S_{n}^{\prime}\right)^{m}\right)$ are switching equivalent.

Corollary 2.11 For any two n-sigraphs $S_{n}=(G, \sigma)$ and $S_{n}^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$ with the $G \cong G^{\prime}$ and G, G^{\prime} are bipartite, $\left(\mathcal{E}\left(S_{n}\right)\right)^{m}$ and $\mathcal{E}\left(S_{n}^{\prime}\right)$ are switching equivalent.

Corollary 2.12 For any two n-sigraphs $S_{n}=(G, \sigma)$ and $S_{n}^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$ with the $G \cong G^{\prime}$ and G, G^{\prime} are bipartite, $\mathcal{E}\left(S_{n}\right)$ and $\left(\mathcal{E}\left(S_{n}^{\prime}\right)\right)^{m}$ are switching equivalent.

Corollary 2.13 For any two n-sigraphs $S_{n}=(G, \sigma)$ and $S_{n}^{\prime}=\left(G^{\prime}, \sigma^{\prime}\right)$ with the $G \cong G^{\prime}$ and G, G^{\prime} are bipartite, $\left(\mathcal{E}\left(S_{1}\right)\right)^{m}$ and $\left(\mathcal{E}\left(S_{2}\right)\right)^{m}$ are switching equivalent.

Corollary 2.14 For any n-sigraph $S_{n}=(G, \sigma), S_{n} \sim \mathcal{E}\left(\left(S_{n}\right)^{m}\right)$ if and only if G is K_{n} and S_{n} is i-balanced.

Acknowledgements

The authors would like to thank the referees for their invaluable comments and suggestions which led to the improvement of the manuscript.

References

[1] K. M. Dharmalingam, Equitable associate graph of a graph, Bull. Int. Math. Virtual Inst., 2(1) (2012), 109-116.
[2] F. Harary, Graph Theory, Addison-Wesley Publishing Co., 1969.
[3] V. Lokesha, P.S.K.Reddy and S. Vijay, The triangular line n-sigraph of a symmetric n sigraph, Advn. Stud. Contemp. Math., 19(1) (2009), 123-129.
[4] R. Rangarajan and P.S.K.Reddy, Notions of balance in symmetric n-sigraphs, Proceedings of the Jangjeon Math. Soc., 11(2) (2008), 145-151.
[5] R. Rangarajan, P.S.K.Reddy and M. S. Subramanya, Switching Equivalence in Symmetric
n-Sigraphs, Adv. Stud. Comtemp. Math., 18(1) (2009), 79-85.
[6] R. Rangarajan, P.S.K.Reddy and N. D. Soner, Switching equivalence in symmetric n -sigraphs-II, J. Orissa Math. Sco., 28 (1 \& 2) (2009), 1-12.
[7] R. Rangarajan, P.S.K.Reddy and N. D. Soner, $m^{\text {th }}$ Power Symmetric n-Sigraphs, Italian Journal of Pure ξ^{ξ} Applied Mathematics, 29(2012), 87-92.
[8] E. Sampathkumar, P.S.K.Reddy, and M. S. Subramanya, Jump symmetric n-sigraph, Proceedings of the Jangjeon Math. Soc., 11(1) (2008), 89-95.
[9] E. Sampathkumar, P.S.K.Reddy, and M. S. Subramanya, The Line n-sigraph of a symmetric n-sigraph, Southeast Asian Bull. Math., 34(5) (2010), 953-958.
[10] P.S.K.Reddy and B. Prashanth, Switching equivalence in symmetric n-sigraphs-I, Advances and Applications in Discrete Mathematics, 4(1) (2009), 25-32.
[11] P.S.K.Reddy, S. Vijay and B. Prashanth, The edge $C_{4} n$-sigraph of a symmetric n-sigraph, Int. Journal of Math. Sci. E Engg. Appls., 3(2) (2009), 21-27.
[12] P.S.K.Reddy, V. Lokesha and Gurunath Rao Vaidya, The Line n-sigraph of a symmetric n-sigraph-II, Proceedings of the Jangjeon Math. Soc., 13(3) (2010), 305-312.
[13] P.S.K.Reddy, V. Lokesha and Gurunath Rao Vaidya, The Line n-sigraph of a symmetric n-sigraph-III, Int. J. Open Problems in Computer Science and Mathematics, 3(5) (2010), 172-178.
[14] P.S.K.Reddy, V. Lokesha and Gurunath Rao Vaidya, Switching equivalence in symmetric n-sigraphs-III, Int. Journal of Math. Sci. E Engg. Appls., 5(1) (2011), 95-101.
[15] P.S.K.Reddy, B. Prashanth and Kavita. S. Permi, A Note on Switching in Symmetric n-Sigraphs, Notes on Number Theory and Discrete Mathematics, 17(3) (2011), 22-25.
[16] P.S.K.Reddy, M. C. Geetha and K. R. Rajanna, Switching Equivalence in Symmetric n -Sigraphs-IV, Scientia Magna, 7(3) (2011), 34-38.
[17] P.S.K.Reddy, K. M. Nagaraja and M. C. Geetha, The Line n-sigraph of a symmetric n -sigraph-IV, International J. Math. Combin., 1 (2012), 106-112.
[18] P.S.K.Reddy, M. C. Geetha and K. R. Rajanna, Switching equivalence in symmetric n -sigraphs-V, International J. Math. Combin., 3 (2012), 58-63.
[19] P.S.K.Reddy, K. M. Nagaraja and M. C. Geetha, The Line n-sigraph of a symmetric n -sigraph-V, Kyungpook Mathematical Journal, 54(1) (2014), 95-101.
[20] P.S.K.Reddy, R. Rajendra and M. C. Geetha, Boundary n-Signed Graphs, Int. Journal of Math. Sci. \& Engg. Appls., 10(2) (2016), 161-168.
[21] V. Swaminathan and K. M. Dharmalingam, Degree equitable domination on graphs, Kragujevac J. Math., 35 (1)(2011), 191-197.

[^0]: ${ }^{1}$ Received June 18, 2023, Accepted August 24, 2023.
 ${ }^{2}$ Corresponding author: cnhmaths@gmail.com

