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§1. Introduction

For standard terminology and notion in graph theory, we refer the reader to the text-book of

Harary [1]. The non-standard will be given in this paper as and when required.

To model individuals’ preferences towards each other in a group, Harary [2] introduced the
concept of signed graphs in 1953. A signed graph S = (G,o0) is a graph G = (V, E) whose
edges are labeled with positive and negative signs (i.e., o : E(G) — {4,—}). The vertices
of a graph represent people and an edge connecting two nodes signifies a relationship between
individuals. The signed graph captures the attitudes between people, where a positive (negative
edge) represents liking (disliking). An unsigned graph is a signed graph with the signs removed.
Similar to an unsigned graph, there are many active areas of research for signed graphs.

The sign of a cycle (this is the edge set of a simple cycle) is defined to be the product of the
signs of its edges; in other words, a cycle is positive if it contains an even number of negative
edges and negative if it contains an odd number of negative edges. A signed graph S is said
to be balanced if every cycle in it is positive. A signed graph S is called totally unbalanced if
every cycle in S is negative. Otherwise, such a signed graph G is Smarandachely, i.e., both of
the positive and negative cycles appeared in it. A chord is an edge joining two non adjacent

vertices in a cycle.

A marking of S is a function ¢ : V(G) — {+,—}. Given a signed graph S one can easily
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define a marking ¢ of S as follows: For any vertex v € V(5),

(= I o),

wveE(S)

the marking ¢ of S is called canonical marking of S. For more new notions on signed graphs
refer the papers (see [6, 8, 9, 13C17, 17C26)).

The following are the fundamental results about balance, the second being a more advanced
form of the first. Note that in a bipartition of a set, V = V; U V3, the disjoint subsets may be
empty.

Theorem 1.1 A signed graph S is balanced if and only if either of the following equivalent

conditions is satisfied:

(i) Its vertex set has a bipartition V = Vi1 UV, such that every positive edge joins vertices
in V1 orin Va, and every negative edge joins a vertex in Vi and a vertex in Vo (Harary [2]).

(ii) There exists a marking p of its vertices such that each edge uv in T' satisfies o(uv) =
C(u)¢(v). (Sampathkumar [10]).

A switching S with respect to a marking ( is the operation of changing the sign of every
edge of S to its opposite whenever its end vertices are of opposite signs.

Two signed graphs S; = (G1,01) and S = (G, 02) are said to be weakly isomorphic (see
[28]) or cycle isomorphic (see [29]) if there exists an isomorphism ¢ : G — G2 such that the
sign of every cycle Z in S; equals to the sign of ¢(Z) in Ss. The following result is well known
(see [29]):

Theorem 1.2(T. Zaslavsky, [29]) Given a graph G, any two signed graphs in (G), where
Y(G) denotes the set of all the signed graphs possible for a graph G, are switching equivalent if

and only if they are cycle isomorphic.

82. Full Block Signed Graph of a Signed Graph

The full block graph FB(G) of a graph G is the graph whose vertex set is the union of the set of
vertices, edges and blocks of G in which two vertices are adjacent if the corresponding vertices
and blocks of G are adjacent or the corresponding members of G are incident (See [5]).

Motivated by the existing definition of complement of a signed graph, we now extend the
notion of full block graphs to signed graphs as follows: The Full block signed graph FB(S) =
(FB(G),0’) of a signed graph S = (G, o) is a signed graph whose underlying graph is FB(G)
and sign of any edge wv is FB(S) is ((u)((v), where ( is the canonical marking of S. Further,
a signed graph S = (G, o) is called a full block signed graph, if S = FB(S’) for some signed
graph S’. The following result restricts the class of full line signed graphs.

Theorem 2.1 For any signed graph S = (G, o), its full block signed graph FB(S) is balanced.

Proof Since sign of any edge e = wv in FB(S) is ((u){(v), where ¢ is the canonical marking
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of S, by Theorem 1.1, FB(S) is balanced. O

For any positive integer k, the k" iterated full block signed graph, FB¥(S) of S is defined
as follows:

FB(S) =S, FB*(S)=FB(FB*1(9)).

Corollary 2.2 For any signed graph S = (G,0) and for any positive integer k, ]-'Bk(S) is
balanced.

Corollary 2.3 For any two signed graphs S1 and Sy with the same underlying graph, FB(S1) ~
FB(Ss).

The following result characterize signed graphs which are full line signed graphs.

Theorem 2.4 A signed graph S = (G,0) is a full block signed graph if, and only if, S is
balanced signed graph and its underlying graph G is a full block graph.

Proof Suppose that S is balanced and G is a full block graph. Then there exists a graph
G’ such that FB(G') =2 G. Since S is balanced, by Theorem 1.1, there exists a marking ¢
of G such that each edge uwv in S satisfies o(uv) = ((u){(v). Now consider the signed graph
S = (G',0'), where for any edge e in G, ¢'(e) is the marking of the corresponding vertex in
G. Then clearly, FB(S’) = S. Hence S is a full block signed graph.

Conversely, suppose that S = (G, o) is a full block signed graph. Then there exists a
signed graph S’ = (G’,0’) such that FB(S’) = S. Hence, G is the full block graph of G’ and
by Theorem 2.1, S is balanced. g

The notion of negation n(S) of a given signed graph S defined to be n(S) has the same
underlying graph as that of S with the sign of each edge opposite to that given to it in S in
[3]. However, this definition does not say anything about what to do with nonadjacent pairs of
vertices in S while applying the unary operator 7(.) of taking the negation of S.

For a signed graph S = (G, o), the FB(S) is balanced (Theorem 1.1). We now examine,
the conditions under which negation n(S) of FB(S) is balanced.

Proposition 2.5 Let S = (G,0) be a signed graph. If FB(G) is bipartite then n(FB(S)) is
balanced.

Proof Since, by Theorem 1.1, FB(S) is balanced, it follows that each cycle C in FLS(S)
contains even number of negative edges. Also, since FB(G) is bipartite, all cycles have even
length; thus, the number of positive edges on any cycle C in FB(S) is also even. Hence
n(FB(S)) is balanced. O

83. Switching Equivalence of Full Block Signed Graphs and Full Signed Graphs

In [27], we defined the full signed graph of a signed graph as follows: The full signed graph
FS(S) = (FG(G),o’) of a signed graph S = (G, o) is a signed graph whose underlying graph
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is FG(G) and sign of any edge uv is FS(S) is ¢(u)¢(v), where ( is the canonical marking of S.
Further, a signed graph S = (G, o) is called a full signed graph, if S = FS(S’) for some signed
graph S’. The following result restricts the class of full signed graphs.

Theorem 3.1(Swamy et al., [27]) For any signed graph S = (G, 0), its full signed graph FS(S)
is balanced.

In [5], the authors remarked that FB(G) and FG(G) are isomorphic if and only if G is a Ps.
We now give a characterization of signed graphs whose full block signed graphs are switching
equivalent to their full signed graphs.

Theorem 3.2 For any nontrivial connected signed graph S = (G, o), FB(S) ~ FS(S) if and
only if G is a Ps.

Proof Suppose FB(S) ~ FS(S). This implies, FB(G) = FG(G) and hence G is a Ps.

Conversely, suppose that G is a P,. Then FB(G) = FG(G). Now, if S any signed graph
with G is a Py, By Theorem 2.1 and 3.1, FB(S) and FS(S) are balanced and hence, the result
follows from Theorem 1.2. This completes the proof. O

84. Switching Equivalence of Full Block Signed Graphs and Full Line Signed Graphs

In [27], we defined the full line signed graph of a signed graph as follows: The full line signed
graph FLS(S) = (FLG(G),c’) of a signed graph S = (G, o) is a signed graph whose underlying
graph is FLG(G) and sign of any edge uwv is FLS(S) is ((u)((v), where ¢ is the canonical
marking of S. Further, a signed graph S = (G, o) is called a full line signed graph, if S =
FLS(S") for some signed graph S’. The following result restricts the class of full line signed
graphs.

Theorem 4.1(Swamy et al., [27]) For any signed graph S = (G, ), its full line signed graph
FLS(S) is balanced.

In [5], the authors remarked that FB(G) and FLG(G) are isomorphic if and only if G is
a tree. We now give a characterization of signed graphs whose full block signed graphs are

switching equivalent to their full line signed graphs.

Theorem 4.2 For any nontrivial connected signed graph S = (G, o), FB(S) ~ FLS(S) if and
only if G is a Ps.

Proof Suppose FB(S) ~ FLS(S). This implies, FB(G) = FLG(G) and hence G is a tree.
Conversely, suppose that G is a tree. Then FB(G) = FLG(G). Now, if S any signed graph
with G is a tree, By Theorem 2.1 and 4.1, FB(S) and FLS(S) are balanced and hence, the

result follows from Theorem 1.2. This completes the proof. O

In view of the negation operator introduced by Harary [3], we have the following cycle

isomorphic characterizations.
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Corollary 4.3 For any two signed graphs S1 = (G1,0) and Sy = (Ga,0), n(FB(S1)) ~
n(FB(S2)), if G1 and Gy are isomorphic.

Corollary 4.4 For any two signed graphs S; = (G1,0) and Sy = (Ga,0), FB(n(S1)) and
FB(n(S2)) are cycle isomorphic, if G1 and Ga are isomorphic.

Corollary 4.5 For any connected signed graph S = (G,0), FB(n(S)) ~ FS(S) if and only if
Gisabs.

Corollary 4.6 For any connected signed graph S = (G,0), FB(S) ~ FS(n(S)) if and only if
Gisabs.

Corollary 4.7 For any connected signed graph S = (G,0), FB(n(S)) ~ FS(n(S)) if and only
if G is a Ps.

Corollary 4.8 For any connected signed graph S = (G,0), FB(n(S)) ~ FLS(S) if and only
if G is a tree.

Corollary 4.9 For any connected signed graph S = (G,0), FB(S) ~ FLS(n(S)) if and only
if G is a tree.

Corollary 4.10 For any connected signed graph S = (G,0), FB(n(S)) ~ FLS(n(S)) if and
only if G is a tree.
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