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§1. Introduction

Berwald introduced a connection coefficient Cijk(x, ẋ) defined by

Cijk(x, ẋ)
def
=

∂2Gi

∂xj∂xk
(1.1)

and accordingly the covariant derivative of an arbitrary covariant vector i X in the sense of

Berwald is given by Rund [4]

Xi
(j) =

∂Xi

∂xj
− ∂Xi

∂ẋh
∂Gh

∂ẋj
+GijhX

h. (1.2)

The functions Gi appearing in (1.2) are positively homogeneous of degree two in its direc-

tional arguments ẋj and satisfies the following identities

Gihkrẋ
r = Gihkrẋ

k = Gikkrẋ
h, Gihkẋ

h = 0 and Gikẋ
k = 2Gi. (1.3)

The geodesic deviation has been defined in the following form

∂2Zj

∂u2
+Hj

k(x, ẋ)xk = 0, (1.4)

where the vector Zi is called the variation vector and the tensor Hi
k(x, ẋ) is being defined by

Hjik = 2∂kG
i − ∂h∂̇kGiẋh + 2GiklG

l − ∂̇lGi∂̇kGl. (1.5)
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The tensors defined by

Hi
jk(x, ẋ) =

1

3

(
∂Hi

k

∂ẋj
−
∂Hi

j

∂ẋk

)
and Hi

jkl =
∂Hi

jl

∂ẋk
(1.6)

are respectively termed as Berwalds deviation tensor and Berwalds curvature tensor and they

satisfy the following

Hk
khj = Hjh −Hhj , Hiẋ

i = (n− 1)H, Hj
kiẋ

k = Hj
i = Hj

ikẋ
k. (1.7)

The projective covariant derivative of an arbitrary tensor T ij (x, ẋ) is given by Misra [2] as

T ij((k)) = ∂kT
i
j − ∂̇sT sj Πi

rkẋ
r + Thj Πi

hk − T ihΠh
jk, (1.8)

where

Πi
jk(x, ẋ)

def
= Gijk −

1

n+ 1

(
2δi(jG

r
<r>k) + ẋiGirkg

)
(1.9)

are called projective connection coefficient and these coefficients are symmetric in its lower

indices. Involving the projective covariant derivative ,we have the following commutation for-

mulae

∂h

(
T ij((k))

)
−
(
∂hT

i
j

)
((k))

= T sj Πi
shk − T isΠs

jhk,

2T i[((h))((k))] = −∂̇rT ijQrshkẋs + T sjQ
i
shk − T isQsjhk. (1.10)

where,

Qihjk
def
= 2

{
∂[kΠi

j]h −Πi
rh[jΠ

r
k] + Πr

h[jΠ
i
k]r

}
. (1.11)

is called the projective entity and satisfies the following relations

Qihjk +Qijkh +Qikhj = 0,

Qihjk((s)) +Qihks((j)) +Qihsj((k)) = 0,

Qiijk = Qjk, Qijk =
2

3
∂̇[jQk]i ,

Qihjk = ∂̇hQ
i
jk, Qiijk = Qijk, Qikẋk = 0,

Qijk = −Qikj and Qihkẋ
h = Qik. (1.12)

The projective connection coefficient Πi
jk(x, ẋ) satisfies the following relations

Πi
hkr − ∂̇hΠi

kr, Πi
hk = ∂̇hΠi

k,

Πi
hkrẋ

h = 0 and Πi
hkẋ

h = Πi
k. (1.13)
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§2. NonCAffine Infinitesimal Projective Transformation

In view of the Berwalds covariant derivative [4], the Lie-derivative of a tensor field T ij (x, ẋ) and

the connection parameter Gijk(x, ẋ) are given as under [7] following

LνT ij (x, ẋ) = T ij(h)ν
h +

(
∂̇hT

i
j

)
νh(s)ẋ

s + T ihν
h
(j), (2.1)

LνGijk(x, ẋ) = νi(j)(k)H
i
jkhν

h +Gisjkv
s
(r)ẋ

r. (2.2)

where Hi
jkh(x, ẋ) has been defined by (1.6).

We also have the following communication formula from [7]

∂̇l
(
LνT ij

)
− Lν

(
∂̇lT

i
j

)
= 0, (2.3)

LνT ij(k) −
(
LνT ij

)
(k)

= T ijLνGikh −
(
∂̇hT

i
j

)
LνGhksẋs, (2.4)(

LνGijh
)
(k)
−
(
LνGikj

)
(j)

= LνHi
hjk + (LνGrkl)Girjhẋl −

(
LνGrjl

)
Girkhẋ

l. (2.5)

Now, we give the following definitions which will be used in the later discussions.

Definition 2.1 A Finsler space Fn is said to admit an affine motion [3] provided there exists

a vector vi(x) such that

(L)νG
i
jk(x, ẋ) = 0. (2.6)

Definition 2.2 A Finsler space is said to be symmetric [1] if the Berwalds curvature tensor

field Hi
hjk(x, ẋ) satisfies the relation

Hi
hjk(m) = 0 (2.7)

The following relations also hold good in such a symmetric Finsler space

Hi
jk(m) = 0, Hi

j(m) = 0 and H(m) = 0. (2.8)

We now consider an infinitesimal point transformation

xi = xi + vi(x)dt (2.9)

where, vi(x) stands for a non-zero contravariant vector field defined over the domain of the

space and dt is an infinitesimal point constant. If such a transformation transforms the system

of geodesics into the same system then such a transformation in Fn is termed as infinitesimal

projective transformation. It has been mentioned in [3] that the necessary and sufficient con-

dition in order that the infinitesimal point transformation given by (2.9) be an infinitesimal

projective transformation is given by the following equation

LρGijk = G
i

jk −Gijk = δikpk + δikpj − gjkgildl, (2.10)
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where, pk(x, ẋ) and dl(x, ẋ) are covariant vectors and satisfy the following identities

∂̇jp = pj , phk = ∂̇h∂̇kp, phkẋ
h = pk,

phkẋ
hẋk = p, ∂̇jd = dj , dhk = ∂̇h∂̇kd,

dhkẋ
h = dk and dhkẋ

hẋk = d, (2.11)

Keeping in mind the formula (2.5), the Lie-derivative of Hi
hjk can be expressed in the

following form

LρHi
hjk =

(
LρGijh

)
(k)
−
(
LρGikh

)
(j)

+ (LρGril) ẋlGirhk. (2.12)

Using (2.10) and (1.3) in (2.12), we get

LρHi
hjk = δijph(k) − δikph(j) + δihpj(k) − δihpk(j) − gjhgildl(k) + gkhg

ildl(j)

+gklg
rmGirjhdmẋ

l − gijgrmGirkhdmẋl. (2.13)

We multiply (2.13) by ẋhẋj and thereafter note (2.11) and the homogeneity property of

Hi
hjk(x, ẋ) and get

LρHi
k = 2ẋip(k) − δikp(j)ẋj − ẋipk(j)ẋj − gjhgildl(k)ẋhẋj + gkhg

ildl(j)ẋ
hẋj . (2.14)

Now, allow a contraction in (2.14) with respect to the indices i, k and thereafter use

equations (1.7), (2.11) and get

LρH = −p(j)ẋj +
1

n− 1

(
d(j)ẋ

j − gjhgildl(i)ẋhẋj
)
. (2.15)

With the help of (2.15) and (2.14), we get(
LρHi

k − LρHδik
)

= 3ẋip(k) − δikpk(j)ẋj + gkhg
ildl(j)ẋ

hẋj

− 1

n− 1

{
dkẋ

i + (2− n)gjhg
ildl(k)ẋhẋ

j
}
. (2.16)

Differentiate (2.16) partially with respect to ẋr and thereafter allow a contraction in the

resulting equation with respect to the indices i and r, we get the following

Lρ∂̇rHr
k − Lρ∂̇kH = (3n+ 2)pk − (n+ 3)pk(j) + dk(j)ẋ

j + gkhg
rlẋh{drl(j) + dlr}

+
5− n
n− 1

× dk + 2ẋhẋj × Clsl
grs
×
{

2− n
n− 1

× grhdl(k) − gkhdl(j)
}

(2.17)

after making use of (1.7) and (2.11).

The underlined equation

G
i
(x, ẋ) = Gi(a, ẋ)− P (s, ẋ)ẋi (2.18)
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represents the most general modification of the function i G which will leave (2.18) unchanged.

Thus, we say that the equation (2.18) defines the projective change [4] of the function Gi(x, ẋ).

The tensor defined by

W j
k (x, ẋ) = Hj

k −Hδ
j
k −

1

n+ 1

(
∂̇lH

j
k − δ

j
kH
)
ẋl (2.19)

is invariant under the projective change (2.18) and therefore it is regarded as projective deviation

tensor. This deviation tensor also satisfies the following identities

W j
j = 0, ∂̇kW

j
h ẋ

h = −W j
k and ∂̇iW

i
k = 0. (2.20)

The Lie-derivative of the projective deviation tensor W i
j (x, ẋ) in view of (2.16) and (2.17)

can be written in the following form

LρW i
k =

1

n+ 1

{
p(k)ẋ

i + 2pk(j)ẋ
iẋj +

4− n
n− 1

d(k)ẋ
i

−ẋi
[
dk(j)ẋ

j + gkhg
rl(drl(j) + dl(r)) + 2ẋhẋj

Clsr
grs

(
2− n
n− 1

grhdl(k) − gkhdl(j)
)]}

−δikp(j)ẋj + gkhg
ildl(j)ẋ

hẋj +
2− n
n− 1

gjhg
ildl(k)ẋ

hẋj . (2.21)

We now apply the commutation formula given by (2.4) to the projective deviation tensor

W i
j (x, ẋ) and get

LρW i
j(r) −

(
LρW i

j

)
(r)

= Wh
j LρGirh −W i

hLρGhjr −
(
∂̇hW

i
j

) (
LρGhrs

)
ẋs. (2.22)

Using (2.2) and (2.3) in (2.22), we get

LρW i
j(r) −

(
LρW i

j

)
(r)

= W i
j

(
δirpr − grhgildl

)
−W i

rpj − 2W i
jpr

+ghldl

[
W i
hgjr +

(
∂̇hW

i
j

)
grsẋ

s −
(
∂̇rW

i
j

)
p
]
. (2.23)

We now allow a contraction in (2.23) with respect to the indices i and r and thereafter use

(2.20) and get

LρW i
j(i) −

(
LρW i

j

)
(i)

= (n− 2)Wh
j ph −Wh

j dh + ghldl

{
W i
hgji +

(
∂̇hW

i
j

)
gisẋ

s
}
. (2.24)

Now, transvect ẋr in (2.23) and thereafter use (2.3) and (2.20), we get[
LρW i

j(r) −
(
LρW i

j

)
(r)

]
ẋr = Wh

j ẋ
iph − 4W i

jp−Wh
j grhg

ildlẋ
r + ghldlẋ

r

+ghldlẋ
r
[
W i
hgjr + (∂̇hW

i
j )grsẋ

s
]
). (2.25)

We now make an assumption that the space under consideration is symmetric one, i.e.,

W i
j(r) = 0 and as such under this assumption the equations (2.24) and (2.25) can alternatively
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be written in the following forms(
LρW i

j

)
(r)

= (2− n)W i
jpr +W i

jdr − ghldl
[
W i
hdri +

(
∂̇hW

i
j

)
grsẋ

s
]

(2.26)

and(
LρW i

j

)
(r)
ẋr = W i

jp−Wh
j ẋ

iph +Wh
j grhg

ildlẋ
r − ghldlẋr

[
W i
hgjr +

(
∂̇hW

i
j

)
grsẋ

s
]
. (2.27)

We propose to eliminate the term Wh
j ph with the help of (2.26) and (2.27) and the result

of elimination will give the following

M i
j =

{
Wh
j dh − ghldl

[
W r
hgjr +

(
∂̇W i

j

)
grsẋ

s
]}

ẋi, (2.28)

where,

M i
j =

(
LρW i

j

)
(r)
ẋr + (2− n)

(
LρW i

j

)
(r)
ẋr. (2.29)

At this stage, if we assume that the Finsler space Fn admits a projective motion which will be

characterized by

LρGijk = 0. (2.30)

Therefore, in such a case, with the help of (2.10) and (2.30) we shall easily arrive at the

conclusion that the vectors p(x, ẋ) and d(x, ẋ) should separately vanish.

With the help of all these observations, we can therefore state the following conclusions.

Theorem 2.1 In a Finsler space Fn, the equation (2.28) always holds provided the space

under consideration admits a nonCaffine infinitesimal transformation such that the Berwalds

covariant derivative of W i
j remains an invariant.

Theorem 2.2 In a Finsler space Fn, M
i
j = 0 (where M i

j has been given by (2.29)) provided the

space under consideration admits an affine infinitesimal transformation such that the Berwalds

covariant derivative of W i
j remains an invariant.

Theorem 2.3 In a Finsler space Fn, the equation (2.28) necessarily holds provided the space

under consideration is symmetric one and it admits a non-affine infinitesimal transformation.

Theorem 2.4 In a Finsler space Fn, the equation (2.26) necessarily holds provided the space

under consideration is symmetric.

§3. Infinitesimal Special Projective Transformation

In view of the projective covariant derivative as has been given by (1.8) and the projective

connection coefficient Πi
jk(x, ẋ) as has been given by (1.9), the Lie-derivatives of an arbitrary

tensor T ij (x, ẋ) and the projective connection coefficient are respectively given by

LρT ij (x, ẋ) = T ij((r))v
r +

(
∂̇sT

i
j

)
vs((r))ẋ

r − T rj vi((r)) + T irv
r
((j)) (3.1)
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and

LvΠi
mk(x, ẋ) = vi((m))((k)) +Qimkrv

r +
(
∂̇rΠ

i
mk

)
vr((s))ẋ

s. (3.2)

In the operators Lv, ∂̇ and (( )), we have the following commutation formulae

∂̇ρ
(
LνT ij

)
− Lν

(
∂̇ρT

i
j

)
= 0,

(
LνT ij

)
((r))
− LνT ij((r)) = T ijLνΠl

lr − T il LνΠl
rj −

(
∂̇lT

i
j

)
LνΠl

rmẋ
m and(

LνΠi
hj

)
((k))
−
(
LνΠi

hk

)
((j))

= LνQihkj +
(
LνΠl

jb

)
Πi
hklẋ

b +
(
LνΠl

kb

)
Πi
jhlẋ

b. (3.3)

In order that the infinitesimal point transformation given by (2.9) may define an infinites-

imal special projective transformation, it is necessary and sufficient that [3]

LνΠi
jk = Π

i

jk −Πi
jk = δijbk + δikbj − gjkgilcl, (3.4)

where, bk(x, ẋ) and cl(x, ẋ) are covariant vectors and they satisfy the following relations

∂̇jb = bj , bhk = ∂̇h∂̇kb, bhkẋ
h = bk,

bhkẋ
hẋk = b, ∂̇j = cj , cjk = ∂̇j ∂̇kc,

chkẋ
h = ck, and chkẋ

hẋk = c. (3.5)

Using (3.4), (3.5) and the commutation formula given by (3.3), the Lie-derivative of the

projective entity Qihjk(x, ẋ0 can be written in the following form

LνQihjk = δijbh((k)) + δihbj((k)) − gjhgilcl((k)) − gjh((k))gilcl

−gjhgil((k))cl − δ
i
kbh((j)) − δihbk((j)) + gkhg

ilcl((j))

+gkh((j))g
ilcl + gkhg

il
((j))cl − δ

r
kbΠ

i
rjh + gklg

rmcmΠi
rjhẋ

l

+bδrjΠi
rkh − gjlgrmcmẋiΠi

rhk. (3.6)

Now, transvect ẋhẋj in (3.6) and therefore use (1.12) and (1.13) together, we get

LνQik = 2ẋib((k)) − δikb((j))ẋj + ẋhẋj
[
gkh

(
gil((j))cl + gilcl((j))

)
− gjh

(
gil((k))cl + gilcl((k))

)
− gjh((k))gilcl

]
. (3.7)

We allow a contraction in (3.6) with respect to the indices i and k and thereafter transvect-

ing the equation thus obtained by ẋhẋj , we get

LνQhj ẋhẋj = (1− n)b((j))ẋ
j + c((j))ẋ

j + gilclẋ
hẋj

(
gih((j)) − gjh((i))

)
−gjhẋhẋj

(
gilcl((i)) + gil((i))cl

)
+ gihg

il
((j))clẋ

hẋj . (3.8)
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where we have taken into account (1.12).

We now eliminate b((j))ẋ
j using (3.7), (3.8) and get

Lik(x, ẋ) = 2(1− n)b((k))ẋ
i − bk((j))ẋiẋj

+gkhẋ
hẋj

(
gil((j))cl + gilcl((j))

)
−gil((k))cl − g

ilcl((k)) + c((j))ẋ
jδik + gilclẋ

hẋjδik
(
gih((j)) − gjh((i))

)
−gjhẋhẋjδik

(
gilcl((i)) − gil((i))cl

)
+ gihg

il
((j))clẋ

hẋj , (3.9)

where,

Lik
def
= LνQik + δikLνQhj ẋhẋj . (3.10)

We apply the commutation formula (3.36) to the projective deviation tensor W i
j (x, ẋ) and

thereafter use (3.4) and (3.5) to get(
LνW i

j

)
((r))
− LνW i

j((r)) = W l
jδ
i
rbl −W l

jgrlg
ipcp −W i

rbj +W i
l grjg

lpcp

−
(
∂̇rW

i
j

)
b− 2W i

j br −
(
∂̇rW

i
j

)
glmg

lpcpẋ
m. (3.11)

Allow a contraction in (3.11) with respect to the indices i and r, we get(
LνW i

j

)
((i))
− LνW i

j((i)) = (n− 2)W l
jbl −W l

jcl + glpcp

(
W i
l gij −

(
∂̇W i

j

)
gimẋ

m
)
. (3.12)

Now, transvect (3.11) by ẋr and thereafter use (3.5), we get((
LνW i

j

)
((i))
− LνW i

j((r))

)
ẋr = W l

jblẋ
i − 4W i

j b−W l
jgrlg

ipcpẋ
r

+W i
l grjg

lpcpẋ
r −

(
∂̇lW

i
j

)
grmg

lpcpẋ
rẋm. (3.13)

We make the supposition that the infinitesimal special projective transformation given by

(3.4) leaves invariant the projective covariant derivative of the projective deviation tensor, i.e.,

LνW i
j((r)) = 0. (3.14)

As a result of this supposition, the equations (3.12) and (3.13) can respectively be expressed

in the following alternative form(
LνW i

j

)
((i))

= (n− 2)W l
jbl −W l

jcl + glpcp

(
gijW

i
l −

(
∂̇lW

i
j

)
gimẋ

m
)

(3.15)

and(
LνW i

j

)
((r))

= W l
jblẋ

i− 4W i
j b−W l

jgrlg
ipcpẋ

r +W i
l grjg

ipcpẋ
r −
(
∂̇W i

j

)
grmg

lpcpẋ
rẋm. (3.16)

We now propose to eliminate W l
jbl with the help of (3.15) and (3.16), the result of elimi-
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nation gives the following

Bij(x, ẋ) = ẋj
{
−W l

jcl + glpcp

[
W k
l gkj −

(
∂̇lW

r
j

)
grmẋ

m
]}

+ (n− 2)

×
[
4W i

j b+W l
jgrlg

ipcpẋ
r −W i

l grjg
lpcpẋ

r +
(
∂̇W i

j

)
grmg

lpcpẋ
rẋm

]
, (3.17)

where,

Bij(x, ẋ)
def
=
(
LνW i

j

)
((r))

ẋr − (n− 2)
(
LνW i

j

)
((r))

ẋr. (3.18)

In order that the space under consideration may admit a special projective affine motion,

we always have

LνΠi
jh = 0. (3.19)

Using (3.4) and (3.19), we easily arrive at the conclusion that the vectors b(x, ẋ) and c(x, ẋ)

must separately vanish.

In the light of all these observations, we can therefore state results following.

Theorem 3.1 In a Finsler space Fn, the equation (3.17) always holds provided the space under

consideration admits a non-affine infinitesimal special projective transformation such that the

projective covariant derivative of projective deviation tensor W i
j remains an invariant.

Theorem 3.2 In a Finsler space Fn, B
i
j(x, ẋ) given by (3.18) always vanishes provided the space

under consideration admits an affine infinitesimal special projective transformation such that

the projective covariant derivative of the projective deviation tensor W i
j remains an invariant.

If the Finsler space Fn under consideration be assumed to be symmetric one i.e., W i
j((r)) =

0, then under such an assumption the equation (3.14) will always hold. Therefore, we can state

the result following.

Theorem 3.3 In a symmetric Finsler space Fn, the equation (3.17) always holds provided the

space under consideration admits a non-affine infinitesimal special projective transformation

characterized by (3.4).

Theorem 3.4 In a symmetric Finsler space Fn, B
i
j characterized by (3.18) always vanishes

provided the space under consideration admits an affine infinitesimal special projective trans-

formation.

§4. Conclusion

The present communication has been divided into three sections of which the first section is

introductory, the second section deals with non-affine infinitesimal transformations, and in this

section, we have derived conditions which will hold when the space under consideration admits

non-affine as well as an affine infinitesimal transformation and in the sequel have established

the conditions which will hold when the space is symmetric and it admits an affine as well

as non-affine infinitesimal transformation. The third section deals with infinitesimal special
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projective transformation. Like the previous section, in this section we have established the

conditions which will hold when the space under consideration is symmetric and it admits a

non-affine as well as an affine infinitesimal special projective transformation too.
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