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§1. Introduction

In 1996, the authors [28] first time studied Sasakian manifold with Lorentzian metric i.e., a

metric compatible Sasakiann manifold (M,η, ξ, ϕ) with Lorentzian metric g (a symmetric non-

degenerated (0,2) tensor field of index 1) which we called Lorentzian Sasakiann manifold. A

Lorentzian Sasakian manifold with ϕ-holomorphic sectional curvature, we called Lorentzian

Sasakian space form. The curvature tensor and Ricci tensor of a Lorentzian Sasakiann space

form with constant ϕ-holomorphic sectional curvature c proved by the authors [23] as follows:

R(X,Y )Z =
c− 3

4
[g(Y,Z)X − g(X,Z)Y ]

+
c+ 1

4
{η(Z)[η(Y )X − η(X)Y ] + [η(Y )g(X,Z)− η(X)g(Y,Z)]ξ

+g(X,ϕZ)ϕY − g(Y, ϕZ)ϕX + 2g(X,ϕY )ϕZ}, (1)

and

S(X,Y ) =
n(c− 3) + 4

2
g(X,Y ) +

n(c+ 1)

2
η(X)η(Y ), (2)

Tanaka [16] and, independently Webster [29] defined the canonical affine connection on a
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nondegenerate, integrable CR manifold. Tanno [26] generalized this connection extending its

definition to the general contact metric manifold which called generalized Tanaka=sebster

connection or generalized Tanaka connection.

A manifold M is said to be locally symmetric (see [25]) if we have ∇XR = 0 for all

X ∈ X(M), where R is curvature tensor. A locally symmetric Riemannian manifold satisfies

R(X,Y ) ·R = 0 for all tangent vectors X and Y , where the linear endomorphism R(X,Y ) acts

on R as a derivation. The spaces with R(X,Y ) ·R = 0 have been investigated first by E. Cartan

[5] which directly generalizes the notion of symmetric spaces. Conversely, does the condition

R(X,Y ) · R = 0 imply the manifold M is locally symmetric? K. Nomizu [15] conjectured

that an irreducible, complete Riemannian space with dim≥ 3 and with the above symmetric

property of the curvature tensor is always a locally symmetric space. But this conjecture

was refuted by H. Takagi [7] who constructed 3-dimensional complete irreducible nonlocally-

symmetric hypersurfaces with R(X,Y ) · R = 0. According to Szabó [30], we call a space

satisfying R(X,Y ) · R = 0 is a semi-symmetric space. Okumura [14] proved that a Sasakian

manifold which is at the same time a locally symmetric space is a space of constant curvature.

This fact means that a symmetric space condition is too strong for a Sasakian manifold. In a

semi-symmetric manifold, the condition R(X,Y ) · S = 0 satisfies for all X,Y ∈ X(M), where

S is the Ricci tensor. But the converse statement is however not true. These two conditions

R(X,Y ) ·R = 0 and R(X,Y ) ·S = 0 are equivalent for hypersurfaces of Euclidean spaces proved

by P.J. Ryan [18]. The spaces which satisfies R(X,Y ) · S = 0 we called Ricci-semisymmetric

spaces. Thus, every semisymmetric space is Ricci-semisymmetric. The generalized condition

R ·R = LQ(g,R), where L is a non zero function and Q(g,R) is defined in [1] of the conditions

∇XR = 0 and R(X,Y ) ·R = 0 (symmetric and semi-symmetric ) was introduced by R. Deszcz

[8] and if a manifold satisfies this condition then it called pseudo-symmetric. On the other hand

M.C. Chaki [11] introduced a different definition of pseudo-symmetric manifold. In this paper

we approach the Deszcz’s definition. Deszcz also defined Ricci-pseudo-symmetric manifold [19]

by the condition R · S = LQ(g, S).

In 1982 Hamilton [21] introduced the concept of Ricci flow and proved its existence. The

Ricci flow equation is given by
∂g

∂t
= −2S (3)

on a compact Riemannian manifold M with Riemannian metric g, where S is the Ricci tensor.

A self-similar solution to the Ricci flow (3) is called a Ricci soliton which moves under the Ricci

flow simply by diffeomorphisms of the initial metric, that is, they are stationary points of the

Ricci flow in space of metrics on M . A Ricci soliton is a generalization of an Einstein metric.

The Ricci soliton equation is given by

LXg + 2S = 2λg (4)

where L is the Lie derivative, S is the Ricci tensor, g is Riemannian metric, X is a vector field

and λ is a scalar. The Ricci soliton is said to be shrinking, steady, and expanding according as

λ is positive, zero and negetive respectively.

Fischer during 2003-2004 developed the concept of conformal Ricci flow [3] which is a
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variation of the classical Ricci flow equation that modifies the unit volume constraint of that

equation to a scalar curvature constraint. The conformal Ricci flow on M is defined by [24]

∂g

∂t
+ 2

(
S +

g

n

)
= −pg (5)

where R(g) = −1 and p is a non-dynamical scalar field(time dependent scalar field), R(g) is

the scalar curvature of the n-dimessional manifold M .

In 2015, N. Basu and A. Bhattacharyya [2] introduced the notion of conformal Ricci soliton

and the equation is as follows

LXg + 2S =

[
2λ−

(
p+

2

n

)]
g (6)

where λ is a scalar.

Cho and Kimura [9] introduced the notion of η-Ricci soliton in 2009, as follows

Lξg + 2S = 2λg + 2µη ⊗ η (7)

for some constants λ and µ, where ξ is a soliton vector field and η is an 1-form on M .

In 2018, Siddiqi [13] introduced the notion of conformal η-Ricci soliton, given by

Lξg + 2S +

[
2λ−

(
p+

2

n

)]
g + 2µη ⊗ η = 0 (8)

for some constants λ and µ, where ξ is a soliton vector field and η is an 1-form on M . where

Lξ is the Lie derivative along the vector field ξ , S is the Ricci tensor, λ, µ are constants, p is

a scalar non-dynamical field (time dependent scalar field) and n is the dimension of manifold.

Tachibana [22] and Hamada [27] introduced the notion of ∗-Ricci tensor on almost Her-

mitian manifolds and on real hypersurfaces in non-flat complex space respectively and then in

2014, Kaimakamis and Panagiotidou [6] introduced the notion of ∗-Ricci soliton on non-flat

complex space forms and the equation as

LV g + 2S∗ + 2λg = 0, (9)

where S∗(X,Y ) = 1
2 [trace{ϕ ◦R(X,ϕY )}] for all vector fields X,Y on M and ϕ is a (1,1)-

tensor field.

In 2022, the authors [24] have defined the ∗-conformal η-Ricci soliton on a Riemannian

manifold as

Lξg + 2S∗ +

[
2λ−

(
p+

2

n

)]
g + 2µη ⊗ η = 0, (10)

where Lξ is the Lie derivative along the vector field ξ , S∗ is the ∗-Ricci tensor, λ, µ are

constants, p is a scalar non-dynamical field (time dependent scalar field) and n is the dimension

of manifold.

In 2016, Nurowski and Randall [17] introduced the concept of generalized Ricci soliton as
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a class of over determined system of equations

LV g = −2aV # � V # + 2bS + 2λg, (11)

where LV g and V # denote, respectively, the Lie derivative of the metric g in the directions of

vector field V and the canonical one-form associated to V , and some real constants a, b, and λ.

Levy [10] acquired the necessary and sufficient conditions for the existence of such tensors. In

2018 M.D. Siddiqi [12] have studied generalized Ricci solitons on trans-Sasakian manifolds.

In this paper, we consider generalized Tanaka connection on Lorentzian Sasakian Space for-

m and studied various symmetric properties of Lorentzian Sasakian space form with generalized

Tanaka connection and solitons. After preliminaries in section-3, we consider consider gener-

alized Tanaka connection on Lorentzian Sasakian space form, state and proved some results,

finding curvature tensor and Ricci curvature tensor. In section-4, we study the semi-symmetric,

Ricci semi-symmetric properties of Lorentzian Sasakian Space form. From section-5 to 7 ∗-Ricci

soliton, ∗-conformal Ricci soliton, ∗-conformal η-Ricci soliton, generalized Ricci soliton, gen-

eralized conformal Ricci soliton have been studied on Lorentzian Sasakian space form with

generalized Tanaka connection and obtained the values of the scalar λ of these solitons on

which nature of solitons depend, whether it is shrinking, steady or expanding.

§2. Preliminaries

Let M be a (2n+1) dimensional (denoted by M2n+1) having almost contact structure (ϕ, ξ, η, g)

i.e.,

η(ξ) = 1, ϕ2 = −I + η ⊗ ξ, ϕ(ξ) = 0, η ◦ ϕ = 0, (12)

where ϕ is a (1,1)-tensor field, ξ a contravariant vector field, η a covariant vector field.

A Lorentzian metric g is said to be compatible with the structure (ϕ, ξ, η, g) if

g(ϕX,ϕY ) = g(X,Y ) + η(X)η(Y ). (13)

If the manifold M2n+1 equipped with an almost contact structure (ϕ, ξ, η, g) and a compatible

Lorentzian metric g, is called an almost contact Lorentzian manifold.

Note that equations (12) and (13) imply

g(X, ξ) = −η(X) and g(ξ, ξ) = −1. (14)

Also, equations (13) implies

g(X,ϕY ) = −g(ϕX, Y ). (15)

In almost contact Lorentzian manifold (M2n+1, ϕ, ξ, η, g), the fundamental 2-form Φ is

defined as

Φ(X,Y ) = g(X,ϕY ) for all X,Y ∈ X(M).

An almost contact metric manifold (M2n+1, ϕ, ξ, η, g) is Sasakian [4] if and only if it is



34 Sibsankar Panda, Kalyan Halder and Arindam Bhattacharya

normal and

dη = 0. (16)

In Lorentzian Sasakian manifold, the following properties [23] hold good:

(∇Xϕ)Y = η(Y )X + g(X,Y )ξ, (17)

∇Xξ = ϕX, (18)

(∇Xη)Y = g(X,ϕY ). (19)

Let (M, g) be an n-dimensional Riemannian manifold n > 2, its curvature tensor defined

by

R(X,Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ].

and let T be (0, k)-tensor, define a (0, 2 + k)-tensor field R · T by

(R·T )(X1, X2, · · · , Xk, X, Y ) = R(X,Y )(T (X1, X2, · · · , Xk))−T (R(X,Y )X1, X2, · · · , Xk)

−T (X1, R(X,Y )X2, · · · , Xk)−· · ·−T (X1, X2, · · · , R(X,Y )Xk).

One has

R(X,Y ) · T = ∇X(∇Y T )−∇Y (∇XT )−∇[X,Y ]T.

When T = R, then we have a (0, 6)-tensor R ·R.

Also, we can determine a (0, k + 2)-tensor field Q(A, T ), associated with any (0, k)-tensor

field T and any symmetric (0, 2)-tensor field A by

Q(A, T )(X1, X2, · · · , Xk, X, Y ) = ((X ∧A Y ) · T )(X1, X2, · · · , Xk)

= −T ((X ∧A Y )X1, X2, · · · , Xk)− T (X1, (X ∧A Y )X2, · · · , Xk)

− · · · − T (X1, X2, · · · , (X ∧A Y )Xk),

where (X ∧A Y ) is the endomorphism given by

(X ∧A Y )Z = A(Y,Z)X −A(X,Z)Y. (20)

Particularly, if we put A = g we get

(X ∧g Y )Z = g(Y,Z)X − g(X,Z)Y. (21)

and we will write (X ∧g Y ) as (X ∧ Y ) in General.

§3. Generalized Tanaka Connection on Lorentzian Sasakian Space Form

For an (2n + 1)-dimensional Lorentzian Sasakian manifold M with almost contact structure

(ϕ, ξ, η, g), the relation between generalized Tanaka connection ∇̊ and Levi-Civita connection
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∇ is given by

∇̊XY = ∇XY + η(X)ϕY + (∇Xη) (Y )ξ − η(Y )∇Xξ. (22)

By (18) and (19),

∇̊XY = ∇XY + η(X)ϕY + g(X,ϕY )ξ − η(Y )ϕX. (23)

Putting Y = ξ in (22),

∇̊Xξ = ∇Xξ + η(X)ϕξ + g(X,ϕξ)ξ − η(ξ)∇Xξ

By (12),

∇̊Xξ = 0. (24)

(∇̊Xη)Y = ∇̊Xη(Y )− η(∇̊XY )

From (23),

(∇̊Xη)Y = 0, (25)

(∇̊Xg)(Y,Z) = 0. (26)

Thus, we can state

Theorem 3.1 In a Lorentzian Sasakian manifold ξ, η, g are parallel with respect to the gener-

alized Tanaka connection.

Now,

(∇̊Xϕ)Y = ∇̊XϕY − ϕ(∇̊XY ).

Using (22),

(∇̊Xϕ)Y = 0. (27)

The curvature tensor of Lorentzian Sasakian manifold with respect to the generalized

Tanaka connection is given by

R̊(X,Y )Z = ∇̊X∇̊Y Z − ∇̊Y ∇̊XZ − ∇̊[X,Y ]Z

= ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z + [η(X)ϕ(∇Y Z)− η(Y )ϕ(∇XZ)]

+ [g(X,ϕ(∇Y Z))ξ − g(Y, ϕ(∇XZ))ξ]− [η((∇Y Z))ϕX − η((∇XZ))ϕY ]

+ [η(∇XY )ϕZ − η(∇YX)ϕZ] + [g(X,ϕY )ϕZ − g(Y, ϕX)ϕZ]

+ [η(Y )ϕ(∇XZ)− η(X)ϕ(∇Y Z)]− [η(X)η(Y )Z − η(Y )η(X)Z]

+ [g(∇XY, ϕZ)− g(∇YX,ϕZ)] ξ − [η(Y )g(ϕX,ϕZ)ξ − η(X)g(ϕY, ϕZ)ξ]

+ [g(Y, ϕ(∇XZ))ξ − g(X,ϕ(∇Y Z))ξ] + [η(Z)g(ϕY, ϕX)ξ − η(Z)g(ϕX,ϕY )ξ]

− [η(∇XZ)ϕY − η(∇Y Z)ϕX]− [g(X,ϕZ)ϕY − g(Y, ϕZ)ϕX]

−[η(Z)ϕ(∇XY )− η(Z)ϕ(∇YX)] + [η(X)η(Z)Y − η(Y )η(Z)X]

−η([X,Y ])ϕZ − g([X,Y ], ϕZ)ξ + η(Z)ϕ[X,Y ].
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So,

R̊(X,Y )Z = R(X,Y )Z + 2g(X,ϕY )ϕZ − [η(Y )g(X,Z)− η(X)g(Y,Z)] ξ

− [g(X,ϕZ)ϕY − g(Y, ϕZ)ϕX] + η(Z) [η(X)Y − η(Y )X] (28)

and

S̊(X,Y ) = S(X,Y ) + 2g(X,Y )− 2(n− 1)η(X)η(Y )

If M has constant ϕ-holomorphic sectional curvature c, then by (1) and (28) we get

R̊(X,Y )Z =
c− 3

4
{[g(Y,Z)X − g(X,Z)Y ] + η(Z)[η(Y )X − η(X)Y ]

+[η(Y )g(X,Z)− η(X)g(Y, Z)]ξ + [g(X,ϕZ)ϕY − g(Y, ϕZ)ϕX]}

+
c+ 5

2
g(X,ϕY )ϕZ. (29)

and

S̊(X,Y ) =
n(c− 3) + 4

2
g(X,Y )

n(c+ 1)

2
η(X)η(Y ) + 2g(X,Y )− 2(n− 1)η(X)η(Y )

Or,

S̊(X,Y ) =
n(c− 3) + 8

2
g(ϕX,ϕY ). (30)

§4. Semi-symmetry and Ricci-semisymmetry on Lorentzian Sasakian Space Form

with Respect to Generalized Tanaka Connection

Applying (21) in (29), we get

R̊(X,Y )Z =
c− 3

4
{(ϕX ∧ ϕY )Z + (ϕ2X ∧ ϕ2Y )Z}+

c+ 5

2
g(X,ϕY )ϕZ. (31)

Lemma 4.1 Let M2n+1(c) be a Lorentzian Sasakian space form with generalized Tanaka con-

nection and X,Y ∈ X(M), then the following properties hold:

(a) ϕ · S̊ = 0;

(b) (X ∧ Y ) · S̊ = 0 if and only if c = 3n−8
n ;

(c) (ϕX ∧ ϕY ) · S̊ = 0;

(d) (ϕ2X ∧ ϕ2Y ) · S̊ = 0.

Proof (a) Since ϕ is a tensor field, we have

(ϕ · S̊)(U, V ) = −S̊(ϕU, V )− S̊(U,ϕV ) =
n(c− 3)

2
[g(ϕU, V ) + g(U,ϕV )]

+
n(c+ 5)− 4

2
[η(ϕU)η(V ) + η(U)η(ϕV )]

=
n(c− 3)

2
[g(ϕU, V )− g(ϕU, V )] = 0.
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Thus (ϕ · S̊)(U, V ) = 0 for any U, V ∈ X(M).

(b) For any U, V ∈ X(M), we have

((X ∧ Y ).S̊)(U, V ) = −S̊((X ∧ Y )U, V )− S̊(U, (X ∧ Y )V )

= −g(Y, U)S̊(X,V ) + g(X,U)S̊(Y, V )

−g(Y, V )S̊(U,X) + g(X,V )S(U, Y )

= −n(c− 3) + 8

2
[g(Y,U)η(X)η(V )− g(X,U)η(Y )η(V )

+g(Y, V )η(X)η(U)− g(X,V )η(Y )η(U)].

Since, −g(Y, U)η(X)η(V ) + g(X,U)η(Y )η(V )− g(Y, V )η(U)η(X)

+ g(X,V )η(U)η(Y ) 6= 0 always. Therefore

((X ∧ Y ).S̊)(U, V ) = 0 if and only if n(c− 3) + 8 = 0, i.e., c =
3n− 8

n
.

(c) For any U, V ∈ X(M), we have

((ϕX ∧ ϕY ).S̊)(U, V ) = −S̊((ϕX ∧ ϕY )U, V )− S̊(U, (ϕX ∧ ϕY )V )

= −g(ϕY,U)S̊(ϕX, V ) + g(ϕX,U)S̊(ϕY, V )

−g(ϕY, V )S̊(U,ϕX) + g(ϕX, V )S̊(U,ϕY ).

Using (12) and (21), we get the result.

(d) The proof is similar to (c). �

Theorem 4.2 A Lorentzian Sasakian space form M2n+1(c) is Ricci-semi-symmetric with re-

spect to generalized Tanaka connection.

Proof In the equation (31), we see that the curvature tensor is of the form

R̊(X,Y ) =
c− 3

4
(ϕX ∧ ϕY ) +

c− 3

4
(ϕ2X ∧ ϕ2Y ) +

c+ 5

2
g(X,ϕY )ϕ.

So,

R̊(X,Y ) · S̊ =
c− 3

4
(ϕX ∧ ϕY ) · S̊ +

c− 3

4
(ϕ2X ∧ ϕ2Y ) · S̊ +

c+ 5

2
g(X,ϕY )ϕ · S̊.

By the Lemma 4.1, we have R̊ · S̊ = 0. �

Lemma 4.3 In a Lorentzian Sasakian space form M2n+1(c) with generalized Tanaka connection

the following properties hold for all X,Y ∈ X(M):

(a) ϕ · R̊ = 0;

(b) (ϕ2X ∧ ϕ2Y ) · R̊ = −(ϕX ∧ ϕY ) · R̊;

(c) (X ∧S Y ).R̊ = 0.
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Proof (a) For any X,Y, U, V ∈ X(M)

(ϕ · R̊)(X,Y, U, V ) = −R̊(ϕX, Y, U, V )− R̊(X,ϕY,U, V )

−R̊(X,Y, ϕU, V )− R̊(X,Y, U, ϕV )

= −2[g((ϕX ∧ Y )U, V ) + g((X ∧ ϕY )U, V ) + g((X ∧ Y )ϕU, V ) + g((X ∧ Y )U,ϕV )]

+
c+ 5

4
[g((ϕ2X ∧ ϕY )U, V ) + g((ϕX ∧ ϕ2Y )U, V ) + g((ϕX ∧ ϕY )ϕU, V )

+g((ϕX ∧ ϕY )U,ϕV )] +
c+ 5

4
[g((ϕ3X ∧ ϕ2Y )U, V ) + g((ϕ2X ∧ ϕ3Y )U, V )

+g((ϕ2X ∧ ϕ2Y )ϕU, V ) + g((ϕ2X ∧ ϕ2Y )U,ϕV )]− c− 3

2
[g(ϕ2X,Y )g(ϕU, V )

+g(ϕX,ϕY )g(ϕU, V ) + g(ϕX, Y )g(ϕ2U, V ) + g(ϕX, Y )g(ϕU,ϕV )].

Using (12) and (21) we get result.

(b) For any X,Y, Z, U, V,W ∈ X(M),

((ϕX ∧ ϕY ) · R̊)(Z,U, V,W ) = −g(ϕY,Z)R̊(ϕX,U, V,W ) + g(ϕX,Z)R̊(ϕY,U, V,W )

−g(ϕY,U)R̊(Z,ϕX, V,W ) + g(ϕX,U)R̊(Z,ϕY, V,W )

−g(ϕY, V )R̊(Z,U, ϕX,W ) + g(ϕX, V )R̊(Z,U, ϕY,W )

−g(ϕY,W )R̊(Z,U, V, ϕX) + g(ϕX,W )R̊(Z,U, V, ϕY )

=
c− 3

4
{−g(ϕY,Z)g(ϕU,W )g(ϕX,ϕV )− g(ϕY,Z)g(U,ϕV )g(ϕX,ϕW )

+g(ϕU,W )g(ϕX,Z)g(ϕY, ϕV ) + g(U,ϕV )g(ϕX,Z)g(ϕY, ϕW )

+g(ϕY,U)g(Z,ϕV )g(ϕX,ϕW ) + g(ϕY,U)g(ϕZ,W )g(ϕX,ϕV )

−g(ϕX,U)g(Z,ϕV )g(ϕY, ϕW )− g(ϕX,U)g(ϕZ,W )g(ϕY, ϕV )

+g(ϕY, V )g(ϕU,W )g(ϕZ,ϕX)− g(ϕY, V )g(ϕZ,W )g(ϕU,ϕX)

−g(ϕX, V )g(ϕU,W )g(ϕZ,ϕY ) + g(ϕX, V )g(ϕZ,W )g(ϕU,ϕY )

−g(ϕY,W )g(Z,ϕV )g(ϕU,ϕX) + g(ϕY,W )g(U,ϕV )g(ϕZ,ϕX)

+g(ϕX,W )g(Z,ϕV )g(ϕU,ϕY )− g(ϕX,W )g(U,ϕV )g(ϕZ,ϕY )

+
c+ 5

2
{−g(ϕY,Z)g(ϕX,ϕU)g(ϕV,W ) + g(ϕX,Z)g(ϕY, ϕU)g(ϕV,W )

+g(ϕY,U)g(ϕZ,ϕX)g(ϕV,W )− g(ϕX,U)g(ϕZ,ϕY )g(ϕV,W )

+g(ϕY, V )g(Z,ϕU)g(ϕX,ϕW )− g(ϕX, V )g(Z,ϕU)g(ϕY, ϕW )

−g(ϕY,W )g(Z,ϕU)g(ϕV, ϕX) + g(ϕX,W )g(Z,ϕU)g(ϕV, ϕY )}. (32)
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Now,

((ϕ2X ∧ ϕ2Y ) · R̊)(Z,U, V,W )

= −g(ϕ2Y, Z)R̊(ϕ2X,U, V,W ) + g(ϕ2X,Z)R̊(ϕ2Y,U, V,W )

−g(ϕ2Y,U)R̊(Z,ϕ2X,V,W ) + g(ϕ2X,U)R̊(Z,ϕ2Y, V,W )

−g(ϕ2Y, V )R̊(Z,U, ϕ2X,W ) + g(ϕ2X,V )R̊(Z,U, ϕ2Y,W )

−g(ϕ2Y,W )R̊(Z,U, V, ϕ2X) + g(ϕ2X,W )R̊(Z,U, V, ϕ2Y )

=
c− 3

4
{g(ϕY, ϕZ)g(ϕX, V )g(ϕU,W ) + g(ϕY, ϕZ)g(U,ϕV )g(ϕX,W )

−g(ϕY, V )g(ϕU,W )g(ϕX,ϕZ)− g(U,ϕV )g(ϕY,W )g(ϕX,ϕZ)

−g(ϕY, ϕU)g(Z,ϕV )g(ϕX,W )− g(ϕY, ϕU)g(ϕX, V )g(ϕZ,W )

+g(ϕX,ϕU)g(Z,ϕV )g(ϕY,W ) + g(ϕX,ϕU)g(ϕY, V )g(ϕZ,W )

−g(ϕY, ϕV )g(Z,ϕX)g(ϕU,W ) + g(ϕY, ϕV )g(U,ϕX)g(ϕZ,W )

+g(ϕX,ϕV )g(Z,ϕY )g(ϕU,W )− g(ϕX,ϕV )g(U,ϕY )g(ϕZ,W )

+g(ϕY, ϕW )g(Z,ϕV )g(U,ϕX)− g(ϕY, ϕW )g(U,ϕV )g(Z,ϕX)

−g(ϕX,ϕW )g(Z,ϕV )g(U,ϕY ) + g(ϕX,ϕW )g(U,ϕV )g(Z,ϕY )}

+
c+ 5

2
{g(ϕY, ϕZ)g(ϕX,U)g(ϕV,W )− g(ϕX,ϕZ)g(ϕY,U)g(ϕV,W )

−g(ϕY, ϕU)g(Z,ϕX)g(ϕV,W ) + g(ϕX,ϕU)g(Z,ϕY )g(ϕV,W )

−g(ϕY, ϕV )g(Z,ϕU)g(ϕX,W ) + g(ϕX,ϕV )g(Z,ϕU)g(ϕY,W )

+g(ϕY, ϕW )g(Z,ϕU)g(V, ϕX)− g(ϕX,ϕW )g(Z,ϕU)g(V, ϕY )}. (33)

From (32) and (33), we see that

((ϕ2X ∧ ϕ2Y ) · R̊)(Z,U, V,W ) = −((ϕX ∧ ϕY ) · R̊)(Z,U, V,W ).

(c) The Ricci curvature tensor can be written as

S̊(X,Y ) =
n(c− 3) + 8

2
g(ϕX,ϕY ).

So, we have

(X ∧S̊ Y )Z = S̊(Y, Z)X − S̊(X,Z)Y

=
n(c− 3) + 8

2
{g(ϕY, ϕZ)X − g(ϕX,ϕZ)Y }.

Replacing Z by R̊, we obtain

(X ∧S̊ Y ) · R̊ =
n(c− 3) + 8

2
{g(ϕY, ϕ · R̊)X − g(ϕX,ϕ · R̊)Y }.

Using (a), ϕ · R̊ = 0, we get the result

(X ∧S̊ Y ) · R̊ = 0. �
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Theorem 4.4 A Lorentzian Sasakian space form M2n+1(c) is semi-symmetric with respect to

generalized Tanaka connection.

Proof From (31), the curvature tensor is of the form

R̊(X,Y ) =
c− 3

4
(ϕX ∧ ϕY ) +

c− 3

4
(ϕ2X ∧ ϕ2Y ) +

c+ 5

2
g(X,ϕY )ϕ.

So,

R̊(X,Y ) · R̊ =
c− 3

4
(ϕX ∧ ϕY ) · R̊+

c− 3

4
(ϕ2X ∧ ϕ2Y ) · R̊+

c+ 5

2
g(X,ϕY )ϕ · R̊.

Using (a) and (b) of Lemma 4.3, we have

R̊(X,Y ) · R̊ =
c− 3

4
(ϕX ∧ ϕY ) · R̊− c− 3

4
(ϕX ∧ ϕY ) · R̊ = 0. �

§5. *-Ricci Soliton on Lorentzian Sasakian Space Form with Respect to Generalized

Tanaka Connection

In this section we first derived the ∗-Ricci tensor in Lorentzion Sasakian space form. The ∗-Ricci

tensor first introduced by Kaimakamis and Panagiotidou [6] and given by

S̊∗(X,Y ) =
1

2
[trace{ϕ ◦R(X,ϕY )}] (34)

for all vector fields X,Y on M and ϕ is a (1,1)-tensor field.

Theorem 5.1 In a Lorentzion Sasakian space form with generalized Tanaka connection, the

∗-Ricci tensor

S̊∗(X,Y ) = −n(c− 3) + 8

4
g(ϕX,ϕY ). (35)

Proof Replacing Z by ϕZ in (28), we get

R̊(X,Y )ϕZ =
c− 3

4
{[g(Y, ϕZ)X − g(X,ϕZ)Y ] + η(ϕZ)[η(Y )X − η(X)Y ]

+[η(Y )g(X,ϕZ)− η(X)g(Y, ϕZ)]ξ + [g(X,ϕ2Z)ϕY − g(Y, ϕ2Z)ϕX]}

+
c+ 5

2
g(X,ϕY )ϕ2Z.

Or,

R̊(X,Y )ϕZ =
c− 3

4
{[g(Y, ϕZ)X − g(X,ϕZ)Y ] + [η(Y )g(X,ϕZ)− η(X)g(Y, ϕZ)]ξ

+[g(X,ϕ2Z)ϕY − g(Y, ϕ2Z)ϕX]}+
c+ 5

2
g(X,ϕY )ϕ2Z.
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Taking inner product of the preceding equation with ϕW , we get

g(R̊(X,Y )ϕZ,ϕW ) =
c− 3

4
{[g(Y, ϕZ)g(X,ϕW )− g(X,ϕZ)g(Y, ϕW )]

+[η(Y )g(X,ϕZ)− η(X)g(Y, ϕZ)]g(ξ, ϕW )

+[g(X,ϕ2Z)g(ϕY, ϕW )− g(Y, ϕZ)g(ϕX,ϕW )]}

+
c+ 5

2
g(X,ϕY )g(ϕ2Z,ϕW ).

Using (12), we get

−g(ϕR̊(X,Y )ϕZ,W ) =
c− 3

4
{[g(Y, ϕZ)g(X,ϕW ) + g(X,ϕZ)g(ϕY,W )]

−[g(X,ϕ2Z)g(ϕ2Y,W )− g(ϕY, ϕZ)g(ϕX,ϕW )]}

+
c+ 5

2
g(X,ϕY )g(ϕZ,W ).

Contracting X and W and using definition, we get

−2S̊∗(Y, Z) =
c− 3

4
{g(ϕY, ϕZ)− [g(ϕY, ϕZ)− g(ϕY, ϕZ)2(n− 1)]}+

c+ 5

2
g(ϕY, ϕZ).

Or,

−2S̊∗(Y, Z) =
(c− 3)(n− 1)

2
g(ϕY, ϕZ) +

c+ 5

2
g(ϕY, ϕZ).

Or,

S̊∗(Y,Z) = −n(c− 3) + 8

4
g(ϕY, ϕZ).

Replacing Y, Z by X,Y respectively we get the result. �

Corollary 5.2 In a Lorentzion Sasakian space form,

S̊∗(X, ξ) = 0. (36)

Theorem 5.3 If M(c) is a Lorentzian Sasakian space form with generalized Tanaka connection

and (M,V, g) a ∗-Ricci soliton, where V is a pointwise collinear vector field with ξ. Then V is

a constant multiple of ξ and the soliton is steady.

Proof Let V be pointwise collinear vector field with ξ i.e. V = fξ, where f is a function

on the Lorentzian Sasakian manifold M . Then (LV g + 2S̊∗ + 2λg)(X,Y ) = 0, implies

g(∇̊Xfξ, Y ) + g(∇̊Y fξ,X) + 2S∗(X,Y ) + 2λg(X,Y ) = 0.

By (24),

−(Xf)η(Y )− (Y f)η(X) + 2S̊∗(X,Y ) + 2λg(X,Y ) = 0. (37)
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Replacing Y by ξ in (37) it follows that

−(Xf)− (ξf)η(X) + 2S̊∗(X, ξ) + 2λη(X) = 0.

Using (36),

Xf + (ξf)η(X)− 2λη(X) = 0. (38)

Put X = ξ,

ξf = λ.

From (38),

Xf = λη(X).

Or,

df = λη. (39)

Applying (d) in (39),

λdη = 0.

Since dη 6= 0 for Lorentzian Sasakian manifold, we have λ = 0. So by (39), V is constant

multiple of ξ and as λ = 0, the soliton is steady. �

§6. *-Conformal Ricci Soliton on Lorentzian Sasakian Space Form with Respect to

Generalized Tanaka Connection

Theorem 6.1 If M(c) is a Lorentzian Sasakian space form with generalized Tanaka connection

and (M,V, g) a ∗-conformal Ricci soliton, where V is a pointwise collinear vector field with ξ.

Then V is a constant multiple of ξ and the soliton is expanding or steady or shrinking according

as p < − 2
2n+1 , p = − 2

2n+1 or p > − 2
2n+1 .

Proof Let V be pointwise collinear vector field with ξ i.e. V = hξ, where h is a function

on the Lorentzian Sasakian manifold M . Then
(
LV g + 2S̊∗ +

[
2λ−

(
p+ 2

2n+1

)])
(X,Y ) = 0,

implies

g(∇̊Xhξ, Y ) + g(∇̊Y hξ,X) + 2S∗(X,Y ) +

[
2λ−

(
p+

2

2n+ 1

)]
g(X,Y ) = 0.

By (24),

−(Xh)η(Y )− (Y h)η(X) + 2S̊∗(X,Y ) +

[
2λ−

(
p+

2

2n+ 1

)]
g(X,Y ) = 0. (40)

Replacing Y by ξ in (40) it follows that

−(Xh)− (ξh)η(X) + 2S̊∗(X, ξ) +

[
2λ−

(
p+

2

2n+ 1

)]
η(X) = 0.
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Using (36),

Xb+ (ξh)η(X)−
[
2λ−

(
p+

2

2n+ 1

)]
η(X) = 0. (41)

Puting X = ξ,

ξh = λ− 1

2

(
p+

2

2n+ 1

)
.

From (41),

Xh =

(
λ− 1

2

(
p+

2

2n+ 1

))
η(X).

Or,

dh =

(
λ− 1

2

(
p+

2

2n+ 1

))
η. (42)

Applying (d) in (42), (
λ− 1

2

(
p+

2

2n+ 1

))
dη = 0.

Since dη 6= 0, we have λ = 1
2

(
p+ 2

2n+1

)
. So by (42), V is constant multiple of ξ. Also we

see that the soliton is expanding or steady or shrinking according as p < − 2
2n+1 , p = − 2

2n+1 or

p > − 2
2n+1 . �

Theorem 6.2 If M(c) is a Lorentzian Sasakian space form with generalized Tanaka connection

and (M,V, g) a ∗-conformal η−Ricci soliton, where V is a pointwise collinear vector field with ξ.

Then V is a constant multiple of ξ and the soliton is expanding or steady or shrinking according

as p < 2µ− 2
2n+1 or p = 2µ− 2

2n+1 or p > 2µ− 2
2n+1 .

Proof Let V be pointwise co-linear vector field with ξ i.e. V = ρξ, where ρ is a function

on the Lorentzian Sasakian manifold M . Then(
LV g + 2S̊∗ +

[
2λ−

(
p+

2

2n+ 1

)]
+ +2µη ⊗ η

)
(X,Y ) = 0,

which implies

g(∇̊Xρξ, Y ) + g(∇̊Y ρξ,X) + 2S∗(X,Y )

+

[
2λ−

(
p+

2

2n+ 1

)]
g(X,Y ) + 2µη(X)η(Y ) = 0.

By (24),

−(Xρ)η(Y )−(Y ρ)η(X)+2S̊∗(X,Y )+

[
2λ−

(
p+

2

2n+ 1

)]
g(X,Y )+2µη(X)η(Y ) = 0. (43)

Replacing Y by ξ in (43) it follows that

−(Xρ)− (ξρ)η(X) + 2S̊∗(X, ξ) +

[
2λ−

(
p+

2

2n+ 1

)]
η(X) + 2µη(X) = 0.
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Using (36),

Xρ+ (ξρ)η(X)−
[
2λ−

(
p+

2

2n+ 1

)]
η(X)− 2µη(X) = 0. (44)

Put X = ξ,

ξρ = λ− 1

2

(
p+

2

2n+ 1

)
+ µ.

From (44),

Xρ =

(
λ− 1

2

(
p+

2

2n+ 1

)
+ µ

)
η(X).

Or,

dρ =

(
λ− 1

2

(
p+

2

2n+ 1

)
+ µ

)
η. (45)

Applying (d) in (45), (
λ− 1

2

(
p+

2

2n+ 1

)
+ µ

)
dη = 0.

Since dη 6= 0, we have λ = 1
2

(
p+ 2

2n+1

)
− µ. So by (45), V is constant multiple of ξ.

Also we see that the soliton is expanding or steady or shrinking according as p < 2µ− 2
2n+1 or

p = 2µ− 2
2n+1 or p > 2µ− 2

2n+1 . �

§7. Generalized Ricci Soliton on Lorentzian Sasakian Space Form with Respect to

Generalized Tanaka Connection

We defined V # in the equation (11) by

V #(X) = g(V,X).

Replaced S by S̊, then (11) becomes

LV g = −2aV # � V # + 2bS̊ + 2λg. (46)

Theorem 7.1 If a Lorentzian Sasakian space form M(c) with generalized Tanaka connection

is a generalized Ricci soliton. Then

λ =
b[n(c− 3) + 8](n− 1)− a

2n− 1
.

Proof The equation LV g = −2aV # � V # + 2bS̊ + 2λg, implies

g(∇̊Xξ, Y ) + g(X, ∇̊Y ξ) = −2aη(X)η(Y ) + 2bS̊(X,Y ) + 2λg(X,Y ).
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Using (24), we get

aη(X)η(Y )− bS̊(X,Y )− λg(X,Y ) = 0. (47)

Using (30), we have

aη(X)η(Y )− bn(c− 3) + 8

2
g(ϕX,ϕY )− λg(X,Y ) = 0.

Contracting X and Y , we get

−a+ b[n(c− 3) + 8](n− 1)− λ(2n− 1) = 0.

Therefore, this implies

λ =
b[n(c− 3) + 8](n− 1)− a

2n− 1
. (48)

This completes the proof. �

We introduce the generalized conformal Ricci soliton equation on a manifold of dimension

n as

LV g =

[
2λ−

(
p+

2

n

)]
g − 2aV # � V # + 2bS. (49)

where V ∈ Γ(TM) and LV g is the Lie-derivative of g along V and V # the canonical one-form

associated to V and a, b, λ some constants. Taking V #(X) = g(V,X), and replace S by S̊.

Then, (49) becomes

LV g(X,Y ) =

[
2λ−

(
p+

2

n

)]
g(X,Y )− 2aV #(X)� V #(Y ) + 2bS̊(X,Y ). (50)

Theorem 7.2 If a Lorentzian Sasakian space form M(c) with generalized Tanaka connection

is a generalized conformal Ricci soliton. Then the soliton is expanding or steady or shrinking

according as p < 2aµ2 − 2
2n+1 or p = 2a− 2

2n+1 or p > 2aµ2 − 2
2n+1 .

Proof The equation (50) implies

g(∇̊Xξ, Y ) + g(X, ∇̊Y ξ) =

[
2λ−

(
p+

2

2n+ 1

)]
g(X,Y )− 2aµ2η(X)η(Y ) + 2bS̊(X,Y ).

By (24), [
2λ−

(
p+

2

2n+ 1

)]
g(X,Y )− 2aη(X)η(Y ) + 2bS̊(X,Y ) = 0.

Replacing Y by ξ it follows that

−
[
λ− 1

2

(
p+

2

2n+ 1

)]
η(X)− aη(X) + bS̊(X, ξ) = 0.
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By equation (30), we have

−
[
λ− 1

2

(
p+

2

2n+ 1

)]
η(X)− aη(X) = 0.

Or,

−
[
λ− 1

2

(
p+

2

2n+ 1

)
+ a

]
η(X) = 0.

This implies

λ =
1

2

(
p+

2

2n+ 1

)
− a.

Thus, the soliton is expanding or steady or shrinking according as p < 2aµ2 − 2
2n+1 or p =

2a− 2
2n+1 or p > 2aµ2 − 2

2n+1 . �
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