International J.Math. Combin. Vol.3(2023), 118-128

Open Neighborhood Coloring of a Generalized Antiprism Graph

Narahari Narasimha Swamy

Department of Mathematics, University College of Science, Tumkur University Tumakuru, Karnataka State, India

Badekara Sooryanarayana

Department of Mathematical & Computational Studies, Dr.Ambedkar Institute of Technology Bengaluru, Karnataka State, India

Nagesh Hadonahalli Mudalagiraiah

Department of Science & Humanities, PES University Electronic City Campus, Hosur Road, Bengaluru, Karnataka State, India

 $E\text{-mail: } narahari_nittur@yahoo.com, dr_bsnrao@dr-ait.org, nageshhm@pes.edu$

Abstract: An open neighborhood coloring of a graph is a coloring in which vertices adjacent with a common vertex are colored differently. The minimum number of colors used in an open neighborhood coloring of a graph G is called the open neighborhood chromatic number of G. We determine this parameter for a generalization of the antiprism graph in this paper.

Key Words: Coloring, chromatic number, open neighborhood coloring, Smarandachely open neighborhood coloring, antiprism.

AMS(2010): 05C15.

§1. Introduction

A vertex coloring or simply, a coloring of a graph G = (V, E) is an assignment of colors to the vertices of G. A k-coloring of G is a surjection $c : V \to \{1, 2, \dots, k\}$. A proper coloring of G is an assignment of colors to the vertices of G so that adjacent vertices are colored differently. A proper k-coloring of G is a surjection $c : V \to \{1, 2, \dots, k\}$ such that $c(u) \neq c(v)$ if u and v are adjacent in G. The minimum k for which there is a proper k-coloring of G is called the chromatic number of G denoted $\chi(G)$.

An open neighborhood coloring [5] of a graph is a coloring in which vertices adjacent with a common vertex are colored differently. In other words, an open neighborhood coloring of a graph G(V, E) is a coloring $c : V \to Z^+$ such that for each $w \in V$ and every $u, v \in N(w)$, $c(u) \neq c(v)$ and generally, for a subgraph Γ such as $P_2, K_{1,3}$ of G if there is an open neighborhood coloring c on graph $G - \Gamma$, G is said to be a *Smarandachely open neighborhood coloring* on Γ . Clearly, if $\Gamma = \emptyset$, a Smarandachely open neighborhood coloring of G is nothing else but an open neighborhood coloring of G. The minimum number of colors used in an open neighborhood coloring of a graph G is called the open neighborhood chromatic number of G, denoted $\chi_{onc}(G)$.

¹Received July 3, 2023, Accepted August 31, 2023.

The concept of open neighborhood coloring was introduced in the year 2013 by Geetha *et al.* [5]. Further, in [6], this parameter has been obtained for the Prism graph which is a particular case of the generalised Petersen graph GP(n,k). In [8, 9], the open neighborhood chromatic number has been obtained for the class of antiprism graphs and some path related graphs such as line graph, total graph and transformation graphs of a path.

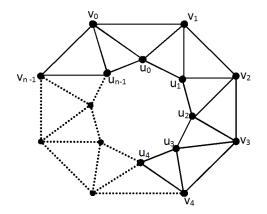
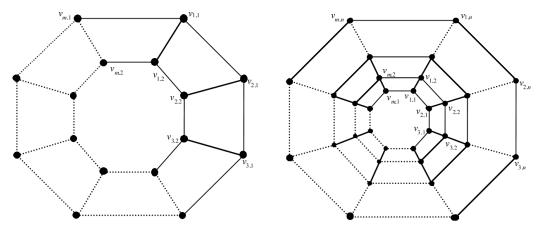


Figure 1. *n*-Antiprism graph

The graph obtained by replacing the faces of a polyhedron with its edges and vertices is called the *skeleton* [3] of the polyhedron. An *n*-antiprism [2], $n \ge 3$, is a semiregular polyhedron constructed with 2*n*-gons and 2*n* triangles. It is made up of two *n*-gons on top and bottom, separated by a ribbon of 2*n* triangles, with the two *n*-gons being offset by one ribbon segment. The graph corresponding to the skeleton of an *n*-antiprism is called the *n*-antiprism graph, denoted by Q_n , $n \ge 3$ as shown in Figure 1. As seen from this figure, Q_n has 2*n* vertices and 4n edges, and is isomorphic to the circulant graph Ci_{2n}(1, 2).



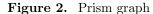


Figure 3. Generalized prism graph

A prism graph [7] Y_n is a graph corresponding to the skeleton of an *n*-prism and has 2n vertices and 3n edges as shown in Figure 2. A generalized prism graph [4], denoted $Y_{m,n} = C_m \times P_n$, is the graph having mn vertices and m(2n-1) edges as shown in Figure 3. Its

vertex set is given by $V(Y_{m,n}) = V(C_m \times P_n) = \{v_{i,j} : 1 \le i \le m, 1 \le j \le n\}$ and its edge set $E(Y_{m,n}) = E(C_m \times P_n) = \{v_{i,j}v_{i+1,j} : 1 \le i \le m-1, 1 \le j \le n\} \bigcup \{v_{m,j}v_{1,j} : 1 \le j \le n\} \bigcup \{v_{i,j}v_{i,j+1} : 1 \le i \le m, 1 \le j \le n-1\}.$

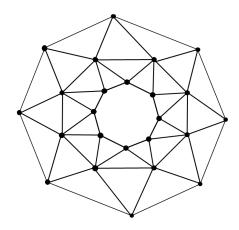


Figure 4. Generalized antiprism graph A_8^3

As introduced in [1], the generalized antiprism A_m^n can be obtained by completing the generalized prism $C_m \times P_n$ by edges $\{v_{i,j+1}v_{i+1,j} : 1 \leq i \leq m-1, 1 \leq j \leq n-1\} \bigcup \{v_{m,j+1}v_{1,j} : 1 \leq j \leq n-1\}$ where $V(A_m^n) = V(C_m \times P_n) = \{v_{i,j} : 1 \leq i \leq m, 1 \leq j \leq n\}$ is the vertex set of A_m^n . Thus, $E(A_m^n) = E(C_m \times P_n) \bigcup \{v_{i,j+1}v_{i+1,j} : 1 \leq i \leq m, 1 \leq j \leq n-1\}$ is the edge set of A_m^n , where *i* is taken modulo *m*. In particular, if n = 2, we obtain the antiprism graph Q_m . For example, the graph A_8^3 is as shown in Figure 4.

§2. Open Neighborhood Coloring of A_m^3

In this section, we obtain the open neighborhood chromatic number of the generalized antiprism graph A_m^n for $m \ge 3$ and n = 3. Using this result, we determine the open neighborhood chromatic number of the generalized antiprism graph A_m^n for any $m \ge 3$, $n \ge 2$ in the following section.

To begin with, we recall some of the important definitions and results obtained by various authors for immediate reference.

Theorem 2.1 ([5]) If f is an open neighborhood k-coloring of G(V, E) with $\chi_{onc}(G) = k$, then $f(u) \neq f(v)$ holds where u, v are the end vertices of a path of length 2 in G.

Theorem 2.2 ([5]) For any graph G(V, E), $\chi_{onc}(G) \ge \Delta(G)$.

Theorem 2.3 ([5]) If H is a connected subgraph of G, then $\chi_{onc}(H) \leq \chi_{onc}(G)$.

Theorem 2.4 ([5]) Let G(V, E) be a connected graph on $n \ge 3$ vertices. Then $\chi_{onc}(G) = n$ if and only if $N(u) \cap N(v) \neq \emptyset$ holds for every pair of vertices $u, v \in V(G)$.

Theorem 2.5 ([8]) For an antiprism graph $Q_n, n \ge 3$,

$$\chi_{onc}(Q_n) = \begin{cases} 5, & \text{if } n \equiv 0 \pmod{5}, \\ 7, & \text{if } n = 7, \\ 8, & \text{if } n = 4, \\ 6, & \text{otherwise.} \end{cases}$$

Observation 2.6 For $m \ge 3$, $Q_m \subseteq A_m^3$ so that $\chi_{onc}(A_m^3) \ge \chi_{onc}(Q_m)$.

Definition 2.7 ([6]) In a graph G, a subset V_1 of V(G) such that no two vertices of V_1 are end vertices of a path of length two in G is called a P_3 -independent set of G.

Lemma 2.8 For the generalized antiprism graph $A_m^3, m \ge 3$, $\chi_{onc}(A_m^3) \ge 7$.

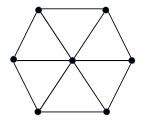


Figure 5. Subgraph H of A_m^3

Proof For each $m \ge 3$, it is easy to observe that A_m^3 contains the subgraph H in Figure 5. Further, in H, there is a path of length two between every pair of vertices so that $\chi_{onc}(H) = 7$. Hence, by Theorem 2.3, $\chi_{onc}(A_m^3) \ge 7$.

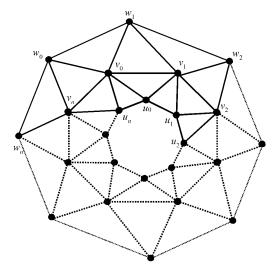


Figure 6. Generalized antiprism graph A_m^3

Observation 2.9 In the generalized antiprism graph A_m^3 as shown in Figure 6,

(i) The only vertices that are connected to a vertex $u_i, 0 \le i \le m-1$ by a path of length two are $u_{i\pm 1}, u_{i\pm 2}, v_i, v_{i\pm 1}, v_{i+2}, w_i, w_{i+1}, w_{i+2}$ where the suffix is under modulo m;

(*ii*) The only vertices that are connected to a vertex $v_i, 0 \le i \le m-1$ by a path of length two are $u_i, u_{i\pm 1}, u_{i-2}, v_{i\pm 1}, v_{i\pm 2}, w_{i\pm 1}, w_i, w_{i+2}$ where the suffix is under modulo m;

(*iii*) The only vertices that are connected to a vertex $w_i, 0 \le i \le m-1$ by a path of length two are $u_i, u_{i-1}, u_{i-2}, v_{i\pm 1}, v_i, v_{i-2}, w_{i\pm 1}, w_{i\pm 2}$ where the suffix is under modulo m.

Lemma 2.10 For the generalized antiprism graph A_m^3 ,

$$\chi_{onc}(A_m^3) = \begin{cases} 9, & \text{if } m = 3, 6, \\ 8, & \text{if } m = 4, 5. \end{cases}$$

Proof We prove the result by considering the following cases.

Case 1. m = 3.

It is easy to observe that, in A_3^3 , every vertex is connected to every other vertex by a path of length two. Thus, in any open neighborhood coloring of A_3^3 , every vertex has to be given a different color so that $\chi_{onc}(A_3^3) = 9$.

Case 2. m = 4.

By Observation 2.6 and Theorem 2.5, we have $\chi_{onc}(A_4^3) \ge \chi_{onc}(Q_4) = 8$. The reverse inequality can be established from Figure 7. Hence, $\chi_{onc}(A_4^3) = 8$.

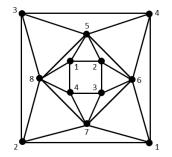


Figure 7. An open neighborhood coloring of the graph A_4^3

Case 3. m = 5, 6.

By observation, it is seen that a color can be assigned to not more than two vertices in any open neighborhood coloring of A_5^3 and A_6^3 so that $\chi_{onc}(A_5^3) \ge 8$ and $\chi_{onc}(A_6^3) \ge 9$. Further, the open neighborhood coloring of A_5^3 and A_6^3 as shown in Figure 8 ensure that $\chi_{onc}(A_5^3) \le 8$ and $\chi_{onc}(A_6^3) \le 9$.

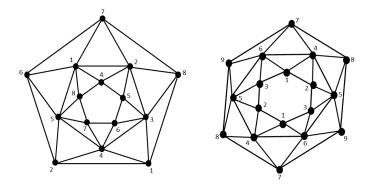


Figure 8. An open neighborhood coloring of the graphs A_5^3 and A_6^3

This completes the proof.

Lemma 2.11 In the generalized antiprism graph $A_m^3, m \ge 7$, for each $l, 0 \le l \le 6$, the set $S_l = \{u_i, v_j, w_k | i \equiv l \pmod{7}, j \equiv l + 3 \pmod{7} \text{ and } k \equiv l - 1 \pmod{7} \}$ is a P_3 -independent set if and only if $m \equiv 0 \pmod{7}$.

Proof Let $m \equiv 0 \pmod{7}$. It is given that $S_l = \{u_i, v_j, w_k | i \equiv l \pmod{7}, j \equiv l + 3 \pmod{7}$ and $k \equiv l - 1 \pmod{7}$. It is easy to observe that each $S_i, 0 \leq i \leq 6$, is a P_3 -independent set of A_m^3 .

We prove the converse by the method of contraposition. Suppose that $m \neq 0 \pmod{7}$. Then, we have the following cases.

Case 1. $m \equiv 1 \pmod{7}$. Then, $u_0, u_{m-1} \in S_0$. In such a case, S_0 is not a P_3 - independent set as u_0 and u_{m-1} are end vertices of a path of length two.

Case 2. $m \equiv 2 \pmod{7}$. Then, $u_0, u_{m-2} \in S_0$. But u_0 and u_{m-2} are end vertices of a path of length two so that S_0 is not a P_3 - independent set.

The other cases follow similarly.

Theorem 2.12 For the generalized antiprism graph $A_m^3, m \ge 3$, $\chi_{onc}(A_m^3) = 7$ if and only if $m \equiv 0 \pmod{7}$.

Proof Suppose $m \equiv 0 \pmod{7}$. From Lemma 2.8, we have $\chi_{onc}(A_m^3) \ge 7$. Further, by Lemma 2.11, each $S_l = \{u_i, v_j, w_k | i \equiv l \pmod{7}, j \equiv l + 3 \pmod{7} \text{ and } k \equiv l - 1 \pmod{7} \}, 0 \le l \le 6$ is a P_3 -independent set of A_m^3 .

Define a function $c: V(A_m^3) \to \{1, 2, \dots, 7\}$ as c(v) = l + 1 such that $v \in S_l, 0 \leq l \leq 6$. Clearly, c is an open neighborhood coloring of A_m^3 so that $\chi_{onc}(A_m^3) \leq 7$. Thus, $\chi_{onc}(A_m^3) = 7$ if $m \equiv 0 \pmod{7}$.

Conversely, let $\chi_{onc}(A_m^3) = 7$. In view of Theorem 2.5 and Lemma 2.10, we have $m \ge 7$. By observation, in the graph A_m^3 , none of the vertices $v_{i-1}, v_i, v_{i+1}, u_{i-1}, u_i, w_i, w_{i+1}$, the suffix taken under modulo 7, can be given the same color in an open neighborhood coloring. Thus, if $m \ne 0 \pmod{7}$, then seven colors are not sufficient to have an open neighborhood coloring of A_m^3 so that $m \equiv 0 \pmod{7}$.

Observation 2.13 Every integer $m \ge 11$, with $m \ne 0 \pmod{7}, m \ne 13, 17$ can be written as m = 4k + 7l for integers $k \ge 1, l \ge 0$.

Theorem 2.14 For $m \ge 3$,

$$\chi_{onc}(A_m^3) = \begin{cases} 9, & \text{if } m = 3, 6, \\\\ 7, & \text{if } m \equiv 0 \pmod{7}, \\\\ 8, & \text{otherwise.} \end{cases}$$

Proof The result holds for $m \leq 6$ and $m \equiv 0 \pmod{7}$ from Lemma 2.10 and Theorem 2.12. We now consider the case when $m \geq 3$ is an integer such that $m \neq 3, 6$ and $m \not\equiv 0 \pmod{7}$. In view of Theorem 2.12, $\chi_{once}(A_m^3) \geq 8$. Hence, it suffices to show that, in this case, $\chi_{once}(A_m^3) \leq 8$ for which we take various cases as follows.

Case 1. m = 8. Consider the coloring $c: V(A_8^3) \to \{1, 2, \dots, 8\}$ defined by c(v) = i + 1 for $v = u_i, v = v_{i+6}$ or $v = w_{i+3}$ for $0 \leq i \leq 7$, the suffix taken under modulo 8. It is easy to verify that c is an open neighborhood coloring of A_8^3 using eight colors so that $\chi_{once}(A_8^3) \leq 8$.

Case 2. m = 9. Observing that the coloring of A_9^3 in Figure 9 is an open neighborhood coloring, $\chi_{once}(A_9^3) \leq 8$.

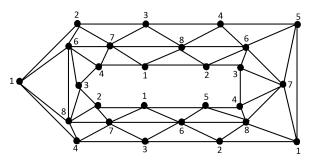


Figure 9. An open neighborhood coloring of A_9^3

Case 3. As seen from Figure 10, A_{10}^3 can be colored with eight colors in an open neighborhood coloring so that $\chi_{once}(A_{10}^3) \leq 8$.

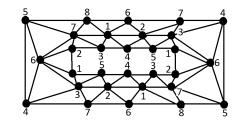


Figure 10. An open neighborhood coloring of A_{10}^3

Case 4. For m = 13 and m = 17, the coloring patterns are similar to Case 2.

Case 5. m is any other integer. Then, by Observation 2.13, m = 4k + 7l for some integers $k \ge 1, l \ge 0$. Define a coloring $c: V(A_m^3) \to \{1, 2, 3, 4, 5, 6, 7, 8\}$ as

$$c(u_i) = \begin{cases} 1, & \text{if } i \equiv 0 \pmod{4} \text{ and } 0 \leq i \leq 4k - 1 \text{ or } i - 4k \equiv 0 \pmod{7} \text{ and } 4k \leq i \leq m - 1 \\ 2, & \text{if } i \equiv 1 \pmod{4} \text{ and } 0 \leq i \leq 4k - 1 \text{ or } i - 4k \equiv 1 \pmod{7} \text{ and } 4k \leq i \leq m - 1 \\ 3, & \text{if } i \equiv 2 \pmod{4} \text{ and } 0 \leq i \leq 4k - 1 \text{ or } i - 4k \equiv 2 \pmod{7} \text{ and } 4k \leq i \leq m - 1 \\ 4, & \text{if } i \equiv 3 \pmod{4} \text{ and } 0 \leq i \leq 4k - 1 \text{ or } i - 4k \equiv 3 \pmod{7} \text{ and } 4k \leq i \leq m - 1 \\ 5, & i - 4k \equiv 4 \pmod{7} \text{ and } 4k \leq i \leq m - 1 \\ 6, & i - 4k \equiv 5 \pmod{7} \text{ and } 4k \leq i \leq m - 1 \\ 7, & \text{otherwise} \end{cases}$$

$$c(v_i) = \begin{cases} 1, \quad i - 4k - 2 \equiv 3 \pmod{7} \text{ and } 4k + 2 \leq i \leq m - 1 \\ 2, \quad i - 4k - 2 \equiv 4 \pmod{7} \text{ and } 4k + 2 \leq i \leq m - 1 \\ 3, \quad i - 4k - 2 \equiv 5 \pmod{7} \text{ and } 4k + 2 \leq i \leq m - 1 \text{ or } i = 0 \\ 4, \quad i - 4k - 2 \equiv 6 \pmod{7} \text{ and } 4k + 2 \leq i \leq m - 1 \text{ or } i = 1 \\ 5, \quad \text{if } i - 2 \equiv 0 \pmod{4} \text{ and } 2 \leq i \leq 4k + 1 \\ \text{or } i - 4k - 2 \equiv 0 \pmod{7} \text{ and } 4k + 2 \leq i \leq m - 1 \\ 6, \quad \text{if } i - 2 \equiv 1 \pmod{4} \text{ and } 2 \leq i \leq 4k + 1 \\ \text{or } i - 4k - 2 \equiv 1 \pmod{7} \text{ and } 4k + 2 \leq i \leq m - 1 \\ 7, \quad \text{if } i - 2 \equiv 2 \pmod{4} \text{ and } 2 \leq i \leq 4k + 1 \\ \text{or } i - 4k - 2 \equiv 2 \pmod{7} \text{ and } 4k + 2 \leq i \leq m - 1 \\ 8, \quad \text{otherwise} \end{cases}$$

and

$$c(w_i) = \begin{cases} 1, & \text{if } i \equiv 3 \pmod{4} \text{ and } 3 \leq i \leq 4k+2 \\ & \text{or } i-4k \equiv 3 \pmod{7} \text{ and } 4k+3 \leq i \leq m-1 \\ 2, & \text{if } i \equiv 0 \pmod{4} \text{ and } 3 \leq i \leq 4k+2 \\ & \text{or } i-4k \equiv 4 \pmod{7} \text{ and } 4k+3 \leq i \leq m-1 \\ 3, & \text{if } i \equiv 1 \pmod{4} \text{ and } 3 \leq i \leq 4k+2 \\ & \text{or } i-4k \equiv 5 \pmod{7} \text{ and } 4k+3 \leq i \leq m-1 \\ 4, & \text{if } i \equiv 2 \pmod{4} \text{ and } 3 \leq i \leq 4k+2 \\ & \text{or } i-4k \equiv 6 \pmod{7} \text{ and } 4k+3 \leq i \leq m-1 \\ 5, & i-4k \equiv 0 \pmod{7} \text{ and } 4k+3 \leq i \leq m-1 \text{ or } i=0 \\ 6, & i-4k \equiv 1 \pmod{7} \text{ and } 4k+3 \leq i \leq m-1 \text{ or } i=1 \\ 7, & \text{otherwise.} \end{cases}$$

It is easy to verify that c is an open neighborhood coloring of A_m^3 so that $\chi_{onc}(A_m^3) \leq 8$. \Box

§3. Open Neighborhood Coloring of A_m^n

We recall that the generalized antiprism graph A_m^n is obtained by completing the generalized prism $C_m \times P_n$ by edges $\{v_{i,j+1}v_{i+1,j} : 1 \leq i \leq m-1, 1 \leq j \leq n-1\} \bigcup \{v_{m,j+1}v_{1,j} : 1 \leq j \leq n-1\}$ where $V(A_m^n) = V(C_m \times P_n) = \{v_{i,j} : 1 \leq i \leq m, 1 \leq j \leq n\}$ is the vertex set of A_m^n . Thus, $E(A_m^n) = E(C_m \times P_n) \bigcup \{v_{i,j+1}v_{i+1,j} : 1 \leq i \leq m, 1 \leq j \leq n-1\}$ is the edge set of A_m^n , where *i* is taken modulo *m*.

Observation 3.1 For $n_2 \ge n_1 \ge 2$ and $m \ge 3$, $Q_m = A_m^2 \subseteq A_m^{n_1} \subseteq A_m^{n_2}$ so that $\chi_{onc}(Q_m) \le \chi_{onc}(A_m^{n_1}) \le \chi_{onc}(A_m^{n_2})$.

Lemma 3.2 For the antiprism graph A_3^n and A_6^n , $n \ge 3$, $\chi_{onc}(A_3^n) = \chi_{onc}(A_6^n) = 9$.

Proof By Lemma 2.10, we have $\chi_{onc}(A_3^3) = \chi_{onc}(A_6^3) = 9$. Thus, By Observation 3.1, for $n \ge 3, \chi_{onc}(A_3^n) = \chi_{onc}(A_6^n) \ge 9$.

To establish the reverse inequality, for m = 3 or 6, define a function $c : V(A_m^n) \to \{1, 2, \dots, 9\}$ as $c_{(i,j)} = l$ with $i \equiv h \pmod{3}$ & $j \equiv k \pmod{3}$ and l corresponding to the respective hk^{th} entry in the following table.

$h\setminus k$	0	1	2
0	9	3	6
1	7	1	4
2	8	2	5

Table 1	L.
---------	----

It is easy to verify that the above coloring is an open neighborhood coloring of A_m^n . Hence, $\chi_{onc}(A_m^n) \leq 9.$

To conclude, $\chi_{onc}(A_3^n) = \chi_{onc}(A_6^n) = 9$ for $n \ge 3$.

Theorem 3.3 For any integers $m \ge 3, n \ge 2$,

$$\chi_{onc}(A_m^n) = \begin{cases} 7, & \text{if } m \equiv 0 \pmod{7}, \\ 5, & \text{if } n = 2 \text{ and } m \equiv 0 \pmod{5}, \\ 6, & \text{if } n = 2 \text{ and } m \neq 4, \\ 9, & \text{if } n \geqslant 3 \text{ and } m = 3, 6, \\ 8, & \text{otherwise.} \end{cases}$$

Proof In view of Theorems 2.5 and 2.14, the result holds for n = 2 and n = 3. For $n \ge 4$, we consider the following cases.

Case 1. For m = 3, 6, the result follows from Lemma 3.2.

Case 2. For m = 5, 9, 10, 13, 17, following the respective coloring patterns as in Lemma 2.10 and Theorem 2.14 yields an open neighborhood coloring with eight colors.

Case 3. For any other $m \ge 3$, following Observation 3.1 and Theorem 2.14, we see that $\chi_{onc}(A_m^n) \ge 8$. To prove the reverse inequality, define the coloring $c: V(A_m^n) \to \{1, 2, \dots, 8\}$ as

$$(i) \ c(v_{i,1}) = \begin{cases} 1, & \text{if } i \equiv 1(\mod 4) \text{ and } 0 \leq i \leq 4k \text{ or } i - 4k \equiv 1(\mod 7) \text{ and } 4k + 1 \leq i \leq m \\ 2, & \text{if } i \equiv 2(\mod 4) \text{ and } 0 \leq i \leq 4k \text{ or } i - 4k \equiv 2(\mod 7) \text{ and } 4k + 1 \leq i \leq m \\ 3, & \text{if } i \equiv 3(\mod 4) \text{ and } 0 \leq i \leq 4k \text{ or } i - 4k \equiv 3(\mod 7) \text{ and } 4k + 1 \leq i \leq m \\ 4, & \text{if } i \equiv 0(\mod 4) \text{ and } 0 \leq i \leq 4k \text{ or } i - 4k \equiv 4(\mod 7) \text{ and } 4k + 1 \leq i \leq m \\ 5, & i - 4k \equiv 5(\mod 7) \text{ and } 4k + 1 \leq i \leq m \\ 6, & i - 4k \equiv 6(\mod 7) \text{ and } 4k + 1 \leq i \leq m \\ 7, & \text{otherwise} \end{cases}$$

$$(ii) \ c(v_{i,2}) = \begin{cases} 1, & i - 4k - 2 \equiv 4(\mod 7) \text{ and } 4k + 3 \leq i \leq m \\ 2, & i - 4k - 2 \equiv 5(\mod 7) \text{ and } 4k + 3 \leq i \leq m \\ 3, & i - 4k - 2 \equiv 6(\mod 7) \text{ and } 4k + 3 \leq i \leq m \\ 3, & i - 4k - 2 \equiv 0(\mod 7) \text{ and } 4k + 3 \leq i \leq m \text{ or } i = 1 \\ 4, & i - 4k - 2 \equiv 0(\mod 7) \text{ and } 4k + 3 \leq i \leq m \text{ or } i = 2 \\ 5, & \text{if } i \equiv 3(\mod 4) \text{ and } 3 \leq i \leq 4k + 2 \text{ or } i - 4k \equiv 3(\mod 7) \text{ and } 4k + 3 \leq i \leq m \\ 6, & \text{if } i \equiv 0(\mod 4) \text{ and } 3 \leq i \leq 4k + 2 \text{ or } i - 4k \equiv 3(\mod 7) \text{ and } 4k + 3 \leq i \leq m \\ 7, & \text{if } i \equiv 1(\mod 4) \text{ and } 3 \leq i \leq 4k + 2 \text{ or } i - 4k \equiv 5(\mod 7) \text{ and } 4k + 3 \leq i \leq m \\ 8, & \text{otherwise} \end{cases}$$

and (iii) $c(v_{i,j}) = c(v_{i-3,j-2})$ for $j \ge 3$ where i is taken under modulo m.

An illustration of the coloring c for the graph A_{29}^5 is given in Figure 11.

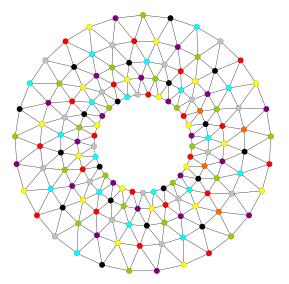


Figure 11. An open neighborhood coloring of A_{29}^5

It is easy to verify that the above coloring is an open neighborhood coloring of A_m^n . Hence, $\chi_{onc}(A_m^n) \leq 8.$

§4. Conclusion

The open neighborhood chromatic number of an antiprism graph Q_n has been determined in [8]. We have obtained this parameter for the generalized antiprism graph A_m^3 in this paper, by means of which, we have solved the problem of finding the open neighborhood chromatic number of A_m^n , $m \ge 3$, $n \ge 2$.

Acknowledgements

The research carried out in the paper has been supported by means of a Summer Fellowship of the Science Academies, India provided to the first author. The authors are indebted to the learned referees for their valuable comments and suggestions.

References

- M. Baca and M. Miller, Super edge-antimagic graphs: A wealth of problems and some solutions, BrownWalker Press, Boca Raton, Florida (2008).
- [2] H. S. M. Coxeter, Introduction to Geometry (2nd Edition), Wiley, New York (1969).
- [3] P. R. Cromwell, *Polyhedra*, Cambridge University Press, New York (1997).
- [4] J. A. Gallian, Dynamic survey: graph labeling, *Electronic J. Combinatorics*, DS6, 2007, pp. 1-58.
- [5] K. N. Geetha, K. N. Meera, N. Narahari and B. Sooryanarayana, Open neighborhood coloring of graphs, Int. J. Contemp. Math. Sci., 8(14), 2013, pp. 675-686.
- [6] K. N. Geetha, K. N. Meera, N. Narahari and B. Sooryanarayana, Open neighborhood coloring of prisms, J. Math. Fund. Sci., 45(3), 2013, pp. 245-262.
- [7] M. Hladnik, D. Marusic and T. Pisanski, Cyclic Haar graphs, *Discrete Mathematics*, 244, 2002, pp. 137-153.
- [8] N. Narahari, B. Sooryanarayana, and K. N. Geetha, Open neighborhood chromatic number of an antiprism graph, App. Math. E-Notes, 15, 2015, pp. 54-62.
- [9] N. Narahari and B. Sooryanarayana, Open neighbourhood colouring of some path related graphs, *Eurasian Math. Journal*, 6(4), 2015, pp. 77-91.