
International J.Math. Combin. Vol.3(2023), 118-128

Open Neighborhood Coloring of a Generalized Antiprism Graph

Narahari Narasimha Swamy

Department of Mathematics, University College of Science, Tumkur University

Tumakuru, Karnataka State, India

Badekara Sooryanarayana

Department of Mathematical & Computational Studies, Dr.Ambedkar Institute of Technology

Bengaluru, Karnataka State, India

Nagesh Hadonahalli Mudalagiraiah

Department of Science & Humanities, PES University

Electronic City Campus, Hosur Road, Bengaluru, Karnataka State, India

E-mail: narahari nittur@yahoo.com, dr bsnrao@dr-ait.org, nageshhm@pes.edu

Abstract: An open neighborhood coloring of a graph is a coloring in which vertices adjacent

with a common vertex are colored differently. The minimum number of colors used in an

open neighborhood coloring of a graph G is called the open neighborhood chromatic number

of G. We determine this parameter for a generalization of the antiprism graph in this paper.
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§1. Introduction

A vertex coloring or simply, a coloring of a graph G = (V,E) is an assignment of colors to the

vertices of G. A k-coloring of G is a surjection c : V → {1, 2, · · · , k}. A proper coloring of G

is an assignment of colors to the vertices of G so that adjacent vertices are colored differently.

A proper k-coloring of G is a surjection c : V → {1, 2, · · · , k} such that c(u) 6= c(v) if u and

v are adjacent in G. The minimum k for which there is a proper k-coloring of G is called the

chromatic number of G denoted χ(G).

An open neighborhood coloring [5] of a graph is a coloring in which vertices adjacent with

a common vertex are colored differently. In other words, an open neighborhood coloring of

a graph G(V,E) is a coloring c : V → Z+ such that for each w ∈ V and every u, v ∈ N(w),

c(u) 6= c(v) and generally, for a subgraph Γ such as P2,K1,3 ofG if there is an open neighborhood

coloring c on graph G − Γ, G is said to be a Smarandachely open neighborhood coloring on Γ.

Clearly, if Γ = ∅, a Smarandachely open neighborhood coloring of G is nothing else but an open

neighborhood coloring of G. The minimum number of colors used in an open neighborhood

coloring of a graph G is called the open neighborhood chromatic number of G, denoted χonc(G).
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The concept of open neighborhood coloring was introduced in the year 2013 by Geetha

et al. [5]. Further, in [6], this parameter has been obtained for the Prism graph which is a

particular case of the generalised Petersen graph GP (n, k). In [8, 9], the open neighborhood

chromatic number has been obtained for the class of antiprism graphs and some path related

graphs such as line graph, total graph and transformation graphs of a path.

Figure 1. n-Antiprism graph

The graph obtained by replacing the faces of a polyhedron with its edges and vertices is

called the skeleton [3] of the polyhedron. An n-antiprism [2], n ≥ 3, is a semiregular polyhedron

constructed with 2n-gons and 2n triangles. It is made up of two n-gons on top and bottom,

separated by a ribbon of 2n triangles, with the two n-gons being offset by one ribbon segment.

The graph corresponding to the skeleton of an n-antiprism is called the n−antiprism graph,

denoted by Qn, n ≥ 3 as shown in Figure 1. As seen from this figure, Qn has 2n vertices and

4n edges, and is isomorphic to the circulant graph Ci2n(1, 2).

Figure 2. Prism graph Figure 3. Generalized prism graph

A prism graph [7] Yn is a graph corresponding to the skeleton of an n-prism and has 2n

vertices and 3n edges as shown in Figure 2. A generalized prism graph [4], denoted Ym,n =

Cm × Pn, is the graph having mn vertices and m(2n − 1) edges as shown in Figure 3. Its
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vertex set is given by V (Ym,n) = V (Cm × Pn) = {vi,j : 1 6 i 6 m, 1 6 j 6 n} and its edge

set E(Ym,n) = E(Cm × Pn) = {vi,jvi+1,j : 1 6 i 6 m − 1, 1 6 j 6 n}
⋃
{vm,jv1,j : 1 6 j 6

n}
⋃
{vi,jvi,j+1 : 1 6 i 6 m, 1 6 j 6 n− 1}.

Figure 4. Generalized antiprism graph A3
8

As introduced in [1], the generalized antiprism An
m can be obtained by completing the

generalized prism Cm×Pn by edges {vi,j+1vi+1,j : 1 6 i 6 m−1, 1 6 j 6 n−1}
⋃
{vm,j+1v1,j :

1 6 j 6 n − 1} where V (An
m) = V (Cm × Pn) = {vi,j : 1 6 i 6 m, 1 6 j 6 n} is the vertex set

of An
m. Thus, E(An

m) = E(Cm × Pn)
⋃
{vi,j+1vi+1,j : 1 6 i 6 m, 1 6 j 6 n− 1} is the edge set

of An
m, where i is taken modulo m. In particular, if n = 2, we obtain the antiprism graph Qm.

For example, the graph A3
8 is as shown in Figure 4.

§2. Open Neighborhood Coloring of A3
m

In this section, we obtain the open neighborhood chromatic number of the generalized antiprism

graph An
m for m > 3 and n = 3. Using this result, we determine the open neighborhood

chromatic number of the generalized antiprism graph An
m for any m > 3, n > 2 in the following

section.

To begin with, we recall some of the important definitions and results obtained by various

authors for immediate reference.

Theorem 2.1 ([5]) If f is an open neighborhood k-coloring of G(V,E) with χonc(G) = k, then

f(u) 6= f(v) holds where u, v are the end vertices of a path of length 2 in G.

Theorem 2.2 ([5]) For any graph G(V,E), χonc(G) ≥ ∆(G).

Theorem 2.3 ([5]) If H is a connected subgraph of G, then χonc(H) ≤ χonc(G).

Theorem 2.4 ([5]) Let G(V,E) be a connected graph on n ≥ 3 vertices. Then χonc(G) = n if

and only if N(u)
⋂
N(v) 6= ∅ holds for every pair of vertices u, v ∈ V (G).



Open Neighborhood Coloring of a Generalized Antiprism Graph 121

Theorem 2.5 ([8]) For an antiprism graph Qn, n ≥ 3,

χonc(Qn) =



5, if n ≡ 0(mod 5),

7, if n = 7,

8, if n = 4,

6, otherwise.

Observation 2.6 For m > 3, Qm ⊆ A3
m so that χonc(A

3
m) > χonc(Qm).

Definition 2.7 ([6]) In a graph G, a subset V1 of V (G) such that no two vertices of V1 are end

vertices of a path of length two in G is called a P3-independent set of G.

Lemma 2.8 For the generalized antiprism graph A3
m,m ≥ 3, χonc(A

3
m) ≥ 7.

Figure 5. Subgraph H of A3
m

Proof For each m ≥ 3, it is easy to observe that A3
m contains the subgraph H in Figure 5.

Further, in H, there is a path of length two between every pair of vertices so that χonc(H) = 7.

Hence, by Theorem 2.3, χonc(A
3
m) ≥ 7. �

Figure 6. Generalized antiprism graph A3
m
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Observation 2.9 In the generalized antiprism graph A3
m as shown in Figure 6,

(i) The only vertices that are connected to a vertex ui, 0 ≤ i ≤ m− 1 by a path of length

two are ui±1, ui±2, vi, vi±1, vi+2, wi, wi+1, wi+2 where the suffix is under modulo m;

(ii) The only vertices that are connected to a vertex vi, 0 ≤ i ≤ m− 1 by a path of length

two are ui, ui±1, ui−2, vi±1, vi±2, wi±1, wi, wi+2 where the suffix is under modulo m;

(iii) The only vertices that are connected to a vertex wi, 0 ≤ i ≤ m−1 by a path of length

two are ui, ui−1, ui−2, vi±1, vi, vi−2, wi±1, wi±2 where the suffix is under modulo m.

Lemma 2.10 For the generalized antiprism graph A3
m,

χonc(A
3
m) =


9, if m = 3, 6,

8, if m = 4, 5.

Proof We prove the result by considering the following cases.

Case 1. m = 3.

It is easy to observe that, in A3
3, every vertex is connected to every other vertex by a path

of length two. Thus, in any open neighborhood coloring of A3
3, every vertex has to be given a

different color so that χonc(A
3
3) = 9.

Case 2. m = 4.

By Observation 2.6 and Theorem 2.5, we have χonc(A
3
4) > χonc(Q4) = 8. The reverse

inequality can be established from Figure 7. Hence, χonc(A
3
4) = 8.

Figure 7. An open neighborhood coloring of the graph A3
4

Case 3. m = 5, 6.

By observation, it is seen that a color can be assigned to not more than two vertices in any

open neighborhood coloring of A3
5 and A3

6 so that χonc(A
3
5) > 8 and χonc(A

3
6) > 9. Further,

the open neighborhood coloring of A3
5 and A3

6 as shown in Figure 8 ensure that χonc(A
3
5) 6 8

and χonc(A
3
6) 6 9.
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Figure 8. An open neighborhood coloring of the graphs A3
5 and A3

6

This completes the proof. �

Lemma 2.11 In the generalized antiprism graph A3
m,m > 7, for each l, 0 ≤ l ≤ 6, the set

Sl = {ui, vj , wk| i ≡ l(mod 7), j ≡ l + 3(mod 7)and k ≡ l − 1(mod 7)} is a P3− independent

set if and only if m ≡ 0(mod 7).

Proof Let m ≡ 0(mod 7). It is given that Sl = {ui, vj , wk| i ≡ l(mod 7), j ≡ l +

3(mod 7) and k ≡ l − 1(mod 7)}. It is easy to observe that each Si, 0 6 i 6 6, is a P3-

independent set of A3
m.

We prove the converse by the method of contraposition. Suppose that m 6≡ 0(mod 7).

Then, we have the following cases.

Case 1. m ≡ 1(mod 7). Then, u0, um−1 ∈ S0. In such a case, S0 is not a P3− independent

set as u0 and um−1 are end vertices of a path of length two.

Case 2. m ≡ 2(mod 7). Then, u0, um−2 ∈ S0. But u0 and um−2 are end vertices of a path of

length two so that S0 is not a P3− independent set.

The other cases follow similarly. �

Theorem 2.12 For the generalized antiprism graph A3
m,m > 3, χonc(A

3
m) = 7 if and only if

m ≡ 0(mod 7).

Proof Suppose m ≡ 0(mod 7). From Lemma 2.8, we have χonc(A
3
m) > 7. Further, by

Lemma 2.11, each Sl = {ui, vj , wk| i ≡ l(mod 7), j ≡ l + 3(mod 7)and k ≡ l − 1(mod 7)}, 0 6
l 6 6 is a P3-independent set of A3

m.

Define a function c : V (A3
m) → {1, 2, · · · , 7} as c(v) = l + 1 such that v ∈ Sl, 0 6 l 6 6.

Clearly, c is an open neighborhood coloring of A3
m so that χonc(A

3
m) 6 7. Thus, χonc(A

3
m) = 7

if m ≡ 0(mod 7).

Conversely, let χonc(A
3
m) = 7. In view of Theorem 2.5 and Lemma 2.10, we have m > 7.

By observation, in the graph A3
m, none of the vertices vi−1, vi, vi+1, ui−1, ui, wi, wi+1, the suffix

taken under modulo 7, can be given the same color in an open neighborhood coloring. Thus,

if m 6≡ 0(mod 7), then seven colors are not sufficient to have an open neighborhood coloring of

A3
m so that m ≡ 0(mod 7). �
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Observation 2.13 Every integer m > 11, with m 6≡ 0(mod 7),m 6= 13, 17 can be written as

m = 4k + 7l for integers k > 1, l > 0.

Theorem 2.14 For m > 3,

χonc(A
3
m) =



9, if m = 3, 6,

7, if m ≡ 0(mod 7),

8, otherwise.

Proof The result holds for m 6 6 and m ≡ 0(mod 7) from Lemma 2.10 and Theorem 2.12.

We now consider the case when m > 3 is an integer such that m 6= 3, 6 and m 6≡ 0(mod 7). In

view of Theorem 2.12, χonce(A
3
m) > 8. Hence, it suffices to show that, in this case, χonce(A

3
m) 6

8 for which we take various cases as follows.

Case 1. m = 8. Consider the coloring c : V (A3
8) → {1, 2, · · · , 8} defined by c(v) = i + 1 for

v = ui, v = vi+6 or v = wi+3 for 0 6 i 6 7, the suffix taken under modulo 8. It is easy to verify

that c is an open neighborhood coloring of A3
8 using eight colors so that χonce(A

3
8) 6 8.

Case 2. m = 9. Observing that the coloring of A3
9 in Figure 9 is an open neighborhood

coloring, χonce(A
3
9) 6 8.

Figure 9. An open neighborhood coloring of A3
9

Case 3. As seen from Figure 10, A3
10 can be colored with eight colors in an open neighborhood

coloring so that χonce(A
3
10) 6 8.

Figure 10. An open neighborhood coloring of A3
10

Case 4. For m = 13 and m = 17, the coloring patterns are similar to Case 2.
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Case 5. m is any other integer. Then, by Observation 2.13, m = 4k + 7l for some integers

k > 1, l > 0. Define a coloring c : V (A3
m)→ {1, 2, 3, 4, 5, 6, 7, 8} as

c(ui) =



1, if i ≡ 0(mod 4) and 0 ≤ i ≤ 4k − 1 or i− 4k ≡ 0(mod 7) and 4k ≤ i ≤ m− 1

2, if i ≡ 1(mod 4) and 0 ≤ i ≤ 4k − 1 or i− 4k ≡ 1(mod 7) and 4k ≤ i ≤ m− 1

3, if i ≡ 2(mod 4) and 0 ≤ i ≤ 4k − 1 or i− 4k ≡ 2(mod 7) and 4k ≤ i ≤ m− 1

4, if i ≡ 3(mod 4) and 0 ≤ i ≤ 4k − 1 or i− 4k ≡ 3(mod 7) and 4k ≤ i ≤ m− 1

5, i− 4k ≡ 4(mod 7) and 4k ≤ i ≤ m− 1

6, i− 4k ≡ 5(mod 7) and 4k ≤ i ≤ m− 1

7, otherwise

c(vi) =



1, i− 4k − 2 ≡ 3(mod 7) and 4k + 2 ≤ i ≤ m− 1

2, i− 4k − 2 ≡ 4(mod 7) and 4k + 2 ≤ i ≤ m− 1

3, i− 4k − 2 ≡ 5(mod 7) and 4k + 2 ≤ i ≤ m− 1 or i = 0

4, i− 4k − 2 ≡ 6(mod 7) and 4k + 2 ≤ i ≤ m− 1 or i = 1

5, if i− 2 ≡ 0(mod 4) and 2 ≤ i ≤ 4k + 1

or i− 4k − 2 ≡ 0(mod 7) and 4k + 2 ≤ i ≤ m− 1

6, if i− 2 ≡ 1(mod 4) and 2 ≤ i ≤ 4k + 1

or i− 4k − 2 ≡ 1(mod 7) and 4k + 2 ≤ i ≤ m− 1

7, if i− 2 ≡ 2(mod 4) and 2 ≤ i ≤ 4k + 1

or i− 4k − 2 ≡ 2(mod 7) and 4k + 2 ≤ i ≤ m− 1

8, otherwise

and

c(wi) =



1, if i ≡ 3(mod 4) and 3 ≤ i ≤ 4k + 2

or i− 4k ≡ 3(mod 7) and 4k + 3 ≤ i ≤ m− 1

2, if i ≡ 0(mod 4) and 3 ≤ i ≤ 4k + 2

or i− 4k ≡ 4(mod 7) and 4k + 3 ≤ i ≤ m− 1

3, if i ≡ 1(mod 4) and 3 ≤ i ≤ 4k + 2

or i− 4k ≡ 5(mod 7) and 4k + 3 ≤ i ≤ m− 1

4, if i ≡ 2(mod 4) and 3 ≤ i ≤ 4k + 2

or i− 4k ≡ 6(mod 7) and 4k + 3 ≤ i ≤ m− 1

5, i− 4k ≡ 0(mod 7) and 4k + 3 ≤ i ≤ m− 1 or i = 0

6, i− 4k ≡ 1(mod 7) and 4k + 3 ≤ i ≤ m− 1 or i = 1

7, otherwise.

It is easy to verify that c is an open neighborhood coloring of A3
m so that χonc(A

3
m) 6 8. �
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§3. Open Neighborhood Coloring of An
m

We recall that the generalized antiprism graph An
m is obtained by completing the generalized

prism Cm × Pn by edges {vi,j+1vi+1,j : 1 6 i 6 m − 1, 1 6 j 6 n − 1}
⋃
{vm,j+1v1,j : 1 6 j 6

n − 1} where V (An
m) = V (Cm × Pn) = {vi,j : 1 6 i 6 m, 1 6 j 6 n} is the vertex set of An

m.

Thus, E(An
m) = E(Cm × Pn)

⋃
{vi,j+1vi+1,j : 1 6 i 6 m, 1 6 j 6 n− 1} is the edge set of An

m,

where i is taken modulo m.

Observation 3.1 For n2 > n1 > 2 and m > 3, Qm = A2
m ⊆ An1

m ⊆ An2
m so that χonc(Qm) 6

χonc(A
n1
m ) 6 χonc(A

n2
m ).

Lemma 3.2 For the antiprism graph An
3 and An

6 , n > 3, χonc(A
n
3 ) = χonc(A

n
6 ) = 9.

Proof By Lemma 2.10, we have χonc(A
3
3) = χonc(A

3
6) = 9. Thus, By Observation 3.1, for

n > 3, χonc(A
n
3 ) = χonc(A

n
6 ) > 9.

To establish the reverse inequality, for m = 3 or 6, define a function c : V (An
m) →

{1, 2, · · · , 9} as c(i,j) = l with i ≡ h(mod 3) & j ≡ k(mod 3) and l corresponding to the

respective hkth entry in the following table.

h \ k 0 1 2

0 9 3 6

1 7 1 4

2 8 2 5

Table 1.

It is easy to verify that the above coloring is an open neighborhood coloring of An
m. Hence,

χonc(A
n
m) 6 9.

To conclude, χonc(A
n
3 ) = χonc(A

n
6 ) = 9 for n > 3. �

Theorem 3.3 For any integers m > 3, n > 2,

χonc(A
n
m) =



7, if m ≡ 0(mod 7),

5, if n = 2 and m ≡ 0(mod 5),

6, if n = 2 and m 6= 4,

9, if n > 3 and m = 3, 6,

8, otherwise.

Proof In view of Theorems 2.5 and 2.14, the result holds for n = 2 and n = 3. For n > 4,

we consider the following cases.

Case 1. For m = 3, 6, the result follows from Lemma 3.2.
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Case 2. For m = 5, 9, 10, 13, 17, following the respective coloring patterns as in Lemma 2.10

and Theorem 2.14 yields an open neighborhood coloring with eight colors.

Case 3. For any other m > 3, following Observation 3.1 and Theorem 2.14, we see that

χonc(A
n
m) > 8. To prove the reverse inequality, define the coloring c : V (An

m) → {1, 2, · · · , 8}
as

(i) c(vi,1) =



1, if i ≡ 1(mod 4) and 0 ≤ i ≤ 4k or i− 4k ≡ 1(mod 7) and 4k + 1 ≤ i ≤ m

2, if i ≡ 2(mod 4) and 0 ≤ i ≤ 4k or i− 4k ≡ 2(mod 7) and 4k + 1 ≤ i ≤ m

3, if i ≡ 3(mod 4) and 0 ≤ i ≤ 4k or i− 4k ≡ 3(mod 7) and 4k + 1 ≤ i ≤ m

4, if i ≡ 0(mod 4) and 0 ≤ i ≤ 4k or i− 4k ≡ 4(mod 7) and 4k + 1 ≤ i ≤ m

5, i− 4k ≡ 5(mod 7) and 4k + 1 ≤ i ≤ m

6, i− 4k ≡ 6(mod 7) and 4k + 1 ≤ i ≤ m

7, otherwise

(ii) c(vi,2) =



1, i− 4k − 2 ≡ 4(mod 7) and 4k + 3 ≤ i ≤ m

2, i− 4k − 2 ≡ 5(mod 7) and 4k + 3 ≤ i ≤ m

3, i− 4k − 2 ≡ 6(mod 7) and 4k + 3 ≤ i ≤ m or i = 1

4, i− 4k − 2 ≡ 0(mod 7) and 4k + 3 ≤ i ≤ m or i = 2

5, if i ≡ 3(mod 4) and 3 ≤ i ≤ 4k + 2 or i− 4k ≡ 3(mod 7) and 4k + 3 ≤ i ≤ m

6, if i ≡ 0(mod 4) and 3 ≤ i ≤ 4k + 2 or i− 4k ≡ 4(mod 7) and 4k + 3 ≤ i ≤ m

7, if i ≡ 1(mod 4) and 3 ≤ i ≤ 4k + 2 or i− 4k ≡ 5(mod 7) and 4k + 3 ≤ i ≤ m

8, otherwise

and (iii) c(vi,j) = c(vi−3,j−2) for j > 3 where i is taken under modulo m.

An illustration of the coloring c for the graph A5
29 is given in Figure 11.

Figure 11. An open neighborhood coloring of A5
29

It is easy to verify that the above coloring is an open neighborhood coloring of An
m. Hence,

χonc(A
n
m) 6 8. �
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§4. Conclusion

The open neighborhood chromatic number of an antiprism graph Qn has been determined in

[8]. We have obtained this parameter for the generalized antiprism graph A3
m in this paper,

by means of which, we have solved the problem of finding the open neighborhood chromatic

number of An
m, m > 3, n > 2.
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