International J.Math. Combin. Vol.3(2023), 95-104

PD-Divisor Labeling of Graphs

K. Kasthuri

(Research Scholar, Department of Mathematics, KARE, Krishnankoil - 626 126, Tamil Nadu, India)

K. Karuppasamy and K. Nagarajan

(Department of Mathematics, KARE, Krishnankoil - 626 126, Tamil Nadu, India)

 $E\text{-mail: kasthurimahalakshmi@gmail.com, k.karuppasamy@klu.ac.in, k_nagarajan_srnmc@yahoo.co.in}$

Abstract: Let G = (V(G), E(G)) be a simple, finite and undirected graph of order n. Given a bijection $f : V(G) \to \{1, 2, \dots, |V(G)|\}$, we associate two integers P = f(u)f(v)and D = |f(u) - f(v)| with every edge uv in E(G). The labeling f induces on edge labeling $f' : E(G) \to \{0, 1\}$ such that for any edge uv in E(G), f'(uv) = 1 if $D \mid P$ and f'(uv) = 0 if $D \nmid P$. Let $e_{f'}(i)$ be the number of edges labeled with $i \in \{0, 1\}$. We say f is an PD-divisor labeling if f'(uv) = 1 for all $uv \in E(G)$. Moreover, G is PD-divisor if it admits an PD-divisor labeling. We say f is an PD-divisor cordial labeling if $|e_{f'}(0) - e_{f'}(1)| \leq 1$. Moreover, Gis PD-divisor cordial if it admits an PD-divisor cordial labeling. In this paper, we define PD-divisibility and PD-divisor pair of numbers and establish some of its properties. Also, we are dealing in PD-divisor labeling of some standard graphs.

Key Words: Divisor cordial labeling; PD-divisor labeling; PD-divisor graph, Smarandachely SD-divisor cordial labeling, Smarandachely SD-divisor cordial graph.

AMS(2010): 05C78.

§1. Introduction

Let G = (V(G), E(G)) (or G = (V, E)) be a simple, finite and undirected graph of order |V(G)| = n and size |E(G)| = m. All notations not defined in this paper can be found in [4].

Definition 1.1 ([2]) Let a and b be two integers. If a divides b means that there is a positive integer k such that b = ka. It is denoted by $a \mid b$. If a does not divide b, then we denote $a \nmid b$.

Definition 1.2 ([1]) Let G = (V, E) be a graph. A mapping $f : V(G) \to \{0, 1\}$ is called binary vertex labeling of G and f(v) is called the label of the vertex v of G under f. For an edge e = uv, the induced edge labeling $f' : E(G) \to \{0, 1\}$ is given by f'(e) = |f(u) - f(v)|. Let $v_f(0), v_f(1)$ be the number of vertices of G having labels 0 and 1 respectively under f and $e_{f'}(0), e_{f'}(1)$ be the number of edges having labels 0 and 1 respectively under f'. This labeling is called cordial labeling if $|v_f(0) - v_f(1)| \le 1$ and $|e_{f'}(0) - e_{f'}(1)| \le 1$. A graph G is cordial if it admits cordial labeling.

¹Received June 1, 2023, Accepted August 25, 2023.

Definition 1.3 ([9]) A bijection $f : V \to \{1, 2, \dots, n\}$ induces an edge labeling $f' : E \to \{0, 1\}$ such that for any edge uv in G, f'(uv) = 1 if gcd(f(u), f(v)) = 1, and f'(uv) = 0 otherwise. We say that f is a prime cordial labeling if $|e_{f'}(0) - e_{f'}(1)| \leq 1$. Moreover, G is prime cordial if it admits a prime cordial labeling.

Definition 1.4 ([10]) Let G = (V, E) be a simple graph and $f : V \to \{1, 2, \dots, n\}$ be a bijection. For each edge uv, assign the label 1 if either $f(u) \mid f(v)$ or $f(v) \mid f(u)$ and the label 0 otherwise. We say that f is a divisor cordial labeling if $|e_{f'}(0) - e_{f'}(1)| \leq 1$. Moreover, G is divisor cordial if it admits a divisor cordial labeling.

Given a bijection $f: V \to \{1, 2, \dots, n\}$, we associate two integers S = f(u) + f(v) and D = |f(u) - f(v)| with every edge uv in E.

Definition 1.5 ([7]) A bijection $f: V \to \{1, 2, \dots, n\}$ induces an edge labeling $f': E \to \{0, 1\}$ such that for any edge uv in G, f'(uv) = 1 if gcd(S, D) = 1, and f'(uv) = 0 otherwise. We say f is an SD-prime labeling if f'(uv) = 1 for all $uv \in E$. Moreover, G is SD-prime if it admits an SD-prime labeling.

Definition 1.6 ([6]) A bijection $f: V \to \{1, 2, \dots, n\}$ induces an edge labeling $f': E \to \{0, 1\}$ such that for any edge uv in G, f'(uv) = 1 if gcd(S, D) = 1, and f'(uv) = 0 otherwise. The labeling f is called an SD-prime cordial labeling if $|e_{f'}(0) - e_{f'}(1)| \leq 1$. We say that G is SD-prime cordial if it admits an SD-prime cordial labeling.

Definition 1.7 ([5]) Let G = (V(G), E(G)) be a simple graph and a bijection $f : V(G) \rightarrow \{1, 2, 3, \dots, |V(G)|\}$ induces an edge labeling $f' : E(G) \rightarrow \{0, 1\}$ such that for any edge uv in E(G), f'(uv) = 1 if $D \mid S$ and f'(uv) = 0 if $D \nmid S$. We say f is an SD-divisor labeling if f'(uv) = 1 for all $uv \in E(G)$. Moreover, G is SD-divisor if it admits an SD-divisor labeling.

Definition 1.8 ([5]) Let G = (V(G), E(G)) be a simple graph and a bijection $f : V(G) \rightarrow \{1, 2, 3, \dots, |V(G)|\}$ induces an edge labeling $f' : E(G) \rightarrow \{0, 1\}$ such that for any edge uv in E(G), f'(uv) = 1 if $D \mid S$ and f'(uv) = 0 if $D \nmid S$. The labeling f is called an SD-divisor cordial labeling if $|e_{f'}(0) - e_{f'}(1)| \leq 1$. We say that G is SD-divisor cordial if it admits an SD-divisor cordial labeling.

Generally, the labeling f in Definition 1.8 is said to be *Smarandachely SD-divisor cordial* if $|e_{f'}(0) - e_{f'}(1)| \ge 2$ and G is said to be a Smarandachely SD-divisor cordial graph. In [5], we introduced two new types of labeling called SD-divisor and SD-divisor cordial labeling. Also, we proved some graphs are SD-divisor. Motivated by the concepts of SD-divisor and SD-divisor cordial labeling, we introduce two new types of labeling called PD-divisor and PD-divisor cordial labeling. In this paper, we define PD-divisibility and PD-divisor pair of numbers and establish some of its properties. Also, we are dealing in PD-divisor labeling of some standard graphs.

§2. PD-Divisibility and its Properties

First, we define PD-divisibility of two positive integers.

Definition 2.1 Let a and b be the two distinct positive integers, we say that a PD-divides b if |a-b| |ab. It is denoted by a $|_{PD}$ b. If a does not PD-divide b, then it is denoted by a $|_{PD}$ b.

Example 2.2 $4 \mid_{PD} 6.$

Example 2.3 $2 \not|_{PD} 8$.

Notice that

1. From the Examples 2.2 and 2.3, divisibility and PD-divisibility are different concepts.

2. By Definition 2.1, PD-divisibility is not reflexive.

3. From Definition 2.1, $a \mid_{PD} b \Rightarrow |a - b| | ab$

$$\Rightarrow |b - a| | ba$$
$$\Rightarrow b |_{PD} a.$$

Thus, PD-divisibility is symmetric.

4. PD-divisibility is not transitive.

Example 2.4 $1 \mid_{PD} 2$ and $2 \mid_{PD} 6$ but $1 \nmid_{PD} 6$.

PD-divisibility is not an equivalence relation.

Observation 2.5 Its known that if k and k+1 are two consecutive integers, then $k \nmid k+1$ for $k \geq 2$.

Proposition 2.6 1 *PD*-divides only to the integer 2.

Proof Let a = 1 and b > 1 be the any positive integer. If $1 \mid_{PD} b$, then $(b-1) \mid b$. This means that two consecutive integers divide. This is possible only if b = 2.

Proposition 2.7 2 *PD*-divides only to the integers 1, 3, 4 and 6.

Proof Let a = 2 and b be the any positive integer. If $2 \mid_{PD} b$, then $|b - 2| \mid 2b$. This is possible only if b = 1, 3, 4 and 6.

Proposition 2.8 3 *PD*-divides only to the integers 2, 4, 6 and 12.

Proof Let a = 3 and b be the any positive integer. If $3 \mid_{PD} b$, then $|b - 3| \mid 3b$. This is possible only if b = 2, 4, 6 and 12.

Observation 2.9 Let $a \ge 2$ be the any positive integer. Then a - 1, a + 1, 2a and a(a + 1) are PD-divisible by a.

Observation 2.10 Let $a \ge 4$ be the any positive even integer. Then a - 2, a - 1, a + 1, a + 2, a + 4, 2a, 3a and a(a + 1) are PD-divisible by a.

Proposition 2.11 Let a and b be the two consecutive odd integers, then $a \not|_{PD} b$.

Proof Let a = 2k + 1 and b = 2k + 3 for $k \ge 0$. Then |a - b| = |2k + 1 - 2k - 3| = 2 and ab = (2k + 1)(2k + 3).

Clearly, $2 \nmid (2k+1)(2k+3)$. Then $a \nmid_{PD} b$.

Proposition 2.12 Let a and b be the two consecutive even integers, then a $|_{PD}$ b.

Proof Let a = 2k + 2 and b = 2k + 4 for $k \ge 0$. Then |a - b| = |2k + 2 - 2k - 4| = 2 and ab = (2k + 2)(2k + 4).

Clearly, 2 | (2k+2)(2k+4). Then $a |_{PD} b$.

§3. PD-Divisor Pair

Definition 3.1 Let a and b be the two distinct positive integers. If $a \mid_{PD} b$, then we say that (a,b) is called PD-divisor pair.

Example 3.2 For $k \ge 1$, (k, k+1) is PD-divisor pair.

Notice that if $l \ge 1$ is any positive integer, then (lk, l(k+1)) is PD-divisor pair. We know the following results.

Proposition 3.3 If the pair (a, b) is PD-divisor, then (ka, kb) is PD-divisor pair for $k \ge 1$.

Proof Let a and b the PD-divisor pair. Without loss of generality, we take a > b. Then, $a \mid_{PD} b \Rightarrow (a - b) \mid ab$

$$\Rightarrow k(a-b) \mid kab \text{ for } k \ge 1$$

$$\Rightarrow (ka-kb) \mid kab$$

$$\Rightarrow (ka-kb) \mid k^2ab \Rightarrow ka \mid_{PD} kb.$$

Proposition 3.4 Let $k \ge 3$ be an odd integer. Then (k+1, k-1) is PD-divisor pair.

Proof Let a = k + 1 and b = k - 1 for all odd integer k ≥ 3. Then |a - b| = |k + 1 - k + 1| = 2 and $ab = (k + 1)(k - 1) = k^2 - 1$.

Clearly $2 \mid k^2 - 1$. Thus, (k + 1, k - 1) is PD-divisor pair for all odd integer $k \ge 3$.

Proposition 3.5 Let $k \ge 2$ be an even integer. Then (k + 1, k - 1) is not PD-divisor pair.

Proof Let a = k + 1 and b = k - 1 for all even integer $k \ge 2$. Then, |a - b| = |k + 1 - k + 1| = 2 and $ab = (k + 1)(k - 1) = k^2 - 1$.

Clearly, $2 \nmid k^2 - 1$. Thus, (k + 1, k - 1) is not PD-divisor pair for all even integer $k \geq 2.\square$

Proposition 3.6 Let $k \ge 0$. Then $(2^k, 2^{k+1})$ is PD-divisor pair.

Proof Let $a = 2^k$ and $b = 2^{k+1}$ for $k \ge 0$. Then $|a - b| = |2^k - 2^{k+1}| = 2^k$ and $ab = (2^k)(2^{k+1})$.

Clearly, |a - b| | ab. Thus, $(2^k, 2^{k+1})$ is PD-divisor pair for $k \ge 0$.

Proposition 3.7 Let $k \ge 0$. Then $(3^k, 3^{k+1})$ is not PD-divisor pair.

Proof Let $a = 3^k$ and $b = 3^{k+1}$ for $k \ge 0$. Then, $|a - b| = |3^k - 3^{k+1}| = 2 \cdot 3^k$ and $ab = (3^k)(3^{k+1})$.

Clearly, $|a - b| \nmid ab$. Thus, $(3^k, 3^{k+1})$ is not PD-divisor pair for $k \ge 0$.

Proposition 3.8 Let $l \ge 3$ and $k \ge 0$. Then (l^k, l^{k+1}) is not PD-divisor pair.

Proof Let $a = l^k$ and $b = l^{k+1}$ for $l \ge 3$, $k \ge 0$. Then, $|a - b| = |l^k - l^{k+1}| = l^k(l-1)$ and $ab = (l^k)(l^{k+1})$.

Clearly, $l-1 \nmid l^{k+1}$ for $l \geq 3$ and $k \geq 0$. Thus, (l^k, l^{k+1}) is not a PD-divisor pair for $l \geq 3$ and $k \geq 0$.

Definition 3.9 Let S be a set of any distinct positive integers. Then S is said to be PD-divisor set if every pair of integers in S is PD-divisor.

we always use notation $[n] = \{1, 2, \dots, n\}$ in this paper.

Example 3.10 [2] is PD-divisor set.

§4. PD-Divisor Labeling of Graphs

Now, we introduce two new types of labeling called PD-divisor and PD-divisor cordial labeling. Given a bijection $f: V \to \{1, 2, \dots, n\}$, we associate two integers P = f(u)f(v) and D = |f(u) - f(v)| with every edge uv in E.

Definition 4.1 Let G = (V(G), E(G)) be a simple graph and a bijection $f : V(G) \rightarrow \{1, 2, 3, \dots, |V(G)|\}$ induces an edge labeling $f' : E(G) \rightarrow \{0, 1\}$ such that for any edge uv in E(G), f'(uv) = 1 if $D \mid P$ and f'(uv) = 0 if $D \nmid P$. We say f is an PD-divisor labeling if f'(uv) = 1 for all $uv \in E(G)$. Moreover, G is PD-divisor if it admits an PD-divisor labeling.

Example 4.2 Consider the following graph G.

We see that $e_{f'}(1) = 7$. Hence G is PD-divisor.

Definition 4.2 Let G = (V(G), E(G)) be a simple graph and a bijection $f : V(G) \to \{1, 2, 3, ..., |V(G)|\}$ induces an edge labeling $f' : E(G) \to \{0, 1\}$ such that for any edge uv in E(G), f'(uv) = 1 if $D \mid P$ and f'(uv) = 0 if $D \nmid P$. The labeling f is called an PD-divisor cordial labeling if $|e_{f'}(0) - e_{f'}(1)| \leq 1$. We say that G is PD-divisor cordial if it admits an PD-divisor cordial labeling.

Example 4.3 Consider the labeling of G in Figure 3.

We see that $e_{f'}(0) = 3$ and $e_{f'}(1) = 4$. Thus $|e_{f'}(0) - e_{f'}(1)| \le 1$ and hence G is PD-divisor cordial.

Now, we prove path and some path related graphs are PD-divisor. Also, we prove some standard graphs such as star, cycle, complete, complete bipartite and wheel graphs are not PD-divisor.

Theorem 4.5 A path P_n is PD-divisor.

Proof Let v_1, v_2, \dots, v_n be the vertices of path P_n . Let $V(P_n) = \{v_i : 1 \le i \le n\}$ and $E(P_n) = \{v_i v_{i+1} : 1 \le i \le n-1\}$. Therefore, P_n is of order n and size n-1. Define $f: V(P_n) \to \{1, 2, 3, \dots, n\}$ to be

$$f(v_i) = i, \quad 1 \le i \le n.$$

From the above labeling pattern we get, $e_{f'}(1) = n - 1$. Hence, P_n is PD-divisor.

Example 4.6 Consider the labeling of P_8 in Figure 3.

Figure 3

Here $e_{f'}(1) = 7$. Hence, P_8 is PD-divisor.

Theorem 4.7 A comb $P_n \odot K_1$ is PD-divisor.

Proof Let v_1, v_2, \dots, v_n be the vertices of path P_n . Let $V(P_n \odot K_1) = \{v_i, u_i : 1 \le i \le n\}$ and $E(P_n \odot K_1) = \{v_i v_{i+1} : 1 \le i \le n-1\} \bigcup \{v_i u_i : 1 \le i \le n\}$. Therefore, $P_n \odot K_1$ is of order 2n and size 2n - 1. Define $f : V(P_n \odot K_1) \to \{1, 2, 3, \dots, 2n\}$ to be $f(v_i) = 2i, 1 \le i \le n$, $f(u_i) = 2i - 1, 1 \le i \le n$.

From the above labeling pattern we get, $e_{f'}(1) = 2n - 1$. So $P_n \odot K_1$ is PD-divisor. \Box

Example 4.8 Consider the labeling of $P_6 \odot K_1$ in Figure 4.

Figure 4

Here, $e_{f'}(1) = 11$. Hence, $P_6 \odot K_1$ is PD-divisor.

Theorem 4.9 A double comb $P_n \odot 2K_1$ is PD-divisor.

Proof Let v_1, v_2, \dots, v_n be the vertices of path P_n . Let $V(P_n \odot 2K_1) = \{v_i, u_i, w_i : 1 \le i \le n\}$ and $E(P_n \odot 2K_1) = \{v_i v_{i+1} : 1 \le i \le n-1\} \bigcup \{v_i u_i : 1 \le i \le n\} \bigcup \{v_i w_i : 1 \le i \le n\}$. Therefore, $P_n \odot 2K_1$ is of order 3n and size 3n - 1. Define $f : V(P_n \odot 2K_1) \to \{1, 2, 3, \dots, 3n\}$ to be

$$f(v_{2i-1}) = 6i - 4, \quad 1 \le i \le \lceil \frac{n}{2} \rceil,$$

$$f(v_{2i}) = 6i - 2, \quad 1 \le i \le \lfloor \frac{n}{2} \rfloor,$$

$$f(u_i) = 3i, \quad 1 \le i \le n,$$

$$f(w_{2i-1}) = 6i - 5, \quad 1 \le i \le \lceil \frac{n}{2} \rceil,$$

$$f(w_{2i}) = 6i - 1, \quad 1 \le i \le \lfloor \frac{n}{2} \rfloor.$$

From the above labeling pattern we get, $e_{f'}(1) = 3n - 1$. Hence, $P_n \odot 2K_1$ is PD-divisor.

Example 4.10 Consider the labeling of $P_8 \odot 2K_1$ in Figure 5.

Here $e_{f'}(1) = 23$. Hence, $P_8 \odot 2K_1$ is PD-divisor.

Theorem 4.11 A crown $C_n \odot K_1$ is PD-divisor.

Proof Let v_1, v_2, \dots, v_n be the vertices of cycle C_n . Let $V(C_n \odot K_1) = \{v_i, u_i : 1 \le i \le n\}$ and $E(C_n \odot K_1) = \{v_i v_{i+1} : 1 \le i \le n-1\} \bigcup \{v_n v_1, v_i u_i : 1 \le i \le n\}$. Therefore, $C_n \odot K_1$ is of order 2n and size 2n. Define $f: V(C_n \odot K_1) \to \{1, 2, 3, \cdots, 2n\}$ to be

$$f(v_i) = 4i - 2, \quad 1 \le i \le \left\lceil \frac{n}{2} \right\rceil,$$

$$f(v_{n+1-i}) = 4i, \quad 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor,$$

$$f(u_i) = 4i - 3, \quad 1 \le i \le \left\lceil \frac{n}{2} \right\rceil,$$

$$f(u_{n+1-i}) = 4i - 1, \quad 1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor.$$

From the above labeling pattern we get, $e_{f'}(1) = 2n$. Hence, $C_n \odot K_1$ is PD-divisor. \Box Example 4.12 Consider the labeling of $C_{11} \odot K_1$ in Figure 6.

Figure 6

Here, $e_{f'}(1) = 22$. Hence, $C_{11} \odot K_1$ is PD-divisor.

Next, we will investigate whether the star graph $K_{1,n}$ is PD-divisor or not. Clearly, $K_{1,1}$ and $K_{1,2}$ are PD-divisor, and also $K_{1,3}$ is PD-divisor in the following labeling.

Next, we will prove that $K_{1,n}$ is not PD-divisor for $n \ge 4$.

Theorem 4.13 For $n \ge 4$, the star graph $K_{1,n}$ is not PD-divisor.

Proof Consider the set $\{1, 2, \dots, n+1\}$, $n \ge 4$. Let v be the central vertex of $K_{1,n}$ $(n \ge 4)$. If we label 1 to v and other numbers to the end vertices of $K_{1,n}$, then it follows from Proposition 2.6, 1 does not PD-divide $3, 4, 5, \dots, n+1$.

If we label 2 to v and other numbers to the end vertices of $K_{1,n}$, then it follows from Proposition 2.7, 2 does not PD-divide 5, 7, 8, \cdots , n + 1.

Suppose, we label $n \ge 3$ to v. Since any one of the end vertex has the label 1, then it follows from Proposition 2.6, 1 does not PD-divide to the label of v.

Thus, $K_{1,n}$ is not PD-divisor for $n \ge 4$.

Theorem 4.14 If $\delta(G) \geq 2$, then G is not PD-divisor.

Proof Suppose G is PD-divisor. Let v be the vertex of degree $\delta(G) \ge 2$, which is labeled with 1. Then, any one of the δ adjacent vertices of v must have the labels other than 2, say w.

From Proposition 2.6, it follows that 1 does not PD-divide the label of w. This is contradiction to G is PD-divisor.

Remark 4.15 If $\delta(G) = 1$, then it is not necessary that G is PD-divisor from Theorem 4.13 its follows.

Corollary 4.16 For $n \ge 3$, the cycle graph C_n is not PD-divisor.

Proof Since $\delta(C_n) \ge 2$ for $n \ge 3$, the result follows from Theorem 4.14.

Corollary 4.17 For $n \ge 3$, the complete graph K_n is not PD-divisor.

Proof Since $\delta(K_n) \ge 2$ for $n \ge 3$, the result follows from Theorem 4.14.

Corollary 4.18 For $m, n \geq 2$, the complete bipartite graph $K_{m,n}$ is not PD-divisor.

Proof Since $\delta(K_{m,n}) \ge 2$ for $m, n \ge 2$, the result follows from Theorem 4.14.

Corollary 4.19 The wheel graph W_{n+1} ($n \ge 2$) is not PD-divisor.

References

- I. Cahit, Cordial graphs: A Weaker Version of Graceful and Harmonious Graphs, Ars Combinatoria, 23(1987), 201-207.
- [2] David M. Burton, *Elementary Number Theory*, Second Edition, Wm. C. Brown Company Publishers, 1980.
- [3] J. A. Gallian, A Dynamic Survey of Graph Labeling, *Electronic J. Combin.*, 19 (2012) #DS6.
- [4] F. Harary, *Graph Theory*, Addison-Wesley, Reading, Mass, (1972).
- [5] K. Kasthuri, K. Karuppasamy and K. Nagarajan, SD-Divisor labeling of path and cycle related graphs, AIP Conference Proceedings 2463, 030001 (2022).
- [6] G.C. Lau, H. H. Chu, N. Suhadak, F. Y. Foo and H. K. Ng, On SD-prime cordial graphs, International Journal of Pure and Applied Mathematics, 106 (4), pp. 1017-1028, (2016).

- [7] G.C. Lau and W.C.Shiu, On SD-prime labeling of graphs, Utilitas Math., 106. pp. 149-164.
- [8] G.C. Lau, W.C. Shiu, H.K. Ng, C.D. Ng and P. Jeyanthi, Further results on SD-prime labeling, *JCMCC*, 98, pp. 151-170, (2016).
- [9] M. Sundaram, R. Ponraj and S. Somasundram, Prime cordial labeling of graphs, J. Ind. Acad. of Maths., 27(2) (2005), 373-390.
- [10] R. Varatharajan, S. Navaneethakrishnan and K. Nagarajan, Divisor cordial graphs, International J. Math. Combin., Vol 4, 2011, pp.15-25.