PD-Divisor Labeling of Graphs

K. Kasthuri
(Research Scholar, Department of Mathematics, KARE, Krishnankoil-626 126, Tamil Nadu, India)
K. Karuppasamy and K. Nagarajan
(Department of Mathematics, KARE, Krishnankoil - 626 126, Tamil Nadu, India)

E-mail: kasthurimahalakshmi@gmail.com, k.karuppasamy@klu.ac.in, k_nagarajan_srnmc@yahoo.co.in

Abstract

Let $G=(V(G), E(G))$ be a simple, finite and undirected graph of order n. Given a bijection $f: V(G) \rightarrow\{1,2, \cdots,|V(G)|\}$, we associate two integers $P=f(u) f(v)$ and $D=|f(u)-f(v)|$ with every edge $u v$ in $E(G)$. The labeling f induces on edge labeling $f^{\prime}: E(G) \rightarrow\{0,1\}$ such that for any edge $u v$ in $E(G), f^{\prime}(u v)=1$ if $D \mid P$ and $f^{\prime}(u v)=0$ if $D \nmid P$. Let $e_{f^{\prime}}(i)$ be the number of edges labeled with $i \in\{0,1\}$. We say f is an PD-divisor labeling if $f^{\prime}(u v)=1$ for all $u v \in E(G)$. Moreover, G is PD-divisor if it admits an PD-divisor labeling. We say f is an PD-divisor cordial labeling if $\left|e_{f^{\prime}}(0)-e_{f^{\prime}}(1)\right| \leq 1$. Moreover, G is PD-divisor cordial if it admits an PD-divisor cordial labeling. In this paper, we define PD-divisibility and PD-divisor pair of numbers and establish some of its properties. Also, we are dealing in PD-divisor labeling of some standard graphs.

Key Words: Divisor cordial labeling; PD-divisor labeling; PD-divisor graph, Smarandachely SD-divisor cordial labeling, Smarandachely SD-divisor cordial graph.

AMS(2010): 05C78.

§1. Introduction

Let $G=(V(G), E(G))$ (or $G=(V, E)$) be a simple, finite and undirected graph of order $|V(G)|=n$ and size $|E(G)|=m$. All notations not defined in this paper can be found in [4].

Definition 1.1 ([2]) Let a and b be two integers. If a divides b means that there is a positive integer k such that $b=k a$. It is denoted by $a \mid b$. If a does not divide b, then we denote $a \nmid b$.

Definition $1.2([1])$ Let $G=(V, E)$ be a graph. A mapping $f: V(G) \rightarrow\{0,1\}$ is called binary vertex labeling of G and $f(v)$ is called the label of the vertex v of G under f. For an edge $e=u v$, the induced edge labeling $f^{\prime}: E(G) \rightarrow\{0,1\}$ is given by $f^{\prime}(e)=|f(u)-f(v)|$. Let $v_{f}(0), v_{f}(1)$ be the number of vertices of G having labels 0 and 1 respectively under f and $e_{f^{\prime}}(0), e_{f^{\prime}}(1)$ be the number of edges having labels 0 and 1 respectively under f^{\prime}. This labeling is called cordial labeling if $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$ and $\left|e_{f^{\prime}}(0)-e_{f^{\prime}}(1)\right| \leq 1$. A graph G is cordial if it admits cordial labeling.

[^0]Definition 1.3 ([9]) A bijection $f: V \rightarrow\{1,2, \cdots, n\}$ induces an edge labeling $f^{\prime}: E \rightarrow\{0,1\}$ such that for any edge $u v$ in $G, f^{\prime}(u v)=1$ if $\operatorname{gcd}(f(u), f(v))=1$, and $f^{\prime}(u v)=0$ otherwise. We say that f is a prime cordial labeling if $\left|e_{f^{\prime}}(0)-e_{f^{\prime}}(1)\right| \leq 1$. Moreover, G is prime cordial if it admits a prime cordial labeling.

Definition $1.4([10])$ Let $G=(V, E)$ be a simple graph and $f: V \rightarrow\{1,2, \cdots, n\}$ be a bijection. For each edge uv, assign the label 1 if either $f(u) \mid f(v)$ or $f(v) \mid f(u)$ and the label 0 otherwise. We say that f is a divisor cordial labeling if $\left|e_{f^{\prime}}(0)-e_{f^{\prime}}(1)\right| \leq 1$. Moreover, G is divisor cordial if it admits a divisor cordial labeling.

Given a bijection $f: V \rightarrow\{1,2, \cdots, n\}$, we associate two integers $S=f(u)+f(v)$ and $D=|f(u)-f(v)|$ with every edge $u v$ in E.

Definition $1.5([7])$ A bijection $f: V \rightarrow\{1,2, \cdots, n\}$ induces an edge labeling $f^{\prime}: E \rightarrow\{0,1\}$ such that for any edge uv in $G, f^{\prime}(u v)=1$ if $g c d(S, D)=1$, and $f^{\prime}(u v)=0$ otherwise. We say f is an $S D$-prime labeling if $f^{\prime}(u v)=1$ for all $u v \in E$. Moreover, G is $S D$-prime if it admits an SD-prime labeling.

Definition $1.6([6])$ A bijection $f: V \rightarrow\{1,2, \cdots, n\}$ induces an edge labeling $f^{\prime}: E \rightarrow\{0,1\}$ such that for any edge uv in $G, f^{\prime}(u v)=1$ if $\operatorname{gcd}(S, D)=1$, and $f^{\prime}(u v)=0$ otherwise. The labeling f is called an SD-prime cordial labeling if $\left|e_{f^{\prime}}(0)-e_{f^{\prime}}(1)\right| \leq 1$. We say that G is SD-prime cordial if it admits an SD-prime cordial labeling.

Definition $1.7([5])$ Let $G=(V(G), E(G))$ be a simple graph and a bijection $f: V(G) \rightarrow$ $\{1,2,3, \cdots,|V(G)|\}$ induces an edge labeling $f^{\prime}: E(G) \rightarrow\{0,1\}$ such that for any edge uv in $E(G), f^{\prime}(u v)=1$ if $D \mid S$ and $f^{\prime}(u v)=0$ if $D \nmid S$. We say f is an $S D$-divisor labeling if $f^{\prime}(u v)=1$ for all $u v \in E(G)$. Moreover, G is SD-divisor if it admits an SD-divisor labeling.

Definition $1.8([5])$ Let $G=(V(G), E(G))$ be a simple graph and a bijection $f: V(G) \rightarrow$ $\{1,2,3, \cdots,|V(G)|\}$ induces an edge labeling $f^{\prime}: E(G) \rightarrow\{0,1\}$ such that for any edge uv in $E(G), f^{\prime}(u v)=1$ if $D \mid S$ and $f^{\prime}(u v)=0$ if $D \nmid S$. The labeling f is called an $S D$-divisor cordial labeling if $\left|e_{f^{\prime}}(0)-e_{f^{\prime}}(1)\right| \leq 1$. We say that G is $S D$-divisor cordial if it admits an SD-divisor cordial labeling.

Generally, the labeling f in Definition 1.8 is said to be Smarandachely SD-divisor cordial if $\left|e_{f^{\prime}}(0)-e_{f^{\prime}}(1)\right| \geq 2$ and G is said to be a Smarandachely SD-divisor cordial graph. In [5], we introduced two new types of labeling called SD-divisor and SD-divisor cordial labeling. Also, we proved some graphs are SD-divisor. Motivated by the concepts of SD-divisor and SD-divisor cordial labeling, we introduce two new types of labeling called PD-divisor and PD-divisor cordial labeling. In this paper, we define PD-divisibility and PD-divisor pair of numbers and establish some of its properties. Also, we are dealing in PD-divisor labeling of some standard graphs.

§2. PD-Divisibility and its Properties

First, we define PD-divisibility of two positive integers.

Definition 2.1 Let a and b be the two distinct positive integers, we say that a PD-divides b if $|a-b| \mid a b$. It is denoted by $\left.a\right|_{P D} b$. If a does not $P D$-divide b, then it is denoted by $a \not_{P D} b$.

Example $\left.2.24\right|_{P D} 6$.
Example $2.32 \not_{P D} 8$.
Notice that

1. From the Examples 2.2 and 2.3, divisibility and PD-divisibility are different concepts.
2. By Definition 2.1, PD-divisibility is not reflexive.
3. From Definition 2.1, $\left.a\right|_{P D} b \Rightarrow|a-b| \mid a b$

$$
\begin{aligned}
& \Rightarrow|b-a| \mid b a \\
& \left.\Rightarrow b\right|_{P D} a .
\end{aligned}
$$

Thus, PD-divisibility is symmetric.
4. PD-divisibility is not transitive.

Example $\left.2.41\right|_{P D} 2$ and $\left.2\right|_{P D} 6$ but $1 \not_{P D} 6$.
PD-divisibility is not an equivalence relation.
Observation 2.5 Its known that if k and $k+1$ are two consecutive integers, then $k \nmid k+1$ for $k \geq 2$.

Proposition 2.6 1 PD-divides only to the integer 2.
Proof Let $a=1$ and $b>1$ be the any positive integer. If $\left.1\right|_{P D} b$, then $(b-1) \mid b$. This means that two consecutive integers divide. This is possible only if $b=2$.

Proposition 2.7 2 PD-divides only to the integers $1,3,4$ and 6 .
Proof Let $a=2$ and b be the any positive integer. If $\left.2\right|_{P D} b$, then $|b-2| \mid 2 b$. This is possible only if $b=1,3,4$ and 6 .

Proposition 2.83 PD-divides only to the integers 2, 4, 6 and 12.
Proof Let $a=3$ and b be the any positive integer. If $\left.3\right|_{P D} b$, then $|b-3| \mid 3 b$. This is possible only if $b=2,4,6$ and 12 .

Observation 2.9 Let $a \geq 2$ be the any positive integer. Then $a-1, a+1,2 a$ and $a(a+1)$ are PD-divisible by a.

Observation 2.10 Let $a \geq 4$ be the any positive even integer. Then $a-2, a-1, a+1, a+2$, $a+4,2 a, 3 a$ and $a(a+1)$ are PD-divisible by a.

Proposition 2.11 Let a and b be the two consecutive odd integers, then $a\}_{P D} b$.
Proof Let $a=2 k+1$ and $b=2 k+3$ for $k \geq 0$. Then $|a-b|=|2 k+1-2 k-3|=2$ and $a b=(2 k+1)(2 k+3)$.

Clearly, $2 \nmid(2 k+1)(2 k+3)$. Then $a\}_{P D} b$.

Proposition 2.12 Let a and b be the two consecutive even integers, then $\left.a\right|_{P D} b$.
Proof Let $a=2 k+2$ and $b=2 k+4$ for $k \geq 0$. Then $|a-b|=|2 k+2-2 k-4|=2$ and $a b=(2 k+2)(2 k+4)$.

Clearly, $2 \mid(2 k+2)(2 k+4)$. Then $\left.a\right|_{P D} b$.

§3. PD-Divisor Pair

Definition 3.1 Let a and b be the two distinct positive integers. If $\left.a\right|_{P D} b$, then we say that (a, b) is called PD-divisor pair.

Example 3.2 For $k \geq 1,(k, k+1)$ is PD-divisor pair.
Notice that if $l \geq 1$ is any positive integer, then $(l k, l(k+1))$ is PD-divisor pair. We know the following results.

Proposition 3.3 If the pair (a, b) is PD-divisor, then $(k a, k b)$ is $P D$-divisor pair for $k \geq 1$.
Proof Let a and b the PD-divisor pair. Without loss of generality, we take $a>b$.
Then, $\left.\quad a\right|_{P D} b \Rightarrow(a-b) \mid a b$

$$
\begin{aligned}
& \Rightarrow k(a-b) \mid k a b \text { for } k \geq 1 \\
& \Rightarrow(k a-k b) \mid k a b \\
& \Rightarrow(k a-k b)\left|k^{2} a b \Rightarrow k a\right|_{P D} k b
\end{aligned}
$$

Proposition 3.4 Let $k \geq 3$ be an odd integer. Then $(k+1, k-1)$ is PD-divisor pair.
Proof Let $a=k+1$ and $b=k-1$ for all odd integer $k \geq 3$. Then $|a-b|=|k+1-k+1|$ $=2$ and $a b=(k+1)(k-1)=k^{2}-1$.

Clearly $2 \mid k^{2}-1$. Thus, $(k+1, k-1)$ is PD-divisor pair for all odd integer $k \geq 3$.
Proposition 3.5 Let $k \geq 2$ be an even integer. Then $(k+1, k-1)$ is not PD-divisor pair.
Proof Let $a=k+1$ and $b=k-1$ for all even integer $k \geq 2$. Then, $|a-b|=|k+1-k+1|$ $=2$ and $a b=(k+1)(k-1)=k^{2}-1$.

Clearly, $2 \nmid k^{2}-1$. Thus, $(k+1, k-1)$ is not PD-divisor pair for all even integer $k \geq 2$.
Proposition 3.6 Let $k \geq 0$. Then $\left(2^{k}, 2^{k+1}\right)$ is $P D$-divisor pair.
Proof Let $a=2^{k}$ and $b=2^{k+1}$ for $k \geq 0$. Then $|a-b|=\left|2^{k}-2^{k+1}\right|=2^{k}$ and $a b=\left(2^{k}\right)\left(2^{k+1}\right)$.

Clearly, $|a-b| \mid a b$. Thus, $\left(2^{k}, 2^{k+1}\right)$ is PD-divisor pair for $k \geq 0$.
Proposition 3.7 Let $k \geq 0$. Then $\left(3^{k}, 3^{k+1}\right)$ is not $P D$-divisor pair.
Proof Let $a=3^{k}$ and $b=3^{k+1}$ for $k \geq 0$. Then, $|a-b|=\left|3^{k}-3^{k+1}\right|=2 \cdot 3^{k}$ and $a b=\left(3^{k}\right)\left(3^{k+1}\right)$ 。

Clearly, $|a-b| \nmid a b$. Thus, $\left(3^{k}, 3^{k+1}\right)$ is not PD-divisor pair for $k \geq 0$.
Proposition 3.8 Let $l \geq 3$ and $k \geq 0$. Then $\left(l^{k}, l^{k+1}\right)$ is not PD-divisor pair.
Proof Let $a=l^{k}$ and $b=l^{k+1}$ for $l \geq 3, k \geq 0$. Then, $|a-b|=\left|l^{k}-l^{k+1}\right|=l^{k}(l-1)$ and $a b=\left(l^{k}\right)\left(l^{k+1}\right)$.

Clearly, $l-1 \nmid l^{k+1}$ for $l \geq 3$ and $k \geq 0$. Thus, $\left(l^{k}, l^{k+1}\right)$ is not a PD-divisor pair for $l \geq 3$ and $k \geq 0$.

Definition 3.9 Let S be a set of any distinct positive integers. Then S is said to be PD-divisor set if every pair of integers in S is $P D$-divisor.
we always use notation $[n]=\{1,2, \cdots, n\}$ in this paper.
Example 3.10 [2] is PD-divisor set.

§4. PD-Divisor Labeling of Graphs

Now, we introduce two new types of labeling called PD-divisor and PD-divisor cordial labeling. Given a bijection $f: V \rightarrow\{1,2, \cdots, n\}$, we associate two integers $P=f(u) f(v)$ and $D=$ $|f(u)-f(v)|$ with every edge $u v$ in E.

Definition 4.1 Let $G=(V(G), E(G))$ be a simple graph and a bijection $f: V(G) \rightarrow\{1,2,3, \cdots,|V(G)|\}$ induces an edge labeling $f^{\prime}: E(G) \rightarrow\{0,1\}$ such that for any edge uv in $E(G), f^{\prime}(u v)=1$ if $D \mid P$ and $f^{\prime}(u v)=0$ if $D \nmid P$. We say f is an $P D$-divisor labeling if $f^{\prime}(u v)=1$ for all $u v \in E(G)$. Moreover, G is $P D$-divisor if it admits an PD-divisor labeling.

Example 4.2 Consider the following graph G.

Figure 1
We see that $e_{f^{\prime}}(1)=7$. Hence G is PD-divisor.
Definition 4.2 Let $G=(V(G), E(G))$ be a simple graph and a bijection $f: V(G) \rightarrow\{1,2,3, \ldots,|V(G)|\}$ induces an edge labeling $f^{\prime}: E(G) \rightarrow\{0,1\}$ such that for any edge uv in $E(G), f^{\prime}(u v)=1$ if $D \mid P$ and $f^{\prime}(u v)=0$ if $D \nmid P$. The labeling f is called an PD-divisor cordial labeling if $\left|e_{f^{\prime}}(0)-e_{f^{\prime}}(1)\right| \leq 1$. We say that G is $P D$-divisor cordial if it admits an PD-divisor cordial labeling.

Example 4.3 Consider the the labeling of G in Figure 3.

Figure 2
We see that $e_{f^{\prime}}(0)=3$ and $e_{f^{\prime}}(1)=4$. Thus $\left|e_{f^{\prime}}(0)-e_{f^{\prime}}(1)\right| \leq 1$ and hence G is PD-divisor cordial.

Now, we prove path and some path related graphs are PD-divisor. Also, we prove some standard graphs such as star, cycle, complete, complete bipartite and wheel graphs are not PD-divisor.

Theorem 4.5 A path P_{n} is PD-divisor.
Proof Let $v_{1}, v_{2}, \cdots, v_{n}$ be the vertices of path P_{n}. Let $V\left(P_{n}\right)=\left\{v_{i}: 1 \leq i \leq n\right\}$ and $E\left(P_{n}\right)=\left\{v_{i} v_{i+1}: 1 \leq i \leq n-1\right\}$. Therefore, P_{n} is of order n and size $n-1$. Define $f: V\left(P_{n}\right) \rightarrow\{1,2,3, \cdots, n\}$ to be

$$
f\left(v_{i}\right)=i, \quad 1 \leq i \leq n
$$

From the above labeling pattern we get, $e_{f^{\prime}}(1)=n-1$. Hence, P_{n} is PD-divisor.
Example 4.6 Consider the labeling of P_{8} in Figure 3.

Figure 3
Here $e_{f^{\prime}}(1)=7$. Hence, P_{8} is PD-divisor.
Theorem 4.7 A comb $P_{n} \odot K_{1}$ is $P D$-divisor.
Proof Let $v_{1}, v_{2}, \cdots, v_{n}$ be the vertices of path P_{n}. Let $V\left(P_{n} \odot K_{1}\right)=\left\{v_{i}, u_{i}: 1 \leq i \leq n\right\}$ and $E\left(P_{n} \odot K_{1}\right)=\left\{v_{i} v_{i+1}: 1 \leq i \leq n-1\right\} \bigcup\left\{v_{i} u_{i}: 1 \leq i \leq n\right\}$. Therefore, $P_{n} \odot K_{1}$ is of order $2 n$ and size $2 n-1$. Define $f: V\left(P_{n} \odot K_{1}\right) \rightarrow\{1,2,3, \cdots, 2 n\}$ to be $f\left(v_{i}\right)=2 i, 1 \leq i \leq n$, $f\left(u_{i}\right)=2 i-1,1 \leq i \leq n$.

From the above labeling pattern we get, $e_{f^{\prime}}(1)=2 n-1$. So $P_{n} \odot K_{1}$ is PD-divisor.
Example 4.8 Consider the labeling of $P_{6} \odot K_{1}$ in Figure 4 .

Figure 4
Here, $e_{f^{\prime}}(1)=11$. Hence, $P_{6} \odot K_{1}$ is PD-divisor.

Theorem 4.9 A double comb $P_{n} \odot 2 K_{1}$ is $P D$-divisor.

Proof Let $v_{1}, v_{2}, \cdots, v_{n}$ be the vertices of path P_{n}. Let $V\left(P_{n} \odot 2 K_{1}\right)=\left\{v_{i}, u_{i}, w_{i}: 1 \leq\right.$ $i \leq n\}$ and $E\left(P_{n} \odot 2 K_{1}\right)=\left\{v_{i} v_{i+1}: 1 \leq i \leq n-1\right\} \bigcup\left\{v_{i} u_{i}: 1 \leq i \leq n\right\} \bigcup\left\{v_{i} w_{i}: 1 \leq i \leq n\right\}$. Therefore, $P_{n} \odot 2 K_{1}$ is of order $3 n$ and size $3 n-1$. Define $f: V\left(P_{n} \odot 2 K_{1}\right) \rightarrow\{1,2,3, \cdots, 3 n\}$ to be

$$
\begin{aligned}
f\left(v_{2 i-1}\right) & =6 i-4, \quad 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
f\left(v_{2 i}\right) & =6 i-2, \quad 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\
f\left(u_{i}\right) & =3 i, \quad 1 \leq i \leq n \\
f\left(w_{2 i-1}\right) & =6 i-5, \quad 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
f\left(w_{2 i}\right) & =6 i-1, \quad 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor .
\end{aligned}
$$

From the above labeling pattern we get, $e_{f^{\prime}}(1)=3 n-1$. Hence, $P_{n} \odot 2 K_{1}$ is PD-divisor. \square

Example 4.10 Consider the labeling of $P_{8} \odot 2 K_{1}$ in Figure 5.

Figure 5
Here $e_{f^{\prime}}(1)=23$. Hence, $P_{8} \odot 2 K_{1}$ is PD-divisor.

Theorem $4.11 \quad A$ crown $C_{n} \odot K_{1}$ is PD-divisor.

Proof Let $v_{1}, v_{2}, \cdots, v_{n}$ be the vertices of cycle C_{n}. Let $V\left(C_{n} \odot K_{1}\right)=\left\{v_{i}, u_{i}: 1 \leq i \leq n\right\}$ and $E\left(C_{n} \odot K_{1}\right)=\left\{v_{i} v_{i+1}: 1 \leq i \leq n-1\right\} \bigcup\left\{v_{n} v_{1}, v_{i} u_{i}: 1 \leq i \leq n\right\}$. Therefore, $C_{n} \odot K_{1}$ is of
order $2 n$ and size $2 n$. Define $f: V\left(C_{n} \odot K_{1}\right) \rightarrow\{1,2,3, \cdots, 2 n\}$ to be

$$
\begin{aligned}
f\left(v_{i}\right) & =4 i-2, \quad 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
f\left(v_{n+1-i}\right) & =4 i, \quad 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\
f\left(u_{i}\right) & =4 i-3, \quad 1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil \\
f\left(u_{n+1-i}\right) & =4 i-1, \quad 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor
\end{aligned}
$$

From the above labeling pattern we get, $e_{f^{\prime}}(1)=2 n$. Hence, $C_{n} \odot K_{1}$ is PD-divisor.
Example 4.12 Consider the labeling of $C_{11} \odot K_{1}$ in Figure 6 .

Figure 6
Here, $e_{f^{\prime}}(1)=22$. Hence, $C_{11} \odot K_{1}$ is PD-divisor.
Next, we will investigate whether the star graph $K_{1, n}$ is PD-divisor or not. Clearly, $K_{1,1}$ and $K_{1,2}$ are PD-divisor, and also $K_{1,3}$ is PD-divisor in the following labeling.

Figure 7
Next, we will prove that $K_{1, n}$ is not PD-divisor for $n \geq 4$.

Theorem 4.13 For $n \geq 4$, the star graph $K_{1, n}$ is not PD-divisor.

Proof Consider the set $\{1,2, \cdots, n+1\}, n \geq 4$. Let v be the central vertex of $K_{1, n}(n \geq 4)$. If we label 1 to v and other numbers to the end vertices of $K_{1, n}$, then it follows from Proposition 2.6, 1 does not PD-divide $3,4,5, \cdots, n+1$.

If we label 2 to v and other numbers to the end vertices of $K_{1, n}$, then it follows from Proposition 2.7, 2 does not PD-divide $5,7,8, \cdots, n+1$.

Suppose, we label $n \geq 3$ to v. Since any one of the end vertex has the label 1 , then it follows from Proposition 2.6, 1 does not PD-divide to the label of v.

Thus, $K_{1, n}$ is not PD-divisor for $n \geq 4$.
Theorem 4.14 If $\delta(G) \geq 2$, then G is not $P D$-divisor.
Proof Suppose G is PD-divisor. Let v be the vertex of degree $\delta(G) \geq 2$, which is labeled with 1 . Then, any one of the δ adjacent vertices of v must have the labels other than 2 , say w.

From Proposition 2.6, it follows that 1 does not PD-divide the label of w. This is contradiction to G is PD-divisor.

Remark 4.15 If $\delta(G)=1$, then it is not necessary that G is PD-divisor from Theorem 4.13 its follows.

Corollary 4.16 For $n \geq 3$, the cycle graph C_{n} is not PD-divisor.
Proof Since $\delta\left(C_{n}\right) \geq 2$ for $n \geq 3$, the result follows from Theorem 4.14.
Corollary 4.17 For $n \geq 3$, the complete graph K_{n} is not PD-divisor.
Proof Since $\delta\left(K_{n}\right) \geq 2$ for $n \geq 3$, the result follows from Theorem 4.14.
Corollary 4.18 For $m, n \geq 2$, the complete bipartite graph $K_{m, n}$ is not PD-divisor.
Proof Since $\delta\left(K_{m, n}\right) \geq 2$ for $m, n \geq 2$, the result follows from Theorem 4.14.
Corollary 4.19 The wheel graph $W_{n+1}(n \geq 2)$ is not PD-divisor.

References

[1] I. Cahit, Cordial graphs: A Weaker Version of Graceful and Harmonious Graphs, Ars Combinatoria, 23(1987), 201-207.
[2] David M. Burton, Elementary Number Theory, Second Edition, Wm. C. Brown Company Publishers, 1980.
[3] J. A. Gallian, A Dynamic Survey of Graph Labeling, Electronic J. Combin., 19 (2012) \#DS6.
[4] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass, (1972).
[5] K. Kasthuri, K. Karuppasamy and K. Nagarajan, SD-Divisor labeling of path and cycle related graphs, AIP Conference Proceedings 2463, 030001 (2022).
[6] G.C. Lau, H. H. Chu, N. Suhadak, F. Y. Foo and H. K. Ng, On SD-prime cordial graphs, International Journal of Pure and Applied Mathematics, 106 (4), pp. 1017-1028, (2016).
[7] G.C. Lau and W.C.Shiu, On SD-prime labeling of graphs, Utilitas Math., 106. pp. 149-164.
[8] G.C. Lau, W.C. Shiu, H.K. Ng, C.D. Ng and P. Jeyanthi, Further results on SD-prime labeling, $J C M C C, 98$, pp. 151-170, (2016).
[9] M. Sundaram, R. Ponraj and S. Somasundram, Prime cordial labeling of graphs, J. Ind. Acad. of Maths., 27(2) (2005), 373-390.
[10] R. Varatharajan, S. Navaneethakrishnan and K. Nagarajan, Divisor cordial graphs, International J. Math. Combin., Vol 4, 2011, pp.15-25.

[^0]: ${ }^{1}$ Received June 1, 2023, Accepted August 25, 2023.

