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Abstract: Let G = (V (G), E(G)) be a simple, finite and undirected graph of order n.

Given a bijection f : V (G) → {1, 2, · · · , |V (G)|}, we associate two integers P = f(u)f(v)

and D = |f(u)− f(v)| with every edge uv in E(G). The labeling f induces on edge labeling

f ′ : E(G)→ {0, 1} such that for any edge uv in E(G), f ′(uv) = 1 if D | P and f ′(uv) = 0 if

D - P . Let ef ′(i) be the number of edges labeled with i ∈ {0, 1}. We say f is an PD-divisor

labeling if f ′(uv) = 1 for all uv ∈ E(G). Moreover, G is PD-divisor if it admits an PD-divisor

labeling. We say f is an PD-divisor cordial labeling if |ef ′(0) − ef ′(1)| ≤ 1. Moreover, G

is PD-divisor cordial if it admits an PD-divisor cordial labeling. In this paper, we define

PD-divisibility and PD-divisor pair of numbers and establish some of its properties. Also,

we are dealing in PD-divisor labeling of some standard graphs.
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§1. Introduction

Let G = (V (G), E(G)) (or G = (V,E)) be a simple, finite and undirected graph of order

|V (G)| = n and size |E(G)| = m. All notations not defined in this paper can be found in [4].

Definition 1.1 ([2]) Let a and b be two integers. If a divides b means that there is a positive

integer k such that b = ka. It is denoted by a | b. If a does not divide b , then we denote a - b.

Definition 1.2 ([1]) Let G = (V,E) be a graph. A mapping f : V (G)→ {0, 1} is called binary

vertex labeling of G and f(v) is called the label of the vertex v of G under f . For an edge e = uv,

the induced edge labeling f ′ : E(G)→ {0, 1} is given by f ′(e) = |f(u)− f(v)|. Let vf (0), vf (1)

be the number of vertices of G having labels 0 and 1 respectively under f and ef ′(0), ef ′(1) be

the number of edges having labels 0 and 1 respectively under f ′. This labeling is called cordial

labeling if |vf (0)− vf (1)| ≤ 1 and |ef ′(0)− ef ′(1)| ≤ 1. A graph G is cordial if it admits cordial

labeling.
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Definition 1.3 ([9]) A bijection f : V → {1, 2, · · · , n} induces an edge labeling

f ′ : E → {0, 1} such that for any edge uv in G, f ′(uv) = 1 if gcd(f(u), f(v)) = 1, and

f ′(uv) = 0 otherwise. We say that f is a prime cordial labeling if |ef ′(0)− ef ′(1)| ≤ 1. More-

over, G is prime cordial if it admits a prime cordial labeling.

Definition 1.4 ([10]) Let G = (V,E) be a simple graph and f : V → {1, 2, · · · , n} be a bijection.

For each edge uv, assign the label 1 if either f(u) | f(v) or f(v) | f(u) and the label 0 otherwise.

We say that f is a divisor cordial labeling if |ef ′(0)−ef ′(1)| ≤ 1. Moreover, G is divisor cordial

if it admits a divisor cordial labeling.

Given a bijection f : V → {1, 2, · · · , n}, we associate two integers S = f(u) + f(v) and

D = |f(u)− f(v)| with every edge uv in E.

Definition 1.5 ([7]) A bijection f : V → {1, 2, · · · , n} induces an edge labeling f ′ : E → {0, 1}
such that for any edge uv in G, f ′(uv) = 1 if gcd(S,D) = 1, and f ′(uv) = 0 otherwise. We say

f is an SD-prime labeling if f ′(uv) = 1 for all uv ∈ E. Moreover, G is SD-prime if it admits

an SD-prime labeling.

Definition 1.6 ([6]) A bijection f : V → {1, 2, · · · , n} induces an edge labeling f ′ : E → {0, 1}
such that for any edge uv in G, f ′(uv) = 1 if gcd(S,D) = 1, and f ′(uv) = 0 otherwise. The

labeling f is called an SD-prime cordial labeling if |ef ′(0) − ef ′(1)| ≤ 1. We say that G is

SD-prime cordial if it admits an SD-prime cordial labeling.

Definition 1.7 ([5]) Let G = (V (G), E(G)) be a simple graph and a bijection f : V (G) →
{1, 2, 3, · · · , |V (G)|} induces an edge labeling f ′ : E(G) → {0, 1} such that for any edge uv in

E(G), f ′(uv) = 1 if D | S and f ′(uv) = 0 if D - S. We say f is an SD-divisor labeling if

f ′(uv) = 1 for all uv ∈ E(G). Moreover, G is SD-divisor if it admits an SD-divisor labeling.

Definition 1.8 ([5]) Let G = (V (G), E(G)) be a simple graph and a bijection f : V (G) →
{1, 2, 3, · · · , |V (G)|} induces an edge labeling f ′ : E(G) → {0, 1} such that for any edge uv in

E(G), f ′(uv) = 1 if D | S and f ′(uv) = 0 if D - S. The labeling f is called an SD-divisor

cordial labeling if |ef ′(0) − ef ′(1)| ≤ 1. We say that G is SD-divisor cordial if it admits an

SD-divisor cordial labeling.

Generally, the labeling f in Definition 1.8 is said to be Smarandachely SD-divisor cordial

if |ef ′(0)− ef ′(1)| ≥ 2 and G is said to be a Smarandachely SD-divisor cordial graph. In [5], we

introduced two new types of labeling called SD-divisor and SD-divisor cordial labeling. Also,

we proved some graphs are SD-divisor. Motivated by the concepts of SD-divisor and SD-divisor

cordial labeling, we introduce two new types of labeling called PD-divisor and PD-divisor cordial

labeling. In this paper, we define PD-divisibility and PD-divisor pair of numbers and establish

some of its properties. Also, we are dealing in PD-divisor labeling of some standard graphs.

§2. PD-Divisibility and its Properties

First, we define PD-divisibility of two positive integers.
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Definition 2.1 Let a and b be the two distinct positive integers, we say that a PD-divides b if

|a− b| | ab. It is denoted by a |
PD

b. If a does not PD-divide b, then it is denoted by a -
PD

b.

Example 2.2 4 |
PD

6.

Example 2.3 2 -
PD

8.

Notice that

1. From the Examples 2.2 and 2.3, divisibility and PD-divisibility are different concepts.

2. By Definition 2.1, PD-divisibility is not reflexive.

3. From Definition 2.1, a |
PD

b ⇒ |a− b| | ab
⇒ |b− a| | ba
⇒ b |

PD
a.

Thus, PD-divisibility is symmetric.

4. PD-divisibility is not transitive.

Example 2.4 1 |
PD

2 and 2 |
PD

6 but 1 -
PD

6.

PD-divisibility is not an equivalence relation.

Observation 2.5 Its known that if k and k+ 1 are two consecutive integers, then k - k+ 1 for

k ≥ 2.

Proposition 2.6 1 PD-divides only to the integer 2.

Proof Let a = 1 and b > 1 be the any positive integer. If 1 |
PD

b, then (b − 1) | b. This

means that two consecutive integers divide. This is possible only if b = 2. �

Proposition 2.7 2 PD-divides only to the integers 1, 3, 4 and 6.

Proof Let a = 2 and b be the any positive integer. If 2 |
PD

b, then |b − 2| | 2b. This is

possible only if b = 1, 3, 4 and 6. �

Proposition 2.8 3 PD-divides only to the integers 2, 4, 6 and 12.

Proof Let a = 3 and b be the any positive integer. If 3 |
PD

b, then |b − 3| | 3b. This is

possible only if b = 2, 4, 6 and 12. �

Observation 2.9 Let a ≥ 2 be the any positive integer. Then a− 1, a+ 1, 2a and a(a+ 1) are

PD-divisible by a.

Observation 2.10 Let a ≥ 4 be the any positive even integer. Then a− 2, a− 1, a+ 1, a+ 2,

a+ 4, 2a, 3a and a(a+ 1) are PD-divisible by a.

Proposition 2.11 Let a and b be the two consecutive odd integers, then a -
PD

b.

Proof Let a = 2k + 1 and b = 2k + 3 for k ≥ 0. Then |a− b| = |2k + 1− 2k − 3| = 2 and

ab = (2k + 1)(2k + 3).

Clearly, 2 - (2k + 1)(2k + 3). Then a -
PD

b. �
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Proposition 2.12 Let a and b be the two consecutive even integers, then a |
PD

b.

Proof Let a = 2k + 2 and b = 2k + 4 for k ≥ 0. Then |a− b| = |2k + 2− 2k − 4| = 2 and

ab = (2k + 2)(2k + 4).

Clearly, 2 | (2k + 2)(2k + 4). Then a |
PD

b. �

§3. PD-Divisor Pair

Definition 3.1 Let a and b be the two distinct positive integers. If a |
PD

b, then we say that

(a, b) is called PD-divisor pair.

Example 3.2 For k ≥ 1, (k, k + 1) is PD-divisor pair.

Notice that if l ≥ 1 is any positive integer, then (lk, l(k+ 1)) is PD-divisor pair. We know

the following results.

Proposition 3.3 If the pair (a, b) is PD-divisor, then (ka, kb) is PD-divisor pair for k ≥ 1.

Proof Let a and b the PD-divisor pair. Without loss of generality, we take a > b.

Then, a |
PD

b ⇒ (a− b) | ab
⇒ k(a− b) | kab for k ≥ 1

⇒ (ka− kb) | kab
⇒ (ka− kb) | k2ab ⇒ ka |

PD
kb. �

Proposition 3.4 Let k ≥ 3 be an odd integer. Then (k + 1, k − 1) is PD-divisor pair.

Proof Let a = k+ 1 and b = k− 1 for all odd integer k ≥ 3. Then |a− b| = |k+ 1− k+ 1|
= 2 and ab = (k + 1)(k − 1) = k2 − 1.

Clearly 2 | k2 − 1. Thus, (k + 1, k − 1) is PD-divisor pair for all odd integer k ≥ 3. �

Proposition 3.5 Let k ≥ 2 be an even integer. Then (k + 1, k − 1) is not PD-divisor pair.

Proof Let a = k+ 1 and b = k− 1 for all even integer k ≥ 2. Then, |a− b| = |k+ 1−k+ 1|
= 2 and ab = (k + 1)(k − 1) = k2 − 1.

Clearly, 2 - k2 − 1. Thus, (k + 1, k − 1) is not PD-divisor pair for all even integer k ≥ 2.�

Proposition 3.6 Let k ≥ 0. Then (2k, 2k+1) is PD-divisor pair.

Proof Let a = 2k and b = 2k+1 for k ≥ 0. Then |a − b| = |2k − 2k+1| = 2k and

ab = (2k)(2k+1).

Clearly, |a− b| | ab. Thus, (2k, 2k+1) is PD-divisor pair for k ≥ 0. �

Proposition 3.7 Let k ≥ 0. Then (3k, 3k+1) is not PD-divisor pair.

Proof Let a = 3k and b = 3k+1 for k ≥ 0. Then, |a − b| = |3k − 3k+1| = 2 · 3k and

ab = (3k)(3k+1).
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Clearly, |a− b| - ab. Thus, (3k, 3k+1) is not PD-divisor pair for k ≥ 0. �

Proposition 3.8 Let l ≥ 3 and k ≥ 0. Then (lk, lk+1) is not PD-divisor pair.

Proof Let a = lk and b = lk+1 for l ≥ 3, k ≥ 0. Then, |a− b| = |lk − lk+1| = lk(l− 1) and

ab = (lk)(lk+1).

Clearly, l − 1 - lk+1 for l ≥ 3 and k ≥ 0. Thus, (lk, lk+1) is not a PD-divisor pair for l ≥ 3

and k ≥ 0. �

Definition 3.9 Let S be a set of any distinct positive integers. Then S is said to be PD-divisor

set if every pair of integers in S is PD-divisor.

we always use notation [n] = {1, 2, · · · , n} in this paper.

Example 3.10 [2] is PD-divisor set.

§4. PD-Divisor Labeling of Graphs

Now, we introduce two new types of labeling called PD-divisor and PD-divisor cordial labeling.

Given a bijection f : V → {1, 2, · · · , n}, we associate two integers P = f(u)f(v) and D =

|f(u)− f(v)| with every edge uv in E.

Definition 4.1 Let G = (V (G), E(G)) be a simple graph and a bijection

f : V (G) → {1, 2, 3, · · · , |V (G)|} induces an edge labeling f ′ : E(G) → {0, 1} such that for

any edge uv in E(G), f ′(uv) = 1 if D | P and f ′(uv) = 0 if D - P . We say f is an PD-divisor

labeling if f ′(uv) = 1 for all uv ∈ E(G). Moreover, G is PD-divisor if it admits an PD-divisor

labeling.

Example 4.2 Consider the following graph G.

s

s
s

s
s

s

1

2

3

4 5

6

1

1

11 1

1

1

Figure 1

We see that ef ′(1) = 7. Hence G is PD-divisor.

Definition 4.2 Let G = (V (G), E(G)) be a simple graph and a bijection

f : V (G) → {1, 2, 3, ..., |V (G)|} induces an edge labeling f ′ : E(G) → {0, 1} such that for

any edge uv in E(G), f ′(uv) = 1 if D | P and f ′(uv) = 0 if D - P . The labeling f is called

an PD-divisor cordial labeling if |ef ′(0)− ef ′(1)| ≤ 1. We say that G is PD-divisor cordial if it

admits an PD-divisor cordial labeling.
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Example 4.3 Consider the the labeling of G in Figure 3.

s
s

s
s
s

5

3

1

4

2

1 0

10 0

1

1

Figure 2

We see that ef ′(0) = 3 and ef ′(1) = 4. Thus |ef ′(0)−ef ′(1)| ≤ 1 and hence G is PD-divisor

cordial.

Now, we prove path and some path related graphs are PD-divisor. Also, we prove some

standard graphs such as star, cycle, complete, complete bipartite and wheel graphs are not

PD-divisor.

Theorem 4.5 A path Pn is PD-divisor.

Proof Let v1, v2, · · · , vn be the vertices of path Pn. Let V (Pn) = {vi : 1 ≤ i ≤ n}
and E(Pn) = {vivi+1 : 1 ≤ i ≤ n − 1}. Therefore, Pn is of order n and size n − 1. Define

f : V (Pn)→ {1, 2, 3, · · · , n} to be

f(vi) = i, 1 ≤ i ≤ n.

From the above labeling pattern we get, ef ′(1) = n− 1. Hence, Pn is PD-divisor. �

Example 4.6 Consider the labeling of P8 in Figure 3.

s s s s s s s s
2 3 4 5 6 7 81

1 1 1 11 1 1

Figure 3

Here ef ′(1) = 7. Hence, P8 is PD-divisor.

Theorem 4.7 A comb Pn �K1 is PD-divisor.

Proof Let v1, v2, · · · , vn be the vertices of path Pn. Let V (Pn�K1) = {vi, ui : 1 ≤ i ≤ n}
and E(Pn �K1) = {vivi+1 : 1 ≤ i ≤ n− 1}

⋃
{viui : 1 ≤ i ≤ n}. Therefore, Pn �K1 is of order

2n and size 2n − 1. Define f : V (Pn � K1) → {1, 2, 3, · · · , 2n} to be f(vi) = 2i, 1 ≤ i ≤ n,

f(ui) = 2i− 1, 1 ≤ i ≤ n.
From the above labeling pattern we get, ef ′(1) = 2n− 1. So Pn �K1 is PD-divisor. �

Example 4.8 Consider the labeling of P6 �K1 in Figure 4.
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s
s

s
s

s
s

s
s s

s s
s

2 4 6 8 10 12

1 3 5 7 9 11

1 1 1 1 1

1 1 1 1 1 1

Figure 4

Here, ef ′(1) = 11. Hence, P6 �K1 is PD-divisor.

Theorem 4.9 A double comb Pn � 2K1 is PD-divisor.

Proof Let v1, v2, · · · , vn be the vertices of path Pn. Let V (Pn � 2K1) = {vi, ui, wi : 1 ≤
i ≤ n} and E(Pn � 2K1) = {vivi+1 : 1 ≤ i ≤ n − 1}

⋃
{viui : 1 ≤ i ≤ n}

⋃
{viwi : 1 ≤ i ≤ n}.

Therefore, Pn� 2K1 is of order 3n and size 3n− 1. Define f : V (Pn� 2K1)→ {1, 2, 3, · · · , 3n}
to be

f(v2i−1) = 6i− 4, 1 ≤ i ≤ dn
2
e,

f(v2i) = 6i− 2, 1 ≤ i ≤ bn
2
c,

f(ui) = 3i, 1 ≤ i ≤ n,

f(w2i−1) = 6i− 5, 1 ≤ i ≤ dn
2
e,

f(w2i) = 6i− 1, 1 ≤ i ≤ bn
2
c.

From the above labeling pattern we get, ef ′(1) = 3n− 1. Hence, Pn� 2K1 is PD-divisor.�

Example 4.10 Consider the labeling of P8 � 2K1 in Figure 5.

s ss s ss s
s s s s s s s

ss s ss s s
s
s

s

3 6 9 12 15 18 21

2 4 8 10 14 16 20

1 5 7 11 13 17 19 23

22

24

1

1

1

1

1

1 1

1 1

1 1

1 1

1 1

1

1 1 1 11 1 1

Figure 5

Here ef ′(1) = 23. Hence, P8 � 2K1 is PD-divisor.

Theorem 4.11 A crown Cn �K1 is PD-divisor.

Proof Let v1, v2, · · · , vn be the vertices of cycle Cn. Let V (Cn�K1) = {vi, ui : 1 ≤ i ≤ n}
and E(Cn �K1) = {vivi+1 : 1 ≤ i ≤ n− 1}

⋃
{vnv1, viui : 1 ≤ i ≤ n}. Therefore, Cn �K1 is of
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order 2n and size 2n. Define f : V (Cn �K1)→ {1, 2, 3, · · · , 2n} to be

f(vi) = 4i− 2, 1 ≤ i ≤
⌈n

2

⌉
,

f(vn+1−i) = 4i, 1 ≤ i ≤
⌊n

2

⌋
,

f(ui) = 4i− 3, 1 ≤ i ≤
⌈n

2

⌉
,

f(un+1−i) = 4i− 1, 1 ≤ i ≤
⌊n

2

⌋
.

From the above labeling pattern we get, ef ′(1) = 2n. Hence, Cn �K1 is PD-divisor. �

Example 4.12 Consider the labeling of C11 �K1 in Figure 6.
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s
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s
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s
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s
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s

s
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1

1
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1

1

1

1

2
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8

4

2220
16

1

1

1

1

1

1

1

1

1

1

1

Figure 6

Here, ef ′(1) = 22. Hence, C11 �K1 is PD-divisor.

Next, we will investigate whether the star graph K1,n is PD-divisor or not. Clearly, K1,1

and K1,2 are PD-divisor, and also K1,3 is PD-divisor in the following labeling.

�
�
�@

@@

s
s

s s
2

1

3 4

1

1 1

Figure 7

Next, we will prove that K1,n is not PD-divisor for n ≥ 4.

Theorem 4.13 For n ≥ 4, the star graph K1,n is not PD-divisor.
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Proof Consider the set {1, 2, · · · , n+1}, n ≥ 4. Let v be the central vertex of K1,n(n ≥ 4).

If we label 1 to v and other numbers to the end vertices of K1,n, then it follows from

Proposition 2.6, 1 does not PD-divide 3, 4, 5, · · · , n+ 1.

If we label 2 to v and other numbers to the end vertices of K1,n, then it follows from

Proposition 2.7, 2 does not PD-divide 5, 7, 8, · · · , n+ 1.

Suppose, we label n ≥ 3 to v. Since any one of the end vertex has the label 1, then it

follows from Proposition 2.6, 1 does not PD-divide to the label of v.

Thus, K1,n is not PD-divisor for n ≥ 4. �

Theorem 4.14 If δ(G) ≥ 2, then G is not PD-divisor.

Proof Suppose G is PD-divisor. Let v be the vertex of degree δ(G) ≥ 2, which is labeled

with 1. Then, any one of the δ adjacent vertices of v must have the labels other than 2, say w.

From Proposition 2.6, it follows that 1 does not PD-divide the label of w. This is contra-

diction to G is PD-divisor. �

Remark 4.15 If δ(G) = 1, then it is not necessary that G is PD-divisor from Theorem 4.13

its follows.

Corollary 4.16 For n ≥ 3, the cycle graph Cn is not PD-divisor.

Proof Since δ(Cn) ≥ 2 for n ≥ 3, the result follows from Theorem 4.14. �

Corollary 4.17 For n ≥ 3, the complete graph Kn is not PD-divisor.

Proof Since δ(Kn) ≥ 2 for n ≥ 3, the result follows from Theorem 4.14. �

Corollary 4.18 For m,n ≥ 2, the complete bipartite graph Km,n is not PD-divisor.

Proof Since δ(Km,n) ≥ 2 for m,n ≥ 2, the result follows from Theorem 4.14. �

Corollary 4.19 The wheel graph Wn+1(n ≥ 2) is not PD-divisor.
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