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§1. Introduction

In this paper we consider only finite, undirected and simple graphs.The concept of pair difference

cordial labeling of a graph was introduced and studied some properties of pair difference cordial

labeling in [4]. By definition, let L = {±1,±2,±3, · · · ,±bp/2c}. Consider a mapping f :

V −→ L by assigning different labels in L to the different elements of V when p is even and

different labels in L to p− 1 elements of V and repeating a label for the remaining one vertex

when p is odd. Such a labeling is said to be a pair difference cordial labeling if for each

edge uv of G there exists a labeling |f(u)− f(v)| such that
∣∣∆f1 −∆fc

1

∣∣ ≤ 1. Otherwise, it is

called a Smarandachely pair difference cordial labeling if
∣∣∆f1 −∆fc

1

∣∣ ≥ 2, where ∆f1 and ∆fc
1

respectively denote the numbers of edges labeled or not labeled with 1.

A graph G for which there exists a pair difference cordial labeling or Smarandachely pair

difference cordial labeling is called a pair difference cordial graph or Smarandachely pair dif-

ference cordial graph. The pair difference cordial labeling behavior of several graphs have been

investigated in [4,5,6,7,8,9,10,11]. In this paper we investigate pair difference cordial labeling

behavior of some trees and some graphs derived from cube graph.Terms not defined here are

follow from [2,3].
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§2. Preliminaries

Definition 2.1([2]) Let Pn be the path a1a2a3 · · · an. A Y−tree Yn is the tree of order n + 1

whose vertex set is V (Yn) = {a1, a2, a3, · · · , an, a} and the edge set E(Yn) = E(Pn) ∪ {an−1a}.
In other words Yn is obtained by attaching the vertex a to the vertex an−1 of Pn.

Definition 2.2([2]) A W− graph W (n) is the graph with vertex set

{c1, c2, b, w, d}
⋃
{x1, x2, x3, · · · , xn}

⋃
{y1, y2, y3, · · · , yn}

and the edge set

{c1x1, c1x2, · · · , c1xn}
⋃
{c2y1, c2y2, · · · , c2yn}

⋃
{c1b, c1w, c2w, c2d}.

Definition 2.3([2]) A W−tree WT (n, k) is a graph obtained by taking k− copies of W− graph

W (n) and a new vertex a and joining a which in each copy d where n ≥ 2, k ≥ 3.

Let V (WT (n, k)) = {a, ci1, ci2, di, xi1, xi2, xi3, · · · , xin+1, y
i
1, y

i
2, y

i
3, · · · , yin+1 : 1 ≤ i ≤ k},

E(WT (n, k)) = {aci1, aci2, dici1, dici2, ci1xij , ci2xij : 1 ≤ i ≤ k, 1 ≤ j ≤ n}. Obviously WT (n, k) has

nk(k + 1) + k(n+ 1) + 1 vertices and nk(k + 1) + k(n+ 1) edges.

Definition 2.4([3]) Let G be the graph and G1, G2, G3, · · · , Gn;n ≥ 2 be n copies of the graph

G. Then the graph obtained by adding an edge from Gi to Gi+1, i = 1, 2, 3, · · · , n− 1) is called

path union of graph G.

Definition 2.5([3]) Let G1, G2, G3, · · · , Gn be any n− graphs. A graph obtained by replacing

each vertex of K1,n except the apex vertex by the graph G1, G2, G3, · · · , Gn is known as an open

star of graphs which is denoted by OS(G1, G2, G3, · · · , Gn). If G1 = G2 = G3 = · · · = Gn = G

then it is denoted by OS(n.G).

Definition 2.6([3]) A hypercube is an n− dimensional analogue of a square (n = 2) and a cube

(n = 3) which is also known as an n− cube or n− dimensional cube which is denoted by Qn.

§3. Graphs Obtained From Trees

Theorem 3.1 A Y-tree is pair difference cordial for all values of n ≥ 3.

Proof Take the vertex set and edge set from Definition 2.1. The proof is divided into the

following 4 cases.

Case 1. n ≡ 0(mod4).

Assign the labels 1, 2,−1,−2 respectively to the vertices a1, a2, a3, a4 and allocate the

values 3, 4,−3,−4 individually to the vertices a5, a6, a7, a8. Net we put the labels 5, 6,−5,−6

separately to the vertices a9, a10, a11, a12 and assign the labels 7, 8,−7,−8 respectively to the

vertices a13, a14, a15, a16. Proceeding like this process until we reach the vertex an. Finally
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assign the label −1 to the vertex a.

In this case ∆f1 = ∆fc
1

= n
2 .

Case 2. n ≡ 1(mod4).

Assign the labels as in Case 1 to the vertices ai, 1 ≤ i ≤ n−1). And then, assign the labels
n+1
2 ,−(n+1

2 ) to the vertices an, a. Then ∆f1 = n+1
2 ,∆fc

1
= n−1

2 .

Case 3. n ≡ 2(mod4).

Assign the labels as in Case 1 to the vertices ai, 1 ≤ i ≤ n − 2). Lastly assign the labels
n
2 ,−(n

2 ), n−2
2 to the vertices an−1, an, a.

In this case ∆f1 = ∆fc
1

= n
2 .

Case 4. n ≡ 3(mod4).

Assign the labels as in Case 1 to the vertices ai, 1 ≤ i ≤ n − 3). Finally assign the labels
n−1
2 , n+1

2 ,−(n−1
2 ),−(n+1

2 ) to the vertices an−2, an−1, an, a. Then ∆f1 = n−1
2 ,∆fc

1
= n+1

2 . �

Theorem 3.2 The W-tree WT (2, n) is not pair difference cordial for all values of n ≥ 3.

Proof A WT (2, n) has 7n+ 3 vertices and 7n+ 2 edges. Our proof is divided into 2 cases

following.

Case 1. n is even.

The maximum possible of ∆f1 = 4n. Then ∆fc
1
≥ 7n+ 2− 4n.∆fc

1
−∆f1 ≥ 3n+ 2 > 1.

Case 2. n is odd.

The maximum possible of ∆f1 = 4n+1. Then ∆fc
1
≥ 7n+2−4n−1. ∆fc

1
−∆f1 ≥ 3n+1 > 1.

Therefore, a wheel WT (2, n) is not pair difference cordial. �

§4. Graphs Obtained From Cube

Theorem 4.1 The path union of n− copies of Q3 is pair difference cordial for all values of

n ≥ 2.

Proof Let G be the graph obtained by joining n− copies of the cube Q3. Let

V (G) = {xi1, yi1, xi2, yi2, xi3, yi3, xi4, yi4 : 1 ≤ i ≤ n},

E(G) = {xi1xi2, xi2xi3, xi3xi4, xi1xi4, yi1yi2, yi2yi3, yi3yi4, yi1yi4 : 1 ≤ i ≤ n}⋃
{xijyij : 1 ≤ i ≤ n, 1 ≤ j ≤ 4}.

Obviously, G has 8n vertices and 13n− 1 edges. Our proof is divided into 2 cases following.

Case 1. n is even.

When n = 2, Assign the labels 1, 2, 3, 4,−1,−2,−3,−4 respectively to the vertices x11, x12,
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x13, x14, y11, y12, y13, y14 and assign the labels 5, 6, 7, 8,−5,−6,−7,−8 respectively to the ver-

tices x21, x22, x23, x24, y21, y22, y23, y24.

If n ≥ 4, define a map ψ from the vertex set V (G) to the set {±1,±2, · · · ,±4n} by

ψ(xi1) = 8i− 7, i = 1, 3, 5, · · · , n− 1,

ψ(xi2) = 8i− 6, i = 1, 3, 5, · · · , n− 1,

ψ(xi3) = 8i− 5, i = 1, 3, 5, · · · , n− 1,

ψ(xi4) = 8i− 4, i = 1, 3, 5, · · · , n− 1,

ψ(yi1) = −(8i− 7), i = 1, 3, 5, · · · , n− 1,

ψ(yi2) = −(8i− 6), i = 1, 3, 5, · · · , n− 1,

ψ(yi3) = −(8i− 5), i = 1, 3, 5, · · · , n− 1,

ψ(yi4) = −(8i− 4), i = 1, 3, 5, · · · , n− 1,

ψ(xi1) = 8i− 2, i = 2, 4, 6, · · · , n,

ψ(xi2) = 8i− 3, i = 2, 4, 6, · · · , n,

ψ(xi3) = 8i− 1, i = 2, 4, 6, · · · , n,

ψ(xi4) = 8i, i = 2, 4, 6, · · · , n,

ψ(yi1) = −(8i− 2), i = 2, 4, 6, · · · , n,

ψ(yi2) = −(8i− 3), i = 2, 4, 6, · · · , n,

ψ(yi3) = −(8i− 1), i = 2, 4, 6, · · · , n,

ψ(yi4) = −(8i), i = 2, 4, 6, · · · , n.

Case 2. n is odd.

Define a map ψ : V (G)→ {±1,±2, · · · ,±4n} by

ψ(xi1) = 8i− 7, i = 1, 3, 5, · · · , n,

ψ(xi2) = 8i− 6, i = 1, 3, 5, · · · , n,

ψ(xi3) = 8i− 5, i = 1, 3, 5, · · · , n,

ψ(xi4) = 8i− 4, i = 1, 3, 5, · · · , n,

ψ(yi1) = −(8i− 7), i = 1, 3, 5, · · · , n,

ψ(yi2) = −(8i− 6), i = 1, 3, 5, · · · , n,

ψ(yi3) = −(8i− 5), i = 1, 3, 5, · · · , n,

ψ(yi4) = −(8i− 4), i = 1, 3, 5, · · · , n,

ψ(xi1) = 8i− 2, i = 2, 4, 6, · · · , n− 1,

ψ(xi2) = 8i− 3, i = 2, 4, 6, · · · , n− 1,

ψ(xi3) = 8i− 1, i = 2, 4, 6, · · · , n− 1,
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ψ(xi4) = 8i, i = 2, 4, 6, · · · , n− 1,

ψ(yi1) = −(8i− 2), i = 2, 4, 6, · · · , n− 1,

ψ(yi2) = −(8i− 3), i = 2, 4, 6, · · · , n− 1,

ψ(yi3) = −(8i− 1), i = 2, 4, 6, · · · , n− 1,

ψ(yi4) = −(8i), i = 2, 4, 6, · · · , n− 1.

Table 2 given below establishes that this vertex labeling f is a pair difference cordial.

Nature of n ∆fc
1

∆f1

n is odd 13n−1
2

13n−1
2

n is even 13n
2

13n−2
2

This completes the proof. �

Theorem 4.2 A graph obtained by joining two copies of Q3 by path Pn is pair difference cordial

for all values of n ≥ 4.

Proof Let G be the graph obtained by joining two copies of Q3 by path Pn with

V (G) = {xi1, yi1, xi2, yi2, xi3, yi3, xi4, yi4 : 1 ≤ i ≤ 2}
⋃
{zk : 1 ≤ k ≤ n− 2},

E(G) = E(Q3)
⋃
{zizi+1 : 1 ≤ i ≤ n− 2}

⋃
{z1y14, zn−2x11}.

Obviously, G has n+ 14 vertices and n+ 23 edges.

Case 1. n ≡ 0(mod4).

Assign labels 1, 2, 3, 4, 5, 6, 7, 8 respectively to vertices x11, x12, x13, x14, y11, y12, y13, y14 and

assign the labels−1,−2,−3,−4,−5,−6,−7,−8 respectively to the vertices x21, x22, x23, x24, y21,

y22, y23, y24.

Assign the labels 9, 10,−9,−10 respectively to the vertices z1, z2, z3, z4 and allocate the val-

ues 11, 12,−11,−12 individually to the vertices z5, z6, z7, z8. Net we put the labels 5, 6,−5,−6

separately to the vertices z9, z10, z11, z12 and assign the labels 7, 8,−7,−8 respectively to the

vertices z13, z14, z15, z16. Proceeding like this process until we reach the vertex zn−4. Finally

assign the labels n+14
2 ,−(n+14

2 ) to the vertex zn−3, zn−2.

Case 2. n ≡ 1(mod4).

Assign the labels as in Case 1 to the vertices xij , yij , 1 ≤ i ≤ 2, 1 ≤ j ≤ 4, ) and zk, 1 ≤
k ≤ n−5. And then, assign the labels n+13

2 ,−(n+13
2 ),−(n+11

2 ) to the vertices zn−4, zn−3, zn−2.

Case 3. n ≡ 2(mod4).

Assign the labels as in case 1 to the vertices xij , yij , 1 ≤ i ≤ 2, 1 ≤ j ≤ 4, ) and

zk, 1 ≤ k ≤ n − 6. Lastly assign the labels n+12
2 , n+14

2 ,−(n+12
2 ),−(n+14

2 ) to the vertices

zn−5, zn−4, zn−3, zn−2.
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Case 4. n ≡ 3(mod4).

Assign the labels as in case 1 to the vertices xij , yij , 1 ≤ i ≤ 2, 1 ≤ j ≤ 4, ) and zk, 1 ≤
k ≤ n − 7. Finally assign the labels n+12

2 , n+14
2 ,−(n+12

2 ),−(n+14
2 ),−(n+12

2 ) to the vertices

zn−6, zn−5, zn−4, zn−3, zn−2.

The Table 3 given below establishes that this vertex labeling f is a pair difference cordial.

Nature of n ∆f1 ∆fc
1

n ≡ 0 (mod 4) n+24
2

n+22
2

n ≡ 1 (mod 4) n+23
2

n+23
2

n ≡ 2 (mod 4) n+24
2

n+22
2

n ≡ 3 (mod 4) n+23
2

n+23
2

This completes the proof. �

Theorem 4.3 An S(n.Q3) is pair difference cordial for all even n.

Proof Our proof is divided into 2 cases following.

Case 1. n ≡ 0(mod4).

Define a map ψ : V (G)→ {±1,±2, · · · ,±4n} by

ψ(x) = 1,

ψ(xi1) = 4i− 3, 1 ≤ i ≤ n

2
,

ψ(xi2) = 4i− 2, 1 ≤ i ≤ n

2
,

ψ(xi3) = 4i− 1, 1 ≤ i ≤ n

2
,

ψ(xi4) = 4i, 1 ≤ i ≤ n

2
,

ψ(yi1) = −(4i− 3), 1 ≤ i ≤ n

2
,

ψ(yi2) = −(4i− 2), 1 ≤ i ≤ n

2
,

ψ(yi3) = −(4i− 1), 1 ≤ i ≤ n

2
,

ψ(yi4) = −4i, 1 ≤ i ≤ n

2
,

ψ(x(n
2 +2i−1)1) = 2n+ 4i− 3, 1 ≤ i ≤ n

4
,

ψ(x(n
2 +2i−1)2) = 2n+ 4i− 2, 1 ≤ i ≤ n

4
,

ψ(x(n
2 +2i−1)3) = 2n+ 4i− 1, 1 ≤ i ≤ n

4
,

ψ(x(n
2 +2i−1)4) = 2n+ 4i, 1 ≤ i ≤ n

4
,

ψ(y(n
2 +2i−1)1) = 2n+ 4i+ 4, 1 ≤ i ≤ n

4
,
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ψ(y(n
2 +2i−1)2) = 2n+ 4i+ 3, 1 ≤ i ≤ n

4
,

ψ(y(n
2 +2i−1)3) = 2n+ 4i+ 2, 1 ≤ i ≤ n

4
,

ψ(y(n
2 +2i−1)4) = 2n+ 4i+ 1, 1 ≤ i ≤ n

4
,

ψ(x(n
2 +2i)1) = −(2n+ 4i− 3), 1 ≤ i ≤ n

4
,

ψ(x(n
2 +2i)2) = −(2n+ 4i− 2), 1 ≤ i ≤ n

4
,

ψ(x(n
2 +2i)3) = −(2n+ 4i− 1), 1 ≤ i ≤ n

4
,

ψ(x(n
2 +2i)4) = −(2n+ 4i), 1 ≤ i ≤ n

4
,

ψ(y(n
2 +2i)1) = −(2n+ 4i+ 4), 1 ≤ i ≤ n

4
,

ψ(y(n
2 +2i)2) = −(2n+ 4i+ 3), 1 ≤ i ≤ n

4
,

ψ(y(n
2 +2i)3) = −(2n+ 4i+ 2), 1 ≤ i ≤ n

4
,

ψ(y(n
2 +2i)4) = −(2n+ 4i+ 1), 1 ≤ i ≤ n

4
,

Case 2. n ≡ 1(mod4).

Define a map ψ from the vertex set V (G) to the set {±1,±2, · · · ,±4n} by

ψ(x) = 3,

ψ(xi1) = 4i− 3, 1 ≤ i ≤ n+ 2

2
,

ψ(xi2) = 4i− 2, 1 ≤ i ≤ n+ 2

2
,

ψ(xi3) = 4i− 1, 1 ≤ i ≤ n+ 2

2
,

ψ(xi4) = 4i, 1 ≤ i ≤ n+ 2

2
,

ψ(yi1) = −(4i− 3), 1 ≤ i ≤ n+ 2

2
,

ψ(yi2) = −(4i− 2), 1 ≤ i ≤ n+ 2

2
,

ψ(yi3) = −(4i− 1), 1 ≤ i ≤ n+ 2

2
,

ψ(yi4) = −4i, 1 ≤ i ≤ n+ 2

2
,

ψ(x(n
2 +2i−1)1) = 2n+ 4i+ 1, 1 ≤ i ≤ n− 2

4
,

ψ(x(n
2 +2i−1)2) = 2n+ 4i+ 2, 1 ≤ i ≤ n− 2

4
,

ψ(x(n
2 +2i−1)3) = 2n+ 4i+ 3, 1 ≤ i ≤ n− 2

4
,
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ψ(x(n
2 +2i−1)4) = 2n+ 4i+ 4, 1 ≤ i ≤ n− 2

4
,

ψ(y(n
2 +2i−1)1) = 2n+ 4i+ 5, 1 ≤ i ≤ n− 2

4
,

ψ(y(n
2 +2i−1)2) = 2n+ 4i+ 6, 1 ≤ i ≤ n− 2

4
,

ψ(y(n
2 +2i−1)3) = 2n+ 4i+ 7, 1 ≤ i ≤ n− 2

4
,

ψ(y(n
2 +2i−1)4) = 2n+ 4i+ 8, 1 ≤ i ≤ n− 2

4
,

ψ(x(n
2 +2i)1) = −(2n+ 4i+ 1), 1 ≤ i ≤ n− 2

4
,

ψ(x(n
2 +2i)2) = −(2n+ 4i+ 2), 1 ≤ i ≤ n− 2

4
,

ψ(x(n
2 +2i)3) = −(2n+ 4i+ 3), 1 ≤ i ≤ n− 2

4
,

ψ(x(n
2 +2i)4) = −(2n+ 4i+ 4), 1 ≤ i ≤ n− 2

4
,

ψ(y(n
2 +2i)1) = −(2n+ 4i+ 5), 1 ≤ i ≤ n− 2

4
,

ψ(y(n
2 +2i)2) = −(2n+ 4i+ 6), 1 ≤ i ≤ n− 2

4
,

ψ(y(n
2 +2i)3) = −(2n+ 4i+ 7), 1 ≤ i ≤ n− 2

4
,

ψ(y(n
2 +2i)4) = −(2n+ 4i+ 8), 1 ≤ i ≤ n− 2

4
,

In both cases ∆f1 = ∆fc
1

= 13n
2 . �

A pair difference cordial labeling of S(6.Q3) is shown in Figure 1.

Figure 1
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