Pair Difference Cordial Labeling of Some Trees and Some Graphs Derived From Cube Graph

R. Ponraj
Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627 412, India

A. Gayathri

Research Scholor, Reg.No:20124012092023
Department of Mathematics, Manonmaniam Sundaranar University, Abhishekapati, Tirunelveli-627 012, India

S. Somasundaram

Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli- 627 012, India
E-mail: ponrajmaths@gmail.com, gayugayathria555@gmail.com, somutvl@gmail.com

Abstract

In this paper we study the pair difference cordial labeling behavior of some trees and some graphs derived from cube graph.

Key Words: Smarandachely pair difference cordial labeling, pair difference cordial labeling, tree, star, cube, Y-tree, W-tree.

AMS(2010): 05C78.

§1. Introduction

In this paper we consider only finite, undirected and simple graphs. The concept of pair difference cordial labeling of a graph was introduced and studied some properties of pair difference cordial labeling in [4]. By definition, let $L=\{ \pm 1, \pm 2, \pm 3, \cdots, \pm\lfloor p / 2\rfloor\}$. Consider a mapping f : $V \longrightarrow L$ by assigning different labels in L to the different elements of V when p is even and different labels in L to $p-1$ elements of V and repeating a label for the remaining one vertex when p is odd. Such a labeling is said to be a pair difference cordial labeling if for each edge $u v$ of G there exists a labeling $|f(u)-f(v)|$ such that $\left|\Delta_{f_{1}}-\Delta_{f_{1}^{c}}\right| \leq 1$. Otherwise, it is called a Smarandachely pair difference cordial labeling if $\left|\Delta_{f_{1}}-\Delta_{f_{1}^{c}}\right| \geq 2$, where $\Delta_{f_{1}}$ and $\Delta_{f_{1}^{c}}$ respectively denote the numbers of edges labeled or not labeled with 1.

A graph G for which there exists a pair difference cordial labeling or Smarandachely pair difference cordial labeling is called a pair difference cordial graph or Smarandachely pair difference cordial graph. The pair difference cordial labeling behavior of several graphs have been investigated in $[4,5,6,7,8,9,10,11]$. In this paper we investigate pair difference cordial labeling behavior of some trees and some graphs derived from cube graph.Terms not defined here are follow from $[2,3]$.

[^0]
§2. Preliminaries

Definition 2.1([2]) Let P_{n} be the path $a_{1} a_{2} a_{3} \cdots a_{n}$. A Y-tree Y_{n} is the tree of order $n+1$ whose vertex set is $V\left(Y_{n}\right)=\left\{a_{1}, a_{2}, a_{3}, \cdots, a_{n}, a\right\}$ and the edge set $E\left(Y_{n}\right)=E\left(P_{n}\right) \cup\left\{a_{n-1} a\right\}$. In other words Y_{n} is obtained by attaching the vertex a to the vertex a_{n-1} of P_{n}.

Definition 2.2([2]) A W - graph $W(n)$ is the graph with vertex set

$$
\left\{c_{1}, c_{2}, b, w, d\right\} \bigcup\left\{x^{1}, x^{2}, x^{3}, \cdots, x^{n}\right\} \bigcup\left\{y^{1}, y^{2}, y^{3}, \cdots, y^{n}\right\}
$$

and the edge set

$$
\left\{c_{1} x^{1}, c_{1} x^{2}, \cdots, c_{1} x^{n}\right\} \bigcup\left\{c_{2} y^{1}, c_{2} y^{2}, \cdots, c_{2} y^{n}\right\} \bigcup\left\{c_{1} b, c_{1} w, c_{2} w, c_{2} d\right\}
$$

Definition 2.3([2]) A W-tree $W T(n, k)$ is a graph obtained by taking $k-$ copies of W - graph $W(n)$ and a new vertex a and joining a which in each copy d where $n \geq 2, k \geq 3$.

Let $V(W T(n, k))=\left\{a, c_{1}^{i}, c_{2}^{i}, d^{i}, x_{1}^{i}, x_{2}^{i}, x_{3}^{i}, \cdots, x_{n+1}^{i}, y_{1}^{i}, y_{2}^{i}, y_{3}^{i}, \cdots, y_{n+1}^{i}: 1 \leq i \leq k\right\}$, $E(W T(n, k))=\left\{a c_{1}^{i}, a c_{2}^{i}, d^{i} c_{1}^{i}, d^{i} c_{2}^{i}, c_{1}^{i} x_{j}^{i}, c_{2}^{i} x_{j}^{i}: 1 \leq i \leq k, 1 \leq j \leq n\right\}$. Obviously $W T(n, k)$ has $n k(k+1)+k(n+1)+1$ vertices and $n k(k+1)+k(n+1)$ edges.

Definition 2.4([3]) Let G be the graph and $G_{1}, G_{2}, G_{3}, \cdots, G_{n} ; n \geq 2$ be n copies of the graph G. Then the graph obtained by adding an edge from G_{i} to $G_{i+1}, i=1,2,3, \cdots, n-1$) is called path union of graph G.

Definition $2.5([3])$ Let $G_{1}, G_{2}, G_{3}, \cdots, G_{n}$ be any n - graphs. A graph obtained by replacing each vertex of $K_{1, n}$ except the apex vertex by the graph $G_{1}, G_{2}, G_{3}, \cdots, G_{n}$ is known as an open star of graphs which is denoted by $O S\left(G_{1}, G_{2}, G_{3}, \cdots, G_{n}\right)$. If $G_{1}=G_{2}=G_{3}=\cdots=G_{n}=G$ then it is denoted by $O S(n . G)$.

Definition 2.6([3]) A hypercube is an n - dimensional analogue of a square $(n=2)$ and a cube $(n=3)$ which is also known as an $n-$ cube or $n-$ dimensional cube which is denoted by Q_{n}.

§3. Graphs Obtained From Trees

Theorem 3.1 A Y-tree is pair difference cordial for all values of $n \geq 3$.
Proof Take the vertex set and edge set from Definition 2.1. The proof is divided into the following 4 cases.

Case 1. $n \equiv 0(\bmod 4)$.
Assign the labels $1,2,-1,-2$ respectively to the vertices $a_{1}, a_{2}, a_{3}, a_{4}$ and allocate the values $3,4,-3,-4$ individually to the vertices $a_{5}, a_{6}, a_{7}, a_{8}$. Net we put the labels $5,6,-5,-6$ separately to the vertices $a_{9}, a_{10}, a_{11}, a_{12}$ and assign the labels $7,8,-7,-8$ respectively to the vertices $a_{13}, a_{14}, a_{15}, a_{16}$. Proceeding like this process until we reach the vertex a_{n}. Finally
assign the label -1 to the vertex a.
In this case $\Delta_{f_{1}}=\Delta_{f_{1}^{c}}=\frac{n}{2}$.
Case 2. $n \equiv 1(\bmod 4)$.
Assign the labels as in Case 1 to the vertices $\left.a_{i}, 1 \leq i \leq n-1\right)$. And then, assign the labels $\frac{n+1}{2},-\left(\frac{n+1}{2}\right)$ to the vertices a_{n}, a. Then $\Delta_{f_{1}}=\frac{n+1}{2}, \Delta_{f_{1}^{c}}=\frac{n-1}{2}$.

Case 3. $n \equiv 2(\bmod 4)$.
Assign the labels as in Case 1 to the vertices $\left.a_{i}, 1 \leq i \leq n-2\right)$. Lastly assign the labels $\frac{n}{2},-\left(\frac{n}{2}\right), \frac{n-2}{2}$ to the vertices a_{n-1}, a_{n}, a.

In this case $\Delta_{f_{1}}=\Delta_{f_{1}^{c}}=\frac{n}{2}$.
Case 4. $n \equiv 3(\bmod 4)$.
Assign the labels as in Case 1 to the vertices $\left.a_{i}, 1 \leq i \leq n-3\right)$. Finally assign the labels $\frac{n-1}{2}, \frac{n+1}{2},-\left(\frac{n-1}{2}\right),-\left(\frac{n+1}{2}\right)$ to the vertices $a_{n-2}, a_{n-1}, a_{n}, a$. Then $\Delta_{f_{1}}=\frac{n-1}{2}, \Delta_{f_{1}^{c}}=\frac{n+1}{2}$.

Theorem 3.2 The W-tree $W T(2, n)$ is not pair difference cordial for all values of $n \geq 3$.
Proof A $W T(2, n)$ has $7 n+3$ vertices and $7 n+2$ edges. Our proof is divided into 2 cases following.

Case 1. n is even.
The maximum possible of $\Delta_{f_{1}}=4 n$. Then $\Delta_{f_{1}^{c}} \geq 7 n+2-4 n . \Delta_{f_{1}^{c}}-\Delta_{f_{1}} \geq 3 n+2>1$.
Case 2. n is odd.
The maximum possible of $\Delta_{f_{1}}=4 n+1$. Then $\Delta_{f_{1}^{c}} \geq 7 n+2-4 n-1 . \Delta_{f_{1}^{c}}-\Delta_{f_{1}} \geq 3 n+1>1$.
Therefore, a wheel $W T(2, n)$ is not pair difference cordial.

§4. Graphs Obtained From Cube

Theorem 4.1 The path union of $n-$ copies of Q_{3} is pair difference cordial for all values of $n \geq 2$.

Proof Let G be the graph obtained by joining $n-$ copies of the cube Q_{3}. Let

$$
\begin{aligned}
V(G)= & \left\{x_{i 1}, y_{i 1}, x_{i 2}, y_{i 2}, x_{i 3}, y_{i 3}, x_{i 4}, y_{i 4}: 1 \leq i \leq n\right\} \\
E(G)= & \left\{x_{i 1} x_{i 2}, x_{i 2} x_{i 3}, x_{i 3} x_{i 4}, x_{i 1} x_{i 4}, y_{i 1} y_{i 2}, y_{i 2} y_{i 3}, y_{i 3} y_{i 4}, y_{i 1} y_{i 4}: 1 \leq i \leq n\right\} \\
& \bigcup\left\{x_{i j} y_{i j}: 1 \leq i \leq n, 1 \leq j \leq 4\right\}
\end{aligned}
$$

Obviously, G has $8 n$ vertices and $13 n-1$ edges. Our proof is divided into 2 cases following.
Case 1. n is even.
When $n=2$, Assign the labels $1,2,3,4,-1,-2,-3,-4$ respectively to the vertices x_{11}, x_{12},
$x_{13}, x_{14}, y_{11}, y_{12}, y_{13}, y_{14}$ and assign the labels $5,6,7,8,-5,-6,-7,-8$ respectively to the vertices $x_{21}, x_{22}, x_{23}, x_{24}, y_{21}, y_{22}, y_{23}, y_{24}$.

If $n \geq 4$, define a map ψ from the vertex set $V(G)$ to the set $\{ \pm 1, \pm 2, \cdots, \pm 4 n\}$ by

$$
\begin{array}{lr}
\psi\left(x_{i 1}\right)=8 i-7, & i=1,3,5, \cdots, n-1, \\
\psi\left(x_{i 2}\right)=8 i-6, & i=1,3,5, \cdots, n-1, \\
\psi\left(x_{i 3}\right)=8 i-5, & i=1,3,5, \cdots, n-1, \\
\psi\left(x_{i 4}\right)=8 i-4, & i=1,3,5, \cdots, n-1, \\
\psi\left(y_{i 1}\right)=-(8 i-7), & i=1,3,5, \cdots, n-1, \\
\psi\left(y_{i 2}\right)=-(8 i-6), & i=1,3,5, \cdots, n-1, \\
\psi\left(y_{i 3}\right)=-(8 i-5), & i=1,3,5, \cdots, n-1, \\
\psi\left(y_{i 4}\right)=-(8 i-4), & i=2,4,6, \cdots, n, \\
\psi\left(x_{i 1}\right)=8 i-2, & i=2,4,6, \cdots, n, \\
\psi\left(x_{i 2}\right)=8 i-3, & i=2,4,6, \cdots, n, \\
\psi\left(x_{i 3}\right)=8 i-1, & i=2,4,6, \cdots, n, \\
\psi\left(x_{i 4}\right)=8 i, & i=2,4,6, \cdots, n, \\
\psi\left(y_{i 1}\right)=-(8 i-2), & i=2,4,6, \cdots, n, \\
\psi\left(y_{i 2}\right)=-(8 i-3), & i=2,4,6, \cdots, n, \\
\psi\left(y_{i 3}\right)=-(8 i-1), & i=2,4,6, \cdots, n . \\
\psi\left(y_{i 4}\right)=-(8 i), & i=1,
\end{array}
$$

Case 2. n is odd.

Define a map $\psi: V(G) \rightarrow\{ \pm 1, \pm 2, \cdots, \pm 4 n\}$ by

$$
\begin{aligned}
& \psi\left(x_{i 1}\right)=8 i-7, \\
& \psi\left(x_{i 2}\right)=8 i-6, \\
& \psi\left(x_{i 3}\right)=8 i-5, \\
& \psi\left(x_{i 4}\right)=8 i-4, \\
& \psi\left(y_{i 1}\right)=-(8 i-7), \\
& \psi\left(y_{i 2}\right)=-(8 i-6), \\
& \psi\left(y_{i 3}\right)=-(8 i-5), \\
& \psi\left(y_{i 4}\right)=-(8 i-4), \\
& \psi\left(x_{i 1}\right)=8 i-2, \\
& \psi\left(x_{i 2}\right)=8 i-3, \\
& \psi\left(x_{i 3}\right)=8 i-1,
\end{aligned}
$$

$$
\begin{array}{r}
\quad i=1,3,5, \cdots, n, \\
\\
i=1,3,5, \cdots, n, \\
i=2,4,6, \cdots, n-1, \\
i=2,4,6, \cdots, n-1, \\
i=2,4,6, \cdots, n-1,
\end{array}
$$

$$
\begin{array}{ll}
\psi\left(x_{i 4}\right)=8 i, & i=2,4,6, \cdots, n-1, \\
\psi\left(y_{i 1}\right)=-(8 i-2), & i=2,4,6, \cdots, n-1, \\
\psi\left(y_{i 2}\right)=-(8 i-3), & i=2,4,6, \cdots, n-1, \\
\psi\left(y_{i 3}\right)=-(8 i-1), & i=2,4,6, \cdots, n-1, \\
\psi\left(y_{i 4}\right)=-(8 i), & i=2,4,6, \cdots, n-1 .
\end{array}
$$

Table 2 given below establishes that this vertex labeling f is a pair difference cordial.

Nature of n	$\Delta_{f_{1}^{c}}$	$\Delta_{f_{1}}$
n is odd	$\frac{13 n-1}{2}$	$\frac{13 n-1}{2}$
n is even	$\frac{13 n}{2}$	$\frac{13 n-2}{2}$

This completes the proof.
Theorem 4.2 A graph obtained by joining two copies of Q_{3} by path P_{n} is pair difference cordial for all values of $n \geq 4$.

Proof Let G be the graph obtained by joining two copies of Q_{3} by path P_{n} with

$$
\begin{aligned}
& V(G)=\left\{x_{i 1}, y_{i 1}, x_{i 2}, y_{i 2}, x_{i 3}, y_{i 3}, x_{i 4}, y_{i 4}: 1 \leq i \leq 2\right\} \bigcup\left\{z_{k}: 1 \leq k \leq n-2\right\} \\
& E(G)=E\left(Q_{3}\right) \bigcup\left\{z_{i} z_{i+1}: 1 \leq i \leq n-2\right\} \bigcup\left\{z_{1} y_{14}, z_{n-2} x_{11}\right\}
\end{aligned}
$$

Obviously, G has $n+14$ vertices and $n+23$ edges.
Case 1. $n \equiv 0(\bmod 4)$.
Assign labels $1,2,3,4,5,6,7,8$ respectively to vertices $x_{11}, x_{12}, x_{13}, x_{14}, y_{11}, y_{12}, y_{13}, y_{14}$ and assign the labels $-1,-2,-3,-4,-5,-6,-7,-8$ respectively to the vertices $x_{21}, x_{22}, x_{23}, x_{24}, y_{21}$, y_{22}, y_{23}, y_{24}.

Assign the labels $9,10,-9,-10$ respectively to the vertices $z_{1}, z_{2}, z_{3}, z_{4}$ and allocate the values $11,12,-11,-12$ individually to the vertices $z_{5}, z_{6}, z_{7}, z_{8}$. Net we put the labels $5,6,-5,-6$ separately to the vertices $z_{9}, z_{10}, z_{11}, z_{12}$ and assign the labels $7,8,-7,-8$ respectively to the vertices $z_{13}, z_{14}, z_{15}, z_{16}$. Proceeding like this process until we reach the vertex z_{n-4}. Finally assign the labels $\frac{n+14}{2},-\left(\frac{n+14}{2}\right)$ to the vertex z_{n-3}, z_{n-2}.

Case 2. $n \equiv 1(\bmod 4)$.
Assign the labels as in Case 1 to the vertices $x_{i j}, y_{i j}, 1 \leq i \leq 2,1 \leq j \leq 4$,) and $z_{k}, 1 \leq$ $k \leq n-5$. And then, assign the labels $\frac{n+13}{2},-\left(\frac{n+13}{2}\right),-\left(\frac{n+11}{2}\right)$ to the vertices $z_{n-4}, z_{n-3}, z_{n-2}$.
Case 3. $n \equiv 2(\bmod 4)$.
Assign the labels as in case 1 to the vertices $x_{i j}, y_{i j}, 1 \leq i \leq 2,1 \leq j \leq 4$,) and $z_{k}, 1 \leq k \leq n-6$. Lastly assign the labels $\frac{n+12}{2}, \frac{n+14}{2},-\left(\frac{n+12}{2}\right),-\left(\frac{n+14}{2}\right)$ to the vertices $z_{n-5}, z_{n-4}, z_{n-3}, z_{n-2}$.

Case 4. $n \equiv 3(\bmod 4)$.
Assign the labels as in case 1 to the vertices $x_{i j}, y_{i j}, 1 \leq i \leq 2,1 \leq j \leq 4$,) and $z_{k}, 1 \leq$ $k \leq n-7$. Finally assign the labels $\frac{n+12}{2}, \frac{n+14}{2},-\left(\frac{n+12}{2}\right),-\left(\frac{n+14}{2}\right),-\left(\frac{n+12}{2}\right)$ to the vertices $z_{n-6}, z_{n-5}, z_{n-4}, z_{n-3}, z_{n-2}$.

The Table 3 given below establishes that this vertex labeling f is a pair difference cordial.

Nature of n	$\Delta_{f_{1}}$	$\Delta_{f_{1}^{c}}$
$n \equiv 0(\bmod 4)$	$\frac{n+24}{2}$	$\frac{n+22}{2}$
$n \equiv 1(\bmod 4)$	$\frac{n+23}{2}$	$\frac{n+23}{2}$
$n \equiv 2(\bmod 4)$	$\frac{n+24}{2}$	$\frac{n+22}{2}$
$n \equiv 3(\bmod 4)$	$\frac{n+23}{2}$	$\frac{n+23}{2}$

This completes the proof.

Theorem 4.3 An $S\left(n . Q_{3}\right)$ is pair difference cordial for all even n.
Proof Our proof is divided into 2 cases following.
Case 1. $n \equiv 0(\bmod 4)$.
Define a map $\psi: V(G) \rightarrow\{ \pm 1, \pm 2, \cdots, \pm 4 n\}$ by

$$
\begin{array}{rlrl}
\psi(x) & =1, & & \\
\psi\left(x_{i 1}\right) & =4 i-3, & & 1 \leq i \leq \frac{n}{2}, \\
\psi\left(x_{i 2}\right) & =4 i-2, & & 1 \leq i \leq \frac{n}{2}, \\
\psi\left(x_{i 3}\right) & =4 i-1, & & 1 \leq i \leq \frac{n}{2}, \\
\psi\left(x_{i 4}\right) & =4 i, & 1 \leq i \leq \frac{n}{2}, \\
\psi\left(y_{i 1}\right) & =-(4 i-3), & & 1 \leq i \leq \frac{n}{2}, \\
\psi\left(y_{i 2}\right) & =-(4 i-2), & & 1 \leq i \leq \frac{n}{2}, \\
\psi\left(y_{i 3}\right) & =-(4 i-1), & & 1 \leq i \leq \frac{n}{2}, \\
\psi\left(y_{i 4}\right) & =-4 i, & 1 \leq i \leq \frac{n}{4}, \\
\psi\left(x_{\left(\frac{n}{2}+2 i-1\right) 1}\right) & =2 n+4 i-3, & & 1 \leq i \leq \frac{n}{4}, \\
\psi\left(x_{\left(\frac{n}{2}+2 i-1\right) 2}\right) & =2 n+4 i-2, & & 1 \leq i \leq \frac{n}{4}, \\
\psi\left(x_{\left(\frac{n}{2}+2 i-1\right) 3}\right) & =2 n+4 i-1, & & 1 \leq i \leq \frac{n}{4},
\end{array}
$$

$$
\begin{aligned}
& \psi\left(y_{\left(\frac{n}{2}+2 i-1\right) 2}\right)=2 n+4 i+3, \\
& \psi\left(y_{\left(\frac{n}{2}+2 i-1\right) 3}\right)=2 n+4 i+2, \\
& \psi\left(y_{\left(\frac{n}{2}+2 i-1\right) 4}\right)=2 n+4 i+1, \\
& \psi\left(x_{\left(\frac{n}{2}+2 i\right) 1}\right)=-(2 n+4 i-3), \\
& \psi\left(x_{\left(\frac{n}{2}+2 i\right) 2}\right)=-(2 n+4 i-2), \\
& \psi\left(x_{\left(\frac{n}{2}+2 i\right) 3}\right)=-(2 n+4 i-1), \\
& \psi\left(x_{\left(\frac{n}{2}+2 i\right) 4}\right)=-(2 n+4 i), \\
& \psi\left(y_{\left(\frac{n}{2}+2 i\right) 1}\right)=-(2 n+4 i+4), \\
& \psi\left(y_{\left(\frac{n}{2}+2 i\right) 2}\right)=-(2 n+4 i+3), \\
& \psi\left(y_{\left(\frac{n}{2}+2 i\right) 3}\right)=-(2 n+4 i+2), \\
& \psi\left(y_{\left(\frac{n}{2}+2 i\right) 4}\right)=-(2 n+4 i+1), \\
& 1 \leq i \leq \frac{n}{4}, \\
& 1 \leq i \leq \frac{n}{4},
\end{aligned}
$$

Case 2. $n \equiv 1(\bmod 4)$.

Define a map ψ from the vertex set $V(G)$ to the set $\{ \pm 1, \pm 2, \cdots, \pm 4 n\}$ by

$$
\begin{aligned}
\psi(x) & =3, & & \\
\psi\left(x_{i 1}\right) & =4 i-3, & & 1 \leq i \leq \frac{n+2}{2}, \\
\psi\left(x_{i 2}\right) & =4 i-2, & 1 & \leq i \leq \frac{n+2}{2}, \\
\psi\left(x_{i 3}\right) & =4 i-1, & 1 & \leq i \leq \frac{n+2}{2}, \\
\psi\left(x_{i 4}\right) & =4 i, & 1 & \leq i \leq \frac{n+2}{2}, \\
\psi\left(y_{i 1}\right) & =-(4 i-3), & & 1 \leq i \leq \frac{n+2}{2}, \\
\psi\left(y_{i 2}\right) & =-(4 i-2), & & 1 \leq i \leq \frac{n+2}{2}, \\
\psi\left(y_{i 3}\right) & =-(4 i-1), & & 1 \leq i \leq \frac{n+2}{2}, \\
\psi\left(y_{i 4}\right) & =-4 i, & & \leq i \leq \frac{n-2}{4}, \\
\psi\left(x_{\left(\frac{n}{2}+2 i-1\right) 1}\right) & =2 n+4 i+1, & & 1 \leq i \leq \frac{n-2}{4}, \\
\psi\left(x_{\left(\frac{n}{2}+2 i-1\right) 2}\right) & =2 n+4 i+2, & & \leq i \leq \frac{n-2}{4}, \\
\psi\left(x_{\left(\frac{n}{2}+2 i-1\right) 3}\right) & =2 n+4 i+3, & &
\end{aligned}
$$

$$
\begin{aligned}
& \psi\left(x_{\left(\frac{n}{2}+2 i-1\right) 4}\right)=2 n+4 i+4, 1 \leq i \leq \frac{n-2}{4}, \\
& \psi\left(y_{\left(\frac{n}{2}+2 i-1\right) 1}\right)=2 n+4 i+5, 1 \leq i \leq \frac{n-2}{4}, \\
& \psi\left(y_{\left(\frac{n}{2}+2 i-1\right) 2}\right)=2 n+4 i+6, 1 \leq i \leq \frac{n-2}{4}, \\
& \psi\left(y_{\left(\frac{n}{2}+2 i-1\right) 3}\right)=2 n+4 i+7, 1 \leq i \leq \frac{n-2}{4}, \\
& \psi\left(y_{\left(\frac{n}{2}+2 i-1\right) 4}\right)=2 n+4 i+8, 1 \leq i \leq \frac{n-2}{4}, \\
& \psi\left(x_{\left(\frac{n}{2}+2 i\right) 1}\right)=-(2 n+4 i+1), \\
& \psi\left(x_{\left(\frac{n}{2}+2 i\right) 2}\right)=-(2 n+4 i+2), \\
& \psi\left(x_{\left(\frac{n}{2}+2 i\right) 3}\right)=-(2 n+4 i+3), \\
& \psi\left(x_{\left(\frac{n}{2}+2 i\right) 4}\right)=-(2 n+4 i+4), \\
& \psi\left(y_{\left(\frac{n}{2}+2 i\right) 1}\right)=-(2 n+4 i+5), \\
& \psi\left(y_{\left(\frac{n}{2}+2 i\right) 2}\right)=-(2 n+4 i+6), \\
& \psi\left(y_{\left(\frac{n}{2}+2 i\right) 3}\right)=-(2 n+4 i+7), \\
& \psi\left(y_{\left(\frac{n}{2}+2 i\right) 4}\right)=-(2 n+4 i+8), \\
& 1 \leq i \leq \frac{n-2}{4}, \\
& 4 \\
& \hline
\end{aligned},
$$

In both cases $\Delta_{f_{1}}=\Delta_{f_{1}^{c}}=\frac{13 n}{2}$.
A pair difference cordial labeling of $S\left(6 \cdot Q_{3}\right)$ is shown in Figure 1.

Figure 1

References

[1] Gallian J.A, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics., 19, (2016).
[2] Harary F, Graph Theory, Addision Wesley, New Delhi, 1969.
[3] Jekil A. Gadhiya, Shanti S. Khunti and Mehul P. Rupani, Product cordial labeling of hyper cube related graphs, Malaya Journal of Matematik, Vol.8(4), (2020), 1991-1994.
[4] Ponraj R., Gayathri A. and Somasundaram S., Pair difference cordial labeling of graphs, J.Math. Comp.Sci., Vol.11(3), (2021), 2551-2567.
[5] Ponraj R., Gayathri A. and Somasundaram S., Pair difference cordiality of some snake and butterfly graphs, Journal of Algorithms and Computation, Vol.53(1), (2021), 149-163.
[6] Ponraj,R., Gayathri,A., and Somasundaram,S., Pair difference cordial graphs obtained from the wheels and the paths, J. Appl. and Pure Math., Vol. 3 No. 3-4, (2021), pp. 97-114.
[7] Ponraj R., Gayathri A. and Somasundaram S., Pair difference cordiality of some graphs derived from ladder graph, J.Math. Comp.Sci., Vol. 11 No 5, (2021), 6105-6124.
[8] Ponraj R., Gayathri A. and Somasundaram S., Some pair difference cordial graphs, Ikonion Journal of Mathematics, Vol.3(2), (2021), 17-26.
[9] Ponraj R., Gayathri A. and Somasundaram S., Pair difference cordial labeling of planar grid and mangolian tent, Journal of Algorithms and Computation, Vol.53(2) (2021), 47-56.
[10] Ponraj R., Gayathri A. and Somasundaram S., Pair difference cordiality of some special graphs, J. Appl. and Pure Math., Vol. 3 No. 5-6, (2021), pp. 263-274.
[11] Ponraj R., Gayathri A. and Soma Sundaram S., Pair difference cordiality of mirror graph, shadow graph and splitting graph of certain graphs, Maltepe Journal of Mathematics, Vol.4, 1(2022), 24-32.

[^0]: ${ }^{1}$ Received March 29, 2023, Accepted June 9, 2023.

