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Abstract: The pairwise balanced designs (PBD’s) is a pair (P,B), where P is a finite set

of ν points and B is a family of subsets of P , called blocks such that every two distinct points

in P appear in exactly one block. Let α(G) = α and β(G) = β be the vertex covering and

independence number of a graph G = (V,E) with the minimum and maximum cardinality

of such sets are denoted by α-sets and β-sets of G, respectively (or, simply (α, β)-sets). In

this paper, we obtain the total number of (α, β)-sets in different jump sizes of some circulant

graphs apart from strongly regular graphs which are the blocks of PBD.
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§1. Introduction

In this paper, we are focusing on nonempty, finite, simple, undirected graphs with notations

p = |V | and q = |E| for the number of vertices and edges of a graph G = (V,E), respectively.

In general, we use to 〈X〉 denote the sub graph induced by the set of vertices X. We refer to

[12] for unspecified terms of the paper.

1.1. (α, β)-Sets of a Graph

A vertex of graph G is said to cover the edges incident with it, and a vertex cover of G is a set

of vertices covering all the edge of G. The smallest cardinality of a vertex cover is called the

vertex covering number α(G) or α of G. Further, a subset S of the vertex set V (G) is said to

be an independent set if the induced sub graph 〈S〉 is a trivial graph. The largest number of

vertices in such a set is called the vertex independence number β(G) or β of a graph G.
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The minimum and maximum cardinality of vertex covering and independence sets are

denoted by α-sets and β-sets of a graph G, respectively. The maximum number of α-sets and

β-sets of G is denoted by τα(G) and τβ(G), respectively. For more details on similar concepts,

we refer to [6, 11, 12, 13, 16].

1.2. Strongly Regular Graph

A strongly regular graph with parameters (p, l, ω, µ) is a finite graph on p vertices, without

loops or multiple edges, regular of degree l (with 0 < l < p − 1, so that there are both edges

and no edges), and such that any two distinct vertices have ω common neighbors when they

are adjacent, and µ common neighbors when they are nonadjacent. For the related concepts of

the strongly regular graph, we refer to [2, 9].

1.3. Pairwise Balanced Designs (PBD’s)

The combinatorial design theory is a study of collection of subsets with certain intersection

properties. Based on the group and the type of underlying association scheme, there are other

subgroups that can be made.

The following conditions satisfy m classes of association scheme on ν vertices (elements or

objects) are

(i) If the associates are symmetric, then any two vertices are mth associates, where 1 ≤
k ≤ m;

(ii) Each vertex x contains nk k
th associates, the number nk being independent of vertex

x;

(iii) If two vertices x and y are kth associates, then the number of vertices which are ath

associates of x and bth associates of y is pkab and is independent of the kth associates x and y.

Hence pkab = pkba.

The pairwise balanced designs (PBD’s) are a specific type of experimental design that

offer several advantages over other block designs in certain situations and is defined as follows:

The PBD is a pair (P,B) such that B is a set of subsets (called blocks) of P , each of

cardinality at least two such that every unordered pair of points (elements of P ) is contained in

a unique block in B. If ν is a positive integer and K is a set of positive integers, each of which

is greater than or equal to 2, then we say that (P,B) is a (ν,K)-PBD if |X| = ν, and |B| ∈ K
for every B ∈ B. Furthermore, a Smarandachely PBD is contrary to the pairwise balanced

designs, which asks for every unordered pair of points in P containing in 2 blocks in B at least.

Generally, these PBD’s are highly efficient in terms of the number of treatments they can

accommodate with a limited number of experimental units. They allow for a large number of

treatments to be compared while minimizing the number of experimental units required. This

efficiency is particularly useful when resources, such as time, money, or subjects, are limited.

These designs provide increased precision in estimating treatment effects compared to other

block designs. By carefully selecting which treatments are paired together in each block, these

designs allow for a more precise estimation of treatment effects by reducing the variation caused
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by extraneous factors or confounding variables. PBD’s ensure that each treatment appears with

every other treatment in a block a balanced number of times. This balance helps to control the

influence of confounding factors or extraneous variables that may affect the response variable.

By balancing the treatment combinations, PBD’s can help to separate the true treatment

effects from the effects of other variables. For more details on combinatorial design theory with

some graph parameters, we refer to [5, 7, 8, 9, 14, 17].

§2. Main Results

For a given positive integer p, let s1, s2, · · · , st be a sequence of integers where 0 < s1 < s2 <

· · · < st <
p+1
2 . The circulant graph Cp(S) where S = s1, s2, · · · , st is the graph on p vertices

labeled as v1, v2, · · · , vp with vertex vi adjacent to each vertex vi±sj(mod p) and the values st

are called jump sizes.

The circulant graphs have been investigated in the fields outside of graph theory. For

example, in geometers, circulant graphs are known as star polygons [1]. They have been used

to solve problems in group theory (particularly the families of Cayley graphs), as shown in [3] as

well as number theory and analysis. They are also, used as models for interconnection networks

in telecommunication, VLSI designs, parallel, and distributed computing. For applications and

mathematical properties of circulant graphs, see [4], [10] and [15].

2.1 Circulant Graph Cp(1)

The jump size of circulant graph is one, known as cycle Cp with p ≥ 3 vertices. That is,

Cp(1) ∼= Cp, p ≥ 3. The circulant graph C4(1) is the only strongly regular graphs.

Proposition 2.1 ([11]) For any Circulant graph Cp(1); p ≥ 3 vertices,

α(Cp(1)) =
⌈p

2

⌉
and β(Cp(1)) =

⌊p
2

⌋
.

Theorem 2.1 The collection of all (α, β)-sets of a circulant graph Cp(1), p = 2n, n ≥ 2

vertices form a PBD with parameters ν = p, b = 4, g1 =
⌈
p
2

⌉
, g2 =

⌊
p
2

⌋
, r = 2 and

λm =

2, m ≡ 0(mod 2),

0, otherwise.

Proof Let Cp(1) be a circulant graph with p = 2n, n ≥ 2 vertices given by v1, v2, · · · , vp.
By Proposition 2.1, we have α(Cp(1)) =

⌈p
2

⌉
and β(Cp(1)) =

⌊p
2

⌋
. Further, Cp(1) with p = 2n,

n ≥ 2 have two blocks of (α, β)-set, it implies b = τα(Cp(1)) + τβ(Cp(1)) = 4. Also, we have

g1 = α(Cp(1)) =
⌈
p
2

⌉
and g2 = β(Cp(1)) =

⌊
p
2

⌋
, where g1 and g1 are the number of elements

contained exactly in their respective blocks. By virtue of the above facts, we have r = 2. To

obtain the m-associates for the elements, where 1 ≤ m ≤ bp2c. The two distinct elements are
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first associates, if they have jump size 1 and they are kth-associates (2 ≤ k ≤ bp2c), if they have

k jump sizes. Hence the parameters of first kind are given by ν = p, b = 4, g1 =
⌈
p
2

⌉
, g2 =

⌊p
2

⌋
,

r = 2 and

λm =

2, m ≡ 0(mod 2),

0, otherwise.

Thus, the result follows. �

Theorem 2.2 The collection of all (α, β)-sets of a circulant graph Cp(1); p = 2n + 1, n ≥ 1

vertices form a PBD with parameters ν = p, b = 2p, g1 =
⌈p

2

⌉
, g2 =

⌊p
2

⌋
, r = p and

λm =

m, m ≡ 0(mod 2),

p− λm−1 − λm+1, otherwise.

Proof For a given circulant graph Cp(1); p = 2n+1, n ≥ 2 vertices labeled as v1, v2, · · · , vp.
By Proposition 2.1, we have α(Cp(1)) =

⌈p
2

⌉
and β(Cp(1)) =

⌊p
2

⌋
. Further, Cp(1); p = 2n+ 1,

n ≥ 1 have p blocks of α-set, it implies τα(Cp(1)) = τβ(Cp(1)) = p. Therefore b = 2p. Also,

we have g1 = α(Cp(1)) =
⌈p

2

⌉
and g2 = β(Cp(1)) =

⌊p
2

⌋
, where g1 and g2 are the number of

elements contained exactly in their respective blocks. From the above facts, we have rα =
⌈p

2

⌉
and rβ =

⌊p
2

⌋
, therefore r = p. To obtain them-associates for the elements, where 1 ≤ m ≤ bp2c.

The two distinct elements are first associates, if they have jump size 1 and otherwise they are

kth-associates (2 ≤ k ≤ bp2c). Hence the parameters of first kind are given by ν = p, b = 2p,

g1 =
⌈
p
2

⌉
, g2 =

⌊
p
2

⌋
, r = p, and

λm =

m, m ≡ 0(mod 2),

p− λm−1 − λm+1, otherwise.

Thus, the result follows. �

2.2 Circulant Graph with Odd Jump Sizes

The circulant graph of odd jump size (1, 3, · · · , bp2c) with p ≥ 2 is known as a complete bipartite

graph Kp1,p2 for p1 = p2, that is Cp

(
1, 3, . . . ,

⌊p
2

⌋)
∼= Kp1,p2 . Further, all the sequence of an

odd jump size from 1 to bp2c are strongly regular graphs. Apart from this, the circulant graphs

are not strongly regular graph if the sequence of odd jump sizes were taken randomly excluding

jump size 1.

Proposition 2.2 ([11]) For any circulant graph Cp(1, 3, · · · , bp2c); p = 4n − 2 or 4n, n ≥ 2

vertices,

α(Cp(1, 3, · · · , b
p

2
c)) = β(Cp(1, 3, · · · , b

p

2
c)) =

p

2
.
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Theorem 2.3 The collection of all (α, β)-sets of a Circulant graph Cp(1, 3, · · · , bp2c); p = 4n−2

or 4n, n ≥ 2 vertices form a PBD with parameters ν = p, b = 4, g1 = g2 = p
2 , r = 2 and

λm =

2, m ≡ 0(mod 2),

0, otherwise.

Proof For a given circulant graph Cp(1, 3, · · · , bp2c); να = νβ = p = 4n − 2 or 4n,

n ≥ 2 vertices labeled as v1, v2, · · · , vp. By Proposition 2.2, we have α(Cp(1, 3, · · · , bp2c) =

β(Cp(1, 3, · · · , bp2c) =
p

2
. Further, Cp(1, 3, · · · , bp2c); p = 4n − 2 or 4n, n ≥ 2 have two blocks

of (α, β)-sets, it implies b = 4. Also, we have g1 = g2 =
p

2
, where g1 and g2 are the number of

elements contained exactly in their respective blocks. From the above facts, we have r = 2. To

obtain the m-associates for the elements, where 1 ≤ m ≤ bp2c. Two distinct elements are odd

associates if they have odd jump size and they are even associates (2 ≤ k ≤ bp2c). Hence the

parameters of first kind are given by ν = p, b = 4, g1 = g2 =
p

2
, r = 2 and

λm =

2, m ≡ 0(mod 2),

0, otherwise.

This completes the proof. �

2.3 Circulant Graph with Even Jump Sizes

The jump size of circulant graph is 2, 4, · · · , bp2c is a Cp(2, 4, · · · , bp2c) with p ≥ 4 vertices. The

circulant graphs C5(2), C6(2), C8(2, 4), C10(2, 4), C12(2, 4, 6) are some examples of strongly

regular graphs.

Proposition 2.3 ([11]) For any circulant graph Cp(2, 4, · · · , bp2c) with p ≥ 4 vertices,

α(Cp(2, 4, · · · ,
⌊p

2

⌋
)) =

p− 3, p = 4n+ 3,

p− 2, otherwise.

and

β(Cp(2, 4, · · · ,
⌊p

2

⌋
)) =

3, p = 4n+ 3,

2, otherwise.

Proof Since the circulant graph Cp(2, 4, · · · , bp2c) is a (2n − 1)-regular for p = 4n or

2n-regular for p = 4n+ 1 or p = 4n+ 2 or p = 4n+ 3, n ≥ 1 vertices, the result follows. �

Theorem 2.4 The collection of all (α, β)-sets of a Circulant graph Cp(2, 4, · · · , bp2c); p ≥ 4

vertices form a PBD with parameters:

(i) For ν = p = 4n or ν = p = 4n+ 1, n ≥ 1, b = p(n+ 1), g1 = p− 2, g2 = 2, r = 3p−4
2 ,
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λm(1) = p− 4, and

λm(2) =

0, m ≡ 0(mod 2),

1, otherwise.

(ii) For ν = p = 4n+ 2;n ≥ 1, b = p2

2 , g1 = p− 2, g2 = 2, r = 3p−4
2 , λm(1) = p− 4, and

λm(2) =

0, m ≡ 0(mod 2),

1, otherwise,

where 1 ≤ m ≤ bp2c.

(iii) For ν = p = 4n+ 3;n ≥ 1, b = 2p, g1 = p− 2, g2 =
⌈

p
2n+1

⌉
, r = 2(n+1)(p−1)

2n+1 and due

to the variations in the values of λm(1) there is no good relation between λm(2).

Proof For a given circulant graph Cp(2, 4, · · · , bp2c), ν = p = 4n or 4n + 1 or 4n + 2 or

4n+3;n ≥ 1, vertices labeled as v1, v2, · · · , vp. By Proposition 2.3, we have the following cases.

Case 1. The circulant graph Cp(2, 4, · · · , bp2c) with ν = p = 4n or 4n + 1, n ≥ 1 have

p blocks of α-set and np blocks of β-sets. This implies that τα(Cp(2, 4, · · · , bp2c)) = p and

τβ(Cp(2, 4, · · · , bp2c)) = np. Therefore b = p(n + 1). By Proposition 2.3, we have g1 =

α(Cp(2, 4, . . . , bp2c)) = p − 2 and g2 = β(Cp(2, 4, . . . , bp2c)) = 2, where g1 and g2 are the

number of elements contained exactly in their respective blocks. From the above facts, we have

r = 3p−4
2 . To obtain the m-associates for the elements, where 1 ≤ m ≤ bp2c. The two distinct

elements odd associates, if they have odd jump size and they are even associates (2 ≤ k ≤ bp2c).
Hence the parameters of first kind are given by ν = p, b = p(n + 1), g1 = p − 2, g2 = 2,

r =
3p− 4

2
, λm(1) = p− 4 and

λm(2) =

0, m ≡ 0(mod 2),

1, otherwise,

where 1 ≤ m ≤ bp2c.

Case 2. The circulant graph Cp(2, 4, · · · , bp2c) with ν = p = 4n+ 2; n ≥ 1 have p blocks of α-

set and p2

4 blocks of β-sets, this implies τα(Cp(2, 4, · · · , bp2c)) = p2

4 and τβ(Cp(2, 4, · · · , bp2c)) =
p2

4 . Therefore b = p2

2 . By Proposition 2.3, we have g1 = α(Cp(2, 4, . . . , bp2c)) = p − 2 and

g2 = β(Cp(2, 4, . . . , bp2c)) = 2, where g1 and g2 are the number of elements contained exactly

in their respective blocks. From the above facts, we have r = 3p−4
2 . To obtain the m-associates

for the elements, where 1 ≤ m ≤ bp2c.

The two distinct elements are odd associates, if they have odd jump size and they are even

associates (2 ≤ k ≤ bp2c). Hence, the parameters of first kind are given by ν = p, b = p2

2 ,
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g1 = p− 2, g2 = 2, r =
3p− 4

2
, λm(1) = p− 4 and

λm(2) =

0, m ≡ 0(mod 2),

1, otherwise.

where 1 ≤ m ≤ bp2c.

Case 3. The circulant graph Cp(2, 4, · · · , bp2c) with p = 4n+ 3, n ≥ 1 have p blocks of α-set

and p blocks of β-sets. This implies that τα(Cp(2, 4, · · · , bp2c)) = τβ(Cp(2, 4, · · · , bp2c)) = p.

Therefore b = 2p. By Proposition 2.3, we have g1 = α(Cp(2, 4, . . . , bp2c)) = p − 2 and g2 =

β(Cp(2, 4, · · · , bp2c)) =

⌈
p

2n+ 1

⌉
, where g1 and g2 are the number of elements contained exactly

in a block. From the above facts, we have r =
2(n+ 1)(p− 1)

2n+ 1
. To obtain the m-associates for

the elements, where 1 ≤ m ≤ bp2c. The two distinct elements odd associates, if they have odd

jump size and they are even associates (2 ≤ k ≤ bp2c).

Hence, the parameters of first kind are given by ν = p, b = 2p, g1 = p− 2, g2 =

⌈
p

2n+ 1

⌉
,

r =
2(n+ 1)(p− 1)

2n+ 1
and

λm(1) =


1, for m = 1,

0, for 2 ≤ m ≤ bp−1
2 c,

2, for m = bp2c.

Thus the result follows. �

2.4 Circulant Graph Cp(1, 2, · · · , bp2c)

The jump size of circulant graph is (1, 2, · · · , bp2c), known as complete graph Kp with p ≥ 3

that is, Cp
(
1, 2, · · · ,

⌊
p
2

⌋) ∼= Kp. Further, the complete graph Kp is strongly regular for all

p ≥ 3. The status of the trivial singleton graph K1 is unclear. Since the parameter µ is not well

defined on K2. It is difficult to analyse and conclude whether K2 is a strongly regular graph or

not.

Proposition 2.4 ([11]) For any circulant graph Cp(1, 2, · · · , bp2c) with p ≥ 3 vertices,

α
(
Cp

(
1, 2, . . . ,

⌊p
2

⌋))
= p− 1 and β

(
Cp

(
1, 2, . . . ,

⌊p
2

⌋))
= 1.

Theorem 2.5 The collection of all (α, β)-sets of a circulant graph Cp(1, 2, · · · , bp2c), p ≥ 3

vertices form a PBD with parameters ν = p, b = 2p, g1 = p− 1, g2, r = p and λm = p− 1.

Proof For a given circulant graph Cp(1, 2, · · · ,
⌊
p
2

⌋
); ν = p vertices labeled as v1, v2, · · · , vp.

By Proposition 2.4, we have α(Cp(1, 2, · · · , bp2c) = p−1, and β(Cp(1, 2, · · · , bp2c) = p
2 . Further,

Cp(1, 2, · · · , bp2c); have p blocks of (α, β)-sets, it implies b = 2p. Also, we have g1 = p − 1,
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g2 = 1, where g1 and g2 is the number of elements contained exactly in a block. From the

above facts, we have r = p. To obtain the m-associates for the elements, where 1 ≤ m ≤ bp2c.
Two distinct elements are odd associates, if they have odd jump size and they are even associates

(2 ≤ k ≤ bp2c). Hence the parameters of first kind are given by ν = p, b = 2p, g1 = p − 1,

g2 = 1, r = p, λm = p− 1, 1 ≤ m ≤ bp2c). Thus, the result follows. �

§3. Conclusion

The construction and analysis of PBD’s involve the combinatorial mathematics and statistical

techniques, which have applications in various fields, including agriculture, biology, medicine,

and social sciences. They are used in situations where it is important to compare treatments

or conditions in a systematic and balanced way, while minimizing the number of required

comparisons. This allows researchers to obtain reliable and statistically valid results with a

reduced number of experimental runs or observations. Generally, the PBD’s obtained from the

families of strongly regular graphs. Interestingly, we determine the total number of (α, β)-sets

with its association schemes in different jump sizes of some circulant graphs.

Finally, we pose the following open problem.

Problem 3.1 Obtain the PBD’s associated with (α, β)-sets of an integral circulant graph, a

regular circulant graph or a Cayley graph.
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