International J.Math. Combin. Vol.1(2024), 29-38

Semi-Invariant Submanifolds of (k, μ) -Contact Manifold Admitting Semi-Symmetric Metric Connection

M.S. Siddesha

(Department of Mathematics, Jain Deemed-to-be-University, Global Campus-562112, Karnataka, India)

C.S. Bagewadi

(Department of Mathematics, Kuvempu University, Shankaraghatta, Shimoga-577451, Karnataka, India) E-mail: mssiddesha@gmail.com, prof_bagewadi@yahoo.co.in

Abstract: In this paper, we define a semi-symmetric metric connection in a (k, μ) -contact manifold and study semi-invariant submanifolds of a (k, μ) -contact manifold endowed with a semi-symmetric metric connection. We determine the integrability conditions of distributions on semi-invariant submanifolds of a (k, μ) -contact manifold with a semi-symmetric metric connection.

Key Words: (k, μ) -contact manifold, semi-invariant submanifold, semi-symmetric metric connection.

AMS(2010): 53C25, 53C17, 53C40.

§1. Introduction

The torsion tensor T of a linear connection ∇ on a Riemannian manifold M is given by

$$T(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y], \quad X,Y \in \chi(M).$$

$$(1.1)$$

The connection ∇ is symmetric if its torsion tensor T vanishes identically, otherwise it is non-symmetric. Again a linear connection ∇ is said to be a semi-symmetric connection if, the torsion T of the connection ∇ satisfies

$$T(X,Y) = \eta(Y)X - \eta(X)Y, \qquad (1.2)$$

where η is a 1-form and ϕ is a tensor field of type (1, 1). Further, a connection ∇ is called metric connection on a Riemannian manifold M if

$$(\nabla_X g)(Y, Z) = 0. \tag{1.3}$$

Otherwise, it is non-metric. The connection ∇ is said to be semi-symmetric metric connection

¹Received November 24, 2023, Accepted March 4,2024.

²Corresponding author: M.S. Siddesha, E-mail: mssiddesha@gmail.com.

if it satisfies (1.1)-(1.3). In 1924, Friedmann and Schouten [8] were the pioneers who unveiled the notion of a semisymmetric linear connection on a Riemannian manifold. The subsequent introduction of the concept of a metric connection came about through the work of Hayden [9] in 1932.

In 1981, Bejancu and Papaghiuc introduced the idea of semi-invariant submanifolds, as a generalization of invariant and anti-invariant submanifolds of contact metric manifolds. On the other hand in 1995, Blair, Koufogiorgos and Papantoniou [5] introduced the new class of contact metric manifolds with ξ belonging to (k, μ) -nullity distributions which are known as (k, μ) -contact metric manifolds. In our previous work [12]-[17], we have investigated various categories of submanifolds, such as invariant, slant, and semi-slant submanifolds within these manifolds.

Recently, a noteworthy contribution was made by Avijit Sarkar et al. [10], who engaged in a study focused on semi-invariant submanifolds within the context of (k, μ) -contact manifolds. Moreover, an exploration of semi-invariant submanifolds extended to various classes of almost contact manifolds has attracted attention from several geometers such as [1, 2, 7, 11, 20] and other researchers.

Building upon the insights from the aforementioned research endeavors, this present paper embarks on an investigation into semi-invariant submanifolds within the realm of (k, μ) -contact manifolds with a semi-symmetric metric connection. The paper's structure unfolds as follows: In Section 2, a concise introduction to (k, μ) -contact manifolds sets the stage for the ensuing exploration. Moving into Section 3, the analysis demonstrates that the connection induced on semi-invariant submanifolds of a (k, μ) -contact manifold, endowed with a semi-symmetric metric connection, retains both the attributes of being semi-symmetric and metric. Section 4 is dedicated to laying the groundwork by presenting fundamental outcomes pertinent to semiinvariant submanifolds of (k, μ) -contact manifolds with a semi-symmetric metric connection. Concluding the paper, the final section delves into a comprehensive discussion regarding the integrability conditions governing distributions on semi-invariant submanifolds of (k, μ) -contact manifolds with semi-symmetric metric connection comes into play.

§2. (k, μ) -Contact Manifolds

A contact manifold is a $C^{\infty} - (2n+1)$ manifold \tilde{M}^{2n+1} equipped with a global 1-form η such that $\eta \wedge (d\eta)^n \neq 0$ everywhere on \tilde{M}^{2n+1} . Given a contact form η it is well known that there exists a unique vector field ξ , called the characteristic vector field of η , such that $\eta(\xi) = 1$ and $d\eta(X,\xi) = 0$ for every vector field X on \tilde{M}^{2n+1} . A Riemannian metric is said to be associated metric if there exists a tensor field ϕ of type (1,1) such that

$$\phi^2 = -I + \eta \otimes \xi, \ \eta(\xi) = 1, \ \phi\xi = 0, \ \eta \cdot \phi = 0,$$
 (2.1)

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \quad g(X, \xi) = \eta(X),$$
 (2.2)

for all vector fields $X, Y \in T\tilde{M}$. Then the structure (ϕ, ξ, η, g) on \tilde{M}^{2n+1} is called a contact metric structure and the manifold \tilde{M}^{2n+1} equipped with such a structure is called a contact

30

metric manifold [4].

Given a contact metric manifold $\tilde{M}^{2n+1}(\phi,\xi,\eta,g)$, we define a (1,1) tensor field h by $h = \frac{1}{2}\mathcal{L}_{\xi}\phi$, where \mathcal{L} denotes Lie differentiation. Then h is symmetric and satisfies $h\phi = -\phi h$. Thus, if λ is an eigenvalue of h with eigenvector X, $-\lambda$ is also an eigenvalue with eigenvector ϕX . Also we have $Tr \cdot h = Tr \cdot \phi h = 0$ and $h\xi = 0$. Moreover, if $\tilde{\nabla}$ denotes the Riemannian connection of g, then the following relation holds:

$$\tilde{\nabla}_X \xi = -\phi X - \phi h X. \tag{2.3}$$

It is seen that the vector field ξ is a Killing vector with respect to g if and only if h = 0. In this case the manifold becomes a K-contact manifold. A K-contact structure on \tilde{M} gives rise to an almost complex structure on the product $\tilde{M}^{2n+1} \times R$. If this almost complex structure is integrable, the contact metric manifold is said to be Sasakian. Equivalently, a contact metric manifold is Sasakian if and only if

$$\tilde{R}(X,Y)\xi = \eta(Y)X - \eta(X)Y,$$

holds for all X, Y, where \tilde{R} denotes the curvature tensor of the manifold \tilde{M} .

The (k, μ) -nullity distribution of a contact metric manifold $\tilde{M}^{2n+1}(\phi, \xi, \eta, g)$ is a distribution [5]

$$\begin{split} N(k,\mu) &: p \to N_p(k,\mu) = \{ Z \in T_p M : \\ R(X,Y)Z &= k[g(Y,Z)X - g(X,Z)Y] + \mu[g(Y,Z)hX - g(X,Z)hY] \}. \end{split}$$

for any $X, Y \in T_p \tilde{M}$. Hence if the characteristic vector field ξ belongs to the (k, μ) -nullity distribution, then we have

$$R(X,Y)\xi = k[\eta(Y)X - \eta(X)Y + \mu[\eta(Y)hX - \eta(X)hY].$$
(2.4)

Thus a contact metric manifold satisfying the relation (2.4) is called a (k, μ) -contact metric manifold. In particular, if $\mu = 0$, then the notion of (k, μ) -nullity distribution reduces to the notion of k-nullity distribution, introduced by Tanno [19]. A (k, μ) -contact metric manifold is Sasakian if k = 1. In a (k, μ) -contact metric manifold the following relations hold [5]:

$$h^2 = (k-1)\phi^2, \quad k \le 1,$$
 (2.5)

$$(\tilde{\nabla}_X \phi)(Y) = g(X + hX, Y)\xi - \eta(Y)(X + hX).$$
(2.6)

§3. Semi-Invariant Submanifolds

In this section, we introduce the notion of semi-invariant submanifold of a (k, μ) -contact manifold which generalizes the notion of both invariant and anti-invariant submanifolds.

A non degenerated submanifold M of a (k, μ) -contact manifold is called a semi-invariant

submanifold, if there exists a pair of orthogonal distributions $\{D, D^{\perp}\}$ on M such that

- (i) $TM = D \oplus D^{\perp} \oplus \langle \xi \rangle;$
- (*ii*) The distribution D is invariant under ϕ , that is $\phi D_x = D_x$, for each $x \in M$;
- (*iii*) The distribution D^{\perp} is anti-invariant under ϕ , that is $\phi D_x^{\perp} \subset T_x^{\perp} M$, for each $x \in M$.

A semi-invariant submanifold becomes invariant (resp. anti-invariant) submanifold if $D_x^{\perp} = 0$ (resp. $D_x = 0$) for all $x \in M$. Further, a submanifold which is neither invariant nor anti-invariant is called a proper semi-invariant submanifold.

We denote by $\tilde{\nabla}$ the Levi-Civita connection on \tilde{M} with respect to induced metric g. Then the Gauss and Weingarten formulas are given by

$$\tilde{\nabla}_X Y = \nabla_X Y + \sigma(X, Y), \tag{3.1}$$

$$\dot{\nabla}_X N = -A_N X + \nabla_X^{\perp} N, \tag{3.2}$$

for any tangent vector fields X, Y and the normal vector field N on M, where σ, A, ∇ and ∇^{\perp} are the second fundamental form, the shape operator, induced connection on M and the normal connection respectively. If the second fundamental form σ is identically zero, then the manifold is said to be totally geodesic. The second fundamental form σ and the shape operator A_N are related by

$$g(\sigma(X,Y),N) = g(A_N X,Y).$$

Now, we define a semi-symmetric metric connection $\overline{\tilde{\nabla}}$ in a (k,μ) -contact manifold \tilde{M} by

$$\tilde{\nabla}_X Y = \tilde{\nabla}_X Y + \eta(Y) X - g(X, Y) \xi.$$
(3.3)

for all $X, Y \in T\tilde{M}$.

Proposition 3.1 Let M be a semi-invariant submanifold of a (k, μ) -contact manifold \tilde{M} with a semi-symmetric metric connection. Then

$$(\tilde{\nabla}_X \phi)Y = g(X + hX, Y)\xi - \eta(Y)(X + hX) + g(\phi X, Y)\xi - \eta(Y)\phi X, \tag{3.4}$$

 $\forall X, Y \in \Gamma(TM).$

Proof By virtue of (2.6) and (3.3), the proposition follows after having done similar computations as in the proof of Theorem 3 in [20]. \Box

Proposition 3.2 Let M be a semi-invariant submanifold of a (k, μ) -contact manifold \tilde{M} with a semi-symmetric metric connection. Then

$$\tilde{\nabla}_X \xi = -\phi X - \phi h X + X - \eta(X)\xi, \qquad (3.5)$$

 $\forall X, Y \in \Gamma(TM).$

Proof By virtue of (3.3) and (2.3), the proposition follows after having done similar computations as in the proof of Theorem 4 in [20].

Theorem 3.3 The connection induced on a semi-invariant submanifold of a (k, μ) -contact manifold that admits a semi-symmetric metric connection also admits a semi-symmetric metric connection.

Proof Let $\overline{\nabla}$ be the induced connection with respect to the unit normal N on semi-invariant submanifold M of a (k, μ) -contact manifold with semi-symmetric metric connection $\overline{\nabla}$. Then,

$$\tilde{\nabla}_X Y = \bar{\nabla}_X Y + m(X, Y), \tag{3.6}$$

where m is a tensor field of type (0, 2) on semi-invariant submanifold M.

Using (3.1) and (3.3), we have

$$\bar{\nabla}_X Y + m(X, Y) = \nabla_X Y + \sigma(X, Y) + \eta(Y)X - g(X, Y)\xi$$

Equating tangential and normal components of the above equation, we get

$$m(X,Y) = \sigma(X,Y).$$

$$\nabla_X Y = \nabla_X^* Y + \eta(Y)X - g(X,Y)\xi.$$
(3.7)

Thus, $\overline{\nabla}$ is also semi-symmetric metric connection.

Now, the Gauss and Weingarten formulae for semi-invariant submanifolds of a (k, μ) contact manifold with a semi-symmetric metric connection are given by

$$\bar{\tilde{\nabla}}_X Y = \bar{\nabla}_X Y + \sigma(X, Y), \qquad (3.8)$$

$$\tilde{\nabla}_X N = (-A_N + \eta(N))X + \bar{\nabla}_X^{\perp} N, \qquad (3.9)$$

for all $X, Y \in \Gamma(TM)$ and $N \in \Gamma(T^{\perp}M)$, where σ and A_N are the second fundamental form and Weingarten endomorphism associated with N, and are related by

$$g(\sigma(X,Y),N) = g((-A_N + \eta(N))X,Y).$$

For $X \in \Gamma(TM)$, $N \in \Gamma(T^{\perp}M)$, we can write

$$X = PX + QX + \eta(X)\xi, \qquad (3.10)$$

$$\phi N = BN + CN, \tag{3.11}$$

where P and Q are the projection operators of TM to D and D^{\perp} respectively, and BN (resp. CN) denote the tangential (resp. normal) component of ϕN .

§4. Basic Results

Lemma 4.1 Let M be a semi-invariant submanifold of a (k, μ) -contact manifold \tilde{M} with a

semi-symmetric metric connection, then we have

$$(\bar{\nabla}_X \phi)Y = (\bar{\nabla}_X P)Y + \sigma(X, PY) - A_{QY}X + \eta(N)X + (\bar{\nabla}_X Q)Y - B\sigma(X, Y) - C\sigma(X, Y),$$
(4.1)

$$(\tilde{\nabla}_X \phi) N = (\bar{\nabla}_X B) N + \sigma(X, BN) - A_{CN} X + P(-A_N) X + Q(-A_N) X + (\bar{\nabla}_X C) N + P\eta(N) X + Q\eta(N) X.$$

$$(4.2)$$

Proof Using (3.10), (3.11), the Gauss and Weingarten formulae, necessary arrangements are made to obtain the desired. \Box

We state the next Lemma whose proof is straightforwardly deduced by applying (3.4) in (4.1) and (4.2), hence omitted.

Lemma 4.2 Let M be a semi-invariant submanifold of a (k, μ) -contact manifold \tilde{M} with a semi-symmetric metric connection, then we have

$$(\bar{\nabla}_X P)Y - A_{QY}X + \eta(N)X - B\sigma(X,Y) = g(X + hX,Y)\xi$$

$$-\eta(Y)(X + hX) - \eta(Y)PX, \qquad (4.3)$$

$$(\bar{\nabla}_X Q)Y + \sigma(X,PY) - C\sigma(X,Y) = -\eta(Y)QX. \qquad (4.4)$$

$$(V_X Q)I + O(X, II) = OO(X, I) = -\eta(I)QX,$$
 (4.4)

$$(\nabla_X B)N - A_{CN} X \sigma(X, PY) - C \sigma(X, Y) = 0, \qquad (4.5)$$

$$(\bar{\nabla}_X C)N + \sigma(X, BN) + Q(-A_N X + \eta(N)X) = 0, \qquad (4.6)$$

$$g(PX,Y) = 0, (4.7)$$

$$g(QX,Y) = 0, (4.8)$$

for all $X, Y \in \Gamma(TM), N \in \Gamma(T^{\perp}M)$.

Lemma 4.3 Let M be a semi-invariant submanifold of a (k, μ) -contact manifold \tilde{M} with a semi-symmetric metric connection such that $\xi \in \Gamma(TM)$, we have

$$\bar{\nabla}_X \xi = -\phi X - \phi h X + X - \eta(X)\xi, \quad \sigma(X,\xi) = 0.$$

$$(4.9)$$

$$\bar{\nabla}_{\xi}\xi = 0, \ \sigma(\xi,\xi) = 0, \ A_N\xi = 0.$$
 (4.10)

Proof Using (3.3) and (3.5) we have (4.10). In addition, we get

$$o = g(\sigma(X,\xi), N) = g(\sigma(\xi,X), N) = g(A_N\xi, X).$$

This completes the proof.

§5. Integrability of Distributions

In this section, we study the integrability of all the distributions involved in the definition of semi-invariant submanifolds.

For all $X, Y \in \Gamma(D)$, we have

$$g([X,Y],\xi) = g(\nabla_X Y,\xi) - g(\nabla_Y X,\xi).$$

Using (3.1) in above, we get

$$g([X,Y],\xi) = g(\tilde{\nabla}_X Y,\xi) - g(\tilde{\nabla}_Y X,\xi).$$
(5.1)

Taking account of (3.3) in (5.1) and using (3.5), we obtain

$$g([X,Y],\xi) = g(Y,\phi X + \phi hX) - g(X,\phi Y + \phi hY)$$

and so, $g([X, Y], \xi) \neq 0$. This leads to the following:

Theorem 5.4 Let M be a semi-invariant submanifold of a (k, μ) -contact manifold \tilde{M} with a semi-symmetric metric connection such that $\dim(D) \neq 0$. Then the distribution D is not integrable.

Theorem 5.5 Let M be a semi-invariant submanifold of a (k, μ) -contact manifold \tilde{M} with a semi-symmetric metric connection. Then the distribution $D \oplus \langle \xi \rangle$ is integrable if and only if

$$\sigma(X,\phi Y) = \sigma(\phi X, Y).$$

for all $X, Y \in \Gamma(D \oplus \langle \xi \rangle)$.

Proof For $X, Y \in \Gamma(D)$, we have

$$\phi([X,Y]) = \phi(\nabla_X Y - \nabla_Y X).$$

Using (3.1) in the above equation, we get

$$\phi([X,Y]) = \phi(\tilde{\nabla}_X Y - \tilde{\nabla}_Y X). \tag{5.2}$$

Making use of relation (3.3) in (5.2), we get

$$\phi([X,Y]) = \bar{\tilde{\nabla}}_X \phi Y - (\bar{\tilde{\nabla}}_X \phi) Y - \eta(Y) \phi X - \bar{\tilde{\nabla}} \phi X + (\bar{\tilde{\nabla}}_Y \phi) X - \eta(X) \phi Y.$$
(5.3)

Taking account of (3.8) in (5.3) and using (3.4), we obtain

$$\phi([X,Y]) = \bar{\nabla}_X \phi Y + \sigma(X,\phi Y) + \bar{\nabla}_Y \phi X + \sigma(Y,\phi X) -g(hX,Y)\xi + \eta(Y)(X+hX) + g(hY,X)\xi - \eta(X)(Y+hY) + 2g(\phi X,Y),$$

where $\phi([X, Y])$ shows the component of $\nabla_X Y$ from the orthogonal complementary distribution of $D \oplus \langle \xi \rangle$ in M. Then, $[X, Y] \in \Gamma(D \oplus \langle \xi \rangle)$ if and only if $\sigma(X, \phi Y) = \sigma(Y, \phi X)$. \Box

Theorem 5.6 Let M be a semi-invariant submanifold of a (k, μ) -contact manifold \tilde{M} with a semi-symmetric metric connection. Then the distribution D^{\perp} is integrable.

Proof For all $X, Y \in \Gamma(D^{\perp})$, we have

$$g([X,Y],\xi) = g(\nabla_X Y,\xi) - g(\nabla_Y X,\xi).$$

Using (3.1) in the above equation, we get

$$g([X,Y],\xi) = g(\tilde{\nabla}_X Y,\xi) - g(\tilde{\nabla}_Y X,\xi).$$
(5.4)

Taking account of (3.3) in (5.4) and using (3.5), we obtain

$$g([X,Y],\xi) = g(Y,\phi X + \phi hX) - g(X,\phi Y + \phi hY),$$

which implies that $g([X,Y],\xi) = 0$. So $\eta([X,Y]) = 0$. Then, we have $[X,Y] \in \Gamma(D^{\perp})$.

Theorem 5.7 Let M be a semi-invariant submanifold of a (k, μ) -contact manifold \tilde{M} with a semi-symmetric metric connection. Then the distribution $D^{\perp} \oplus \langle \xi \rangle$ is integrable if and only if

$$A_{\phi X}Y = A_{\phi Y}X,$$

for all $X, Y \in \Gamma(D^{\perp} \oplus \langle \xi \rangle)$.

Proof For $X, Y \in \Gamma(D^{\perp})$, we have

$$\phi([X,Y]) = \phi(\nabla_X Y - \nabla_Y X).$$

Using (3.1) in above, we get

$$\phi([X,Y]) = \phi(\tilde{\nabla}_X Y - \tilde{\nabla}_Y X). \tag{5.5}$$

Making use of relation (3.3) in (5.5), we get

$$\phi([X,Y]) = \bar{\tilde{\nabla}}_X \phi Y - (\bar{\tilde{\nabla}}_X \phi) Y - \eta(Y) \phi X - \bar{\tilde{\nabla}} \phi X + (\bar{\tilde{\nabla}}_Y \phi) X - \eta(X) \phi Y.$$
(5.6)

Taking account of (3.9) in (5.6) and using (3.4), we obtain

$$\phi([X,Y]) = A_{\phi X}Y - A_{\phi Y}X + \bar{\nabla}_X^{\perp}\phi Y - \bar{\nabla}_Y^{\perp}\phi X + g(hY,X)\xi - g(hX,Y)\xi +\eta(Y)(X+hX) - \eta(X)(Y+hY).$$

Then ,we get

$$[X,Y] \in \Gamma(D^{\perp} \oplus \langle \xi \rangle) \Rightarrow A_{\phi X}Y = A_{\phi Y}X.$$

Conversely

$$\phi^{2}([X,Y]) = \phi\{A_{\phi X}Y - A_{\phi Y}X + \bar{\nabla}_{X}^{\perp}\phi Y - \bar{\nabla}_{Y}^{\perp}\phi X + g(hY,X)\xi - g(hX,Y)\xi + \eta(Y)(X + hX) - \eta(X)(Y + hY)\}.$$

Making use of (2.1) and using the equality $A_{\phi X}Y = A_{\phi Y}X$, the above equation can be written as

$$[X,Y] = \phi(\bar{\nabla}_X^{\perp}\phi Y) - \phi(\bar{\nabla}_Y^{\perp}\phi X) + \eta(Y)\phi(X+hX) - \eta(X)\phi(Y+hY).$$

Thus, $[X, Y] \in \Gamma(D^{\perp} \oplus \langle \xi \rangle)$. Hence the distribution $D^{\perp} \oplus \langle \xi \rangle$ is integrable.

Acknowledgment

The authors are thankful to the reviewer and editors for their valuable suggestions towards the improvement of this paper.

References

- P. Alegre, Semi-invariant submanifolds of Lorentzian Sasakian manifolds, *Demonstratio Mathematica*, 44(2) (2011), 391-406.
- [2] C.S. Bagewadi, D. Nirmala and M.S. Siddesha, Semi-invariant submanifolds of $(LCS)_n$ manifold, *Communications of the Korean Mathematical Society*, 33(4) (2018), 1331-1339.
- [3] A. Bejancu and N. Papaghuic, Semi-invariant submanifolds of a Sasakian manifold, An. Sti. Univ. AL I CUZA Iasi, 27 (1981), 163-170.
- [4] D.E. Blair, Contact manifolds in Riemannian geometry, *Lecture notes in Math.*, 509, Springer-Verlag, Berlin, (1976).
- [5] D.E. Blair, T. Koufogiorgos and B.J. Papantoniou, Contact metric manifolds satisfying a nullity condition, *Israel J. Math.*, 91 (1995), 189-214.
- [6] B.Y. Chen, Geometry of submanifolds and its applications, *Science University of Tokyo*, Tokyo, 1981.
- [7] U.C. De And A.A. Shaikh, Non-existence of proper semi-Invariant submanifolds of a Lorentzian para-Sasakian manifold, *Bull. Malaysian Math. Soc.* (Second Series), 22 (1999) 179-183.
- [8] A. Friedmann and J.A. Schouten, Uber die geometrie der halbsymmetrischen Ubertragung, Math. Zeitscr., 21 (1924), 211-223.
- [9] H.A. Hayden, Subspaces of a space with torsion, Proc. London Math. Soc., 34 (1932), 27-50.
- [10] A. Sarkar, M.S. Ali and D. Biswas, On submanifolds of (k, μ)-contact metric manifolds, Dhaka Univ. J. Sci., 61(1) 2013, 93-96.
- [11] M.H. Shahid, On semi-invariant submanifolds of a nearly Sasakian manifold, Indian J. Pure and Applied Math., 95(10) (1993), 571-580.

- [12] M.S. Siddesha and C.S. Bagewadi, Submanifold of a (k, μ) -Contact manifold, CUBO A Mat. J., 18 (01) (2016), 59-68.
- [13] M.S. Siddesha and C.S. Bagewadi, On some classes of invariant submanifolds (k, μ)-contact manifold, J. of Inform. and Mat. Sci., 9(1) (2017), 13-26.
- [14] M.S. Siddesha and C.S. Bagewadi, Invariant submanifolds of (k, μ)-contact manifolds admitting quarter symmetric metric connection, *International J. of Math. Trends and Tech.*, 34(2) (2016), 48-53.
- [15] M.S. Siddesha and C.S. Bagewadi, On slant submanifolds of (k, μ) -contact manifold, *Dif*ferential Geometry-Dynamical Systems, 18 (2016), 123-131.
- [16] M.S. Siddesha and C.S. Bagewadi, Slant submanifolds of a conformal (k, μ) -contact manifold, *International J.Math. Combin.*, 3 (2017), 39-50.
- [17] M.S. Siddesha and C.S. Bagewadi, Semi-slant submanifolds of (k, μ)-contact manifold, Commun. Fac. Sci. Univ. Ser. A₁ Math. Stat., 67(2) (2018), 116-125.
- [18] A. Sharafuddin and S.I. Hussain, Semi-symmetric metric connection in almost contact manifolds, *Tensor*, N.S., 30 (1976), 133-139.
- [19] S. Tanno, Ricci curvatures of contact Riemannian manifolds, *Tohoku Math. J.*, 40(1988), 441-448.
- [20] A.T. Vanli, R. Sari, On semi-invariant submanifolds of a generalized kenmotsu manifold admitting a semi-symmetric metric connection, Acta Universitatis Apulensis, 43 (2015), 79-92.
- [21] K. Yano and M. Kon, Structures on Manifolds, World Scientific Publishing, 1984.