International J.Math. Combin. Vol.1(2024), 89-99

Several Fundamental Findings on Intuitionistic Fuzzy Strong Ø-b-Normed Linear Spaces

Ram Milan Singh

(Institute for Excellence in Higher Education, Bhopal)

E-mail: rammilansinghlig@gmail.com

Abstract: Following the concept of fuzzy normed linear space that Bag and Samanta provided in general t-norm settings, a definition of fuzzy strong-b-normed linear space is provided in this study. In this case, a general function $\emptyset(c)$ that satisfies certain requirements is used in place of the scalar function |c|. We study some fundamental results on finite dimensional fuzzy strong b-normed linear space.

Key Words: Intuitionistic fuzzy norm, t-norm, intuitionistic fuzzy normed linear space, neutrosophic set, intuitionistic fuzzy strong ϕ -b-normed linear space.

AMS(2010): 54A40, o3E72.

§1. Introduction

Zadeh [19] was the first to develop the idea of a fuzzy set in 1965. The theory of fuzzy sets has since been extensively expanded by other authors. Fuzzy metric spaces were first introduced by Osmo Kaleva [10], Kramosil and Michalek [14], Georage and Veeramani [9], et al. in various ways. On the other hand, the concept of fuzzy normed linear spaces has been provided in several ways by Katsaras [11], Felbin [6], Cheng and Mordeson [4] and Bag and Samanta [1].

Different generalised metric and norm types, such as the 2-metric [7], b-metric [5], strongb-metric [13], G-metric [15], 2-norm [13], G-norm [12], etc., as well as generalised fuzzy metric and fuzzy norm types, such as the fuzzy b-metric [16], strong-fuzzy b-metric [18], fuzzy cone metric [17], fuzzy cone norm [2], G-fuzzy norm [3], etc.

Oner proposed fuzzy strong b-metric spaces and produced some topological findings on these spaces in [18].

§2. Preliminaries

In this section, some definitions and results are collected which are used in this paper.

Definition 2.1 A binary operation $* : [0,1] \times [0,1] \rightarrow [0,1]$ is called a t-norm if it satisfies the following conditions:

¹Received October 6, 2023, Accepted March 10, 2024.

- (a) * is commutative and associative;
- (b) * is continuous;
- (c) a * 1 = a for all $a \in [0, 1]$;
- (d) $a * b \leq c * d$ whenever $a \leq c$ and $b \leq d$ for each $a, b, c, d \in [0, 1]$.

If * is continuous, then it is called continuous t-norm.

The following are examples of some t-norms.

- (i) Standard intersection: $a * b = \min\{a, b\}$.
- (*ii*) Algebraic product: a * b = ab.
- (*iii*) Bounded difference: $a * b = \max\{0, a + b 1\}$.

Definition 2.2 A binary operation $\diamond : [0,1] \times [0,1] \rightarrow [0,1]$ is a continuous teconorm if it satisfies the following conditions:

- (a) is commutative and associative;
- (b) is continuous;
- $(c) \diamond = a \text{ for all } a \in [0, 1];$
- (d) $a \diamond b \leq c \diamond d$ whenever $a \leq c$ and $b \leq d$ for each of $a, b, c, d \in [0, 1]$.
- If * is continuous, then it is called continuous t-norm.

The following are examples of some t-norms.

- (i) Standard intersection: $abb = \max\{a, b\}$.
- (*ii*) Algebraic product: $a \downarrow b = ab$.
- (*iii*) Bounded difference: $a \diamond b = \min\{0, a + b 1\}$.

Definition 2.3 A three tuple (X, M, *) is said to be a fuzzy metric space, a case of neutrosophic set if X is an arbitrary set, * a continuous t-norm and M a fuzzy set on $X^2 \times [0, \infty)$ satisfying the following condition, for all $x, y, z \in X$ and t, s > 0:

(a)
$$M(x, y, 0) = 0;$$

- (b) M(x, y, t) = 1 for all t > 0 iff x = y;
- (c) M(x, y, t) = M(y, x, t);
- (d) $M(x, y, t) * M(y, z, s) \le M(x, z, t + s);$
- (e) $M(x, y,): [0, \infty) \to [0, 1]$ is left continuous;
- (f) $\lim_{n \to \infty} M(x, y, t) = 1.$

Definition 2.4 A 5-tuple $(X, M, N, *, \diamond)$ is said to be an intuition is tic fuzzy metric space (shortly IFM-Space) if X is an arbitrary set, * is a continuous t-norm, \forall is a continuous t-conorm and M, N are fuzzy sets on $X^2 \times [0, \infty)$ satisfying the following conditions:

- (a) $M(x, y, t) + N(x, y, t) \le 1$ for all $x, y \in X$ and t > 0;
- (b) M(x, y, 0) = 0 for all $x, y \in X$;
- (c) M(x, y, t) = 1 for all $x, y \in X$ and t > 0 if and only if x = y;
- (d) M(x, y, t) = M(y, x, t) for all $x, y \in X$ and t > 0;
- (e) $M(x, y, t) * M(y, z, s) \leq M(x, z, t+s)$ for all $x, y, z \in X$ and s, t > 0;
- (f) $M(x, y,): [0, \infty) \to [0, 1]$ is left continuous for all $x, y \in X$;
- (g) $\lim_{n \to \infty} M(x, y, t) = 1;$

90

- (h) N(x, y, 0) = 1 for all $x, y \in X$;
- (i) N(x, y, t) = 0 for all $x, y \in X$ and t > 0 if and only if x = y;
- (j) N(x, y, t) = N(y, x, t) for all $x, y \in X$ and t > 0;
- $(k) \ N(x,y,t) \diamond N(y,z,s) \geq N(x,z,t+s) \ \text{for all} \ x,y,z \in X \ \text{and} \ s,t>0;$
- (l) $M(x, y,): .[0, \infty) \to [0, 1]$ is right continuous for all $x, y \in X$;

 $(m) \lim_{n \to \infty} N(x, y, t) = 0 \text{ for all } x, y \in X,$

then, (M, N) is called an intuitionistic fuzzy metric on X. The functions M(x, y, t) and N(x, y, t) denote the degree of nearness and degree of non nearness between x and y with respect to t, respectively.

Definition 2.5 Let $(X, M, N, *, \diamond)$ be an intuitionistic fuzzy metric space. Then,

(a) A sequence $\{x_n\}$ is said to be convergent x in X if for each $\epsilon > 0$ and t > 0, there exist $n_0 \in N$ such that $M(x_n, x, t) > 1 - \epsilon$ and $N(x_n, x, t) < 0 - \epsilon$ for all $n \ge n_0$;

(b) A sequence $\{x_n\}$ is said to be Cauchy if for each $\epsilon > 0$ and t > 0, there exist $n_0 \in N$ such that $M(x_n, x_m, t) > 1 - \epsilon$ and $N(x_n, x_m, t) < 0 - \epsilon$ for all $n, m \ge n_0$;

(c) An intuitionistic fuzzy metric space in which every Cauchy sequence is convergent is said to be complete.

Definition 2.6 A sequence {Si} of self maps on a complete intuitionistic fuzzy metric space $(X, M, N, *, \diamond)$ is said to be intuitionistic mutually contractive if for t > 0 and $i \epsilon N$

$$M\left(S_{i}x, S_{j}y, t\right) \ge M\left(x, y, \frac{t}{p}\right)$$
 and $N\left(S_{i}x, S_{j}y, t\right) \le N\left(x, y, \frac{t}{p}\right)$,

where $x, y \in X, p \in (0, 1), i \neq j$ and $x \neq y$.

Definition 2.7 Let $(X, M, N, *, \diamond)$ be an intuitionistic fuzzy normed linear space.

(i) A sequence $\{x_n\}$ is said to be convergent if there exists $x \in X$ such that

$$\lim_{n \to \infty} \mathcal{M} \left(x_n - x, t \right) = 1 \quad and \quad \lim_{n \to \infty} \mathcal{N} \left(x_n - x, t \right) = 0$$

for all t > 0. Then x is called the limit of the sequence $\{x_n\}$ and denoted by $\lim_{n \to \infty} x_n$;

(ii) A sequence $\{x_n\}$ in an intuitionistic fuzzy normed linear space (X, N) is said to be Cauchy if

$$\lim_{n \to \infty} \mathcal{M} \left(x_{n+p} - x_n, t \right) = 1 \quad and \quad \lim_{n \to \infty} \mathcal{N} \left(x_{n+p} - x_n, t \right) = 0$$

for all t > 0 and $p = 1, 2, \cdots$;

(iii) $A \subseteq X$ is said to be closed if for any sequence $\{x_n\}$ in A converges to $x \in A$;

(iv) $A \subseteq X$ is said to be the closure of A, denoted by \overline{A} if for any $x \in \overline{A}$, if there is a sequence $\{x_n\} \subseteq A$ such that $\{x_n\}$ converges to x. (v) $A \subseteq X$ is said to be compact if any sequence $\{x_n\} \subseteq A$ has a subsequence converging to an element of A.

Lemma 2.6 Let $(X, M, N, *, \diamond)$ be an intuitionistic fuzzy normed linear space and let M(x, .), $N(x, \cdot)$ be with $x \neq 0$). If the set $A = \{x : M(x, 1) > 0 \text{ and } N(x, 1) < 0\}$ is compact, then X is finite dimensional.

§3. Intuitionistic Fuzzy Strong ϕ -b-Normed Linear Space

In this section, we give the definition of intuitionistic fuzzy normed linear space in a new approach.

Definition 3.1 Let ϕ be a function defined on \mathbb{R} to \mathbb{R}^+ with the following properties

- $(\phi 1) \ \phi(-t) = \phi(t) \ for \ all \ t \in \mathbb{R};$
- $(\phi 2) \phi(1) = 1;$
- $(\phi 3) \phi$ is strictly increasing and continuous on $(0, \infty)$;
- $(\phi 4) \lim_{\alpha \to \infty} \phi(\beta) = 0 \text{ and } \lim_{\alpha \to \infty} \phi(\beta) = \infty.$

The followings are examples of such functions.

- (i) $\phi(\beta) = |\beta|$ for all $\beta \in \mathbb{R}$.
- $\begin{array}{ll} (ii) \ \ \phi(\beta) = |\beta|^p \ \text{for all} \ \beta \in \mathbb{R}, p \in \mathbb{R}^+. \\ (iii) \ \phi(\beta) = \frac{2\beta^{2n}}{|\beta|+1} \ \text{for all} \ \beta \in \mathbb{R}, n \in \mathbb{N}. \end{array}$

Definition 3.2 Let X be a linear space over the field \mathbb{R} and $b \ge 1$ be a given real number. A fuzzy subset N of $X \times \mathbb{R}$ is called intuitionistic fuzzy strong ϕ -b-norm on X if for all $x, y \in X$ the following conditions hold:

 $\begin{array}{ll} (i) & \forall t \in \mathbb{R} \text{ with } t \leq 0, M(x,t) = 0; \\ (ii) & (\forall t \in \mathbb{R}, t > 0, M(x,t) = 1) \text{ iff } x = \theta; \\ (iii) & \forall t \in \mathbb{R}, t > 0, M(cx,t) = M\left(x, \frac{t}{\phi(c)}\right) \text{ if } \phi(c) \neq 0; \\ (iv) & \forall s, t \in \mathbb{R}, M(x+y,s+bt) \geq M(x,s) * N(y,t); \\ (v) & M(x,\cdot) \text{ is a non-decreasing function of } t \text{ and } \lim_{t \to \infty} M(x,t) = 1; \\ (vi) & \forall t \in \mathbb{R} \text{ with } t \geq 0, N(x,t) = 0; \\ (vii) & (\forall t \in \mathbb{R}, t = 0, N(x,t) = 0) \text{ iff } x = \theta; \\ (viii) & \forall t \in \mathbb{R}, t < 0, N(cx,t) = N\left(x, \frac{t}{\phi(c)}\right) \text{ if } \phi(c) \neq 0; \\ (ix) & \forall s, t \in \mathbb{R}, N(x+y,s+bt) \leq N(x,s) \diamond N(y,t); \\ (x) & N(x,\cdot) \text{ is a non-increasing function of } t \text{ and } \lim_{t \to \infty} N(x,t) = 0. \end{array}$

Then $(X, M, N, \phi, b, *)$ is called intuitionistic fuzzy strong ϕ -b-normed linear space.

§4. Finite Dimensional Intuitionistic Fuzzy Strong ϕ -b-Normed Linear Spaces

In this section, some basic results on finite dimensional intuitionistic fuzzy strong ϕ -b-normed linear spaces are established.

Lemma 4.1 Let $(X, M, N, \phi, b, *, \diamond)$ be a Intuitionistic fuzzy strong ϕ -b-normed linear space with the underlying t-norm * continuous and t-co norm at (1, 1) and $\{x_1, x_2, \dots, x_n\}$ be a linearly independent set of vectors in X. Then there exists c > 0 and $\delta \in (0, 1)$ such that for any set of

92

scalars $\{\beta_1, \beta_2, \cdots, \beta_n\}$ with $\sum_{i=1}^n |\beta_i| \neq 0$

$$M\left(\beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n, \frac{bc}{\phi\left(\frac{1}{\sum_{i=1}^n |\beta_i|}\right)}\right) < 1 - \delta.$$

$$(4.1)$$

and

$$N\left(\beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n, \frac{bc}{\phi\left(\frac{1}{\sum_{i=1}^n |\beta_i|}\right)}\right) > 0 - \delta.$$

$$(4.2)$$

Proof Notice that the equations

$$M\left(\beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n, \frac{bc}{\phi\left(\frac{1}{\sum_{i=1}^n |\beta_i|}\right)}\right) < 1 - \delta.$$

and

$$N\left(\beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n, \frac{bc}{\phi\left(\frac{1}{\sum_{i=1}^n |\beta_i|}\right)}\right) > 0 - \delta$$

are equivalent to the relations

$$M\left(\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n, bc\right) < 1 - \delta$$

and

$$N\left(\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n, bc\right) > 0 - \delta$$

for some c > 0, $\delta \in (0,1)$ and for all set of scalars $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ with $\sum_{i=1}^n |\alpha_i| = 1$ If possible, suppose that (4.1) does not hold. Thus, for each c > 0 and $\delta \in (0,1)$, there exists a set of scalars $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ with $\sum_{i=1}^n |\alpha_i| = 1$ for which

$$M\left(\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n, bc\right) \ge 1 - \delta$$

and

$$N\left(\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n, bc\right) \le 0 - \delta.$$

Then, for $c = \delta = \frac{1}{m}, m = 1, 2, \dots$, there exists a set of scalars $\left\{\alpha_1^{(m)}, \alpha_2^{(m)}, \dots, \alpha_n^{(m)}\right\}$ with $\sum_{i=1}^n \left|\alpha_i^{(m)}\right| = 1$ such that

$$M\left(y_m, \frac{b}{m}\right) \ge 1 - \frac{1}{m}$$

and

$$N\left(y_m, \frac{b}{m}\right) \le 0 - \frac{1}{m},$$

where $y_m = \alpha \beta_1^{(m)} x_1 + \beta_2^{(m)} x_2 + \dots + \beta_n^{(m)} x_n$. Since $\sum_{i=1}^n |\alpha_i^{(m)}| = 1$, we have $0 \le |\alpha_i^{(m)}| \le 1$ for $i = 1, 2, \dots, n$. So for each fixed i, the sequence $\{\alpha_i^{(m)}\}$ is bounded and hence $\{\alpha_i^{(m)}\}$ has

a convergent subsequence. Let α_1 denotes the limit of that subsequence and let $\{y_{1,m}\}$ denotes the corresponding subsequence of $\{y_m\}$. By the same argument $\{y_{1,m}\}$ has a subsequence $\{y_{2,m}\}$ for which the corresponding subsequence of scalars $\{\alpha_2^{(m)}\}$ converges to α_2 . Continuing in this way, after *n* steps we obtain a subsequence $\{y_{n,m}\}$ where

$$y_{n,m} = \sum_{i=1}^{n} \gamma_i^{(m)} x_i \quad \text{with} \quad \sum_{i=1}^{n} \left| \gamma_i^{(m)} \right| = 1$$

and $\gamma_i^{(m)} \to \alpha_i$ as $m \to \infty$ for each $i = 1, 2, \cdots, n$.

Let $y = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n$. Now,

$$\begin{split} M(y_{n,m} - y, t) &= M\left(\sum_{j=1}^{n} \left(\gamma_{j}^{(m)} - \alpha_{j}\right) x_{j}, t\right) \\ &= M\left(\left(\gamma_{1}^{(m)} - \alpha_{1}\right) x_{1} + \sum_{j=2}^{n} \left(\gamma_{j}^{(m)} - \alpha_{j}\right) x_{j}, \frac{t}{n} + b(n-1)\frac{t}{nb}\right) \\ &\geq M\left(\left(\gamma_{1}^{(m)} - \alpha_{1}\right) x_{1}, \frac{t}{n}\right) * M\left(\sum_{j=2}^{n} \left(\gamma_{j}^{(m)} - \alpha_{j}\right) x_{j}, (n-1)\frac{t}{nb}\right) \\ &= M\left(\left(\gamma_{1}^{(m)} - \alpha_{1}\right) x_{1}, \frac{t}{n}\right) \\ &* M\left(\left(\gamma_{2}^{(m)} - \alpha_{2}\right) x_{2} + \sum_{j=3}^{n} \left(\gamma_{j}^{(m)} - \alpha_{j}\right) x_{j}, \frac{t}{nb} + b\left(1 - \frac{2}{n}\right) \frac{t}{b^{2}}\right) \\ &\geq M\left(\left(\gamma_{1}^{(m)} - \alpha_{1}\right) x_{1}, \frac{t}{n}\right) * M\left(\left(\gamma_{2}^{(m)} - \alpha_{2}\right) x_{2}, \frac{t}{nb}\right) \\ &* M\left(\sum_{j=3}^{n} \left(\gamma_{j}^{(m)} - \alpha_{j}\right) x_{j}, \left(1 - \frac{2}{n}\right) \frac{t}{b^{2}}\right) \\ &\geq M\left(\left(\gamma_{1}^{(m)} - \alpha_{1}\right) x_{1}, \frac{t}{n}\right) * M\left(\left(\gamma_{2}^{(m)} - \alpha_{2}\right) x_{2}, \frac{t}{nb}\right) \\ &* \cdots * M\left(\left(\gamma_{n}^{(m)} - \alpha_{n}\right) x_{n}, \frac{t}{nb^{n-1}}\right) \\ &= M\left(x_{1}, \frac{t}{n\phi\left(\left(\gamma_{1}^{(m)} - \alpha_{1}\right)\right)}\right) * \cdots * M\left(x_{n}, \frac{t}{nb^{n-1}\phi\left(\left(\gamma_{n}^{(m)} - \alpha_{n}\right)\right)}\right) \end{split}$$

and

$$N(y_{n,m} - y, t) = N\left(\sum_{j=1}^{n} \left(\gamma_{j}^{(m)} - \alpha_{j}\right) x_{j}, t\right)$$
$$= N\left(\left(\gamma_{1}^{(m)} - \alpha_{1}\right) x_{1} + \sum_{j=2}^{n} \left(\gamma_{j}^{(m)} - \alpha_{j}\right) x_{j}, \frac{t}{n} + b(n-1)\frac{t}{nb}\right)$$

$$= N\left(\left(\gamma_{1}^{(m)} - \alpha_{1}\right)x_{1}, \frac{t}{n}\right)$$

$$\leq N\left(\gamma_{1}^{(m)} - \alpha_{1}\right)x_{1}, \frac{t}{n}\right) \diamond N\left(\sum_{j=2}^{n}\left(\gamma_{j}^{(m)} - \alpha_{j}\right)x_{j}, (n-1)\frac{t}{nb}\right)$$

$$\diamond N\left(\left(\gamma_{2}^{(m)} - \alpha_{2}\right)x_{2} + \sum_{j=3}^{n}\left(\gamma_{j}^{(m)} - \alpha_{j}\right)x_{j}, \frac{t}{nb} + b\left(1 - \frac{2}{n}\right)\frac{t}{b^{2}}\right)$$

$$\leq N\left(\left(\gamma_{1}^{(m)} - \alpha_{1}\right)x_{1}, \frac{t}{n}\right) \diamond N\left(\left(\gamma_{2}^{(m)} - \alpha_{2}\right)x_{2}, \frac{t}{nb}\right)$$

and

$$N\left(\sum_{j=3}^{n} \left(\gamma_{j}^{(m)} - \alpha_{j}\right) x_{j}, \left(1 - \frac{2}{n}\right) \frac{t}{b^{2}}\right)$$

$$\geq N\left(\left(\gamma_{1}^{(m)} - \alpha_{1}\right) x_{1}, \frac{t}{n}\right) \diamond N\left(\left(\gamma_{2}^{(m)} - \alpha_{2}\right) x_{2}, \frac{t}{nb}\right) \diamond \cdots \nabla N\left(\left(\gamma_{n}^{(m)} - \alpha_{n}\right) x_{n}, \frac{t}{nb^{n-1}}\right)$$

$$= N\left(x_{1}, \frac{t}{n\phi\left(\left(\gamma_{1}^{(m)} - \alpha_{1}\right)\right)}\right) \diamond \cdots \nabla N\left(x_{n}, \frac{t}{nb^{n-1}\phi\left(\left(\gamma_{n}^{(m)} - \alpha_{n}\right)\right)}\right).$$

Now taking limit as $m \to \infty$ on both sides, we have

$$\lim_{m \to \infty} M(y_{n,m} - y, t) \ge 1 * 1 * \dots * 1, \quad \forall t > 0$$

and

$$\lim_{m \to \infty} N(y_{n,m} - y, t) \le 0 > 0 \diamond \dots \lor 0, \quad \forall t > 0$$

i.e

$$\lim_{m \to \infty} M \left(y_{n,m} - y, t \right) = 1, \quad \forall t > 0$$

 $\quad \text{and} \quad$

$$\lim_{m \to \infty} N\left(y_{n,m} - y, t\right) = 0, \quad \forall t > 0$$

Now, for r > 0, choose m such that $\frac{1}{m} < \frac{r}{b^2}$. We have

$$M\left(y_{n,m}, \frac{r}{b}\right) = M\left(y_{n,m} + \theta, \frac{b}{m} + b\left(\frac{r}{b^2} - \frac{1}{m}\right)\right)$$
$$\geq \left(y_{n,m}, \frac{b}{m}\right) * M\left(\theta, \frac{r}{b^2} - \frac{1}{m}\right) \ge \left(1 - \frac{b}{m}\right) * 1$$

 $\quad \text{and} \quad$

$$N\left(y_{n,m}, \frac{r}{b}\right) = N\left(y_{n,m} + \theta, \frac{b}{m} + b\left(\frac{r}{b^2} - \frac{1}{m}\right)\right)$$
$$\leq N\left(y_{n,m}, \frac{b}{m}\right) \diamond N\left(\theta, \frac{r}{b^2} - \frac{1}{m}\right) \leq \left(1 - \frac{b}{m}\right) \diamond 0$$

which implies

$$\lim_{m \to \infty} M\left(y_{n,m}, \frac{r}{b}\right) \ge 1 \quad \text{i.e.,} \quad \lim_{m \to \infty} M\left(y_{n,m}, \frac{r}{b}\right) = 1$$

and

$$\lim_{m \to \infty} N\left(y_{n,m}, \frac{r}{b}\right) \le 0 \quad \text{i.e., } \lim_{m \to \infty} N\left(y_{n,m}, \frac{r}{b}\right) = 0$$

Again,

$$M(y,2r) = M\left(y - y_{n,m} + y_{n,m}, r + b \cdot \frac{r}{b}\right)$$

$$\geq M\left(y - y_{n,m}, r\right) \cdot N\left(y_{n,m}, \frac{r}{b}\right)$$

and

$$N(y,2r) = N\left(y - y_{n,m} + y_{n,m}, r + b \cdot \frac{r}{b}\right)$$
$$\leq N\left(y - y_{n,m}, r\right) \diamond N\left(y_{n,m}, \frac{r}{b}\right).$$

 $M(y,2r) \ge \lim_{m \to \infty} M\left(y - y_{n,m}, r\right) * \lim_{m \to \infty} M\left(y_{n,m}, \frac{r}{b}\right)$

 $\Rightarrow M(y,2r) \ge 1 \cdot 1 = 1 \Rightarrow M(y,2r) = 1$

Thus,

and

$$N(y,2r) \le \lim_{m \to \infty} N(y - y_{n,m}, r) \diamond \lim_{m \to \infty} N\left(y_{n,m}, \frac{r}{b}\right)$$

$$\Rightarrow N(y,2r) \le 0 \diamond 0 = 0 \Rightarrow N(y,2r) = 0.$$

Since r > 0 is arbitrary, so $y = \theta$. Again since $\sum_{i=1}^{n} |\alpha_i^{(m)}| = 1$ and $\{x_1, x_2, \dots, x_n\}$ is a linearly independent set of vectors so $y = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n \neq \theta$, thus we arrive at a contradiction and Lemma is proved.

Theorem 4.2 Every finite dimensional Intuitionistic fuzzy strong ϕ -b-normed linear space with the underlying t-norm * continuous and t-co norm \diamond Continuous at (1,1) is complete.

Proof Let $(X, M, N, \phi, b, *, \diamond)$ be a Intuitionistic fuzzy strong ϕ -b-normed linear space where b(>1) is a real constant. Let dim X = r and $\{e_1, e_2, \cdots, e_r\}$ be a basis for X. Let $\{x_p\}$ be a Cauchy sequence in X. Then, $x_n = \sum_{k=1}^r \alpha_k^{(n)} e_k$ for suitable scalars $\alpha_1^{(n)}, \alpha_2^{(n)}, \cdots, \alpha_r^{(n)} \cdot So$

$$\lim_{m,n\to\infty} \mathcal{M}\left(x_m - x_n, t\right) = 1, \quad \forall t > 0$$

and

$$\lim_{m,n\to\infty} N\left(x_m - x_n, t\right) = 0, \quad \forall t > 0.$$

Now, by Lemma 4.1 it follows that $\exists c > 0$ and $\delta \in (0, 1)$ such that

$$M\left(\sum_{i=1}^{r} \left(a_i^{(m)} - \alpha_i^{(n)}\right) e_i, \frac{bc}{\phi\left(\frac{1}{\sum_{i=1}^{r} \left|\alpha_i^{(m)} - \alpha_i^{(n)}\right|}\right)}\right) < 1 - \delta$$

96

and

 \mathbf{If}

$$N\left(\sum_{i=1}^{r} \left(\alpha_{i}^{(m)} - \alpha_{i}^{(n)}\right) e_{i}, \frac{bc}{\phi\left(\frac{1}{\sum_{i=1}^{r} \left|\alpha_{i}^{(m)} - \alpha_{i}^{(n)}\right|}\right)}\right) > 0 - \delta.$$

$$\sum_{i=1}^{r} \left|\alpha_{i}^{(m)} - \alpha_{i}^{(n)}\right| = 0$$
(4.3)

then $\alpha_i^{(m)} = \alpha_i^{(n)}$ for any integer *i* implies that $\{x_n\}$ is a constant sequence and hence follows the theorem. So we may assume

$$\sum_{i=1}^{r} \left| \alpha_i^{(m)} - \alpha_i^{(n)} \right| \neq 0.$$

Again, for $0 < \delta < 1$ from (4-3) it follows that there exists a positive integer $n_0(\delta, t)$ such that

$$M\left(\sum_{i=1}^{r} \left(\alpha_i^{(m)} - \alpha_i^{(n)}\right) e_i, t\right) > 1 - \delta, \quad \forall m, n \ge n_0(\delta, t)$$

$$(4.4)$$

 $\quad \text{and} \quad$

$$N\left(\sum_{i=1}^{r} \left(\alpha_i^{(m)} - \alpha_i^{(n)}\right) e_i, t\right) < 0 - \delta, \quad \forall m, n \ge n_0(\delta, t).$$

$$(4.5)$$

Now, from (4.4) and (4.5), $\forall m, n \ge n_0(\delta, t)$ we have

$$M\left(\sum_{i=1}^{r} \left(\alpha_i^{(m)} - \alpha_i^{(n)}\right) e_i \frac{bc}{\phi\left(\frac{1}{\sum_{i=1}^{r} \left|\alpha_i^{(m)} - \alpha_i^{(n)}\right|}\right)}\right) < M\left(\sum_{i=1}^{r} \left(\alpha_i^{(m)} - \alpha_i^{(n)}\right) e_{i,t}\right)$$

and

$$N\left(\sum_{i=1}^{r} \left(\alpha_i^{(m)} - \alpha_i^{(n)}\right) e_i \frac{bc}{\phi\left(\frac{1}{\sum_{i=1}^{r} \left|\alpha_i^{(m)} - \alpha_i^{(n)}\right|}\right)}\right) > N\left(\sum_{i=1}^{r} \left(\alpha_i^{(m)} - \alpha_i^{(n)}\right) e_i, t\right).$$

Thus,

$$\frac{bc}{\phi\left(\frac{1}{\sum_{i=1}^{\tau} \left|\alpha_t^{(m)} - \alpha_i^{(m)}\right|}\right)} < t$$

since M(x,t) is non-decreasing with respect to t and

$$\frac{bc}{\phi\left(\frac{1}{\sum_{i=1}^{\tau} \left|\alpha_{t}^{(m)} - \alpha_{i}^{(m)}\right|}\right)} > t$$

since N(x, t) is non-increasing with respect to t. Hence, since t > 0 is arbitrary, namely

$$\lim_{m,n\to\infty} \frac{bc}{\phi\left(\frac{1}{\sum_{i=1}^r \left|\alpha_i^{(m)} - \alpha_i^{(n)}\right|}\right)} = 0$$

then

$$\lim_{m,n\to\infty}\phi\left(\frac{1}{\sum_{i=1}^r \left|\alpha_i^{(m)} - \alpha_i^{(n)}\right|}\right) = \infty.$$

Thus,

$$\phi\left(\frac{1}{\lim_{m\to\infty}\sum_{i=1}^r \left|\alpha_i^{(m)} - \alpha_i^{(n)}\right|}\right) = \infty$$

since ϕ is continuous. Then

$$\lim_{m,n\to\infty}\sum_{i=1}^r \left|\alpha_i^{(m)} - \alpha_i^{(n)}\right| = 0$$

since $\lim_{\alpha \to \infty} \phi(\beta) = \infty$. Therefore, $\left\{\alpha_i^{(m)}\right\}$ is a Cauchy sequence of scalars for each $i = 1, 2, \cdots, r$. So each sequence $\left\{\alpha_i^{(m)}\right\}$ converges. Let $\lim_{n\to\infty} \alpha_i^{(n)} = \alpha_i$ for $i = 1, 2, \ldots, r$. Define $x = \sum_{i=1} \alpha e_i$. Then clearly $x \in X$. By similar calculation as in Lemma 4.1, it can be shown that $\lim_{n\to\infty} M(x_n - x, t) = 1$, $\lim_{n\to\infty} N(x_n - x, t) = 0$, $\forall t > 0$. Hence X is complete.

§5. Conclusion

Recently, various writers have constructed various kinds of generalised fuzzy metric spaces as well as generalised fuzzy normed linear spaces. The concept of fuzzy strong b-normed linear spaces was presented after the introduction of fuzzy strong b-metric spaces, and various findings in finite finite dimensions fuzzy strong b-normed linear spaces were examined. We believe there is a vast area of research to be done in order to create fuzzy strong b-normed linear spaces. Open issues in such spaces include results on completeness and compactness, operator standards, etc.

References

- T. Bag and S.K. Samanta, Finite dimensional fuzzy normed linear spaces, *The J. Fuzzy Math.*, 11 (2003), pp. 687-705.
- [2] T. Bag, Finite dimensional fuzzy cone normed linear spaces, Int. J. Math. Scientific Computing, 3 (2013), pp. 9-14.
- [3] S. Chatterjee, T. Bag and S.K. Samanta, Some results on G-fuzzy normed linear space, Int. J. Pure Appl. Math., 5 (2018), pp. 1295-1320.
- [4] S.C. Cheng and J.N. Mordeson, Fuzzy linear operators and fuzzy normed linear spaces, Bull. Cal. Math. Soc., 86 (1994), pp. 429-436.

- [5] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math Inf Univ Ostraviensis, 1 (1993), pp. 5-11.
- [6] C. Felbin, Finite dimensional fuzzy normed linear spaces, *Fuzzy Sets Syst.*, 48 (1992), pp. 239-248.
- [7] S. Gahler, 2-metrische Raume und thre topologische Struktur, Mathematische Nachrichten, 26 (1963), pp. 115-118.
- [8] S. Gahler, Lineare 2-normierte mume, Math. Nachr., 28 (1964), pp. 1 43.
- [9] A. George and P. Veeramani, On some results in fuzzy metric spaces, *Fuzzy Sets Syst.*, 64 (1994), pp. 395-399.
- [10] O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets Syst., 12 (1984), pp. 215-229.
- [11] A.K. Katsaras, Fuzzy topological vector spaces I, Fuzzy Sets Syst., 12 (1984), pp. 143-154.
- [12] K.A. Khan, Generalized normed spaces and fixed point theorems, J. Math. Computer Sci., 13 (2014), pp. 157-167.
- [13] W. Kirk and N. Shahzad, Fired Point Theory in Distance Spaces, Springer, Cham, 2014.
- [14] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, *Kybernetica*, 11 (1975), pp. 326-334.
- [15] Z. Mustafa, H. Obiedat and F. Awawdeh, Some fixed point theorem for mapping on complete G-metric spaces, *Fixed Point Theory Appl.*, 2008, 12 pages.
- [16] S. Nădăban, Fuzzy b-metric spaces, Int. J. Computers Communications and Control, 11 (2016), pp. 273-281.
- [17] T. Oner, M.B. Kandemir and B. Tanay, Fuzzy cone metric spaces, J. Nonlinear Sci. Appl., 8(2015), pp. 610-616.
- [18] Oner, On topology of fuzzy strong b-metric spaces, J. New Theory, 21 (2018), pp. 59-67.
- [19] L.A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), pp. 338-353.