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§1. Introduction

In the development of nonlinear analysis, fixed point theory plays a very important role. Banach

contraction principle [6] was the starting point for many researchers during the last decades in

the field of nonlinear analysis. The Banach contraction principle with rational expressions have

been expanded and some fixed point and common fixed point theorems have been obtained in

[12], [13], [14], [15].

In the existing literature there are a great number of generalizations of the Banach contrac-

tion principle (see [3, 4] and others). Some generalization of the notion of a metric space have

been proposed by some authors, such as, partial metric spaces, probabilistic metric spaces,

fuzzy metric spaces, D-metric spaces, cone metric spaces, b-metric spaces and cone b-metric

spaces (see, [7, 9, 10, 11, 18, 19, 20, 21, 22, 23, 24, 26, 27, 32, 46]).

Also, as an extension of the fixed point problem there are many results in finding a common

fixed point for two self mappings on different types of metric spaces; see, for example, [2], [41],

[34], [35], [38], [44] and the references therein. But all of these results were found in real valued

metric spaces.

In 2011, Azam et al. [5] introduced the notion of complex valued metric space and es-

tablished sufficient conditions for the existence of common fixed points of a pair of mappings

satisfying a contractive condition. The results proved by Azam et al. [5] and Bhatt et al. [8] via

rational inequality in a complex valued metric space as a contractive condition. Complex valued
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metric space is very useful in many branches of mathematics, including algebraic geometry, num-

ber theory, applied mathematics, applied physics, mechanical engineering, thermodynamics and

electrical engineering. After the establishment of complex valued metric spaces, Rouzkardand

et al. [33] established some common fixed point theorems satisfying certain rational expres-

sions in these spaces which generalize the result of [5]. In 2012, Sintanuvarat and Kumam

[42] extend and improve the results of [5] by replacing the constant of contractive conditions

to some control functions. Verma and Pathak in [44] introduced the notion of (E.A)-property

in complex valued metric space and proved some common fixed point results for two pairs of

weakly compatible mappings satisfying a “max” type contractive condition. After that many

authors have contributed different concepts in this space (see, for example, [29], [36], [37], [42],

[39] and many others).

Recently, Mlaiki [28] (Adv. Fixed Point Theory 4(4) (2014), 509-524) introduced the

concept of complex valued S-metric spaces and investigate the existence and uniqueness of a

common fixed point of two self-mappings in such space via various contractive conditions. After

Mlaiki’s results many authors have established a lot of results in complex valued S-metric space

under various contractive conditions (see, for example, [31], [45] and many others).

In this paper, we prove some common fixed point theorems for contractive type conditions

involving rational expressions in the framework of complex valued S-metric spaces. Our results

extend, generalize and enrich several results from the existing literature.

§2. Preliminaries

Let C be the set of complex numbers and z1, z2 ∈ C. Define a partial order - on C as follows:

z1 - z2 if and only if Re(z1) ≤ Re(z2), Im(z1) ≤ Im(z2). It follows that z1 - z2 if one of

the following conditions is satisfied:

(i) Re(z1) = Re(z2), Im(z1) < Im(z2);

(ii) Re(z1) < Re(z2), Im(z1) = Im(z2);

(iii) Re(z1) < Re(z2), Im(z1) < Im(z2);

(iv) Re(z1) = Re(z2), Im(z1) = Im(z2).

In particular, we will write z1 � z2 if z1 6= z2 and one of (i), (ii) and (iii) is satisfied and

we will write z1 ≺ z2 if only (iii) is satisfied. Note that

0 . z1 � z2 ⇒ |z1| < |z2|,

z1 - z2, z2 ≺ z3 ⇒ z1 ≺ z3.

In 2014, the following definition was introduced by Mlaiki in [28].

Definition 2.1([28]) Let X be a nonempty set and C be the set of all complex numbers. A

complex valued S-metric space on X is a function S : X3 → C that satisfies the following

conditions, for all x, y, z, t ∈ X:
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(CS1) 0 - S(x, y, z);

(CS2) S(x, y, z) = 0 if and only if x = y = z;

(CS3) S(x, y, z) - S(x, x, t) + S(y, y, t) + S(z, z, t).

Then, S is called a complex valued S-metric on X and the pair (X,S) is called a complex

valued S-metric space.

Example 2.2([28]) Let X = C be the set of complex numbers. Define a mapping S : C3 → C
by S(z1, z2, z3) = |max{Re(z1), Re(z2)} − Re(z2)| + i|max{Im(z1), Im(z2)} − Im(z2)|. Then

it is not difficult to verify that (C,S) is a complex valued S-metric space.

Definition 2.3([28]) If (X,S) is called a complex valued S-metric space, then,

(Γ1) A sequence {un} in X converges to u if and only if for every ε ∈ C with 0 ≺ ε, there

exists n0 ∈ N such that for all n ≥ n0, we have S(un, un, u) ≺ ε and we denote this by un → u

or limn→∞ un = u;

(Γ2) A sequence {un} in X is called a Cauchy sequence if for every ε ∈ C with 0 ≺ ε, there

exists n0 ∈ N such that for all n,m ≥ n0, we have S(un, un, um) ≺ ε;
(Γ3) An S-metric space (X,S) is said to be complete if every Cauchy sequence is convergent.

Definition 2.4 Let X be a non-empty set and let R, h : X → X be two self mappings of X.

Then a point v ∈ X is called a

(Λ1) fixed point of operator R if R(v) = v;

(Λ2) common fixed point of R and h if R(v) = h(v) = v.

Definition 2.5([1]) Let P and Q be single valued self-mappings on a set X. If u = Pz = Qz
for some z ∈ X, then z is called a coincidence point point of P and Q, and u is called a point

of coincidence of P and Q.

Definition 2.6([16]) Let P and Q be single valued self-mappings on a set X. Mappings P and

Q are said to be commuting if PQv = QPv for all v ∈ X.

Definition 2.7([17]) Let P and Q be single valued self-mappings on a set X. Mappings P and

Q are said to be weakly compatible if they commute at their coincidence points, i.e., if Pu = Qu
for some u ∈ X implies PQu = QPu.

Definition 2.8([44]) Let (X, d) be a complex valued metric space and let R,Q : X → X be two

self mappings of X. The pair (R,Q) is said to satisfy (E.A)-property if there exists a sequence

{rn} in X such that limn→∞Rrn = limn→∞Qrn = d for some d ∈ X.

Note that weakly compatibility and (E.A)-property are independent of each other (see [30]

for details).

Example 2.9 Let X = C and let R,Q : X → X be defined by R(z) = 4z−2i and Q(z) = z+ i

for all z ∈ X. Let {zn} = {i+ 1
n}n≥1 be the sequence in X. Then

lim
n→∞

Rzn = lim
n→∞

(
4i+

4

n
− 2i

)
= 2i,
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and

lim
n→∞

Qzn = lim
n→∞

(
i+

1

n
+ i
)

= 2i.

Thus there exists a sequence {zn} in X such that limn→∞Rzn = limn→∞Qzn = 2i ∈ X.

Hence R and Q satisfy (E.A)-property.

Liu et al. [25] introduced common (E.A)-property which is an extension of (E.A)-property

were define common (E.A)-property in the complex valued metric space as follows.

Definition 2.10([25]) Let (X, d) be a complex valued metric space and let P,Q,R, T : X → X

be four self mappings of X. The pairs (P,R) and (Q, T ) satisfy the common (E.A)-property if

there exist two sequences {un} and {vn} in X such that

lim
n→∞

Pun = lim
n→∞

Run = lim
n→∞

Qvn = lim
n→∞

T vn = z ∈ X.

Example 2.11 Let X = C and let d be a complex valued metric and let P,Q,R, T : X → X be

four self-maps defined by P(z) = 3+iz, Q(z) = −i−3z2, R(z) = −i−3z and T (z) = 3+(z−2i)

for all z ∈ X. Let {xn} = {−1 + 1
n}n≥1 and {yn} = { 1n + i}n≥1 be two sequences in X. Then

lim
n→∞

Pxn = lim
n→∞

(
3− i+

i

n

)
= 3− i,

lim
n→∞

Rxn = lim
n→∞

(
− i+ 3− 3

n

)
= 3− i,

lim
n→∞

Qyn = lim
n→∞

(
− i− 3(

1

n
+ i)2

)
= 3− i,

and

lim
n→∞

T yn = lim
n→∞

(
3 + (

1

n
+ i− 2i)

)
= 3− i.

Thus there exist two sequences {xn} and {yn} in X such that

lim
n→∞

Pxn = lim
n→∞

Rxn = lim
n→∞

Qyn = lim
n→∞

T yn = 3− i ∈ X.

Hence the pairs (P,R) and (Q, T ) satisfy common (E.A)-property.

Now, we redefine the common (E.A)-property in the setting of complex valued S-metric

space as follows.

Definition 2.12 Let (X,S) be a complex valued S-metric space and let P,Q,R, T : X → X be

four self mappings of X. The pairs (P,R) and (Q, T ) are said to satisfy the common (E.A)-

property if there exist two sequences {pn} and {qn} in X such that

lim
n→∞

Ppn = lim
n→∞

Rpn = lim
n→∞

Qqn = lim
n→∞

T qn = t ∈ X.

Example 2.13 LetX = C and let S : C3 → C be defined by S(z1, z2, z3) = |max{Re(z1), Re(z2)}−
Re(z2)|+ i|max{Im(z1), Im(z2)} − Im(z2)|. Then (C,S) is a complex valued S-metric space.
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Let P,Q,R, T : X → X be four self-maps defined by P(z) = z+ i, Q(z) = z+ (1 + 2i), R(z) =

3i− z and T (z) = −z+ (2i− 1) for all z ∈ X. Let {pn} = {i+ 1
n}n≥1 and {qn} = {−1 + i

n}n≥1
be two sequences in X and that Ppn = pn + i = 2i + 1

n and Rpn = 3i − pn = 2i − 1
n for all

n ∈ N. This implies that

S(Ppn,Ppn, 0) = S
(

2i+
1

n
, 2i+

1

n
, 0
)
→ 0 as n→∞.

This shows that Ppn → 0 as n→∞ and by similar way, we have

S(Rpn,Rpn, 0) = S
(

2i− 1

n
, 2i− 1

n
, 0
)
→ 0 as n→∞.

This shows that Rpn → 0 as n→∞. Thus the pair (P,R) satisfies (E.A)-property.

Similarly, note that Qqn = qn + (1 + 2i) = 2i+ i
n and T qn = −qn + (2i− 1) = 2i− i

n for

all n ∈ N. This implies that

S(Qqn,Qqn, 0) = S
(

2i+
i

n
, 2i+

i

n
, 0
)
→ 0 as n→∞.

This shows that Qqn → 0 as n→∞ and by similar way, we have

S(T qn, T qn, 0) = S
(
− 2i− i

n
,−2i− i

n
, 0
)
→ 0 as n→∞.

This shows that T qn → 0 as n→∞. Thus the pair (Q, T ) satisfies (E.A)-property. Thus there

exist two sequences {pn} and {qn} in X such that

lim
n→∞

Ppn = lim
n→∞

Rpn = lim
n→∞

Qqn = lim
n→∞

T qn = 0 ∈ X.

Hence the pairs (P,R) and (Q, T ) satisfy common (E.A)-property.

Lemma 2.14([28]) Let (X,S) be a complex valued S-metric space and let {un} be a sequence

in X. Then {un} converges to u if and only if limn→∞ |S(un, un, u)| = 0 or |S(un, un, u)| → 0

as n→∞.

Lemma 2.15([28]) Let (X,S) be a complex valued S-metric space and let {un} be a sequence

in X. Then {un} is a Cauchy sequence if and only if limn,m→∞ |S(un, un, un+m)| = 0 or

|S(un, un, un+m)| → 0 as n,m→∞.

Lemma 2.16([28]) Let (X,S) be a complex valued S-metric space, then S(x, x, y) = S(y, y, x)

for all x, y ∈ X.

§3. Common Fixed Point Theorems

In this section, we shall prove some common fixed point theorems under contractive type con-

ditions involving rational expression and satisfies (E.A) property in the framework of complex

valued S-metric spaces.
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Theorem 3.1 Let (X,S) be a complex valued S-metric space and let A,B,Q, T :

X → X be four self-mappings of X satisfying the following conditions:

(i) For all u, v ∈ X,

S(Au,Au,Bv) - r max
{
S(Qu,Qu, T v),S(Bv,Bv,Au),S(Bv,Bv, T v),

1

2
[S(Au,Au, T v) + S(Bv,Bv,Qu)],

S(Bv,Bv,Au)[1 + S(Bv,Bv, T v)]

[1 + S(Au,Au,Bv)]

}
, (3.1)

where r ∈ [0, 1) is a constant;

(ii) The pairs (A,Q) and (B, T ) are weakly compatible;

(iii) One of the pairs (A,Q) and (B, T ) satisfy (E.A) property;

(iv) A(X) ⊆ T (X) and B(X) ⊆ Q(X).

If the range of one of the mappings Q(X) or T (X) is a complete subspace of (X,S), then

A, B, Q and T have a unique common fixed point in X.

Proof First, we suppose that the pair (A,Q) satisfies (E.A) property. Then by Definition

2.8, there exists a sequence {un} in X such that limn→∞Aun = limn→∞Qun = t for some t ∈
X. Further, since A(X) ⊆ T (X), there exists a sequence {vn} in X such that limn→∞Aun =

limn→∞ T vn. Hence limn→∞ T vn = t. We claim that limn→∞ Bvn = t. If not, then putting

u = un, v = vn in inequality (3.1), using Lemma 2.16 and (CS2), we have

S(Aun,Aun,Bvn) - r max
{
S(Qun,Qun, T vn),S(Bvn,Bvn,Aun),S(Bvn,Bvn, T vn),

1

2
[S(Aun,Aun, T vn) + S(Bvn,Bvn,Qun)],

S(Bvn,Bvn,Aun)[1 + S(Bvn,Bvn, T vn)]

[1 + S(Aun,Aun,Bvn)]

}
= r max

{
S(Qun,Qun,Aun),S(Bvn,Bvn,Aun),S(Bvn,Bvn,Aun),

1

2
[S(Aun,Aun,Aun) + S(Bvn,Bvn,Aun)],

S(Bvn,Bvn,Aun)[1 + S(Bvn,Bvn,Aun)]

[1 + S(Aun,Aun,Bvn)]

}
= r max

{
0,S(Aun,Aun,Bvn),S(Aun,Aun,Bvn),

1

2
[S(Aun,Aun,Bvn)],S(Aun,Aun,Bvn)

}
- r S(Aun,Aun,Bvn). (3.2)

Thus

|S(Aun,Aun,Bvn)| ≤ r |S(Aun,Aun,Bvn)|,
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which is a contradiction since r ∈ [0, 1). Letting n→∞, we have

lim
n→∞

|S(Aun,Aun,Bvn)| ≤ r .0 = 0,

which is a contradiction by condition (CS1). Thus, we get limn→∞Aun = limn→∞ Bvn = t.

Now, first we assume that T (X) is a complete subspace of (X,S), then t = T p for some

p ∈ X. Subsequently, we have

lim
n→∞

Bvn = lim
n→∞

Aun = lim
n→∞

Qun = lim
n→∞

T vn = T p = t.

We claim that Bp = T p. For this, putting u = un and v = p in inequality (3.1), using

Lemma 2.16 and (CS2), we have

S(Aun,Aun,Bp) - r max
{
S(Qun,Qun, T p),S(Bp,Bp,Aun),S(Bp,Bp, T p),

1

2
[S(Aun,Aun, T p) + S(Bp,Bp,Qun)],

S(Bp,Bp,Aun)[1 + S(Bp,Bp, T p)]
[1 + S(Aun,Aun,Bp)]

}
. (3.3)

Letting n→∞ in (3.3), using Lemma 2.16 and (CS2), we get

S(T p, T p,Bp) - r max
{
S(T p, T p, T p),S(Bp,Bp, T p),S(Bp,Bp, T p),

1

2
[S(T p, T p, T p) + S(Bp,Bp, T p)],

S(Bp,Bp, T p)[1 + S(Bp,Bp, T p)]
[1 + S(T p, T p,Bp)]

}
= r max

{
0,S(T p, T p,Bp),S(Bp,Bp, T p),

1

2
[S(T p, T p,Bp)],S(Bp,Bp, T p)

}
- r S(T p, T p,Bp). (3.4)

Thus, |S(T p, T p,Bp)| ≤ r |S(T p, T p,Bp)|, which is a contradiction since r ∈ [0, 1). Hence, we

have S(T p, T p,Bp) = 0, that is, T p = Bp = t. Hence p is a coincidence point of the mappings

B and T , that is, the pair (B, T ). Now, the weak compatibility of the pair (B, T ) implies that

BT p = T Bp or Bt = T t.

On the other hand, since B(X) ⊆ Q(X), there exists ν ∈ X such that Bp = Qν. Thus

T p = Bp = Qν = t. Let us show that ν is a coincidence point of the pair (A,Q), that is,

Aν = Qν = t. If not, then putting u = ν and v = p in inequality (3.1), using Lemma 2.16 and

(CS2), we get

S(Aν,Aν,Bp) - r max
{
S(Qν,Qν, T p),S(Bp,Bp,Aν),S(Bp,Bp, T p),

1

2
[S(Aν,Aν, T p) + S(Bp,Bp,Qν)],

S(Bp,Bp,Aν)[1 + S(Bp,Bp, T p)]
[1 + S(Aν,Aν,Bp)]

}
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= r max
{

0,S(Aν,Aν,Bp), 0, S(Aν,Aν,Bp)
2

,

S(Aν,Aν,Bp)
}

- r S(Aν,Aν,Bp). (3.5)

Thus, |S(Aν,Aν,Bp)| ≤ r |S(Aν,Aν,Bp)|, which is a contradiction since r ∈ [0, 1). Hence,

we have S(Aν,Aν,Bp) = 0, that is, S(Aν,Aν,Qν) = 0 and hence Aν = Qν = t. Thus ν

is a coincidence point of the mappings A and Q, that is, the pair (A,Q). Further, the weak

compatibility of the pair (A,Q) implies that AQν = QAν or At = Qt. Hence t is a common

coincidence point of A, B, Q and T .

Now to show that t is a common fixed point of A, B, Q and T . For this, we put u = ν and

v = t in (3.1), using Lemma 2.16 and (CS2), we get

S(t, t,Bt) = S(Aν,Aν,Bt)

- r max
{
S(Qν,Qν, T t),S(Bt,Bt,Aν),S(Bt,Bt, T t),

1

2
[S(Aν,Aν, T t) + S(Bt,Bt,Qν)],

S(Bt,Bt,Aν)[1 + S(Bt,Bt, T t)]
[1 + S(Aν,Aν,Bt)]

}
= r max

{
S(t, t,Bt),S(Bt,Bt, t),S(Bt,Bt,Bt),

1

2
[S(t, t,Bt) + S(Bt,Bt, t)],

S(Bt,Bt, t)[1 + S(Bt,Bt,Bt)]
[1 + S(t, t,Bt)]

}
= r max

{
S(t, t,Bt),S(t, t,Bt), 0,S(t, t,Bt),

S(t, t,Bt)
[1 + S(t, t,Bt)]

}
- r max

{
S(t, t,Bt),S(t, t,Bt), 0,S(t, t,Bt),S(t, t,Bt)

}
- r S(t, t,Bt). (3.6)

Thus, |S(t, t,Bt)| ≤ r |S(t, t,Bt)|, which is a contradiction since r ∈ [0, 1). Hence, we have

S(t, t,Bt) = 0, that is, Bt = t. Consequently, At = Bt = Qt = T t = t. This shows that t is a

common fixed point of the mappings A, B, Q and T .

Similar argument arises if we assume that Q(X) is a complete subspace of (X,S).

Similarly, the property (E.A) of the pair (B, T ) will give the similar result.

Now, we show the uniqueness of the common fixed point. For this, let us assume that t′

be another common fixed point of A, B, Q and T with t′ 6= t. From inequality (3.1), using

Lemma 2.16 and (CS2) for u = t′ and v = t, we have

S(t′, t′, t) = S(At′,At′,Bt)
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- r max
{
S(Qt′,Qt′, T t),S(Bt,Bt,At′),S(Bt,Bt, T t),

1

2
[S(At′,At′, T t) + S(Bt,Bt,Qt′)],

S(Bt,Bt,At′)[1 + S(Bt,Bt, T t)]
[1 + S(At′,At′,Bt)]

}
= r max

{
S(t′, t′, t),S(t, t, t′),S(t, t, t),

1

2
[S(t′, t′, t) + S(t, t, t′)],

S(t, t, t′)[1 + S(t, t, t)]

[1 + S(t′, t′, t)]

}
= r max

{
S(t′, t′, t),S(t′, t′, t), 0,S(t′, t′, t),

S(t′, t′, t)

[1 + S(t′, t′, t)]

}
- r max

{
S(t′, t′, t),S(t′, t′, t), 0,S(t′, t′, t),

S(t′, t′, t)
}

- r S(t′, t′, t). (3.7)

Thus

|S(t′, t′, t)| ≤ r |S(t′, t′, t)|,

which is a contradiction since r ∈ [0, 1). Hence, we have

S(t′, t′, t) = 0,

that is, t′ = t. Hence At = Bt = Qt = T t = t and t is the unique common fixed point of A, B,

Q and T . This completes the proof. �

If we take A = B and Q = T in Theorem 3.1, then we have the following result.

Corollary 3.2 Let (X,S) be a complex valued S-metric space and let A,Q : X → X be two

self-mappings of X satisfying the following conditions:

(i) For all u, v ∈ X,

S(Au,Au,Av) - r max
{
S(Qu,Qu,Qv),S(Av,Av,Au),S(Av,Av,Qv),

1

2
[S(Au,Au,Qv) + S(Av,Av,Qu)],

S(Av,Av,Au)[1 + S(Av,Av,Qv)]

[1 + S(Au,Au,Av)]

}
, (3.8)

where r ∈ [0, 1) is a constant;

(ii) The pairs (A,Q) is weakly compatible;

(iii) The pair (A,Q) satisfies (E.A) property;

(iv) A(X) ⊆ Q(X).
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If the range of the mapping Q(X) is a complete subspace of (X,S), then A and Q have a

unique common fixed point in X.

Theorem 3.3 Let (X,S) be a complex valued S-metric space and let A,B,Q, T :

X → X be four self-mappings of X satisfying the following conditions:

(i) For all u, v ∈ X,

S(Au,Au,Bv) - n1 S(Qu,Qu, T v) + n2 S(Bv,Bv,Au) + n3 S(Bv,Bv, T v)

+n4 S(Au,Au, T v)
[1 + S(Bv,Bv, T v)]

[1 + S(Au,Au,Bv)]

+n5 S(Bv,Bv,Au)
[1 + S(Bv,Bv, T v)]

[1 + S(Au,Au,Bv)]
, (3.9)

where n1, n2, n3, n4, n5 > 0 are nonnegative reals with n1 + n2 + n3 + n4 + n5 < 1;

(ii) The pairs (A,Q) and (B, T ) are weakly compatible;

(iii) One of the pairs (A,Q) and (B, T ) satisfy (E.A) property;

(iv) A(X) ⊆ T (X) and B(X) ⊆ Q(X).

If the range of one of the mappings Q(X) or T (X) is a complete subspace of (X,S), then

A, B, Q and T have a unique common fixed point in X.

Proof First, we suppose that the pair (A,Q) satisfies (E.A) property. Then by Definition

2.8, there exists a sequence {un} in X such that limn→∞Aun = limn→∞Qun = t for some t ∈
X. Further, since A(X) ⊆ T (X), there exists a sequence {vn} in X such that limn→∞Aun =

limn→∞ T vn. Hence limn→∞ T vn = t. We claim that limn→∞ Bvn = t. If not, then putting

u = un and v = vn in inequality (3.9), using Lemma 2.16 and (CS2), we have

S(Aun,Aun,Bvn) - n1 S(Qun,Qun, T vn) + n2 S(Bvn,Bvn,Aun)

+n3 S(Bvn,Bvn, T vn)

+n4 S(Aun,Aun, T vn)
[1 + S(Bvn,Bvn, T vn)]

[1 + S(Aun,Aun,Bvn)]

+n5 S(Bvn,Bvn,Aun)
[1 + S(Bvn,Bvn, T vn)]

[1 + S(Aun,Aun,Bvn)]

= n1 S(Qun,Qun,Qun) + n2 S(Bvn,Bvn,Aun)

+n3 S(Bvn,Bvn,Aun)

+n4 S(Aun,Aun,Aun)
[1 + S(Bvn,Bvn,Aun)]

[1 + S(Aun,Aun,Bvn)]

+n5 S(Bvn,Bvn,Aun)
[1 + S(Bvn,Bvn,Aun)]

[1 + S(Aun,Aun,Bvn)]

= n1 .0 + n2 S(Aun,Aun,Bvn) + n3 S(Aun,Aun,Bvn)

+n4 .0 + n5 S(Aun,Aun,Bvn)

= (n2 + n3 + n5)S(Aun,Aun,Bvn)

- (n1 + n2 + n3 + n4 + n5)S(Aun,Aun,Bvn)

= mS(Aun,Aun,Bvn)
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where m = n1 + n2 + n3 + n4 + n5 < 1. Thus

|S(Aun,Aun,Bvn)| ≤ m |S(Aun,Aun,Bvn)|,

which is a contradiction since m ∈ [0, 1). Letting n→∞, we have

lim
n→∞

|S(Aun,Aun,Bvn)| ≤ m.0 = 0,

which is a contradiction by condition (CS1). Thus, we get limn→∞Aun = limn→∞ Bvn = t.

Now, first we assume that T (X) is a complete subspace of (X,S), then t = T p for some

p ∈ X. Subsequently, we have

lim
n→∞

Bvn = lim
n→∞

Aun = lim
n→∞

Qun = lim
n→∞

T vn = T p = t.

Rest of the proof follows from Theorem 3.1. This completes the proof. �

Theorem 3.4 Let (X,S) be a complex valued S-metric space and let A,B,Q, T :

X → X be four self-mappings of X satisfying the following conditions:

(i) For all u, v ∈ X,

S(Au,Au,Bv) - R1DSC1(u, u, v) +R2DSC2(u, u, v), (3.10)

where R1,R2 > 0 are nonnegative reals with R1 +R2 < 1 and

DSC1(u, u, v) = max
{
S(Qu,Qu, T v),S(Bv,Bv,Au),S(Bv,Bv, T v)

}
,

DSC2(u, u, v) = max
{
S(Au,Au, T v)

[1 + S(Bv,Bv, T v)]

[1 + S(Au,Au,Bv)]
,

S(Bv,Bv,Au)
[1 + S(Bv,Bv, T v)]

[1 + S(Au,Au,Bv)]

}
,

(ii) The pairs (A,Q) and (B, T ) are weakly compatible;

(iii) One of the pairs (A,Q) and (B, T ) satisfy (E.A) property;

(iv) A(X) ⊆ T (X) and B(X) ⊆ Q(X).

If the range of one of the mappings Q(X) or T (X) is a complete subspace of (X,S), then

A, B, Q and T have a unique common fixed point in X.

Proof First, we suppose that the pair (A,Q) satisfies (E.A) property. Then by Definition

2.8, there exists a sequence {un} in X such that limn→∞Aun = limn→∞Qun = t for some t ∈
X. Further, since A(X) ⊆ T (X), there exists a sequence {vn} in X such that limn→∞Aun =

limn→∞ T vn. Hence limn→∞ T vn = t. We claim that limn→∞ Bvn = t. If not, then putting

u = un and v = vn in inequality (3.10), using Lemma 2.16 and (CS2), we have

S(Aun,Aun,Bvn) - R1DSC1(un, un, vn) +R2DSC2(un, un, vn), (3.11)
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where

DSC1(un, un, vn) = max
{
S(Qun,Qun, T vn),S(Bvn,Bvn,Aun),S(Bvn,Bvn, T vn)

}
= max

{
S(Qun,Qun,Qun),S(Bvn,Bvn,Aun),S(Bvn,Bvn,Aun)

}
= max

{
0,S(Aun,Aun,Bvn),S(Aun,Aun,Bvn)

}
= S(Aun,Aun,Bvn), (3.12)

and

DSC2(un, un, vn) = max
{
S(Aun,Aun, T vn)

[1 + S(Bvn,Bvn, T vn)]

[1 + S(Aun,Aun,Bvn)]
,

S(Bvn,Bvn,Aun)
[1 + S(Bvn,Bvn, T vn)]

[1 + S(Aun,Aun,Bvn)]

}
= max

{
S(Aun,Aun,Aun)

[1 + S(Bvn,Bvn,Aun)]

[1 + S(Aun,Aun,Bvn)]
,

S(Bvn,Bvn,Aun)
[1 + S(Bvn,Bvn,Aun)]

[1 + S(Aun,Aun,Bvn)]

}
= max

{
0,S(Aun,Aun,Bvn)

}
= S(Aun,Aun,Bvn). (3.13)

Using equations (3.12) and (3.13) in equation (3.11), we get

S(Aun,Aun,Bvn) - R1 S(Aun,Aun,Bvn) +R2 S(Aun,Aun,Bvn)

=
(
R1 +R2

)
S(Aun,Aun,Bvn)

= W S(Aun,Aun,Bvn), (3.14)

where W = R1 +R2 < 1.

Thus

|S(Aun,Aun,Bvn)| ≤ W |S(Aun,Aun,Bvn)|,

which is a contradiction since W ∈ [0, 1). Letting n→∞, we have

lim
n→∞

|S(Aun,Aun,Bvn)| ≤ W .0 = 0,

which is a contradiction by condition (CS1). Thus, we get limn→∞Aun = limn→∞ Bvn = t.

Now, first we assume that T (X) is a complete subspace of (X,S), then t = T p for some

p ∈ X. Subsequently, we have

lim
n→∞

Bvn = lim
n→∞

Aun = lim
n→∞

Qun = lim
n→∞

T vn = T p = t.

Rest of the proof follows from Theorem 3.1. This completes the proof. �

From Corollary 3.2 we obtain the following special case.

Corollary 3.5 Let (X,S) be a complete complex valued S-metric space and let A : X → X be
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a self-mapping of X satisfies the contractive condition:

S(Au,Au,Av) - q S(u, u, v),

for all u, v ∈ X, where q ∈ [0, 1) is a constant. Then A has a unique fixed point in X.

Remark 3.6 Corollary 3.5 extends Theorem 3.1 of Sedghi et al. [40] from complete S-metric

space to the setting of complete complex valued S-metric space.

Remark 3.7 Corollary 3.5 also extends the well-known Banach fixed theorem [6] from complete

metric space to the setting of complete complex valued S-metric space.

Corollary 3.8([28], Corollary 2.5) Let (X,S) be a complete complex valued S-metric space and

let A : X → X be a self-mapping of X satisfies the contractive condition:

S(Anu,Anu,Anv) - q S(u, u, v),

for all u, v ∈ X, where n is some positive integer and q ∈ [0, 1) is a constant. Then A has a

unique fixed point in X.

Proof By Corollary 3.5, there exists p ∈ X such that Anp = p. Then

S(Ap,Ap, p) = S(AAnp,AAnp,Anp)

= S(AnAp,AnAp,Anp)

- q S(Ap,Ap, p).

Thus

|S(Ap,Ap, p)| ≤ q |S(Ap,Ap, p)|,

which is a contradiction since 0 ≤ q < 1 and so S(Ap,Ap, p) = 0, that is, Ap = p. This shows

that A has a unique fixed point in X. This completes the proof. �

Remark 3.9 (i) Completeness of the space X is relaxed in Theorems 3.1, 3.3 and 3.4.

(ii) Continuity of the mappings A, B, Q and T is relaxed in Theorems 3.1, 3.3 and 3.4.

Finally, we give the following example which is an application of Corollary 3.5.

Example 3.10 Let X1 = {z ∈ C : Re(z) ≥ 0, Im(z) = 0} and X2 = {z ∈ C : Im(z) ≥
0, Re(z) = 0}. Now, let X = X1 ∪X2 and define a mapping S : X3 → C By:

S(z1, z2, z3) =


max{x1, x2, x3}+ imax{x1, x2, x3}, if z1, z2, z3 ∈ X1,

max{y1, y2, y3}+ imax{y1, y2, y3}, if z1, z2, z3 ∈ X2,

(max{x1, x2}+ y3) + i(max{x1, x2}+ y3), if z1, z2 ∈ X1, z3 ∈ X2,

(max{y1, y2}+ x3) + i(max{y1, y2}+ x3), if z1, z2 ∈ X2, z3 ∈ X1,

where z1 = x1 + iy1, z2 = x2 + iy2 and z3 = x3 + iy3. It is very easy to verify that (X,S) is a
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complete complex valued S-metric space.

Now, we define a self-mapping A on X (with z = (x, y)) as

A(z) =

 (x
2 , 0), if z ∈ X1,

(0, y2 ), if z ∈ X2.

Now, we show that A satisfies the conditions of Corollary 3.5. Here, we note that

0 - S(z1, z2, z3),S(Az1,Az2,Az3).

. Now, let z1 = x1 + iy1 and z2 = x2 + iy2. Hence, we have the following four cases.

Case 1. If z1, z2 ∈ X1, then we have

S(Az1,Az1,Az2) = S
(

(
x1
2
, 0), (

x1
2
, 0), (

x2
2
, 0)
)

= max
{x1

2
,
x2
2

}
+ imax

{x1
2
,
x2
2

}
= max

{x1
2
,
x2
2

}
(1 + i)

=
1

2
max{x1, x2}(1 + i) -

1

2
S(z1, z1, z2) = q S(z1, z1, z2),

Case 2. If z1, z2 ∈ X2, then we have

S(Az1,Az1,Az2) = S
(

(0,
y1
2

), (0,
y1
2

), (0,
y2
2

)
)

= max
{y1

2
,
y2
2

}
+ imax

{y1
2
,
y2
2

}
= max

{y1
2
,
y2
2

}
(1 + i)

=
1

2
max{y1, y2}(1 + i) -

1

2
S(z1, z1, z2) = q S(z1, z1, z2),

Case 3. If z1 ∈ X1, z2 ∈ X2, then we have

S(Az1,Az1,Az2) = S
(

(
x1
2
, 0), (

x1
2
, 0), (0,

y2
2

)
)

=
(x1

2
+
y2
2

)
(1 + i)

=
1

2
(x1 + y2)(1 + i) -

1

2
S(z1, z1, z2) = q S(z1, z1, z2),

Case 4. If z2 ∈ X1, z1 ∈ X2, then we have

S(Az1,Az1,Az2) = S
(

(0,
y1
2

), (0,
y1
2

), (
x2
2
, 0)
)

=
(x2

2
+
y1
2

)
(1 + i) =

1

2
(x2 + y1)(1 + i)

-
1

2
S(z1, z1, z2) = q S(z1, z1, z2),

where q = 1
2 . If we take 0 ≤ q < 1, then all the conditions of Corollary 3.5 are satisfied. Hence

by applying Corollary 3.5, A has a unique fixed point in X. Indeed, in this case 0 ∈ X is the

unique fixed point.
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§4. Conclusion

In this paper, we prove some common fixed point theorems for contractive type conditions

involving rational expressions and using common (E.A) property in the framework of complex-

valued S-metric spaces. Also, we give an example in support of the result. The results presented

in this paper extend, generalize and enrich several results from the current existing literature.
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[45] N. Tas and N. Özgür, Common fixed point results on complex valued S-metric spaces,

(2020), DOI:10.22130/scma.2018.92986.488.

[46] P. Vetro, Common fixed points in cone metric spaces, Rend. Circ. Mat. Palermo, (2)

56(3) (2007), 464-468.


