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§1. Introduction

Ramanujan [43] recorded 17 hypergeometric series like representations for 1/π in which he gave

the brief proof of first three series which are belong to the classical theory of elliptic functions.

J. M. Borwein and P. B. Borwein were first proved all the 17 identities in 1987 [17]. Further they

derived more series for 1/π [18], [19], [22]. Also many authors derived several new Ramanujan

type series for 1/π as well as proved the existing identities in the subsequent years.

B. C. Berndt and H. H. Chan used Eisenstein series identities to prove Ramanujan type

series for 1/π in their papers [12] and [13, where the latter one is coauthored with Wen-Chin

Liaw. On the basis of the idea of above two papers and with the guidance of Chan, Baruah

and Berndt used Eisenstein series identities of the form

−P (q2) + nP (q2n) and P (q2) + nP (q2n)

for n = 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 17, 18, 22 and 25, to prove series of Ramanujan type

series for 1/π in [3] and [4], by invoking the hints of Ramanujan. Further, Baruah and N. Nayak

worked on Ramanujan type series for 1/π using Eisenstein series identities of the form −P (−q)+

nP (−qn) and P (−q) +nP (−qn) for n = 3, 5, 7, 9, and 25. Motivated by this, using Clausen’s

formulas and Eisenstein series representations of the form −P (q) + nP (qn) and P (q) + nP (qn)

for n = 2, 3, 4, 5, 6, 7, 8, 9 and 10, we proved 9 series out of 17 series that are recorded by

Ramanujan in his famous paper [43] and some other existing series. Besides, we have recorded

some new Ramanujan type series for 1/π. A brief details of the existing identities which are
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proved in the Sections 3-11 is given in the below table.

Sl.

No.
Authors Equations

1. S. Ramanujan [43], [41]
(3.2), (4.3), (5.4), (6.1), (6.5), (8.4), (9.1),

(9.6),(10.4)

2. G. Bauer [7] (3.2)

3. J. Guillera [36] (7.2)

4. G. H. Hardy [39], [45] (3.2)

5. W. N. Bailey [2] (3.2)

6.
J. M. Borwein and P. B. Bor-

wein [17], [18]
(3.4), (7.5)

7.
B. C. Berndt, H. H. Chan and

W. -C. Liaw [13]
(7.4), (9.5)

8.
N.D.Baruah and B.C.Berndt

[3]

(3.1), (3.2), (3.3), (3.4), (4.1), (4.2), (4.4), (5.3),

(5.4), (6.1), (6.2), (6.3), (6.4), (6.5), (7.1), (7.2),

(7.4), (7.5), (8.3), (8.4), (9.1), (9.2), (9.3), (9.4),

(9.5), (9.6), (10.2), (10.4)

The Section 2 contains preliminary definitions and results, in which (2.10) and (2.18) plays an

important role in proving our results in the Sections 3-11, where (2.18) seems to be new.

§2. Preliminaries

Throughout the sequel, we use the following notation:

(a; q)∞ :=

∞∏
n=0

(1− aqn),

where a and q are complex numbers with |q| < 1. For |ab| < 1, Ramanujan’s general theta

function is defined by

f(a, b) :=

∞∑
n=−∞

a
n(n+1)

2 b
n(n−1)

2 = (−a; ab)∞(−b; ab)∞(ab; ab)∞.

Further, Ramanujan [9, p36] considers following three special cases of f(a, b):

ϕ(q) := f(q, q) = 1 + 2

∞∑
n=1

qn
2

=
(−q; q2)∞(q2; q2)∞
(q; q2)∞(−q2; q2)∞

,
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ψ(q) := f(q, q3) =

∞∑
n=0

q
n(n+1)

2 =
(q2; q2)∞
(q; q2)∞

,

and

f(−q) := f(−q,−q2) =

∞∑
n=−∞

(−1)nq
n(3n−1)

2 .

After Ramanujan, we define

χ(q) := (−q; q2)∞.

The generalized hypergeometric functions pFp−1, p ≥ 1, are defined by

pFp−1[a1, a2, · · · , ap; b1, b2, · · · , bp−1; x] :=
∞∑
n=0

(a1)n(a2)n · · · (ap)n
(b1)n(b2)n · · · (bp−1)n

xn

n!
,

where |x| < 1, (a)n := a(a + 1) · · · (a + n − 1) and (a)0 := 1. Ramanujan recorded the

following identities in his Second Notebook [44] which give the relationship between hyperge-

ometric series and theta functions. Moreover these identities are frequently used to derive our

results. A proof of the below identities can be seen in [9, pp 120-124].

Lemma 2.1 If

q = e−y, y = −π 2F1[ 12 ,
1
2 ; 1 ; 1− x ]

2F1[ 12 ,
1
2 ; 1 ; x ]

and z = 2F1

[
1

2
,

1

2
; 1 ; x

]
, (2.1)

then

ϕ(q) =
√
z, (2.2)

ϕ(−q) =
√
z(1− x)1/4, (2.3)

ψ(q) =

√
z

2

(
x

q

)1/8

, (2.4)

ψ(q2) =

√
z

2

(
x

q

)1/4

, (2.5)

ψ(−q) =

√
z

2

(
x(1− x)

q

)1/8

, (2.6)
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f(−q) =

√
z

21/6
(1− x)1/6

(
x

q

)1/24

, (2.7)

f(−q2) =

√
z

21/3

(
x(1− x)

q

)1/12

, (2.8)

χ(−q) = 21/6(1− x)1/12
( q
x

)1/24
, (2.9)

and

dy

dx
= − 1

x(1− x)z2
. (2.10)

Let P (q) denote Ramanujan’s Eisenstein series defined by

P (q) := 1− 24

∞∑
k=1

kqk

1− qk
, |q| < 1. (2.11)

Further, Ramanujan [9, p.129] gave the representation for P (q) in terms of x, y and z:

P (q) := P (e−y) = (1− 5x)z2 + 12x(1− x)z
dz

dx
. (2.12)

In the sequel, set

q := e−π/
√
n, xn := x(e−π

√
n) and zn := z(e−π

√
n). (2.13)

From (2.2), (2.3), (2.5), (2.13) and [44, Entry 27, Chapter 16], we obtain that

x1/n := x(e−π/
√
n) = 1− xn and z1/n := z(e−π/

√
n) =

√
nzn. (2.14)

The number xn is called classical singular modulus. We often used the values of these

numbers recorded by Ramanujan in [44]. For sometimes we borrow from [11] and [42]. Now

employing (2.13) and (2.14) in (2.12) to obtain the following identities:

P (q) := P (e−π/
√
n) = (1− 5x1/n)z21/n + 12x1/n(1− x1/n)z1/n

dz1/n

dx1/n
. (2.15)

and

P (qn) := P (e−π
√
n) = (1− 5xn)z2n + 12xn(1− xn)zn

dzn
dxn

. (2.16)

The following theorem seems to be new and it produces the representations of the form

P (q) + nP (qn), and with the help of Eisenstein series identities of the form −P (q) + nP (qn)

[44, 47], we are able to derive some new Ramanujan-type series for 1/π as well as an alternate
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proof for the existing identities.

Theorem 2.2 we have

z1/n
dz1/n

dx1/n
= −nzn

dzn
dxn

+

√
n

πxn(1− xn)
(2.17)

and

P (e−π/
√
n) + nP (e−π

√
n) =

12
√
n

π
− 3nz2n. (2.18)

Proof of (2.17) From (2.14), we have

z21/n = nz2n. (2.19)

Differentiating (2.19) with respect to x1/n and using chain rule, we deduce that

2z1/n
dz1/n

dx1/n
= 2nzn

dzn
dxn

dxn
dx1/n

+ z2n
dn

dy

dy

dx1/n
. (2.20)

From (2.14), we obtain that

dxn
dx1/n

= −1. (2.21)

From (2.1) and (2.13), we easily seen that

y =
π√
n
. (2.22)

Differentiating (2.22) with respect to n, we find that

dn

dy
=
−2n
√
n

π
. (2.23)

Employing (2.14) in (2.10) to obtain

dy

dx1/n
= − 1

xn(1− xn)nz2n
. (2.24)

Substituting (2.21), (2.23) and (2.24) into (2.20), we arrive at (2.17). �

Proof of (2.18) By employing (2.14) and (2.17) in (2.15), we find that

P (e−π/
√
n) = n(−4 + 5xn)z2n − 12xn(1− xn)zn

dzn
dxn

+
12
√
n

π
. (2.25)

Then (2.18) follows from (2.16) and (2.25). �
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Now our task is to obtain the relationship between Eisenstein series and 3F2 hypergeometric

series. To achieve this let us recall Clausen’s formulas and Borwein’s proofs [17, pp. 180-181].

Throughout the sequel, set

Ak :=
( 1
2 )3k
k!3

, Bk :=
( 1
4 )k( 1

2 )k( 3
4 )k

k!3
and Ck :=

( 1
6 )k( 1

2 )k( 5
6 )k

k!3
. (2.26)

If

X := 4x(1− x), Y :=
4x

(1− x)2
, U :=

x2

4(1− x)
, V :=

4
√
x(1− x)

(1 + x)2
,

W :=
2
√
X

1−X
, L :=

27X2

(4−X)3
, and M :=

27X

(1− 4X)3
,

then

z2 = 3F2

[
1

2
,

1

2
,

1

2
; 1, 1;X

]
=

∞∑
k=0

AkX
k , 0 ≤ x ≤ 1

2
, (2.27)

=
1

1− x 3F2

[
1

2
,

1

2
,

1

2
; 1, 1;−Y

]
=

1

1− x

∞∑
k=0

(−1)kAkY
k , 0 ≤ x ≤ 3− 2

√
2, (2.28)

=
1√

1− x 3

F2

[
1

2
,

1

2
,

1

2
; 1, 1;−U

]
=

1√
1− x

∞∑
k=0

(−1)kAkU
k, 0 ≤ x ≤ 2

√
2− 2, (2.29)

=
1

1 + x
3F2

[
1

4
,

1

2
,

3

4
; 1, 1;V 2

]
=

1

1 + x

∞∑
k=0

BkV
2k, 0 ≤ x ≤ 3− 2

√
2, (2.30)

=
1

1− 2x
3F2

[
1

4
,

1

2
,

3

4
; 1, 1;−W 2

]
=

1

1− 2x

∞∑
k=0

(−1)kBkW
2k,

0 ≤ x ≤ 1

2

(
1− 21/4

√
2−
√

2

)
, (2.31)

=
2√

4−X 3F2

[
1

6
,

1

2
,

5

6
; 1, 1;L

]
=

2√
4−X

∞∑
k=0

CkL
k , 0 ≤ x ≤ 1

2
, (2.32)

=
1√

1− 4X
3F2

[
1

6
,

1

2
,

5

6
; 1, 1;−M

]
=

1√
1− 4X

∞∑
k=0

(−1)kCkM
k , 0 ≤ x ≤ 1

2
. (2.33)
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Differentiating (2.27) with respect to x, we find that

2z
dz

dx
=

∞∑
k=0

AkkX
k−1 · 4(1− 2x). (2.34)

Substituting (2.34) into (2.12) and using (2.27), we deduce that

P (q) =

∞∑
k=0

{6k(1− 2x) + (1− 5x)}AkXk. (2.35)

Setting q = e−π
√
n in (2.35), we obtain that

P (e−π
√
n) =

∞∑
k=0

{
6k(1 + xn) + xn

1− xn
+ (1− 5xn)

}
AkX

k
n, (2.36)

where Xn = 4xn(1− xn). Similarly, differentiating each of (2.28)-(2.33) with respect to x, and

proceeding as above, we deduce that

P (e−π
√
n) =

1 + xn
1− xn

∞∑
k=0

(6k + 1) (−1)kAkY
k
n , (2.37)

=
1√

1− xn

∞∑
k=0

{6k(2− xn) + 1− 2xn} (−1)kAkU
k
n , (2.38)

=
1

(1 + xn)2

∞∑
k=0

{
6k(x2n − 6xn + 1) + x2 − 10xn + 1

}
(−1)kBkV

2k
n , (2.39)

=
−1

(1− 2xn)2

∞∑
k=0

{
6k(4x2n − 4xn − 1) + 2x2n − 5xn − 1

}
(−1)kBkW

2k
n , (2.40)

=

∞∑
k=0

{
2(1− 5xn)√

4−Xn

+
3k(4x3n − 6x2n − 6xn + 4) + 6x3n − 9x2n + 3xn

(1− xn + x2n)
3
2

}
CkL

k
n, (2.41)

=

∞∑
k=0

{
1− 5xn√
1− 4Xn

+
6k(64x3n − 9x2n + 30xn + 1) + 96x3n − 144x2n + 48xn

(1− 16xn + 16x2n)
3
2

}

×(−1)kCkM
k
n , (2.42)

where Xn := 4xn(1 − xn), Yn :=
4xn

(1− xn)2
, Un :=

x2n
4(1− xn)

, V :=
4
√
xn(1− xn)

(1 + xn)2
, Wn :=
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2
√
Xn

1−Xn
, Ln :=

27X2
n

(4−Xn)3
and Mn :=

27Xn

(1− 4Xn)3
. Put n = 1 in (2.18), we obtain that

P (e−π) =
6

π
− 3

2
z21 ,

Employing (2.27), we find that

6

π
= P (e−π) +

3

2

∞∑
k=0

Ak, (2.43)

where x1 = 1
2 and X1 = 1. The series (2.43) seems to be new and this is similar to the series

recorded by Ramanujan in [8, p. 256].

§3. Example: n = 2

Theorem 3.1 We have

1

π
=

∞∑
k=0

{
(8− 5

√
2)k + 3− 2

√
2
}
Ak(2

√
2− 2)3k, (3.1)

2

π
=

∞∑
k=0

(−1)k(4k + 1)Ak, (3.2)

2
√√

2− 1

π
=

∞∑
k=0

{
(4
√

2− 2)k +
√

2− 1
}

(−1)kAk

(√
2− 1

2

)3k

, (3.3)

5
√

5

π
=

∞∑
k=0

(28k + 3)Ck

(
3

5

)3k

. (3.4)

Proof From Entry 13(viii) in Chapter 17 of Ramanujan’s second notebook [44] (Also [9,

p.127]), we see that

−P (q) + 2P (q2) = (1 + x)z2. (3.5)

Setting q = e−π/
√
2 in (3.5), then using (2.14) and the value of the singular modulus

x2 = (
√

2− 1)2 [11, p. 281], we find that

−P (e−π/
√
2) + 2P (e−π

√
2) = 2(−1 + 2

√
2)z22 . (3.6)
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Setting n = 2 in (2.18), we obtain that

P (e−π/
√
2) + 2P (e−π

√
2) =

12
√

2

π
− 6z22 . (3.7)

Adding (3.6) and (3.7), we immediately deduce that

P (e−π
√
2) =

3
√

2

π
− (2−

√
2)z22 . (3.8)

By employing (2.27) in (3.8), one can rewrite (3.8) as

P (e−π
√
2) =

3
√

2

π
− (2−

√
2)

∞∑
k=0

AkX
k
2 , (3.9)

where X2 = (2
√

2− 2). Now, setting n = 2 in (2.36), then with the aid of (2.27) and the value

of the singular modulus x2 = (
√

2− 1)2 [44, p. 214], [11, p. 281], we easily obtain that

P (e−π
√
2) =

∞∑
k=0

(−14 + 10
√

(2) + (−30 + 24
√

(2))k)AkX
k
2 , (3.10)

From (3.9) and (3.10), we arrive at (3.1). Similarly the proofs of (3.2), (3.3) and (3.4) are

follows, by employing (2.28), (2.29) and (2.32) in (3.8) and setting n = 2 in (2.37), (2.38) and

(2.41), respectively. �

§4. Example: n = 6

Theorem 4.1 We have

√
6 +
√

2 + 1

π
=

∞∑
k=0

{(
6
√

3 + 3
√

6− 6
)
k + 2

√
3 +
√

6− 3−
√

2
}

(−1)kAk

×
(

8(
√

2 + 1)2(
√

3−
√

2)3(2−
√

3)3
)k
, (4.1)

2

π
=

∞∑
k=0

(−1)k
{

(12
√

2− 12)k + 4
√

4− 5
}
Ak(
√

2− 1)4k, (4.2)

2
√

3

π
=

∞∑
k=0

(8k + 1)Bk
1

9k
. (4.3)
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Proof From [47], we have

−P (q) + 6P (q6) = f1f2f3f6

(
5χ6(−q3)

χ6(−q)
− qχ6(−q)
χ6(−q3)

)
. (4.4)

This is

−P (q) + 6P (q6) =
χ9(−q)χ(−q3)

χ8(−q2)

f2(q6)

f2(q2)

(
5χ6(−q3)

χ6(−q)
− qχ6(−q)
χ6(−q3)

)
ϕ4(q). (4.5)

If q = e−π/
√
6, then we obtain from [6, Theorem 4.1] that

f2(e−π
√
6)

f2(e−2π/
√
6)

=
(
√

2 + 1)1/3√
3

. (4.6)

Setting q = e−π/
√
6 in (4.5), using (2.9), (4.6), (2.14) and the values of the singular moduli

x3/2 = 2
(
−3− 2

√
2 + 2

√
3 +
√

6
) (√

2− 1
)2 (√

3 +
√

2
)2

[42] and x6 =
(
2−
√

3
)2 (√

3−
√

2
)2

[11, p. 282], we deduce that

−P (e−π/
√
6) + 6P (e−π

√
6) = 6(15 + 12

√
2− 8

√
3− 6

√
6)z26 . (4.7)

Setting n = 2 in (2.18), we see that

P (e−π/
√
6) + 6P (e−π

√
6) =

12
√

6

π
− 18z26 . (4.8)

It follows from (4.7) and (4.8) that

P (e−π
√
6) = (6 + 6

√
2− 4

√
3− 6

√
6)z26 . (4.9)

As in the previous Section, by employing (2.27), (2.28) and (2.30) in (4.9) and setting n = 6

in (2.36), (2.37) and (2.39), we easily deduce the identities (4.1), (4.2) and (4.3), respectively.�

§5. Example: n = 9

Theorem 5.1 We have

2

(3
√

3− 5)aπ
=

∞∑
k=0

(
12k + 3−

√
3
)
Ak

(
2−
√

3
)4k

, (5.1)

1 + (6
√

3− 10)a

π
=

∞∑
k=0

(−1)k
[{

9 + (30− 18
√

3)a
}
k + 3 + (6− 4

√
3)a
]
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×Ak
2k(
√

3− 1)4k(a− 1−
√

3)2k

{1 + (6
√

3− 10)a}k
, (5.2)

2
√

2 + (12
√

3− 20)a

π
=

∞∑
k=0

(−1)k
[{

18 + (36
√

3− 60)a
}
k + 3 + (10

√
3− 18)a

]

×Ak

(
(
√

3 + 1)(
√

2− 31/4)3

4

)2k

, (5.3)

16

π
√

3
=

∞∑
k=0

(−1)k(28k + 3)Bk
1

48k
, (5.4)

where a =
√

3 + 2
√

3.

Proof On page 475 and page 345 of [9], we have

−P (q) + 9P (q9) =
8f63
f21 f

2
9

{
f61 + 9qf31 f

3
9 + 27q2f69

}1/3
(5.5)

and

1 + 9q
f39
f31

=

{
1 + 27q

f123
f121

}1/3

. (5.6)

The above identity can be written as

f63 =
f61√
27q

{(
1 + 9q

f39
f31

)3

− 1

}1/2

. (5.7)

Setting q = e−π/3 in (5.5), then using (2.7), (5.7), (2.14) and the value of the singular

modulus x9 = 1
2

(√
3−1√
2

)4 (√
4 + 2

√
3−

√
3 + 2

√
3
)2

[11, p. 290], we find that

−P (e−π/3) + 9P (e−3π) = 18

√
3 + 2

√
3(
√

3− 1)Z2
9 . (5.8)

Setting n = 9 in (2.18), we see that

P (e−π/3) + 9P (e−3π) =
36

π
− 27z29 . (5.9)

From (5.8) and (5.9), we obtain that

P (e−3π) =
2

π

{√
3 + 2

√
3(
√

3− 1)− 3

2

}
z29 . (5.10)

Now, employing (2.27), (2.28), (2.29) and (2.31) in (5.10) and setting n = 9 in (2.36),
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(2.37), (2.38) and (2.40), we arrive at (5.1), (5.2), (5.3) and (5.4), respectively. �

The proofs of the Sections 6-11 follow along the similar lines as those in previous sections,

so we do not record the proofs.

§6. Example: n = 3

Theorem 6.1 We have

4

π
=

∞∑
k=0

(6k + 1)Ak
1

4k
, (6.1)

1

π
=

∞∑
k=0

(−1)k
{

(15
√

3− 24)k + 6
√

3− 10
}
Ak2k(

√
3− 1)6k, (6.2)

4
√

2

π
=

∞∑
k=0

(−1)k
{

(30− 6
√

3)k + 7− 3
√

3
}
Ak

(2−
√

3)3k

24k
, (6.3)

8
√

2

π
=

∞∑
k=0

{
(85
√

3− 135)k + 8
√

3− 12
}
Bk

(
8
√

2

51
√

3− 75

)2k+1

, (6.4)

5
√

5

2
√

3π
=

∞∑
k=0

(11k + 1)Ck

(
4

125

)k
. (6.5)

We note that −P (e−π/
√
3) + 3P (e−π

√
3) = 9

√
3

2 z23 and x3 = 2−
√
3

4 .

§7. Example: n = 4

Theorem 7.1 We have

1

π
=

∞∑
k=0

{
(48
√

2− 66)k + 20
√

2− 28
}
Ak(1584

√
2− 2240)k, (7.1)

2
√

2

π
=

∞∑
k=0

(−1)k(6k + 1)Ak
1

8k
, (7.2)



Some New Ramanujan Type Series for 1/π 33

2
√

3
√

2− 4

π
=

∞∑
k=0

(−1)k
{

(24
√

2− 30)k + 8
√

2− 11
}
Ak

(
(
√

2− 1)6

16
√

2

)k
, (7.3)

9

2π
=

∞∑
k=0

(7k + 1)Bk

(
32

81

)k
, (7.4)

√
33

π
=

∞∑
k=0

(126k + 10)Ck

(
2

11

)3k+1

. (7.5)

We note that −P (e−π/2) + 3P (e−2π) = 12z24 and x4 = (
√

2− 1)4.

§8. Example: n = 5

Theorem 8.1 We have

√
2

bπ
=

∞∑
k=0

{
(5 +

√
5)k + 1

}
Ak(
√

5− 2)2k, (8.1)

1

π
=

∞∑
k=0

[{
80 + 35

√
5− (30

√
2 + 14

√
10)b

}
k + 34 + 15

√
5− (13

√
2 + 6

√
10)b

]
× (−1)kAk8k

{
617 + 276

√
5− (485 + 217

√
5)

b√
2

}k
, (8.2)

8

π
=

∞∑
k=0

[
2
{

(15 + 5
√

5)b− 7
√

10− 5
√

2
}
k + (9 + 3

√
5)b− 7

√
2− 5

√
10
]

(−1)k

×Ak

(√
5− 1

4

)3k (
b2

2
− b√

2

)6k

, (8.3)

8

π
=

∞∑
k=0

(−1)k(20k + 3)Bk
1

4k
, (8.4)

2(−5 + 4
√

5)3/2

b
√

10π
=

∞∑
k=0

{
(142− 58

√
5)k + 21− 9

√
5
}
Ck

(
27(−9875 + 4420

√
5)

553

)k
, (8.5)

where b =
√√

5 + 1.
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We note that −P (e−π/
√
5) + 5P (e−π

√
5) =

b(15−
√

5)√
2

z25 and the singular modulus for

n = 5 is x5 =
1

2

(√
5− 1

2

)3(
b2

2
− b√

2

)2

.

§9. Example: n = 7

Theorem 9.1 We have

16

π
=

∞∑
k=0

(42k + 5)Ak
1

26k
, (9.1)

1

π
=

∞∑
k=0

(−1)k
{

(255
√

7− 672)k + 112
√

7− 296
}
Ak(32− 12

√
7)3k, (9.2)

8
√

2

π
=

∞∑
k=0

(−1)k
{

(255
√

7− 672)k + 112
√

7− 296
}
Ak

(
8− 3

√
7

4

)3k

, (9.3)

29241

π
=

∞∑
k=0

{
(76160− 455

√
7)k + 6728− 784

√
7
}
Bk

(
8
√

2(325 + 119
√

7)

29241

)2k

, (9.4)

9
√

7

π
=

∞∑
k=0

(65k + 8)(−1)kBk

(
16

63

)2k

, (9.5)

85
√

85

18π
√

3
=

∞∑
k=0

(133k + 8)Ck

(
4

85

)3k

. (9.6)

We note that −P (e−π/
√
7) + 7P (e−π

√
7) =

75
√

7

8
z27 and x7 =

8− 3
√

7

16
.

§10. Example: n = 10

Theorem 10.1 We have

310

(680− 480
√

2 + 304
√

5− 215
√

10)π
=

∞∑
k=0

(
930 + 220k − 50

√
2 + 16

√
5− 29

√
10
)
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×Ak
{

(3 +
√

5)(2 +
√

5)(3
√

2−
√

5− 2)
}3k

, (10.1)

2

π
=

∞∑
k=0

(−1)k
{

(60− 24
√

5)k + 23− 10
√

5
}
Ak(
√

5− 2)4k, (10.2)

√
10
√

102
√

10− 144
√

5 + 228
√

2− 322

π

=

∞∑
k=0

{(
1020

√
10− 1440

√
5 + 2280

√
2− 3210

)
k + 407

√
10− 576

√
5 + 910

√
2− 1285

}

× (−1)kAk

(
207
√

10− 288
√

5 + 450
√

2− 647

8

)k
, (10.3)

9

2
√

2π
=

∞∑
k=0

(10k + 1)Bk
1

92k
. (10.4)

We note that x10 = 323− 228
√

2 + 144
√

5− 102
√

10 and −P (e−π/
√
10) + 10P (e−π

√
10) =(

2550− 1800
√

2 + 1152
√

5− 804
√

10
)
z210.

§11. Example: n = 8

Theorem 11.1 We have

7

2
√

2π
=

∞∑
k=0

[{
(560 + 392

√
2)c− 1575− 1120

√
2
}
k + (248 + 174

√
2)c− 700− 497

√
2
]

×Ak16k
{

(4490 + 3175
√

2)c− 12756− 9020
√

2
}k

, (11.1)

14

cπ
=

∞∑
k=0

(−1)k
(

14k + 3−
√

2
)
Ak

(
5
√

2− 7

8

)k
, (11.2)

7
√

2
√

(10 + 7
√

2)c− 28− 20
√

2

π

=

∞∑
k=0

[{
(560 + 392

√
2)c− 1554− 1120

√
2
}
k + (216 + 152

√
2)c− 609− 434

√
2
]

× (−1)kAk

(
(320 + 225

√
2)c− 908− 640

√
2

32

)k
, (11.3)
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343

π(32− 13
√

2)
=

∞∑
k=0

(70k + 12− 3
√

2)Bk
25k(325

√
2− 457)k

74k
, (11.4)

where c =
√

1 + 5
√

2.

We note that x8 = 113 + 80
√

2− 4c(7
√

2− 10) and

−P (e−π/
√
8) + 10P (e−π

√
8) =

{
600− 416

√
2−

(
1408 + 1024

√
2

7

)
c

}
z28 .
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