International J.Math. Combin. Vol.1(2024), 100-109

Some New Results on 4-Total Mean Cordial Graphs

R. Ponraj¹, S.Subbulakshmi² and M.Sivakumar³

1. Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627412, Tamilnadu, India

2. Department of Mathematics, Manonmaniam sundarnar university, Abishekapatti, Tirunelveli-627012, Tamilnadu, India

3. Department of Mathematics, Government Arts and Science College, Tittagudi-606106, Tamilnadu, India

E-mail: ponrajmaths @gmail.com, ssubbulakshmis @gmail.com, sivamaths 1975 @gmail.com, sivamaths 1

Abstract: Let G be a graph and let $f : V(G) \to \{0, 1, 2, \dots, k-1\}$ be a function where $k \in \mathbb{N}$ and k > 1. For each edge uv, assign a label $f(uv) = \left\lceil \frac{f(u)+f(v)}{2} \right\rceil$ and f is called a k-total mean cordial labeling of G if $|t_{mf}(i) - t_{mf}(j)| \leq 1$ for all $i, j \in \{0, 1, \dots, k-1\}$, where $t_{mf}(x)$ denotes the total number of vertices and edges labelled with $x, x \in \{0, 1, 2, \dots, k-1\}$. A graph with admit a k-total mean cordial labeling is called k-total mean cordial graph. In this paper we investigate the 4-total mean cordial labeling behavior of some graphs which are obtained from stars.

Key Words: *k*-Total mean cordial labeling, Smarandachely *k*-total mean cordial labeling, *k*-total mean cordial labeling graph, Smarandachely *k*-total mean cordial labeling graph, star, cycle, comb, ladder.

AMS(2010): 05C78.

§1. Introduction

All graphs in this paper are finite, simple and undirected graphs only. Graceful labeling was introduced by Rosa in [15]. Subsequently Graham and Sloan have introduced the notion of harmonious labeling [2]. Motivated by these works several author introduce varies types of graph labeling. The concept of k-total mean cordial labeling has been introduced in [4]. The 4-total mean cordial labeling behavior of several graphs like cycle, complete graph, star, bistar, comb and crown have been investigated in [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. In this paper we investigate the 4- total mean cordial labeling behavior of some graphs which are obtained from stars. Let x be any real number. Then [x] stands for the smallest integer greater than or equal to x. Terms are not defined here follow from Harary [3] and Gallian [1].

§2. k-Total Mean Cordial Graph

Definition 2.1 Let G be a graph. Let $f: V(G) \to \{0, 1, 2, \dots, k-1\}$ be a function where

¹Received August 9, 2023, Accepted March 12,2024.

 $k \in \mathbb{N}$ and k > 1. For each edge uv, assign the label $f(uv) = \left\lceil \frac{f(u)+f(v)}{2} \right\rceil$. f is called a k-total mean cordial labeling of G if $|t_{mf}(i) - t_{mf}(j)| \leq 1$ for all $i, j \in \{0, 1, 2, \dots, k-1\}$, where $t_{mf}(x)$ denotes the total number of vertices and edges labelled with $x, x \in \{0, 1, 2, \dots, k-1\}$. Otherwise, if there exist integers $i, j \in \{0, 1, 2, \dots, k-1\}$ such that $|t_{mf}(i) - t_{mf}(j)| \geq 2$, such a labeling f is called a Smarandachely k-total mean cordial labeling.

A graph with an admit a k-total mean cordial labeling or a Smarandachely k-total mean cordial labeling is called a k-total mean cordial graph or a Smarandachely k-total mean cordial graph.

§3. Preliminaries

Definition 3.1 A complete bipartite graph $K_{1,n}$ is called a star. Let $V(K_{1,n}) = \{w, w_i : 1 \le i \le n\}$ and $E(K_{1,n}) = \{ww_i : 1 \le i \le n\}$, w is called the central vertex of the star $K_{1,n}$.

Definition 3.2 A graph obtained from the cycle C_n and star $K_{1,n}$ by identifying the vertex of C_n with these central vertex of $K_{1,n}$ is denoted by $C_n \oplus K_{1,n}$.

Definition 3.3 Let G_1 , G_2 respectively be (p_1, q_1) , (p_2, q_2) graphs. A corona of G_1 with G_2 is the graph $G_1 \odot G_2$ obtained by taking one copy of G_1 , p_1 copies of G_2 and joining the *i*th vertex of G_1 by an edge to every vertex in the *i*th copy of G_2 where $1 \le i \le p_1$.

Definition 3.4 A graph $P_n \odot K_1$ is called a comb. Let P_n be the path $u_1u_2\cdots u_n$. Let $V(P_n \odot K_1) = V(P_n) \cup \{v_i : 1 \le i \le n\}$ and $E(P_n \odot K_1) = E(P_n) \cup \{u_iv_i : 1 \le i \le n\}$.

Definition 3.5 A graph $L_n = P_n + K_2$ is called a ladder. Let the vertex set be $V(L_n) = \{u_i, v_i : 1 \le i \le n\}$ and the edge set $E(L_n) = \{u_i u_{i+1}, v_i v_{i+1} : 1 \le i \le n-1\} \cup \{u_i v_i : 1 \le i \le n\}.$

§4. Main Results

Theorem 4.1 A graph $C_n \oplus K_{1,n}$ is 4-total mean cordial labeling for all $n \ge 3$.

Proof Let C_n be the cycle $u_1 u_2 \cdots u_n u_1$, $V(C_n \oplus K_{1,n}) = V(C_n) \cup \{w, w_i : 1 \le i \le n, u_1 = w\}$ and $E(C_n \oplus K_{1,n}) = E(C_n) \cup \{u_1 w_i : 1 \le i \le n\}$. Obviously $|V(C_n \oplus K_{1,n})| + |E(C_n \oplus K_{1,n})| = 4n$.

Case 1. $n \equiv 1 \pmod{2}$.

Let n = 2r + 1, $r \in \mathbb{N}$. Consider the cycle $C_n : u_1 \ u_2 \cdots u_n \ u_1$. Assign the label 0 to the r + 1 vertices $u_1, u_2, \cdots, u_{r+1}$. Now we assign the label 1 to the r vertices $u_{r+2}, u_{r+3}, \cdots, u_{2r+1}$. Next move to the pendent vertices. We now assign the label 3 to the 2r + 1 vertices w_1 , w_2, \cdots, w_{2r+1} .

Case 2. $n \equiv 0 \pmod{2}$.

Let $n = 2r, r \in \mathbb{N}$. Assign the label 2 to the vertex u_1 . Next we assign the label 0 to the r vertices u_2, u_3, \dots, u_{r+1} . We now assign the label 1 to the r-1 vertices $u_{r+2}, u_{r+3}, \dots, u_{2r}$. Now we assign the label 0 to the vertex w_1 . Next we assign the label 2 to the r-1 vertices w_2 , w_3, \dots, w_r . Finally we assign the label 3 to the r vertices $w_{r+1}, w_{r+2}, \dots, w_{2r}$.

Order of n	$t_{mf}(0)$	$t_{mf}(1)$	$t_{mf}(2)$	$t_{mf}(3)$	
n=2r+1	2r + 1	2r + 1	2r + 1	2r + 1	
n = 2r	2r	2r	2r	2r	
Table 1					

This shows that f is a 4-total mean cordial labeling follows from Table 1.

This completes the proof.

Theorem 4.2 A graph obtained from the comb $P_n \odot K_1$ and star $K_{1,n}$ by identifying the central vertex w of the star with the vertex u_1 of the comb is 4-total mean cordial.

Proof Let G be the resulting graph. Take the vertex set and edge set of the comb is as in Definition 3.4. Let $V(G) = V(P_n \odot K_1) \cup \{w_i : 1 \le i \le n\}$. $E(G) = E(P_n \odot K_1) \cup \{u_1w_i : 1 \le i \le n\}$. Clearly |V(G)| + |E(G)| = 6n - 1.

Case 1. $n \equiv 0 \pmod{2}$.

Let $n = 2r, r \in \mathbb{N}$. Assign the label 2 to the r vertices u_1, u_2, \dots, u_r . Now we assign the label 3 to the r vertices $u_{r+1}, u_{r+2}, \dots, u_{2r}$. Next we assign the label 0 to the r vertices v_1, v_2, \dots, v_r . We now assign the label 2 to the r vertices $v_{r+1}, v_{r+2}, \dots, v_{2r}$. Now we assign the label 0 to the 2r vertices w_1, w_2, \dots, w_{2r} .

Case 2. $n \equiv 1 \pmod{2}$.

Let n = 2r + 1, $r \in \mathbb{N}$. Assign the label 2 to the r vertices u_1, u_2, \dots, u_r . Next we assign the label 3 to the r + 1 vertices $u_{r+1}, u_{r+2}, \dots, u_{2r+1}$. Now we assign the label 0 to the r + 1vertices v_1, v_2, \dots, v_{r+1} . We now assign the label 2 to the r vertices $v_{r+2}, v_{r+3}, \dots, v_{2r+1}$. Next we assign the label 0 to the 2r vertices w_1, w_2, \dots, w_{2r} . Finally we assign the label 1 to the vertex w_{2r+1} .

n	$t_{mf}(0)$	$t_{mf}(1)$	$t_{mf}(2)$	$t_{mf}(3)$
n = 2r	3r	3r	3r - 1	3r
n = 2r + 1	3r + 1	3r + 1	3r + 1	3r + 2

Thus, this vertex labeling f is a 4-total mean cordial labeling follows from Table 2.

Tal	ole 1	2
-----	-------	---

This completes the proof.

Theorem 4.3 A graph G obtained from the comb $P_n \odot K_1$ and two stars by identifying the vertex u_1 of the comb with the central vertex of one star and u_n with the central vertex of another star is 4-total men cordial.

Proof Take the vertex set and edge set of the comb is as in Definition 3.4. Let $V(G) = V(P_n \odot K_1) \cup \{x_i, y_i : 1 \le i \le n\}$ and $E(G) = E(P_n \odot K_1) \cup \{u_1x_i, u_ny_i : 1 \le i \le n\}$. Note that |V(G)| + |E(G)| = 8n - 1.

Assign the label 0 to the *n* vertices u_1, u_2, \dots, u_n . Next we assign the label 1 to the *n* vertices v_1, v_2, \dots, v_n . Now we assign the label 3 to the *n* vertices x_1, x_2, \dots, x_n . Finally we

102

assign the label 3 to the *n* vertices y_1, y_2, \dots, y_n .

Clearly $t_{mf}(0) = 2n - 1$, $t_{mf}(1) = t_{mf}(2) = t_{mf}(3) = 2n$.

Theorem 4.4 A graph obtained from the comb $P_n \odot K_1$ and three stars by identifying the vertex u_1 of the comb with the central vertex of one star, u_n with the central vertex of second star and v_1 with the central vertex of third star is 4-total mean cordial.

Proof Let G be the resulting graph. Take the vertex set and edge set of the comb is as in Definition 3.4. Let $V(G) = V(P_n \odot K_1) \cup \{x_i, y_i, z_i : 1 \le i \le n\}$ and $E(G) = E(P_n \odot K_1) \cup \{u_1x_i, u_ny_i, v_1z_i : 1 \le i \le n\}$. Clearly |V(G)| + |E(G)| = 10n - 1.

Case 1. $n \equiv 0 \pmod{2}$.

Let $n = 2r, r \in \mathbb{N}$. Assign the label 0 to the 2r vertices u_1, u_2, \dots, u_{2r} . Next we assign the label 2 to the 2r vertices v_1, v_2, \dots, v_{2r} . Now we assign the label 3 to the 2r vertices x_1 , x_2, \dots, x_{2r} . Then we assign the label 1 to the r vertices y_1, y_2, \dots, y_r . We now assign the label 3 to the r vertices $y_{r+1}, y_{r+2}, \dots, y_{2r}$. Now we assign the label 0 to the r vertices $z_1, z_2,$ \dots, z_r . Finally we assign the label 3 to the r vertices $z_{r+1}, z_{r+2}, \dots, z_{2r}$.

Case 2. $n \equiv 1 \pmod{2}$.

Let n = 2r + 1, $r \in \mathbb{N}$. Assign the label 0 to the 2r + 1 vertices $u_1, u_2, \dots, u_{2r+1}$. Now we assign the label 2 to the 2r + 1 vertices $v_1, v_2, \dots, v_{2r+1}$. Next we assign the label 3 to the 2r + 1 vertices $x_1, x_2, \dots, x_{2r+1}$. We now assign the label 1 to the r vertices y_1, y_2, \dots, y_r . Then we assign the label 3 to the r + 1 vertices $y_{r+1}, y_{r+2}, \dots, y_{2r+1}$. Now we assign the label 3 to the r vertices z_1, z_2, \dots, z_r . Finally we assign the label 0 to the r + 1 vertices $z_{r+1}, z_{r+2}, \dots, z_{2r+1}$.

n	$t_{mf}(0)$	$t_{mf}(1)$	$t_{mf}(2)$	$t_{mf}(3)$
n = 2r	5r - 1	5r	5r	5r
n = 2r + 1	5r + 2	5r + 2	5r + 3	5r + 2

Thus, the vertex labeling f is a 4-total mean cordial labeling follows from Table 3.

Table 3

This completes the proof.

Theorem 4.5 A graph G obtained from the comb $P_n \odot K_1$ and four stars by identifying the vertex u_1 of the comb with the central vertex of one star, u_n with the central vertex of second star, v_1 with the central vertex of third star and v_n with the central vertex of fourth star is 4-total mean cordial.

Proof Take the vertex set and edge set of the comb is as in Definition 3.4. Let $V(G) = V(P_n \odot K_1) \cup \{w_i, x_i, y_i, z_i : 1 \le i \le n\}$ and $E(G) = E(P_n \odot K_1) \cup \{u_1w_i, u_nx_i, v_1y_i, v_nz_i : 1 \le i \le n\}$. Note that |V(G)| + |E(G)| = 12n - 1.

Case 1. $n \equiv 0 \pmod{2}$.

Let $n = 2r, r \in \mathbb{N}$. Assign the label 0 to the 2r vertices u_1, u_2, \dots, u_{2r} . Next we assign

the label 0 to the r vertices v_1, v_2, \dots, v_r . We now assign the label 1 to the r vertices v_{r+1} , v_{r+2}, \dots, v_{2r} . Next we assign the label 3 to the 2r vertices w_1, w_2, \dots, w_{2r} . Now we assign the label 3 to the 2r vertices x_1, x_2, \dots, x_{2r} . Then we assign the label 1 to the 2r vertices y_1, y_2, \dots, y_{2r} . Finally we assign the label 3 to the 2r vertices z_1, z_2, \dots, z_{2r} .

Case 2. $n \equiv 1 \pmod{2}$.

Let n = 2r + 1, $r \in \mathbb{N}$. We now assign the label 0 to the 2r vertices u_1, u_2, \dots, u_{2r} . Next we assign the label 0 to the r + 1 vertices v_1, v_2, \dots, v_{r+1} . We now assign the label 1 to the r vertices $v_{r+2}, v_{r+3}, \dots, v_{2r+1}$. Next we assign the label 3 to the 2r + 1 vertices $w_1, w_2, \dots, w_{2r+1}$. Now we assign the label 3 to the 2r + 1 vertices $x_1, x_2, \dots, x_{2r+1}$. Then we assign the label 1 to the 2r + 1 vertices $y_1, y_2, \dots, y_{2r+1}$. Finally we assign the label 3 to the 2r + 1vertices $z_1, z_2, \dots, z_{2r+1}$.

n	$t_{mf}(0)$	$t_{mf}(1)$	$t_{mf}(2)$	$t_{mf}(3)$
n = 2r	6r - 1	6r	6r	6r
n = 2r + 1	6r + 3	6r + 2	6r + 3	6r + 3

Thus, this vertex labeling f is a 4-total mean cordial labeling follows from Table 4.

Table 4	Tab	ole	4
---------	-----	-----	----------

This completes the proof.

Theorem 4.6 A graph obtained from the ladder L_n and star $K_{1,n}$ by identifying the vertex u_1 of the ladder with the central vertex of star is 4-total mean cordial.

Proof Let G be the resulting graph. Take the vertex set and edge set of the ladder is as in Definition 3.5. Let $V(G) = V(L_n) \cup \{w_i : 1 \le i \le n\}$ and $E(G) = E(L_n) \cup \{u_1w_i : 1 \le i \le n\}$. Obviously |V(G)| + |E(G)| = 7n - 2.

Case 1. $n \equiv 0 \pmod{4}$.

Let $n = 4r, r \in \mathbb{N}$. Assign the label 0 to the r vertices u_1, u_2, \dots, u_r . Next we assign the label 1 to the r vertices $u_{r+1}, u_{r+2}, \dots, u_{2r}$. Now we assign the label 2 to the r vertices $u_{2r+1}, u_{2r+2}, \dots, u_{3r}$. We now assign the label 3 to the r vertices $u_{3r+1}, u_{3r+2}, \dots, u_{4r}$. Now we assign the label 0 to the r vertices v_1, v_2, \dots, v_r . We now assign the label 1 to the r vertices $v_{r+1}, v_{r+2}, \dots, v_{2r}$. Next we assign the label 2 to the r vertices $v_{2r+1}, v_{2r+2}, \dots, v_{3r}$. We now assign the label 3 to the r vertices $v_{3r+1}, v_{3r+2}, \dots, v_{4r}$. Now we assign the label 3 to the r vertices $v_{3r+1}, v_{3r+2}, \dots, v_{4r}$. Now we assign the label 0 to the r+1 vertices w_1, w_2, \dots, w_{r+1} . Then we assign the label 1 to the r vertices $w_{r+2}, w_{r+3}, \dots, w_{2r+1}$. We now assign the label 3 to the 2r - 1 vertices $w_{2r+2}, w_{2r+3}, \dots, w_{4r}$.

Case 2.
$$n \equiv 1 \pmod{4}$$
.

Let n = 4r + 1, $r \in \mathbb{N}$. As in Case 1 assign the label to the vertices u_i , v_i , w_i $(1 \le i \le 4r)$. Now we assign the labels 3, 0, 1 to the vertices u_{4r+1} , v_{4r+1} , w_{4r+1} .

Case 3. $n \equiv 2 \pmod{4}$.

Let n = 4r + 2, $r \in \mathbb{N}$. Label the vertices u_i, v_i, w_i $(1 \le i \le 4r + 1)$ as in Case 2. Next we assign the labels 3, 0, 2 to the vertices $u_{4r+2}, v_{4r+2}, w_{4r+2}$.

Case 4. $n \equiv 3 \pmod{4}$.

Let n = 4r+3, $r \in \mathbb{N}$. In this case assign the label for the vertices u_i, v_i, w_i $(1 \le i \le 4r+2)$ as in Case 3. We now assign the labels 3, 0, 2 to the vertices $u_{4r+3}, v_{4r+3}, w_{4r+3}$.

$t_{mf}\left(0\right)$	$t_{mf}\left(1\right)$	$t_{mf}\left(2\right)$	$t_{mf}\left(3\right)$
7r	7r	7r - 1	7r - 1
7r + 1	7r + 2	7r + 1	7r + 1
7r + 3	7r + 3	7r + 3	7r + 3
7r + 5	7r + 4	7r + 5	7r + 5
	$ t_{mf}(0) 7r 7r + 1 7r + 3 7r + 5 $	$ \begin{array}{c ccc} t_{mf}(0) & t_{mf}(1) \\ \hline 7r & 7r \\ \hline 7r+1 & 7r+2 \\ \hline 7r+3 & 7r+3 \\ \hline 7r+5 & 7r+4 \\ \end{array} $	$t_{mf}(0)$ $t_{mf}(1)$ $t_{mf}(2)$ $7r$ $7r$ $7r-1$ $7r+1$ $7r+2$ $7r+1$ $7r+3$ $7r+3$ $7r+3$ $7r+5$ $7r+4$ $7r+5$

This vertex labeling f is a 4-total mean cordial labeling follows from Table 5.

_			
T_{n}	Ы	0	E.
тa	U.	le.	J

This completes the proof.

Theorem 4.7 A graph G obtained from the ladder L_n and two stars $K_{1,n}$ by identifying the vertex u_1 with the central vertex of one star and u_n with the central vertex of another star is 4-total mean cordial.

Proof Take the vertex set and edge set of the ladder is as in Definition 3.5. Let $V(G) = V(L_n) \cup \{x_i, y_i : 1 \le i \le n\}$ and $E(G) = E(L_n) \cup \{u_1x_i, u_ny_i : 1 \le i \le n\}$. Note that |V(G)| + |E(G)| = 9n - 2.

Case 1. $n \equiv 0 \pmod{4}$.

Let $n = 4r, r \in \mathbb{N}$. Assign the label 0 to the r vertices u_1, u_2, \dots, u_r . Now we assign the label 1 to the r vertices $u_{r+1}, u_{r+2}, \dots, u_{2r}$. We now assign the label 2 to the r vertices u_{2r+1} , u_{2r+2}, \dots, u_{3r} . Next assign the label 3 to the r vertices $u_{3r+1}, u_{3r+2}, \dots, u_{4r}$. We now assign the label 0 to the r vertices v_1, v_2, \dots, v_r . Next we assign the label 1 to the r vertices $v_{r+1}, v_{r+2}, \dots, v_{2r}$. Now we assign the label 2 to the r vertices $v_{2r+1}, v_{2r+2}, \dots, v_{3r}$. We now assign the label 3 to the r vertices $v_{2r+1}, v_{2r+2}, \dots, v_{3r}$. We now assign the label 3 to the r vertices $v_{3r+1}, v_{3r+2}, \dots, v_{4r}$. Next we assign the label 0 to the 2r + 1 vertices $x_1, x_2, \dots, x_{2r+1}$. Now we assign the label 2 to the 2r - 1 vertices $x_{2r+2}, x_{2r+3}, \dots, x_{4r}$. Then we assign the label 1 to the 2r vertices y_1, y_2, \dots, y_{2r} . Finally we assign the label 3 to the 2r vertices $y_{2r+1}, y_{2r+2}, \dots, y_{4r}$.

Case 2. $n \equiv 1 \pmod{4}$.

Let n = 4r + 1, $r \in \mathbb{N}$. Label the vertices u_i , v_i , x_i , y_i $(1 \le i \le 4r)$ as in Case 1. Next we assign the labels 3, 1, 0, 1 to the vertices u_{4r+1} , v_{4r+1} , x_{4r+1} , y_{4r+1} .

Case 3. $n \equiv 2 \pmod{4}$.

Let n = 4r + 2, $r \in \mathbb{N}$. In this case assign the label for the vertices u_i , v_i , x_i , y_i $(1 \le i \le 4r + 1)$ as in Case 2. We now assign the labels 3, 1, 0, 1 to the vertices u_{4r+2} , v_{4r+2} , x_{4r+2} y_{4r+2} .

Case 4. $n \equiv 3 \pmod{4}$.

Let n = 4r + 3, $r \in \mathbb{N}$. As in Case 3, we assign the label to the vertices u_i, v_i, x_i, y_i

 $(1 \le i \le 4r+2)$. Finally we assign the labels 3, 1, 0, 1 to the vertices u_{4r+3} , v_{4r+3} , x_{4r+3} , y_{4r+3} .

Size of n	$t_{mf}\left(0\right)$	$t_{mf}\left(1\right)$	$t_{mf}\left(2\right)$	$t_{mf}\left(3\right)$	
n = 4r	9r	9r - 1	9r - 1	9r	
n = 4r + 1	9r + 2	9r + 1	9r + 2	9r + 2	
n = 4r + 2	9r + 4	9r + 4	9r + 4	9r + 4	
n = 4r + 3	9r + 6	9r + 7	9r + 6	9r + 6	
Table 6					

Thus, the vertex labeling f is a 4-total mean cordial labeling follows from Table 6.

This completes the proof.

Theorem 4.8 A graph obtained from the ladder L_n and three stars $K_{1,n}$ by identifying the vertex u_1 with the central vertex of one star, u_n with the central vertex of second star and v_1 with the central vertex of third star is 4-total mean cordial.

Proof We denote G as the resulting graph. Take the vertex set and edge set of the ladder is as in Definition 3.5. Let $V(G) = V(L_n) \cup \{x_i, y_i, z_i : 1 \le i \le n\}$ and $E(G) = E(L_n) \cup \{u_1x_i, u_ny_i, v_1z_i : 1 \le i \le n\}$. Clearly |V(G)| + |E(G)| = 11n - 2.

Case 1. $n \equiv 0 \pmod{4}$.

Let $n = 4r, r \in \mathbb{N}$. Assign the label 0 to the r vertices u_1, u_2, \dots, u_r . Next we assign the label 1 to the r vertices $u_{r+1}, u_{r+2}, \dots, u_{2r}$. Now we assign the label 2 to the r vertices $u_{2r+1}, u_{2r+2}, \dots, u_{3r}$. We now assign the label 3 to the r vertices $u_{3r+1}, u_{3r+2}, \dots, u_{4r}$. Now we assign the label 0 to the r vertices v_1, v_2, \dots, v_r . We now assign the label 1 to the r vertices $v_{r+1}, v_{r+2}, \dots, v_{2r}$. Next we assign the label 2 to the r vertices $v_{2r+1}, v_{2r+2}, \dots, v_{3r}$. We now assign the label 3 to the r vertices $v_{3r+1}, v_{3r+2}, \dots, v_{4r}$. Next we assign the label 0 to the r vertices $v_{3r+1}, v_{3r+2}, \dots, v_{4r}$. Next we assign the label 0 to the sr + 1 vertices $x_1, x_2, \dots, x_{3r+1}$. Now we assign the label 2 to the r - 1 vertices $x_{3r+2}, x_{3r+3}, \dots, x_{4r}$. Then we assign the label 1 to the r vertices y_1, y_2, \dots, y_r . We now assign the label 3 to the 3r vertices $y_{r+1}, y_{r+2}, \dots, y_{4r}$. Finally we assign the label 2 to the 4r vertices z_1, z_2, \dots, z_{4r} .

Case 2. $n \equiv 1 \pmod{4}$.

Let n = 4r + 1, $r \in \mathbb{N}$. In this case we assign the label to the vertices u_i , v_i , x_i , y_i , z_i $(1 \le i \le 4r)$ as in Case 1. We now assign the labels 3, 0, 0, 1, 1 to the vertices u_{4r+1} , v_{4r+1} , x_{4r+1} , y_{4r+1} , z_{4r+1} .

Case 3. $n \equiv 2 \pmod{4}$.

Let n = 4r + 2, $r \in \mathbb{N}$. As in Case 2, we assign the label to the vertices u_i , v_i , x_i , $y_i z_i$ $(1 \le i \le 4r + 1)$. Finally we assign the labels 3, 1, 0, 2, 2 to the vertices u_{4r+2} , v_{4r+2} , x_{4r+2} , y_{4r+2} , z_{4r+2} .

Case 4. $n \equiv 3 \pmod{4}$.

106

Let n = 4r + 3, $r \in \mathbb{N}$. Label the vertices u_i , v_i , x_i , y_i , z_i $(1 \le i \le 4r + 2)$ as in Case 3. Next we assign the labels 3, 0, 0, 2, 1 to the vertices u_{4r+3} , v_{4r+3} , x_{4r+3} , y_{4r+3} , z_{4r+3} .

n	$t_{mf}\left(0\right)$	$t_{mf}\left(1\right)$	$t_{mf}\left(2\right)$	$t_{mf}\left(3\right)$	
n = 4r	11r	11r - 1	11r - 1	11r	
n = 4r + 1	11r + 3	11r + 2	11r + 2	11r + 2	
n = 4r + 2	11r + 5	11r + 5	11r + 5	11r + 5	
n = 4r + 3	11r + 8	11r + 8	11r + 7	11r + 8	
Table 7					

This vertex labeling f is a 4-total mean cordial labeling follows from Table 7.

This completes the proof.

Theorem 4.9 A graph G obtained from the ladder L_n and four stars by identifying the vertex u_1 with the central vertex of one star, u_n with the central vertex of second star, v_1 with the central vertex of third star and v_n with the central vertex of fourth star is 4-total mean cordial.

Proof Take the vertex set and edge set of the ladder is as in Definition 3.5. Let $V(G) = V(L_n) \cup \{w_i, x_i, y_i, z_i : 1 \le i \le n\}$ and $E(G) = E(L_n) \cup \{u_1w_i, u_nx_i, v_1y_i, v_nz_i : 1 \le i \le n\}$. Obviously |V(G)| + |E(G)| = 13n - 2.

Case 1. $n \equiv 0 \pmod{4}$.

Let $n = 4r, r \in \mathbb{N}$. Assign the label 0 to the 4r vertices u_1, u_2, \dots, u_{4r} . Next we assign the label 2 to the 4r vertices v_1, v_2, \dots, v_{4r} . We now assign the label 0 to the 2r + 1 vertices $w_1, w_2, \dots, w_{2r+1}$. Now we assign the label 1 to the 2r - 1 vertices $w_{2r+2}, w_{2r+3}, \dots, w_{4r}$. Next we assign the label 1 to the r + 1 vertices x_1, x_2, \dots, x_{r+1} . Then we assign the label 3 to the 3r - 1 vertices $x_{r+2}, x_{r+3}, \dots, x_{4r}$. We now assign the label 0 to the r - 1 vertices y_1, y_2, \dots, y_{r-1} . Next we assign the label 1 to the 2r + 1 vertices $y_r, y_{r+1}, \dots, y_{3r}$. Now we assign the label 3 to the r vertices $y_{3r+1}, y_{3r+2}, \dots, y_{4r}$. Finally we assign the label 3 to the 4r vertices z_1, z_2, \dots, z_{4r} .

Case 2. $n \equiv 1 \pmod{4}$.

Let n = 4r + 1, $r \in \mathbb{N}$. Label the vertices u_i , v_i , w_i , x_i , y_i , z_i $(1 \le i \le 4r)$ as in Case 1. Next we assign the labels 0, 2, 2, 2, 3, 3 to the vertices u_{4r+1} , v_{4r+1} , w_{4r+1} , x_{4r+1} , y_{4r+1} , z_{4r+1} .

Case 3. $n \equiv 2 \pmod{4}$.

Let n = 4r + 2, $r \in \mathbb{N}$. As in Case 1, we assign the label to the vertices u_i , v_i , w_i , x_i , y_i z_i $(1 \le i \le 4r)$. Finally we assign the labels 0, 0, 2, 2, 1, 0, 2, 3, 3, 1, 3, 3 to the vertices u_{4r+1} , u_{4r+2} , v_{4r+1} , v_{4r+2} , w_{4r+1} , w_{4r+2} , x_{4r+1} , x_{4r+2} , y_{4r+1} , z_{4r+2} , z_{4r+1} , z_{4r+2} .

Case 4. $n \equiv 3 \pmod{4}$.

Let n = 4r + 3, $r \in \mathbb{N}$. In this case we assign the label to the vertices u_i , v_i , w_i , x_i , y_i , z_i $(1 \le i \le 4r + 2)$ as in Case 3. Finally we assign the labels 0, 2, 1, 3, 0, 3 to the vertices u_{4r+3} , v_{4r+3} , w_{4r+3} , x_{4r+3} , y_{4r+3} , z_{4r+3} .

Order of n	$t_{mf}\left(0\right)$	$t_{mf}\left(1\right)$	$t_{mf}\left(2\right)$	$t_{mf}\left(3\right)$
n = 4r	13r	13r	13r - 1	13r - 1
n = 4r + 1	13r + 2	13r + 3	13r + 3	13r + 3
n = 4r + 2	13r + 6	13r + 6	13r + 6	13r + 6
n = 4r + 3	13r + 9	13r + 10	13r + 9	13r + 9

This vertex labeling f is a 4-total mean cordial labeling follows from Table 8.

Table 8

This completes the proof.

Example 4.1 A 4-total mean cordial labeling of the graph G obtained from Theorem 4.9 with n = 5 is given in Figure 1.

Figure 1

References

- J.A.Gallian, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 19 (2016) #Ds6.
- [2] J.R.L.Graham and N. J. A.Sloan, On additive bases and harmonious graphs, SIAM, J. Alg. Disc. Math., 1 (1980), 382-404.
- [3] Harary, Graph Theory, Addision wesley, New Delhi (1969).
- [4] R.Ponraj, S.Subbulakshmi, S.Somasundaram, k-Total mean cordial graphs, J.Math.Comput.Sci., 10(2020), No.5, 1697-1711.
- [5] R.Ponraj, S.Subbulakshmi, S.Somasundaram, 4-Total mean cordial graphs derived from paths, J.Appl and Pure Math. Vol 2(2020), 319-329.
- [6] R.Ponraj, S.Subbulakshmi, S.Somasundaram, 4-Total mean cordial labeling in subdivision graphs, *Journal of Algorithms and Computation*, 52(2020), 1-11.
- [7] R.Ponraj, S.Subbulakshmi, S.Somasundaram, Some 4-total mean cordial graphs derived from wheel, J. Math. Comput. Sci., 11(2021), 467-476.
- [8] R.Ponraj, S.Subbulakshmi, S.Somasundaram, 4-Total mean cordial graphs with star and bistar, *Turkish Journal of Computer and Mathematics Education*, 12(2021), 951-956.

- R.Ponraj, S.Subbulakshmi, S.Somasundaram, On 4-total mean cordial graphs, J. Appl. Math and Informatics, Vol 39(2021), 497-506.
- [10] R.Ponraj, S.Subbulakshmi, S.Somasundaram, 4-Total mean cordial labeling of special graphs, *Journal of Algorithms and Computation*, 53(2021), 13-22.
- [11] R.Ponraj, S.Subbulakshmi, S.Somasundaram, 4-Total mean cordial labeling of union of some graphs with the complete bipartite graph $K_{2,n}$, Journal of Algorithms and Computation, 54(2022), 35-46.
- [12] R.Ponraj, S.Subbulakshmi, S.Somasundaram, 4-Total mean cordial labeling of some graphs derived from H-graph and star, *International J. Math. Combin*, Vol.3(2022), 99-106.
- [13] R.Ponraj, S.Subbulakshmi, M.Sivakumar, 4-Total mean cordial labeling of $st(m_1, m_2, m_3, m_4, m_5)$, Journal of Indian Acad. Math., Vol.44 No.2(2022), 125-133.
- [14] R.Ponraj, S.Subbulakshmi, M.Sivakumar, 4-Total mean cordial labeling of spider graphs, Journal of Algorithms and Computation, 55(2023), 1-9.
- [15] A.Rosa, On certain valuations of the vertices of a graph. In Theory of Graphs, International Symposium, Rome, July, 1966(1967), 349-355.