Trees with Large Roman Domination Number

C.Sivagnanam
Department of General Requirements, University of Technology and Applied Sciences-Sur
Sultanate of Oman
E-mail: choshi71@gmail.com

Abstract

A Roman dominating function on a graph G is a function $f: V(G) \longrightarrow\{0,1,2\}$ satisfying the condition that every vertex $v \in V(G)$ for which $f(v)=0$, is adjacent to at least one vertex u with $f(u)=2$. The weight of a Roman dominating function f is the value $w(f)=\sum_{v \in V} f(v)$. The minimum weight of a Roman dominating function is called the Roman domination number of G and is denoted by $\gamma_{R}(G)$. In this paper, we characterize trees with $\gamma_{R} \geq n-\Delta$.

Key Words: Tree, domination number, Roman dominating function, SmarandacheRoman k-dominating function, Roman domination number.

AMS(2010): 05C69.

§1. Introduction

The graph $G=(V, E)$ we mean a finite, undirected, connected graph with neither loops nor multiple edges. The order and size of G are denoted by n and m respectively. The degree of a vertex u in G is the number of edges incident with u and is denoted by $d_{G}(u)$, simply $d(u)$. The minimum and maximum degree of a graph G is denoted by $\delta(G)$ and $\Delta(G)$, respectively. For graph theoretic terminology we refer to Chartrand and Lesniak [1] and Haynes et.al [4,5].

Let $v \in V$. The open neighborhood and closed neighborhood of v are denoted by $N(v)$ and $N[v]=N(v) \cup\{v\}$. If $S \subseteq V$ then $N(S)=\bigcup_{v \in S} N(v)$ for all $v \in S$ and $N[S]=N(S) \cup S$. If $S \subseteq V$ and $u \in S$ then the private neighbor set of u with respect to S is defined by $p n[u, S]=\{v: N[v] \cap S=\{u\}\}$. For any set $S \subseteq V$, the subgraph induced by S is the maximal subgraph of G with vertex set S and is denoted by $\langle S\rangle$. The vertex has degree one is called a pendant vertex. The set of all pendant vertices of a graph G is denoted as $l(G)$. A support is a vertex which is adjacent to a pendant vertex. A weak support is a vertex which is adjacent to exactly one pendant vertex. A strong support is a vertex which is adjacent to at least two pendant vertices. An unicyclic graph is a graph with exactly one cycle. A graph without cycle is called acyclic graph and a connected acyclic graph is called a tree.

A subset S of V is called a dominating set of G if every vertex in $V-S$ is adjacent to at least one vertex in S. The minimum cardinality of a dominating set is called the domination number of G and is denoted by $\gamma(G)$. E.J.Cockayne et.al [2] studied the concept of Roman domination

[^0]first. A Roman dominating function on a graph G is a function $f: V(G) \longrightarrow\{0,1,2\}$ satisfying the condition that every vertex $v \in V$ for which $f(v)=0$ is adjacent to at least one vertex $u \in V$ with $f(u)=2$. Generally, if every vertex $v \in V$ for which $f(v)=0$ is adjacent to at least k vertices $u \in V(G)$ with $f(u)=2$ for a function $f: V(G) \longrightarrow\{0,1,2\}$, such a function f is said to be a Smarandache-Roman k-dominating function, where $k \geq 1$ is an integer. Clearly, if $k=1$, such a Smarandache-Roman k-dominating function is nothing else but the Roman dominating function. The weight of a Roman dominating function is the value $w(f)=\sum_{v \in V} f(v)$. The minimum weight of a Roman dominating function is called the roman dominating number of G and is denoted by $\gamma_{R}(G)$.

For a graph G, let $f: V \longrightarrow\{0,1,2\}$ and let $\left(V_{0}, V_{1}, V_{2}\right)$ be the ordered partition of V induced by f, where $V_{i}=\{v \in V: f(v)=i\}$. Note that there exists an one to one correspondence between the function $f: V \longrightarrow\{0,1,2\}$ and the ordered partition $\left(V_{0}, V_{1}, V_{2}\right)$ of V. Thus we will write $f=\left(V_{0}, V_{1}, V_{2}\right)$. We say that a function $f=\left(V_{0}, V_{1}, V_{2}\right)$ is a γ_{R}-function if it is a Roman dominating function and $w(f)=\gamma_{R}(G)$. Also $w(f)=\left|V_{1}\right|+2\left|V_{2}\right|$.

Erin W. Chambers et.al [3] proved that $\gamma_{R}(G) \leq n-\Delta+1$. In this paper we characterize the trees with $\gamma_{R} \geq n-\Delta$.

§2. Family of Trees \mathscr{G}

Notation 2.1 The family of trees \mathscr{G}_{33} is obtained from $K_{1, \Delta}$ by attaching a path on three vertices twice to a pendant vertex.

Notation 2.2 The family of trees \mathscr{G}_{23} is obtained from $K_{1, \Delta}$ by attaching a path on three vertices and a path on two vertices to a pendant vertex.

Notation 2.3 The family of trees \mathscr{G}_{1} is obtained from a tree in $\mathscr{G}_{33} \cup \mathscr{G}_{23}$ by attaching a path on three vertices twice or a path on two vertices twice or a path on three vertices and a path on two vertices to at most $\Delta-3$ pendant vertices whose support has degree Δ.

Notation 2.4 The family of trees $\mathscr{G}_{(1)}$ is obtained from a tree in \mathscr{G}_{1} by attaching a path $P_{k}, k=1$ or 2 to the pendant vertices whose support has degree Δ.

Notation 2.5 The family of trees $\mathscr{G}_{(2)}$ is obtained from $K_{1, \Delta}$ by subdividing $\Delta-1$ edges twice.
Notation 2.6 The family of trees $\mathscr{G}_{(3)}$ is obtained from $K_{1, \Delta}$ by subdividing twice $i, 1 \leq i \leq$ $\Delta-2$ edges and subdividing once $k, 0 \leq k \leq \Delta-i$ edges.

Notation 2.7 The family of trees $\mathscr{G}_{(4)}$ is obtained from $K_{1, \Delta}$ by attaching twice a path on two vertices to $i, 0 \leq i \leq \Delta-2$ pendant vertices and attaching a path on two vertices to $k, 0 \leq k \leq \Delta-i$ pendant vertices.

Notation 2.8 The family of trees $\mathscr{G}=\left\{K_{1, \Delta}\right\} \cup \mathscr{G}_{(1)} \cup \mathscr{G}_{(2)} \cup \mathscr{G}_{(3)} \cup \mathscr{G}_{(4)}$
§3. Trees with $\gamma_{R}=n-\Delta+1$

Theorem 3.1 For a tree $T, \gamma_{R}(T)=n-\Delta+1$ if and only if $T \in \mathscr{G}$.

Proof Let T be a tree with $\gamma_{R}(T)=n-\Delta+1$. Let $v \in V(T)$ such that $d(v)=\Delta$. If $\Delta=n-1$, then T is a star. Suppose $\Delta<n-1$. Let $N(v)=\left\{v_{1}, v_{2}, \cdots, v_{\Delta}\right\}$ and let $T_{1}=\langle V-N[v]\rangle$.

Case 1. $E\left(T_{1}\right)=\phi$.
Then every vertex of T_{1} is adjacent to a vertex in $N(v)$. Suppose $d\left(v_{i}\right) \geq 4$ for some $i, 1 \leq i \leq \Delta$. Let $w_{1}, w_{2}, w_{3} \in N\left(v_{i}\right) \cap V\left(T_{1}\right)$. Then $f=\left(\left[N(v)-\left\{v_{i}\right\}\right] \cup\left\{w_{1}, w_{2}, w_{3}\right\}, V-[N[v] \cup\right.$ $\left.\left.\left\{w_{1}, w_{2}, w_{3}\right\}\right],\left\{v, v_{i}\right\}\right)$ is a Roman dominating function with $w(f)=n-(\Delta+4)+4=n-\Delta$, which is a contradiction. Hence $d\left(v_{i}\right) \leq 3$ for all $i, 1 \leq i \leq \Delta$. Suppose $d\left(v_{i}\right)=3$ for all $i, 1 \leq i \leq \Delta$. Then $f=(V-N(v), \phi, N(v))$ is a Roman dominating function with $w(f)=2 \Delta=n-\Delta-1$, which is a contradiction. Hence $d\left(v_{i}\right) \leq 2$ for some $i, 1 \leq i \leq \Delta$.

Suppose $d\left(v_{i}\right)=3,1 \leq i \leq \Delta-1$ and $d\left(v_{\Delta}\right) \leq 2$. Then

$$
f= \begin{cases}(V-N(v), \phi, N(v)) & \text { if } d\left(v_{\Delta}\right)=2 \\ \left(V-N(v),\left\{v_{\Delta}\right\}, N(v)-\left\{v_{\Delta}\right\}\right) & \text { if } d\left(v_{\Delta}\right)=1\end{cases}
$$

is a Roman dominating function with $w(f)<n-\Delta+1$ which is a contradiction. Hence at most $\Delta-2$ vertices of $N(v)$ have degree 3 .Thus T is isomorphic to a tree obtained from $K_{1, \Delta}$ by attaching twice a path on two vertices to $i, 0 \leq i \leq \Delta-2$ pendant vertices and attaching a path on two vertices to $k, 0 \leq k \leq \Delta-i$ pendant vertices. Hence, $T \in \mathscr{G}_{(4)}$

Case 2. $E\left(T_{1}\right) \neq \phi$.
Let G_{1} be any non trivial component of T_{1} and we may assume without loss generality that $v_{1} \in N\left(V\left(G_{1}\right)\right)$. Suppose G_{1} contains more than one pendant vertex of T. Let $w_{1}, w_{2} \in V\left(G_{1}\right)$ such that $d\left(w_{i}\right)=1$. Let $P=\left(w_{1}, u_{1}, u_{2}, \cdots, u_{i}, w_{2}\right), i \geq 1$ is a $w_{1}-w_{2}$ path in G_{1}. Let $V_{0}=N(v) \cup\left\{w_{1}, u_{2}\right\}, V_{1}=V-\left[N(v) \cup\left\{v, w_{1}, u_{1}, u_{2}\right\}, V_{2}=\left\{v, u_{1}\right\}\right.$. Then $f=\left(V_{0}, V_{1}, V_{2}\right)$ is a Roman dominating function of T with $w(f)=n-(\Delta+4)+4=n-\Delta$ which is a contradiction. Thus G_{1} has exactly one pendant vertex of T and hence G_{1} is a path. Let $G_{1}=\left(x_{1}, x_{2}, \cdots, x_{r}\right)$ such that $v_{1} \in N\left(x_{1}\right)$. If $r>2$, then

$$
f=\left(N(v) \bigcup\left\{x_{1}, x_{3}\right\}, V-\left[N(v) \cup\left\{x_{1}, x_{2}, x_{3}, v\right\}\right],\left\{v, x_{2}\right\}\right)
$$

is a Roman dominating function of T with $w(f)=n-(\Delta+4)+4=n-\Delta$ which is a contradiction. Hence $r \leq 2$. Then $G_{1}=P_{2}$. Suppose $d\left(v_{i}\right) \geq 4$. Let $x_{1}, x_{2}, x_{3} \in N\left(v_{1}\right), x_{i} \neq v, 1 \leq i \leq 3$. Then

$$
f=\left(\left[N(v)-\left\{v_{1}\right\}\right] \cup\left\{x_{1}, x_{2}, x_{3}\right\}, V-\left[N[v] \bigcup\left\{x_{1}, x_{2}, x_{3}\right\}\right],\left\{v, v_{1}\right\}\right)
$$

is a Roman dominating function with $w(f)=n-\Delta$, which is a contradiction. Hence $d\left(v_{i}\right) \leq 3$ for all i.

Suppose $d\left(v_{i}\right)=3$ for all $i, 1 \leq i \leq \Delta-1$. Then $d\left(v_{\Delta}\right) \leq 2$ and then

$$
f=\left(\bigcup_{i=1}^{\Delta-1} N\left(v_{i}\right), V-\left[\bigcup_{i=1}^{\Delta-1} N\left[v_{i}\right]\right], \bigcup_{i=1}^{\Delta-1}\left\{v_{i}\right\}\right)
$$

is a Roman dominating function with $w(f)=n-\Delta$, which is a contradiction. Hence at most $\Delta-2$ vertices of $N(v)$ have degree three. If at least one vertex in $N(v)$ has degree three then $T \in \mathscr{G}_{(1)}$.

Suppose $d\left(v_{i}\right) \leq 2$ for all $i, 1 \leq i \leq \Delta$. Then T_{1} contains maximum of Δ nontrivial components. Suppose T_{1} contains Δ non trivial components $G_{1}, G_{2}, \cdots, G_{\Delta}$. Let $V\left(G_{i}\right)=$ $\left\{x_{i 1}, x_{i 2}\right\}$ such that $v_{i} \in N\left(x_{i 1}\right)$. Then

$$
f=\left(N(v) \cup\left\{x_{i 2}: 1 \leq i \leq \Delta\right\},\{v\},\left\{x_{i 1}: 1 \leq i \leq \Delta\right\}\right)
$$

is a Roman dominating function of T with $w(f)=1+2 \Delta=n-\Delta$ which is a contradiction. Hence T_{1} contains at most $\Delta-1$ non trivial components.

Suppose T_{1} contains exactly $\Delta-1$ non trivial components. Let $G_{1}, G_{2}, \cdots, G_{\Delta-1}$ be the non trivial components of T_{1}. If G_{Δ} is trivial component of T_{1}, then

$$
f=\left(\left(N[v]-\left\{v_{\Delta}\right\}\right) \cup\left\{x_{i 2}: 1 \leq i \leq \Delta-1\right\}, \phi,\left\{x_{i 1}: 1 \leq i \leq \Delta-1\right\}\right)
$$

is a Roman dominating function of T with $w(f)=2(\Delta-1)=2 \Delta-2=n-\Delta-2$ which is a contradiction. Hence T is isomorphic to a tree obtained from $K_{1, \Delta}$ by subdividing $\Delta-1$ edges twice. Thus $T \in \mathscr{G}_{(2)}$

If T_{1} contains $i, 1 \leq i \leq \Delta-2$ non trivial components, then T is isomorphic to a tree obtained from $K_{1, \Delta}$ by subdividing twice $i, 1 \leq i \leq \Delta-2$ edges and subdividing once $k, 0 \leq$ $k \leq \Delta-i$ edges. Hence $T \in \mathscr{G}_{(3)}$. The converse is obvious.

§4. Family of Trees \mathscr{F}

Notation 4.1 The family of trees \mathscr{T}_{1} is obtained from $K_{1, \Delta}$ by attaching thrice a path on two vertices to a pendant vertex, attaching twice a path on two vertices to $i, 0 \leq i \leq \Delta-3$ pendant vertices and attaching a path on two vertices to $k, 0 \leq k \leq \Delta-1-i$ pendant vertices.

Notation 4.2 The family of trees \mathscr{T}_{2} is obtained from $K_{1, \Delta}$ by attaching twice a path on two vertices to $\Delta-1$ pendant vertices and attaching a path $P_{k}, k=1$ or 2 to a pendant vertex.

Notation 4.3 Let v be a vertex of degree Δ in a star graph $K_{1, \Delta}$ and let $N(v)=\left\{v_{1}, v_{2}, \cdots, v_{\Delta}\right\}$ The family of trees $\mathscr{T}^{(a)}$ is obtained from $K_{1, \Delta}$ by subdividing $a, 2 \leq a \leq 5$ times the edge $v v_{1}$.

Notation 4.4 The family of trees $\mathscr{T}_{1 i}^{(a)}$ is obtained from a tree in $\mathscr{T}^{(a)}, 2 \leq a \leq 4$ by attaching a path $P_{i}, 2 \leq i \leq 4$ to the vertex of distance two from center vertex v. The family of trees $\mathscr{T}_{2 i}^{(a)}$ is obtained from a tree in $\mathscr{T}^{(a)}, 4 \leq a \leq 5$ by attaching a path $P_{i}, 1 \leq i \leq 3$ to the vertex v_{1}.

Notation 4.5 The family of trees $\mathscr{T}_{1(i, j, k)}^{(a)}$ is obtained from a tree in $\mathscr{T}_{1 i}^{(a)}$ by attaching a path P_{3} to at most two times to some or all the vertices of $v_{1}, v_{2}, \cdots, v_{j}, j \leq \Delta-3$, attaching a path P_{2} at most two times to some or all the vertices of $v_{j+1}, v_{j+2}, \cdots, v_{k}, k \leq \Delta-3$ and attaching a path P_{2} at most one time to the vertices $v_{k+1}, v_{k+2}, \cdots, v_{\Delta}$.

Notation 4.6 The family of trees $\mathscr{T}_{2(i, j, k)}^{(a)}$ is obtained from a tree in $\mathscr{T}_{2 i}^{(a)}$ by attaching a path
P_{3} to at most two times to some or all the vertices of $v_{2}, v_{3}, \cdots, v_{j}, j \leq \Delta-3$, attaching a path P_{2} at most two times to some or all the vertices of $v_{j+1}, v_{j+2}, \cdots, v_{k}, k \leq \Delta-3$ and attaching a path P_{2} at most one time to the vertices $v_{k+1}, v_{k+2}, \cdots, v_{\Delta}$.

Notation 4.7 The family of trees $\mathscr{T}_{i}^{(3)}$ is obtained from a tree in $\mathscr{T}^{(3)}$ by attaching a path $P_{i}, 1 \leq i \leq 3$ to the vertex v_{1}. The family of trees $\mathscr{T}_{(i, j, k)}^{(3)}$ is obtained from a tree in $\mathscr{T}_{i}^{(3)}$ by attaching a path P_{3} to at most two times to some or all the vertices of $v_{2}, v_{3}, \cdots, v_{j}, j \leq \Delta-3$, attaching a path P_{2} at most two times to some or all the vertices of $v_{j+1}, v_{j+2}, \cdots, v_{k}, k \leq \Delta-3$ and attaching a path P_{2} at most one time to the vertices $v_{k+1}, v_{k+2}, \cdots, v_{\Delta}$.

Notation 4.8 The family of trees $\mathscr{T}_{b c}^{(3)}$ is obtained from a tree in $\mathscr{T}^{(3)}$ by attaching the paths P_{b} and $P_{c}, 2 \leq b \leq 3,2 \leq c \leq 3$ to the vertex v_{1}. The family of trees $\mathscr{T}_{(b c, j, k)}^{(3)}$ is obtained from a tree in $\mathscr{T}_{b c}^{(3)}$ by attaching a path P_{3} to at most two times to some or all the vertices of $v_{2}, v_{3}, \cdots, v_{j}, j \leq \Delta-3$, attaching a path P_{2} at most two times to some or all the vertices of $v_{j+1}, v_{j+2}, \cdots, v_{k}, k \leq \Delta-3$ and attaching a path P_{2} at most one time to the vertices $v_{k+1}, v_{k+2}, \cdots, v_{\Delta}$.
Notation 4.9 The family of trees $\mathscr{T}_{23}^{(2)}$ is obtained from the tree $\mathscr{T}^{(2)}$ by attaching the paths P_{2} and P_{3}, to the vertex v_{1}. The family of trees $\mathscr{T}_{(23, j, k)}^{(2)}$ is obtained from a tree in $\mathscr{T}_{23}^{(2)}$ by attaching a path P_{3} to at most two times to some or all the vertices of $v_{2}, v_{3}, \cdots, v_{j}, j \leq \Delta-3$, attaching a path P_{2} at most two times to some or all the vertices of $v_{j+1}, v_{j+2}, \cdots, v_{k}, k \leq \Delta-3$ and attaching a path P_{2} at most one time to the vertices $v_{k+1}, v_{k+2}, \cdots, v_{\Delta}$.

Notation 4.10 The family of trees

$$
\mathscr{F}=\mathscr{T}_{1} \cup \mathscr{T}_{2} \cup \mathscr{T}_{1(i, j, k)}^{(a)} \cup \mathscr{T}_{2(i, j, k)}^{(a)} \cup \mathscr{T}_{(i, j, k)}^{(3)} \cup \mathscr{T}_{(b c, j, k)}^{(3)} \cup \mathscr{T}_{(23, j, k)}^{(2)} .
$$

§5. Trees with $\gamma_{R}=n-\Delta$

Theorem 5.1 For a tree $T, \gamma_{R}(T)=n-\Delta$ if and only if $T \in \mathscr{F}$.
Proof Let T be a tree with $\gamma_{R}(G)=n-\Delta$. Let $v \in V(T)$ such that $d(v)=\Delta$. It is clear that $\Delta<n-1$. Let $N(v)=\left\{v_{1}, v_{2}, \cdots, v_{\Delta}\right\}$ and let $T_{1}=\langle V-N[v]\rangle$.

Case 1. $E\left(T_{1}\right)=\phi$.
Then every vertex of T_{1} is adjacent to a vertex in $N(v)$. Suppose $d\left(v_{i}\right) \geq 5$ for some $i, 1 \leq i \leq \Delta$. Let $V_{0}=\left(N(v) \cup N\left(v_{i}\right)\right)-\left\{v, v_{i}\right\}, V_{1}=V-\left[N(v) \cup N\left(v_{i}\right)\right], V_{2}=\left\{v, v_{i}\right\}$. Then $f=\left(V_{0}, V_{1}, V_{2}\right)$ is a Roman dominating function with $w(f) \leq n-(\Delta+5)+4=n-\Delta-1$ which is a contradiction. Hence $d\left(v_{i}\right) \leq 4$ for all $i, 1 \leq i \leq \Delta$. Suppose $d\left(v_{1}\right)=d\left(v_{2}\right)=4$. Let $N\left(v_{1}\right)=\left\{v, u_{1}, u_{2}, u_{3}\right\}$ and $N\left(v_{2}\right)=\left\{v, w_{1}, w_{2}, w_{3}\right\}$. Now we assume $V_{0}=\left(N(v) \cup N\left(v_{1}\right) \cup\right.$ $\left.N\left(v_{2}\right)\right)-\left\{v, v_{1}, v_{2}\right\}, V_{1}=V-\left[N(v) \cup N\left(v_{1}\right) \cup N\left(v_{2}\right)\right], V_{2}=\left\{v, v_{1}, v_{2}\right\}$. Then $f=\left(V_{0}, V_{1}, V_{2}\right)$ is a Roman dominating function with $w(f)=n-(\Delta+4+3)+6=n-\Delta-1$ which is a contradiction. Hence at most one vertex in $N(v)$ has degree 4.

Let $d\left(v_{1}\right)=4$ and $d\left(v_{i}\right) \leq 3,2 \leq i \leq \Delta$. Suppose $d\left(v_{i}\right)=3$ for all $i, 2 \leq i \leq \Delta$. Then

$$
f=(V-N(v), \phi, N(v))
$$

is a Roman dominating function with $w(f)=2 \Delta=n-\Delta-2$ which is a contradiction. Hence $d\left(v_{i}\right)=3$ for all $i, 2 \leq i \leq \Delta-1$ and $d\left(v_{\Delta}\right) \leq 2$. Then

$$
f= \begin{cases}(V-N(v), \phi, N(v)) & \text { if } d\left(v_{\Delta}\right)=2 \\ \left(V-N(v),\left\{v_{\Delta}\right\}, N(v)-\left\{v_{\Delta}\right\}\right) & \text { if } d\left(v_{\Delta}\right)=1\end{cases}
$$

is a Roman dominating function with $w(f)=n-\Delta-1$ which is a contradiction. Hence at most $\Delta-3$ vertices of $N(v)$ have degree 3 . Thus T is isomorphic to a tree obtained from $K_{1, \Delta}$ by attaching thrice a path on two vertices to a pendant vertex, attaching twice a path on two vertices to $i, 0 \leq i \leq \Delta-3$ pendant vertices and attaching a path on two vertices to $k, 0 \leq k \leq \Delta-1-i$ pendant vertices. Thus $T \in \mathscr{T}_{1}$.

Suppose $d\left(v_{i}\right) \leq 3$ for all $i, 1 \leq i \leq \Delta$. If $d\left(v_{i}\right)=3$ for all $i, 1 \leq i \leq \Delta$. Then $f=$ $(V-N(v), \phi, N(v))$ is a Roman dominating function with $w(f)=2 \Delta=n-\Delta-1$, which is a contradiction. Hence at least one vertex in $N(v)$ has degree less than 3. If more than two vertices of $N(v)$ have degree less than 3 then by proof as in case 1 we get a contradiction. Hence $d\left(v_{i}\right)=3$ for all $i, 1 \leq i \leq \Delta-1$. Thus T is isomorphic to a tree obtained from $K_{1, \Delta}$ by attaching twice a path on two vertices to $\Delta-1$ pendant vertices and attaching a path $P_{k}, k=1$ or 2 to a pendant vertex. Thus $T \in \mathscr{T}_{2}$.

Case 2. $E\left(T_{1}\right) \neq \phi$.
Let G_{1} be any nontrivial component of T_{1} and we may assume without loss of generality $v_{1} \in N\left(V\left(G_{1}\right)\right)$. Suppose G_{1} contains more than two pendant vertices of T. Let $w_{1}, w_{2}, w_{3} \in$ $V\left(G_{1}\right)$ such that $d\left(w_{i}\right)=1,1 \leq i \leq 3$. Then there is a vertex $u \in G_{1}$ such that $d_{G_{1}}(u) \geq 3$. Let $x_{1}, x_{2}, x_{3} \in N(u) \cap V\left(G_{1}\right)$. Then

$$
f=\left(N(v) \cup\left\{x_{1}, x_{2}, x_{3}\right\}, V-\left(N[v] \cup\left\{x_{1}, x_{2}, x_{3}\right\},\{u, v\}\right)\right.
$$

is a Roman dominating function of T with $w(f)=n-(\Delta+1+4)+4=n-\Delta-1$, which is a contradiction. Hence G_{1} is a path.

Subcase $2.1\left|V\left(G_{1}\right) \cap l(T)\right|=2$.
Let $w_{1}, w_{2} \in V\left(G_{1}\right)$ such that $d_{T}\left(w_{i}\right)=1$. Let $G=\left(w_{1}, u_{1}, u_{2}, \cdots, u_{k}, w_{2}\right)$. Suppose $d\left(v_{1}, G_{1}\right) \geq 2$. Let $\left(v_{1}, x_{1}, x_{2}, \cdots, x_{i}, u_{j}\right), j \leq k$, be the shortest $v_{1}-G_{1}$ path. Then

$$
f=\left(N(v) \cup\left\{x_{i}, u_{j-1}, u_{j+1}\right\}, V-\left(N[v] \cup\left\{x_{i}, u_{j-1}, u_{j+1}\right\},\left\{u_{j}, v\right\}\right)\right.
$$

is a Roman dominating function of T with $w(f)=n-\Delta-1$, which is a contradiction. Hence $d\left(v_{1}, G_{1}\right)=1$. Thus $v_{1} u_{j} \in E$. Suppose $d\left(v_{1}, w_{i}\right) \geq 5, i=1$ or 2 . Let $V_{0}=N(v) \cup$ $\left\{u_{j-1}, u_{j+1}, u_{j+2}, u_{j+4}\right\}, V_{2}=\left\{v, u_{j}, u_{j+3}\right\}, V_{1}=V-\left(V_{0} \cup V_{2}\right)$. Then $f=\left(V_{0}, V_{1}, V_{2}\right)$ is a Roman dominating function with $w(f)=n-(\Delta+4+3)+6=n-\Delta-1$, which is a contradiction.

Hence $G_{1}=\left(w_{1}, u_{1}, u_{2}, \cdots, u_{i}, w_{2}\right), i \leq 5$. If $i=5$ then $v_{1} u_{3} \in E$. If $i=4$ then $v_{1} u_{2} \in E$. If $i=3$ then either $v_{1} u_{1} \in E$ or $v_{1} u_{2} \in E$. If $i=2$ then $v_{1} u_{1} \in E$.

Let $G_{2}\left(\neq G_{1}\right)$ be a nontrivial component of T_{1}. If G_{2} contains more than one pendant vertex of T then there is a vertex $y_{1} \in G_{2}$ such that $d_{G_{2}}\left(y_{1}\right) \geq 2$. Let $y_{2}, y_{3} \in N\left(y_{1}\right) \cap V\left(G_{2}\right)$. We assume $V_{0}=N(v) \cup\left\{u_{j-1}, u_{j+1}, y_{2}, y_{3}\right\}, V_{2}=\left\{v, u_{j}, y_{1}\right\}$ and $V_{1}=V-\left(V_{0} \cup V_{2}\right)$. Then $f=$ (V_{0}, V_{1}, V_{2}) is a Roman dominating function of T with $w(f)=n-\Delta-1$, which is a contradiction. Hence every nontrivial component of T_{1} except G_{1} is a path. Let $G_{2}=\left(x_{1}, x_{2}, \cdots, x_{r}\right)$ such that $v_{i} \in N\left(x_{1}\right)$ for some i. Suppose $r \geq 3$. Let $V_{0}=N(v) \cup\left\{u_{j-1}, u_{j+1}, x_{1}, x_{3}\right\}, V_{2}=\left\{v, u_{j}, x_{2}\right\}$ and $V_{1}=V-\left(V_{0} \cup V_{2}\right)$. Then $f=\left(V_{0}, V_{1}, V_{2}\right)$ is a Roman dominating function of T with $w(f)=n-\Delta-1$, which is a contradiction. Hence $r=2$. If all the components of T_{1} are nontrivial then by similar arguments as above we get $\gamma_{R} \leq n-\Delta-1$, which is a contradiction and hence $T \in \mathscr{T}_{1(i, j, k)}^{(a)}$.

Subcase $2.2\left|V\left(G_{1}\right) \cap l(T)\right|=1$.
Let $G_{1}=\left(u_{1}, u_{2}, \cdots, u_{r}, w_{1}\right)$ with $d\left(w_{1}\right)=1$ and let $v_{1} u_{1} \in E$. If $r \geq 5$ then $f=$ $\left(N(v) \cup\left\{u_{1}, u_{3}, u_{4}, u_{6}\right\}, V-\left(N[v] \cup\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\},\left\{v, u_{2}, u_{5}\right\}\right)\right.$ is a Roman dominating function with $w(f)=n-(\Delta+1+6)-6=n-\Delta-1$, which is a contradiction. Hence $r \leq 4$. Let $3 \leq r \leq 4$. Suppose $d\left(v_{1}\right) \geq 4$. Let $u_{1}, x_{1}, x_{2} \in N\left(v_{1}\right)$ and let $V_{0}=\left[N(v) \cup\left\{x_{1}, x_{2}, u_{1}, u_{2}, u_{4}\right\}\right]-$ $\left\{v_{1}\right\}, V_{1}=V-\left[N[v] \cup\left\{x_{1}, x_{2}, u_{1}, u_{2}, u_{3},, u_{4}\right\}, V_{2}=\left\{v, v_{1}, u_{3}\right\}\right.$. Then $f=\left(V_{0}, V_{1}, V_{2}\right)$ is a Roman dominating function with $w(f)=n-[\Delta+1+6]+6=n-\Delta-1$, which is a contradiction. Hence $d\left(v_{1}\right)=2$ or 3 . If $d\left(v_{1}\right)=3$ then there exists a path $P_{j}\left(\neq G_{1}\right), j \geq 1$ attached to v_{1}. Suppose $P_{j}=\left(v_{1}, x_{1}, x_{2}, \cdots, x_{j}\right), j \geq 3$. Now, let $V_{0}=N(v) \cup\left\{u_{1}, u_{3}, x_{1}, x_{3}\right\}, V_{1}=V-$ $\left[N[v] \cup\left\{u_{1}, u_{2}, u_{3}, x_{1}, x_{2}, x_{3}\right\}\right], V_{2}=\left\{v, u_{2}, x_{2}\right\}$. Then $f=\left(V_{0}, V_{1}, V_{2}\right)$ is a Roman dominating function with $w(f)=n-\Delta-1$, which is a contradiction. Hence $j \leq 2$. Hence by similar arguments as in case 1 we have $T \in \mathscr{T}_{2(i, j, k)}^{(a)}$. If $r=2$ then by similar arguments as above we have $T \in \mathscr{T}_{(i, j, k)}^{(3)} \cup \mathscr{T}_{(b c, j, k)}^{(3)}$. If $r=1$ then $T \in \mathscr{T}_{(23, j, k)}^{(2)}$. The converse is obvious.

References

[1] G.Chartrand and L.Lesniak, Graphs and Digraphs, Chapman and Hall, CRC, 2005.
[2] E.J.Cockayne, P.A.Dreyer Jr, S.M.Hedetniemi and S.T.Hedetniemi, Roman domination in graphs, Discrete Mathematics, 278(2004), 11-22.
[3] Erin W. Chambers, Bill Kinnersley, Noah prince and Douglas B. West, extremal problems for Roman domination, SIAM Journal on Discrete Mathematics, 23(3)(2009), 1575-1586.
[4] T.W.Haynes, S.T.Hedetniemi and P.J.Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc.,New York, 1998.
[5] T.W.Haynes, S.T.Hedetniemi and P.J.Slater, Domination in Graphs- Advanced Topics, Marcel Dekker, Inc., New York, 1998.

[^0]: ${ }^{1}$ Received March 7, 2023, Accepted June 5, 2023.

