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Aim and Scope 

International Journal of Neutrosophic Science (IJNS) is a peer-review journal publishing high quality 

experimental and theoretical research in all areas of Neutrosophic and its Applications. IJNS is 

published quarterly. IJNS is devoted to the publication of peer-reviewed original research papers lying in 

the domain of neutrosophic sets and systems. Papers submitted for possible publication may concern with 

foundations, neutrosophic logic and mathematical structures in the neutrosophic setting. Besides providing 

emphasis on topics like artificial intelligence, pattern recognition, image processing, robotics, decision 

making, data analysis, data mining, applications of neutrosophic mathematical theories contributing to 

economics, finance, management, industries,  electronics, and communications are promoted. Variants of 

neutrosophic sets including refined neutrosophic set (RNS). Articles evolving algorithms making 

computational work handy are welcome. 

Topics of Interest 

IJNS promotes research and reflects the most recent advances of neutrosophic Sciences in diverse 

disciplines, with emphasis on the following aspects, but certainly not limited to: 

�  Neutrosophic sets                                              �  Neutrosophic algebra 

�  Neutrosophic topolog                                        �  Neutrosophic graphs 

�  Neutrosophic probabilities                                �  Neutrosophic tools for decision making 

�  Neutrosophic theory for machine learning       �  Neutrosophic statistics 

�  Neutrosophic numerical measures                    �  Classical neutrosophic numbers 

�  A neutrosophic hypothesis                                �  The neutrosophic level of significance 

�  The neutrosophic confidence interval               �  The neutrosophic central limit theorem 

�  Neutrosophic theory in bioinformatics  

�and medical analytics                                            �  Neutrosophic tools for big data analytics 

�  Neutrosophic tools for deep learning                �  Neutrosophic tools for data visualization 

�  Quadripartitioned single-valued  

�neutrosophic sets                                               �  Refined single-valued neutrosophic sets 
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�  Applications of neutrosophic logic in image processing  

�  Neutrosophic logic for feature learning, classification, regression, and clustering 

�  Neutrosophic knowledge retrieval of medical images 

�  Neutrosophic set theory for large-scale image and multimedia processing 

�  Neutrosophic set theory for brain-machine interfaces and medical signal analysis 

�  Applications of neutrosophic theory in large-scale healthcare data  

�  Neutrosophic set-based multimodal sensor data 

�  Neutrosophic set-based array processing and analysis 

�  Wireless sensor networks Neutrosophic set-based Crowd-sourcing 

�  Neutrosophic set-based heterogeneous data mining  

�  Neutrosophic in Virtual Reality 

�  Neutrosophic and Plithogenic theories in Humanities and Social Sciences 

�  Neutrosophic and Plithogenic theories in decision making 

�  Neutrosophic in Astronomy and Space Sciences 
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The Concept of Neutrosophic Limits in Real Sequences 

 

Huda E. Khalid 1*, Ahmed K. Essa 2  

 
1,2 Telafer University, Scientific Affairs and Cultural Relations Department, Telafer, Iraq;   hodaesmail@yahoo.com 

 
* Correspondence: hodaesmail@yahoo.com 

 

Abstract  

The theory of neutrosophic limits is the natural step before developing the theory of neutrosophic continuous 

functions and developing the theory of neutrosophic differentiation. The goal of this work is to construct a new 

definition of the neutrosophic limits for real sequences using the distance as a linear operator. Some new theorems 

are presented to cover the theoretical notions of this topic and an illustrative example is presented to help the reader 

understanding the notions of this article.   

Keywords: Neutrosophic Limits, Neutrosophic Convergence, Real Sequences. 
 

1. Introduction  

The essential concepts that should be extended in neutrosophic theory are the fuzzy limits, fuzzy continuity, and fuzzy 

derivatives. Neutrosophic researchers must extend the usual concept of the conventional limit of a sequence. 

Furthermore,  the main differences between neutrosophic theory and fuzzy theory are that any notion in neutrosophic 

theory say < � > together with its counteractive < ����� > and with their spectrum of neutralities < ����� > in 

between them (i.e. ideas supporting neither < � > nor < ����� >). The < ����� > and < ����� > ideas together 

are referred to as < ���� >. Neutrosophic logic is generalization of the fuzzy logic. In neutrosophic logic a 

proposition has a degree of truth (T), a degree of indeterminacy (I), and a degree of falsity (F), where T, I, F are 

standard or non-standard subsets of ] 0� ,1� [ [1]. The neutrosophic logic was established by F. Smarandache [2].  In 

this paper, the authors introduce pioneering work called neutrosophic limits for real-sequences using the linear 

operator. The first improvement in the topic about neutrosophic limits was by F. Smarandache in his first edition of 

neutrosophic calculus [3], the second attempt to determine the concept of functional limits, introduce the binomial 

factorial theorem, and specify the indeterminate values of neutrosophic calculus were by Huda E. Khalid et al. [4,14]. 

There are many additional works by Huda E. Khalid concerning specifying the type of indeterminacy regarded to the 

(over, off, under) neutrosophic theory [5,6,7,10], also she worked to improve the concept of neutrosophic geometric 

programming [8,9,11,12,13], those previous works did not cover the limits and the continuity of real sequences which 

regards as the basic concepts of mathematical analysis. This paper represents the first attempt in this direction. 

2. Basic concepts 

2.1.  Definition [15] 

HP
Typewriter
Received: January 15, 2020     Revised: March 07, 2020     Accepted: April 01, 2020



International Journal of Neutrosophic Science (IJNS)                                                 Vol.  3, No. 1,  PP. 08 -13 , 2020 

 

DOI :10.5281/ZENODO.3732601   9 
 

Suppose � = (−∞,∞) , �� = [0,∞) and ��� = (0,∞), assume that � ∈ �� and let � = {�� ∈ R;  � = 1,2,. . . } be a 

sequence of real numbers. 

2.2. Definition [15] 

 (a) A real number ′′�′′ is called an r-limit of a sequence � (it is denoted by � = � − lim
�→�

��   �� � = � − ����) if for 

any � ∈ ���, the inequality |� − ��| < � + � is valid for almost all ��  , i.e., there is such � that for any � > �, we 

have |� − ��| < � + �. 

(b) A sequence � that has an � − ����� is called � − ���������� and it is denoted by �
          
�⎯� �� . Informally, � is an r-

limit of a sequence � for an arbitrarily small �, the distance between � and all but a finite number of elements from � 

is smaller than � + � . In other words, a number � is an � − ����� of a sequence � if for any � ∈ ���, almost all �� 

 belong to the interval (� − � − �,� + � + �). Hence, � becomes a measure of convergence for �. 

2.3. Compare Between Fuzzy and Neutrosophic Logics [1,7]  

The neutrosophic connections have a better truth-value definition approach to the real-world systems than the fuzzy 

connections.  They are defined on triple non-standard subsets included in the non-standard interval   ] 0� ,1� [,  while 

in fuzzy theory they are defined on the interval [0,1].  ����� is not limited to 1, but it’s aggrandized to a monad 

� (3�); similarly, �_���  maybe as low as �( 0� ), not as 0. A paradox, which is simultaneously true and false, cannot 

be evaluated in fuzzy logic, because the sum of the combinations should add up to 1, but it is allowed in neutrosophic 

theory because of the thought of contradictory in neutrosophic logic may be (1,1,1). In dissenting to the fuzzy theory, 

if an assumption <A> is t% true, doesn't necessarily mean it is (100 –  � ) % false. A better tactic is �% true, � %  

indeterminate, and � %  false, as in intuitionistic fuzzy logic, whereas �  ∈   �,�  ∈   �,�  ∈   �. More general, with   

� _ ��� ≤ 3� ��� � _ ��� ≥ 0� . 

3. Neutrosophic Limits of Sequences 

This section presents basic steps to define the neutrosophic limits for real sequences using linear operator. 

3.1.  The Behavior of limits in Neutrosophic Environment  

To put forward the concept of neutrosophic convergence, one must compare the differences between the fuzzy 

convergent in Definition 2.2  with the neutrosophic notion, the condition |� − ��| < � + � given in Definition 2.2 is 

not enough to maintain the neutrosophic convergent of any real number � to a sequence of real numbers �. In fact, we 

need two additional conditions related with �(�,��) < � + � . Any neutrosophic convergence need three joints, the 

first hinge is the neutrosophically convergent which is somehow likely fuzzy convergent but this indeed could not be 

enough to lead to neutrosophic convergence, the second hinge is  ���� (�) which must exist and satisfy 

|���� (�) − ��| > � + � , and ����(�) will be the final hinge. Logically with respect to the neutrosophic notion, 

���� (�) should satisfy the divergent from the sequence  � , while ����(�) is any real number that is neither convergent 

to � nor divergent, in other words, ����(�) is situated in the location between  � & ���� (�), so the distance between 

����(�)  and any element  �� ∈ � could not be less than � + � and could not be greater than � + � . Consequently, the 

distance between ����(�) and any element of � must be equal to  � + � and this only happens when ����(�) becomes 

as  sequence of neutralities say � = {��,��,��,. . . }, where ��  is  ���� (�) corresponding to the value of �� ∈ � . The 

above inspired us the following definition 

3.2.  Definition  
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 Let  � be a real number, �  a real number or an interval of real numbers, and c be a set of real numbers. Then � is 

called an � − ���������ℎ��  �����  of a sequence �, referred to as � = � − � lim
�→�

��  or denoted by � = � − � lim �, 

if for any � ∈ ��� the following inequalities are satisfied together:  

1- |� − ��| < � + �,     

2- |� − ��| > � + �     where � = ���� (�) [i.e. � is the opposite or negation of � ], 

3- |�� − ��| = � + �          where � = ���� (�) [i.e. here � = {��,��,��,. . . }, �� is  ���� (�) corresponding to the value 

of ��  ] also ���� (�) means neither  �  nor  �. 

Note that  �(�,��) < � + �  is valid for almost all ��  , (i.e. there is such � that for any � > �, we have �(�,�� ) < � +

� ). Also �(�,��) > � + �  is valid for almost all elements of �� ,( i.e. there is such � that for any � > �, we have 

�(�,��) > � + � ). Moreover, for the neutral of � there is a set of elements � = {��,��,��,. . . } that satisfies the 

inequality �(��,��) = � + � ( i.e. �� represents the ����(�) corresponding to the element �� ∈ � , �� represent the 

����(�) corresponding to the element �� ∈ � and so on). In this case, the sequence � is �-neutrosophically convergent 

to � and it is denoted by �
   �   
�⎯� ��  . 

In other words, the element � is  � − ������ of a sequence � if for an arbitrarily small � ∈ ��� , the distance between 

� and all but a finite number of elements from � is less than � + � , at the same time there is another element � (it 

could be an interval � = (��,��) ) that the distance between � and all but finite number of elements from � is greater 

than � + � , simultaneously for any element of � say �� there is a corresponding  element �� that the distance between 

�� & �� is equal to � + �. 

It is obvious that almost all �� belong to the interval (� − � − �,� + � + �), at the same time those almost all �� do 

not belong to the interval (� − � − �,� + � + �) while for each element �� ∈ � there is one and only one element of a 

sequence � satisfy �� = �� − � − �.  

4. Some Theoretical Results for Neutrosophic Limits  

This section presents some results on neutrosophic limits. 

4.1.  Theorem  

Let �,� be any two real numbers, and � = {��,��,��,. . . } be a set of real numbers, suppose that � ∈ ��, and let � =

{�� ∈ R;  � = 1,2,. . . } be a sequence of real numbers. If  � = 0 (i.e. � = 0 − � ����� �), then for any � ∈ ���  the 

following inequalities hold: 

|� − ��| < 2� 

|� − ��| < 2� 

Proof 

Apply � = 0 to the inequalities of Definition (3.2), we get 

|� − ��| < �                                                                                                                                                                     (1) 

|� − ��| > �                                                                                                                                                                        (2) 

|�� − ��| = �                                                                                                                                                                   (3) 
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From equality (3),  

 �� − �� = ∓� → �� = �� ± �                                                                                                                                         (4) 

Return to the inequality |� − ��| < � and by using the definition of absolute value, we will get 

0 < � − �� < � & −� < −(� − ��) < 0 

Applying (4) to the above inequalities, will get the following inequalities, 

0 < � − �� < 2� & −2� < −(� − ��) < 0, 

which imply that, |� − ��| < 2�, 

Track the same above way to prove that, 

|� − ��| < 2�. 

The proof is complete. 

4.2.  Theorem 

Let � = � − � lim � , then � = � − � lim �, at � − � = �� �ℎ��� ��  ∈ ���. 

Proof 

Since � = � − � lim �, the following inequalities are holding together: 

|� − ��| < � + �                                                                                                                                                                       (5) 

|� − ��| > � + �                                                                                                                                                            (6) 

|�� − ��| = � + �                                                                                                                                                            (7) 

Since � − � = ��, it follows that � > � and hence, � + � > � + � . But from inequality (5) we have, 

� + � > |� − ��| → |� − ��| < � + �. 

Therefore, the first inequality of Definition (3.2) is holds for �. 

From equality (7) we have, � = |�� − ��| − � 

⇒ � − �� = |�� − ��| − � ⇒ |�� − ��| = � − �� + �, 

Reset −�� + � as �� 

∴ |�� − ��| = � + ��, which means that the equality of Definition (3.2) is holding for q. 

For the second inequality of Definition (3.2), 

|� − ��| > � + � = � − �� + �,  

reset −�� + � �� �� ⇒ |� − ��| > � + ��. 

So, all restricted conditions of Definition (3.2) are holds for �. 
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∴ � = � − � lim �, 

4.3.  Note 

1- We can re-express Definition (3.2) in the following alternative way. 

 A number � represents the neutrosophic limit for sequence � if the triple (�,�,�) satisfies  

� = � − ���� �   (� �� ��  � − ������ �� � ��� ���� � ∈  �� ) 

� ≠ � − ���� �    (� �� ��� � − ������ �� �  ) 

�  ₦  � − ���� �     (� �� ����ℎ��  � − � ����� �� � ��� ���  � − � ����� �� � ). 

2- A sequence � is neutrosophically convergent to � if � has a neutrosophic limit to �. 

5. Numerical Example 

 

Let � = 1 and � = �
�

�
� where � is the set of all-natural numbers. Test if � is 2 − ������  of the sequence �. What about 

the convergence of � to � = 2.5 ? 

Solution: 

Here � = 1,� = 2,  and let  � = 0.1 , it is obvious that �(1,��) < � + � ⇒ �(1,��) < 2.1 for almost all elements of 

�. The value of � = ���� ( �) for � = 1,� = 2,� = 0.1 is � = (3.1,∞), while the sequence  � = ���� (�) =

{3.1,2.6,2.4333,… . . }, i.e. �(3.1,��) = 2.1⇒  �� = 1 which is the first element in �, �(2.6,��) = 2.1⇒ �� = 0.5. 

which is the second element in � , also �(2.4333,��) = 2.1⇒ �� = 0.3333 =
�

�
 the third element in �, it is clear that 

the sequence � = ���� (�) satisfies the equality |�� − ��| = � + � , here � + � = 2.1 . Consequently, � = 1 is  2 −

� ����� of  � (i.e. 1 = 2 − ���� �). But � = 2.5 is not 2 − ������ ��  � since at � = 0.1 this implies that �2.5 −
�

�
� >

2.1 for almost all values of � except � = 1 ��� � = 2, this is a contradict to the first inequality of Definition (3.2), (i.e. 

2.5 ≠ 2 − ���� �). 

6.  Conclusions   

It is well known that many processes of mathematics, such as differentiation and integration, demand the use of 
limits. This paper presented the definition of neutrosophic limits of real sequence � using the distance as a linear 
operator. Moreover, two theorems for the sake of the theoretical part of this paper were proved. The notions of this 
paper came as necessary first step to develop the notion of neutrosophic differentiation in the real space �  and the 
neutrosophic convergent. 
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Abstract  

In this paper, were using moving averages to pave the Neutrosophic time series. similar to use moving averages to 

pave the classical  time series . the difference, here were dealing with inaccurate data and values of the time series.in 

the Neutrosophic time series, each unit of time(t) corresponds to a range of values instead of a single value.  Finally, 

we find that the Neutrosophic time series provide an accurate description of the behavior of the series better than in 

the classic. Therefore, can predict the future of the series as accurately as possible. 

Keywords: Time Series, Neutrosophic logic, Neutrosophic Time Series, moving averages. 

1.Introduction 

A time series is a set of data arranged in chronological order, the data of this series are associate to each other in the 
general case, and this correlation gives us reliable future forecasts. also define it as a set of consecutive values 
(observations) that describe the evolution of a phenomenon over time. say about this time series that it is neutrosophic 
time series (NTS), if some or all of its values (its observations) are not explicitly specific, such as being a range of 
values instead of one value [9]. That is, successive observations "that describe the evolution of a phenomenon with 
time" , some or all of it is not precisely defined . 

The neutrosophic logic was established by F. Smarandache  in 1995 . It is a new branch of philosophy, presented as 
a generalization for the fuzzy logic [1] and as a generalization for the intuitionistic fuzzy logic [3]. Where presented 
it as a type of formal logic that aims at explaining the truth, falsehood, and neutral propositions .   

 The fundamental concepts of neutrosophic set, introduced by Smarandache in [4,5,6,8], Salama and  rafif et al. in 
[7,9,10,11,12,13,14,15,16,17], provides a new foundation for dealing with issues that have indeterminate data. The 
idea of basic neutrosophic statistics was developed by F. Smarandache [2]. The idea of inferential neutrosophic 
statistics and neutrosophic statistics was developed by Aslam [18,19]. Singh and  Hong presented the time series 
dataset in to Neutrosophic series  using three different memberships are truth-membership, indeterminacy-
membership and falsity-membership[23]. In this paper, the authors provide a method for paving the Neutrosophic 
time series using "forward, backward and central" moving averages. This is done similarly to that in classical logic, 
with the difference that dealing with a Neutrosophic series rather than a classic series.  

The aim of this paper is to demonstrate the method of "paving time series using moving averages" within the 
framework of the Neutrosophic logic.Where find that dealing with the Neutrosophic series is better than the classic 

HP
Typewriter
Received: January 03, 2020     Revised: March 07, 2020     Accepted: April 04, 2020



International Journal of Neutrosophic Science (IJNS)                                                   Vol. 3, No. 1,  PP. 14-20, 2020 

 

DOI: 10.5281/zenodo.3732611 
 

 15 

series , because the Neutrosophic series provides a more accurate and comprehensive description of the time series 
data set and thus describe the series behavior better than it is in the classic. Which provides a better environment and 
base for future forecasting. 

Moving averages mean dividing the series into a number of equal and overlapping divisions, and replacing each 
section with a number (mean, median, or others). 

2. The forward moving averages of a Neutosophic time series: 

  Symbolize the moving averages of a Neutrosophic time series with the symbol  𝑁𝑚!. 

If denote to the Neutrosophic time series with the symbol 𝑁𝑄!, the forward moving average is given by: 

𝑁𝑚! =
"
#	
[	∑ 𝑁𝑄%!&#'"

%(! ]            (2,1) 

Where n is the degree of the moving average. 

For example, for n = 3 we have: 

𝑁𝑚! =
"
#	
%	∑ 𝑁𝑄%!&'

%(! ( = "
#	
[𝑁𝑄! +𝑁𝑄!&" +𝑁𝑄!&']  

Therefore: 

𝑁𝑚" =
"
#	
[𝑁𝑄" +𝑁𝑄' +𝑁𝑄#]  

𝑁𝑚' =
"
#	
[𝑁𝑄' +𝑁𝑄# +𝑁𝑄)]  

And so on.. 

2.1. Example: 

Let's calculate the forward triple moving average for the following Neutrosophical time series, a series that represents 
the humidity recorded during seven days in Homs: 

𝑁𝑚! 𝑁𝑄! t 

="
#	
%	[50	, 52] + [51	,53] + [49	, 50]( = [50	, 51.67] [50 , 52] 1 

="
#	
%	[51	, 53] + [49	,50] + [55	, 58]( = [51.67	, 53.67] [51 , 53] 2 

=[54.67 , 56.67] [49 , 50] 3 

=[58 , 61] [55 , 58] 4 

=[61 , 64] [60 , 62] 5 

 [59 , 63] 6 

 [64 , 67] 7 
                                               Table (1): Calculating the forward moving average 
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3. Backward Moving Averages of a Neutrosophic Time Series: 

The Backward moving average for a Neutrosophic time series is given by the following relationship: 

𝑁𝑚! =
"
*	
[	∑ 𝑁𝑄%!+*&"

%(! ]      (3,1) 

Where n is the degree of the moving average. 

For example, for n = 3 we have: 

𝑁𝑚! =
"
#	
%	∑ 𝑁𝑄%!+'

%(! ( = "
#	
[𝑁𝑄! +𝑁𝑄!+" +𝑁𝑄!+']  

Therefore: 

𝑁𝑚# =
"
#	
[𝑁𝑄# +𝑁𝑄' +𝑁𝑄"]  

𝑁𝑚) =
"
#	
[𝑁𝑄) +𝑁𝑄# +𝑁𝑄']  

And so on.. 

3.1. Example: 

Let's calculate the Backward triple moving average for the Neutrosophical time series in the previous example (2.1): 

𝑁𝑚! 𝑁𝑄! t	

 [50 , 52] 1 

 [51 , 53] 2 

="
#	
%	[50	, 52] + [51	,53] + [49	, 50]( = [50	, 51.67] [49 , 50] 3 

="
#	
%	[51	, 53] + [49	,50] + [55	, 58]( = [51.67	, 53.67] [55 , 58] 4 

=[54.67 , 56.67] [60 , 62] 5 

=[58 , 61] [59 , 63] 6 

=[61 , 64] [64 , 67] 7 

                                               Table 2: Calculating the Backward moving average 

 

4. Central moving average of a Neutrosophic  time series: 

   The central moving average of a Neutrosophic time series is given by the following relationship: 

𝑁𝑚! =
"
*	
[	∑ 𝑁𝑄%

!&(*+") '⁄
%(!+(*+") '⁄ ]      (4,1) 

Where n is the degree of the moving average. 

For example, for n = 3 we have: 
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𝑁𝑚! =
"
#	
%	∑ 𝑁𝑄%!&"

%(!+" ( = "
#	
[𝑁𝑄!+" +𝑁𝑄! +𝑁𝑄!&"]  

Therefore: 

𝑁𝑚' =
"
#	
[𝑁𝑄" +𝑁𝑄' +𝑁𝑄#]  

𝑁𝑚# =
"
#	
[𝑁𝑄' +𝑁𝑄# +𝑁𝑄)]  

For example, for n = 5 we have: 

𝑁𝑚! =
"
/	
%	∑ 𝑁𝑄%!&'

%(!+' (  

And so on.. 

4.1. Example: 

Let's calculate the central triple moving average for the Neutrosophical time series in the previous example (2.1): 

 

𝑁𝑚! 𝑁𝑄! t	

 [50 , 52] 1 

 [50	, 51.67]= [51 , 53] 2 

 [51.67	, 53.67]= [49 , 50] 3 

=[54.67 , 56.67] [55 , 58] 4 

=[58 , 61] [60 , 62] 5 

=[61 , 64] [59 , 63] 6 

 [64 , 67] 7 

                                               Table 3: Calculating the central moving average 

 

5. Note: 

Through the previous three tables (1),(2),(3) we find that: 

• When using the forward moving average, lose from the end of the series a number of values equal to 

 (n-1) value, (in our example the degree of Moving average n = 3, so lost two values from the end of the 

series). 

 

• When using the backward moving average, lose from the beginning of the series a number of values equal to 

(n-1) value, (in our example the degree of Moving average n = 3, so lost two values from the beginning of 

the series). 
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• When using the central moving average, lose from the beginning of the series and at the end of it a number 

of values equal to (n-1) ⁄2 value, (in our example the degree of moving average n = 3, therefore lost a value 

from the beginning of the series and a value from the end of the series). 

 

 

6. Graphical representation of the time series: 

 

Figure 1. Before paving 

 

 

Figure 2. After paving 

§ conclude from Figures (1) and (2): That the graph line in the series after paving has become 
smoother than the graph line in series before paving . 
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§ The diagram of  the series did not merge  "before and after the paving " into a single diagram until 
the Neutrosophical values appear clearly and do not cause any confusion. 

 
§  Was used the forward moving average in the graph. 

 

7. Conclusion  

conclude that the use of the Neutrosophic time series and paving them using the moving averages method provides us 
with a complete and accurate description of the behavior of the time series, which facilitates the prediction process for 
the future of this series, as well as the prediction process is performed accurately and with the least possible errors. 

In the near future, we are looking forward to studying the seasonal, periodic and random changes of neutrosophic time 
series, as well as the method of eliminating the seasonal effect of neutrosophic time series. 
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Abstract: Real-human kind issues have distinct sort of ambiguity and among them; one of the critical troubles is 
solving the shortest path problem. In this contribution, we applied the developed score function and accuracy 
function of pentagonal neutrosophic number (PNN) into a shortage path selection problem. Further, a time 
dependent and heuristic cost function related shortest path algorithm is considered here in PNN area and solved it 
utilizing an influx of dissimilar rational & pioneer thinking. Lastly, estimation of total ideal time of the graph 
reflects the importance of this noble work. 

Keywords: PNN, Score and accuracy function, shortest path algorithm. 

Introduction: The perception of fuzzy set was first manifested by Professor Zadeh [1] in 1965 to grip the 
uncertain data. Since then, the conception of fuzziness plays a most important feature to solve engineering and 
statistical problem. As the researches goes on, researchers from different areas published several articles in this areas 
and they extended the idea of fuzzy set in various fields according to their need. Recently, researchers invented the 
perceptions of pentagonal [2], hexagonal [3], heptagonal [4] fuzzy numbers and they applied it in distinct areas like 
operation research based EOQ, EPQ model, game theory, transportation problem etc. Further, in 1986 Prof.  
Atanassov [5] demonstrated the idea of intuitionistic fuzzy set which was the extension of Zadeh’s fuzzy set. Here, 
he considered both membership and non-membership function instead of Zadeh’s membership function. After that, a 
basic question grows up into our mind that how can we construct the mathematical model to deal with the idea of 
vagueness? Different kinds of methodologies were devised by using the researchers to describe intricately the 
conceptions of some new unsure parameters and to handle these complex problems, the selection makers placed 
forth their numerous thoughts in disjunctive areas. Later, Smarandache [6] in 1998 developed the remarkable idea of 
neutrosophic set which contains three disjunctive membership function namely i) truth ii) hesitation and iii) falsity. 
Actually, this is the extension of intuitionistic fuzzy set and general Zadeh’s fuzzy set. As researches goes on, 
researchers introduced triangular [7], trapezoidal [8] and very recently pentagonal [9] neutrosophic set and its 
classification in different cases. Recently, de-neutrosophic technique of pentagonal neutrosophic number [10], score 
function based application [11] and MCGDM problem [12] has been illustrated by Chakraborty et. al. Also, 
Chakraborty [13, 14] manifested the concept of cylindrical neutrosophic number in research domain and applied it in 
graph theory and MCGDM problem. A few novel works [15-25] are also comes out recently in neutrosophic area 
which plays an essential role in distinct fields like MCGDM, mathematical modeling, neutro-algebra, cryptography, 
linear programming, and topological spaces. In this current area, Shortest path search problem is one of the 
important problem in neutrosophic domain. Recently, Kumar et al [26] developed neutrosophic shortest path, [27] 
interger valued neutrosophic shortest path, [28] Gaussian based shortest path and [29] weighted arc length based 
shortest path in neutrosophic area. Also, Broumi et al [30] manifested bellman shaped shortest path problem which 
plays a vital role in graph theory research.    

This paper deals with the conception of pentagonal neutrosophic number in different aspect. Nowadays, researchers 
are very much interested in doing shortest path problem in artificial intelligence problem in PNN environment. Here, 
we consider a shortest path problem in PNN area where we utilize the idea of our developed score and accuracy 
function for solving the problem. 
  
1.1 Motivation 

The idea of vagueness performs an important position in construction of mathematical modeling, economic 
problem and social real lifestyles hassle and so on. If, anyone consider a shortest path problem in PNN area then 
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how he/she will managed it and solve it? How we can relate PNN and crispificaton result ? From this aspect we 
actually try to develop this research article.  
1.2 Novelties 
Only some of the articles are published in PNN area till now. Although it can be applied in many fields and compute 
the results there. Our main focus is to apply the established PNN number in different areas. 
 (i) Develop score and accuracy function.  
(ii) Application of our established score function in shortest path problem.  

 

2. Preliminaries 

2.1 Definition: Fuzzy Set: [1] Set M�  called as a fuzzy set when represented by the pair �x, μ�� (x)� and thus stated as 

	M� = ��x, μ�� (x)�: x ∈ X, μ��(X) ∈ [0,1]� where � ∈ the	crisp	set	� and μ�� (X) ∈ the	interval	[0,1]. 

2.2 Definition: Intuitionistic Fuzzy Set (IFS): [5] An fuzzy set [2] ��� in the universal discourse �, symbolized 

widely by � is referred as  Intuitionistic set if	��� = {〈�; [�(�), �(�)]〉 ⋮ � ∈ �}, where �(�): � → [0,1] is termed as 

the certainty membership function which specify the degree of confidence, �(�): � → [0,1] is termed as the 

uncertainty membership function which specify the degree of indistinctness. 

�(�), �(�) exhibits the following the relation  0 ≤ �(�) + �(�) ≤ 1. 

2.3 Definition: Neutrosophic Set: [6] A set ���� in the universal discourse �, figuratively represented by � named 

as a neutrosophic set if ���� = �〈�; ������
(�), �����

(�), σ����
(�)�〉 ⋮ � ∈ ��, where �����

(�): � →] − 0,1 + [ is 

stated as the truthness function, which designates the degree of confidence, �����
(�): � →] − 0,1 + [ is stated as the 

hesitation function, which designates the degree of indistinctness, and σ����
(�): � →] − 0,1 + [ is stated as the 

falseness function, which designates the degree of deceptiveness on the decision taken by the decision maker. 
�����

(�), �����
(�)	&	σ����

(�)	displays the following relation: 
−0 ≤ ���	{�����

(�)} + ���	{�����
(�)} + Sup	{σ����

(�)} ≤ 3 + 

2.4 Definition: Single-Valued Neutrosophic Set: [7] A Neutrosophic set ���� in the definition 2.3 is assumed as a 

Single-Valued Neutrosophic Set �����
�� if � is a single-valued independent variable. ����� =

�〈�; �������
(�), ������

(�), σ�����
(�)�〉 ⋮ � ∈ ��, where ������

(�), ������
(�)	&	σ�����

(�) signified the notion of 

correct, indefinite and incorrect memberships function respectively.If three points	��, ��	&	��	exists for 

which	������
(��) = 1, ������

(��) = 1	&	σ�����
(��) = 1, then the  ����

�is termed neut-normal.  

���� �	is called neut-convex indicating that ���� �  is a subset of a real line by meeting the resulting conditions:  
i. ������

〈��� + (1 − �)��〉 ≥ ���〈������
(��), ������

(��)〉 

ii. ������
〈��� + (1 − �)��〉 ≤ ��� 〈������

(��), ������
(��)〉 

iii. 	σ�����
〈��� + (1 − �)��〉 ≤ ��� 〈	σ�����

(��), 	σ�����
(��)〉 

where	��	&	�� ∈ ℝ 	��d	� ∈ [0,1] 
2.5 Definition: Single-Valued Pentagonal Neutrosophic Number: [9] A Single-Valued Pentagonal Neutrosophic 

Number ���� is defined as, 	��� = 〈[(��, ��, ��, ��, ��); �], [(��, ��, ��, ��, ��); �], [(��, ��, ��, ��, ��); �]〉, 

where	�, �, � ∈ [0,1]. The truthness function(����): ℝ → [0, �], the indeterminacy function (����): ℝ → [�, 1] and the 

falsity function (����): ℝ → [�, 1] are given as: 

����(�) =

⎩
⎪
⎨

⎪
⎧
������(�)

������(�)
�

������(�)

�� ≤ � < ��

�� ≤ � < ��

� = ��

�� ≤ � < ��

������(�)�� ≤ � < ��

0						��ℎ������	

,			����(�) =

⎩
⎪
⎨

⎪
⎧
������(�)

������(�)

�
������(�)

�� ≤ � < ��

�� ≤ � < ��

� = ��

�� ≤ � < ��

������(�)�� ≤ � < ��

1					��ℎ������	
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����(�) =

⎩
⎪
⎨

⎪
⎧
������(�)

������(�)

�
������(�)

�� ≤ � < ��

�� ≤ � < ��

� = ��

�� ≤ � < ��

������(�)�� ≤ � < ��

1					��ℎ������	

 

3. Score Function: Score function actually relates any uncertain number and the crisp number in our real world. A 

score function is defined and developed in PNN ����� = (��, ��, ��, ��, ��; �, �, �) as, 

Here, (1 + �)	is the beneficiary portions of PNN membership function and  (1 − � − �) is the hesitation portions of 

PNN membership function. Also, we have the mean of the components as, 
(��������������)

�
  

Thus, Score function is described as ������ =
�

��
(�� + �� + �� +�� + ��) 	× (2 + � − � − �),  

Accuracy function is described as ������ =
�

��
(�� + �� + �� + �� + ��)	× (2 + � + � + �) 

 
3.1 Relationship between any two PNN: 
 
Let us consider any two PNN defined as follows 
����� = (�����, �����, �����)	,����� = (�����, �����, �����) 

1) ������ > ������	,����� > ����� 
2)  ������ < ������	,����� < ����� 

3) ������ = ������	,����� = �����  
 
                                    Then, if  ������ > ��	,����� > ����� 

       ������ < ������	,����� < ����� 

      ������ = ������	,����� = ����� 

4. Shortest Path Search Algorithm under PNN Environment: 
 
Here we consider a problem in PNN environment to compute the shortest path in a very simple way. Shortest path 
Search Algorithm is one of the best and popular skills used in path finding and graph traversals. Many games and 
web- based graphs are used here to compute the shortest path very efficiently. This Algorithm finds the shortest path 
through the search space using the hemistich function. It uses a best first search graph algorithm and finds a least 
cost path from current node to destination node. Consider a weighted graph in PNN area [10] whose weights and 
heuristic cost function are given as a pentagonal neutrosophic number with multiple nodes and we want to reach the 
target node to starting node as quick as possible. It defined a heuristic cost function �(�) = �(�) + 	ℎ(�) where 
�(�)= estimated cost of the cheapest solution, �(�)= cost to reach node � from the starting position, ℎ(�) = 
estimated heuristic cost. Time and cost these are hesitation factors in case of real life problem. Here we consider the 
functions �(�), ℎ(�) are both pentagonal neutrosophic number. This algorithm expands less search tree and 
computes the optimal result faster. 
 

4.1 Algorithm 

Step1: Convert all the PNN into crisp number using the established score value Section (3). 

Step2: Placed the starting node to open list 

Step 3: Check whether the open list is empty or not, if the list is empty then stop the process. 

Step 4: choose the node from the open list, which has the least value of estimation function	�(�), if node "�" is 
target node then back to success and stop.  

Step 5: Expand node “n” and produce all of its successes and put “n” in the closed list. 

 For each successes “n”, check whether “n” is already in the open or closed list. 
 If not then compute evaluation function for “n” and placed it into open list.  
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Step 6: Else if node “n” is already in open and closed then it should be attached to the back pointer which reflects 
the lowest �(��)	value. 

Step 7: Stop. 

 

4.2  Flowchart: 

 

4.3 Illustrative Example: Find the shortest path from A to F of the following graph in PNN environment.  

Edges Optimistic Time   

Stage 
 

Heuristic Value �� < (2,3,4,5,6; 0.4,0.5,0.6) > 

�� < (3,4,5,6,7; 0.6,0.3,0.4) >  
A 

 
< (0.3,0.7,1.2,1.5,2; 0.6,0.5,0.3) > 

�� < (1,2,2.5,3,3.5; 0.6,0.4,0.5) > B < (0.5,0.8,1.4,2,2.4; 0.6,0.7,0.4) > 

�� < (0,0.5,1,3,5; 0.3,0.2,0.6) >  
C 

 
< (0.2,0.4,0.6,0.8,1; 0.8,0.6,0.5) > 

�� < (1.5,2,2.5,3,4.5; 0.3,0.4,0.3) >  
D 

 
< (0.8,1.3,1.8,2.4,3; 0.3,0.4,0.5) > 

�� < (2,3,3.5,4,4.5; 0.7,0.2,0.4) > E < (0.7,1.5,2,2.5,3; 0.7,0.4,0.4) > 
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�� < (3,3.5,4,4.5,5; 0.6,0.2,0.3) >  
F 

 
< (0.6,0.9,1.3,1.8,2.4; 0.5,0.2,0.3) > 

�� < (0.3,0.4,0.45,0.5,0.6; 0.6,0.3,0.4) >    

Connection �� �� �� �� �� �� �� �� 

Edges A-B B-C C-D B-E E-D A-F D-F E-F 

 

Step-1   Network Diagram:                                                                        

                                                                       ��        �� 

                                                                                                                                 

             ��                                         ��                                             �� 

                     

                                                                                          ��                         ��                      [Figure-4.3.1] 

                                                �� 

            

Step-2  Crispification using the established Score function (3) 

Edges Optimistic Time   
Stage 

 
Heuristic Value 

�� 1.73 

�� 2.83 A 0.68 

�� 1.36 B 0.71 

�� 0.95 C 0.34 

�� 1.44 D 0.87 

�� 2.38 E 1.23 

�� 2.80 F 0.93 

�� 0.28  

Step-3 Here, A is the starting node  

A→ �(�) = �(�) + 	ℎ(�) = 0 + 0.68 = 0.68 

A→B �(�) = 1.73 + 0.71 = 2.44 

A→F �(�) = 2.38 + 0.93 = 3.31	(hold) 

 

 

   A 

  B 

  F 

   C 

  E 

   D 
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                                                                   ��        �� 

                                                                                                                                 

             ��                                         ��                                             �� 

                     

                                                                                           ��                        ��                       [Figure-4.3.2] 

                                                �� (Hold) 

Step-4           

A→B→ � �(�) = 1.73 + 2.83 + 0.34 = 4.9	(hold) 

A→B→ � �(�) = 1.73 + 0.95 + 1.23 = 3.91	 

 

                                                                      �� (Hold)       �� 

                                                                                                                                 

             ��                                         ��                                             �� 

                     

                                                                                             ��                               ��           [Figure-4.3.3] 

                                                �� (Hold) 

Step-5            

A→B→ � → � �(�) = 1.73 + 0.95 + 0.28 + 0.93 = 3.89	 

A→B→ � → � �(�) = 1.73 + 0.95 + 1.44 + 0.87 = 4.99	(ℎ���)	 

 

                                                                      �� (Hold)       �� 

                                                                                                                                 

             ��                                         ��                                             �� 

                     

                                                                                         ��                           ��                     [Figure-4.3.4] 

                                                �� (Hold) 

 

   A 

  B 

  F 

   C 

  E 

   D 

   A 

  B 

  F 

   C 

  E 

   D 

   A 

  B 

  F 

   C 

  E 

   D 
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SO, the final shortest path is A→B→ � → � and optimal cost is = 2.96 unit. 

5. Conclusion and future research scope 

The concept of PNN has an adequate scope of utilization in various studies in different domain. In this research 

article, we strongly erect the perception of score and accuracy function from different aspects. Additionally, we 

consider a shortest path problem in PNN environment and resolve the problem applying the idea of score function. 

Since, there may be no such articles is until now hooked up in PNN area, for this reason we cannot done comparison 

study of our work with the other established methods. 

Further, researchers can immensely apply this idea of neutrosophic number in numerous flourishing research fields 

like engineering problem, mobile computing problems, diagnoses problem, realistic mathematical modeling, social 

media problem etc.  
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Abstract  

      In this paper, the primarily focus is to extend the concept of Octagonal Neutrosophic Numbers (ONN) since these 
numbers provide a wide range of applications while dealing with more fluctuations in the linguistic environment. 
Firstly, mathematical notions and definitions of Linear, Symmetric and Asymmetric types are proposed. Secondly,   
𝛼 − 𝐶𝑢𝑡 is defined. Finally, a case study is done by using the TOPSIS technique of MCDM.  

Keywords: Accuracy Function, Neutrosophic Numbers, Octagonal Neutrosophic Numbers (ONN), MCDM, 
TOPSIS. 

 

1.Introduction  

Researchers and mathematicians all over the world developed important analytical skills and problem-solving 
strategies to assess a broad range of issues in human resource, medicine, selection problems etc. But the most 
challenging issues were related to the problems which were more qualitative rather than quantitative in nature.  

Thus, the need to handle uncertain situations and vagueness in practical as well as theoretical problems led the 
researchers to the development of theories like fuzzy, neutrosophic set theory.  The neutrosophic sets (NSs) [1] reflect 
on the truth membership, indeterminacy membership, and falsity membership concurrently, which is more practical 
and adequate than FSs and IFSs in selection problems, that are uncertain, incomplete, and inconsistent.  

The idea of triangular, trapezoidal and pentagonal neutrosophic numbers having membership function which are 
dependent and independent was given by [2-4]. Single-valued neutrosophic sets are an extension of NSs which were 
introduced by Wang et al. [8]. Ye [9] introduced, simplified neutrosophic sets, and Peng et al. [8,9] define their novel 
operations and aggregation operators. Finally, there are different extensions of NSs, such as interval neutrosophic set 
[10], bipolar neutrosophic sets [11], and multi-valued neutrosophic sets [12].  

Smarandache and many other researchers [13-20] also discussed the various extension of neutrosophic sets in 
TOPSIS and MCDM. Saqlain et.al. [21] proposed a new algorithm along with a new decision-making environment. 
Many other novel approaches were also used by many researches [22-42] in decision makings. Some Fundamental 
properties and applications of triangular and pentagonal neutrosophic numbers are proposed by [43-47]. With the 
concept of octagonal neutrosophic numbers, decision maker can deal with more fluctuations because they have more 
edges as compared to pentagonal numbers. In this current epoch, the neutrosophic numbers can be converted into 
fuzzy numbers and the ability to deal with fluctuations will be increased. 

HP
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1.1 Motivation 

 
Different researchers had already published a lot of articles on neutrosophic arena, as they applied and extended 

this concept in different fields such as MCDM. The conception on neutrosophic octagonal number is totally new. An 
important issue is that if someone wants to take Linear ONN, then what should its representation be? How should we 
define membership, indeterminacy and non-membership functions? From this point of view, ONN is a good choice 
for a decision maker in a practical scenario.  

 
1.2       The Paper Presentation 

 
In this paper,  the concept of Octagonal Neutrosophic Numbers ONN is extended. 

• Formulation of Linear, Non-Linear, Linear symmetric, Non-Linear symmetric Octagonal Neutrosophic 
Numbers. 

• Defining the 𝛼 − 𝑐𝑢𝑡 of each type. 
• A case study of personal selection. 

 
1.3 Structure of Paper   

The article is structured as shown in the following Figure. 

 

Figure 1: Pictorial view for the structure of the article 

 

Section 1
• Introduction

Section 2
• Mathematical Definitions  

Section 3

• Linear Octagonal Neutrosophic Number, its type, 
and 𝛼 − 𝑐𝑢𝑡𝑠

Section 4
• Case Study of Candidate Selection

Section 5
• Conclusion
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Figure 2. Flow chart of the three types, fuzzy, Intuitionistic fuzzy,and neutrosophic logic numbers 
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2. Mathematical Definitions     

In this section, we present necessary definitions that are used throughout the paper. 

Definition 2.1: Neutrosophic Set [1]: A set ṅ𝔸!   is neutrosophic if ṅ𝔸!={〈𝑥; [𝑇ṅ𝔸!(𝑥), 𝐼	ṅ𝔸!(𝑥),𝐹ṅ𝔸!(𝑥)]〉: 𝑥 ∈ X} , 
where 𝑇ṅ𝔸!(𝑥): → [0,1] be a truth membership function 𝐼	ṅ𝔸!(𝑥) be a indeterminacy membership function and 𝐹ṅ𝔸!(𝑥) 
is falsity membership function 𝑇ṅ𝔸!(𝑥), 𝐼	ṅ𝔸!(𝑥),𝐹ṅ𝔸!(𝑥) exhibits the following relation: 

0# ≤ 𝑇ṅ𝔸$ (𝑥), 𝐼	ṅ𝔸$ (𝑥),𝐹ṅ𝔸$ (𝑥) ≤ 3% 

Definition 2.2: Triangular Neutrosophic Number [2]: Triangular single value neutrosophic number is given as 
𝒜𝑁𝑒𝑢⃛́ =(𝑝1,̇ 𝑝2,̈ 𝑝3⃛: 𝑟1,́ 𝑟2,̀ 𝑟31 ) whose truth, indeterminacy and falsity membership is given as: 

𝒯𝒜̇𝑁𝑒𝑢(𝑥)=	

⎩
⎪
⎨

⎪
⎧
-#.$́0

.$́#.%̀
			𝑓𝑜𝑟	𝑝2 ≤ 𝑥 < 𝑝3̀E

1			𝑤ℎ𝑒𝑛		𝑥 = 𝑝3̀
.&#-́0

.&́#.%̀
		𝑓𝑜𝑟		𝑝3 < 𝑥 ≤ 𝑝4̀E

0			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

ℐ𝒜̇𝑁𝑒𝑢(𝑥)=	

⎩
⎪
⎨

⎪
⎧
5%́#-0

5%́#5$̀
			𝑓𝑜𝑟	𝑞2 ≤ 𝑥 < 𝑞3̀E

0			𝑤ℎ𝑒𝑛		𝑥 = 𝑞3̀
-#5%́0

5&́#5%̀
		𝑓𝑜𝑟		𝑞3 < 𝑥 ≤ 𝑞4̀E

1			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

ℱ𝒜̇𝑁𝑒𝑢(𝑥)=	

⎩
⎪
⎨

⎪
⎧
-#.$́0

.$́#.%̀
			𝑓𝑜𝑟	𝑝2 ≤ 𝑥 < 𝑝3̀E

1			𝑤ℎ𝑒𝑛		𝑥 = 𝑝3̀
.&#-́0

.&́#.%̀
		𝑓𝑜𝑟		𝑝3 < 𝑥 ≤ 𝑝4̀E

0			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Where 0≤	𝒯𝒜̇'()(𝑥)+	ℐ𝒜̇'()(𝑥)+	ℱ𝒜̇'()(𝑥)≤ 3, x∈ 𝒜789E  . 

And the parametric foam of this type is (𝒜𝑁𝑒𝑢́ )𝛂,β,γ$ =[𝒯𝑁𝑒𝑢1́ (𝛂),	𝒯78930 (𝛂);	ℐ78920 (β),	ℐ78930 (β);	ℱ78920 (γ),	ℱ78930 (γ)], 
where, 𝒯𝑁𝑒𝑢1́ (𝛂)=𝒑𝟏́+	𝛂(𝒑𝟐́ − 𝒑𝟏̀) , 𝒯𝑁𝑒𝑢2́ (𝛂)=𝒑𝟑 −́ 	𝛂(𝒑𝟑́ − 𝒑𝟐̀) , ℐ𝑁𝑒𝑢1́ (β)=	𝒒𝟐́ − β	(𝒒𝟐́ − 𝒒𝟏̀) , 
ℐ𝑁𝑒𝑢2́ (β)=	𝒒𝟐́+β	(𝒒𝟑́ − 𝒒𝟐̀) ,ℱ𝑁𝑒𝑢1́ (γ)=	𝒓𝟐́ − γ	(𝒓𝟐́ − 𝒓𝟏̀)  , ℱ𝑁𝑒𝑢1́ (γ)=	𝒓𝟐́ + γ	(𝒓𝟑́ − 𝒓𝟐̀) , Here 0<	𝛂 ≤ 1, 0<	β ≤ 1, 0<	γ	 
≤ 1 and 0<𝛂 + 	β + 	γ	 ≤ 3 

Definition 2.3: Trapezoidal Neutrosophic Number [3]:  Let 𝒳E  be the universe of discourse, a trapezoidal 
neutrosophic set 𝒜YZ  in 𝒳E  is defined by: 𝒩\E ={〈𝒳E , 𝒯Z𝒩0 (𝒳), ℐ𝒩0 (𝒳), ℱE𝒩0 (𝒳)〉|𝑥̀∈𝒳E }, where 𝒯Z𝒩0 (𝒳) ⊂[0,1], ℐ𝒩0 (𝒳)⊂[0,1], 

ℱE𝒩0 (𝒳)⊂[0,1] are consider as three trapezoidal number,  𝒯Z𝒩0 (𝒳)=`𝓉E𝒩B
2 (𝑥̀), 𝓉E𝒩B

3 (𝑥̀), 𝓉E𝒩B
4 (𝑥̀), 𝓉E𝒩B

C (𝑥̀)b:𝒳E⟼[0,1],  

ℐZ𝒩0 (𝒳)=`𝚤́𝒩B
2 (𝑥̀), 𝚤́𝒩B

3 (𝑥̀), 𝚤́𝒩B
4 (𝑥̀), 𝑖𝒩B

C (𝑥̀)b:𝒳E⟼[0,1], ℱZ𝒩0 (𝒳)=`𝑓E𝒩B
2 (𝑥̀), 𝑓𝒩B

3 (𝑥̀), 𝑓E𝒩B
4 (𝑥̀), 𝑓𝒩B

C (𝑥̀)b:𝒳E⟼[0,1] with the 

condition 0 ≤𝓉E𝒩B
C (𝑥̀) + 𝑖𝒩B

C (𝑥̀) + 𝑓𝒩B
C (𝑥̀) ≤ 3,	𝑥̀∈𝒳E . 

Definition 2.4: Pentagonal Neutrosophic Number [4]: Pentagonal neutrosophic number (𝑆23 ) for single valued is 

defined as 𝑆23=〈4𝓂1̇ , 𝓃1̈ , 𝑜15 , 𝓅13 , 𝓆16 ; 𝛑7, 4𝓂2̇ , 𝓃2̈ , 𝑜25 , 𝓅23 , 𝓆26 ; ϼ7, 4𝓂3̇ , 𝓃3̈, 𝑜35 , 𝓅33 , 𝓆36 ; ϭ7〉 where 𝛑,	ϼ,	ϭ∈[0,1]. The truth 
membership function (𝒯́𝑠):ℝ⟼[0,	𝛑́], the indeterminacy membership function (ℐ́𝑠):ℝ⟼[	ϼ́, 𝟏] and falsity membership 
function (ℱ́𝑠):ℝ⟼[	ϭ́, 𝟏] and given as: 
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𝒯ŝ(x)=

⎩
⎪⎪
⎨

⎪⎪
⎧𝒯ŝt1(x)	𝓂

1̇ ≤ 𝑥 < 𝑛1̇

𝒯ŝt2(x)	𝑛1̇ ≤ 𝑥 < 01̇

𝜇																	𝑥 = 𝑜15

𝒯ŝt1(x)	𝑜1̇ ≤ 𝑥 < 𝓅1̇

𝒯ŝt1(x)	𝓅1̇ ≤ 𝑥 < 𝓆1̇
0								𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                   ℐŝ(x)=

⎩
⎪⎪
⎨

⎪⎪
⎧ℐŝt1(x)	𝓂

2̇ ≤ 𝑥 < 𝑛2̇

ℐŝt2(x)	𝑛2̇ ≤ 𝑥 < 02̇

𝛳																	𝑥 = 𝑜25
ℐŝt1(x)	𝑜2̇ ≤ 𝑥 < 𝓅2̇

ℐŝt1(x)	𝓅2̇ ≤ 𝑥 < 𝓆2̇
1								𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

           εŝ(x)=

⎩
⎪⎪
⎨

⎪⎪
⎧εŝt1(x)	𝓂

3̇ ≤ 𝑥 < 𝑛3̇

εŝt2(x)	𝑛3̇ ≤ 𝑥 < 03̇

𝛳																	𝑥 = 𝑜35
εŝt1(x)	𝑜3̇ ≤ 𝑥 < 𝓅3̇

εŝt1(x)	𝓅3̇ ≤ 𝑥 < 𝓆3̇
1								𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

       

Where 〈4𝓂1̇ < 𝓃1 <̈ 𝑜15 < 𝓅1̇ < 𝓆16 ; 𝛑7, 4𝓂2̇ < 𝓃2̈ < 𝑜25 < 𝓅23 < 𝓆26 ; ϼ7, 4𝓂3̇ < 𝓃3̈ < 𝑜35 < 𝓅33 < 𝓆36 ; ϭ7〉 

Definition 2.5: Octagonal Neutrosophic Number [ONN] A Neutrosophic Number denoted by	𝑆s is defined as, 

𝑆==〈[(	Ω, ⴄ, ᶓ, ⱴ, ε,Ϗ, ό, з): Ө], 4>Ω1, ⴄ	1, ᶓ1, ⱴ1, ε1,Ϗ1, ό1, з1?: Ψ7, [>Ω2, ⴄ	2, ᶓ2, ⱴ2, ε2,Ϗ2, ό2, з2?: ծ]	〉 Where Ө,	Ψ ,	ծ 
∈ [0,1].  

The truth membership function (Өŝ): ℝ→ [	0,1],  

the indeterminacy membership function (Ψŝ):ℝ→ [ᵹ	,1],  

and the falsity membership function (ϒŝ):ℝ→ [ծ		,1] are given as follows: 

Өŝ(x)=

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
Өŝ0(x)									Ω ≤ 𝑥 < ⴄ	
Өŝ1(x)									ⴄ ≤ 	𝑥 < ᶓ
Өŝ2(x)										ᶓ ≤ 	𝑥 < ⱴ
Өŝ3(x)									ⱴ ≤ 	𝑥 < ε
б																		𝑥 = ε

Өŝ3(x)									ε ≤ 	𝑥 < Ϗ
Өŝ2(x)								Ϗ ≤ 	𝑥 < ό
Өŝ1(x)								ό ≤ 	𝑥 < з
0																𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

   Ψŝ(x)=

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧Ψŝ0(x)									Ω1 ≤ 𝑥 < ⴄ	1

Ψŝ1(x)										ⴄ	1 ≤ 	𝑥 < ᶓ1

Ψŝ2(x)										ᶓ1 ≤ 	𝑥 < ⱴ1

Ψŝ3(x)									ⱴ1 ≤ 	𝑥 < ε1

ᵹ																					𝑥 = ε1

Ψŝ3(x)									ε1 ≤ 	𝑥 < Ϗ1

Ψŝ2(x)								Ϗ1 ≤ 	𝑥 < 	 ό1

Ψŝ1(x)								ό1 ≤ 	𝑥 < з1
1																				𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

    ϒŝ(x)=

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ϒŝ0

(x)									Ω2 ≤ 𝑥 < ⴄ	2

ϒŝ1(x)									ⴄ	2 ≤ 	𝑥 < ᶓ2

ϒŝ2(x)										ᶓ2 ≤ 	𝑥 < ⱴ2

ϒŝ3(x)									ⱴ2 ≤ 	𝑥 < ε2

ծ																				𝑥 = ε2

ϒŝ3(x)									ε2 ≤ 	𝑥 < Ϗ2

ϒŝ2(x)								Ϗ2 ≤ 	𝑥 < 	 ό2

ϒŝ1(x)								ό2 ≤ 	𝑥 < з2

1																		𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

   

Where 𝑆==〈[(	Ω < ⴄ < ᶓ < ⱴ < ε < Ϗ < ό < з): Ө], 4>Ω1 < ⴄ	1 < ᶓ1 < ⱴ1 < ε1 < Ϗ1 < ό1 < з1?: Ψ7, [>Ω2 <
ⴄ	2 < ᶓ2 < ⱴ2 < ε2 < Ϗ2 < ό2 < з2?: ծ]	〉 

3. The definition of [LONN], Representation and Examples had been Presented  

In this section, we discuss its representations, and investigate its properties. 

Definition 3.1: Linear Octagonal Neutrosophic Number [LONN] 

Let 𝒜Z  = (	Ω,ⴄ, ᶓ, ⱴ, ε̇ ,Ϗ, ό, з) be a linear octagonal neutrosophic number.It should satisfy the following conditions: 

1. 𝜇𝒜̇(𝔁) is continuous function between the interval Ω to з for truthiness. 
2. 𝜇𝒜̈(𝔁) is a non-increasing continuous function between the interval of Ω	 to ᶓ for truthiness. 
3. 𝜇𝒜I(𝔁) is a non-decreasing continuous function between the interval ᶓ to з	for truthiness. 
4. 𝜇𝒜̇(𝔁) is continuous function between the interval Ω2 to з2	 for falsity.  
5. 𝜇𝒜̈(𝔁) is a non-decreasing continuous function between the interval of Ω2 to ᶓ2 for falsity. 
6. 𝜇𝒜I(𝔁) is a non-increasing continuous function between the interval of ᶓ2 to з2		 for falsity. 
7. 𝜇𝒜̇(𝔁) is continuous function between the interval Ω3 to з3 for indeterminacy.  
8. 𝜇𝒜̈(𝔁) is a non-increasing continuous function between the interval of Ω3 to ᶓ3 for indeterminacy. 
9. 𝜇𝒜I(𝔁) is a non-decreasing continuous function between the interval of ᶓ2 to з3 for indeterminacy. 
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3.2 Linear ONN with symmetry  

Let 𝒜̇J𝒮= (Ω,ⴄ, ᶓ, ⱴ, ε̇ ,Ϗ, ό, з) be a linear ONN with the following membership functions. 

Truthiness=𝑇J(𝓧) =	

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ 0																																														𝓍 < Ω̇
𝓀 `𝓍#M

ⴄ#M
b 																															Ω ≤ 𝓍 ≤ ⴄ

𝓀																																				ⴄ ≤ 𝓍 ≤ ᶓ
𝓀 + (1 − 𝓀) `𝓍#ᶓ

ⱴ#ᶓ
b 																ᶓ ≤ 𝓍 ≤ ⱴ

1																																								ⱴ ≤ 𝓍 ≤ ε
𝓀 + (1 − 𝓀) `Ϗ#𝓍

Ϗ#P
b 															ε	 ≤ 𝓍 ≤ Ϗ	

𝓀																																			Ϗ ≤ 𝓍 ≤ ό
𝓀 `з#𝓍

з#ό
b 																																		ό ≤ 𝓍 ≤ з		

0																																													𝓍 > з

 

With 0<𝓀<1                                  

Falsity =𝐹J(𝓧) =	

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ 0																																													𝓍 < Ω2̇

𝓀 ` 𝓍#M
$

ⴄ$#M$
b																															Ω2 ≤ 𝓍 ≤ ⴄ2

𝓀																																			ⴄ2 ≤ 𝓍 ≤ ᶓ2

𝓀 + (1 − 𝓀) ` 𝓍#ᶓ
$

ⱴ$#ᶓ$
b																ᶓ2 ≤ 𝓍 ≤ ⱴ2

1																																									ⱴ2 ≤ 𝓍 ≤ ε2

𝓀 + (1 − 𝓀) ` Ϗ
$#𝓍

Ϗ$#P$
b															ε2 	≤ 𝓍 ≤ Ϗ2	

𝓀																																						Ϗ2 ≤ 𝓍 ≤ ό2

𝓀` з	
$#𝓍

з	$#ό$
b																																		ό2 ≤ 𝓍 ≤ з	2	

0																																																		𝓍 > з	2

 

Indeterminacy =𝐼J(𝓧) =	

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ 0																																												𝓍 < Ω3̇

𝓀 ` 𝓍#M
%

ⴄ%#M%
b																															Ω3 ≤ 𝓍 ≤ ⴄ3

𝓀																																			ⴄ3 ≤ 𝓍 ≤ ᶓ3

𝓀 + (1 − 𝓀) ` 𝓍#ᶓ
%

ⱴ%#ᶓ%
b																ᶓ3 ≤ 𝓍 ≤ ⱴ3

1																																									ⱴ3 ≤ 𝓍 ≤ ε3

𝓀 + (1 − 𝓀) ` Ϗ
%#𝓍

Ϗ%#P%
b															ε3 	≤ 𝓍 ≤ Ϗ3	

𝓀																																							Ϗ3 ≤ 𝓍 ≤ ό3

𝓀 ` з	
%#𝓍

з	%#ό%
b																																		ό3 ≤ 𝓍 ≤ з	3	

0																																																			𝓍 > з	3

 

3.3 𝛂 − 𝐜𝐮𝐭	́  of Linear ONN with symmetry:   

 α − cut	́  can be express as:  𝒜Ṫ = {𝔁 ∈ 𝒳�|𝑇J(𝓧), 𝐼J(𝓧), 𝐹J(𝓧) ≥ ά} 
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Truthiness= 𝑇J(𝓧) 	=

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ 𝒜2J0 (ὰ) = Ω + T

U$0
(ⴄ− Ω)𝑓𝑜𝑟	ά ∈ [ό, 𝑏2E ]Z 	

𝒜3J0 (ὰ) = ⴄ+ 2#T
2#U%0

(ᶓ − ⴄ)	𝑓𝑜𝑟	ά ∈ [𝑏3, 1E ]Z

𝒜4J0 (ὰ) = ᶓ + 2#T
2#U&0

(ⱴ − ᶓ)	𝑓𝑜𝑟	ά ∈ [𝑏4, 1E ]Z

𝒜CJ0 (ὰ) = ⱴ + 2#T
2#U*0

(ε − ⱴ)	𝑓𝑜𝑟	ά ∈ [𝑏CE , 1]Z

𝒜4V0 (ὰ) = Ϗ− T́
UB*
(Ϗ− ε)	𝑓𝑜𝑟		ά ∈ [ό, 𝑏CE ]

𝒜3V0 (ὰ) = ό − T́
UB&
(ό − Ϗ)𝑓𝑜𝑟	ά ∈ [ό, 𝑏4E ]

𝒜2V0 (ὰ) = з − T́
UB %
(з − ό)𝑓𝑜𝑟	ά ∈ [ό, 𝑏3E ]

 

There we have 𝒜2J0 (ὰ),	𝒜3J0 (ὰ),𝒜4J0 (ὰ),	𝒜CJ0 (ὰ) are increasing and 𝒜4V0 (ὰ),𝒜3V0 (ὰ),𝒜2V0 (ὰ) are decreasing.   

Falsity= 𝐹J(𝓧) =

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ 𝒜2J0 (ὰ) = Ω2 + T

U$0
(ⴄ2 − Ω2)𝑓𝑜𝑟	ά ∈ [ό, 𝑏2E ]Z 	

𝒜3J0 (ὰ) = ⴄ2 + 2#T
2#U%0

(ᶓ2 − ⴄ2)	𝑓𝑜𝑟	ά ∈ [ό, 𝑏3EE ]Z

𝒜4J0 (ὰ) = ᶓ2 + 2#T
2#U&0

(ⱴ2 − ᶓ2)	𝑓𝑜𝑟	ά ∈ [ό, 𝑏4EE ]Z

𝒜CJ0 (ὰ) = ⱴ2 + 2#T
2#U*0

(ε2 − ⱴ2)	𝑓𝑜𝑟	ά ∈ [ό, 𝑏CEE ]Z

𝒜4V0 (ὰ) = Ϗ2 − T́
UB*
�Ϗ2 − ε2�	𝑓𝑜𝑟		ά ∈ [𝑏CE , 1]

𝒜3V0 (ὰ) = ό2 − T́
UB &
�ό2 − Ϗ2�𝑓𝑜𝑟	ά ∈ [𝑏4E , 1E ]

𝒜2V0 (ὰ) = з2 − T́
UB %
(з2 − ό2)𝑓𝑜𝑟	ά ∈ [𝑏3E , 1]

 

Indeterminacy= 𝐼J(𝓧) =

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ 𝒜2J0 (ὰ) = ⴄ	3 + T

U$0
(ᶓ3 − ⴄ3)𝑓𝑜𝑟	ά ∈ [ό, 𝑏2E ]Z 	

𝒜3J0 (ὰ) = ᶓ3 + 2#T
2#U%0

(ⱴ3 − ᶓ3)	𝑓𝑜𝑟	ά ∈ [ό, 𝑏3EE ]Z

𝒜4J0 (ὰ) = ⱴ3 + 2#T
2#U&0

(ε3 − ⱴ3)	𝑓𝑜𝑟	ά ∈ [ό, 𝑏4EE ]Z

𝒜CJ0 (ὰ) = ε3 + 2#T
2#U*0

�Ϗ3 − ε3�	𝑓𝑜𝑟	ά ∈ [ό, 𝑏CEE ]Z

𝒜4V0 (ὰ) = ό3 − T́
UB&
�ό3 − Ϗ3�	𝑓𝑜𝑟		ά ∈ [𝑏CE , 1]

𝒜3V0 (ὰ) = з3 − T́
UB&
(з3 − ό3)𝑓𝑜𝑟	ά ∈ [𝑏4E , 1E ]

𝒜2V0 (ὰ) = з3� 	− T́
UB%
�з3 − ό3����������𝑓𝑜𝑟	ά ∈ [𝑏3E , 1]

 

3.4  Non-Linear ONN with symmetry: Let  𝒜̇J𝒮= (Ω,ⴄ, ᶓ, 𝑎2, 𝑎3̇ ,Ϗ, ό, з)(X́$,Ẍ%,Ý$,Ý%)  be a non linear ONN and 
its membership function are: 
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Truthiness=𝑇7J(𝓧) =	

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ 0																																													𝓍 < Ω̇

𝓀 `𝓍#M
ⴄ#M

b
X́$
																															Ω ≤ 𝓍 ≤ ⴄ

𝓀																																			ⴄ ≤ 𝓍 ≤ ᶓ

𝓀 + (1 − 𝓀) `𝓍#ᶓ
ⱴ#ᶓ
b
Ẍ%
																ᶓ ≤ 𝓍 ≤ ⱴ

1																																								ⱴ ≤ 𝓍 ≤ ε

𝓀 + (1 − 𝓀) `Ϗ#𝓍
Ϗ#P

b
Ý$
															ε	 ≤ 𝓍 ≤ Ϗ	

𝓀																																						Ϗ ≤ 𝓍 ≤ ό

𝓀 `з#𝓍
з#ό
b
Ý%
																																		ό ≤ 𝓍 ≤ з		

0																																														𝓍 > з

 

Falsity =𝐹7J(𝓧) =	

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ 0																																													𝓍 < Ω2̇

𝓀 ` 𝓍#M
$

ⴄ$#M$
b
Ý$
																															Ω2 ≤ 𝓍 ≤ ⴄ2

𝓀																																			ⴄ2 ≤ 𝓍 ≤ ᶓ2

𝓀 + (1 − 𝓀) ` 𝓍#ᶓ
$

ⱴ$#ᶓ$
b
Ÿ%
																ᶓ2 ≤ 𝓍 ≤ ⱴ2

1																																									ⱴ2 ≤ 𝓍 ≤ ε2

𝓀 + (1 − 𝓀) ` Ϗ
$#𝓍

Ϗ$#P$
b
X́$
															ε2 	≤ 𝓍 ≤ Ϗ2	

𝓀																																						Ϗ2 ≤ 𝓍 ≤ ό2

𝓀 ` з	
$#𝓍

з	$#ό$
b
X%
																																		ό2 ≤ 𝓍 ≤ з	2	

0																																																			𝓍 > з	2

 

Indeterminacy=𝐼7J(𝓧) =	

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ 0																																														𝓍 < Ω3̇

𝓀 ` 𝓍#M
%

ⴄ%#M%
b
Ý$
																															Ω3 ≤ 𝓍 ≤ ⴄ3

𝓀																																				ⴄ3 ≤ 𝓍 ≤ ᶓ3

𝓀 + (1 − 𝓀) ` 𝓍#ᶓ
%

ⱴ%#ᶓ%
b
Ÿ%
																ᶓ3 ≤ 𝓍 ≤ ⱴ3

1																																									ⱴ3 ≤ 𝓍 ≤ ε3

𝓀 + (1 − 𝓀) ` Ϗ
%#𝓍

Ϗ%#P%
b
X́$
															ε3 	≤ 𝓍 ≤ Ϗ3	

𝓀																																							Ϗ3 ≤ 𝓍 ≤ ό3

𝓀 ` з	
%#𝓍

з	%#ό%
b
X́%
																																		ό3 ≤ 𝓍 ≤ з	3	

0																																																			𝓍 > з	3

 

3.5 𝛂 − 𝐜𝐮𝐭	́  of Non-Linear ONN with symmetry 

  α − cut́  of LONNS can be expressed by:	𝒜Ṫ = {𝔁 ∈ 𝒳�|𝑇7J(𝓧), 𝐼7J(𝓧), 𝐹7J(𝓧) ) ≥ 𝑎̇}  
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Truthiness= 𝑇7J(𝓧) =

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ 𝒜2J0 (ὰ) = Ω + ` T

U$0
b
X́$
(ⴄ− Ω)𝑓𝑜𝑟	ά ∈ [ό, 𝑏2E ]Z 	

𝒜3J0 (ὰ) = ⴄ+ ` 2#T
2#U%0

b
X́%
(ᶓ − ⴄ)	𝑓𝑜𝑟	ά ∈ [𝑏3, 1E ]Z

𝒜4J0 (ὰ) = ᶓ + ` 2#T
2#U&0

b
X́&
(ⱴ − ᶓ)	𝑓𝑜𝑟	ά ∈ [𝑏4, 1E ]Z

𝒜CJ0 (ὰ) = ⱴ + ` 2#T
2#U*0

b
X́*
(ε − ⱴ)	𝑓𝑜𝑟	ά ∈ [𝑏CE , 1]Z

𝒜4V0 (ὰ) = Ϗ− ` T́
UB*
b
Ý$
(Ϗ− ε)	𝑓𝑜𝑟		ά ∈ [ό, 𝑏CE ]

𝒜3V0 (ὰ) = ό − ` T́
UB&
b
Ý%
(ό − Ϗ)𝑓𝑜𝑟	ά ∈ [ό, 𝑏4E ]

𝒜2V0 (ὰ) = з − ` T́
UB %
b
Ý&
(з − ό)𝑓𝑜𝑟	ά ∈ [ό, 𝑏3E ]

 

Falsity= 𝐹7J(𝓧) =

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ 𝒜2J0 (ὰ) = Ω2 + T

U$0
Ý$ (ⴄ2 − Ω2)𝑓𝑜𝑟	ά ∈ [ό, 𝑏2E ]Z 	

𝒜3J0 (ὰ) = ⴄ2 + 2#T
2#U%0

Ý% (ᶓ2 − ⴄ2)	𝑓𝑜𝑟	ά ∈ [ό, 𝑏3EE ]Z

𝒜4J0 (ὰ) = ᶓ2 + 2#T
2#U&0

Ý& (ⱴ2 − ᶓ2)	𝑓𝑜𝑟	ά ∈ [ό, 𝑏4EE ]Z

𝒜CJ0 (ὰ) = ⱴ2 + 2#T
2#U*0

Ý* (ε2 − ⱴ2)	𝑓𝑜𝑟	ά ∈ [ό, 𝑏CEE ]Z

𝒜4V0 (ὰ) = Ϗ2 − T́
UB*

X́$
�Ϗ2 − ε2�	𝑓𝑜𝑟		ά ∈ [𝑏CE , 1]

𝒜3V0 (ὰ) = ό2 − T́
UB &

X́%
�ό2 − Ϗ2�𝑓𝑜𝑟	ά ∈ [𝑏4E , 1E ]

𝒜2V0 (ὰ) = з2 − T́
UB%

X́&
(з2 − ό2)𝑓𝑜𝑟	ά ∈ [𝑏3E , 1]

 

Indeterminacy= 𝐼7J(𝓧) =

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ 𝒜2J0 (ὰ) = ⴄ	3 + T

U$0
Ý$ (ᶓ3 − ⴄ3)𝑓𝑜𝑟	ά ∈ [ό, 𝑏2E ]Z 	

𝒜3J0 (ὰ) = ᶓ3 + 2#T
2#U%0

Ý% (ⱴ3 − ᶓ3)	𝑓𝑜𝑟	ά ∈ [ό, 𝑏3EE ]Z

𝒜4J0 (ὰ) = ⱴ3 + 2#T
2#U&0

Ý& (ε3 − ⱴ3)	𝑓𝑜𝑟	ά ∈ [ό, 𝑏4EE ]Z

𝒜CJ0 (ὰ) = ε3 + 2#T
2#U*0

Ý* �Ϗ3 − ε3�	𝑓𝑜𝑟	ά ∈ [ό, 𝑏CEE ]Z

𝒜4V0 (ὰ) = ό3 − T́
UB &

X́$
�ό3 − Ϗ3�	𝑓𝑜𝑟		ά ∈ [𝑏CE , 1]

𝒜3V0 (ὰ) = з3 − T́
UB&

X́%
(з3 − ό3)𝑓𝑜𝑟	ά ∈ [𝑏4E , 1E ]

𝒜2V0 (ὰ) = з3� 	− T́
UB %

X́&
�з3 − ό3����������𝑓𝑜𝑟	ά ∈ [𝑏3E , 1]

 

The increasing functions are 𝒜2J0 (ὰ),𝒜3J0 (ὰ),𝒜4J0 (ὰ),𝒜CJ0 (ὰ) with respect to ὰ  and the decreasing functions are 
𝒜2V0 (ὰ),𝒜3V0 (ὰ),𝒜4V0 (ὰ)	with respect to ὰ. 𝒜2J0 (ὰ),𝒜2J0 (ὰ),𝒜2J0 (ὰ),𝒜2J0 (ὰ) with respect to ὰ. 
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Truthiness =𝑇7J(𝓧)=

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ 0																																													𝓍 < Ω̇

𝒫 `𝓍#M
ⴄ#M

b
X́$
																															Ω ≤ 𝓍 ≤ ⴄ

𝓀																																				ⴄ ≤ 𝓍 ≤ ᶓ

𝓀 − (𝓀 − 𝒫)` 𝓍#ᶓ
[$#ᶓ

b
X́%
																ᶓ ≤ 𝓍 ≤ 𝑎2

1																																									𝑎2 ≤ 𝓍 ≤ 𝑎3

𝓀 − (𝓀 − 𝓇)` Ϗ#𝓍
Ϗ#[%

b
Ỳ$
															𝑎3 	≤ 𝓍 ≤ Ϗ	

𝓀																																								Ϗ ≤ 𝓍 ≤ ό

𝓇 `з#𝓍
з#ό
b
Ý%
																																		ό ≤ 𝓍 ≤ з		

0																																														𝓍 > з

 

Falsity =𝐹7J(𝓧)=	

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ 0																																														𝓍 < Ω2̇

𝓆 ` 𝓍#M
$

ⴄ$#M$
b	X́$ 																														Ω2 ≤ 𝓍 ≤ ⴄ2

𝓌																																				ⴄ2 ≤ 𝓍 ≤ ᶓ2

𝓌− (𝓌 − 𝓆) ` 𝓍#ᶓ$

U$$#ᶓ$
b
X̀%
																ᶓ2 ≤ 𝓍 ≤ 𝑎22

1																																									𝑏22 ≤ 𝓍 ≤ 𝑎32

𝓌− (𝓌 − 𝓈) ` Ϗ$#𝓍
Ϗ$#U%$

b
Ý$
															𝑏32 	≤ 𝓍 ≤ Ϗ2	

𝓌																																								Ϗ2 ≤ 𝓍 ≤ ό2

𝓈 ` з	
$#𝓍

з	$#ό$
b	Ỳ% 																																	ό2 ≤ 𝓍 ≤ з	2	

0																																																			𝓍 > з	2

 

Indeterminacy=𝐼7J(𝓧)=	

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ 0																																														𝓍 < Ω3̇

𝒴 ` 𝓍#M
%

ⴄ%#M%
b
X$
																															Ω3 ≤ 𝓍 ≤ ⴄ3

𝒳																																			ⴄ3 ≤ 𝓍 ≤ ᶓ3

𝒳 − (𝒳 −𝒴)` 𝓍#ᶓ
%

\$.#ᶓ%
b
X%
																ᶓ3 ≤ 𝓍 ≤ 𝑎23	

1																																								𝑐2. 	≤ 𝓍 ≤ 𝑎23	

𝒳 − (𝒳 − 𝑍) ` Ϗ
%#𝓍

Ϗ%#\%.
b
Y$
															𝑐3. 	≤ 𝓍 ≤ Ϗ3	

𝑍																																							Ϗ3 ≤ 𝓍 ≤ ό3

𝑍 ` з	
%#𝓍

з	%#ό%
b
Y%
																																		ό3 ≤ 𝓍 ≤ з	3	

0																																																			𝓍 > з	3

 

 

4. Case Study 

To demonstrate the feasibility and productiveness of the proposed method, here is the most useful real-life 
problem. Suppose we have three different persons which have different degree, experience and number of 
publications. How can we select the person who has more potential to deal with situations? 

Numerical Example: Suppose that U is the universe. Suppose that the HR which is responsible for recruiting, 
interviewing and placing workers, wants to hire a new person in company. Three different persons (Α, Β, ℂ) apply for 
this opportunity, which have different degrees, experiences and publications. On the base of choice parameters 
{ℂ2, ℂ3, ℂ4} we have to select the best one.    
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                            Α                                                           Β                                                                   ℂ 

{ℂ!(0.72,0.35,0.71,0.77,0.41,0.73,0.77,0.81)      {ℂ!(0.33,0.73,0.34,0.25,0.26,0.74,0.45,0.29)         {ℂ!(0.23,0.33,0.63,0.56,0.45,0.35,0.73,0.28) 
       (0.93,0.83,0.63,0.88 ,0.94,0.99,0.96,0.60)              (0.33,0.46,0.59,0.79,0.85,0.79,0.74,0.86)             (0.76,0.55,0.69,0.34,0.24,0.63,0.95,0.91)}      
        (0.86,0.95,0.99,0.97,0.94,0.93,0.95,0.91)}             (0.88,0.83,0.55,0.75,0.98,0.64,0.96,0.90)}         (0.94,0.73,0.95,0.95,0.48,0.94,0.96,0.74)}     
 {ℂ"(0.35,0.65,0.36,0.54,0.33,0.65,0.43,0.56)        {ℂ"(0.25,0.55,0.36,0.54,0.33,0.65,0.43,0.56)         {ℂ"(0.23,0.65,0.26,0.54,0.63,0.65,0.41,0.59)       
        (0.75,0.45,0.95,0.38,0.68,0.79,0.57,0.13)              (0.93,0.83,0.83,0.58 ,0.84,0.69,0.76,0.80)              (0.75,0.45,0.85,0.38,0.78,0.79,0.67,0.13) 
         (0.96,0.99,0.78,0.79,0.97,0.36,0.97,0.95)}           (0.96,0.99,0.98,0.99,0.97,0.76,0.87,0.95)}           (0.98,0.89,0.88,0.79,0.97,0.96,0.87,0.85)} 
 {ℂ#(0.24,0.33,0.44,0.55,0.56,0.34,0.45,0.89)        {ℂ#(0.24,0.33,0.74,0.35,0.46,0.54,0.85,0.19)        {ℂ#(0.24,0.23,0.44,0.25,0.26,0.34,0.85,0.89)           
(0..35,0.46,0.58,0.79,0.85,0.71,0.64,0.96)                     (0.88,0.86,0.58,0.85,0.85,0.61,0.64,0.86)              (0.35,0.44,0.78,0.79,0.75,0.71,0.94,0.96)  
    (0.84,0.73,0.85,0.95,0.98,0.84,0.96,0.94)}                (0.98,0.93,0.95,0.95,0.98,0.84,0.66,0.84)}           (0.74,0.63,0.95,0.95,0.98,0.94,0.98,0.94)}   
 
[In this above, matrix  (ℂ2, ℂ3, ℂ4)  is mentioned in the row and persons (Α,Β,ℂ) are mentioned in the column]  
 
STEP 1: Defuzzify the Octagonal Neutrosophic number by using Accuracy Function [21] 

𝑫𝑻𝑵𝑶𝑵=(M%ⴄ%ᶓ%ⱴ%P%Ϗ%ό%з
𝟖

), 	𝑫𝑰𝑵𝑶𝑵 = (M
$%ⴄ	$%ᶓ$%ⱴ$%P$%Ϗ$%ό$%з$

𝟖
), 𝑫𝑭𝑵𝑶𝑵 = (M

%%ⴄ	%%ᶓ%%ⱴ%%P%%Ϗ%%ό%%з%

𝟖
)     

Then the neutrosophic soft matrix is 
Criteria 𝓐𝟏 𝓐𝟐 𝓐𝟑 

𝓒𝟏  (0.6,0.8,0.9) (0.4,0.6,0.8) (0.4,0.5,0.9) 
𝓒𝟐  (0.4,0.5,0.7) (0.4,0.7,0.9) (0.4,0.6,0.9) 
𝓒𝟑  (0.4,0.6,0.9) (0.4,0.7,0.9) (0.4,0.7,0.9) 

STEP 2: For normalized aggregate fuzzy decision matrix.   

𝑟bc�= [./dddd
\01
, U./
dddd

\01
, \./dddd
\01
¡ 

Criteria 𝓐𝟏 𝓐𝟐 𝓐𝟑 
𝓒𝟏  (0.6,0.8,1.0) (0.5,0.7,1.0) (0.4,0.5,1.0) 
𝓒𝟐  (0.5,0.7,1.0) (0.4,0.7,1.0) (0.4,0.6,1.0) 
𝓒𝟑  (0.4,0.6,1.0) (0.4,0.7,1.0) (0.4,0.7,1.0) 

Aggregate decision matrix for criteria weighting 

𝑊2����=(0.3,0.4,0.5)   ,   𝑊3����=(0.5,0.6,0.7)   𝑊4����=(0.1,0.2,0.3)    

STEP 3. Weighted normalized fuzzy decision matrix. 𝑃bc���= 𝑟bc�  multiply-by 𝑤e 

Criteria 𝓐𝟏 𝓐𝟐 𝓐𝟑 
𝓒𝟏  (0.1,0.32,0.5) (0.1,0.28,0.5) (0.1,0.2,0.5) 
𝓒𝟐  (0.2,0.42,0.7) (0.2,0.42,0.7) (0.2,0.36,0.7) 
𝓒𝟑  (0.04,0.12,0.3) (0.04,0.14,0.3) (0.04,0.14,0.3) 

STEP 4. Find FNIS AND FPIS 

𝒜%= (𝒫2%,	𝒫3
,%, 𝒫4%… . . 𝒫X%) 

𝒫e% = max (𝒫fe4. ) i=1,2,….,m   , j=1,2,3,…,n 

𝒜#= (𝒫2#,	𝒫3
,#, 𝒫4#… . . 𝒫X#) 

𝒫e# = min (𝒫fe4. ) i=1,2,….,m   , j=1,2,3,…,n 

𝒜%= (𝒫2%(0.5,0.5,0.5),	𝒫3
,%(0.7,0.7,0.7), 𝒫4%(0.3,0.3,0.3) 

𝒜#= (𝒫2#(0.1,0.1,0.1),	𝒫3
,#(0.2,0.2,0.2), 𝒫4#(0.04,0.04,0.04) 
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Now by 𝓭(𝔁�,𝔂�)=ª𝟏
𝟑
(𝖆𝟏 − 𝒂̀𝟐)𝟐 + (𝖇𝟏 − 𝒃\𝟐)𝟐 + (𝒄𝟏 − 𝒄⏞𝟐)𝟐 

Positive Ideal Solution     

Criteria 𝓐𝟏 𝓐𝟐 𝓐𝟑 
𝓒𝟏  0.253 0.263 0.288 
𝓒𝟐  0.330 0.330 0.349 
𝓒𝟑  0.182 0.176 0.176 

Negative Ideal Solution      

Criteria 𝓐𝟏 𝓐𝟐 𝓐𝟑 
𝓒𝟏  0.050 0.041 0.023 
𝓒𝟐  0.063 0.063 0.046 
𝓒𝟑  0.012 0.015 0.015 

 

STEP 5. Now calculate distance between each weighted alternative 

𝑑̅f∗=³ 𝑑́X
eh2 (𝑣fe , 𝑣c∗)¶  , 𝑑f#=³ 𝑑́X

eh2 (𝑣fe , 𝑣́e#)   

𝑑̅2∗=0.765                              𝑑E2#=0.125 

𝑑̅3∗=0.769                              𝑑E3#=0.119 

𝑑̅4∗=0.813                              𝑑E4#=0.084 

STEP 6. Closeness coefficient  

𝑪�𝑪𝒊=
𝒅𝒊
3

𝒅𝒊
3%𝒅𝒊

4 

𝐶̿𝐶2= k.23l
k.23l%k.mnl

 = 0.140 

𝐶̿𝐶3= k.22o
k.22o%k.mno

=0.134 

𝐶̿𝐶4= k.kpC
k.kpC%k.p24

=0.093 

Strategy Result value Rank 
𝐶̿𝐶2 0.140 1 
𝐶̿𝐶3 0.134 2 
𝐶̿𝐶4 0.093 3 

Clearly 	
𝒜2˃	𝒜3	˃	𝒜4, The person deserves this post is 𝓐𝟏. 

5. Conclusions   

In this article, types of octagonal neutrosophic number (Linear, Non-Linear, Symmetric, Asymmetric) are 
proposed and their 𝛼 − 𝑐𝑢𝑡𝑠	were also derived. Octagonal Neutrosophic Numbers are very useful in solving multi 
criteria decision making MCDM problems from daily life since this number can deal with more fluctuations. To 
discuss the applicability and productiveness in daily life issues a case study was done using TOPSIS technique of 
MCDM. In which firstly numbers were converted from octagonal to fuzzy using accuracy function and then used in 
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the existing method. In forthcoming work, we’ll propose the aggregate operators of Octagonal Neutrsophic Numbers 
and their matrix notions with operations.  
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Abstract  

 The connection between neutrosophy and algebra has been of great interest with respect to many researchers. The 

objective of this paper is to provide a connection between neutrosophic ℵ−structures and subtraction algebras. In this 

regard, we introduce the concept of neutrosophic ℵ−ideals in subtraction algebra. Moreover, we study its properties 

and find a necessary and sufficient condition for a neutrosophic ℵ−structure to be a neutrosophic ℵ−ideal. 

 

Keywords: Subtraction algebra, ℵ−structure, Neutrosophic ℵ−ideal, Level set. 

1. Introduction  

Neutrosophic sets were introduced by Florentin Smarandache [11] as a new mathematical tool for dealing with 

uncertainity. They can be viewed as a generalization of  the fuzzy sets that were introduced in 1965  by Lotfi Zadeh 

[14]. Where Zadeh defined fuzzy sets as mathematical model of vagueness in which an element belongs to a given set 

to some degree that is a number between 0 and 1 (both inclusive). Neutrosophy is a base of neutrosophic logic which 

is an extension of fuzzy logic where indeterminacy is included [13]. In neutrosophic logic [10], each proposition is 

estimated to have the degree of truth in a subset 𝑇, the degree of indeterminacy in a subset 𝐼, and the degree of falsity 

in a subset 𝐹. The study of neutrosophic sets and their properties have a great importance in the sense of applications 

as well as in understanding the fundamentals of uncertainty. Some related work can be found in [1, 2, 3, 12]. 

 

A crisp set 𝐴 in a universe 𝑋 can be defined in the form of its membership function 𝜇𝐴: 𝑋 → {0,1} where 𝜇𝐴(𝑥) = 1 

if 𝑥 ∈ 𝐴 and 𝜇𝐴(𝑥) = 0 if 𝑥 ∉ 𝐴. A single valued neutrosophic set is an example of neutrosophic set which has many 

applications [10]. A new function, which is called negative-valued function, was introduced by Jun et al. [5] and they 

used it to construct ℵ-structures. Some work related to neutrosophic ℵ-structures can be found in [6, 7]. Schein [9] 

considered systems of the form (𝛷,◦,\), where 𝛷 is a set of functions closed under the composition “◦” of functions 

and the set theoretic subtraction “\” and hence (𝛷, \) is a subtraction algebra. Jun et al. [4] introduced the concept 

of ideals in subtraction algebras and discussed the properties of these ideals. Some researchers worked on combining 

the notions of neutrosophic sets and subtraction algebra. For example, Ibrahim et al. introduced neutrosophic 

subtraction algebra (semigroups) and presented some results about them. Moreover, Park [8] discussed neutrosophic 

ideals of subtraction algebras by using single valued neutrosophic sets.  

  

In this paper, we apply the concept of neutrosophic ℵ-structures in subtraction algebras. And it is organized as follows: 

After an Introduction, in Section 2 and Section 3, we present some basic results about neutrosophic ℵ-strructures as 

well as about subtraction algebras that are used throughout the paper. In Section 4, we introduce neutrosophic ℵ-ideals 

(ℵ-subalgebras) of subtraction algebra and prove that the intersection, the product, the homomorphic preimage, and 

onto homomrphic image are neutrosophic ℵ-ideals. Finally, in Section 5, we prove a necessary and sufficient condition 

for ℵ-structures to be neutrosophic ℵ-ideals by introducing the (𝛼, 𝛽, 𝛾)− level sets. 
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2. Neutrosophic ℵ-structures 

 

In this section, we present some basic results about neutrosophic ℵ-structures. For more details about neutrosophy, we 

refer to [5, 6, 7]. 

Definition 2.1. [5] Let 𝑆 be a non-empty set. A function from 𝑆 → [−1,0] is called a negative-valued function (ℵ-

function) from 𝑆 to [−1,0]. 
 

Definition 2.2. [7] Let 𝑆 be a non-empty set. A neutrosophic ℵ-structure over 𝑆 is defined as follows: 

𝑆N = {
𝑥

(𝑇N,𝐼N,𝐹N)
: 𝑥 ∈ 𝑆}, 

 

where 𝑇N, 𝐼N, 𝐹N are ℵ-functions on 𝑆 which are called the negative truth membership function, the negative 

indeterminacy membership function and the negative falsity membership function, respectively, on 𝑆. 

It is clear that for any ℵ-structure 𝑆N over 𝑆, −3 ≤ 𝑇N(𝑥) + 𝐼N(𝑥) + 𝐹N(𝑥) ≤ 0 for all 𝑥 ∈ 𝑆. 

 

Definition 2.3.  [7] Let 𝑆N = {
𝑥

(𝑇N,𝐼N,𝐹N)
: 𝑥 ∈ 𝑆} and 𝑆M = {

𝑥

(𝑇M,𝐼M ,𝐹M)
: 𝑥 ∈ 𝑆} be ℵ-structures over 𝑆.  

(1) 𝑆N is called a neutrosophic ℵ-substructure of 𝑆M, denoted as 𝑆N ⊆ 𝑆M, if for all 𝑥 ∈ 𝑆, 

𝑇N(𝑥) ≥ 𝑇M(𝑥), 𝐼𝑁(𝑥) ≤ 𝐼M(𝑥) , 𝐹N(𝑥) ≥ 𝐹M(𝑥). 

If 𝑆N ⊆ 𝑆M and 𝑆M ⊆ 𝑆N, we say that 𝑆N = 𝑆M. 

(2) The union of 𝑆N and 𝑆M is defined to be the ℵ-structure over 𝑆: 

𝑆N⋃M = {
𝑥

(𝑇N⋃M,𝐼N⋃M,𝐹N⋃M)
: 𝑥 ∈ 𝑆}, 

where 𝑇N⋃M(𝑥) = 𝑇N(𝑥) ∧ 𝑇M(𝑥), 𝐼N⋃M(𝑥) = 𝐼N(𝑥) ∨ 𝐼M(𝑥), and 𝐹N⋃M(𝑥) = 𝐹N(𝑥) ∧ 𝐹M(𝑥) for all 𝑥 ∈ 𝑆. 

(3) The intersection of 𝑆N and 𝑆M is defined to be the ℵ-structure over 𝑆: 

 

𝑆N⋂M = {
𝑥

(𝑇N⋂M,𝐼N⋂M,𝐹N⋂M)
: 𝑥 ∈ 𝑆}, 

where 𝑇N⋂M(𝑥) = 𝑇N(𝑥) ∨ 𝑇M(𝑥), 𝐼N⋃M(𝑥) = 𝐼N(𝑥) ∧ 𝐼M(𝑥), and 𝐹N⋃M(𝑥) = 𝐹N(𝑥) ∨ 𝐹M(𝑥) for all 𝑥 ∈ 𝑆. 

(4) The complement of 𝑆N is defined to be the ℵ-structure over 𝑆: 

𝑆N𝐶 = {
𝑥

(𝑇
N𝐶 ,𝐼

N𝐶 ,𝐹
N𝐶)

: 𝑥 ∈ 𝑆}, 

where 𝑇N𝐶 = −1 − 𝑇N(𝑥), 𝐼N𝐶 = −1 − 𝐼N(𝑥), and 𝐹N𝐶 = −1 − 𝐹N(𝑥) for all 𝑥 ∈ 𝑆. 

 

Definition 2.4. [7] Let 𝑋, 𝑌 be non-empty sets, 𝑓: 𝑋 → 𝑌 be any function, and 𝑋N = {
𝑥

(𝑇N,𝐼N,𝐹N)
: 𝑥 ∈ 𝑋}, 

 𝑌M = {
𝑦

(𝑇M,𝐼M,𝐹M)
: 𝑦 ∈ 𝑌} be ℵ-structures over 𝑋, 𝑌 respectively. Then  

 

(1) the ℵ-structure 𝑋𝑓−1(𝑀) = {
𝑥

(𝑇𝑓−1(𝑀),𝐼𝑓−1(𝑀),𝐹𝑓−1(𝑀))
: 𝑥 ∈ 𝑋} over 𝑋 is defined as follows: 

 

𝑇𝑓−1(𝑀)(𝑥) = 𝑇M(𝑓(𝑥)), 𝐼𝑓−1(𝑀)(𝑥) = 𝐼M(𝑓(𝑥)), and 𝐹𝑓−1(𝑀)(𝑥) = 𝐹M(𝑓(𝑥)); 

 

(2) the ℵ-structure 𝑌f(𝑁) = {
𝑦

(𝑇f(𝑁),𝐼f(𝑁),𝐹f(𝑁))
: 𝑦 ∈ 𝑌} over 𝑌 is defined as follows: 

 

𝑇f(𝑁)(𝑦) = {
⋀ 𝑇M(𝑥)𝑓(𝑥)=𝑦  𝑖𝑓 𝑓−1(𝑦) ≠ ∅; 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
,    𝐼f(𝑁)(𝑦) = {

⋁ 𝐼M(𝑥)𝑓(𝑥)=𝑦  𝑖𝑓 𝑓−1(𝑦) ≠ ∅; 

−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
, 

 

and 

𝐹f(𝑁)(𝑦) = {
⋀ 𝐹M(𝑥)𝑓(𝑥)=𝑦  𝑖𝑓 𝑓−1(𝑦) ≠ ∅; 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
. 

 



International Journal of Neutrosophic Science (IJNS)                                                    Vol. 3, No. 1,  PP. 44-53, 2020 

 

DOI: 10.5281/zenodo.3738737 

 
 46 

Remark 2.1. Let 𝑋, 𝑌 be non-empty sets, 𝑓: 𝑋 → 𝑌 be any onto function, and 𝑋N = {
𝑥

(𝑇N,𝐼N,𝐹N)
: 𝑥 ∈ 𝑋}, 

 𝑌M = {
𝑦

(𝑇M,𝐼M,𝐹M)
: 𝑦 ∈ 𝑌} be ℵ-structures over 𝑋, 𝑌 respectively. Then for all 𝑦 ∈ 𝑌 

𝑇f(𝑁)(𝑦) = ⋀ 𝑇M(𝑥)
𝑓(𝑥)=𝑦

, 𝐼f(𝑁)(𝑦) = ⋁ 𝐼M(𝑥)
𝑓(𝑥)=𝑦

, 𝐹f(𝑁)(𝑦) = ⋀ 𝐹M(𝑥)
𝑓(𝑥)=𝑦

. 

 

3. Subtraction algebra 

In this section, we present some results related to subtraction algebra that are used throughout the paper. For more 

details, we refer to [4, 9, 15]. 

Definition 3.1. [15] An algebra (𝑋, −) is called a subtraction algebra if the single binary operation “−” satisfies the 

following identities: for any 𝑥, 𝑦, 𝑧 ∈ 𝑋, 

(1) 𝑥 − (𝑦 − 𝑥) = 𝑥; 

(2) 𝑥 − (𝑥 − 𝑦) = 𝑦 − (𝑦 − 𝑥); 

(3) (𝑥 − 𝑦) − 𝑧 = (𝑥 − 𝑧) − 𝑦. 

 

We introduce an order relation “≤” on subtraction algebras: 𝑎 ≤ 𝑏  if and only if  𝑎 − 𝑏 = 0; where 0 = 𝑎 − 𝑎 is an 

element that does not depend on the choice of 𝑎 ∈ 𝑋. 

 

It is clear that 𝑎 − 0 = 𝑎 and 0 − 𝑎 = 0 for all 𝑎 ∈ 𝑋. 

 

Example 3.1. Let 𝐴1 = {0, 1}. Then (𝐴1, −1) is a subtraction algebra defined in Table 1. 
 

           Table 1. The subtraction algebra (𝐴1, −1)  

−1 0 1 

0 0 0 

1 1 0 

 

Example 3.2. Let 𝐴2 = {0, 𝑎, 𝑏, 𝑐}. Then (𝐴2, −2) is a subtraction algebra defined in Table 2. 

             Table 2. The subtraction algebra (𝐴2, −2) 

−2 0 a b c 

0 0 0 0 0 

a a 0 a 0 

b b b 0 0 

c c b a 0 

 

Definition 3.3. [4] A non-empty subset 𝐴 of a subtraction algebra 𝑋 is called a subalgebra of 𝑋 if for all 𝑎, 𝑏 ∈ 𝐴, 

 𝑎 − 𝑏 ∈ 𝐴. 
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Definition 3.4. [4] A non-empty subset 𝐴 of a subtraction algebra 𝑋 is called an ideal of 𝑋 if it satisfies the following 

conditions. 

(1) 𝑎 − 𝑥 ∈ 𝐴 for all 𝑎 ∈ 𝐴 and 𝑥 ∈ 𝑋; 

(2) for all 𝑎, 𝑏 ∈ 𝐴, whenever 𝑎 ∨ 𝑏 exists in 𝑋 then 𝑎 ∨ 𝑏 ∈ 𝐴. 

Remark 3.1. Every ideal of a subtraction algebra is a subalgebra. But the converse may not hold. 

We illustrate Remark 3.1 by Example 3.3. 

Example 3.3. Let (𝐴2, −2) be the subtraction algebra in Example 3.2. Then {0, 𝑐} is a subalgebra of 𝐴2 that is not an 

ideal of 𝐴2. This is clear as 𝑐 − 𝑎 = 𝑏 ∉ {0, 𝑐}. 

Example 3.4. Let 𝐴3 = {0, 𝑑, 𝑒}. Then (𝐴3, −3) is a subtraction algebra defined in Table 3. 

             Table 3. The subtraction algebra (𝐴3, −3) 

−3 0 d e 

0 0 0 0 

d d 0 d 

e e e 0 

 

Example 3.5. Let (𝐴3, −3) be the subtraction algebra in Example 3.3. Then {0}, {0, 𝑑 }, {0, 𝑒}, 𝐴3 are the only 

subalgebras of 𝐴3. Moreover, every subalgebra of 𝐴3 is an ideal of 𝐴3. 

Definition 3.5. Let (𝑋, −1), (𝑌, −2) be subtraction algebras and 𝑓: 𝑋 → 𝑌 be a function. Then  

(1) 𝑓 is a homomrphism if 𝑓(𝑥−1𝑦) = 𝑓(𝑥)−2𝑓(𝑦) and 𝑓(𝑥 ∨ 𝑦) = 𝑓(𝑥) ∨ 𝑓(𝑦). 

(2) 𝑓 is an isomorphism if 𝑓 is a bijective homomrphism. In this case, we say that 𝑋 and 𝑌  are isomorphic 

subtraction algebras and we write 𝑋 ≅ 𝑌. 

Example 3.6. Let (𝑋, −) be a subtraction algebra and Let 𝑆 be any subalgebra of Let 𝑋. Then 𝑓: 𝑆 → 𝑋 defined as 

𝑓(𝑥) = 𝑥 is a homomrphism. 

Example 3.7. Let (𝑋, −1), (𝑌, −2) be subtraction algebras and 𝑓: 𝑋 → 𝑌 be defined as 𝑓(𝑥) = 0. Then 𝑓 is a 

homomrphism. 

4. Operations on neutrosophic ℵ-ideals (ℵ-subalgebra) of subtraction algebra 

  In this section, we introduce neutrosophic ℵ-ideals (ℵ-subalgebras) of subtraction algebra, present some examples, 

and study different operations on them. 

 

Definition 4.1. Let (𝑋, −) be a subtraction algebra. An ℵ-structure 𝑋 N over 𝑋 is called a neutrosophic ℵ-subalgebra 

of 𝑋 if the following conditions hold for all 𝑥, 𝑦 ∈ 𝑋. 

𝑇𝑁 (𝑥 − 𝑦) ≤ 𝑇𝑁 (𝑥) ∨ 𝑇𝑁 (𝑦), 𝐼𝑁(𝑥 − 𝑦) ≥ 𝐼𝑁(𝑥) ∧ 𝐼𝑁(𝑦), and 𝐹𝑁(𝑥 − 𝑦) ≤ 𝐹𝑁(𝑥) ∨ 𝐹𝑁(𝑦). 

 

Definition 4.2. Let (𝑋, −) be a subtraction algebra. An ℵ-structure 𝑋 N over 𝑋 is called a neutrosophic ℵ-ideal of 𝑋 if 

the following conditions hold. 

(1) 𝑇𝑁 (𝑥 − 𝑦) ≤ 𝑇𝑁 (𝑥), 𝐼𝑁(𝑥 − 𝑦) ≥ 𝐼𝑁(𝑥), and 𝐹𝑁(𝑥 − 𝑦) ≤ 𝐹𝑁(𝑥) for all 𝑥, 𝑦 ∈ 𝑋, 
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(2) if 𝑥 ∨ 𝑦 exists in 𝑋 then 

𝑇𝑁 (𝑥 ∨ 𝑦) ≤ 𝑇𝑁(𝑥) ∨ 𝑇𝑁(𝑦), 𝐼𝑁(𝑥 ∨ 𝑦) ≥ 𝐼𝑁(𝑥) ∧ 𝐼𝑁(𝑦), and 𝐹𝑁(𝑥 ∨ 𝑦) ≤ 𝐹𝑁(𝑥) ∨ 𝐹𝑁(𝑦). 

 

Example 4.1. Let  (𝑋, −) be any subtraction algebra and 𝑡, 𝑖, 𝑓 ∈ [−1,0]. Then 𝑋N = {
𝑥

(𝑡,𝑖,𝑓)
: 𝑥 ∈ 𝑆} is a neutrosophic 

ℵ-ideal of 𝑋. We call this neutrosophic ℵ-ideal as constant neutrosophic ℵ-ideal. 

 

Example 4.2. Let  (𝑋, −) be any non-trivial subtraction algebra and 𝑡, 𝑖, 𝑓 ∈ [−1,0] with (𝑡, 𝑖, 𝑓) ≠ (0, −1,0). Then 

𝑋N = {
0

(𝑡,𝑖,𝑓)
,

𝑥

(0,−1,0)
: 𝑥 ∈ 𝑋 − {0}} is a neutrosophic ℵ-ideal of 𝑋. 

 

Corollary 4.1. Let  (𝑋, −) be any non-trivial subtraction algebra (i.e., 𝑋 ≠ ∅). Then 𝑋 has at least two neutrosophic 

ℵ-ideals. 

 

Proof. The proof follows from Example 4.1 and Example 4.2. 

 

Remark 4.1. Let (𝑋, −) be a subtraction algebra. Then every neutrosophic ℵ-ideal of 𝑋 is a neutrosophic ℵ-subalgebra 

of 𝑋. But the converse may not hold. 

 

We illustrate Remark 4.1 by Example 4.3. 

 

Example 4.3. Let (𝐴2, −2) be the  subtraction algebra defined in Example 3.2 and define 𝐴2N
 as follows: 

 

𝐴2N
=<

0

(−0.8, −0.1, −0.7)
,

𝑎

(−0.4, −0.5, −0.6)
,

𝑏

(−0.4, −0.5, −0.6)
,

𝑐

(−0.8, −0.1, −0.7)
>. 

Then 𝐴2N
 is a neutrosophic ℵ-subalgebra of 𝐴2 that is not neutrosophic ℵ-ideal of 𝐴2. 

 

Remark 4.2. The results in this section are also valid for neutrosophic ℵ-subalgebras. But we restrict our proof to 

neutrosophic ℵ-ideals. 

 

Proposition 4.1. Let (𝑋, −) be a subtraction algebra and 𝑋 N be a neutrosophic  ℵ-ideal (ℵ-subalgebra) of 𝑋. Then for 

all 𝑥 ∈ 𝑋, 𝑇𝑁(0) ≤ 𝑇𝑁 (𝑥), 𝐼𝑁(0) ≥ 𝐼𝑁(𝑥), and 𝐹𝑁(0) ≤ 𝐹𝑁(𝑥). 

 

Proof. Since 0 = 𝑥 − 𝑥 for all all 𝑥 ∈ 𝑋, it follows that 𝑇𝑁 (0) = 𝑇𝑁(𝑥 − 𝑥) ≤ 𝑇𝑁 (𝑥), 𝐼𝑁(0) = 𝐼𝑁(𝑥 − 𝑥) ≥ 𝐼𝑁(𝑥), 

and 𝐹𝑁(0) = 𝐹𝑁(𝑥 − 𝑥) ≤ 𝐹𝑁(𝑥). 

 

Theorem 4.1. Let (𝑋, −) be a subtraction algebra. Then 𝑋N and 𝑋 N𝐶 are neutrosophic ℵ-ideals (ℵ-subalgebras) of 𝑋 

if and only if 𝑋N is the constant neutrosophic ℵ-ideal of 𝑋. 

 

Proof. It is clear that if 𝑋N is the constant neutrosophic ℵ-ideal of 𝑋 then 𝑋N and 𝑋 N𝐶  are neutrosophic ℵ-ideals (ℵ-

subalgebras) of 𝑋. 

Let 𝑋N and 𝑋 N𝐶  be neutrosophic ℵ-ideals (ℵ-subalgebras) of 𝑋. Proposition 4.1 asserts that 𝑇𝑁(0) ≤ 𝑇𝑁 (𝑥) and 

𝑇𝑁𝐶(0) ≤ 𝑇𝑁𝐶(𝑥) , 𝐼𝑁(0) ≥ 𝐼𝑁(𝑥) and 𝐼𝑁𝐶(0) ≥ 𝐼𝑁𝐶(𝑥),  and 𝐹𝑁(0) ≤ 𝐹𝑁(𝑥) and 𝐹𝑁𝐶(0) ≤ 𝐹𝑁𝐶(𝑥). The latter 

implies that 

𝑇𝑁 (0) ≤ 𝑇𝑁(𝑥) 𝑎𝑛𝑑 −1 − 𝑇𝑁(0) ≤ −1 − 𝑇𝑁 (𝑥),

𝐼𝑁(0) ≥ 𝐼𝑁(𝑥) 𝑎𝑛𝑑 −1 − 𝐼𝑁(0) ≥ −1 − 𝐼𝑁(𝑥),

𝐹𝑁(0) ≤ 𝐹𝑁(𝑥) and −1 − 𝐹𝑁(0) ≤ −1 − 𝐹𝑁(𝑥).
 

We get now that 𝑇𝑁(𝑥) = 𝑇𝑁(0), 𝐼𝑁(𝑥) = 𝐼𝑁(0), and 𝐹𝑁(𝑥) = 𝐹𝑁(0). Thus, 𝑋N is the constant neutrosophic ℵ-ideal 

of 𝑋. 
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Proposition 4.2. Let (𝑋, −) be a subtraction algebra and 𝑋N, 𝑋M be neutrosophic ℵ-ideals (ℵ-subalgebras) of 𝑋. 

Then 𝑋N⋂M is a neutrosophic ℵ-ideal (ℵ-subalgebra) of 𝑋. 

 

Proof. Let 𝑥, 𝑦 ∈ 𝑋. Then 

𝑇N⋂M(𝑥 − 𝑦) = 𝑇N(𝑥 − 𝑦) ∨ 𝑇M(𝑥 − 𝑦) ≤ 𝑇N(𝑥) ∨ 𝑇M(𝑥) = 𝑇N⋂M(𝑥);

𝐼N⋂M(𝑥 − 𝑦) = 𝐼N(𝑥 − 𝑦) ∧ 𝐼M(𝑥 − 𝑦) ≥ 𝐼N(𝑥) ∧ 𝐼M(𝑥) = 𝐼N⋂M(𝑥);

𝐹N⋂M(𝑥 − 𝑦) = 𝐹N(𝑥 − 𝑦) ∨ 𝐹M(𝑥 − 𝑦) ≤ 𝐹N(𝑥) ∨ 𝐹M(𝑥) = 𝐹N⋂M(𝑥).

 

Suppose that x∨ 𝑦 exists in 𝑋. Then 

𝑇N⋂M(𝑥 ∨ 𝑦) = 𝑇N(𝑥 ∨ 𝑦) ∨ 𝑇M(𝑥 ∨ 𝑦) ≤ 𝑇N(𝑥) ∨ 𝑇N(𝑦) ∨ 𝑇M(𝑥) ∨ 𝑇M(𝑦) = 𝑇N⋂M(𝑥) ∨ 𝑇N⋂M(𝑦);

𝐼N⋂M(𝑥 ∨ 𝑦) = 𝐼N(𝑥 ∨ 𝑦) ∧ 𝐼M(𝑥 ∨ 𝑦) ≥ 𝐼N(𝑥) ∧ 𝐼N(𝑦) ∧ 𝐼M(𝑥) ∧ 𝐼M(𝑦) = 𝐼N⋂M(𝑥) ∧ 𝐼N⋂M(𝑦);

𝐹N⋂M(𝑥 ∨ 𝑦) = 𝐹N(𝑥 ∨ 𝑦) ∨ 𝐹M(𝑥 ∨ 𝑦) ≤ 𝐹N(𝑥) ∨ 𝐹N(𝑦) ∨ 𝐹M(𝑥) ∨ 𝐹M(𝑦) = 𝐹N⋂M(𝑥) ∨ 𝐹N⋂M(𝑦).

 

 

Therefore, 𝑋N⋂M is a neutrosophic ℵ-ideal (ℵ-subalgebra) of 𝑋. 

 

Corollary 4.2. Let (𝑋, −) be a subtraction algebra and 𝑋N𝑖
 be a neutrosophic ℵ-ideal (ℵ-subalgebra) of 𝑋 for 𝑖 =

1,2, … , 𝑛. Then 𝑋⋂ N𝑖
𝑛
𝑖=1

 is a neutrosophic ℵ-ideal (ℵ-subalgebra) of 𝑋. 

 

Remark 4.3. Let (𝑋, −) be a subtraction algebra and 𝑋N, 𝑋M be neutrosophic ℵ-ideals (ℵ-subalgebras) of 𝑋. Then 

𝑋N⋃M may not be a neutrosophic ℵ-ideal (ℵ-subalgebra) of 𝑋. 

 

We illustrate Remark 4.3 by Example 4.4. 

 

Example 4.4. Let (𝐴2, −2) be the  subtraction algebra defined in Example 3.2 and define the neutrosophic ℵ-ideals 

of 𝑋  𝐴2N
, 𝐴2M

 as follows: 

 

𝐴2N
=<

0

(−0.8, −0.1, −0.7)
,

𝑎

(−0.8, −0.1, −0.7)
,

𝑏

(−0.4, −0.5, −0.6)
,

𝑐

(−0.4, −0.5, −0.6)
>, 

𝐴2M
=<

0

(−0.8, −0.2, −0.7)
,

𝑎

(−0.4, −0.3, −0.6)
,

𝑏

(−0.8, −0.2, −0.7)
,

𝑐

(−0.4, −0.3, −0.6)
>. 

Then  

𝐴2N⋃M
=<

0

(−0.8, −0.1, −0.7)
,

𝑎

(−0.8, −0.1, −0.7)
,

𝑏

(−0.8, −0.2, −0.7)
,

𝑐

(−0.4, −0.3, −0.6)
> 

 

is not a neutrosophic ℵ-ideal of 𝑋  as −0.3 = 𝐼𝑁⋃𝑀(𝑐) =  𝐼N⋃M(𝑎 ∨ 𝑏) ≱ 𝐼N⋃M(𝑎) ∧ 𝐼N⋃M(𝑏) = −0.2. 

 

Proposition 4.3. Let (𝑋, −1), (𝑌, −2)be subtraction algebras and 𝑋N, 𝑌M be neutrosophic ℵ-ideals (ℵ-subalgebras) of 

𝑋, 𝑌 respectively. Then (𝑋 × 𝑌)N×M is a neutrosophic ℵ-ideal (ℵ-subalgebra) of 𝑋 × 𝑌. Here, for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌, 

𝑇N×M((𝑥, 𝑦)) = 𝑇N(𝑥) ∨ 𝑇M(𝑦), 𝐼N×M((𝑥, 𝑦)) = 𝐼N(𝑥) ∧ 𝐼M(𝑦), and 𝐹N×M((𝑥, 𝑦)) = 𝐹N(𝑥) ∨ 𝐹M(𝑦). 

 

Proof. The proof is straightforward. 

 

Example 4.5. Let (𝐴1, −1)  be the  subtraction algebra defined in Example 3.1 and define 𝐴1N
 as follows: 

 

𝐴1N
=<

0

(−0.8,−0.1,−0.7)
,

1

(−0.4,−0.5,−0.6)
>. 
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Then (𝐴1 × 𝐴1)N×N =<
(0,0)

(−0.8,−0.1,−0.7)
,

(0,1)

(−0.4,−0.5,−0.6)
,

(1,0)

(−0.4,−0.5,−0.6)
,

(1,1)

(−0.4,−0.5,−0.6)
> is a neutrosophic ℵ-ideal for the 

subtraction algebra (𝐴1 × 𝐴1, −) presented in Table 4. 

           Table 4. The subtraction algebra (𝐴1 × 𝐴1, −)  

− (0,0) (0,1) (1,0) (1,1) 

(0,0) (0,0) (0,0) (0,0) (0,0) 

(0,1) (0,1) (0,0) (0,1) (0,0) 

(1,0) (1,0) (1,0) (0,0) (0,0) 

(1,1) (1,1) (1,0) (0,1) (0,0) 

 

 

Theorem 4.2. Let (𝑋, −1), (𝑌, −2) be subtraction algebras, 𝑋 N , 𝑌 M be neutrosophic ℵ-ideals (ℵ-subalgebras) of  

𝑋, 𝑌 respectively, and 𝑓: 𝑋 → 𝑌 be a homomorphism. Then 𝑋𝑓−1( M) is a neutrosophic  ℵ-ideal (ℵ-subalgebra) of 𝑋. 

 

Proof. Let 𝑥, 𝑎 ∈ 𝑋. Then  

𝑇𝑓−1( M)(𝑥 − 𝑎) = 𝑇M(𝑓(𝑥 − 𝑎)) = 𝑇M(𝑓(𝑥) − 𝑓(𝑎)) ≤ 𝑇M(𝑓(𝑥)) = 𝑇𝑓−1( M)(𝑥),

𝐼𝑓−1( M)(𝑥 − 𝑎) = 𝐼M(𝑓(𝑥 − 𝑎)) = 𝐼M(𝑓(𝑥) − 𝑓(𝑎)) ≥ 𝐼M(𝑓(𝑥)) = 𝐼𝑓−1( M)(𝑥),

𝐹𝑓−1( M)(𝑥 − 𝑎) = 𝐹M(𝑓(𝑥 − 𝑎)) = 𝐹M(𝑓(𝑥) − 𝑓(𝑎)) ≤ 𝐹M(𝑓(𝑥)) = 𝐹𝑓−1( M)(𝑥).

 

Suppose that 𝑥 ∨ 𝑎 exists in 𝑋. Then 

𝑇𝑓−1( M)(𝑥 ∨ 𝑎) = 𝑇M(𝑓(𝑥 ∨ 𝑎)) = 𝑇M(𝑓(𝑥) ∨ 𝑓(𝑎)) ≤ 𝑇M(𝑓(𝑥)) ∨ 𝑇M(𝑓(𝑎)) = 𝑇𝑓−1( M)(𝑥) ∨ 𝑇𝑓−1( M)(𝑎),

𝐼𝑓−1( M)(𝑥 ∨ 𝑎) = 𝐼M(𝑓(𝑥 ∨ 𝑎)) = 𝐼M(𝑓(𝑥) ∨ 𝑓(𝑎)) ≥ 𝐼M(𝑓(𝑥)) ∧ 𝐼M(𝑓(𝑎)) = 𝐼𝑓−1( M)(𝑥) ∧ 𝐼𝑓−1( M)(𝑎),

𝐹𝑓−1( M)(𝑥 ∨ 𝑎) = 𝐹M(𝑓(𝑥 ∨ 𝑎)) = 𝐹M(𝑓(𝑥) ∨ 𝑓(𝑎)) ≤ 𝐹M(𝑓(𝑥)) ∨ 𝐹M(𝑓(𝑎)) = 𝐹𝑓−1( M)(𝑥) ∨ 𝐹𝑓−1( M)(𝑎).

 

 

Therefore, 𝑋𝑓−1( M) is a neutrosophic ℵ-ideal of 𝑋. 

 

Example 4.6. Let (𝑋, −) be a subtraction algebra, 𝑆 a subalgebra of 𝑋, and 𝑋 N = {
𝑥

(𝑇N,𝐼N,𝐹N)
: 𝑥 ∈ 𝑋} a neutrosophic  

ℵ-ideal of  𝑋. Then by Theorem 4.1 and by taking 𝑓: 𝑆 → 𝑋 as 𝑓(𝑥) = 𝑥 for all 𝑥 ∈ 𝑆 we get that 𝑆 N is a neutrosophic 

ℵ-ideal of  𝑆. Where 𝑆 N = {
𝑥

(𝑇N,𝐼N,𝐹N)
: 𝑥 ∈ 𝑆} 

 

Theorem 4.3. Let (𝑋, −1), (𝑌, −2) be subtraction algebras, 𝑋 N , 𝑌 M be neutrosophic  ℵ-ideals (ℵ-subalgebras) of  

𝑋, 𝑌 respectively, and 𝑓: 𝑋 → 𝑌 be a surjective homomorphism. Then 𝑌f( N) is a neutrosophic  ℵ-ideal (ℵ-subalgebra)  

of  𝑌. 

 

Proof. Let 𝑦, 𝑏 ∈ 𝑌. Since 𝑓 is surjective, it follows that 𝑇f( N)(𝑦 − 𝑏) = ⋀ 𝑇N(𝑥)𝑦−𝑏=𝑓(𝑥) . Moreover, there exist 𝑎 ∈

𝑋 such that 𝑏 = 𝑓(𝑎). We have that  𝑇f( N)(𝑦) = ⋀ 𝑇N(𝑥)𝑦=𝑓(𝑥) = 𝑇N(𝑥′) for some 𝑥′ ∈ 𝑋 with 𝑓(𝑥′) = 𝑦.  We get 

now that 𝑦 − 𝑏 = 𝑓(𝑥′) − 𝑓(𝑎) = 𝑓(𝑥′ − 𝑎). The latter implies that that 𝑇f( N)(𝑦 − 𝑏) ≤ 𝑇N(𝑥′ − 𝑎) ≤ 𝑇N(𝑥′) =

𝑇f( N)(𝑦). Similarly, we get that 𝐹f( N)(𝑦 − 𝑏) ≤ 𝐹f( N)(𝑦). 

𝐼f( N)(𝑦 − 𝑏) = ⋁ 𝐼𝑁(𝑥)𝑓(𝑥)=𝑦−𝑏 . Moreover, there exists 𝑎 ∈ 𝑋 such that 𝑏 = 𝑓(𝑎). We have that  𝐼f( N)(𝑦) =

⋁ 𝐼𝑁(𝑥)𝑓(𝑥)=𝑦 = 𝐼N(𝑥′) for some 𝑥′ ∈ 𝑋 with 𝑓(𝑥′) = 𝑦.  We get now that 𝑦 − 𝑏 = 𝑓(𝑥′) − 𝑓(𝑎) = 𝑓(𝑥′ − 𝑎). The 

latter implies that 𝐼f( N)(𝑦 − 𝑏) ≥ 𝐼N(𝑥′ − 𝑎) ≥ 𝐼N(𝑥′)  = 𝐼f( N)(𝑦). 
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Suppose that 𝑦 ∨  𝑏 ∈ 𝑌. We prove that 𝑇f( N)(𝑦 ∨ 𝑏) ≤ 𝑇f( N)(𝑦) ∨ 𝑇f( N)(𝑏) and 𝐼f( N)(𝑦 ∨ 𝑏) ≥ 𝐼f( N)(𝑦) ∧ 𝐼f( N)(𝑏), 

𝐹f( N)(𝑦 ∨ 𝑏) ≤ 𝐹f( N)(𝑦) ∨ 𝐹f( N)(𝑏) are done similarly. 

We have 𝑇f( N)(𝑦 ∨ 𝑏) = ⋀ 𝑇N(𝑥)𝑦∨𝑏=𝑓(𝑥) . Moreover, there exists 𝑎 ∈ 𝑋 such that 𝑏 = 𝑓(𝑎). We have that  𝑇f( N)(𝑦) =

⋀ 𝑇N(𝑥)𝑦=𝑓(𝑥) = 𝑇N(𝑥′) and 𝑇f( N)(𝑏) = ⋀ 𝑇N(𝑥)𝑏=𝑓(𝑥) = 𝑇N(𝑎)for some 𝑥′ , 𝑎 ∈ 𝑋 with 𝑓(𝑥′) = 𝑦,  

𝑓(𝑎) = 𝑏 .We get now that 𝑦 ∨ 𝑏 = 𝑓(𝑥′) ∨ 𝑓(𝑎) = 𝑓(𝑥′ ∨ 𝑎). The latter implies that 𝑇f( N)(𝑦 ∨ 𝑏) ≤ 𝑇N(𝑥′ ∨ 𝑎) ≤

𝑇N(𝑥′) ∨ 𝑇N(𝑎) = 𝑇f( N)(𝑦) ∨ 𝑇f( N)(𝑏).  

 

5. Level sets and neutrosophic ℵ-ideals (ℵ-subalgebra) of subtraction algebra 

   In this section, we define (𝛼, 𝛽, 𝛾)− level sets of 𝑋 N and study their relation with ℵ-ideals of  𝑋. 

Let 𝑋 N be a neutrosophic ℵ- structure over 𝑋 and let 𝛼, 𝛽, 𝛾 ∈ [−1,0] be such that −3 ≤  𝛼 +  𝛽 +  𝛾 ≤ 0. Then 

(𝛼, 𝛽, 𝛾)− level set of 𝑋 N is defined as follows: 

{x ∈ 𝑋: 𝑇N(𝑥) ≤ 𝛼, 𝐼N(𝑥) ≥ 𝛽, 𝐹N(𝑥) ≤ 𝛾}. 

Remark 5.1. The results in this section are also valid for neutrosophic ℵ-subalgebras (instead of ideal we have 

subalgebra). But we restrict our proof to neutrosophic ℵ-ideals. 

 

Proposition 5.1. Let (𝑋, −) be a subtraction algebra, 𝛼 ∈ [−1,0], and 𝑋 N a neutrosophic  ℵ-ideal of  𝑋. Then 𝑇N
𝛼is 

either an empty set or an ideal of 𝑋. Here, 𝑇N
𝛼 = {𝑥 ∈ 𝑋: 𝑇N(𝑥) ≤ 𝛼} is either an empty set or an ideal of 𝑋. 

Proof. Let 𝑥, 𝑦 ∈ 𝑇N
𝛼 ≠ ∅. Since 𝑇N(𝑥 − 𝑦) ≤ 𝑇N(𝑥) ≤ 𝛼, it follows that 𝑥 −  𝑦 ∈ 𝑇N

𝛼 . Suppose that 𝑥 ∨  𝑦 exists 

in 𝑋. Then 𝑇N(𝑥 ∨  𝑦) ≤ 𝑇N(𝑥) ∨ 𝑇N(𝑦) ≤ 𝛼. Thus, 𝑥 ∨  𝑦 ∈ 𝑇N
𝛼. Therefore, 𝑇N

𝛼is an ideal of 𝑋. 

Proposition 5.2. Let (𝑋, −) be a subtraction algebra, 𝛽 ∈ [−1,0], and 𝑋 N a neutrosophic  ℵ-ideal of  𝑋. Then 𝐼N
𝛽 is 

either an empty set or an ideal of 𝑋. Here, 𝐼N
𝛽 = {𝑥 ∈ 𝑋: 𝐼N(𝑥) ≥ 𝛽}. 

Proof. The proof is similar to that of Proposition 5.1. 

Proposition 5.3. Let (𝑋, −) be a subtraction algebra, 𝛾 ∈ [−1,0], and 𝑋 N a neutrosophic  ℵ-ideal of  𝑋. Then  𝐹N
𝛾is 

either an empty set or an ideal of 𝑋. Here, 𝐹N
𝛾 = {x ∈ 𝑋: 𝐹N(𝑥) ≤ 𝛾}. 

Proof. The proof is similar to that of Proposition 5.1. 

Corollary 5.1. Let (𝑋, −) be a subtraction algebra, 𝛼, 𝛽, 𝛾 ∈ [−1,0], and 𝑋 N a neutrosophic  ℵ-ideal of  𝑋. Then the 

(𝛼, 𝛽, 𝛾)− level set of 𝑋 N is either an empty set or an ideal of 𝑋. 

Proof. We have the (𝛼, 𝛽, 𝛾)− level set of 𝑋 N is 𝑇N
𝛼⋂𝐼N𝛽

⋂ 𝐹N
𝛾. And by Propositions 5.1, 5.2, and 5.3, we have 𝑇N

𝛼, 

𝐼N𝛽
, and 𝐹N

𝛾 are either empty sets or ideals of 𝑋. Thus, the (𝛼, 𝛽, 𝛾)− level set of 𝑋 N is either empty or an intersection 

of ideals of 𝑋 and hence, it is an ideal. 

Lemma 5.1. Let (𝑋, −) be a subtraction algebra, 𝛼, 𝛽, 𝛾 ∈ [−1,0], and 𝑋 N an  ℵ-structure over  𝑋. If every non-empty 

(𝛼, 𝛽, 𝛾)− level set of 𝑋 N is an ideal of 𝑋 then 𝑋 N a neutrosophic  ℵ-ideal of  𝑋. 

Proof. Let 𝑥, 𝑎 ∈ 𝑋. Then there exist 𝛼′, 𝛽′, 𝛾′ ∈ [−1,0] such that 𝑇 N(𝑎) =  𝛼′,  𝐼 N(𝑎) = 𝛽′, 𝐹 N(𝑎) = 𝛾′. Then 𝑎 is in 

the (𝛼′, 𝛽′, 𝛾′)− level set of 𝑋 N which is an ideal of 𝑋. The latter implies that 𝑎 − 𝑥 is in the (𝛼′, 𝛽′, 𝛾′)− level set of 

𝑋 N. We get now that 𝑇 N(𝑎 − 𝑥) ≤  𝛼′ = 𝑇 N(𝑎),  𝐼 N(𝑎 − 𝑥) ≥ 𝛽′ =  𝐼 N(𝑎), 𝐹 N(𝑎 − 𝑥) ≤ 𝛾′ = 𝐹 N(𝑎). 



International Journal of Neutrosophic Science (IJNS)                                                    Vol. 3, No. 1,  PP. 44-53, 2020 

 

DOI: 10.5281/zenodo.3738737 

 
 52 

Suppose that 𝑥 ∨  𝑎 ∈ 𝑋. Then there exist 𝛼′, 𝛽′, 𝛾′, 𝛼′′, 𝛽′′, 𝛾′′ ∈ [−1,0] such that 𝑇 N(𝑎) =  𝛼′,  𝐼 N(𝑎) = 𝛽′, 𝐹 N(𝑎) =

𝛾′, 𝑇 N(𝑥) =  𝛼′′,  𝐼 N(𝑥) = 𝛽′′, 𝐹 N(𝑥) = 𝛾′′. Let 𝛼 = 𝛼′ ∨ 𝛼′′, 𝛽 = 𝛽′ ∧ 𝛽′′, 𝛾 = 𝛾′ ∨ 𝛾′′. Then 𝑎, 𝑥 are in the 

(𝛼, 𝛽, 𝛾)− level set of 𝑋 N which is an ideal of 𝑋. The latter implies that 𝑎 ∨ 𝑥 is in the (𝛼, 𝛽, 𝛾)− level set of 𝑋 N. Thus, 

𝑇 N(𝑎 ∨ 𝑥) ≤  𝛼 =  𝑇 N(𝑎) ∨ 𝑇 N(𝑥),  𝐼 N(𝑎 ∨ 𝑥) ≥ 𝛽 =  𝐼 N(𝑎) ∧  𝐼 N(𝑥), 𝐹 N(𝑎 ∨ 𝑥) ≤ 𝛾 =  𝐹 N(𝑎) ∨ 𝐹 N(𝑥). 

Therefore, 𝑋 N is a neutrosophic  ℵ-ideal of  𝑋. 

Theorem 5.1. Let (𝑋, −) be a subtraction algebra, 𝛼, 𝛽, 𝛾 ∈ [−1,0], and 𝑋 N an  ℵ-structure over  𝑋. Then 𝑋 N is a 

neutrosophic  ℵ-ideal of  𝑋 if and only if every non-empty (𝛼, 𝛽, 𝛾)− level set of 𝑋 N is an ideal of 𝑋. 

Proof. The proof follows from Corollary 5.1 and Lemma 5.1. 

Theorem 5.2. Let (𝑋, −) be a subtraction algebra, 𝛼, 𝛽, 𝛾 ∈ [−1,0], and 𝑋 N an  ℵ-structure over  𝑋. Then the following 

statements  are equivalent. 

(1) 𝑋 N is a neutrosophic  ℵ-ideal of  𝑋; 

(2) 𝑇N
𝛼, 𝐼N𝛽

, and 𝐹N
𝛾 are either empty sets or ideals of 𝑋; 

(3) Every non-empty (𝛼, 𝛽, 𝛾)− level set of 𝑋 N is an ideal of 𝑋. 

Proof. (1) ⇒ (2): If 𝑋 N is a neutrosophic  ℵ-ideal of  𝑋 then by Propositions 5.1, 5.2, and 5.3, we have 𝑇N
𝛼, 𝐼N𝛽

, and 

𝐹N
𝛾 are ideals of 𝑋. 

           (2) ⇒ (3): If 𝑇N
𝛼, 𝐼N𝛽

, and 𝐹N
𝛾 are ideals of 𝑋 then the (𝛼, 𝛽, 𝛾)− level set of 𝑋 N is intersection of ideals of 

𝑋 (intersection of 𝑇N
𝛼, 𝐼N𝛽

, and 𝐹N
𝛾) and hence, it is an ideal of 𝑋. 

          (3) ⇒ (1): By Lemma 5.1. 

Theorem 5.3. Let (𝑋, −) be a subtraction algebra and 𝛼, 𝛽, 𝛾 ∈ [−1,0] with (𝛼, 𝛽, 𝛾) ≠ (0, −1,0). Then every ideal 

of 𝑋  is an (𝛼, 𝛽, 𝛾)− level set of a neutrosophic ℵ-ideal of  𝑋. 

Proof. Let 𝐼 be an ideal of 𝑋 and 𝑋N = {
𝑥

(𝑇N,𝐼N,𝐹N)
: 𝑥 ∈ 𝑋} be ℵ-structure of  𝑋 defined as follows. 

(𝑇N(𝑥), 𝐼N(𝑥), 𝐹N(𝑥)) = {
(𝛼, 𝛽, 𝛾) 𝑖𝑓 𝑥 ∈ 𝐼;
(0, −1,0) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Let 𝛼′, 𝛽′, 𝛾′ ∈ [−1,0]. Then the (𝛼′, 𝛽′, 𝛾′)− level set of 𝑋N is given as follows: 

{
𝐼 𝑖𝑓 𝛼 ≤ 𝛼′ < 0, −1 < 𝛽′ ≤ 𝛽, 𝛾 ≤ 𝛾′ < 0;

𝑋 (𝛼′, 𝛽′ , 𝛾′) = (0, −1,0)

∅ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

And it is either an empty set or an ideal of 𝑋. Therefore, by Lemma 5.1,  𝑋N is a neutrosophic ℵ-ideal of  𝑋. 

6. Conclusion  

In this paper, we combined the notions of ℵ−structures, neutrosophy, and subtraction algebra to introduce            

ℵ−ideals (ℵ-subalgebras) of subtraction algebras. Some operations on the defined notions were discussed. Moreover, 

the (𝛼, 𝛽, 𝛾)− level sets were introduced and used to find a necessary and sufficient condition for ℵ-structures to be 

neutrosophic ℵ-ideals (ℵ-subalgebras). 
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For future work, it would be interesting to check whether there is a relation between our results about ℵ−ideals (ℵ-

subalgebras) of subtraction algebras and the results related to single valued neutrosophic subtraction algebras 

discussed by Chul Hwan Park in [8]. 
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Abstract
While making a decision, the neutrosophic set theory includes the uncertainty part beside certainty part (i.e.,
Yes or No). In the present uncertain socio-economic fashion, this pattern is highly acceptable and hence, the
limitations of fuzzy set and intuitionistic fuzzy set are overcome with neutrosophic set theory. The present
study provides a modified structure of linear programming problem (LP-problem) and its solution approach in
neutrosophic sense. A special type of neutrosophic set defined over the set of real number, viz., single valued
trapezoidal neutrosophic number (SVTN-number) is adopted here as the coefficients of the objective function,
right-hand side coefficients and decision variables itself of an LP-problem. In order to solve such problem, a
parameter based ranking function of SVTN-number is newly constructed from the geometrical configuration
of the trapezium. It plays a key role in the development of the solution algorithm. An LP-problem is normally
solved under the asset of some given constraints. Besides that, there may be some hidden parameters (e.g.,
awareness level of nearer society for the smooth run of a clinical pharmacy, ruined structure of road to be met
a profit from a bus, etc) of an LP-problem and these affect the solution badly when experts ignore them. This
study makes an attempt to solve an LP-problem by giving importance to all these to attain a fair outcome.
The efficiency of the proposed concept is illustrated in a real field. A real example is stated and is solved
numerically under the present view.

Keywords: Neutrosophic set; Single valued trapezoidal neutrosophic (SVTN) number; Linear programming
problem in neutrosophic sense; Simplex method.

1 Introduction
Due to complex diversity and vague atmosphere in the present socio-economic scenario, making a decision on
several events are being complicated day in day out. It is almost impossible to draw a decision in a straight
way due to incomplete and imprecise information available in the respective ground. Work pressure, diverted
mind, measurement errors, limited attention, lack of knowledge, time bounding pressure, the narrow scope of
placement at the end of academic, etc will force the experts to have such information. So, decision makers
focus to develop the concepts of decision making and optimization in an uncertain way. This results in the
exploration of fuzzy set by Zadeh [30] and intuitionistic fuzzy set by Atanassov [2]. But these logics can’t
manage the situations involving indeterminacy. There are many practical facts like in sports game, the role of
elector in the casting of poll, making decisions in different sectors, etc wherein one may predict three kinds
of outcomes. Smarandache [27] studied this kind of facts more precisely and he then introduced the notion of
the neutrosophic set (NS), a generalisation of intuitionistic fuzzy set. Each object in NS is characterised by a
triplet, viz., truth-membership value, indeterminacy-membership value and falsity-membership value. Each of
neutrosophic triplet is quantified explicitly and is independent in nature. The indeterministic part of uncertain
data plays an important role to make a proper decision which is out of scope in intuitionistic fuzzy set theory.

The ranking technique of fuzzy number, intuitionistic fuzzy number, neutrosophic number play an im-
portant role in developing different multi-attributive decision making, optimization, mathematical structures
and others. Gani and Ponnalagu [13] defined a method based on intuitionistic fuzzy linear programming for
investment strategy. Li [21] developed a ratio ranking technique of triangular intuitionistic fuzzy numbers
and applied it to MADM problems. Yao and Wu [29] brought a ranking method of fuzzy numbers based
on the decomposition principle and signed distance while Rao and Shankar [25] developed so with an area
method using the circumference of the centroid. Mukherjee and Basu [22] applied a fuzzy ranking method for
solving assignment problems with fuzzy costs. Roy and Das [26] solved a neutrosophic multi-objective pro-
duction planning problem. Deli and Subas [11] applied a ranking method of trapezoidal neutrosophic number
in MADM problems. Biswas et al. [9] have proposed an approach for multi-attribute group decision making
problems under single-valued neutrosophic environment. Hussian et al. [14] have solved the neutrosophic
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linear programming problem by transforming it into a crisp programming model. Pramanik [24] has put a new
direction to solve a neutrosophic multi-objective programming by extending Zimmermann’s approach. Several
approaches [3-8, 12] are seen to optimise LP-problems under real neutrosophic climate. Chakraborty [10] es-
tablished a score function of pentagonal neutrosophic number and applied it on a net working problem. Khalid
[15-20] handled neutrosophic geometric programming in several directions. Mullai et al. [23] developed an
inventory model with neutrosophic random variable.

Decision makers generally solve an LP-problem based on some constraints provided to them. Furthermore,
there are a number of parameters of an LP-problem such as, but not limited to, the awareness level of nearer
society for the smooth run of a clinical pharmacy, degree of redemption from Govt. tax on raw materials
used in industry to meet a profit, degree of ruined economy of society for inhaling situation of the nearer
market, degree of road condition in driving a bus to get a profit, etc. While solving an LP-problem, experts
ignore these facts and so the outcome is not fair as a whole. To conquer this limitation, a ranking function of
SVTN-number in term of a parameter graded in [0,1] is derived here from the geometrical configuration of
the trapezium. This parameter describes an additional character of an LP-problem which is modified here and
thus several situations (i.e., for different grades) of respective problem are managed nicely.

This study extends the concept of LP-problem from crisp sense to neutrosophic sense. Based on a ranking
function newly brought here, an efficient solution algorithm is developed to solve such a problem. The effi-
ciency of the present thought is measured in the real field. The paper is organised as follows.
Some preliminary definitions are remembered in Section 2. Section 3 provides a ranking function of SVTN-
number , and an LP-problem is given from the point of neutrosophic view. In Section 4, an algorithm is
developed towards solving such problem. The method has been illustrated with the help of a real life example
in Section 5. Finally, the present work and its future aspect and limitation are given in Section 6.

2 Preliminaries
Some necessary definitions and results are stated below to make out the main results.

2.1 Definition [1]
A fuzzy number P is designed by a pair of bounded functions PL(α), PR(α), α ∈ [0, 1] where PL is mono-
tone increasing, left continuous and PR is monotone decreasing, right continuous with PL(α) ≤ PR(α).

A trapezoidal fuzzy number is displayed by P = (m0, n0, γ, δ) where [m0, n0] is interval defuzzifier and
γ(> 0), δ(> 0) are respectively left fuzziness, right fuzziness and (m0 − γ, n0 + δ) is the support of P . Its
membership function is defined as :

P (x) =


1
γ (x−m0 + γ), m0 − γ ≤ x ≤ m0,

1, x ∈ [m0, n0],
1
δ (n0 − x+ δ), n0 ≤ x ≤ n0 + δ,

0, elsewhere.

In parametric form PL(α) = m0 − γ + γα, PR(α) = n0 + δ − δα.

2.2 Definition [27]
An NS P over the universe U is defined by a triplet namely truth-membership value µP , indeterminacy-
membership value νP and falsity-membership value ηP where µP , νP , ηP : U →]−0, 1+[. Thus P is displayed
as : P = {< x, µP (x), νP (x), ηP (x) >: x ∈ U} with −0 ≤ supµP (x) + sup νP (x) + sup ηP (x) ≤ 3+.
Here 1+ = 1 + ε, where 1 is its standard part and ε is its non-standard part. Similarly −0 = 0− ε, where 0 is
its standard part and ε is its non-standard part.

This concept was primarily viewed in philosophical sense. But it is difficult to use NS with value from real
standard or nonstandard subset of ]−0, 1+[ in real field. To overcome this, NS with value from the subset of
[0,1] is considered.

2.3 Definition [28]
A single valued neutrosophic (SVN) setM over a universeU is an NS where the components of each triplet are
real standard elements of [0, 1]. Thus an SVN-set M is executed as : M = {< x, µM (x), νM (x), ηM (x) >:
x ∈ U and µM (x), νM (x), ηM (x) ∈ [0, 1]} such that 0 ≤ supµM (x) + sup νM (x) + sup ηM (x) ≤ 3.
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2.4 Definition [11]
Let pi, qi, si, ti ∈ R (the set of all real numbers) with ordered as pi ≤ qi ≤ si ≤ ti (i = 1, 2, 3) and
wm̃, um̃, ym̃ ∈ [0, 1]. Then a SVN-number m̃ = 〈([p1, q1, s1, t1];wm̃), ([p2, q2, s2, t2];um̃), ([p3, q3, s3, t3]; ym̃)〉
is a special SVN-set on R whose truth value, indeterminacy value, falsity value are respectively defined by the
mappings µm̃ : R→ [0, wm̃], νm̃ : R→ [um̃, 1], ηm̃ : R→ [ym̃, 1] and they are respectively given as :

glµ(x), p1 ≤ x ≤ q1,
wm̃, q1 ≤ x ≤ s1,
grµ(x), s1 ≤ x ≤ t1,
0, otherwise.


glν(x), p2 ≤ x ≤ q2,
um̃, q2 ≤ x ≤ s2,
grν(x), s2 ≤ x ≤ t2,
1, otherwise.


glη(x), p3 ≤ x ≤ q3,
ym̃, q3 ≤ x ≤ s3,
grη(x), s3 ≤ x ≤ t3,
1, otherwise.

The functions glµ : [p1, q1]→ [0, wm̃], grν : [s2, t2]→ [um̃, 1], g
r
η : [s3, t3]→ [ym̃, 1] are continuous and non-

decreasing which satisfy : glµ(p1) = 0, glµ(q1) = wm̃, g
r
ν(s2) = um̃, g

r
ν(t2) = 1, grη(s3) = ym̃, g

r
η(t3) = 1.

The functions grµ : [s1, t1]→ [0, wm̃], glν : [p2, q2]→ [um̃, 1], g
l
η : [p3, q3]→ [ym̃, 1] are continuous and non-

increasing which satisfy : grµ(s1) = wm̃, g
r
µ(t1) = 0, glν(p2) = 1, glν(q2) = um̃, g

l
η(p3) = 1, glη(q3) = ym̃.

If [p1, q1, s1, t1] = [p2, q2, s2, t2] = [p3, q3, s3, t3] in m̃, it is reduced to a SVTN-number. Thus ñ =
〈([p, q, s, t]; wñ, uñ, yñ)〉 is a SVTN-number.

2.5 Definition [6]
A neutrosophic set of the form m̃ = 〈([p1, q1, δ1, ξ1];wm̃), ([p2, q2, δ2, ξ2];um̃), ([p3, q3, δ3, ξ3]; ym̃)〉 and
defined on R is called a SVN-number. δi(> 0) are the left spreads, ξi(> 0) are the right spreads and [pi, qi]
are the modal intervals for degree of truth, indeterminacy, falsity-membership for i = 1, 2, 3 respectively in m̃
and wm̃, um̃, ym̃ ∈ [0, 1]. The three neutrosophic components are designed as :

Tm̃(x) =


1
δ1
wm̃(x− p1 + δ1), p1 − δ1 ≤ x ≤ p1,

wm̃, x ∈ [p1, q1],
1
ξ1
wm̃(q1 − x+ ξ1), q1 ≤ x ≤ q1 + ξ1,

0, elsewhere.

Im̃(x) =


1
δ2
(p2 − x+ um̃(x−m2 + δ2)), p2 − δ2 ≤ x ≤ p2,

um̃, x ∈ [p2, q2],
1
ξ2
(x− q2 + um̃(q2 − x+ ξ2)), q2 ≤ x ≤ q2 + ξ2,

1, elsewhere.

Fm̃(x) =


1
δ3
(p3 − x+ ym̃(x− p3 + δ3)), p3 − δ3 ≤ x ≤ p3,

ym̃, x ∈ [p3, q3],
1
ξ3
(x− q3 + ym̃(q3 − x+ ξ3)), q3 ≤ x ≤ q3 + ξ3,

1, elsewhere.

Here m̃ consists of three pairs (T lm̃, T
u
m̃), (I lm̃, I

u
m̃), (F lm̃, F

u
m̃) of bounded and continuous functions so that

(i) T lm̃, I
u
m̃, F

u
m̃ are monotone non-decreasing and Tum̃, I

l
m̃, F

l
m̃ are monotone non-increasing.

(ii) T lm̃(r) ≤ Tuã (r), I lm̃(r) ≥ Ium̃(r), F lm̃(r) ≥ Fuã (m), r ∈ [0, 1].
A SVN-number m̃ is transformed into a SVTN-number when three modal intervals in m̃ are all equal. Thus
q̃ = 〈([m0, n0, δ1, ξ1];wq̃), ([m0, n0, δ2, ξ2];uq̃), ([m0, n0, δ3, ξ3]; yq̃)〉 is a SVTN-number.

The truth, indeterminacy and falsity-membership values of a SVTN-number differ with respect to their
corresponding height only by Definition 2.4. But to compare the various SVTN-numbers in a more flexible
way, both supports ( i.e. the bases of trapeziums) and heights of neutrosophic components are allowed to differ
in Definition 2.5. So, it is the more generalisation of Definition 2.4.

3 Ranking technique of SVTN-number
The score value of SVTN-number is evaluated here from geometrical view and its properties are studied. Then
a linear ranking function is defined with this score value.
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3.1 Definition
The maximum heights of three neutrosophic components of a SVTN-number (proposed in Definition 2.5)
are all taken as one (i.e., 1) to have a linear ranking function. Thus three components of a SVTN-number
p̃ = 〈[p, q, δ1, ξ1], [p, q, δ2, ξ2], [p, q, δ3, ξ3]〉 are designed respectively as follows.

µp̃(y) =


1
δ1
(y − p+ δ1), p− δ1 ≤ y ≤ p,

1, x ∈ [p, q],
1
ξ1
(q − y + ξ1), q ≤ y ≤ q + ξ1,

0, elsewhere .

νp̃(y) =


1
δ2
(p− y), p− δ2 ≤ y ≤ p,

0, y ∈ [p, q],
1
ξ2
(y − q), q ≤ y ≤ q + ξ2,

1, elsewhere.

ηp̃(y) =


1
δ3
(p− y), p− δ3 ≤ y ≤ p,

0, x ∈ [p, q],
1
ξ3
(y − q), q ≤ y ≤ q + ξ3,

1, elsewhere.

Consider two SVTN-numbers ã = 〈[a, b, ω1, λ1], [a, b, ω2, λ2], [a, b, ω3, λ3]〉 and c̃ = 〈[c, d, ξ1, κ1], [c, d, ξ2, κ2],
[c, d, ξ3, κ3]〉. Then,
(i) Addition :

ã+ c̃ = 〈[a+ c, b+ d, ω1 + ξ1, λ1 + κ1], [a+ c, b+ d, ω2 + ξ2, λ2 + κ2], [a+ c, b+ d, ω3 + ξ3, λ3 + κ3]〉.
(ii) Scalar multiplication : For any real number x,

xã = 〈[xa, xb, xω1, xλ1], [xa, xb, xω2, xλ2], [xa, xb, xω3, xλ3]〉 if x > 0.
xã = 〈[xb, xa,−xλ1,−xω1], [xb, xa,−xλ1,−xω2], [xb, xa,−xλ1,−xω3]〉 if x < 0.

(iii) If a = b = ωi = λi = 0 for all i in ã, then it is called a zero SVTN-number and is denoted by
0̃ = 〈[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]〉.

3.1.1 Product of two SVTN-numbers

Let ã = 〈[a, b, ω1, λ1], [a, b, ω2, λ2], [a, b, ω3, λ3]〉 and c̃ = 〈[c, d, κ1, ζ1], [c, d, κ2, ζ2], [c, d, κ3, ζ3]〉 be two
svtn-numbers. Their product ã · c̃ is defined as :

ã · c̃ = 〈[ac, bd, aκ1 + cω1 − ω1κ1, bζ1 + dλ1 + λ1ζ1], (1)
[ac, bd, aκ2 + cω2 − ω2κ2, bζ2 + dλ2 + λ2ζ2],

[ac, bd, aκ3 + cω3 − ω3κ3, bζ3 + dλ3 + λ3ζ3]〉
when b+ λi > 0 and d+ ζi > 0, ∀i = 1, 2, 3.

ã · c̃ = 〈[ad, bc, −aζ1 + dω1 + ω1ζ1, −bκ1 + cλ1 − λ1κ1], (2)
[ad, bc, −aζ2 + dω2 + ω2ζ2, −bκ2 + cλ2 − λ2κ2],
[ad, bc, −aζ3 + dω3 + ω3ζ3, −bκ3 + cλ3 − λ3κ3]〉

when b+ λi < 0, but d+ ζi > 0, ∀i = 1, 2, 3.

ã · c̃ = 〈[bd, ac, −bζ1 − dλ1 − λ1ζ1, −aκ1 − cω1 + ω1κ1], (3)
[bd, ac, −bζ2 − dλ2 − λ2ζ2, −aκ2 − cω2 + ω2κ2],

[bd, ac, −bζ3 − dλ3 − λ3ζ3, −aκ3 − cω3 + ω3κ3]〉
when b+ λi < 0 and d+ ζi < 0, ∀i = 1, 2, 3.

Suppose b + λ3 < 0, d + ζ3 > 0 only but b + λk > 0, d + ζk > 0 or b + λk < 0, d + ζk < 0 for k = 1, 2
(i.e., others keep same sign) then the product is also defined from above as the components in neutrosophic
triplet are independent in nature. More precisely, the product of falsity components in ã · c̃ follows the 2nd rule
whereas the product of truth and indeterminacy components in ã · c̃ follow either 1st rule or 3rd rule.

3.1.2 Geometrical representation of SVTN-number

The SVTN-number in different looks and their comparison are now presented geometrically by means of
Definition 2.4 (Figure 1), Definition 2.5 (Figure 2), Definition 3.1 (Figure 3) respectively. In the present study,
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the components of neutrosophic triplet differ by their supports only. Figure 4 represents the truth value of
SVTN-number alone by Definition 3.1.

3.2 Score of SVTN-number
Let, Figure 4 represent a SVTN-number p̃ = 〈[p, q, δ1, ζ1], [p, q, δ2, ζ2], [p, q, δ3, ζ3]〉. Let the trapeziums
AGHD,LBCN and MBCP correspond respectively the truth value, indeterminacy value and falsity value.
Two perpendicular lines BG and CH are drawn. Then each trapezium is divided into two triangles and one
rectangle/square. Now let us consider each trapezium separately.

The trapezium AGHD (see Figure 5) consists of two triangles ABG,CHD and one rectangle BCHG.
With respect to the co-ordinate of vertices of trapezium AGHD corresponding to p̃, the centroid of triangles
ABG and CHD are G1(p− δ1

3 ,
1
3 ) and G3(q +

ζ1
3 ,

1
3 ) respectively. Also the centroid of rectangle BCHG is

the intersecting point G2 of its two diagonals i.e., G2(
p+q
2 , 12 ). For contrary, suppose G1, G2, G3 are collinear.

Then the area of triangle formed with these points as vertices will be zero i.e.,

1

3
(
p+ q

2
− q − ζ1

3
) +

1

2
(q +

ζ1
3
− p+ δ1

3
) +

1

3
(p− δ1

3
− p+ q

2
) = 0 (4)

⇒ δ1 + ζ1 = 3(p− q) < 0, ( using Def. 3.1)

It is a contradiction to the hypothesis that δ1 + ζ1 > 0. Hence G1, G2, G3 are non-collinear and a triangle
can be formed with these points as vertices. The centroid of this triangle is G′( 9p+9q−2δ1+2ζ1

18 , 7
18 ). The

centroid points G1, G2, G3 are the balancing points for triangle ABG, rectangle BCHG and triangle CHD
respectively. But as the centroid G′ is much more balancing point for the two triangles and one rectangle as a
whole, so this point is taken to construct the ranking function.
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The trapezium LBCN consists of two triangles LBG,HCN and one rectangle BCHG. With respect to
the co-ordinate of vertices of trapezium LBCN corresponding to p̃, the centroid of the triangles LBG and
HCN areG4(p− δ2

3 ,
2
3 ) andG5(q+

ζ2
3 ,

2
3 ) respectively. The centroid of the rectangleBCHG isG2(

p+q
2 , 12 ).

Here G4, G2, G5 are non-collinear for the same fact stated above. So the centroid G′′( 9p+9q−2δ2+2ζ2
18 , 1118 ) of

the triangle with vertices G4, G2, G5 is taken to construct the ranking function.
Finally, the trapezium MBCP consists of two triangles MBG,PCH and the rectangle BCHG. With

respect to the co-ordinate of vertices of trapezium MBCP corresponding to p̃, the centroid of the triangles
MBG and PCH areG6(p− δ3

3 ,
2
3 ) andG7(q+

ζ3
3 ,

2
3 ) respectively. By similar argument as above, the centroid

G′′′( 9p+9q−2δ3+2ζ3
18 , 1118 ) of a triangle of vertices G6, G2, G7 is considered to form the ranking function.

We now define the score of p̃ corresponding to truth value, indeterminacy value and falsity value respec-
tively as :
Sµ(p̃) =

7
18 (

9p+9q−2δ1+2ζ1
18 ), Sν(p̃) = 11

18 (
9p+9q−2δ2+2ζ2

18 ), Sη(p̃) = 11
18 (

9p+9q−2δ3+2ζ3
18 ).

For an arbitrary parameter γ lying in [0, 1] and for any natural number n, the γ-weighted score function of p̃ is
denoted by Sγ(p̃) and is defined as :

Sγ(p̃) = Sµ(p̃)γ
n + Sν(p̃)(1− γn) + Sη(p̃)(1− γn) (5)

=
1

324
[7(9p+ 9q − 2δ1 + 2ζ1)γ

n + 11(9p+ 9q − 2δ2 + 2ζ2)(1− γn)

+11(9p+ 9q − 2δ3 + 2ζ3)(1− γn)]

3.2.1 Proposition

The γ-weighted score of a SVTN-number obeys the following the norms.
(i) It is linear i.e., Sγ(c̃ ± d̃) = Sγ(c̃) ± Sγ(d̃) and Sγ(πc̃) = πSγ(c̃), π being any real number and c̃, d̃ are
two SVTN-numbers.
(ii) Sγ(d̃− d̃) = Sγ(0̃).
(iii) Sγ(c̃) is monotone increasing or decreasing or constant according as Sµ(c̃) >

Sν(c̃) + Sη(c̃) or Sµ(c̃) < Sν(c̃) + Sη(c̃) or Sµ(c̃) = Sν(c̃) + Sη(c̃) respectively.

Proof. (i) Let c̃ = 〈[a, b, ω1, λ1], [a, b, ω2, λ2], [a, b, ω3, λ3]〉 and d̃ = 〈[x, y, κ1, ζ1], [x, y, κ2, ζ2], [x, y, κ3, ζ3]〉
be two SVTN-numbers. Then,
−d̃ = 〈[−y,−x, ζ1, κ1], [−y,−x, ζ2, κ2], [−y,−x, ζ3, κ3]〉
c̃+ d̃ = 〈[a+x, b+ y, ω1+κ1, λ1+ ζ1], [a+x, b+ y, ω2+κ2, λ2+ ζ2], [a+x, b+ y, ω3+κ3, λ3+ ζ3]〉,
c̃− d̃ = 〈[a− y, b−x, ω1+ ζ1, λ1+κ1], [a− y, b−x, ω2+ ζ2, λ2+κ2], [a− y, b−x, ω3+ ζ3, λ3+κ3]〉;
Now,

Sγ(c̃) =
1

324 [7(9a+9b−2ω1+2λ1)γ
n+11(9a+9b−2ω2+2λ2)(1−γn)+11(9a+9b−2ω3+2λ3)(1−γn)],

Sγ(d̃) =
1

324 [7(9x+9y−2κ1+2ζ1)γ
n+11(9x+9y−2κ2+2ζ2)(1−γn)+11(9x+9y−2κ3+2ζ3)(1−γn)],

Sγ(c̃+ d̃) = 1
324 [7(9a+ x+ 9b+ y − 2ω1 + κ1 + 2λ1 + ζ1)γ

n + 11(9a+ x+ 9b+ y − 2ω2 + κ2+

2λ2 + ζ2)(1− γn) + 11(9a+ x+ 9b+ y − 2ω3 + κ3 + 2λ3 + ζ3)(1− γn)],

Sγ(c̃− d̃) = 1
324 [7(9a− y + 9b− x− 2ω1 + ζ1 + 2λ1 + κ1)γ

n + 11(9a− y + 9b− x− 2ω2 + ζ2+

2λ2 + κ2)(1− γn) + 11(9a− y + 9b− x− 2ω3 + ζ3 + 2λ3 + κ3)(1− γn)];
Hence the result is.

(ii) Here, −d̃ = 〈[−y,−x, ζ1, κ1], [−y,−x, ζ2, κ2], [−y,−x, ζ3, κ3]〉.
d̃− d̃ = 〈[x− y, y−x, κ1+ ζ1, ζ1+κ1], [x− y, y−x, κ2+ ζ2, ζ2+κ2], [x− y, y−x, κ3+ ζ3, ζ3+κ3]〉;
Sγ(d̃− d̃) = 1

324 [7(9x− y + 9y − x− 2κ1 + ζ1 + 2ζ1 + κ1)γ
n + 11(9x− y + 9y − x− 2κ2 + ζ2+

2ζ2 + κ2)(1− γn) + 11(9x− y + 9y − x− 2κ3 + ζ3 + 2ζ3 + κ3)(1− γn)] = 0 = Sγ(0̃);
This ends (ii).

(iii)

Sγ(c̃) = γnSµ(c̃) + (1− γn)Sν(c̃) + (1− γn)Sη(c̃)
dSγ(c̃)

dγ
= nγn−1[Sµ(c̃)− (Sν(c̃) + Sη(c̃))]

dSγ(c̃)
dγ >,<,= 0 when [Sµ(c̃)− (Sν(c̃) + Sη(c̃))] >,<,= 0 respectively as γ ≥ 0. This meets the fact.
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3.3 Definition
Let SVTN(R) be the set of all SVTN-numbers defined over R. For γ ∈ [0, 1], a mapping fγ : SVTN(R) −→ R
is called a ranking function and it is defined as : fγ(c̃) = Sγ(c̃) for c̃ ∈ SVTN(R). The order of x̃, w̃ ∈
SVTN(R) is defined as :

Sγ(x̃) > Sγ(w̃)⇔ x̃ >fγ w̃ ( i.e., x̃ > w̃ with respect to fγ), Sγ(x̃) < Sγ(w̃)⇔ x̃ <fγ w̃,
Sγ(x̃) = Sγ(w̃)⇔ x̃ =fγ w̃.

4 Linear programming in neutrosophic sense
Here, we shall extend the concept of crisp LP-problem under the neutrosophic environment. First we recall
the structure of crisp LP-problem.

Max z = cx

such that Ax = b, x = (x1, x2, · · · , xn)t, xi ≥ 0

where c = (c1, c2, · · · , cn), b = (b1, b2, · · · , bn)t and A = [pij ]m×n with cj , bj , pij all real.
The concept of LP-problem is now modified by considering the coefficients of the variables in the objective

function, the right hand side coefficients in the constraints and in the decision variables regarded as SVTN-
numbers. Thus a LP-problem in neutrosophic sense is designed as follows :

Max z̃ =fγ c̃x̃

such that Ax̃ =fγ b̃, x̃ ≥fγ 0̃ (6)

where b̃ ∈ (SVTN(R))m, x̃ ∈ (SVTN(R))n, A ∈ Rm×n, c̃t ∈ (SVTN(R))n and fγ is a ranking function.

4.1 Definition
1. x̃ ∈ (SVTN(R))n satisfying the constraints of (6) is called a feasible solution to (6).
2. If c̃x̃∗ ≥fγ c̃x̃ holds for all solutions x̃ to (6), then x̃∗ is an optimal solution to (6).

3. For the modified LP-problem (6), consider rank(A, b̃) = rank(A) = m. The columns of A is partitioned
as [B,N ] where Bm×m and N are respectively called basis and non-basis matrix. Clearly rank(B) = m.
Then, a feasible solution x̃ = (x̃B , x̃N )t to (6) obtained by setting x̃B =fγ B−1b̃, x̃N =fγ 0̃ is called a
neutrosophic basic feasible solution (NBFS). The component x̃B and x̃N are respectively called basic variable
and nonbasic variable.
4. x̃ is non-degenerate NBFS when all components of x̃B >fγ 0̃. For x̃ being degenerate NBFS, at least one
component of x̃B =fγ 0̃.

4.1.1 Note

In the modified LP-problem (6), let A = [pij ]m×n = [p1, p2, · · · , pn] where each pk = (p1k, p2k, · · · , pmk)t
is m component column vector. Taking partition on the columns of A, let Bm×m be the basis matrix. Suppose
wk = (w1k, w2k, · · · , wmk)t is a set of m component scalars required to represent any column pk of A as a
linear combination of the column vectors of basis matrix B i.e., pk = Bwk.

5 Simplex method for modified LP-problem
The modified LP-problem (6) can be put as follows :

Max z̃ =fγ c̃Bx̃B + c̃N x̃N

such that Bx̃B +Nx̃N =fγ b̃

x̃B , x̃N ≥fγ 0̃
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where x̃B , x̃N , B,N all are signified already. We have then,

x̃B +B−1Nx̃N =fγ B
−1b̃ (7)

⇒ c̃Bx̃B + c̃BB
−1Nx̃N =fγ c̃BB

−1b̃

⇒ z̃ − c̃N x̃N + c̃BB
−1Nx̃N =fγ c̃BB

−1b̃

⇒ z̃ + (c̃BB
−1N − c̃N )x̃N =fγ c̃BB

−1b̃ (8)

Assuming x̃N =fγ 0̃, we get x̃B =fγ B
−1b̃ by (7) and z̃ =fγ c̃BB

−1b̃ by (8). The LP-problem (6) is thus
arranged in the following table (Table 1).

Table 1 : Tabular form of modified LP-problem.
c̃j c̃B c̃N
z̃ x̃B x̃N R.H.S

x̃B 0 1 B−1N B−1b̃

z̃ 1 0 c̃BB
−1N − c̃N c̃BB

−1b̃

All the required information are met by Table 1 to proceed the simplex method. The cost row in Table 1 is
χ̃j =fγ (c̃BB

−1pj − c̃j)pj /∈B which implies χ̃j =fγ (z̃j − c̃j) for non-basic variables.

5.1 Theorem
A non-degenerate NBFS (x̃B , x̃N ) = (B−1b̃, 0̃) is optimal to the modified LP-problem (6) if and only if
z̃j − c̃j ≥fγ 0̃, ∀ j = 1, · · · , n.

Proof. Let x̃∗ = (x̃tB , x̃
t
N )t be an NBFS to (1) where x̃B = B−1b̃, x̃N = 0̃. Let z̃∗ be the objective function

corresponding to x̃∗. Then z̃∗ =fγ c̃Bx̃B =fγ c̃BB
−1b̃. Let z̃ be the objective function corresponding to

another feasible solution x̃ = [x̃1, x̃2, · · · , x̃n]t to LP-problem (6), then Bx̃B + Nx̃N =fγ b̃ =fγ Ax̃ and
objective function is :

z̃ =fγ c̃Bx̃B + c̃N x̃N =fγ c̃BB
−1b̃−

∑
pj /∈B

(c̃BB
−1pj − c̃j)x̃j =fγ z̃∗ −

∑
pj /∈B

(z̃j − c̃j)x̃j

Clearly, the solution is optimal if and only if z̃j − c̃j ≥fγ 0̃ ∀ j = 1, · · · , n.

5.2 Theorem
For any NBFS to the modified LP-problem (6), if there is some column not in basis for which z̃k − c̃k <fγ 0̃
and wik ≤ 0; i = 1, 2, · · · ,m, then LP-problem attains an unbounded solution.

Proof. Let x̃B be a basic solution for the problem (6). Arranging the constraints,

Bx̃B +Nx̃N = b̃

⇒ x̃B +B−1Nx̃N = B−1b̃

⇒ x̃B +B−1
∑
j

(pj x̃j) = B−1b̃, pjs are the columns of N

⇒ x̃B +
∑
j

(B−1pj x̃j) = B−1b̃

⇒ x̃B +
∑
j

(wj x̃j) = w̃0, for pj = Bwj , pj /∈ B

⇒ x̃Bi +
∑
j

(wij x̃j) = w̃i0; i = 1, · · · ,m; j = 1, · · · , n

⇒ x̃Bi = w̃i0 −
∑
j

(wij x̃j); i = 1, · · · ,m; j = 1, · · · , n

If x̃k enters into the basis, then x̃k >fγ 0̃ and x̃j =fγ 0̃ for j 6= Bi ∪ k (Bi being a column of B). Since
wik ≤ 0 (i = 1, · · · ,m), so w̃i0−wikx̃k ≥fγ 0̃. Hence, basic solution remains feasible at present and for that
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feasible solution, objective function is :

z̃∗ =fγ c̃Bx̃B + c̃N x̃N =fγ

m∑
i=1

c̃Bi(w̃i0 − wikx̃k) + c̃kx̃k

=fγ

m∑
i=1

c̃Biw̃i0 − (

m∑
i=1

c̃Biwik − c̃k)x̃k

=fγ c̃Bw̃0 − (c̃Byk − c̃k)x̃k =fγ z̃ − (z̃k − c̃k)x̃k

Thus z̃∗ =fγ z̃ − (z̃k − c̃k)x̃k. It implies z̃∗ >fγ z̃, as z̃k − c̃k <fγ 0̃.
Hence the LP-problem attains an unbounded solution.

5.3 Simplex algorithm for solving modified LP-problem
While applying simplex method to solve an LP-problem studied here, it is always assumed that the initial
solution is feasible. It will be optimised through some iterations. Following steps are practiced :
Step 1. For maximization problem, go to Step 1 directly. Otherwise, convert it into a maximization problem
by changing the sign of all price vectors c̃j .
Step 2. Introduce slack variables to convert all ‘≤’ type inequations into equations. Consider the costs of all
slack variables to 0̃.
Step 3. Calculate a NBFS to the problem of the form x̃B = B−1b̃ = w̃0 and x̃N = 0̃ and the respective
objective function as z̃ =fγ c̃BB

−1b̃ =fγ c̃Bw̃0.

Step 4. Assume χ̃B =fγ z̃B − c̃B =fγ 0̃ for each basic variable and in the present iteration, calculate
χ̃j =fγ z̃j − c̃j =fγ c̃BB

−1pj − c̃j for each non-basic variable. The present solution will be optimal, if
z̃j − c̃j ≥fγ 0̃, ∀j.
Step 5. If χ̃j =fγ z̃j − c̃j <fγ 0̃ for some non-basic variables then compute χ̃k = min{χ̃j}. If wik < 0 for
all i = 1, · · · ,m, then the given problem attains unbounded solution and so terminate the iteration. Otherwise
determine

w̃r0
wrk

= min{ w̃i0wik
: wik > 0; i = 1, · · · ,m}.

to find out the index of the variable x̃Br to be removed from the present basis.
Step 6. Modify w̃i0 by replacing w̃i0 − w̃r0

wrk
wik for i 6= r and w̃r0 by w̃r0

wrk
.

Step 7. Develop new basis and perform Step 4, Step 5 repeatedly until the optimality is reached.
Step 8. Find the optimal solution and the optimal value of objective function.

6 Numerical Example
A real life problem is stated here and is solved numerically by use of proposed concept. For simplicity, we
define the γ-weighted score function for n = 1 in rest of the paper.

6.1 Example
For business purpose, Mr. X wishes to drive his two lorries (L1, L2) in two different routes (R1, R2). The
route R1 is assigned for the lorry L1 and route R2 for L2. He likes to allow a maximum of Rs. 300b̃1 for
fuel charge and at most Rs. 320b̃2 for the salary of staffs in a week. The consumed fuel charge is Rs. 23/hr
for L1 and Rs. 25/hr for L2. The salary of staffs is estimated Rs. 30/hr for L1 and Rs. 40/hr for L2. Such
type of variation of fuel charge and salary estimation are due to road condition, mileage of lorry, distance, road
tax, time bounds and different business angles. This results a profit approximately Rs. c̃1 /hr from L1 and Rs.
c̃2 /hr from L2. Now suggest him what time can he allow to run his lorries in two routes depending on these
criteria so that the maximum profit will be met as a whole in a week.

The problem can be summarised in the following table (Table 2):

Table 2 : Summarisation of Example 6.1
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Expenditure ⇓ Route : R1 R2 Available cost / week ⇓
Fuel charge Rs. 23/hr Rs. 25/hr Rs. 300b̃1
Staff salary Rs. 30/hr Rs. 40/hr Rs. 320b̃2
Profit/hr ⇒ Rs. c̃1 Rs. c̃2

Let the lorry L1 will run for x̃1 hr in route R1 and the lorry L2 will run for x̃2 hr in route R2 in a week. The
problem will be then designed as follows :

Max z̃ =fγ c̃1x̃1 + c̃2x̃2

such that 23x̃1 + 25x̃2 ≤fγ 300b̃1

30x̃1 + 40x̃2 ≤fγ 320b̃2

x̃1, x̃2 ≥fγ 0̃

It is a modified LP-problem in neutrosophic sense with a pre-assigned γ = 0.4 where c̃1, c̃2, b̃1, b̃2 are all
SVTN-numbers given as follows :

c̃1 = 〈[4, 7, 1, 3], [4, 7, 3, 4], [4, 7, 2, 1]〉,
c̃2 = 〈[6, 8, 4, 10], [6, 8, 5, 1], [6, 8, 3, 2]〉,
b̃1 = 〈[10, 12, 3, 7], [10, 12, 6, 12], [10, 12, 4, 15]〉,
b̃2 = 〈[8, 22, 2, 18], [8, 22, 4, 25], [8, 22, 7, 30]〉.

Rewriting the given constraints by introducing slack variables,

23x̃1 + 25x̃2 + x̃3 =fγ 300b̃1

30x̃1 + 40x̃2 + x̃4 =fγ 320b̃2

x̃1, x̃2, x̃3, x̃4 ≥fγ 0̃

The first revised simplex table is given in the following table (Table 3).

Table 3 : First revised simplex table.

c̃j ⇒ c̃1 c̃2 0̃ 0̃
x̃B ⇓ x̃1 x̃2 x̃3 x̃4 R.H.S
x̃3 23 25 1 0 300b̃1
x̃4 30 40 0 1 320b̃2 →

z̃ ⇒ c̃
(1)
1 c̃

(1)
2 ↑ c̃

(1)
3 c̃

(1)
4

where c̃(1)1 = −c̃1, c̃(1)2 = −c̃2 and Sγ(c̃
(1)
3 ) = Sγ(c̃

(1)
4 ) = Sγ(0̃).

Now Sγ(c̃
(1)
1 ) = 1

324 (1457γ − 2178) < 0, Sγ(c̃
(1)
2 ) = 1

324 (1696γ − 2662) < 0 and c̃(1)1 >fγ c̃
(1)
2 for

γ = 0.4. So x̃2 enters in the basis.
Further Sγ(300b̃1/25) = 12

324 (4730 − 3288γ), Sγ(320b̃2/40) = 8
324 (6908 − 4794γ). For γ = 0.4,

(300b̃1/25) >fγ (320b̃2/40) and so the leaving variable is x̃4. The second revised simplex table is (Table 4):

Table 4 : Second revised simplex table.

c̃j ⇒ c̃1 c̃2 0̃ 0̃
x̃B ⇓ x̃1 x̃2 x̃3 x̃4 R.H.S
x̃3 17/4 0 1 -5/8 100(3b̃1 − 2b̃2)→
x̃2 3/4 1 0 1/40 8b̃2

z̃ ⇒ c̃
(2)
1 ↑ c̃

(2)
2 c̃

(2)
3 c̃

(2)
4 8b̃2c̃2

where Sγ(c̃
(2)
2 ) = Sγ(c̃

(2)
3 ) = Sγ(0̃) and c̃(2)1 = 3

4 c̃2 − c̃1, c̃(2)4 = 1
40 c̃2.

Then Sγ(c̃
(2)
1 ) = 1

1296 (−726+ 740γ), Sγ(c̃
(2)
4 ) = 1

12960 (2662− 1696γ). For γ = 0.4, clearly Sγ(c̃
(2)
1 ) <

0, Sγ(c̃
(2)
4 ) > 0. So x̃1 enters in the basis.

Further Sγ((300b̃1− 200b̃2)/
17
4 ) = 100

1377 (374− 276γ), Sγ(8b̃2/ 3
4 ) =

32
972 (6908− 4794γ). So the leaving

variable is x̃3 for γ = 0.4. The final revised table is (Table 5):
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Table 5 : Final revised simplex table.

c̃j ⇒ c̃1 c̃2 0̃ 0̃
x̃B ⇓ x̃1 x̃2 x̃3 x̃4 R.H.S
x̃1 1 0 4/17 -5/34 400(3b̃1 − 2b̃2)/17

x̃2 0 1 -3/17 23/170 (736b̃2 − 900b̃1)/17

z̃ ⇒ c̃
(3)
1 c̃

(3)
2 c̃

(3)
3 c̃

(3)
4

400
17 (3b̃1 − 2b̃2)c̃1 +

1
17 (736b̃2 − 900b̃1)c̃2

where Sγ(c̃
(3)
1 ) = Sγ(c̃

(3)
2 ) = Sγ(0̃) and c̃(3)3 = 1

17 (4c̃1 − 3c̃2), c̃
(3)
4 = 1

170 (23c̃2 − 25c̃1). Then Sγ(c̃
(3)
3 ) =

1
5508 (726− 740γ) > 0 and Sγ(c̃

(3)
4 ) = 1

55080 (6776− 2583γ) > 0 for γ = 0.4.

Thus the optimality arises. The optimal solution is : x̃1 = 400(3b̃1 − 2b̃2)/17, x̃2 = (736b̃2 − 900b̃1)/17
and so, Max z̃ =fγ

400
17 (3b̃1 − 2b̃2)c̃1 +

1
17 (736b̃2 − 900b̃1)c̃2.

6.1.1 Result and discussion

At optimality stage, different optimal values of Example 6.1 for different γ is displayed in the following table
(Table 6).

Here Sγ(x̃1) = 100
1377 (374 − 276γ), Sγ(x̃2) = 2

1377 (103411 − 71148γ) and Sγ(z̃) = 1
324 (7605114 −

5014498γ).

Table 6 : Optimal values for different γ.
γ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
x̃1 27.16 25.16 23.15 21.15 19.14 17.14 15.13 13.13 11.13 9.12
x̃2 150.2 139.86 129.53 119.2 108.86 98.53 88.19 77.86 67.53 57.19
z̃ 23473 21925 20377 18230 17282 15734 14186 12639 11091 9543

The value for γ = 1 is excluded in Table 6, as it terminates the iteration in Table 4. There Sγ(c̃
(2)
1 ) =

1
1296 (−726 + 740γ) > 0 for γ = 0.9811 approximately. It is then suggested to run the lorry L2 in route
R2 only to meet a profit. Thus, it is clear from Table 6 that the character γ plays a vital role to determine
the optimal solution in modified LP-problem. With respect to different γ, it is seen that x̃1, x̃2, z̃ are all
monotone decreasing functions. This γ is here signified as the level of ruination of road. It is one of the factors
determining the profit of owner from the lorry. In Figure 5, Series 2 and Series 3 represent the weekly run time
of two lorries L1 and L2 respectively. Figure 6 deals the weekly profit (Series 2) of Mr. X. In both graphical
presentation, Series 1 measures the level of ruination of road i.e., different γ.

7 Conclusion
The present study deals a modified structure of crisp LP-problem in the parlance of SVTN-number. An ap-
proach is taken to solve such problem by developing an efficient algorithm. A new ranking technique plays
a key role to develop this algorithm and also to establish some well known theories. The proposed concept
is illustrated by solving a real life problem. A discussion of result obtained is performed and is presented
graphically.
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This concept will assist the industrialists, directors of management institutes, marketing supervisors to
manage the various uncertain situations and complexities. They can reach at a fair end as the present notion
helps to solve a LP-problem with respect to the provided constraints and its hidden states together. Several
linear, non-linear programming problem, multi criteria decision making and also many mathematical frame
works may be enlighten by this attempt.

The ranking function is innovated here by taking the maximum height of each trapezium. It may be allowed
within [0,1] in future.
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Abstract  

In this paper, we introduce the concept of Jaccard  index measures under the neutrosophic environment to make the 

right decision in multiple attributes. Here, we insinuate two Jaccard  index measures based on distance and the 

included weighted Jaccard  of two vectors between the neutrosophic environment. Then, we determine the Multiple 

Attribute group decision-making method (in short MAGDM) based on the Jaccard  index measures under  the 

neutrosophic environment and also we compare the applications of the proposed MAGDM method in the 

neutrosophic environment. Finally, certain descriptive examples are on hand to verify the residential handle and to 

express its practicality and effectiveness. 

Keywords: Jaccard  index measure, Neutrosophic vague set, MAGDM. 
 

1.INTRODUCTION 

In 1999, Smarandache [28] presents another part of the theory known as neutrosophy, which studies the origin, nature, 

and scope of neutralities, as well as their interactions with various ideational spectra. The neutrosophic set is the 

generalization of the classic set, fuzzy sets [35], interval-valued fuzzy set [29], intuitionistic fuzzy set [5], interval-

valued intuitionistic fuzzy set [4], paraconsistent set, dialetheist set, paradoxical set, and tautological set. A 

neutrosophic set has three basic components such that truth-membership, indeterminacy-membership, and falsity- 

membership, and they are independent [28], for more informations on the neutrosophic theory we refere the readers 

to [36-39].    

Vague sets have been presented by Gau and Buehrar in 1993 as an extension of the fuzzy set theory [20]. It is 

considered as an effective tool to deal with uncertainty since it gives more data when contrasted with fuzzy sets [30]. 

A vague set is defined by a truth-membership function 𝑡𝑣 and a false-membership function 𝑓𝑣 [17,18].  
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Shawkat Alkhazaleh [27] in 2015 presented the idea of the neutrosophic vague set as a combination of neutrosophic 

set and vague set. Neutrosophic vague theory is an effective tool to process incomplete, indeterminate and inconsistent 

information. In 2019, Hashim et al.[21] developed a new generalized mathematical model called interval neutrosophic 

vague sets which are a combination of vague sets and interval neutrosophic sets and a generalization of interval 

neutrosophic vague sets. Al-Quran and Hassan [1,2, 3] in 2018 presented and gave more application on neutrosophic 

vague soft under decision making.  

In 2013, Ye [33] introduces the Multi-attribute decision-making method using the correlation coefficient under a 

single-valued neutrosophic environment. It is one of the most significant angles in the executive’s science which can 

deliver significant financial benefits in an assortment of fields, such as manufacturing domain[17], disaster assessment, 

company investment management. For decision-making problems in engineering practice, the decision information is 

generally incomplete and indeterminate [34]. To apply them to multi-criteria decision-making problems with 

simplified neutrosophic information. Recently, Chakraborty et al. developed a multi-criteria decision-making problem 

for different used in the bipolar neutrosophic domain[12]. Furthermore, Abdel basset develop multi-criteria decision-

making problem under a hybrid neutrosophic set[24].    

The similarity measure between each alternative and the ideal alternative, the ranking order of all alternatives can be 

determined and the best alternative can be easily selected as well. In fact, the degree of similarity between the objects 

under study plays an important role. In vector space, especially the Jaccard  similarity measures [9,10,11,13] are often 

used in information retrieval, citation analysis, and automatic classification. Ye [32] proposed the Jaccard , Dice, and 

cosine similarity measures between trapezoidal intuitionistic fuzzy numbers (TIFNs) that are treated as continuous 

and applied them to multicriteria group decision-making problems.In 2014 Ye [32] developed three vector similarity 

measures between single valued neutrosophic sets as a generalization of the Jaccard , Dice, and cosine similarity 

measures between two vectors.  Furthermore,  in 2016, Mehmet and  Deli developed a multi-criteria decision making 

for bipolar neutrosophic sets based on Jaccard  vector similarity measures and applied to a numerical examplein order 

to confirm the practicality and accuracy of the proposed method [23]. In the paper, we using Jaccard  index measures 

which are more efficiency, further this method will give better result. 

1.1.  Motivation 

A significant issue then arises if one considers a neutrosophic vague number: what will be a Jaccard  index 

neutrosophic vague measures and  a weighted Jaccard  index neutrosophic vague measures? How should we utilize a 

Jaccard  index neutrosophic vague measure in MAGDM? In light of this point of view, we built up the subject of this 

exploration article. We succeeded in producing an illustration example. 

1.2.  Novelties 

Various works have just been distributed right now setting. Analysts have just built up a few definitions and 

applications in different fields. In any case, many interesting outcomes are as yet obscure. Our work aimed to create 

thoughts for those obscure viewpoints: 

(i)Introduction of a Jaccard  index measures of neutrosophic vague set and its definition. 

(ii) Application in a Jaccard  index measures in MAGDM. 

1.3.  The structure of the paper  
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The paper is organized as follows: In section 1, we have discussed the introduction and literature review. In section 2, 

contains the preliminaries section. In section 3, the concept of the neutrosophic vague set, a Jaccard  index measures 

and its properties. In section 4, we introduce the algorithm to solve a Multiple Attribute Group Decision-Making 

(MAGDM). The practical problem is considered in section 5. The compression of the result has been done with two 

more research in section 6. The conclusions are written in section 7.  

2. PRELIMINARIES 

Definition.2.1 [27]  

A Vague set V on the universe of discourse X written as A={ < x, tA(x), 1-fA(x) > | x ∈ X }. is characterized by a truth- 

membership function tv, and a false- membership function fv, as follows:  

tv: U → [0,1], fv: U→ [0,1], and tv + fv  ≤ 1  

Definition.2.2 [27]  

Let A and B be vague sets of the form A = { < x, tA(x), 1-fA(x) > | x ∈	X } and 

B = { < x, tB (x), 1-fB (x) > |x ∈	X }.Then  

i. A ⊆	if and only if tA(x) ≤ tB(x) and 1-fA(x) ≤ 1-fB(x). 

ii. A=B if and only if A ⊆	B and B ⊆A.  

iii. Ac = {< x, 1-fA(x),tA(x) > | x ∈	X}. 

iv. A∪B ={< x, max (tA(x), tB(x) ), max (1-fA(x), 1-fB(x)) > | x ∈	X}. 

v. A∩B ={< x, min (tA(x),tB (x) ), min (1-fA(x), 1-fB(x)) > | x ∈		X}. 

Definition.2.3 [27]  

A neutrosophic set A on the universe of discourse X is defined as  

A ={< x, TA(x), IA(x), FA(x) >, x ∈ X}where T, I, F: X→ ]−0,1+[ and  −0 ≤ TA(x) + IA(x) + FA(x) ≤3+. 

Definition.2.4 [27]   

A neutrosophic vague set ANV (NVS in short) on the universe of discourse X written as ANV = { <x; TANV(x), IANV(x)   

, FANV(x) >; x ∈ X } whose truth-membership, indeterminacy-membership and false-membership functions is defined 

as:  

TANV (x) = [T−, T+], IANV (x) = [I−, I+], FANV = [F−, F+] where  

1) T+ = 1-F−  

2) F+=1- T− and  

3) −0 ≤ T− + I− + F−≤2+. 

Definition.2.5 [25]  

Let X be a universe of discourse. A bipolar neutrosophic set ABNS in X is defined as an object of the form  

ABNS= { <x; T+(x), I+(x),F+(x), T-(x) ,  I-(x) , F-(x) >; x ∈ X } 

    Where T+, F+, I+ : X → [1, 0] and T-, F-, I- : X → [−1, 0] 

3. Jaccard  Index Measure of Neutrosophic Vague Sets.      

Definition.3.1 
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 Let ANV ={ < x; TANV(x) , IANV(x),  FANV(x) >; x ∈ X} and  BNV ={< x; TBNV(x),  IBNV(x),  FBNV(x) >; x ∈ X }two 

neutrosophic vague set in X. Then the two Jaccard  index measure of ANV and BNV are proposed based on distance 

and the included weighted Jaccard  index measure of two vectors, respectively as follows: 

   Jaccard  index measure based on distance 
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∑
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Weighted Jaccard  index measure based on two vectors 
 
WJNV(ANV, BNV)  =    
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According to the above definition 3.1, the two Jaccard  index measures J(ANV, BNV) for NVs satisfy the following 

properties (p1)–(p3): 

 (p1)  0 ≤ JNV(ANV, BNV)  ≤ 1; 

 (p2) JNV(ANV, BNV)  = JNV(BNV, ANV);  

 (p3) If ANV = BNV, then JNV(ANV, BNV)  = 1. 

 

Proof. Firstly, we prove the properties(p1)-(p3) of J(ANV, BNV) 

 

(p1) It is clear that JNV(ANV, BNV) ≥ 0  

We have to proof JNV(ANV, BNV) ≤ 1 By the inequality  

  2ab ≤ a2 + b2. 
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∑ "	
[𝑇*+,- (𝑥.). 𝑇/+,- (𝑥.)] + [	𝑇*+,0 (𝑥.). 𝑇/+,0 (𝑥.)] + [𝐼*+,- (𝑥.). 𝐼/+,- (𝑥.)] + [	𝐼*+,0 (𝑥.). 𝐼/+,0 (𝑥.)]
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  ∴ JNV(ANV, BNV) ≤ 1 

 

Hence, 0 ≤ JNV(ANV, BNV)  ≤ 1 holds. 

 (p2) It is  clear that  

JNV(ANV, BNV)  = JNV(BNV, ANV) , 

	∴ It		is true. 

 (p3) if ANV  = BNV, 

  (T+ANV(xi), T-ANV(xi); I+ANV(xi), I-ANV(xi) ;F+ANV(xi), F-ANV(xi)) =  

         (T+BNV(xi), T-BNV(xi); I+BNV(xi), I-BNV(xi) ;F+BNV(xi), F-BNV(xi))  

where i= 1,2,3……..,n. 

Here, ANV  and BNV considered as two vectors so , 

 ||ANV || = ||BNV || where  

||ANV || = ;[𝑇789
) (𝑥!)]: + [𝑇7891 (𝑥!)]: + [𝐼789) (𝑥!)]: + [𝐼7891 (𝑥!)]: +	[𝐹789) (𝑥!)]: + [𝐹7891 (𝑥!)]:	

	
 

 

||BNV || = ;[𝑇;89
) (𝑥!)]: + [𝑇;891 (𝑥!)]: + [𝐼;89) (𝑥!)]: + [𝐼;891 (𝑥!)]: +	[𝐹;89) (𝑥!)]: + [𝐹;891 (𝑥!)]:	

	
 

And there exist 	7"#	.;"#
<|7"#|<.||;"#||

 

=
	[𝑇𝐴𝑁𝑉+ (𝑥𝑖).𝑇𝐵𝑁𝑉+ (𝑥𝑖)]+[	𝑇𝐴𝑁𝑉

− (𝑥𝑖).𝑇𝐵𝑁𝑉− (𝑥𝑖)]+[𝐼𝐴𝑁𝑉+ (𝑥𝑖).𝐼𝐵𝑁𝑉+ (𝑥𝑖)]+[	𝐼𝐴𝑁𝑉
− (𝑥𝑖).𝐼𝐵𝑁𝑉− (𝑥𝑖)]

+	[𝐹𝐴𝑁𝑉+ (𝑥𝑖).𝐹𝐵𝑁𝑉+ (𝑥𝑖)]+[	𝐹𝐴𝑁𝑉
− (𝑥𝑖).𝐹𝐵𝑁𝑉− (𝑥𝑖)]

%[𝑇𝐴𝑁𝑉+ (𝑥𝑖)]2+[𝑇𝐴𝑁𝑉− (𝑥𝑖)]2+[𝐼𝐴𝑁𝑉+ (𝑥𝑖)]2+[𝐼𝐴𝑁𝑉− (𝑥𝑖)]2+	[𝐹𝐴𝑁𝑉+ (𝑥𝑖)]2+[𝐹𝐴𝑁𝑉− (𝑥𝑖)]2		 .		%[𝑇𝐵𝑁𝑉+ (𝑥𝑖)]2+[𝑇𝐵𝑁𝑉− (𝑥𝑖)]2+[𝐼𝐵𝑁𝑉+ (𝑥𝑖)]2+[𝐼𝐵𝑁𝑉− (𝑥𝑖)]2+	[𝐹𝐵𝑁𝑉+ (𝑥𝑖)]2+[𝐹𝐵𝑁𝑉− (𝑥𝑖)]2		 	
 

= 1. 
 Hence,  
             JNV(ANV, BNV)  = 1. 

Thus, we have proved. 

   If we consider  the weighted Jaccard  index measure between ANV and B NV are proposed, respectively, as follow: 
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WJNV(ANV, BNV)                      
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Where wi ∈ [0,1], and ∑ 𝑤! = 14
!56   for i= 1,2,….,n. 

 It is obvious that the two weighted Jaccard  index measures WJ(ANV, BNV)  also statisfy the following properties (p1)-

(p3): 

 (p1)  0 ≤ WJNV(ANV, BNV)  ≤ 1; 

 (p2) WJNV(ANV, BNV)  = WJNV(BNV, ANV);  

 (p3) If ANV = BNV, then WJNV(ANV, BNV)  = 1. 

We can easily prove the properties (p1)-(p3) for WJNV(ANV, BNV) by a similar proof process. 

 
4. MAGDM Method Based on the Jaccard  Index Measures  

  For an MAGDM problem, let G= { g1, g2, ………gm} be a set of m alternatives and A= {A1, A2………An} be a set 

of n attributes. The weight vector of the attributes Aj (j = 1, 2, ... , n) is  

ωA = (ωA1, ωA2, ... , ωAn)T, satisfying ωAj ∈ [0, 1], and ∑ ω7F4
F56  = 1 for j = 1, 2, ... , n. Assume that EX = {EX1, EX2, 

... , EXy} is a group of specialists and their corresponding weight vector is ωE = (ωE1, ωE2, ... , ωEy)T, satisfying ωEk∈[0, 

1], and ∑ ωGH = 1.I
H56  Each specialist can dole out the truth-degree, falsity-degree, and indeterminacy-degree to each 

attribute Aj (j = 1, 2, ... , n) on the choices gi (i = 1, 2, ... , m) according to the  neutrosophic  environment  respectively. 

Therefore, we can established in  NVs decision matrix 

Dk = D𝑑!,FH F m x n = [ 𝐷6H , 𝐷:H , … . , 𝐷KH ]T  ,  is an NVs for TNV, INV ,FNV ∈ [0,1] 

Then, we apply the Jaccard  index measures of neutrosophic vague set (in short NVs) to solve MAGDM problems   

 
  4.1. Algorithm to solve MAGDM problem.  

Step 1: We  establish the Ns, BNs, NVs matrix GH*= (𝑔!,F∗ )4 x 3 𝐺!∗ (i=1,2,3,4) as follows: 

              GHk = D𝑔!,FH F m x n = [ 𝐺6H , 𝐺:H , … . , 𝐺KH ]T   

Step 2: Calculate the weighted Jaccard  index measures values by Eq.(2,4,6) using H. 

Step 3: Calculate the overall weighted  Jaccard  index measure values considering the corresponding weight of each 

expert to evaluate the alternatives Gi (i = 1, 2, ... , m), as follows: 

                         JH(Dk, Gi)=∑ ωGH
I
H56  JH(Dk i, Gi)                                                                      (7) 

                 WJH(Dk,Gi)=∑ ωGH
I
H56  JH(Dk i,Gi)                                                                        (8) 

Where ωGH ∈ [0,1]	𝑎𝑛𝑑	∑ ωGH = 1.I
H56  

Step 4: Rank all alternatives according to the value of   WJH(Dk, Gi) or JH(Dk, Gi) and       
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select the better choice. The greater value of a Jaccard  index measure, is  the better alternative. 

Step 5: End. 

5. Practical example   
 Let us consider the  decision making problem. There is a speculation organization, which needs to put an aggregate 

of cash in the best choices. There is a board with four potential alternatives to invest the money. (1) G1 is a motor 

company; (2) G2 is a pump company; (3) G3 is an arms company; (4) G4 is a furniture company. The investment 

company must make a decision according to three attributes given below: (1) A1 is the growth analysis; (2) A2 is the 

risk analysis; (3) A3 is the environmental impact analysis. Then, the weight vector of the attributes is given by are 

0.35,0.25 and 0.40 . Thus, when the four possible alternatives with respect to the above three attributes are evaluated 

by the expert, we can get the accompanying the neutrosophic vague decision matrix: 

 

D1= 

⎣
⎢
⎢
⎢
⎡𝐷3

3

𝐷83

𝐷;3

𝐷<3⎦
⎥
⎥
⎥
⎤
 = H

[< 0.4,0.2 >,< 0.2,0.7 >,< 0.3,0.4 >], [< 0.3,0.2 >,< 0.1,0.1 >,< 0.2,0.3 >], [< 0.4,0.3 >,< 0.2,0.2 >,< 0.4,0.5 >]
[< 0.5,0.6 >,< 0.7,0.2 >,< 0.9,0.1 >], [< 0.4,0.5 >,< 0.2,0.2 >,< 0.4,0.3 >], [< 0.3,0.1 >,< 0.4,0.5 >,< 0.8,0.1 >]
[< 0.6,0.4 >,< 0.2,0.2 >,< 0.4,0.5 >], [< 0.5,0.6 >,< 0.7,0.7 >,< 0.8,0.4 >], [< 0.3,0.5 >,< 0.4,0.4 >,< 0.4,0.3 >]
[< 0.3,0.2 >,< 0.4,0.4 >,< 0.5,0.7 >], [< 0.4,0.3 >,< 0.4,0.4 >,< 0.8,0.9 >], [< 0.4,0.8 >,< 0.3,0.3 >,< 0.4,0.5 >]

U , 

D2= 

⎣
⎢
⎢
⎢
⎡𝐷6

:

𝐷::

𝐷M:

𝐷N:⎦
⎥
⎥
⎥
⎤
 = H

[< 0.3,0.4 >,< 0.5,0.8 >,< 0.2,0.4 >], [< 0.2,0.3 >,< 0.3,0.4 >,< 0.5,0.1 >], [< 0.6,0.4 >,< 0.3,0.4 >,< 0.5,0.4 >]
[< 0.4,0.3 >,< 0.5,0.6 >,< 0.6,0.8 >], [< 0.5,0.1 >,< 0.4,0.3 >,< 0.6,0.7 >], [< 0.5,0.9 >,< 0.2,0.3 >,< 0.6,0.7 >]
[< 0.1,0.3 >,< 0.4,0.6 >,< 0.8,0.5 >], [< 0.4,0.3 >,< 0.2,0.3 >,< 0.4,0.3 >], [< 0.5,0.6 >,< 0.3,0.5 >,< 0.8,0.6 >]
[< 0.6,0.1 >,< 0.6,0.5 >,< 0.6,0.3 >], [< 0.6,0.5 >,< 0.1,0.3 >,< 0.5,0.2 >], [< 0.3,0.6 >,< 0.2,0.1 >,< 0.3,0.6 >]

U , 

D3= 

⎣
⎢
⎢
⎢
⎡𝐷6

M

𝐷:M

𝐷MM

𝐷NM⎦
⎥
⎥
⎥
⎤
 = H

[< 0.3,0.1 >,< 0.1,0.6 >,< 0.2,0.3 >], [< 0.4,0.6 >,< 0.2,0.4 >,< 0.4,0.5 >], [< 0.5,0.7 >,< 0.1,0.5 >,< 0.3,0.4 >]
[< 0.3,0.7 >,< 0.6,0.5 >,< 0.6,0.3 >], [< 0.3,0.4 >,< 0.1,0.1 >,< 0.3,0.4 >], [< 0.4,0.3 >,< 0.5,0.6 >,< 0.7,0.2 >]
[< 0.5,0.3 >,< 0.4,0.5 >,< 0.6,0.4 >], [< 0.4,0.5 >,< 0.5,0.6 >,< 0.6,0.5 >], [< 0.4,0.2 >,< 0.6,0.5 >,< 0.2,0.4 >]
[< 0.4,0.3 >,< 0.5,0.3 >,< 0.4,0.6 >], [< 0.5,0.2 >,< 0.5,0.3 >,< 0.5,0.6 >], [< 0.5,0.6 >,< 0.4,0.2 >,< 0.3,0.2 >]

U 

 Then, the developed MAGDM approach can be applied to this decision- making problem using the following steps: 

Step 1: we can compute the Jaccard  index measures   Gi (i=1,2,3,4) by using by Eq.(5)  as follows: 

 G*= T

𝐺6∗
𝐺:∗
𝐷M∗
𝐷N∗
U = H

[< 0.5,0.6 >,< 0.1,0.6 >,< 0.2,0.3 >], [< 0.4,0.6 >,< 0.1,0.1 >,< 0.2,0.1 >], [< 0.6,0.7 >,< 0.1,0.2 >,< 0.3,0.4 >]
[< 0.5,0.7 >,< 0.5,0.2 >,< 0.6,0.1 >], [< 0.5,0.6 >,< 0.1,0.1 >,< 0.3,0.3 >], [< 0.5,0.9 >,< 0.2,0.3 >,< 0.6,0.1 >]
[< 0.5,0.3 >,< 0.2,0.2 >,< 0.4,0.4 >], [< 0.4,0.5 >,< 0.2,0.3 >,< 0.4,0.3 >], [< 0.5,0.6 >,< 0.3,0.4 >,< 0.2,0.3 >]
[< 0.6,0.3 >,< 0.4,0.3 >,< 0.4,0.3 >], [< 0.6,0.5 >,< 0.1,0.3 >,< 0.5,0.2 >], [< 0.5,0.8 >,< 0.2,0.1 >,< 0.3,0.2 >]

U 

 
Step 2: We calculate the  Jaccard  index measures values dependent on the distance between 𝐷!H  

Equation (1) as follows:  

JNVs(D1, Gi) = { JNVs(𝐷6	6 , 𝐺6	∗ ) , JNVs(𝐷:	6 , 𝐺:	∗ ), JNVs(𝐷M	6 , 𝐺M	∗ ), JNVs(𝐷N6, 𝐺N	∗ )} ={0.7844, 0.7088, 0.7409, 0.9409 } 

                                                                                                             

JNVs(D2, Gi) = { JNVs(𝐷6	: , 𝐺6	∗ ) , JNVs(𝐷:	: , 𝐺:	∗ ), JNVs(𝐷M	: , 𝐺M	∗ ), JNVs(𝐷N:, 𝐺N	∗ )}={ 0.9550, 0.9847, 0.9122, 0.9688}      

                                                                                                         

JNVs(D3,Gi) = { JNVs(𝐷6	M , 𝐺6	∗ ) , JNVs(𝐷:	M , 𝐺:	∗ ), JNVs(𝐷M	M , 𝐺M	∗ ), JNVs(𝐷NM, 𝐺N	∗ )}={ 0.9245, 0.9066, 0.9455, 0.9813} 

                                                                                                                                                                                                       

Similarly, we can calculate the weighted Jaccard index measures values dependent on the two vectors between by 

equation (6) as follows: 
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WJNVs(D1, Gi) = { WJNVs(𝐷6	6 , 𝐺6	∗ ) , WJNVs(𝐷:	6 , 𝐺:	∗ ), WJNVs(𝐷M	6 , 𝐺M	∗ ), WJNVs(𝐷N6, 𝐺N	∗ )}={ 0.9732, 0.9644, 

0.9673,0.9432} 

                                                                                                                    

WJNVs(D2, Gi) = { WJNVs(𝐷6	: , 𝐺6	∗ ) , WJNVs(𝐷:	: , 𝐺:	∗ ), WJNVs(𝐷M	: , 𝐺M	∗ ), WJNVs(𝐷N:, 𝐺N	∗ )}={0.8468, 0.8615, 0.9750, 

0.9584} 

                                                                                                                   

WJNVs(D3, Gi) = { WJNVs(𝐷6	M , 𝐺6	∗ ) , WJNVs(𝐷:	M , 𝐺:	∗ ), WJNVs(𝐷M	M , 𝐺M	∗ ), WJNVs(𝐷NM, 𝐺N	∗ )}={0.7807, 0.8500, 0.9827, 

0.8366}. 

                                                                                                                 

Step 3: Considering the  relating weight ωE =(0.37,0.33,0.3)T of the specialists to assess the alternatives Gi (i = 1, 2, 

3, 4), we can calculate the overall weighted Jaccard  index measure values depends on distance by Equation (7) as 

follows: 

JNVs(Dk, G1)=0.37 x JNVs(𝐷6	6 , 𝐺6	∗ ) + 0.33 x JNVs(𝐷6	: , 𝐺6	∗ ) +0.3 x JNVs(𝐷6M, 𝐺6	∗ ) =0.8064 

JNVs(Dk, G2)=0.37 x JNVs(𝐷:	6 , 𝐺:	∗ ) + 0.33 x JNVs(𝐷:	: , 𝐺:	∗ ) +0.3 x JNVs(𝐷:M, 𝐺:	∗ ) =0.8568 

JNVs(Dk, G3)=0.37 x JNVs(𝐷M	6 , 𝐺M	∗ ) + 0.33 x JNVs(𝐷M	: , 𝐺M	∗ ) +0.3 x JNVs(𝐷MM, 𝐺M	∗ ) =0.9331 

JNVs(Dk, G4)=0.37 x JNVs(𝐷N	6 , 𝐺N	∗ ) + 0.33 x JNVs(𝐷N	: , 𝐺N	∗ ) +0.3 x JNVs(𝐷NM, 𝐺N	∗ ) =0.8597 

Similarly, we can calculate the overall weighted Jaccard  index measures values based on the two vectors between 

by equation (8) as follows: 

WJNVs(Dk, G1)= 0.8737 WJNVs(Dk,G2)=0.8961 WJNVs(Dk, G3)= 0.9744 WJNVs(Dk,G4)= 0.9162  

Step 4: According to the above values of JNVs(Dk, Gi) and (i=1,2,3,4),  the  distance  value of both the  Jaccard  index 

measure  and the weighted Jaccard  index measure values based on  two vectors, the ranking orders: G3 > G4 > G2 > 

G1  are same. As indicated by the most extreme value of Jaccard  index measures, the alternative G3 is the better 

decision. 

 

6. Related Comparison 

Further comparison, table 6.1 show the MAGDM results based on the Jaccard  index measures of NVs proposed in 

this paper and the neutrosophic set and  bipolar neutrosphic set were proposed Jaccard  index in the relevant paper 

[23][32]. Here, we utilizing Enq (8) for the two neutrosophic set and bipolar neutrosophic set respectively. 

MAGDM METHOD JACCARD  INDEX RANKING ORDER  THE BEST 

ALTERNATIVE 

JNVS(DK,GI) 0.8064,0.8568,0.9331,0.8597 G3 > G4 > G2 > G1 G3 
WJNVS(DK,GI) 0.8737,0.8961,0.9744,0.9162 G3 > G4 > G2 > G1 G3 
WJNS (DK,GI) 0.8003,0.7961,0.8447,0.8147 G3 > G4 > G2 > G1 G3 
WJBNS(DK,GI) 0.8700,0.7456,0.8940,0.8957 G3 > G4 > G2 > G1 G3 

Table 6.1. Decision results based on neutrosophic environment MAGDM method  

Obviously, from the result of table 6.1, ranking orders and best alternatives based on the new method based on this 

paper is consistent with the result provided by Mehmet and Irfan [23]. Compared with the [23,32] the calculation 
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process of the Jaccard  index for MAGDM proposed in this paper is relatively compared to neutrosophic set and 

bipolar neutrosophic set based on the Jaccard  index for MAGDM in [23, 32]. The above comparisons demonstrate 

that thispaper present a new concept for solving decision-making problems is more efficient under a neutrosophic 

environment. 

7 .Conclusion 

In this paper we develop MAGDM method and gave its application under theneutrosophic environment and also to 

show the exhibit effectiveness of theproposed method, we utilized an illustration example. There are many similarity 

measures utilized inthe decision-making problem but we have utilized a Jaccard  similarity measure toshow that the 

proposed method can effectively solve decision-making problems with NVs information. Furthermore, researchers 

can be extended to study some new correlation coefficients between NVs and their MAGDM.  
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Abstract  

Uncertainty is a big problem in our routine life. Many theories were developed to handle uncertain environments. 

This paper approaches the concept of neutrosophic soft matrices (NSM) and multiple types of NSM to achieve 

solutions to a possible problem and provide ideas to tackle other problems relating to uncertainties. Here, NSM 

has been utilized to demonstrate the performance of different farmers, and further score function has been 

implemented to solve a possible application of decision making in agriculture. It explains the selection of the best 

farmer by scientific experts through an algorithm in this paper. The selection based upon the better production of 

crop and nature, fertilizer, pesticides, etc. are used as attributes, which will contribute to the performance of each 

farmer. Finally, combining the attributes, which will help us achieve a conclusion to determine the best farmer. 

Keywords: Neutrosophic Soft Set, NSM, Agriculture, Decision Making, Score function.  

1. Introduction  

Many researchers use different tools to solve the uncertainties and problematic issues in different fields 

like engineering, business administration, environment, medical sciences, etc., which are unable to 

solve, by using standard mathematical tools. To overcome the difficulties of standard tools, researchers 

work to apply different tools to deal with uncertain problems.  Some of these are fuzzy sets, intuitionistic 

fuzzy sets, neutrosophic sets, etc. In 1965 Lotfi. A. Zadeh [1] proposed a wonderful theory named the 

fuzzy set theory to deal with uncertain issues. Further, in 1975, a more advanced interval-valued fuzzy 

set (IVFS) was proposed by Yang [2], which has a wide range than a simple fuzzy set. In 1982, Pawalk 

initiated another wonderful theory named rough set theory [3]. After that, the intuitionistic fuzzy set 

theory was coined by Atanassov [4] in 1983. In 1995 neutrosophic fuzzy set was proposed by Florentine 

Smarandache [5]. After that, in 1999, Molodtsov [6] developed the soft set theory, which is a major 

mathematical operator when dealing with decision-making problems in a vague environment. It has 

wide applications such as decision making in the medical field, economics, and social sciences. In 2001, 

Maji et al. [7] extended the Molodtsov [6] theory and defined different basics of soft sets. Later in 2004, 

Maji et al. [8] proposed the idea of intuitionistic fuzzy soft sets. Cagman [9] coined the idea of fuzzy 

soft matrices in 2010. Fuzzy soft matrices have a wide range of applications in decision-making 

problems. However, simple matrix theory fails when sometimes dealing with uncertainty problems. 

After that, in 2012, Das and Chetia [10] introduced intuitionistic fuzzy soft matrices (abbr. IFSMs) with 
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different types of products and axioms on these products. Then, Mondal et al. [11, 12] introduced 

different types of IFSMs.  In some real-world problems, we need to go with different tools to solve the 

uncertainty and abstruse problems, and furthermore, if we talk about intuitionistic fuzzy soft sets, we 

just have to deal with truth and false-membership values for a proper description of an object. The 

intuitionistic fuzzy sets can only handle the unclear info regarding both truth and false membership 

values. The neutrosophic soft set is a complete family of all neutrosophic sets, which is the generalized 

form of an intuitionistic fuzzy soft set with truth-value, indeterminate value, and false value. In 2013 

P.K.Maji [13] defined different operators on neutrosophic fuzzy soft set and applied soft sets in 

unpredictable problems. In 2014, Broumi, et al. [14] defined interval-valued NSS and its applications 

in decision-making problems. In the same year, Broumi et al. [15] proposed different relations on 

interval-valued neutrosophic soft sets. It leads to decision making in various fields of life. In 2014, 

Broumi, et al. [16] applied different mappings on neutrosophic soft expert sets. In the same year, Irfan 

Deli and Broumi[17] defined neutrosophic soft matrices and used soft matrices in decision-making. 

Applications were requiring decision-making, having multiple selection criteria. Researchers applied 

these techniques in decision making in different fields of life. In 2019, Jafar et al. [18] applied 

intuitionistic soft set in medical diagnose. In 2019, Jafar et al. [19] worked on Sanchez’s identification 

by trapezoidal fuzzy number. In 2020, Jafar et al. [20] discussed the application of soft-set relation and 

soft matrix in medical diagnosis by Sanchez. In 2019, Riaz et al. [21] studied the hardness of the water 

in laundry based on the fuzzy logic controller. The selection of smartphones in Pakistan decision making 

by Saqlain et al. [22] in 2018. In 2019, Saqlain et al. [23] predicted about 2019 Cricket world cup by 

TOPSIS Technique. Researchers [24-26] applied different strategies for problem solving and selection. 

In 2009, Mustafa et al. [27] applied fuzzy logic on sorting and grading in agriculture. After in 2013, 

Papageorgion et al. [28] proposed yield prediction using the fuzzy cognitive map. In 2014, Virgin and 

Riganabanu [29] proposed an application of an interval-valued fuzzy soft matrix for the detection of 

diseases in plants. In 2017, Neamatollah et al. [30] proposed an optimal cropping pattern of agriculture 

on the fuzzy system. In 2018, Mota et al. [31] defined fuzzy validity measures and their applications of 

decision making in agricultural engineering. In the same year, 2018, Loganathan and Pushpalatha [32] 

proposed an application in agriculture using fuzzy matrices. In 2019, Savarimuthu and Mahalaksmi [33] 

defined T-Conorm operators on IFSM and proposed its applications in agriculture. For more 

information on neutrosophic theory and their application, we refer the readers to the following 

references [34-37]. In this paper, the concept of neutrosophic fuzzy soft matrices, different types of 

fuzzy neutrosophic soft matrices, and some operators on soft matrices and its application in agriculture 

has been demonstrated. Several applications, studied under neutrosophic soft matrices, fuzzy 

neutrosophic matrices and neutrosophic fuzzy matrices, have been worked on and are being worked on 

as we speak. Conclusively, neutrosophic fuzzy soft matrices have been used in decision making to 

approach the desired result. The goal is to display the usage of the said concepts and ideas in the possible 

application of agriculture. In section 2, the discussion is about the soft set and its different types. In 



International Journal of Neutrosophic Science (IJNS)                                            Vol. 3, No. 2,  PP. 78-88, 2020 

 

DOI:10.5281/ZENODO.3742406                                                                                                                   80 
 

section 3, the discussion is about methodology, which is used in the application of neutrosophic soft 

matrices. In section 4 and 5, we discussed the algorithm and real-life example of an NSM. 

2 Preliminaries  

In this section, some basics will be under discussion; to understand the concepts of paper, you must know the 
following.  

2.1 Soft Set [20] 

Let K be a set of alternatives, and D is a set of attributes. Let P (K) denotes the set of all subsets of K and A is a 

subset of D. Then (�	, �) is called a soft set over K where F is a mapping given by �: � → �(�).In fact soft set 

(�	, �) is a family of subsets of K. For � ∈ �	, (�	, �) is defined as 

(�	, �) = {�(�) ∈ �(�): � ∈ �	, �(�) = ∅	��	� ∉ �} 

Example 2.1 

Let � = {��, ��, ��, ��} be a set of houses of different colors (paints) and � =

{������	(��), �����(��), ���	����(��)} is a set of attributes. If	� = {��, ��} ⊆ �. Let ��(��) = {��, ��, ��} and  

��(��) = {��, ��, ��} then the soft set(��	, �) = {(��, {��, ��, ��}), (��, {��, ��, ��})}, which describes the colors of 

houses. We write the soft set as follows 

K Yellow(��) Green(��) Sky blue(��) 

�� 1 0 1 

�� 1 0 0 

�� 0 0 1 

�� 1 0 1 

2.2 Fuzzy Soft Set [21] 

Let K be a universe, and D be a set of attributes and any set � ⊆ �. Let �(�) denotes the set of all fuzzy sets of 

K. A set (��, �) is said to be fuzzy soft set over K such that �� is a mapping given by ��: � → �(�) such that 

��(�) = � if � ∉ � where � is a null fuzzy set. 

Example 2.2 

 See example 2.1, we give membership value in 0 or 1, but in FSS we choose membership value from interval 

[0,1]  instead of crisp numbers 0 and 1.Then 

(��, �) = ��(��) = {(��, 0.5), (��, 0.3), (��, 0.8)} 

��(��) = {(��, 0.2), (��, 0.9), (��, 0.6)}  is the fuzzy soft sets describe the colors of houses. 

K Yellow(��) Green(��) Sky blue(��) 

�� 0.5 0.0 0.2 
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�� 0.3 0.0 0.0 

�� 0.0 0.0 0.9 

�� 0.8 0.0 0.6 

 

2.3 Fuzzy Soft Matrices (FSM) [18] 

Let (��, �) be a fuzzy soft set and � × � is defined by a relation �� = {(�	, �):	� ∈ �, � ∈ ��(�)}.The function 

of �� is written by ���: � × � → [0	,1]	where  ���(�	, �) ∈ [0	,1]  is the membership value.  

If ����� = 	 ������	, ��� then, the matrix is 

������×�
= �

��� ��� ⋯ ���
��� ��� ⋯ ���
⋮ ⋮ ⋮ ⋮

��� ��� ⋯ ���

� 

Which is soft matrix of soft set (�	, �) over K called the fuzzy soft matrix (FSS). 

Example 2.3 

Let � = {��, ��, ��, ��, ��} is a universal set and � = {��, ��, ��, ��} is a set of all attributes then 

� = {��, ��, ��} ⊆ � Then the soft set (��	, �) = {��(��), ��(��), ��(��)} where 

��(��) = {(��, 0.5), (��, 0.3), (��, 0.1), (��, 0.2), (��, 0.8)} 

��(��) = {(��, 0.3), (��, 0.6), (��, 0.4), (��, 0.9), (��, 0.2)} 

��(��) = {(��, 0.2), (��, 0.7), (��, 0.1), (��, 0.3), (��, 0.5)}. 

Then, the soft matrix ����� is 

����� =

⎣
⎢
⎢
⎢
⎡
0.5 0.3 0.0 0.2
0.3 0.6 0.0 0.7
0.1 0.4 0.0 0.1
0.2 0.9 0.0 0.3
0.8 0.2 0.0 0.5⎦

⎥
⎥
⎥
⎤

 

2.4 Neutrosophic Soft Set (NSS) [17] 

Suppose K be a universe with an element in K denoted by f and D be a set of attributes. A neutrosophic set N over 

K is characterized by a truthiness  �� , indeterminacy ��, and a falsity value �� where ��, ��	���	�� are real 

standard subsets of [0, 1]. And       ��: � → �(�) 

� = ���, �< 	�, ���(�), ��(�), ��(�)�� >�: � ∈ �, � ∈ �, ��(�), ��(�), ��(�) ∈ [0,1]� 

There is no restriction on the sum of ��(�), ��(�), ��(�) . 0� ≤ ��(�) + ��(�) + ��(�) ≤ 3�. 
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Example 2.4  

Let � = {��, ��, ��, ��} be a set of houses of different colors (paints) and � =

{������	(��), �����(��), ���	����(��)} is a set of attributes. If� = {��, ��} ⊆ �. 

 Let  (��, �) = ��(��) = {(��, 0.5,0.2,0.3), (��, 0.3,0.4,0.2), (��, 0.4,0.1,0.3)} 

��(��) = {(��, 0.2,0.4,0.3), (��, 0.5,0.1,0.4), (��, 0.6,0.3,0.1)}  Which describes the colors of houses. We write 

the neutrosophic soft set as follows 

K Yellow(��) Green(��) Sky blue(��) 

�� 0.5,0.2,0.3 0.0,0.0,0.0 0.2,0.4,0.3 

�� 0.3,0.4,0.2 0.0,0.0,0.0 0.0,0.0,0.0 

�� 0.0,0.0,0.0 0.0,0.0,0.0 0.5,0.1,0.4 

�� 0.4,0.1,0.3 0.0,0.0,0.0 0.6,0.3,0.1 

2.5 Neutrosophic Soft Matrix (NSM) 

Suppose � = ���̇, ��̇, ��̇, … . . � be the universe and � = {��, ��, ��, … . . } be a set of attributes and� ⊆ �. A set 

(�	, �) be an NFSS over K. Then the subset of � × �  

Is defined as �� = ���̇	, ��; � ∈ �, �̇ ∈ ��(�)� which is the relation form of(��	, �). The truthiness, indeterminacy 

and falsity values are: 

���: � × � → [0	,1]		, ���: � × � → [0	,1]	, ���: � × � → [0	,1]	 

  ���(�, �) ∈ [0,1]			, ���(�, �) ∈ [0,1]			, ���(�, �) ∈ [0,1] are the truthiness, indeterminacy, and falsity of � ∈ � 

for each	� ∈ �? 

If  �����, ��� , ����� = �������̇, ���, ������̇, ���, ������̇, ���� then 

�〈���, ��� , ���〉��×�
= �

〈���, ���, ���〉 〈���, ���, ���〉 ⋯ 〈���, ���, ����〉

〈���, ���, ���〉 〈���, ���, ���〉 ⋯ 〈���, ���, ���〉
⋮ ⋮ ⋮ ⋮

〈���, ���, ���〉 〈���, ���, ���〉 ⋯ 〈���, ���, ���〉

� 

That is called � × � order neutrosophic soft matrix over K. 

Example 2.5 

Let � = ���̇, ��̇, ��̇, ��̇, ��̇� is a universal set and � = {��, ��, ��, ��} is a set of all attributes then 

� = {��, ��, ��} ⊆ � Then the soft set (��	, �) = {��(��), ��(��), ��(��)} where 

��(��) = {(��, 0.5,0.2,0.2), (��, 0.3,0.4,0.1), (��, 0.1,0.6,0.3), (��, 0.2,0.3,0.5), (��, 0.2,0.1,0.4)} 
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��(��) = {(��, 0.3,0.5,0.1), (��, 0.6,0.2,0.2), (��, 0.4,0.3,0.3), (��, 0.3,0.1,0.5), (��, 0.2,0.5,0.1)} 

��(��) = {(��, 0.2,0.3,0.5), (��, 0.7,0.1,0.1), (��, 0.1,0.6,0.3), (��, 0.3,0.4,0.1), (��, 0.5,0.2,0.2)}. 

Then, the neutrosophic soft matrix is  

�〈���, ��� , ���〉� =

⎣
⎢
⎢
⎢
⎡
(0.5,0.2,0.2) (0.3,0.5,0.1) (0.0,0.0,0.0) (0.2,0.3,0.5)

(0.3,0.4,0.1) (0.6,0.2,0.2) (0.0,0.0,0.0) (0.7,0.1,0.1)

(0.1,0.6,0.3) (0.4,0.3,0.3) (0.0,0.0,0.0) (0.1,0.6,0.3)

(0.2,0.3,0.5) (0.3,0.1,0.5) (0.0,0.0,0.0) (0.3,0.4,0.1)

(0.2,0.1,0.4) (0.2,0.5,0.1) (0.0,0.0,0.0) (0.5,0.2,0.2)⎦
⎥
⎥
⎥
⎤

 

2.6 Complement of Neutrosophic Soft Matrices 

 Suppose � = �〈���, ��� , ���〉� ∈ ����×�.Then the complement of A is doted by �° and is defined as �° =

�〈���, 1 − ���, ���〉� for all i and j.  

Example 2.6  

See example 2.5 

�° = �〈���, 1 − ���, ���〉� =

⎣
⎢
⎢
⎢
⎡
(0.2,0.8,0.5) (0.1,0.5,0.3) (0.0,0.0,0.0) (0.5,0.7,0.2)

(0.1,0.6,0.3) (0.2,0.8,0.6) (0.0,0.0,0.0) (0.1,0.9,0.7)

(0.3,0.4,0.1) (0.3,0.7,0.4) (0.0,0.0,0.0) (0.3,0.4,0.1)

(0.5,0.7,0.2) (0.5,0.9,0.3) (0.0,0.0,0.0) (0.1,0.6,0.3)

(0.4,0.9,0.2) (0.1,0.5,0.2) (0.0,0.0,0.0) (0.2,0.8,0.5)⎦
⎥
⎥
⎥
⎤

 

2.7 Addition of Neutrosophic Soft Matrices 

 If  � = �����
�, ���

�, ���
��� ∈ ����×� , � = �����

�, ���
�, ���

��� ∈ ����×� then� = �����
�, ���

� , ���
��� ∈ ����×�. Then 

the addition of A and B as  

� + � = � = ��������
�, ���

��,
���
�����

�

�
,�������

�, ���
��� for all i and j. 

2.8 Subtraction of Neutrosophic Soft Matrices 

If  � = �����
�, ���

�, ���
��� ∈ ����×� , � = �����

�, ���
�, ���

��� ∈ ����×� then� = �����
�, ���

� , ���
��� ∈ ����×�. Then 

subtraction of A and B as � − � = � = ����
� − ���

�, ���
� − ���

�, ���
� − ���

�� for all i and j. 

3 Neutrosophic Soft Matrix Application in Agriculture 

3.1 Value Matrix 

Suppose � = �����
�, ���

�, ���
��� ∈ ����×� then, A is called the value of NSM denoted by �(�) and is defined by  

�(�) = �����
� + ���

� − ���
��� for all i and j, respectively. Where � = 1,2,3…… .� and � = 1,2,3…… . �. 

3.2 Score Matrix 

If  � = �����
�, ���

�, ���
��� ∈ ����×� ,� = �����

�, ���
�, ���

��� ∈ ����×�. Then, the score matrix of A and B is denoted 

by �(�,�) and is defined as �(�,�) = �(�) − �(�). 
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3.3 Total Score 

If  � = �����
�, ���

�, ���
��� ∈ ����×� ,� = �����

�, ���
�, ���

��� ∈ ����×�. Then, their corresponding value matrix be 

�(�), �(�) and their score matrix be�(�,�). Then the total score for each �� in U as 

�� = � ��(�) − �(�)�
�

���
 

Methodology 

Let K is a set of farmers who produces a quality of wheat for better health of human beings to be chosen as the 

best farmer. This whole process and selection of the farmers will be made by agriculture experts, use of natural 

resources, fertilizers and pesticides will be taken into account. Suppose D is a set, which consists of parameters 

relative to the harvested products by farmers. First of all, compute NFSS(��, �) over K show the farmers’ 

selection by agricultural experts T, Where �� is a mapping ��: � → �(�) , is the collection of all neutrosophic 

subsets of K. Now, computation of another NFSS(��, �) over K demonstrate farmers’ selection by the agriculture 

experts from another field Z, Where �� is a mapping��: � → �(�), is the assortment of all neutrosophic subsets 

of K. Now develop the matrices A and B relative to the neutrosophic soft sets (��, �) and(��, �). Also, compute 

the complement matrices �° and  �° from the complements of neutrosophic soft set (��, �)
°  and set(��, �)

°, 

respectively. After this, calculate � + �, the greater membership value of farmers that will be judged by the 

experts. Also, calculate �° + �°, the maximum membership value of non-selected farmers. Now calculate value 

matrices �〈� + �〉 and �〈�° + �°〉 and score matrix ��〈���〉,〈�°��°〉� and the total score �� for each farmer in K. At 

last �� = ���(��)  determines that the farmer �� is selected as the best farmer by the experts. 

4. Algorithm  

Step 1: Compute the neutrosophic soft set (��, �), (��, �) and then find the NSMs A and B corresponding to the 
(��, �)���(��, �) respectively. 

Step 2: Compute the neutrosophic soft complement sets  (��, �)
°, (��, �)

° and compute the NSMs �°����° 
corresponding to the (��, �)

°���(��, �)
° respectively. 

Step 3: Calculate(� + �), (�° + �°),�(� + �), �(�° + �°) and  �
�(���),��°��°��

. 

Step 4: Calculate the total score �� for each �� in K. 

Step 5: Find�� = max	(��), and then conclude the best farmer �� has the maximum value. 

Step 6: If �� has more than one value, then repeat the step 1 and so repeat the complete process. 

5 Application in Decision Making  

As traditional mathematical methods are limited for solving problems, so researchers use different techniques 

for problems involving decision-making. Neutrosophic soft matrix (NSM) is one of those techniques that is used 

in this paper as this tool is used by many researchers to solve their MCDM (Multi-Criteria Decision Making) 

problems. Let us try to solve an MCDM problem by using NSM. Suppose (��, �) and (��, �) are two NSS 

showing the set of four farmers who are selected from the universal set � = {��, ��, ��, ��} by the experts T and 
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Z. Suppose  � = {��, ��, ��} be the set of attributes representing the different manures like nature, fertilizer, 

pesticides, etc. will be considered to choose the best farmer by examining wheat that is better for human health. 

Step 1: Construction of Neutrosophic Soft Sets 

(��, �) = {��(��), ��(��), ��(��)} 

��(��) = {(��, 0.5,0.2,0.2	), (��, 0.4,0.3,0.1	), (��, 0.3,0.5,0.2	), (��, 0.6,0.2,0.1	)} 

��(��) = {(��, 0.2,0.4,0.3), (��, 0.7,0.2,0.1), (��, 0.2,0.5,0.3), (��, 0.4,0.5,0.1)} 

��(��) = {(��, 0.6,0.1,0.2), (��, 0.5,0.3,0.2), (��, 0.3,0.5,0.2), (��, 0.7,0.1,0.2)}. 

(��, �) = {��(��), ��(��), ��(��)} 

��(��) = �(��, 0.6,0.3,0,1), (��, 0.4,0.3,0.2), (��, 0.2,0.6,0.1), ���,0.6,0.2,0.1�� 

��(��) = {(��, 0.5,0.3,0.2	), (��, 0.7,0.2,0.1	), (��, 0.4,0.3,0.2	), (��, 0.6,0.2,0.1	)} 

��(��) = {(��, 0.4,0.2,0.3), (��, 0.2,0.5,0.3), (��, 0.6,0.2,0.2), (��, 0.7,0.2,0.1)}. 

These are neutrosophic soft matrices of above soft sets: 

� = �

(0.5,0.2,0.2) (0.2,0.4,0.3) (0.6,0.1,0.2)

(0.4,0.3,0.1) (0.7,0.2,0.1) (0.5,0.3,0.2)

(0.3,0.5,0.2) (0.2,0.5,0.3) (0.3,0.5,0.2)

(0.6,0.2,0.1) (0.4,0.5,0.1) (0.7,0.1,0.2)

� 

� = �

(0.6,0.3,0.1) (0.5,0.3,0.2) (0.4,0.2,0.4)

(0.4,0.3,0.2) (0.7,0.2,0.1) (0.2,0.5,0.3)

(0.2,0.6,0.1) (0.4,0.3,0.2) (0.6,0.2,0.2)

(0.1,0.5,0.2) (0.6,0.2,0.1) (0.7,0.2,0.1)

� 

Step 2 

Then, the neutrosophic soft complement matrices are 

�°� �

(0.2,0.8,0.5) (0.3,0.6,0.2) (0.2,0.9,0.6)

(0.1,0.7,0.4) (0.1,0.8,0.7) (0.2,0.7,0.5)

(0.2,0.5,0.3) (0.3,0.5,0.2) (0.2,0.5,0.3)

(0.1,0.8,0.6) (0.1,0.5,0.4) (0.2,0.9,0.7)

� 

�°� �

(0.1,0.7,0.6) (0.2,0.7,0.5) (0.3,0.8,0.4)

(0.2,0.7,0.4) (0.1,0.8,0.7) (0.3,0.5,0.2)

(0.1,0.4,0.2) (0.2,0.7,0.4) (0.2,0.8,0.6)

(0.2,0.5,0.1) (0.1,0.8,0.6) (0.1,0.8,0.7)

� 

 

Step 3: Construction of Value Matrix. 

(� + �) = �

(0.6,0.25,0.1) (0.5,0.35,0.2) (0.6,0.15,0.2)

(0.4,0.3,0.1) (0.7,0.2,0.1) (0.5,0.4,0.2)

(0.3,0.55,0.1) (0.4,0.4,0.2) (0.6,0.35,0.2)

(0.6,0.35,0.1) (0.6,0.35,0.1) (0.7,0.15,0.1)

� 

(�° + �°) = �

(0.2,0.75,0.5) (0.3,0.65,0.2) (0.3,0.85,0.4)

(0.2,0.7,0.4) (0.1,0.8,0.7) (0.3,0.6,0.2)

(0.2,0.6,0.2) (0.3,0.6,0.2) (0.2,0.65,0.3)

(0.2,0.65,0.1) (0.1,0.65,0.4) (0.2,0.85,0.71)

� 
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�(� + �) = �

0.75	 0.65 0.55
0.6 0.8 0.7
0.75 0.6 0.75
0.85 0.85 0.75

� 

 

�(�° + �°) = �

0.45 0.75 0.75
0.5 0.2 0.7
0.6 0.7 0.55
0.75 0.35 0.35

� 

Now calculate score matrix as 

�
�(���),��°��°��

= �

0.3 −0.1 −0.2
0.1 0.6 0
0.15 −0.1 0.2
0.1 0.5 0.4

� 

Step 4: To find the Total Score 

Total Score :         �

0.0
0.7
0.25
1.0

� 

Step 5: Best Selection using highest score 

�� = 1.0 

As we can see above the last value is maximum so the farmer ℎ� has gain more score so the farmer  ℎ� is selected 

as best farmer by the experts. 

6. Conclusion 

In this paper, the concept of neutrosophic soft matrices has been described, and the application of some new 

operations has been tested through neutrosophic soft matrices. A possible application has been tackled through 

the usage of NSM, which will not only prove useful by itself but will help researchers to solve other problems of 

uncertainties through similar procedures. The following paper demonstrated a new solution procedure to solve 

neutrosophic soft sets based on real-life decision-making problems. This procedure proves quite feasible in many 

real-life scenarios where ease of decision-making is the goal in mind.  
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Abstract
The concept of a neutrosophic cubic set in a UP-algebra was introduced by Songsaeng and Iampan [Neu-
trosophic cubic set theory applied to UP-algebras, 2019]. In this paper, we define the image and inverse
image of a neutrosophic cubic set in a non-empty set under any function and study the image and inverse
image of a neutrosophic cubic UP-subalgebra (resp., neutrosophic cubic near UP-filter, neutrosophic cubic
UP-filter, neutrosophic cubic UP-ideal, neutrosophic cubic strong UP-ideal) of a UP-algebra under some UP-
homomorphisms.
Keywords: UP-algebra, UP-homomorphism, neutrosophic cubic UP-subalgebra, neutrosophic cubic near UP-
filter, neutrosophic cubic UP-filter, neutrosophic cubic UP-ideal, neutrosophic cubic strong UP-ideal

1 Introduction
The type of the logical algebra, a UP-algebra was introduced by Iampan.7 Later Somjanta et al.27 studied
a fuzzy UP-subalgebra, a fuzzy UP-ideal and a fuzzy UP-filter of a UP-algebra. Guntasow et al.5 studied a
fuzzy translation of a fuzzy set in a UP-algebra. Kesorn et al.17 studied an intuitionistic fuzzy set in a UP-
algebra. Kaijae et al.16 studied anti-fuzzy UP-ideals and anti-fuzzy UP-subalgebras. Tanamoon et al.36 studied
a Q-fuzzy set in a UP-algebra. Sripaeng et al.34 studied an anti Q-fuzzy UP-ideal and an anti Q-fuzzy UP-
subalgebra of a UP-algebra. Dokkhamdang et al.4 studied a generalized fuzzy set in a UP-algebra. Songsaeng
and Iampan28, 29 studied an N -fuzzy UP-algebra and a fuzzy proper UP-filter of a UP-algebra. Senapati et
al.24, 25 studies a cubic set and an interval-valued intuitionistic fuzzy structure in a UP-algebra.

A fuzzy set f in a non-empty set A is a function from A to the closed interval [0, 1]. The concept of a
fuzzy set in a non-empty set was first introduced by Zadeh.38 The fuzzy set theory developed by Zadeh and
others have found many applications in the domain of mathematics and other domains. Zadeh39 introduced
an interval-value fuzzy sets. The concept of a neutrosophic set was introduced by Smarandache26 in 1999.
Wang et al.37 introduced the concept of an interval-valued neutrosophic set in 2005. Jun et al.13 introduced
the concept of an interval-valued neutrosophic set in a BCK/BCI-algebra. The concept of a neutrosophic
N -structure in a semigroup was introduced by Khan et al.19 in 2017. Jun et al.14 applied the concept of a
neutrosophic N -structure to a BCK/BCI-algebra in 2017. Songsaeng and Iampan31–33 applied the concept of
a neutrosophic set to a UP-algebra. Ibrahim et. al.10 introduced the concept of a neutrosophic subtraction
algebra and a neutrosophic subtraction semigroup, and Al-Tahan and Davvaz1 introduced the concept of a
neutrosophic ℵ-ideal of a subtraction algebra in 2020.

A neutrosophic cubic set which is the generalized form of fuzzy sets, cubic sets and neutrosophic sets was
introduced by Jun et al.15 in 2017. Iqbal et al.11 introduced the concept of a neutrosophic cubic subalgebra
and a neutrosophic cubic closed ideal of a B-algebra in 2016. Songsaeng and Iampan30 introduced the concept
of a neutrosophic cubic set in a UP-algebra in 2020. Khalid et. al.18 applied the concept of a multiplicative
interpretation of a neutrosophic cubic set to a B-algebra in 2020.

From literature review, we will study the image and inverse image of neutrosophic cubic UP-subalgebras
(resp., neutrosophic cubic near UP-filters, neutrosophic cubic UP-filters, neutrosophic cubic UP-ideals, neu-
trosophic cubic strong UP-ideals) under some UP-homomorphisms.
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2 Basic concepts and preliminary notes on a UP-algebra
Before the study, we will review the definition of a UP-algebra.

Definition 2.1. 7 An algebra X = (X, ◦, 0) of type (2, 0) is said to be a UP-algebra, where X is a non-empty
set, ◦ is a binary operation on X , and 0 is a fixed element of X if it holds the followings:

(UP-1) (for all x, y, z ∈ X)((y ◦ z) ◦ ((x ◦ y) ◦ (x ◦ z)) = 0),

(UP-2) (for all x ∈ X)(0 ◦ x = x),

(UP-3) (for all x ∈ X)(x ◦ 0 = 0), and

(UP-4) (for all x, y ∈ X)(x ◦ y = 0, y ◦ x = 0⇒ x = y).

From,7 we already know that the concept of a UP-algebra is a generalization of a KU-algebra (see21).

Example 2.2. 23 Let Y be a universal set and let Ω ∈ P(Y ), where P(Y ) means the power set of Y . Let
PΩ(Y ) = {A ∈ P(Y ) | Ω ⊆ A}. Define a binary operation ◦ on PΩ(Y ) by puttingA◦B = B∩(AC ∪Ω) for
all A,B ∈ PΩ(Y ), where AC means the complement of a subset A. Then (PΩ(Y ), ◦,Ω) is a UP-algebra. Let
PΩ(Y ) = {A ∈ P(Y ) | A ⊆ Ω}. Define a binary operation • on PΩ(Y ) by putting A •B = B ∪ (AC ∩ Ω)
for all A,B ∈ PΩ(Y ). Then (PΩ(Y ), •,Ω) is a UP-algebra. In particular, (P(Y ), ◦, ∅) and (P(Y ), •, X) are
UP-algebras.

Example 2.3. 4 Let N0 be the set of all natural numbers with zero. Define two binary operations · and ∗ on
N0 by

(for all m,n ∈ N0)

(
m · n =

{
n if m < n,
0 otherwise

)
and

(for all m,n ∈ N0)

(
m ∗ n =

{
n if m > n or m = 0,
0 otherwise

)
.

Then (N0, ·, 0) and (N0, ∗, 0) are UP-algebras.

For more examples of a UP-algebra, see.2, 3, 8, 22–25

In a UP-algebra X = (X, ◦, 0), the followings are valid (see7, 8).

(for all x ∈ X)(x ◦ x = 0), (2.1)
(for all x, y, z ∈ X)(x ◦ y = 0, y ◦ z = 0⇒ x ◦ z = 0), (2.2)
(for all x, y, z ∈ X)(x ◦ y = 0⇒ (z ◦ x) ◦ (z ◦ y) = 0), (2.3)
(for all x, y, z ∈ X)(x ◦ y = 0⇒ (y ◦ z) ◦ (x ◦ z) = 0), (2.4)
(for all x, y ∈ X)(x ◦ (y ◦ x) = 0), (2.5)
(for all x, y ∈ X)((y ◦ x) ◦ x = 0⇔ x = y ◦ x), (2.6)
(for all x, y ∈ X)(x ◦ (y ◦ y) = 0), (2.7)
(for all a, x, y, z ∈ X)((x ◦ (y ◦ z)) ◦ (x ◦ ((a ◦ y) ◦ (a ◦ z))) = 0), (2.8)
(for all a, x, y, z ∈ X)((((a ◦ x) ◦ (a ◦ y)) ◦ z) ◦ ((x ◦ y) ◦ z) = 0), (2.9)
(for all x, y, z ∈ X)(((x ◦ y) ◦ z) ◦ (y ◦ z) = 0), (2.10)
(for all x, y, z ∈ X)(x ◦ y = 0⇒ x ◦ (z ◦ y) = 0), (2.11)
(for all x, y, z ∈ X)(((x ◦ y) ◦ z) ◦ (x ◦ (y ◦ z)) = 0), and (2.12)
(for all a, x, y, z ∈ X)(((x ◦ y) ◦ z) ◦ (y ◦ (a ◦ z)) = 0). (2.13)

From,7 the binary relation ≤ on a UP-algebra X = (X, ◦, 0) is defined as follows:

(for all x, y ∈ X)(x ≤ y ⇔ x ◦ y = 0).

In a UP-algebra, 5 types of special subsets are defined as follows.
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Definition 2.4. 5–7, 27 A non-empty subset A of a UP-algebra X = (X, ◦, 0) is said to be

(1) a UP-subalgebra of X if (for all x, y ∈ A)(x ◦ y ∈ A).

(2) a near UP-filter of X if

(i) the constant 0 of X is in A, and
(ii) (for all x, y ∈ X)(y ∈ A⇒ x ◦ y ∈ A).

(3) a UP-filter of X if

(i) the constant 0 of X is in A, and
(ii) (for all x, y ∈ X)(x ◦ y ∈ A, x ∈ A⇒ y ∈ A).

(4) a UP-ideal of X if

(i) the constant 0 of X is in A, and
(ii) (for all x, y, z ∈ X)(x ◦ (y ◦ z) ∈ A, y ∈ A⇒ x ◦ z ∈ A).

(5) a strong UP-ideal of X if

(i) the constant 0 of X is in A, and
(ii) (for all x, y, z ∈ X)((z ◦ y) ◦ (z ◦ x) ∈ A, y ∈ A⇒ x ∈ A).

Guntasow et al.5 and Iampan6 proved that the concept of a UP-subalgebra is a generalization of a near
UP-filter, a near UP-filter is a generalization of a UP-filter, a UP-filter is a generalization of a UP-ideal, and
a UP-ideal is a generalization of a strong UP-ideal. Moreover, they proved that the only strong UP-ideal of a
UP-algebra X is X .

Definition 2.5. 7 Let (X, ◦, 0X) and (Y, •, 0Y ) be two UP-algebras. A function f from X to Y is said to be a
UP-homomorphism if

(for all x, y ∈ X)(f(x ◦ y) = f(x) • f(y)).

A UP-homomorphism f : X → Y is said to be a UP-epimorphism if f is surjective, a UP-monomorphism
if f is injective, and a UP-isomorphism if f is bijective.

Theorem 2.6. 9 Let X and Y be two UP-algebras with fixed elements of 0X and 0Y , respectively, and let
f : X → Y be a UP-homomorphism. Then the followings hold:

(1) f(0X) = 0Y , and

(2) (for all x1, x2 ∈ X)(x1 ≤ x2 ⇒ f(x1) ≤ f(x2)).

In 1965, the concept of a fuzzy set in a non-empty set was introduced by Zadeh38 with the following
definition.

Definition 2.7. A fuzzy set (briefly, FS) in a non-empty set X (or a fuzzy subset of X) is defined to be a
function λ : X → [0, 1], where [0, 1] is the unit segment of the real line. Denote by [0, 1]X the collection of
all FSs in X . Define a binary relation ≤ on [0, 1]X as follows:

(for all λ, µ ∈ [0, 1]X)(λ ≤ µ⇔ (for all x ∈ X)(λ(x) ≤ µ(x))). (2.14)

Definition 2.8. 27 Let λ be a FS in a non-empty set X . The complement of λ, denoted by λC , is defined by

(for all x ∈ X)(λC(x) = 1− λ(x)). (2.15)

Definition 2.9. 20 Let {λj | j ∈ J} be a family of FSs in a non-empty set X . We define the join and the meet
of {λj | j ∈ J}, denoted by ∨j∈Jλj and ∧j∈Jλj , respectively, as follows:

(for all x ∈ X)((∨j∈Jλj)(x) = supj∈J{λj(x)}), (2.16)

(for all x ∈ X)((∧j∈Jλj)(x) = infj∈J{λj(x)}). (2.17)

In particular, if λ and µ be FSs in X , we have the join and meet of λ and µ as follows:

(for all x ∈ X)((λ ∨ µ)(x) = max{λ(x), µ(x)}), (2.18)
(for all x ∈ X)((λ ∧ µ)(x) = min{λ(x), µ(x)}), (2.19)

respectively.
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An interval number we mean a close subinterval â = [a−, a+] of [0, 1], where 0 ≤ a− ≤ a+ ≤ 1. The
interval number â = [a−, a+] with a− = a+ is denoted by a. Denote by int[0, 1] the set of all interval
numbers.

Definition 2.10. 15 Let {âj | j ∈ J} be a family of interval numbers. We define the refined infimum and the
refined supremum of {âj | j ∈ J}, denoted by rinfj∈J âj and rsupj∈J âj , respectively, as follows:

rinfj∈J{âj} = [inf
j∈J
{a−j }, inf

j∈J
{a+

j }], (2.20)

rsupj∈J{âj} = [sup
j∈J
{a−j }, sup

j∈J
{a+

j }]. (2.21)

In particular, if â1, â2 ∈ int[0, 1], we define the refined minimum and the refined maximum of â1 and â2,
denoted by rmin{â1, â2} and rmax{â1, â2}, respectively, as follows:

rmin{â1, â2} = [min{a−1 , a
−
2 },min{a+

1 , a
+
2 }], (2.22)

rmax{â1, â2} = [max{a−1 , a
−
2 },max{a+

1 , a
+
2 }]. (2.23)

Definition 2.11. 15 Let â1, â2 ∈ int[0, 1]. We define the symbols “�”, “�”, “=” in case of â1 and â2 as
follows:

â1 � â2 ⇔ a−1 ≥ a
−
2 and a+

1 ≥ a
+
2 , (2.24)

and similarly we may have â1 � â2 and â1 = â2. To say â1 � â2 (resp., â1 ≺ â2) we mean â1 � â2 and
â1 6= â2 (resp., â1 � â2 and â1 6= â2).

Definition 2.12. 39 Let â ∈ int[0, 1]. The complement of â, denoted by âC , is defined by the interval number

âC = [1− a+, 1− a−]. (2.25)

In the int[0, 1], the followings are valid (see35).

(for all â ∈ int[0, 1])(â � â), (2.26)

(for all â ∈ int[0, 1])((âC)C = â), (2.27)
(for all â ∈ int[0, 1])(rmax{â, â} = â and rmin{â, â} = â), (2.28)
(for all â1, â2 ∈ int[0, 1])(rmax{â1, â2} = rmax{â2, â1} and rmin{â1, â2} = rmin{â2, â1}), (2.29)
(for all â1, â2 ∈ int[0, 1])(rmax{â1, â2} � â1 and â2 � rmin{â1, â2}), (2.30)

(for all â1, â2 ∈ int[0, 1])(â1 � â2 ⇔ âC1 � âC2 ), (2.31)
(for all â1, â2, â3, â4 ∈ int[0, 1])(â1 � â2, â3 � â4 ⇒ rmin{â1, â3} � rmin{â2, â4}), (2.32)
(for all â1, â2, â3 ∈ int[0, 1])(â1 � â2, â3 � â2 ⇔ rmin{â1, â3} � â2), (2.33)
(for all â1, â2, â3, â4 ∈ int[0, 1])(â1 � â2, â3 � â4 ⇒ rmax{â1, â3} � rmax{â2, â4}), (2.34)
(for all â1, â2, â3 ∈ int[0, 1])(â2 � â1, â2 � â3 ⇔ â2 � rmax{â1, â3}), (2.35)
(for all â1, â2 ∈ int[0, 1])(â1 � â2 ⇔ rmin{â1, â2} = â2), (2.36)
(for all â1, â2 ∈ int[0, 1])(â1 � â2 ⇔ rmax{â1, â2} = â1), (2.37)

(for all â1, â2 ∈ int[0, 1])(rmin{âC1 , âC2 } = rmax{â1, â2}C), (2.38)

(for all â1, â2 ∈ int[0, 1])(rmax{âC1 , âC2 } = rmin{â1, â2}C), (2.39)

(for all â1, â2, â3 ∈ int[0, 1])(â1 � rmax{â2, â3} ⇔ âC1 � rmin{âC2 , âC3 }), (2.40)

(for all â1, â2, â3 ∈ int[0, 1])(â1 � rmax{â2, â3} ⇔ âC1 � rmin{âC2 , âC3 }), (2.41)

(for all â1, â2, â3 ∈ int[0, 1])(â1 � rmin{â2, â3} ⇔ âC1 � rmax{âC2 , âC3 }), and (2.42)

(for all â1, â2, â3 ∈ int[0, 1])(â1 � rmin{â2, â3} ⇔ âC1 � rmax{âC2 , âC3 }). (2.43)

In 1975, the concept of an interval-valued fuzzy set in a non-empty set was first introduced by Zadeh38

with the following definition.

Definition 2.13. An interval-valued fuzzy set (briefly, IVFS) in a non-empty set X is an arbitrary function
A : X → int[0, 1]. Let IV FS(X) stands for the set of all IVFS in X . For every A ∈ IV FS(X) and
x ∈ X,A(x) = [A−(x), A+(x)] is said to be the degree of membership of an element x to A, where A−, A+

are FSs in X which are called a lower fuzzy set and an upper fuzzy set in X , respectively. For simplicity, we
denote A = [A−, A+].
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Definition 2.14. 15 Let A and B be IVFSs in a non-empty set X . We define the symbols “⊆”, “⊇”, “=” in
case of A and B as follows:

A ⊆ B ⇔ (for all x ∈ X)(A(x) � B(x)), (2.44)

and similarly we may have A ⊇ B and A = B.

Definition 2.15. 39 Let A be an IVFS in a non-empty set X . The complement of A, denoted by AC , is defined
as follows: AC(x) = A(x)C for all x ∈ X , that is,

(for all x ∈ X)(AC(x) = [1−A+(x), 1−A−(x)]). (2.45)

We note that AC−
(x) = 1−A+(x) and AC+

(x) = 1−A−(x) for all x ∈ X .

Definition 2.16. 39 Let {Aj | j ∈ J} be a family of IVFSs in a non-empty set X . We define the intersection
and the union of {Aj | j ∈ J}, denoted by ∩j∈JAj and ∪j∈JAj , respectively, as follows:

(for all x ∈ X)((∩j∈JAj)(x) = rinfj∈J{Aj(x)}), (2.46)
(for all x ∈ X)((∪j∈JAj)(x) = rsupj∈J{Aj(x)}). (2.47)

We note that
(for all x ∈ X)((∩j∈JAj)

−(x) = (∧j∈JA−j )(x) = inf
j∈J
{A−j (x)})

and
(for all x ∈ X)((∩j∈JAj)

+(x) = (∧j∈JA+
j )(x) = inf

j∈J
{A+

j (x)}).

Similarly,
(for all x ∈ X)((∪j∈JAj)

−(x) = (∨j∈JA−j )(x) = sup
j∈J
{A−j (x)})

and
(for all x ∈ X)((∪j∈JAj)

+(x) = (∨j∈JA+
j )(x) = sup

j∈J
{A+

j (x)}).

In particular, if A1 and A2 are IVFSs in X , we have the intersection and the union of A1 and A2 as follows:

(for all x ∈ X)((A1 ∩A2)(x) = rmin{A1(x), A2(x)}), (2.48)
(for all x ∈ X)((A1 ∪A2)(x) = rmax{A1(x), A2(x)}). (2.49)

In 1999, the concept of a neutrosophic set in a non-empty set was introduced by Smarandache26 with the
following definition.

Definition 2.17. A neutrosophic set (briefly, NS) in a non-empty set X is a structure of the form:

Λ = {(x, λT (x), λI(x), λF (x)) | x ∈ X}, (2.50)

where λT : X → [0, 1] is a truth membership function, λI : X → [0, 1] is an indeterminate membership
function, and λF : X → [0, 1] is a false membership function. For our convenience, we will denote a NS as
Λ = (X,λT , λI , λF ) = (X,λT,I,F ) = {(x, λT (x), λI(x), λF (x)) | x ∈ X}.

Definition 2.18. 26 Let Λ be a NS in a non-empty set X . The NS ΛC = (X,λCT , λ
C
I , λ

C
F ) in X is said to be

the complement of Λ in X .

In 2005, the concept of an interval neutrosophic set in a non-empty set was introduced by Wang et al.37

with the following definition.

Definition 2.19. An interval-valued neutrosophic set (briefly, IVNS) in a non-empty set X is a structure of
the form:

A := {(x,AT (x), AI(x), AF (x)) | x ∈ X}, (2.51)

where AT , AI and AF are IVFSs in X , which are called an interval truth membership function, an interval
indeterminacy membership function and an interval falsity membership function, respectively. For our conve-
nience, we will denote a IVNS as A = (X,AT , AI , AF ) = (X,AT,I,F ) = {(x,AT (x), AI(x), AF (x)) | x ∈
X}.

Definition 2.20. 37 Let A = (X,AT , AI , AF ) be an IVNS in a non-empty set X . The IVNS AC =
(X,AC

T , A
C
I , A

C
F ) in X is said to be the complement of A in X .
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In 2012, the concept of a cubic set in a non-empty set was introduced by Jun et al.12 with the following
definition.

Definition 2.21. A cubic set (briefly, CS) in a non-empty set X is a structure of the form:

C = {(x,A(x), λ(x)) | x ∈ X}, (2.52)

where A is an IVFS in X and λ is a FS in X . For our convenience, we will denote a CS as C = (X,A, λ) =
{(x,A(x), λ(x)) | x ∈ X}.

In 2017, Jun et al.15 introduced the concept of a neutrosophic cubic set with the following definition.

Definition 2.22. A neutrosophic cubic set (briefly, NCS) in a non-empty set X is a pair A = (A,Λ), where
A = (X,AT , AI , AF ) is an IVNS in X and Λ = (X,λT , λI , λF ) is a neutrosophic set in X . For simplicity,
we denote A = (AT,I,F , λT,I,F ). A NCS A = (A,Λ) in a non-empty set X is said to be constant if
AT , AI , AF , λT , λI , and λF are constant functions. The complement of a NCS A = (A,Λ) is defined to be
the NCS A C = (AC ,ΛC).

In 2020, the concepts of a neutrosophic cubic UP-subalgebra, a neutrosophic cubic near UP-filter, a neu-
trosophic cubic UP-filter, a neutrosophic cubic UP-ideal, and a neutrosophic cubic strong UP-ideal of a UP-
algebra were introduced by Songsaeng and Iampan30 with the following definition.

Definition 2.23. A NCS A = (A,Λ) in a UP-algebra X = (X, ◦, 0) is said to be

(1) a neutrosophic cubic UP-subalgebra of X if

(for all x, y ∈ X)

AT (x ◦ y) � rmin{AT (x), AT (y)}
AI(x ◦ y) � rmax{AI(x), AI(y)}
AF (x ◦ y) � rmin{AF (x), AF (y)}

 , (2.53)

(for all x, y ∈ X)

λT (x ◦ y) ≤ max{λT (x), λT (y)}
λI(x ◦ y) ≥ min{λI(x), λI(y)}
λF (x ◦ y) ≤ max{λF (x), λF (y)}

 . (2.54)

(2) a neutrosophic cubic near UP-filter of X if

(for all x ∈ X)

AT (0) � AT (x)
AI(0) � AI(x)
AF (0) � AF (x)

 , (2.55)

(for all x ∈ X)

λT (0) ≤ λT (x)
λI(0) ≥ λI(x)
λF (0) ≤ λF (x)

 , (2.56)

(for all x, y ∈ X)

AT (x ◦ y) � AT (y)
AI(x ◦ y) � AI(y)
AF (x ◦ y) � AF (y)

 , (2.57)

(for all x, y ∈ X)

λT (x ◦ y) ≤ λT (y)
λI(x ◦ y) ≥ λI(y)
λF (x ◦ y) ≤ λF (y)

 . (2.58)

(3) a neutrosophic cubic UP-filter of X if it holds the followings: (2.55), (2.56), and

(for all x, y ∈ X)

AT (y) � rmin{AT (x ◦ y), AT (x)}
AI(y) � rmax{AI(x ◦ y), AI(x)}
AF (y) � rmin{AF (x ◦ y), AF (x)}

 , (2.59)

(for all x, y ∈ X)

λT (y) ≤ max{λT (x ◦ y), λT (x)}
λI(y) ≥ min{λI(x ◦ y), λI(x)}
λF (y) ≤ max{λF (x ◦ y), λF (x)}

 . (2.60)
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(4) a neutrosophic cubic UP-ideal of X if it holds the followings: (2.55), (2.56), and

(for all x, y, z ∈ X)

AT (x ◦ z) � rmin{AT (x ◦ (y ◦ z)), AT (y)}
AI(x ◦ z) � rmax{AI(x ◦ (y ◦ z)), AI(y)}
AF (x ◦ z) � rmin{AF (x ◦ (y ◦ z)), AF (y)}

 , (2.61)

(for all x, y, z ∈ X)

λT (x ◦ z) ≤ max{λT (x ◦ (y ◦ z)), λT (y)}
λI(x ◦ z) ≥ min{λI(x ◦ (y ◦ z)), λI(y)}
λF (x ◦ z) ≤ max{λF (x ◦ (y ◦ z)), λF (y)}

 . (2.62)

(5) a neutrosophic cubic strong UP-ideal of X if it holds the followings: (2.55), (2.56), and

(for all x, y, z ∈ X)

AT (x) � rmin{AT ((z ◦ y) ◦ (z ◦ x)), AT (y)}
AI(x) � rmax{AI((z ◦ y) ◦ (z ◦ x)), AI(y)}
AF (x) � rmin{AF ((z ◦ y) ◦ (z ◦ x)), AF (y)}

 , (2.63)

(for all x, y, z ∈ X)

λT (x) ≤ max{λT ((z ◦ y) ◦ (z ◦ x)), λT (y)}
λI(x) ≥ min{λI((z ◦ y) ◦ (z ◦ x)), λI(y)}
λF (x) ≤ max{λF ((z ◦ y) ◦ (z ◦ x)), λF (y)}

 . (2.64)

Songsaeng and Iampan30 proved that the concept of a neutrosophic cubic UP-subalgebra is a generalization
of a neutrosophic cubic near UP-filter, a neutrosophic cubic near UP-filter is a generalization of a neutrosophic
cubic UP-filter, a neutrosophic cubic UP-filter is a generalization of a neutrosophic cubic UP-ideal, and a
neutrosophic cubic UP-ideal is a generalization of a neutrosophic cubic strong UP-ideal. Moreover, they
proved that a neutrosophic cubic strong UP-ideal and a constant NCS coincide.

3 Homomorphic properties of a NCSs in a UP-algebra
In this section, the image and inverse image of a NCS are defined and some results are studied.

Definition 3.1. Let f be a function from a non-empty setX into a non-empty set Y and A = (AT,I,F , λT,I,F )
be a NCS in X . Then the image of A under f is defined as a NCS f(A ) = (f(A)T,I,F , f(λ)T,I,F ) in Y ,
where

f(A)T (y) =

{
rsupx∈f−1(y){AT (x)} if f−1(y) is non-empty,
[0, 0] otherwise,

f(A)I(y) =

{
rinfx∈f−1(y){AI(x)} if f−1(y) is non-empty,
[1, 1] otherwise,

f(A)F (y) =

{
rsupx∈f−1(y){AF (x)} if f−1(y) is non-empty,
[0, 0] otherwise,

f(λ)T (y) =

{
infx∈f−1(y){λT (x)} if f−1(y) is non-empty,
1 otherwise,

f(λ)I(y) =

{
supx∈f−1(y){λI(x)} if f−1(y) is non-empty,
0 otherwise,

f(λ)F (y) =

{
infx∈f−1(y){λF (x)} if f−1(y) is non-empty,
1 otherwise.

Example 3.2. Let X = {0X , 1X , 2X} be a UP-algebra with a fixed element 0X and a binary operation ◦
defined by the following Cayley table:

◦ 0X 1X 2X
0X 0X 1X 2X
1X 0X 0X 1X
2X 0X 0X 0X
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and let Y = {0Y , 1Y , 2Y } be a UP-algebra with a fixed element 0Y and a binary operation • defined by the
following Cayley table:

• 0Y 1Y 2Y
0Y 0Y 1Y 2Y
1Y 0Y 0Y 2Y
2Y 0Y 0Y 0Y

We define a function f : X → Y as follows:

f(0X) = 0Y , f(1X) = 1Y , and f(2X) = 1Y .

We define a NCS A = (AT,I,F , λT,I,F ) in X with the tabular representation as follows:

X A(x) Λ(x)
0X ([0.4, 0.7], [0.5, 0.7], [0.2, 0.4]) (0.1, 0.3, 0.4)
1X ([0.1, 0.2], [0.1, 0.5], [0.4, 0.5]) (0.3, 0.8, 0.4)
2X ([0.8, 0.9], [0.7, 0.8], [0.1, 0.6]) (0.1, 0.5, 0.7)

Then f(A ) = (f(A)T,I,F , f(λ)T,I,F ) in Y with the tabular representation as follows:

Y A(x) Λ(x)
0Y ([0.4, 0.7], [0.5, 0.7], [0.2, 0.4]) (0.1, 0.3, 0.4)
1Y ([0.8, 0.9], [0.1, 0.5], [0.4, 0.6]) (0.1, 0.8, 0.4)
2Y ([0, 0], [1, 1], [0, 0]) (1, 0, 1)

Hence, f(A ) = (f(A)T,I,F , f(λ)T,I,F ) is a NCS in Y .

Definition 3.3. Let f be a function from a non-empty setX into a non-empty set Y and A = (AT,I,F , λT,I,F )
be a NCS in Y . Then the inverse image of A is defined as a NCS f−1(A ) = (f−1(A)T,I,F , f

−1(λ)T,I,F ) in
X , where

(for all x ∈ X)(f−1(A)T,I,F (x) = AT,I,F (f(x))), (3.1)

(for all x ∈ X)(f−1(λ)T,I,F (x) = λT,I,F (f(x))). (3.2)

Example 3.4. In Example 3.2, we have (X, ◦, 0X) and (Y, •, 0Y ) are two UP-algebras. We define a function
f : X → Y as follows:

f(0X) = 0Y , f(1X) = 1Y , and f(2X) = 1Y .

We define a NCS A = (AT,I,F , λT,I,F ) in Y with the tabular representation as follows:

Y A(x) Λ(x)
0Y ([0.3, 0.7], [0.3, 0.5], [0.1, 0.4]) (0.5, 0.4, 0.7)
1Y ([0.6, 0.7], [0.1, 0.3], [0.4, 0.5]) (0.2, 0.7, 0.8)
2Y ([0.5, 0.9], [0.3, 0.5], [0.5, 0.8]) (0.3, 0.5, 0.4)

Then f−1(A ) = (f−1(A)T,I,F , f
−1(λ)T,I,F ) in X with the tabular representation as follows:

X A(x) Λ(x)
0X ([0.3, 0.7], [0.3, 0.5], [0.1, 0.4]) (0.5, 0.4, 0.7)
1X ([0.6, 0.7], [0.1, 0.3], [0.4, 0.5]) (0.2, 0.7, 0.8)
2X ([0.6, 0.7], [0.1, 0.3], [0.4, 0.5]) (0.2, 0.7, 0.8)

Hence, f−1(A ) = (f−1(A)T,I,F , f
−1(λ)T,I,F ) is a NCS in X .

Definition 3.5. A NCS
A = (AT,I,F , λT,I,F ) in X is said to be order preserving if

(for all x, y ∈ X)

(
x ≤ y ⇒

{
AT (x) � AT (y), AI(x) � AI(y), AF (x) � AF (y),
λT (x) ≥ λT (y), λI(x) ≤ λI(y), λF (x) ≥ λF (y)

)
. (3.3)

Lemma 3.6. Every neutrosophic cubic UP-filter (resp., neutrosophic cubic UP-ideal, neutrosophic cubic
strong UP-ideal) of X is order preserving.
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Proof. Assume that A = (AT,I,F , λT,I,F ) is a neutrosophic cubic UP-filter of X . Let x, y ∈ X be such that
x ≤ y in X . Then x ◦ y = 0. Thus

AT (y) � rmin{AT (x ◦ y), AT (x)} = rmin{AT (0), AT (x)} = AT (x), ((2.59),(2.55),(2.36))
AI(y) � rmax{AI(x ◦ y), AI(x)} = rmin{AI(0), AI(x)} = AI(x), ((2.59),(2.55),(2.37))
AF (y) � rmin{AF (x ◦ y), AF (x)} = rmin{AF (0), AF (x)} = AF (x), ((2.59),(2.55),(2.36))
λT (y) ≤ max{λT (x ◦ y), λT (x)} = max{λT (0), λT (x)} = λT (x), ((2.60),(2.56))
λI(y) ≥ min{λI(x ◦ y), λI(x)} = min{λI(0), λI(x)} = λI(x), ((2.60),(2.56))

λF (y) ≤ max{λF (x ◦ y), λF (x)} = max{λF (0), λF (x)} = λF (x). ((2.60),(2.56))

Hence, A is order preserving.

Theorem 3.7. Let (X, ◦, 0X) and (Y, •, 0Y ) be two UP-algebras, f : X → Y be a UP-homomorphism, and
A = (AT,I,F , λT,I,F ) be a NCS in Y . Then the followings hold:

(1) If A is a neutrosophic cubic UP-subalgebra of Y , then the inverse image f−1(A ) of A under f is a
neutrosophic cubic UP-subalgebra of X .

(2) If A is a neutrosophic cubic near UP-filter of Y which is order preserving, then the inverse image
f−1(A ) of A under f is a neutrosophic cubic near UP-filter of X .

(3) If A is a neutrosophic cubic UP-filter of Y , then the inverse image f−1(A ) of A under f is a neutro-
sophic cubic UP-filter of X .

(4) If A is a neutrosophic cubic UP-ideal of Y , then the inverse image f−1(A ) of A under f is a neutro-
sophic cubic UP-ideal of X .

(5) If A is a neutrosophic cubic strong UP-ideal of Y , then the inverse image f−1(A ) of A under f is a
neutrosophic cubic strong UP-ideal of X .

Proof. (1) Assume that A is a neutrosophic cubic UP-subalgebra of Y . Then for all x, y ∈ X ,

f−1(A)T (x ◦ y) = AT (f(x ◦ y)) ((3.1))
= AT (f(x) • f(y))

� rmin{AT (f(x)), AT (f(y))} ((2.53))

= rmin{f−1(A)T (x), f−1(A)T (y)}, ((3.1))

f−1(A)I(x ◦ y) = AI(f(x ◦ y)) ((3.1))
= AI(f(x) • f(y))

� rmax{AI(f(x)), AI(f(y))} ((2.53))

= rmax{f−1(A)I(x), f−1(A)I(y)}, ((3.1))

f−1(A)F (x ◦ y) = AF (f(x ◦ y)) ((3.1))
= AF (f(x) • f(y))

� rmin{AF (f(x)), AF (f(y))} ((2.53))

= rmin{f−1(A)F (x), f−1(A)F (y)}, ((3.1))

f−1(λ)T (x ◦ y) = λT (f(x ◦ y)) ((3.2))
= λT (f(x) • f(y))

≤ max{λT (f(x)), λT (f(y))} ((2.54))

= max{f−1(λ)T (x), f−1(λ)T (y)}, ((3.2))

f−1(λ)I(x ◦ y) = λI(f(x ◦ y)) ((3.2))
= λI(f(x) • f(y))

≥ min{λI(f(x)), λI(f(y))} ((2.54))

= min{f−1(λ)I(x), f−1(λ)I(y)}, ((3.2))
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f−1(λ)F (x ◦ y) = λF (f(x ◦ y)) ((3.2))
= λF (f(x) • f(y))

≤ max{λF (f(x)), λF (f(y))} ((2.54))

= max{f−1(λ)F (x), f−1(λ)F (y)}. ((3.2))

Hence, f−1(A ) is a neutrosophic cubic UP-subalgebra of X .

(2) Assume that A is a neutrosophic cubic near UP-filter of Y which is order preserving. By Theorem 2.6
(2) and (UP-3), we have for all x ∈ X ,

f−1(A)T (0X) = AT (f(0X)) � AT (f(x)) = f−1(A)T (x),

f−1(A)I(0X) = AI(f(0X)) � AI(f(x)) = f−1(A)I(x),

f−1(A)F (0X) = AF (f(0X)) � AF (f(x)) = f−1(A)F (x),

f−1(λ)T (0X) = λT (f(0X)) ≤ λT (f(x)) = f−1(λ)T (x),

f−1(λ)I(0X) = λI(f(0X)) ≥ λI(f(x)) = f−1(λ)I(x),

f−1(λ)F (0X) = λF (f(0X)) ≤ λF (f(x)) = f−1(λ)F (x).

Let x, y ∈ X . Then

f−1(A)T (x ◦ y) = AT (f(x ◦ y)) = AT (f(x) • f(y)) � AT (f(y)) = f−1(A)T (y), ((2.57),(3.1))

f−1(A)I(x ◦ y) = AI(f(x ◦ y)) = AI(f(x) • f(y)) � AI(f(y)) = f−1(A)I(y), ((2.57),(3.1))

f−1(A)F (x ◦ y) = AF (f(x ◦ y)) = AF (f(x) • f(y)) � AF (f(y)) = f−1(A)F (y), ((2.57),(3.1))

f−1(λ)T (x ◦ y) = λT (f(x ◦ y)) = λT (f(x) • f(y)) ≤ λT (f(y)) = f−1(λ)T (y), ((2.58),(3.2))

f−1(λ)I(x ◦ y) = λI(f(x ◦ y)) = λI(f(x) • f(y)) ≥ λI(f(y)) = f−1(λ)I(y), ((2.58),(3.2))

f−1(λ)F (x ◦ y) = λF (f(x ◦ y)) = λF (f(x) • f(y)) ≤ λF (f(y)) = f−1(λ)F (y). ((2.58),(3.2))

Hence, f−1(A ) is a neutrosophic cubic near UP-filter of X .

(3) Assume that A is a neutrosophic cubic UP-filter of Y . Then A is a neutrosophic cubic near UP-filter
of Y . By Lemma 3.6 and the proof of (2), we have f−1(A ) satisfies the assertions (2.55) and (2.56). Let
x, y ∈ X . Then

f−1(A)T (y) = AT (f(y)) ((3.1))
� rmin{AT (f(x) • f(y)), AT (f(x))} ((2.59))
= rmin{AT (f(x ◦ y)), AT (f(x))}
= rmin{f−1(A)T (x ◦ y), f−1(A)T (x)}, ((3.1))

f−1(A)I(y) = AI(f(y)) ((3.1))
� rmax{AI(f(x) • f(y)), AI(f(x))} ((2.59))
= rmax{AI(f(x ◦ y)), AI(f(x))}
= rmax{f−1(A)I(x ◦ y), f−1(A)I(x)}, ((3.1))

f−1(A)F (y) = AF (f(y)) ((3.1))
� rmin{AF (f(x) • f(y)), AF (f(x))} ((2.59))
= rmin{AF (f(x ◦ y)), AF (f(x))}
= rmin{f−1(A)F (x ◦ y), f−1(A)F (x)}, ((3.1))

f−1(λ)T (y) = λT (f(y)) ((3.2))
≤ max{λT (f(x) • f(y)), λT (f(x))} ((2.60))
= max{λT (f(x ◦ y)), λT (f(x))}
= max{f−1(λ)T (x ◦ y), f−1(λ)T (x)}, ((3.2))

f−1(λ)I(y) = λI(f(y)) ((3.2))
≥ min{λI(f(x) • f(y)), λI(f(x))} ((2.60))
= min{λI(f(x ◦ y)), λI(f(x))}
= min{f−1(λ)I(x ◦ y), f−1(λ)I(x)}, ((3.2))
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f−1(λ)F (y) = λF (f(y)) ((3.2))
≤ max{λF (f(x) • f(y)), λF (f(x))} ((2.60))
= max{λF (f(x ◦ y)), λF (f(x))}
= max{f−1(λ)F (x ◦ y), f−1(λ)F (x)}. ((3.2))

Hence, f−1(A ) is a neutrosophic cubic UP-filter of X .

(4) Assume that A is a neutrosophic cubic UP-ideal of Y . Then A is a neutrosophic cubic UP-filter of Y .
By the proof of (3), we have f−1(A ) satisfies the assertions (2.55) and (2.56). Let x, y, z ∈ X . Then

f−1(A)T (x ◦ z) = AT (f(x ◦ z)) ((3.1))
= AT (f(x) • f(z))

� rmin{AT (f(x) • (f(y) • f(z))), AT (f(y))} ((2.61))
= rmin{AT (f(x) • (f(y ◦ z))), AT (f(y))}
= rmin{AT (f(x ◦ (y ◦ z))), AT (f(y))}
= rmin{f−1(A)T (x ◦ (y ◦ z)), f−1(A)T (y)}, ((3.1))

f−1(A)I(x ◦ z) = AI(f(x ◦ z)) ((3.1))
= AI(f(x) • f(z))

� rmax{AI(f(x) • (f(y) • f(z))), AI(f(y))} ((2.61))
= rmax{AI(f(x) • (f(y ◦ z))), AI(f(y))}
= rmax{AI(f(x ◦ (y ◦ z))), AI(f(y))}
= rmax{f−1(A)I(x ◦ (y ◦ z)), f−1(A)I(y)}, ((3.1))

f−1(A)F (x ◦ z) = AF (f(x ◦ z)) ((3.1))
= AF (f(x) • f(z))

� rmin{AF (f(x) • (f(y) • f(z))), AF (f(y))} ((2.61))
= rmin{AF (f(x) • (f(y ◦ z))), AF (f(y))}
= rmin{AF (f(x ◦ (y ◦ z))), AF (f(y))}
= rmin{f−1(A)F (x ◦ (y ◦ z)), f−1(A)F (y)}, ((3.1))

f−1(λ)T (x ◦ z) = λT (f(x ◦ z)) ((3.2))
= λT (f(x) • f(z))

≤ max{λT (f(x) • (f(y) • f(z))), λT (f(y))} ((2.62))
= max{λT (f(x) • (f(y ◦ z))), λT (f(y))}
= max{λT (f(x ◦ (y ◦ z))), λT (f(y))}
= max{f−1(λ)T (x ◦ (y ◦ z)), f−1(λ)T (y)}, ((3.2))

f−1(λ)I(x ◦ z) = λI(f(x ◦ z)) ((3.2))
= λI(f(x) • f(z))

≥ min{λI(f(x) • (f(y) • f(z))), λI(f(y))} ((2.62))
= min{λI(f(x) • (f(y ◦ z))), λI(f(y))}
= min{λI(f(x ◦ (y ◦ z))), λI(f(y))}
= min{f−1(λ)I(x ◦ (y ◦ z)), f−1(λ)I(y)}, ((3.2))

f−1(λ)F (x ◦ z) = λF (f(x ◦ z)) ((3.2))
= λF (f(x) • f(z))

≤ max{λF (f(x) • (f(y) • f(z))), λF (f(y))} ((2.62))
= max{λF (f(x) • (f(y ◦ z))), λF (f(y))}
= max{λF (f(x ◦ (y ◦ z))), λF (f(y))}
= max{f−1(λ)F (x ◦ (y ◦ z)), f−1(λ)F (y)}. ((3.2))

Hence, f−1(A ) is a neutrosophic cubic UP-ideal of X .
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(5) Assume that A is a neutrosophic cubic strong UP-ideal of Y . Then A is a neutrosophic cubic UP-ideal
of Y . By the proof of (4), we have f−1(A ) satisfies the assertions (2.55) and (2.56). Let x, y, z ∈ X . Then

f−1(A)T (x) = AT (f(x)) ((3.1))
� rmin{AT ((f(z) • f(y)) • (f(z) • f(x))), AT (f(y))} ((2.63))
= rmin{AT (f(z ◦ y) • f(z ◦ x)), AT (f(y))}
= rmin{AT (f((z ◦ y) ◦ (z ◦ x))), AT (f(y))}
= rmin{f−1(A)T ((z ◦ y) ◦ (z ◦ x)), f−1(A)T (y)}, ((3.1))

f−1(A)I(x) = AI(f(x)) ((3.1))
� rmax{AI((f(z) • f(y)) • (f(z) • f(x))), AI(f(y))} ((2.63))
= rmax{AI(f(z ◦ y) • f(z ◦ x)), AI(f(y))}
= rmax{AI(f((z ◦ y) ◦ (z ◦ x))), AI(f(y))}
= rmax{f−1(A)I((z ◦ y) ◦ (z ◦ x)), f−1(A)I(y)}, ((3.1))

f−1(A)F (x) = AF (f(x)) ((3.1))
� rmin{AF ((f(z) • f(y)) • (f(z) • f(x))), AF (f(y))} ((2.63))
= rmin{AF (f(z ◦ y) • f(z ◦ x)), AF (f(y))}
= rmin{AF (f((z ◦ y) ◦ (z ◦ x))), AF (f(y))}
= rmin{f−1(A)F ((z ◦ y) ◦ (z ◦ x)), f−1(A)F (y)}, ((3.1))

f−1(λ)T (x) = λT (f(x)) ((3.2))
≤ max{λT ((f(z) • f(y)) • (f(z) • f(x))), λT (f(y))} ((2.64))
= max{λT (f(z ◦ y) • f(z ◦ x)), λT (f(y))}
= max{λT (f((z ◦ y) ◦ (z ◦ x))), λT (f(y))}
= max{f−1(λ)T ((z ◦ y) ◦ (z ◦ x)), f−1(λ)T (y)}, ((3.2))

f−1(λ)I(x) = λI(f(x)) ((3.2))
≥ min{λI((f(z) • f(y)) • (f(z) • f(x))), λI(f(y))} ((2.64))
= min{λI(f(z ◦ y) • f(z ◦ x)), λI(f(y))}
= min{λI(f((z ◦ y) ◦ (z ◦ x))), λI(f(y))}
= min{f−1(λ)I((z ◦ y) ◦ (z ◦ x)), f−1(λ)I(y)}, ((3.2))

f−1(λ)F (x) = λF (f(x)) ((3.2))
≤ max{λF ((f(z) • f(y)) • (f(z) • f(x))), λF (f(y))} ((2.64))
= max{λF (f(z ◦ y) • f(z ◦ x)), λF (f(y))}
= max{λF (f((z ◦ y) ◦ (z ◦ x))), λF (f(y))}
= max{f−1(λ)F ((z ◦ y) ◦ (z ◦ x)), f−1(λ)F (y)}. ((3.2))

Hence, f−1(A ) is a neutrosophic cubic strong UP-ideal of X .

Definition 3.8. A NCS A = (AT,I,F , λT,I,F ) in X has NCS-property if for any non-empty subset A of X ,
there exist elements αT,I,F , βT,I,F ∈ A (instead of αT , αI , αF , βT , βI , βF ∈ A) such that

AT (αT ) = rsups∈A{AT (s)}, AI(αI) = rinfs∈A{AI(s)}, AF (αF ) = rsups∈A{AF (s)},
λT (βT ) = infs∈A{λT (s)}, λI(βI) = sups∈A{λI(s)}, λF (βF ) = infs∈A{λF (s)}.

Definition 3.9. Let X and Y be any two non-empty sets and let f : X → Y be any function. A NCS
A = (AT,I,F , λT,I,F ) in X is said to be f -invariant if

(for all x, y ∈ X)(f(x) = f(y)⇒ AT,I,F (x) = AT,I,F (y), λT,I,F (x) = λT,I,F (y)). (3.4)

Lemma 3.10. Let (X, ◦, 0X) and (Y, •, 0Y ) be two UP-algebras and let f : X → Y be a UP-epimorphism.
Let A = (AT,I,F , λT,I,F ) be an f -invariant NCS in X with NCS-property. For any x, y ∈ Y , there exist
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elements αT,I,F , γT,I,F ∈ f−1(x) and βT,I,F , φT,I,F ∈ f−1(y) such that

f(A)T (x) = AT (αT ), f(A)I(x) = AI(αI), f(A)F (x) = AF (αF ),

f(λ)T (x) = λT (γT ), f(λ)I(x) = λI(γI), f(λ)F (x) = λF (γF ),

f(A)T (y) = AT (βT ), f(A)I(y) = AI(βI), f(A)F (y) = AF (βF ),

f(λ)T (y) = λT (φT ), f(λ)I(y) = λI(φI), f(λ)F (y) = λF (φF ),

f(A)T (x • y) = AT (αT ◦ βT ), f(A)I(x • y) = AI(αI ◦ βI), f(A)F (x • y) = AF (αF ◦ βF ),

f(λ)T (x • y) = λT (γT ◦ φT ), f(λ)I(x • y) = λI(γI ◦ φI), f(λ)F (x • y) = λF (γF ◦ φF ).

Proof. Let x, y ∈ Y . Since f is surjective, we have f−1(x), f−1(y), and f−1(x ◦ y) are non-empty subsets of
X . Since A has NCS-property, there exist elements αT,I,F , γT,I,F ∈ f−1(x), βT,I,F , φT,I,F ∈ f−1(y), and
aT,I,F , bT,I,F ∈ f−1(x • y) such that

f(A)T (x) = rsups∈f−1(x){AT (s)} = AT (αT ),

f(A)I(x) = rinfs∈f−1(x){AI(s)} = AI(αI),

f(A)F (x) = rsups∈f−1(x){AF (s)} = AF (αF ),

f(λ)T (x) = infs∈f−1(x){λT (s)} = λT (γT ),

f(λ)I(x) = sups∈f−1(x){λI(s)} = λI(γI),

f(λ)F (x) = infs∈f−1(x){λF (s)} = λF (γF ),

f(A)T (y) = rsups∈f−1(y){AT (s)} = AT (βT ),

f(A)I(y) = rinfs∈f−1(y){AI(s)} = AI(βI),

f(A)F (y) = rsups∈f−1(y){AF (s)} = AF (βF ),

f(λ)T (y) = infs∈f−1(y){λT (s)} = λT (φT ),

f(λ)I(y) = sups∈f−1(y){λI(s)} = λI(φI),

f(λ)F (y) = infs∈f−1(y){λF (s)} = λF (φF ),

and

f(A)T (x • y) = rsups∈f−1(x•y){AT (s)} = AT (aT ),

f(A)I(x • y) = rinfs∈f−1(x•y){AI(s)} = AI(aI),

f(A)F (x • y) = rsups∈f−1(x•y){AF (s)} = AF (aF ),

f(λ)T (x • y) = infs∈f−1(x•y){λT (s)} = λT (bT ),

f(λ)I(x • y) = sups∈f−1(x•y){λI(s)} = λI(bI),

f(λ)F (x • y) = infs∈f−1(x•y){λF (s)} = λF (bF ).

Since

f(aT ) = x • y = f(αT ) • f(βT ) = f(αT ◦ βT ),

f(aI) = x • y = f(αI) • f(βI) = f(αI ◦ βI),

f(aF ) = x • y = f(αF ) • f(βF ) = f(αF ◦ βF ),

f(bT ) = x • y = f(γT ) • f(φT ) = f(γT ◦ φT ),

f(bI) = x • y = f(γI) • f(φI) = f(γI ◦ φI),

f(bF ) = x • y = f(γF ) • f(φF ) = f(γF ◦ φF ),

and A is f -invariant, it follows that

f(A)T (x • y) = AT (aT ) = AT (αT ◦ βT ),

f(A)I(x • y) = AI(aI) = AI(αI ◦ βI),

f(A)F (x • y) = AF (aF ) = AF (αF ◦ βF ),

f(λ)T (x • y) = λT (bT ) = λT (γT ◦ φT ),

f(λ)I(x • y) = λI(bI) = λI(γI ◦ φI),

f(λ)F (x • y) = λF (bTF ) = λF (γF ◦ φF ).

The proof is completed.
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Theorem 3.11. Let (X, ◦, 0X) and (Y, •, 0Y ) be two UP-algebras, f : X → Y be a UP-epimorphism, and
A = (AT,I,F , λT,I,F ) be a NCS in X . Then the followings hold:

(1) If A is an f -invariant neutrosophic cubic UP-subalgebra ofX with NCS-property, then the image f(A )
of A under f is a neutrosophic cubic UP-subalgebra of Y .

(2) If A is an f -invariant neutrosophic cubic near UP-filter of X with NCS-property, then the image f(A )
of A under f is a neutrosophic cubic near UP-filter of Y .

(3) If A is an f -invariant neutrosophic cubic UP-filter of X with NCS-property, then the image f(A ) of
A under f is a neutrosophic cubic UP-filter of Y .

(4) If A is an f -invariant neutrosophic cubic UP-ideal of X with NCS-property, then the image f(A ) of
A under f is a neutrosophic cubic UP-ideal of Y .

(5) If A is an f -invariant neutrosophic cubic strong UP-ideal of X with NCS-property, then the image
f(A ) of A under f is a neutrosophic cubic strong UP-ideal of Y .

Proof. (1) Assume that A = (AT,I,F , λT,I,F ) is an f -invariant neutrosophic cubic UP-subalgebra of X with
NCS-property. Let x, y ∈ Y . Since f is surjective, we have f−1(x), f−1(y), and f−1(x • y) are non-empty.
By Lemma 3.10, there exist elements αT,I,F , γT,I,F ∈ f−1(x) and βT,I,F , φT,I,F ∈ f−1(y) such that

f(A)T (x) = AT (αT ), f(A)I(x) = AI(αI), f(A)F (x) = AF (αF ),

f(λ)T (x) = λT (γT ), f(λ)I(x) = λI(γI), f(λ)F (x) = λF (γF ),

f(A)T (y) = AT (βT ), f(A)I(y) = AI(βI), f(A)F (y) = AF (βF ),

f(λ)T (y) = λT (φT ), f(λ)I(y) = λI(φI), f(λ)F (y) = λF (φF ),

f(A)T (x • y) = AT (αT ◦ βT ), f(A)I(x • y) = AI(αI ◦ βI), f(A)F (x • y) = AF (αF ◦ βF ),

f(λ)T (x • y) = λT (γT ◦ φT ), f(λ)I(x • y) = λI(γI ◦ φI), f(λ)F (x • y) = λF (γF ◦ φF ).

Then

f(A)T (x • y) = AT (αT ◦ βT ) � rmin{AT (αT ), AT (βT )} = rmin{f(A)T (x), f(A)T (y)}, ((2.53))
f(A)I(x • y) = AI(αI ◦ βI) � rmax{AI(αI), AI(βI)} = rmax{f(A)I(x), f(A)I(y)}, ((2.53))

f(A)F (x • y) = AF (αF ◦ βF ) � rmin{AF (αF ), AF (βF )} = rmin{f(A)F (x), f(A)F (y)}, ((2.53))
f(λ)T (x • y) = λT (γT ◦ φT ) ≤ max{λT (γT ), λT (φT )} = max{f(λ)T (x), f(λ)T (y)}, ((2.54))
f(λ)I(x • y) = λI(γI ◦ φI) ≥ min{λI(γI), λI(φI)} = min{f(λ)I(x), f(λ)I(y)}, ((2.54))

f(λ)F (x • y) = λF (γF ◦ φF ) ≤ max{λF (γF ), λF (φF )} = max{f(λ)F (x), f(λ)F (y)}. ((2.54))

Hence, f(A ) is a neutrosophic cubic UP-subalgebra of Y .

(2) Assume that A = (AT,I,F , λT,I,F ) is an f -invariant neutrosophic cubic near UP-filter of X with
NCS-property. By Theorem 2.6 (1), we have 0X ∈ f−1(0Y ) and so f−1(0Y ) is non-empty. Thus

f(A)T (0Y ) = rsups∈f−1(0Y ){AT (s)} � AT (0X)

f(A)I(0Y ) = rinfs∈f−1(0Y ){AI(s)} � AI(0X)
f(A)F (0Y ) = rsups∈f−1(0Y ){AF (s)} � AF (0X)

f(λ)T (0Y ) = infs∈f−1(0Y ){λT (s)} ≤ λT (0X)
f(λ)I(0Y ) = sups∈f−1(0Y ){λI(s)} ≥ λI(0X)

f(λ)F (0Y ) = infs∈f−1(0Y ){λF (s)} ≤ λF (0X)

 . (3.5)

Let y ∈ Y . Since f is surjective, we have f−1(y) is non-empty. By (2.55) and (2.56), we have AT (0X) �
AT (s), AI(0X) � AI(s), AF (0X) � AF (s), λT (0X) ≤ λT (s), λI(0X) ≥ λI(s), λF (0X) ≤ λF (s) for all
s ∈ f−1(y). ThenAT (0X) is an upper bound of {AT (s)}s∈f−1(y),AI(0X) is a lower bound of {AI(s)}s∈f−1(y),
AF (0X) is an upper bound of {AF (s)}s∈f−1(y), λT (0X) is a lower bound of {λT (s)}s∈f−1(y), λI(0X) is an
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upper bound of {λI(s)}s∈f−1(y), and λF (0X) is a lower bound of {λF (s)}s∈f−1(y). By (3.5), we have

f(A)T (0Y ) � AT (0X) � rsups∈f−1(y){AT (s)} = f(A)T (y),

f(A)I(0Y ) � AI(0X) � rinfs∈f−1(y){AI(s)} = f(A)I(y),

f(A)F (0Y ) � AF (0X) � rsups∈f−1(y){AF (s)} = f(A)F (y),

f(λ)T (0Y ) ≤ λT (0X) ≤ infs∈f−1(y){λT (s)} = f(λ)T (y),

f(λ)I(0Y ) ≥ λI(0X) ≥ sups∈f−1(y){λI(s)} = f(λ)I(y),

f(λ)F (0Y ) ≤ λF (0X) ≤ infs∈f−1(y){λF (s)} = f(λ)F (y).

Let x, y ∈ Y . By Lemma 3.10, there exist elements αT,I,F , γT,I,F ∈ f−1(x) and βT,I,F , φT,I,F ∈ f−1(y)
such that

f(A)T (x) = AT (αT ), f(A)I(x) = AI(αI), f(A)F (x) = AF (αF ),

f(λ)T (x) = λT (γT ), f(λ)I(x) = λI(γI), f(λ)F (x) = λF (γF ),

f(A)T (y) = AT (βT ), f(A)I(y) = AI(βI), f(A)F (y) = AF (βF ),

f(λ)T (y) = λT (φT ), f(λ)I(y) = λI(φI), f(λ)F (y) = λF (φF ),

f(A)T (x • y) = AT (αT ◦ βT ), f(A)I(x • y) = AI(αI ◦ βI), f(A)F (x • y) = AF (αF ◦ βF ),

f(λ)T (x • y) = λT (γT ◦ φT ), f(λ)I(x • y) = λI(γI ◦ φI), f(λ)F (x • y) = λF (γF ◦ φF ).

Then

f(A)T (x • y) = AT (αT ◦ βT ) � AT (βT ) = f(A)T (y), ((2.57))
f(A)I(x • y) = AT (αI ◦ βI) � AI(βI) = f(A)I(y), ((2.57))

f(A)F (x • y) = AF (αF ◦ βF ) � AF (βF ) = f(A)F (y), ((2.57))
f(λ)T (x • y) = λT (γT ◦ φT ) ≤ λT (φT ) = f(λ)T (y), ((2.58))
f(λ)I(x • y) = λI(γI ◦ φI) ≥ λI(φI) = f(λ)I(y), ((2.58))

f(λ)F (x • y) = λF (γF ◦ φF ) ≤ λF (φF ) = f(λ)F (y). ((2.58))

Hence, f(A ) is a neutrosophic cubic near UP-filter of Y .

(3) Assume that A = (AT,I,F , λT,I,F ) is an f -invariant neutrosophic cubic UP-filter of X with NCS-
property. Then A is a neutrosophic cubic near UP-filter of X . By the proof of (2), we have f(A ) satisfies
the assertions (2.55) and (2.56). Let x, y ∈ Y . By Lemma 3.10, there exist elements αT,I,F , γT,I,F ∈ f−1(x)
and βT,I,F , φT,I,F ∈ f−1(y) such that

f(A)T (x) = AT (αT ), f(A)I(x) = AI(αI), f(A)F (x) = AF (αF ),

f(λ)T (x) = λT (γT ), f(λ)I(x) = λI(γI), f(λ)F (x) = λF (γF ),

f(A)T (y) = AT (βT ), f(A)I(y) = AI(βI), f(A)F (y) = AF (βF ),

f(λ)T (y) = λT (φT ), f(λ)I(y) = λI(φI), f(λ)F (y) = λF (φF ),

f(A)T (x • y) = AT (αT ◦ βT ), f(A)I(x • y) = AI(αI ◦ βI), f(A)F (x • y) = AF (αF ◦ βF ),

f(λ)T (x • y) = λT (γT ◦ φT ), f(λ)I(x • y) = λI(γI ◦ φI), f(λ)F (x • y) = λF (γF ◦ φF ).

Then

f(A)T (y) = AT (βT ) � rmin{AT (αT ◦ βT ), AT (αT )} = rmin{f(A)T (x • y), f(A)T (x)}, ((2.59))
f(A)I(y) = AI(βI) � rmax{AI(αI ◦ βI), AI(αI)} = rmax{f(A)I(x • y), f(A)I(x)}, ((2.59))
f(A)F (y) = AF (βF ) � rmin{AF (αF ◦ βF ), AF (αF )} = rmin{f(A)F (x • y), f(A)F (x)}, ((2.59))
f(λ)T (y) = λT (φT ) ≤ max{λT (γT ◦ φT ), λT (γT )} = max{f(λ)T (x • y), f(λ)T (x)}, ((2.60))
f(λ)I(y) = λI(φI) ≥ min{λI(γI ◦ φI), λI(γI)} = min{f(λ)I(x • y), f(λ)I(x)}, ((2.60))
f(λ)F (y) = λF (φF ) ≤ max{λF (γF ◦ φF ), λF (γF )} = max{f(λ)F (x • y), f(λ)F (x)}. ((2.60))

Hence, f(A ) is a neutrosophic cubic UP-filter of Y .

(4) Assume that A = (AT,I,F , λT,I,F ) is an f -invariant neutrosophic cubic UP-ideal of X with NCS-
property. Then A is a neutrosophic cubic UP-filter of X . By the proof of (3), we have f(A ) satisfies the
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assertions (2.55) and (2.56). Let x, y, z ∈ Y . By Lemma 3.10, there exist elements αT,I,F , γT,I,F ∈ f−1(x),
βT,I,F , φT,I,F ∈ f−1(y) and ψT,I,F , ωT,I,F ∈ f−1(z) such that

f(A)T (y) = AT (βT ), f(A)I(y) = AI(βI), f(A)F (y) = AF (βF ),

f(λ)T (y) = λT (φT ), f(λ)I(y) = λI(φI), f(λ)F (y) = λF (φF ),

f(A)T (x • z) = AT (αT ◦ ψT ), f(A)I(x • z) = AI(αI ◦ ψI), f(A)F (x • z) = AF (αF ◦ ψF ),

f(λ)T (x • z) = λT (γT ◦ ωT ), f(λ)I(x • z) = λI(γI ◦ ωI), f(λ)F (x • z) = λF (γF ◦ ωF ),

f(A)T (x • (y • z)) = AT (αT ◦ (βT ◦ ψT )),

f(A)I(x • (y • z)) = AI(αI ◦ (βI ◦ ψI)),

f(A)F (x • (y • z)) = AF (αF ◦ (βF ◦ ψF )),

f(λ)T (x • (y • z)) = λT (γT ◦ (φT ◦ ωT )),

f(λ)I(x • (y • z)) = λI(γI ◦ (φI ◦ ωI)),

f(λ)F (x • (y • z)) = λF (γF ◦ (φF ◦ ωF )).

Then

f(A)T (x • z) = AT (αT ◦ ψT )

� rmin{AT (αT ◦ (βT ◦ ψT )), AT (βT )} ((2.61))
= rmin{f(A)T (x • (y • z)), f(A)T (y)},

f(A)I(x • z) = AI(αI ◦ ψI)

� rmax{AI(αI ◦ (βI ◦ ψI)), AI(βI)} ((2.61))
= rmax{f(A)I(x • (y • z)), f(A)I(y)},

f(A)F (x • z) = AF (αF ◦ ψF )

� rmin{AF (αF ◦ (βF ◦ ψF )), AF (βF )} ((2.61))
= rmin{f(A)F (x • (y • z)), f(A)F (y)},

f(λ)T (x • z) = λT (γT ◦ ωT )

≤ max{λT (γT ◦ (φT ◦ ωT )), λT (φT )} ((2.62))
= max{f(λ)T (x • (y • z)), f(λ)T (y)},

f(λ)I(x • z) = λI(γI ◦ ωI)

≥ min{λI(γI ◦ (φI ◦ ωI)), λI(φI)} ((2.62))
= min{f(λ)I(x • (y • z)), f(λ)I(y)},

f(λ)F (x • z) = λF (γF ◦ ωF )

≤ max{λF (γF ◦ (φF ◦ ωF )), λF (φF )} ((2.62))
= max{f(λ)F (x • (y • z)), f(λ)F (y)}.

Hence, f(A ) is a neutrosophic cubic UP-ideal of Y .

(5) Assume that A = (AT,I,F , λT,I,F ) is an f -invariant neutrosophic cubic strong UP-ideal of X with
NCS-property. Then A is a neutrosophic cubic UP-ideal ofX . By the proof of (4), we have f(A ) satisfies the
assertions (2.55) and (2.56). Let x, y, z ∈ Y . By Lemma 3.10, there exist elements αT,I,F , γT,I,F ∈ f−1(x),
βT,I,F , φT,I,F ∈ f−1(y) and ψT,I,F , ωT,I,F ∈ f−1(z) such that

f(A)T (x) = AT (αT ), f(A)I(x) = AI(αI), f(A)F (x) = AF (αF ),

f(λ)T (x) = λT (γT ), f(λ)I(x) = λI(γI), f(λ)F (x) = λF (γF ),

f(A)T (y) = AT (βT ), f(A)I(y) = AI(βI), f(A)F (y) = AF (βF ),

f(λ)T (y) = λT (φT ), f(λ)I(y) = λI(φI), f(λ)F (y) = λF (φF ),

f(A)T ((z • y) • (z • x)) = AT ((ψT ◦ βT ) ◦ (ψT ◦ αT )),

f(A)I((z • y) • (z • x)) = AI((ψI ◦ βI) ◦ (ψI ◦ αI)),

f(A)F ((z • y) • (z • x)) = AF ((ψF ◦ βF ) ◦ (ψF ◦ αF )),

f(λ)T ((z • y) • (z • x)) = λT ((ωT ◦ φT ) ◦ (ωT ◦ γT )),

f(λ)I((z • y) • (z • x)) = λI((ωI ◦ φI) ◦ (ωI ◦ γI)),

f(λ)F ((z • y) • (z • x)) = λF ((ωF ◦ φF ) ◦ (ωF ◦ γF )).
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Then

f(A)T (x) = AT (αT ) � rmin{AT ((ψT ◦ βT ) ◦ (ψT ◦ αT )), AT (βT )} ((2.63))
= rmin{f(A)T ((z • y) • (z • x)), f(A)T (y)},

f(A)I(x) = AI(αI) � rmax{AI((ψI ◦ βI) ◦ (ψI ◦ αI)), AI(βI)} ((2.63))
= rmax{f(A)I((z • y) • (z • x)), f(A)I(y)},

f(A)F (x) = AF (αF ) � rmin{AF ((ψF ◦ βF ) ◦ (ψF ◦ αF )), AF (βF )} ((2.63))
= rmin{f(A)F ((z • y) • (z • x)), f(A)F (y)},

f(λ)T (x) = λT (γT ) ≤ max{λT ((ωT ◦ φT ) ◦ (ωT ◦ γT )), λT (φT )} ((2.64))
= max{f(λ)T ((z • y) • (z • x)), f(λ)T (y)},

f(λ)I(x) = λI(γI) ≥ min{λI((ωI ◦ φI) ◦ (ωI ◦ γI)), λI(φI)} ((2.64))
= min{f(λ)I((z • y) • (z • x)), f(λ)I(y)},

f(λ)F (x) = λF (γF ) ≤ max{λF ((ωF ◦ φF ) ◦ (ωF ◦ γF )), λF (φF )} ((2.64))
= max{f(λ)F ((z • y) • (z • x)), f(λ)F (y)}.

Hence, f(A ) is a neutrosophic cubic strong UP-ideal of Y .

4 Conclusions and future work
In this paper, we have studied the image and inverse image of a neutrosophic cubic UP-subalgebra (resp.,
neutrosophic cubic near UP-filter, neutrosophic cubic UP-filter, neutrosophic cubic UP-ideal, neutrosophic
cubic strong UP-ideal) of a UP-algebra under some UP-homomorphisms. The results of the study, in the case
of inverse image, we noticed that only a neutrosophic cubic near UP-filter required order preserving condition.
In the case of image, we noticed that all concepts of NCSs required f -invariant and NCS-property assertions
and UP-epimorphism.

In our future study, we will apply this concept/results to other types of NCSs in a UP-algebra. Also, we will
study the P-intersection, P-union, R-intersection, R-union of neutrosophic cubic UP-subalgebras, neutrosophic
cubic near UP-filters, neutrosophic cubic UP-filters, neutrosophic cubic UP-ideals, and neutrosophic cubic
strong UP-ideals of a UP-algebra.
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Abstract
In this paper, we find a relationship between SVNS and neutrosophic ℵ-structures and study it. Moreover,
we apply our results to algebraic structures (hyperstructures) and prove that the results on neutrosophic ℵ-
substructure (subhyperstructure) of a given algebraic structure (hyperstructure) can be deduced from single
valued neutrosophic algebraic structure (hyperstructure) and vice versa.
Keywords: Neutrosophic ℵ-structures, SVNS, (α, β, γ)-level set, neutrosophic ℵ-ideals, neutrosophic ℵ-
substructures (subhypertsructures)

1 Introduction
Neutrosophy,19 a new branch of science that deals with indeterminacy, was launched by Smarandache in
1998. The theory of neutrosophy considers every notion or idea < A > together with its opposite or nega-
tion < antiA > and with their spectrum of neutralities < neutA > in between them (i.e. notions or ideas
supporting neither < A > nor < antiA >). The < neutA > and < antiA > ideas together are referred
to as < nonA >. Smarandach20 defined neutrosophic sets as a generalization of the fuzzy sets introduced by
Zadeh22 in 1965 and as a generalization of intuitionistic fuzzy sets introduced by Atanassov8 in 1986. Fuzzy
sets allow gradual membership of an element in a set by assigning each element a degree of membership
between 0 and 1 that are both inclusive. Whereas intutionistic fuzzy sets allow gradual membership as well
as gradual non-membership of an element in a set by assigning each element a degree of membership and a
degree of non-membership in a way that their sum is a real number in the unit interval [0, 1]. Single valued
neutrosophic sets (SVNS)24 generalize these two concepts so that each element has a truth value, indetermi-
nacy value, and a falsity value and each of these values is a number in the unit interval [0, 1]. Sometimes
we have negative information. As an example, “The rate increase in a certain bank depends on employees’
performance. It increases by 3% annually if the employee’s performance is outstanding (convincing many
business women/men to invest their money in the bank), by 2% annually if the employee’s performance is
very good, by 1% annually if the employee’s performance is good, and no increase if the employee’s per-
formance is average. Let’s say that Sam convinces annually around twenty business women/men to invest
their money in the bank, so he got the 3% annual increase as a result of his excellent job. And there is an
employee “Bella” who comes always late to her work, leaves early, complains about the bank in public and as
a result, she leads to the loss of some possible investors in the bank. So, in this case Bella is making the bank
loses and as a result she does not deserve an annual increase but instead she should be given a decrease in her
salary.” In order to deal with such negative information, we need negative functions. So, by means of negative
functions, neutrosophic ℵ-structures were introduced.14, 15 They are similar to SVNS where each element has
a truth value, indeterminacy value, and a falsity value but each of these values is a number in the interval
[−1, 0], i.e., the truth, indeterminacy, and the falsity functions are negative-valued functions. Neutrosophy has
many applications in different fields of Science. Many researchers3,5,7,14,17,21 worked on the connection be-
tween neutrosophy and algebraic structures (hyperstructures). More precisely, the connection between SVNS
and algebraic structures (hypertsructures) and the connection between neutrosophic ℵ-structures and algebraic
structures (hypertsructures) grabbed the attention of algebraist researchers. For example, Al-Tahan5 studied
single valued neutrosophic polygroups, Khan et al.15 discussed neutrosophic ℵ-subsemigroups, Park studied
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neutrosophic ideals of subtraction algebras, and Al-Tahan and Davvaz7 studied neutrosophic ℵ-ideals of sub-
traction algebras.

A question arises here:

“Is there a certain relationship between SVNS and neutrosophic ℵ-structures?”

Another question arises now:

“What would be the effect of such a relationship between SVNS and neutrosophic ℵ-structures on the
study of both: single valued neutrosophic algebraic structures (hypertsructures) and neutrosophic

ℵ-substructures (subhypertsructures)?”

This article answers the above two questions and it is constructed as follows: after an Introduction, in Section 2,
we find a relationship between SVNS and neutrosophic ℵ-structures. In Section 3, we discuss the effect of such
a relationship between SVNS and neutrosophic ℵ-structures on the study of both: single valued neutrosophic
algebraic structures (hypertsructures) and neutrosophic ℵ-substructures (subhypertsructures) and we deal with
some examples of algebraic structures (hypertsructures).

2 Relationship between SVNS and neutrosophic ℵ-structures
In this section, we find a relationship between SVNS and neutrosophic ℵ-structures and study it. Moreover,
we illustrate our results by some examples.

Definition 2.1. 24 Let X be a space of points (objects), with a generic element in X denoted by x. A single
valued neutrosophic set (SVNS)A onX is characterized by truth-membership TA, indeterminacy-membership
function IA and falsity-membership function FA. For each point x ∈ X , TA(x), IA(x), FA(x) ∈ [0, 1].

Definition 2.2. 14, 15 Let X be a non-empty set. A neutrosophic ℵ-structure over X is defined as follows:

SN = { x

(TN (x), IN (x), FN (x))
: x ∈ X}

where TN , IN , FN are ℵ-functions on X (i.e. functions on X with codomain [−1, 0]) which are called the
negative truth membership function, the negative indeterminacy membership function and the negative falsity
membership function, respectively, on X .

Definition 2.3. Let X be a non-empty set, α, β, γ ∈ [0, 1], and A a SVNS over X . Then the (α, β, γ)-level
set of A is defined as follows:

L(α,β,γ) = {x ∈ X : TA(x) ≥ α, IA(x) ≥ β, FA(x) ≤ γ}.

Definition 2.4. LetX be a non-empty set, α, β, γ ∈ [−1, 0], and SN a neutrosophic ℵ-structure overX . Then
the (α, β, γ)-level set of SN is defined as follows:

L(α,β,γ) = {x ∈ X : TN (x) ≤ α, IN (x) ≥ β, FN (x) ≤ γ}.

Definition 2.5. 24 Let X be a non-empty set and A,B be single valued neutrosophic sets over X defined as
follows.

A = { x

(TA(x), IA(x), FA(x))
: x ∈ X}, B = { x

(TB(x), IB(x), FB(x))
: x ∈ X}

Then

• A is called a single valued neutrosophic subset of B and denoted as A ⊆ B if TA(x) ≤ TB(x),
IA(x) ≤ IB(x), and FA(x) ≥ FB(x) for all x ∈ X .
If A ⊆ B and B ⊆ A then A = B.

• The union of A and B is defined to be the SVNS over X:

A ∪B = { x

(TA∪B(x), IA∪B(x), FA∪B(x))
: x ∈ X}.

Where TA∪B(x) = TA(x) ∨ TB(x), IA∪B(x) = IA(x) ∨ IB(x), and FA∪B(x) = FA(x) ∧ FB(x) for
all x ∈ X .
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• The intersection of A and B is defined to be the SVNS over X:

SA∩B = { x

(TA∩B(x), IA∩B(x), FA∩B(x))
: x ∈ X}.

Where TA∩B(x) = TA(x) ∧ TB(x), IA∩B(x) = IA(x) ∧ IB(x), and FA∩B(x) = FA(x) ∨ FB(x) for
all x ∈ X .

Definition 2.6. 15 Let X be a non-empty set and SN , SM be neutrosophic ℵ-structures over X defined as
follows.

SN = { x

(TN (x), IN (x), FN (x))
: x ∈ X}, SM = { x

(TM (x), IM (x), FM (x))
: x ∈ X}

Then

• SN is called a neutrosophic ℵ-substructure of SM and denoted as SN ⊆ SM if TN (x) ≥ TM (x),
IN (x) ≤ IM (x), and FN (x) ≥ FM (x) for all x ∈ X .
If SN ⊆ SM and SM ⊆ SN then SN = SM .

• The union of SN and SM is defined to be the ℵ-structure over X:

SN∪M = { x

(TN∪M (x), IN∪M (x), FN∪M (x))
: x ∈ X}.

Where TN∪M (x) = TN (x) ∧ TM (x), IN∪M (x) = IN (x) ∨ IM (x), and FN∪M (x) = FN (x) ∧ FM (x)
for all x ∈ X .

• The intersection of SN and SM is defined to be the ℵ-structure over X:

SN∩M = { x

(TN∩M (x), IN∩M (x), FN∩M (x))
: x ∈ X}.

Where TN∩M (x) = TN (x) ∨ TM (x), IN∩M (x) = IN (x) ∧ IM (x), and FN∩M (x) = FN (x) ∨ FM (x)
for all x ∈ X .

Fore more details about operations on SVNS and operations on neutrosophic ℵ-structures, we refer to the
papers.14, 15, 24

Proposition 2.7. Let X be a non-empty set, A,SN be defined as follows:

A = { x

(TA(x), IA(x), FA(x))
: x ∈ X}, SN = { x

(−TA(x), IA(x)− 1, FA(x)− 1)
: x ∈ X}.

Then A is a SVNS over X if and only if SN is a neutrosophic ℵ-structure of X .

Proof. Let A be a SVNS of X . Then for every x ∈ X , 0 ≤ TA(x), IA(x), FA(x) ≤ 1. The latter implies that
−1 ≤ −TA(x), IA(x)− 1, FA(x)− 1 ≤ 0. Thus, SN is a neutrosophic ℵ-structure of X . Similarly, if SN is
a neutrosophic ℵ-structure of X then A is a SVNS of X .

Example 2.8. Let X = {0, 1, 2} and A = { 0
(0.1,0.9,0.3) ,

1
(0.7,0.3,0.5) ,

2
(0.8,0.5,0.3)} be a SVNS over X . Then

SN = { 0
(−0.1,−0.1,−0.7) ,

1
(−0.7,−0.7,−0.5) ,

2
(−0.8,−0.5,−0.7)} is a neutrosophic ℵ-structure of X .

Theorem 2.9. Let A be a SVNS of X and 0 ≤ α, β, γ ≤ 1. Then Lα,β,γ = L−α,β−1,γ−1.

Proof. We have Lα,β,γ = {x ∈ X : TA(x) ≥ α, IA(x) ≥ β, FA(x) ≤ γ} and L−α,β−1,γ−1 = {x ∈ X :
TN (x) ≤ −α, IN (x) ≥ β − 1, FN (x) ≤ γ − 1}. Having TA(x) ≥ α, IA(x) ≥ β, and FA(x) ≤ γ equivalent
to TN (x) = −TA(x) ≤ −α, IN (x) = IA(x) − 1 ≥ β − 1, and FN (x) = FA(x) − 1 ≤ γ − 1 respectively
implies that Lα,β,γ = L−α,β−1,γ−1.

Proposition 2.10. Let X be a non-empty set, SN , A be defined as follows:

SN = { x

(TN (x), IN (x), FN (x))
: x ∈ X}, A = { x

(−TN (x), IN (x) + 1, FN (x) + 1)
: x ∈ X}.

Then A is a SVNS of X if and only if SN is a neutrosophic ℵ-structure of X .
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Proof. Let A be a SVNS of X . Then for every x ∈ X , 0 ≤ −TN (x), IN (x) + 1, FN (x) + 1 ≤ 1. The latter
implies that −1 ≤ TN (x), IN (x), FN (x) ≤ 0. Thus, SN is a neutrosophic ℵ-structure of X . Similarly, if SN
is a neutrosophic ℵ-structure of X then A is a SVNS of X .

Example 2.11. Let X = {0, 1, 2} and SN = { 0
(−0.1,−0.9,−0.3) ,

1
(−0.7,−0.3,−0.5) ,

2
(0,−1,−0.3)} be a neutro-

sophic ℵ-structure over X . Then A = { 0
(0.1,0.1,0.7) ,

1
(0.7,0.7,0.5) ,

2
(0,0,0.7)} a SVNS over X .

Theorem 2.12. Let A be a SVNS of X and −1 ≤ α, β, γ ≤ 0. Then L−α,1+β,1+γ = Lα,β,γ

Proof. The proof is similar to that of Theorem 2.9.

3 Applications to algebraic structures (hyperstructures)
In this section, we apply the relationship we found in Section 2 between SVNS and neutrosophic ℵ-structures
on some algebraic structure (hypertsructures) and we present our main theorems in Subsection 3.4.

3.1 Applications to semigroups
In,15 Khan et al. discussed neutrosophic ℵ-structures and applied it to semigroups. In this subsection, we
deduce some of their results by applying the relationship that we found in Section 2 between SVNS and
neutrosophic ℵ-structures.

A semigroup is a groupoid that satisfies the associative axiom. For example, the set of positive integers under
standard addition, the set of negative integers under standard addition, the set of integers modulo a positive
integer n under standard multiplication modulo n are semigroups.

Definition 3.1. Let (X, ◦) be a semigroup and A a SVNS over X . Then A is single valued neutrosophic
semigroup over X if for all x, y ∈ X , the following conditions hold:

• TA(x ◦ y) ≥ TA(x) ∧ TA(y);

• IA(x ◦ y) ≥ IA(x) ∧ IA(y);

• FA(x ◦ y) ≤ FA(x) ∨ FA(y).

Definition 3.2. 15 Let (X, ◦) be a semigroup and SN a neutrosophic ℵ-structure over X . Then SN is neutro-
sophic ℵ-subsemigroup of X if for all x, y ∈ X , the following conditions hold:

• TN (x ◦ y) ≤ TN (x) ∨ TN (y);

• IN (x ◦ y) ≥ IN (x) ∧ IN (y);

• FN (x ◦ y) ≤ FN (x) ∨ FN (y).

Remark 3.3. Let a, b be any real numbers. Then

• 1 + (a ∧ b) = (1 + a) ∧ (1 + b);

• 1 + (a ∨ b) = (1 + a) ∨ (1 + b);

• if c = a ∧ b then −c = (−a) ∨ (−b);

• if d = a ∨ b then −d = (−a) ∧ (−b).

Theorem 3.4. Let (X, ◦) be a semigroup and SN a neutrosophic ℵ-structure overX . Then SN is neutrosophic
ℵ-subsemigroup of X if and only if A is a single valued neutrosophic semigroup over X . Here,

SN = { x

(TN (x), IN (x), FN (x))
: x ∈ X}, A = { x

(−TN (x), IN (x) + 1, FN (x) + 1)
: x ∈ X}.

Proof. Let A be a single valued neutrosophic semigroup over X and x, y ∈ X . Then −TN (x ◦ y) ≥
(−TN (x)) ∧ (−TN (y)), 1 + IN (x ◦ y) ≥ (1 + IN (x)) ∧ (1 + IN (y)), and 1 + FN (x ◦ y) ≤ (1 + FN (x)) ∨
(1 + FN (y)). The latter implies that TN (x ◦ y) ≤ TN (x) ∨ TN (y), IN (x ◦ y) ≥ IN (x) ∧ IN (y), and
FN (x ◦ y) ≤ FN (x) ∨ FN (y). Thus, SN is neutrosophic ℵ-subsemigroup of X . Similarly, we can prove that
if SN is neutrosophic ℵ-subsemigroup of X then A is a single valued neutrosophic semigroup over X .
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Theorem 3.5. Let (X, ◦) be a semigroup and A a SVNS over X . Then A is a single valued neutrosophic
semigroup overX if and only if L(α,β,γ) is either the empty set or a subsemigroup ofX for all 0 ≤ α, β, γ ≤ 1.

Proof. The proof is similar to that of Theorem 5.1.5

Theorem 3.6. Let (X, ◦) be a semigroup and A a SVNS over X . Then A is single valued neutrosophic
semigroup overX if and only if L(α,β,γ) is either the empty set or a subsemigroup ofX for all−1 ≤ α, β, γ ≤
0.

Proof. Let −1 ≤ α, β, γ ≤ 0. Then there exist 0 ≤ α′, β′, γ′ ≤ 1 such that α′ = −α, β′ = β + 1, and
γ′ = γ+1. Theorem 3.5 asserts that L(α′,β′,γ′) is either the empty set or a subsemigroup of X . The latter and
Theorem 2.12 imply that L(α,β,γ) = L(α′,β′,γ′) is either the empty set or a subsemigroup of X .

Let 0 ≤ α′, β′, γ′ ≤ 1. Then there exist−1 ≤ α, β, γ ≤ 0 such that α′ = −α, β′ = β+1, and γ′ = γ+1.
But having L(α,β,γ) is either the empty set or a subsemigroup of X and that L(α′,β′,γ′) = L(α,β,γ) imply that
L(α′,β′,γ′) is either the empty set or a subsemigroup of X for all 0 ≤ α′, β′, γ′ ≤ 1. Thus, A is single valued
neutrosophic semigroup over X by Theorem 3.5.

Theorem 3.7. Let (X, ◦) be a semigroup and SN a neutrosophic ℵ-structure over X where,

SN = { x

(TN (x), IN (x), FN (x))
: x ∈ X}, A = { x

(−TN (x), IN (x) + 1, FN (x) + 1)
: x ∈ X}.

Then the following statements are equivalent.

1. SN is a neutrosophic ℵ-subsemigroup of X;

2. A is a single valued neutrosophic semigroup over X;

3. L(α,β,γ) is either the empty set or a subsemigroup of X for all −1 ≤ α, β, γ ≤ 0;

4. L(α,β,γ) is either the empty set or a subsemigroup of X for all 0 ≤ α, β, γ ≤ 1.

Proof. The proof follows from Theorem 3.4. Theorem 3.5, and Theorem 3.6.

Example 3.8. Let (Z+,+) be the semigroup of positive integers under standard addition. Let

(TN (x), IN (x), FN (x)) =

{
(−0.6,−0.4,−0.7) if x is a multiple of 2;
(−0.5,−0.5,−0.6) otherwise.

Then SN = { x
(TN (x),IN (x),FN (x)) : x ∈ Z+} is a neutrosophic ℵ-subsemigroup of Z+ asA = { x

(TA(x),IA(x),FA(x)) :

x ∈ Z+} is a single valued neutrosophic semigroup over Z+. Where

(TA(x), IA(x), FA(x)) =

{
(0.6, 0.6, 0.3) if x is a multiple of 2;
(0.5, 0.5, 0.4) otherwise.

3.2 Applications to polygroups
In,5 Al-Tahan defined single valued neutrosophic polygroups and studied their properties. In this subsection,
we use the result in5 with the relationship we found in Section 2 between SVNS and neutrosophic ℵ-structures
to prove some results on neutrosophic ℵ-subpolygroups.
Algebraic hyperstructures represent a natural generalization of classical algebraic structures and they were
introduced by Marty16 in 1934 at the eighth Congress of Scandinavian Mathematicians. Where he generalized
the notion of a group to that of a hypergroup. He defined a hypergroup as a set equipped with associative
and reproductive hyperoperation. In a group, the composition of two elements is an element whereas in a
hypergroup, the composition of two elements is a set. Many researchers worked on hypertsructure theory and
its applications. We refer to.1, 2, 10, 12 A certain subclasses of hypergroups were introduced such as polygroups.
The latter were introduced by Comer,9 where he emphasized their importance in connections to graphs, re-
lations, Boolean and cylindric algebras. For more details about polygroups and their applications, we refer
to.4, 6, 11

Definition 3.9. 11 Let P be a non-empty set. Then, a mapping ◦ : P × P → P∗(P ) is called a binary
hyperoperation on P , where P∗(P ) is the family of all non-empty subsets of P . The couple (P, ◦) is called a
hypergroupoid.
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In the above definition, if A and B are two non-empty subsets of P and x ∈ P , then we define:

A ◦B =
⋃
a∈A
b∈B

a ◦ b, x ◦A = {x} ◦A and A ◦ x = A ◦ {x}.

Definition 3.10. 9 A polygroup is a system < P, ◦, e,−1>, where e ∈ P , −1 : P → P is a unitary operation
on P , “◦“ maps P × P into the non-empty subsets of P , and the following axioms hold for all x, y, z ∈ P :

1. (x ◦ y) ◦ z = x ◦ (y ◦ z),

2. e ◦ x = x ◦ e = {x},

3. x ∈ y ◦ z implies y ∈ x ◦ z−1 and z ∈ y−1 ◦ x.

Let (P, ◦) be a polygroup and K ⊆ P . Then (K, ◦) is a subpolygroup of (P, ◦) if for all a, b ∈ K, we have
that a ◦ b ⊆ K and a−1 ∈ K.

Example 3.11. Let P = {e, a, b} and define the polygroup (P1, ◦1) by Table 1.

Table 1: The polygroup (P1, ◦1)

◦1 e a b
e e a b
a a {e,b} {a,b}
b b {a,b} {e,a}

Definition 3.12. 5 Let (P, ◦) be a polygroup and A a SVNS over X . Then A is single valued neutrosophic
polygroup of P if for all x, y ∈ P , the following conditions hold:

• TA(x ◦ y) ≥ TA(x) ∧ TA(y);

• IA(x ◦ y) ≥ IA(x) ∧ IA(y);

• FA(x ◦ y) ≤ FA(x) ∨ FA(y);

• TA(x−1) ≥ TA(x), IA(x−1) ≥ IA(x), FA(x−1) ≤ FA(x).

Definition 3.13. Let (P, ◦) be a polygroup and SN a neutrosophic ℵ-structure over P . Then SN is neutro-
sophic ℵ-subpolygroup of P if for all x, y ∈ P , the following conditions hold:

• TN (x ◦ y) ≤ TN (x) ∨ TN (y);

• IN (x ◦ y) ≥ IN (x) ∧ IN (y);

• FN (x ◦ y) ≤ FN (x) ∨ FN (y);

• TN (x−1) ≤ TN (x), IN (x−1) ≥ IN (x), FN (x−1) ≤ FN (x).

Theorem 3.14. Let (P, ◦) be a polygroup and SN a neutrosophic ℵ-structure over P . Then SN is neutrosophic
ℵ-subpolygroup of P if and only if A is a single valued neutrosophic polygroup over X . Here,

SN = { x

(TN (x), IN (x), FN (x))
: x ∈ P}, A = { x

(−TN (x), IN (x) + 1, FN (x) + 1)
: x ∈ P}.

Proof. Let A be a single valued neutrosophic polygroup over P and x, y ∈ P . Then −TN (x ◦ y) ≥
(−TN (x)) ∧ (−TN (y)), 1 + IN (x ◦ y) ≥ (1 + IN (x)) ∧ (1 + IN (y)), and 1 + FN (x ◦ y) ≤ (1 + FN (x)) ∨
(1 + FN (y)). The latter implies that TN (x ◦ y) ≤ TN (x) ∨ TN (y), IN (x ◦ y) ≥ IN (x) ∧ IN (y), and
FN (x ◦ y) ≤ FN (x) ∨ FN (y). Moreover, having −TN (x−1) ≥ −TN (x), IN (x−1) − 1 ≥ IN (x) − 1,
FN (x−1) − 1 ≤ FN (x) − 1 implies that TN (x−1) ≤ TN (x), IN (x−1) ≥ IN (x), FN (x−1) ≤ FN (x).Thus,
SN is neutrosophic ℵ-subpolygroup of P . Similarly, we can prove that if SN is neutrosophic ℵ-subpolygroup
of P then A is a single valued neutrosophic polygroup over P .

Theorem 3.15. 5 Let (P, ◦) be a polygroup and A a SVNS over P . Then A is single valued neutrosophic
polygroup overX if and only if L(α,β,γ) is either the empty set or a subpolygroup of P for all 0 ≤ α, β, γ ≤ 1.
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Theorem 3.16. Let (P, ◦) be a polygroup and A a SVNS over X . Then A is single valued neutrosophic
polygroup over X if and only if L(α,β,γ) is either the empty set or a subpolygroup of P for all −1 ≤ α, β, γ ≤
0.

Proof. The proof is similar to the proof of Theorem 3.6.

Theorem 3.17. Let (P, ◦) be a polygroup and SN a neutrosophic ℵ-structure over P where,

SN = { x

(TN (x), IN (x), FN (x))
: x ∈ P}, A = { x

(−TN (x), IN (x) + 1, FN (x) + 1)
: x ∈ P}.

Then the following statements are equivalent.

1. SN is a neutrosophic ℵ-subpolygroup of P ;

2. A is a single valued neutrosophic polygroup over P ;

3. L(α,β,γ) is either the empty set or a subpolygroup of X for all −1 ≤ α, β, γ ≤ 0;

4. L(α,β,γ) is either the empty set or a subpolygroup of X for all 0 ≤ α, β, γ ≤ 1.

Proof. The proof follows from Theorem 3.4, Theorem 3.14, and Theorem 3.15.

Example 3.18. Let (P1, ◦1) be the polygroup defined in Example 3.11. Then

SN = { e

(−0.7,−0.4,−0.9)
,

a

(−0.6,−0.6,−0.8)
,

b

(−0.6,−0.6,−0.8)
}

is a neutrosophic ℵ-subpolygroup of P1 as A = { e
(0.7,0.6,0.1) ,

a
(0.6,0.4,0.2) ,

b
(0.6,0.4,0.2)} is a single valued

neutrosophic polygroup over P1.

Remark 3.19. Theorem 3.17 implies that the results known for single valued neutrosophic polygroups in5

hold also for neutrosophic ℵ-subpolygroups.

3.3 Applications to subtraction algebras
Park in,17 Al-Tahan and Davvaz in7 defined neutrosophic ideals and ℵ-ideals of subtraction algebras respec-
tively and studied their properties. In this subsection, we use the results in17 with the relationship we found in
Section 2 between SVNS and neutrosophic ℵ-structures to some results on neutrosophic ℵ-ideals of subtrac-
tion algebras that were proved in.7

Subtraction algebra was introduced by Shein in 199218 and some results about it can be found in.13, 23

Definition 3.20. 23 An algebra (X,−) is called a subtraction algebra if the single binary operation “-” satisfies
the following identities: for any x, y, z ∈ X ,

1. x− (y − x) = x;

2. x− (x− y) = y − (y − x);

3. (x− y)− z = (x− z)− y.

Definition 3.21. 13 A non-empty subset I of a subtraction algebra X is called an ideal of X if it satisfies the
following conditions.

1. a− x ∈ Ifor all a ∈ I and x ∈ X;

2. for all a, b ∈ I , whenever a ∨ b exists in X then a ∨ b ∈ I .

Example 3.22. Let X1 = {0, 1, 2} and define the subtraction algebra (X1,−1) by Table 2.

Definition 3.23. 17 Let (X,−) be a subtraction algebra and A a SVNS over X . Then A is single valued
neutrosophic ideal of X if for all x, y ∈ X , the following conditions hold:

• TA(x− y) ≥ TA(x);

• IA(x− y) ≥ IA(x);
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Table 2: The subtraction algebra (X1,−1)

−1 0 1 2
0 0 0 0
1 1 0 1
2 2 2 0

• FA(x− y) ≤ FA(x);

• if x ∨ y exists in X then TA(x ∨ y) ≥ TA(x) ∧ TA(y), IA(x ∨ y) ≥ IA(x) ∧ IA(y), and FA(x ∨ y) ≤
FA(x) ∨ FA(y).

Definition 3.24. 7 Let (X, ◦) be a subtraction algebra and SN a neutrosophic ℵ-structure over X . Then SN is
neutrosophic ℵ-ideal of X if for all x, y ∈ X , the following conditions hold:

• TN (x− y) ≤ TN (x);

• IN (x− y) ≥ IN (x);

• FN (x− y) ≤ FN (x);

• if x∨ y exists in X then TN (x∨ y) ≤ TN (x)∨ TN (y), IN (x∨ y) ≥ IN (x)∧ IN (y), and FN (x∨ y) ≤
FN (x) ∨ FN (y).

Theorem 3.25. Let (X,−) be a subtraction algebra and SN a neutrosophic ℵ-structure over X . Then SN is
neutrosophic ℵ-ideal of X if and only if A is a neutrosophic ideal of X . Here,

SN = { x

(TN (x), IN (x), FN (x))
: x ∈ X}, A = { x

(−TN (x), IN (x) + 1, FN (x) + 1)
: x ∈ X}.

Proof. The proof is similar to the proof of Theorem 3.14.

Theorem 3.26. 17 Let (X, ◦) be a subtraction algebra and A a SVNS over X . Then SN is neutrosophic ideal
of X if L(α,β,γ) is either the empty set of ideal of X for all 0 ≤ α, β, γ ≤ 1.

Theorem 3.27. Let (X,−) be a subtraction algebra and A a SVNS over X . Then A is neutrosophic ideal of
X if and only if L(α,β,γ) is either the empty set or an ideal of X for all −1 ≤ α, β, γ ≤ 0.

Proof. The proof is similar to the proof of Theorem 3.6.

Theorem 3.28. Let (X,−) be a subtraction algebra and SN a neutrosophic ℵ-structure over X where,

SN = { x

(TN (x), IN (x), FN (x))
: x ∈ X}, A = { x

(−TN (x), IN (x) + 1, FN (x) + 1)
: x ∈ X}.

. Then the following statements are equivalent.

1. SN is a neutrosophic ℵ-subpolygroup of P ;

2. A is a single valued neutrosophic polygroup over P ;

3. L(α,β,γ) is either the empty set or a subpolygroup of X for all −1 ≤ α, β, γ ≤ 0;

4. L(α,β,γ) is either the empty set or a subpolygroup of X for all 0 ≤ α, β, γ ≤ 1.

Proof. The proof follows from Theorem 3.25, Theorem 3.26, and Theorem 3.27.

The authors proved in7 the following theorem which can be deduced from Theorem 3.28.

Theorem 3.29. 7 Let (X,−) be a subtraction algebra and SN a neutrosophic ℵ-structure overX . Then SN is
neutrosophic ℵ-ideal of X if and only if L(α,β,γ) is either the empty set of ideal of X for all −1 ≤ α, β, γ ≤ 0.

Example 3.30. Let (X1,−1) be the subtraction algebra defined in Example 3.22. Then

SN = { 0

(−0.7,−0.4,−0.9)
,

1

(−0.7,−0.4,−0.9)
,

2

(−0.6,−0.6,−0.8)
}

is a neutrosophic ℵ-ideal of X1 as A = { 0
(0.7,0.6,0.1) ,

1
(0.7,0.6,0.1) ,

2
(0.6,0.4,0.2)} is a neutrosophic ideal of X1.
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3.4 Generalization to any algebraic structure (hyperstructure)
We can deduce from the work presented in the previous subsections that neutrosophic substructures (subhyper-
structures) and neutrosophic ℵ-substructures (subhyperstructures) are connected. The following two theorems
generalize our work.

Theorem 3.31. Let X be any algebraic structure (hyperstructure) and SN a neutrosophic ℵ-structure over
X . Then SN is neutrosophic ℵ-substructure (subhyperstructure) of X if and only if A is a single valued
neutrosophic algebraic structure (hyperstructure) over X . Here,

SN = { x

(TN (x), IN (x), FN (x))
: x ∈ X}, A = { x

(−TN (x), IN (x) + 1, FN (x) + 1)
: x ∈ X}.

Theorem 3.32. Let X be any algebraic structure (hyperstructure) and SN a neutrosophic ℵ-structure over X
where,

SN = { x

(TN (x), IN (x), FN (x))
: x ∈ X}, A = { x

(−TN (x), IN (x) + 1, FN (x) + 1)
: x ∈ X}.

Then the following statements are equivalent.

1. SN is a neutrosophic ℵ-substructure (subhyperstructure) of X;

2. A is a single valued neutrosophic algebraic structure (hyperstructure) over P ;

3. L(α,β,γ) is either the empty set or a substructure (subhyperstructure) of X for all −1 ≤ α, β, γ ≤ 0;

4. L(α,β,γ) is either the empty set or a substructure (subhyperstructure) of X for all 0 ≤ α, β, γ ≤ 1.

Remark 3.33. Theorem 3.32 implies that if some results are known for single valued algebraic structures
(hyperstructures) such as single valued neutrosophic groups, rings, hypergroups, hyperrings, etc., then these
results hold also for neutrosophic ℵ-substructures (subhyperstructures) of these algebraic structures (hyper-
structures).

4 Conclusion and discussion
SVNS and neutrosophic ℵ-structures grabbed the attention of neutrosophic researchers. In this paper, we
found a relationship between the two concepts. And we used this relation to prove that there is a connection
between neutrosophic substructures (subhyperstructures) and neutrosophic ℵ-substructures (subhyperstruc-
tures). Moreover, we presented examples on this connection by dealing with specific algebraic substructures
(subhyperstructures) such as semigroups, polygroups, and subtraction algebras. As a result, we were able to
deduce that by defining a new single valued neutrosophic structures (hyperstructures) over a given algebraic
structure (hyperstructure) and working on it, we can immediately define neutrosophic ℵ-substructures (sub-
hyperstructures) of the same algebraic structure (hyperstructure) and the results that we get for SVNS will be
applicable for neutrosophic ℵ-structures.
For future work, it will be interesting to find more applications on SVNS and to project the relationship between
SVNS and neutrosophic ℵ-structures we found in this paper on the new applications.
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