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Aim and Scope 

International Journal of Neutrosophic Science (IJNS) is a peer-review journal publishing high quality 

experimental and theoretical research in all areas of Neutrosophic and its Applications. IJNS is 

published quarterly. IJNS is devoted to the publication of peer-reviewed original research papers lying in 

the domain of neutrosophic sets and systems. Papers submitted for possible publication may concern with 

foundations, neutrosophic logic and mathematical structures in the neutrosophic setting. Besides providing 

emphasis on topics like artificial intelligence, pattern recognition, image processing, robotics, decision 

making, data analysis, data mining, applications of neutrosophic mathematical theories contributing to 

economics, finance, management, industries,  electronics, and communications are promoted. Variants of 

neutrosophic sets including refined neutrosophic set (RNS). Articles evolving algorithms making 

computational work handy are welcome. 

Topics of Interest 

IJNS promotes research and reflects the most recent advances of neutrosophic Sciences in diverse 

disciplines, with emphasis on the following aspects, but certainly not limited to: 

�  Neutrosophic sets                                              �  Neutrosophic algebra 

�  Neutrosophic topolog                                        �  Neutrosophic graphs 

�  Neutrosophic probabilities                                �  Neutrosophic tools for decision making 

�  Neutrosophic theory for machine learning       �  Neutrosophic statistics 

�  Neutrosophic numerical measures                    �  Classical neutrosophic numbers 

�  A neutrosophic hypothesis                                �  The neutrosophic level of significance 

�  The neutrosophic confidence interval               �  The neutrosophic central limit theorem 

�  Neutrosophic theory in bioinformatics  

�and medical analytics                                            �  Neutrosophic tools for big data analytics 

�  Neutrosophic tools for deep learning                �  Neutrosophic tools for data visualization 

�  Quadripartitioned single-valued  

�neutrosophic sets                                               �  Refined single-valued neutrosophic sets 
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�  Applications of neutrosophic logic in image processing  

�  Neutrosophic logic for feature learning, classification, regression, and clustering 

�  Neutrosophic knowledge retrieval of medical images 

�  Neutrosophic set theory for large-scale image and multimedia processing 

�  Neutrosophic set theory for brain-machine interfaces and medical signal analysis 

�  Applications of neutrosophic theory in large-scale healthcare data  

�  Neutrosophic set-based multimodal sensor data 

�  Neutrosophic set-based array processing and analysis 

�  Wireless sensor networks Neutrosophic set-based Crowd-sourcing 

�  Neutrosophic set-based heterogeneous data mining  

�  Neutrosophic in Virtual Reality 

�  Neutrosophic and Plithogenic theories in Humanities and Social Sciences 

�  Neutrosophic and Plithogenic theories in decision making 

�  Neutrosophic in Astronomy and Space Sciences 
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Abstract  

In this paper, the concepts of Neutro-��-algebra and Anti-��-algebra are introduced, and some related properties 

and four theorems are investigated. We show that the classes of Neutro-��-algebra and Anti-��-algebras are 

alternatives of the class of ��-algebras. 

Keywords: ��-algebra; Neutro-sophication; Neutro-��-algebra; Anti-sophication; Anti-��-algebra. 
 

1. Introduction  

Neutrosophy, introduced by F. Smarandache in 1998, is a new branch of philosophy that generalized the 

dialectics and took into consideration not only the dynamics of opposites, but the dynamics of opposites and their 

neutrals [8]. Neutrosophic Logic / Set / Probability / Statistics / Measure / Algebraic Structures etc. are all based on 

it. One of the most striking trends in the neutrosophic theory is the hybridization of neutrosophic set with other 

potential sets such as rough set, bipolar set, soft set, vague set, etc. The different hybrid structures such as rough 

neutrosophic set, single valued neutrosophic rough set, bipolar neutrosophic set, single valued neutrosophic vague set, 

etc. are proposed in the literature in a short period of time. Neutrosophic set has been a very important tool in all 

various areas of data mining, decision making, e-learning, engineering, computer science, graph theory, medical 

diagnosis, probability theory, topology, social science, etc [9-13].  

A classical Algebra may be transformed into a NeutroAlgebra by a process called neutro-sophication, and into 

an AntiAlgebra by a process called anti-sophication. 

In [2], H.S. Kim et al. introduced the notion of a ��-algebra as a generalization of a ���-algebra. S.S. Ahn et 

al. introduced the notion of ideals in ��-algebras, and they stated and proved several properties of such ideals [1]. A. 

Borumand Saeid et al defined some filters in ��-algebras and investigated relation between them [3]. A. Rezaei et al. 

investigated the relationship between Hilbert algebras and ��-algebras and showed that commutative self-distributive 

��-algebras and Hilbert algebras are equivalent [4]. In this paper, the concepts of a Neutro-��-algebra and Anti-��-

algebra are introduced, and some related properties are investigated. We show that the class of Neutro-��-algebra is 

an alternative of the class of ��-algebras. 
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2.  NeutroLaw, NeutroOperation, NeutroAxiom, and NeutroAlgebra 

In this section, we review the basic definitions and some elementary aspects that are necessary for this 

paper. 

The Neutrosophy’s Triplet is (<A>, <neutroA>, <antiA>), where <A> may be an item (concept, idea, 

proposition, theory, structure, algebra, etc.), <antiA> the opposite of <A>, while <neutroA> {also the 

notation <neutA> was employed before} the neutral between these opposites. Based on the above triplet 

the following Neutrosophic Principle one has: a law of composition defined on a given set may be true (�) 

for some set elements, indeterminate (�) for other set’s elements, and false (�) for the remainder of the set’s 

elements; we call it NeutroLaw. A law of composition defined on a given sets, such that the law is false (�) 

for all set’s elements is called AntiLaw. Similarly, an operation defined on a given set may be well-defined 

for some set elements, indeterminate for other set’s elements, and undefined for the remainder of the set’s 

elements; we call it NeutroOperation. While, an operation defined on a given set that is undefined for all 

set’s elements is called AntiOperation. 

In classical algebraic structures, the laws of compositions or operations defined on a given set are 

automatically well-defined [i.e. true (�) for all set’s elements], but this is idealistic. Consequently, an axiom 

(let’s say Commutativity, or Associativity, etc.) defined on a given set, may be true (�) for some set’s 

elements, indeterminate (�) for other set’s elements, and false (�) for the remainder of the set’s elements; 

we call it NeutroAxiom. In classical algebraic structures, similarly an axiom defined on a given set is 

automatically true (�) for all set’s elements, but this is idealistic too. A NeutroAlgebra is a set endowed 

with some NeutroLaw (NeutroOperation) or some NeutroAxiom. The NeutroLaw, NeutroOperation, 

NeutroAxiom, NeutroAlgebra and respectively AntiLaw, AntiOperation, AntiAxiom and AntiAlgebra 

were introduced by Smarandache in 2019 [6] and afterwards he recalled, improved and extended them in 

2020 [7]. Recently, the concept of a Neutrosophic Triplet of ��-algebra was defined [5]. 

3. Neutro-��-algebras, Anti-��-Algebras 

Definition 3.1. (Definition of classical ��-algebras [1]) 

An algebra (�,∗, 0) of type (2, 0) (i.e. � is a nonempty set, ∗ is a binary operation and 0 is a constant 

element of �) is said to be a ��-algebra if:  

(�) The law ∗ is well-defined, i.e. (∀�, � ∈ �)(� ∗ � ∊ �). 

And the following axioms are totally true on �: 

(��1)	(∀� ∈ �)(� ∗ � = 0),	

(��2)	(∀� ∈ �)(0 ∗ � = �),	

(��3)	(∀� ∈ �)(� ∗ 0 = 0),	

(��4)	(∀�, �, � ∈ �, ���ℎ	� ≠ �)(� ∗ (� ∗ �) = � ∗ (� ∗ �)).	

Example 3.2.  

( i )  Let ℕ be the set of all natural numbers and ∗ be the binary operation on ℕ defined by 

� ∗ � = �
�														��	� = 1;
1														��	� ≠ 1.

 

Then (ℕ,∗, 1) is a BE-algebra. 
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(ii) Let ℕ� = ℕ⋃{0} and let ∗ be the binary operation on ℕ� defined by 

� ∗ � = �
0																					��	� ≥ �;

� − �													��ℎ������.
 

Then (ℕ�,∗ ,0) is a BE-algebra. 

Definition 3.3. (Neutro-sophications) 

The Neutro-sophication of the Law	 (degree	 of	 well-defined,	 degree	 of	 indeterminacy,	 degree	 of	 outer-

defined)	

(NL)	(∃�, � ∈ �)(� ∗ � ∊ �)	and	(∃�, � ∈ �)(� ∗ � = 	�������������	or	� ∗ �	∉ �),	

The Neutro-sophication of the Axioms	(degree	of	truth,	degree	of	indeterminacy,	degree	of	falsehood)	

(���1)	(∃� ∈ �)(� ∗ � = 0)	and	(∃� ∈ �)(� ∗ �	=	indeterminate		or	� ∗ �	≠ 0),	

(���2)	(∃� ∈ �)(0 ∗ � = �)	and	(∃� ∈ �)(0 ∗ �=	indeterminate		or	0 ∗ �	≠ �),	

(���3)	(∃� ∈ �)(� ∗ 0 = 0)	and	(∃� ∈ �)(� ∗ 0 = 	�������������	or	� ∗ 0 ≠ 0),	

(���4)	(∃�, �, � ∈ �, ���ℎ	� ≠ �)(� ∗ (� ∗ �) = � ∗ (� ∗ �))	and	

(∃�, �, � ∈ �, ���ℎ	� ≠ �)�� ∗ (� ∗ �) = �������������		or	� ∗ (� ∗ �) ≠ � ∗ (� ∗ �)�.	

Definition 3.4. (Anti-sophications) 

The Anti-sophication of the Law	(totally	outer-defined)		

(AL)	(∀�, � ∈ �)(� ∗ � ∉ �).		

The Anti-sophication of the Axioms	(totally	false)	

(���1)	(∀� ∈ �)(� ∗ � ≠ 0),	

(���2)	(∀� ∈ �)(0 ∗ � ≠ �),	

(���3)	(∀� ∈ �)(� ∗ 0 ≠ 0),	

(���4)	(∀�, �, � ∈ �, with	� ≠ �)(� ∗ (� ∗ �) ≠ � ∗ (� ∗ �)).		

Definition 3.5. (Neutro-��-algebras) 

A	 Neutro-��-algebra	 is	 an	 alternative	 of	 ��-algebra	 that	 has	 at	 least	 a	 (��)	 or	 at	 least	 one	 (����),	 �	 ∈
{1, 2, 3, 4},	with	no	anti-law	and	no	anti-axiom.	

Example 3.6.  

(i)	Let	ℕ	be	the	set	of	all	natural	numbers	and	∗	be	the	Neutro-sophication	of	the	Law	∗	on	ℕ	from	Example	2.2.	
(i)	defined	by	

� ∗ � = �

� ��	� = 1;
1

2
										��	� ∈ {3,5,7}

1 				��ℎ������.

;	
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Then	(ℕ,∗, 1)	is	a	Neutro-BE-algebra.	Since	

(NL)	if	� ∈ {3,5,7},	then	� ∗ � =
�

�
∉ ℕ,	for	all	� ∈ ℕ,	while	if	� ∉ {3,5,7}	and	� ∈ ℕ,	then	� ∗ � ∈ {1, �} ⊆ ℕ,	for	

all	� ∈ ℕ.	

(NBE1)	1 ∗ 1 = 1 ∈ ℕ	and	3 ∗ 3 =
�

�
∉ ℕ,	

(BE2)	holds	always	since	1 ∗ � = �,	for	all	� ∈ ℕ.	

(NBE3)	5 ∗ 1 =
�

�
≠ 1	and	if	� ∉ {3,5,7},	then	� ∗ 1 = 1,	

(NBE4)	5 ∗ (3 ∗ 4) = 5 ∗
�

�
=? (�������������)	and	3 ∗ (5 ∗ 4) = 3 ∗

�

�
=	? (�������������)		

Also,	2 ∗ (3 ∗ 4) = 2 ∗
�

�
=		? (�������������),	but	3 ∗ (2 ∗ 4) = 3 ∗ 1 =

�

�
.	

Further,	4 ∗ (8 ∗ 2) = 4 ∗ 1 = 1 = 8 ∗ (4 ∗ 2).	

(ii)	Let	�	be	a	nonempty	set	and	�(�)	be	the	power	set	of	�.	Then	(�(�),∩, ∅)	is	a	Neutro-��-algebra.	

∩	is	the	binary	set	intersection	operation,	but	

(NBE1)	is	valid,	since	∅ ∩ ∅ = ∅	and	for	all	∅ ≠ � ∈ �(�),	� ∩ � = � ≠ ∅.	

(NBE2)	∅ ∩ ∅ = ∅	and	if	∅ ≠ �,	then	∅ ∩ � = ∅ ≠ �,	

(BE3)	holds,	since	� ∩ ∅ = ∅,	

(BE4)	holds,	since	� ∩ (� ∩ �) = � ∩ (� ∩ �).	

(iii)	Similarly,	(�(�),∪, ∅),	(�(�),∩, �),	(�(�),∪, �),	where	 ∪	is	the	binary	set	union	operation,	are	Neutro-��-
algebras.	

(iv)	Let	� ∶= 	 {0, �, �, �, �}	be	a	set	with	the	following	table.	

Table	1	

*	 0	 a	 b	 c	 d	

0	 c	 a	 b	 c	 a	

a	 b	 0	 b	 c	 d	

b	 0	 a	 0	 c	 c	

c	 ?	 0	 b	 0	 b	

d	 0	 0	 0	 0	 ?	

	

Then	(�,∗, 0)	is	a	Neutro-��-algebra.	

(NL)	� ∗ 0 =? (�������������),	and	� ∗ � =	? (�������������),	and	for	all	�, � ∈ {0, �, �},	then	� ∗ � ∈ �.	

(NBE1)	� ∗ � = 0	and	0 ∗ 0 = � ≠ 0	or	� ∗ � =? (�������������).	
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(NBE2)	holds	since	0 ∗ � = �,	and	0 ∗ � = � ≠ �.	

(NBE3)	� ∗ 0 =? (�������������) 	 ≠ 0	and	if	� ∈ {�, �},	then	� ∗ 0 = 0,	

(NBE4)	� ∗ (� ∗ �) = � ∗ � = 0 ≠ � ∗ (� ∗ �) = � ∗ 0 =? (�������������)	and	

� ∗ (� ∗ �) = � ∗ � = � = � ∗ (� ∗ �).	

(v)	Let	�	be	a	nonempty	set	and	�(�)	be	the	power	set	of	�.	Then	(�(�), −, ∅)	is	an	Anti-��-algebra,	where	−	
is	the	binary	operation	of	set	subtraction,	because:	

(BE1)	is	valid,	since	� − � = ∅,	

(NBE2)	holds,	since	∅ − � = ∅ ≠ �	and	∅ − ∅ = ∅,	

(NBE3)	holds,	since	� − ∅ = � ≠ ∅	and	∅ − ∅ = ∅		

(ABE4)	is	valid,	since	for	A	≠	B,	one	has	� − (� − �) ≠ � − (� − �),	because:	

x	∊	� − (� − �)	means	(x	∊	A	and	x	∉	B-C),	or	{x	∊	A	and	(x	∉	B	or	x	∊	C)	},	or	{(x	∊	A	and	x	∉	B)	or	(x	∊	A	and	x	
∊	C)};	while	x	∊	� − (� − �)	means	{(x	∊	B	and	x	∉	A)	or	(x	∊	B	and	x	∊	C)}.	

(vi)	Let	ℝ	be	the	set	of	all	real	numbers	and	∗	be	a	binary	operation	on	ℝ	defined	by	� ∗ � = |� − �|.	Then	(ℝ,∗
,0)	is	a	Neutro-��-algebra.	

(BE1)	holds,	since	� ∗ � = |� − �| = 0,	for	all	� ∈ ℝ.	

(NBE2)	is	valid,	since	if	� ≥ 0,	then	� ∗ 0 = |� − 0| = |�| = �,	and	if	� < 0,	then	� ∗ 0 = |� − 0| = |�| = −� ≠
�.	

(NBE3)	is	valid,	since	if	� ≠ 0,	then	0 ∗ � = |0 − �| = |−�| ≠ 0,	and	if	� = 0,	then	0 ∗ 0 = 0.	

(NBE4)	holds,	if	x	=	2,	y	=	3,	z	=	4	we	get	|2-|3-4||	=	|2	–	1|	=	1	and	|3-|2-4||	=	|3-2|	=	1;		

while	for	x	=	4,	y	=8,	z	=3	we	get	|4	-|8-3||	=	|4-5|	=	1	and	|8-|4-3||	=	|8-1|	=	7	≠	1.	

Theorem 3.7. 

The	total	number	of	Neutro-��-algebras	is	31.	

Proof.	

The	classical	BE-algebra	has:	1	classical	Law	and	4	classical	Axioms:	

1	+	4	=	5	classical	mathematical	propositions.	

Let	��
�	mean	combinations	of	n	elements	taken	by	m,	where	n,	m	are	positive	integers,	n	≥ m	≥	0.	

We	 transform	 (neutro-sophicate)	 the	 classical	 ��-algebra,	 by	 neutro-sophicating	 some	 of	 the	 5	 classical	
mathematical	propositions,	while	the	others	remain	classical	(unchanged)	mathematical	propositions:	

either	only	1	of	the	5	classical	mathematical	propositions	(hence	we	have	��
�	=	5	possibilities)	–	so	4	classical	

mathematical	propositions	remain	unchanged,	

or	only	2	of	the	5	classical	mathematical	propositions	(hence	we	have	��
�	=	10	possibilities)	–	so	3	classical	

mathematical	propositions	remain	unchanged,	
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or	only	3	of	the	5	classical	mathematical	propositions	(hence	we	have	��
�	=	10	possibilities)	–	so	2	classical	

mathematical	propositions	remain	unchanged,	

or	only	4	 of	 the	5	classical	mathematical	 propositions	(hence	 we	have	��
�	=	 5	 possibilities)	 –	 so	1	classical	

mathematical	proposition	remainsnchanged,	

or	all	5	of	the	5	classical	mathematical	propositions	(hence	we	have	��
�	=	1	possibilities).	

Whence	the	total	number	of	possibilities	will	be:	

��
� + ��

� + ��
� + ��

� + ��
� = (1 + 1)� − ��

� = 2� − 1 = 31.	

Definition 3.8. (Anti-��-algebras) 

An	 Anti-��-algebra	 is	 an	 alternative	 of	 ��-algebra	 that	 has	 at	 least	 an	 (��)	 or	 at	 least	 one	 (����), �	 ∈
{1, 2, 3, 4}.	

Example 3.9. 

(i)	Let	ℕ	be	the	natural	number	set	and	�: = ℕ ∪ {0}.	Define	a	binary	operation	∗	on	�	by	� ∗� � = �� + �� + 1.	
Then	(�,∗, 0)	is	not	a	��-algebra,	nor	a	Neutro-��-algebra,	but	an	Anti-��-algebra.			

Since	� ∗� � = �� + �� + 1 ≠ 0,	for	all	� ∈ �,	and	so	(���1)	holds.		

For	all	� ∈ ℕ,	we	have	� ∗ 0 = �� + 1 ≠ 0,	so	(���2)	is	valid.	By	a	similar	argument	(���3)	is	valid.		

Since	for	� ≠ �,	one	has	� ∗� (� ∗� �) = �� + (�� + �� + 1)� + 1 ≠ � ∗� (� ∗� �) = �� + (�� + �� + 1)� + 1,	

thus	(���4)	is	valid.	

(ii)	Let	 �	 be	a	nonempty	set	and	 �(�)	be	the	power	set	of	�.	Define	the	binary	operation	∆	(i.e.	symmetric	
difference)	 by	 �∆� = (�⋃�) − (� ∩ �)	 for	 every	 �, � ∈ �(�).	 Then	 (�(�), ∆, �)	 is	 not	 a	 ��-algebra,	 nor	
Neutro-��-algebra,	but	it	is	an	Anti-��-algebra.		

Since	�∆� = ∅ ≠ �	for	every	� ∈ �(�)	we	get	(���1)	holds,	and	so	(��1)	and	(���1)	are	not	valid.		

Also,	for	all	�, �, � ∈ �(�)	one	has	�∆(�∆�) = �∆(�∆�).	Thus,	(��4)	is	valid.	

Since	there	is	at	least	one	anti-axiom	(ABE1),	then	(�(�), ∆, �)	is	an	Anti-��-algebra.	

(iii)	Let	� = {0, �, �, �, �}	be	a	universe	of	discourse,	and	a	subset	� = {0, �},	and	the	below	binary	well-defined	
Law	*	with	the	following	Cayley	table.	

Table	2	

*	 0	 c	
0	 c	 0	
c	 c	 c	

	

Then	(�,∗ ,0)	is	an	Anti-��-algebra,	since	(ABE1)	is	valid,	because:	0*0	=	c	≠	0	and	c*c	=	c	≠	0,	and	it	is	suf�icient	
to	have	a	single	anti-axiom.			

Theorem 3.10. 

The	total	number	of	Anti-��-algebras	is	211.	
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Proof.	

The	classical	��-algebra	has:	1	classical	Law	and	4	classical	Axioms:	

1	+	4	=	5	classical	mathematical	propositions.	

Let	��
�	mean	combinations	of	n	elements	taken	by	m,	where	n,	m	are	positive	integers,	n	≥ m	≥	0.	

We	 transform	 (anti-sophicate)	 the	 classical	 ��-algebra,	 by	 anti-sophicating	 some	 of	 the	 5	 classical	
mathematical	 propositions,	 while	 the	 others	 remain	 classical	 (unchanged)	 or	 neutro-mathematical	
propositions:	

either	 only	 1	 of	 the	 5	 classical	 mathematical	 propositions	 (hence	 we	 have	��
�	 =	 5	 subpossibilities)	 –	 so	 4	

classical	 mathematical	 propositions	 remain	 some	 unchanged	 others	 neutro-sophicated	 or	 24	 =	 16	
subpossibilities;	hence	total	number	of	possibilities	in	this	case	is:	5∙16	=	80;	

or	 2	 of	 the	 5	 classical	 mathematical	 propositions	 (hence	 we	 have	��
�	 =	 10	 subpossibilities)	 –	 so	 3	 classical	

mathematical	propositions	remain	some	unchanged	other	neutro-sophicated	or	23	=	8	subpossibilities;	hence	
total	number	of	possibilities	in	this	case	is:	10∙8	=	80;	

or	 3	 of	 the	 5	 classical	 mathematical	 propositions	 (hence	 we	 have	��
�	 =	 10	 subpossibilities)	 –	 so	 2	 classical	

mathematical	propositions	remain	some	unchanged	other	neutro-sophicated	or	22	=	4	subpossibilities;	hence	
total	number	of	possibilities	in	this	case	is:	10∙4	=	40;	

or	 4	 of	 the	 5	 classical	 mathematical	 propositions	 (hence	 we	 have	��
�	 =	 5	 subpossibilities)	 –	 so	 1	 classical	

mathematical	propositions	remain	either	unchanged	other	neutro-sophicated	or	21	=	2	subpossibilities;	hence	
total	number	of	possibilities	in	this	case	is:	5∙2	=	10;	

or	all	5	of	the	5	classical	mathematical	propositions	(hence	we	have	��
�	=	1	subpossibility)	–	so	no	classical	

mathematical	propositions	remain.	

Hence,	the	total	number	of	Anti-��-algebras	is:	

��
�. 2��� + ��

�. 2��� + ��
�. 2��� + ��

�. 2��� + ��
�. 2��� = 5 ∙ 16 + 10 ∙ 8 + 10 ∙ 4 + 5 ∙ 2 + 1 ∙ 1 = 211.	

Theorem	3.11.	

As	a	particular	case,	for	��-algebras,	we	have:		

1	(classical)	��-algebra	+	31	Neutro-��-algebras	+	211	Anti-��-algebras	= 	243	 = 	
53 algebras.	

Where,	31	=	25	–	1,	and	211	=	35	-	25.	

Proof. 

It results from the previous Theorem 3.10 and 3.11. 

Theorem 3.12. 

Let	�	be	a	nonempty	finite	or	infinite	universe	of	discourse,	and	�	a	nonempty	finite	or	infinite	subset	of	�.	A	
classical	Algebra	is	defined	on	�.	

In	general,	for	a	given	classical	Algebra,	having	�	operations	(laws)	and	axioms	altogether,	for	integer	�	 ≥ 	1,	

there	are	 3n total	number	of	Algebra	/	NeutroAlgebras	/	AntiAlgebras	as	below:	

1	(classical)	Algebra,		( 2 1n  )	Neutro-Algebras,	and	( 3 2n n )	Anti-Algebras.	
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The	finite	or	infinite	cardinal	of	set	the	classical	algebra	is	defined	upon,	does	not	 influence	the	numbers	of	
Neutro-��-algebras	and	Anti-��-algebras.	

Proof.	

It	is	similar	to	Theorem	3.11,	and	based	on	Theorems	3.10	and	3.11.	

Where	5	(total	number	of	classical	laws	and	axioms	altogether)	is	extended/replaced	by	�.	

5. Conclusion. 

We have studied and presented the neutrosophic triplet (��-algebra, Neutro-��-algebra, Anti-��-algebra) 

together with many examples, several properties and four theorems. 
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Abstract
The objective of this paper is to examine NeutroAlgebras and AntiAlgebras viz-a-viz the classical number
systems.
Keywords: NeutroAlgebra, AntiAlgebra, NeutroAlgebraic Structure, AntiAlgebraic Structure.

1 Introduction
The notions of NeutroAlgebra and AntiAlgebra were recently introduced by Florentin Smarandache.1 Smaran-
dache in2 revisited the notions of NeutroAlgebra and AntiAlgebra and in3 he studied Partial Algebra, Universal
Algebra, Effect Algebra and Boole’s Partial Algebra and showed that NeutroAlgebra is a generalization of Par-
tial Algebra. In the present Short Communication, we are going to examine NeutroAlgebras and AntiAlgebras
viz-a-viz the classical number systems. For more details about NeutroAlgebras, AntiAlgebras, NeutroAlge-
braic Structures and AntiAlgebraic Structures, the readers should see.1–3

Let U be a universe of discourse and let X be a nonempty subset of U . Suppose that A is an item (con-
cept, attribute, idea, proposition, theory, algebra, structure etc.) defined on the set X . By neutrosophication
approach, X can be split into three regions namely: < A > the region formed by the sets of all elements
where < A > is true with the degree of truth (T), < antiA > the region formed by the sets of all ele-
ments where < A > is false with the degree of falsity (F) and < neutA > the region formed by the sets
of all elements where < A > is indeterminate (neither true nor false) with the degree of indeterminacy (I).
It should be noted that depending on the application, < A >, < antiA > and < neutA > may or may
not be disjoint but they are exhaustive that is; their union is X . If A represents Function, Operation, Axiom,
Algebra etc, then we can have the corresponding triplets < Function,NeutroFunction,AntiFunction >,
< Operation,NeutroOperation,AntiOperation >, < Axiom,NeutroAxiom,
AntiAxiom > and < Algebra,NeutroAlgebra,AntiAlgebra > etc.

Definition 1.1. 1

(i) A NeutroAlgebra X is an algebra which has at least one NeutroOperation or one NeutroAxiom that is;
axiom that is true for some elements, indeterminate for other elements, and, false for other elements.

(ii) An AntiAlgebra X is an algebra endowed with a law of composition such that the law is false for all the
elements of X .

Definition 1.2. 1 Let X and Y be nonempty subsets of a universe of discourse U and let f : X → Y be a
function. Let x ∈ X be an element. We define the following with respect to f(x) the image of x:

(i) Inner-defined or Well-defined: This corresponds to f(x) ∈ Y (True)(T). In this case, f is called a Total
Inner-Function which corresponds to the Classical Function.

(ii) Outer-defined: This corresponds to f(x) ∈ U − Y (Falsehood) (F). In this case, f is called a Total
Outer-Function or AntiFunction.

(iii) Indeterminacy: This corresponds to f(x) = indeterminacy (Indeterminate) (I); that is, the value f(x)
does exist, but we do not know it exactly. In this case, f is called a Total Indeterminate Function.
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2 Subject Matter
In what follows, we will consider the classical number systems N,Z,Q,R,C of natural, integer, rational,
real and complex numbers respectively and noting that N ⊆ Z ⊆ Q ⊆ R ⊆ C. Let +,−,×,÷ be the
usual binary operations of addition, subtraction, multiplication and division of numbers respectively. Using
elementary approach, we will examine whether or not the abstract systems (N, ∗), (Z, ∗), (Q, ∗), (R, ∗), (C, ∗)
are NeutroAlgebras or and AntiAlgebras where ∗ = +,−,×,÷.

(1) Let X = N.

(i) It is clear that (X,+) and (X,×) are neither NeutroAlgebras nor AntiAlgebras.

(ii) For some x, y ∈ X , x − y ∈ X (True) (Inner) or x − y 6∈ X (False) (Outer). However, for
all x, y ∈ X with x ≤ y, x − y 6∈ X (False) (Outer) and for all x, y ∈ X with x > y, we
have x − y ∈ X (True) (Inner). This shows that − is a NeutroOperation over X and ∴ (X,−)
is a NeutroGroupoid. The operation − is not commutative for all x ∈ X . This shows that − is
AntiCommutative over X . We claim that − is NeuroAssociative over X .

Proof. For x > y, z = 0, we have x − (y − z) = (x − y) − z, or x − y + 0 = x − y − 0 > 0
(degree of Truth) (T). However, for x > y, z 6= 0, we have x− (y − z) 6= (x− y)− z (degree of
Falsehood) (F). For x < y, c = 0, we have x− y + 0 = x− y − 0 < 0 (degree of Indeterminacy)
(I). This shows that − is NeutroAssociative and ∴ (X,−) is a NeutroSemigroup.

(iii) For all x ∈ X , x ÷ 1 ∈ X (True) (Inner). For some x, y ∈ X , x ÷ y 6∈ X (False) (Outer).
However, if x is a multiple of y including 1, then x ÷ y ∈ X (True) (Inner). This shows that
÷ is a NeutroOperation and therefore, (X,÷) is a NeutroGroupoid. It can be shown that ÷ is
NeutroAssociative over X and therefore, (X,÷) is a NeutroSemigroup.

The equation ax = b is not solvable for some a, b ∈ X . However, if b is a multiple of a including 1,
then the equation is solvable and the solution is called a NeutroSolution. Also, the equation acx2+bd =
(ad+ bc)x is not solvable for some a, b, c, d ∈ X . However, if b is a multiple of a including 1 and c is a
multiple of d including 1, the equation is solvable and the solutions are called NeutroSolutions.

Let ◦ be a binary operation defined for all x, y ∈ X by

x ◦ y =

 0 if x = y
−α if x < y
−β if x > y

where α, β ∈ N such that α ≤ β. It is clear that ◦ is an AntiOperation on X and ∴ (X, ◦) is an
AntiAlgebra.

(2) Let X = Z.

(i) (X,+) and (X,×) are neither NeutroAlgebras nor AntiAlgebras.

(ii) For all x, y, z ∈ X such that x, y = 0, 1, we have x − y = y − x = 0 ∈ X (True), otherwise
for other elements, the result is False (Outer) so that − is NeutroCommutative over X . However,if
x, y, z = 0, then x−(y−z) = (x−y)−z = 0 ∈ X (True), otherwise for other elements, the result
is False and consequently,− is NeutroAssociative overX and hence (X,−) is a NeutroSemigroup.

(iii) For all x ∈ X , x ÷ ±1 ∈ X (True) (Inner). For all x ∈ X , x ÷ 0 = indeterminate (Indetermi-
nacy). For some x, y ∈ X , x ÷ y 6∈ X (False) (Outer) however, if x is a multiple of y including
±1, then x÷ y ∈ X (True) (Inner). This shows that ÷ is a NeutroOperation over X and ∴ (X,÷)
is a NeutroGroupoid. It can also be shown that (X,÷) is a NeutroSemigroup.
The equation ax = b is not solvable for some a, b ∈ X . If a = 0, the solution is indeterminate
(Indeterminacy). However, if b is a multiple of a including ±1, then the equation is solvable and
the solution is called a NeutroSolution. Also, the equation acx2 + (ad − bc)x − bd = 0 is not
solvable for some a, b, c, d ∈ X . However, if b is a multiple of a including ±1 and c is a multiple
of d including ±1, the equation is solvable and the solutions are called NeutroSolutions.

For all x, y ∈ X , let ◦ be a binary operation defined by x ◦ y = ln(xy). If x, y = 0, we have x ◦ y =
indeterminate (Indeterminacy) (I). If x > 0, y < 0, we have x ◦ y = indeterminate (Indeterminacy)
(I). If x > 0, y > 0, we have x ◦ y = False (F) except when x = y = 1. These show that ◦ is a
NeutroOperation over X and ∴ (X◦) is a NeutroAlgebra.
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Let ◦ be a binary operation defined for all x, y ∈ X by

x ◦ y =

{
−1/2 if x < y
1/2 if x > y

It is clear that ◦ is an AntiOperation on X and ∴ (X, ◦) is an AntiAlgebra.

(3) Let X = Q.

(i) (X,+) and (X,×) are neither NeutroAlgbras nor AntiAlgebras.
(ii) For all x, y, z ∈ X such that x, y, z = 1, we have x − y = y − x = 0 ∈ X (True), otherwise

for other elements, the result is False so that − is NeuroCommutative over X . Also,if x, y, z = 0,
then x− (y − z) = (x− y)− z = 0 ∈ X (True), otherwise for other elements, the result is False
and consequently, − is NeutroAssociative over X and (X,−) is a NeutroSemigroup.

(iii) For all 0 6= x, y ∈ X , x ÷ y ∈ X (True) (Inner) but for all x ∈ X , x ÷ 0 = indeterminate
(Indeterminacy). ∴ (X,÷) is a NeutroAlgebra which we call a NeutroField.

For all x, y ∈ X , let ◦ be a binary operation defined by x ◦ y = ex÷y . If x, y = 0, we have x ◦ y =
indeterminate (Indeterminacy) (I). If x > 0, y = 0, we have x ◦ y = indeterminate (Indeterminacy) (I).
If x > 0, y > 0, we have x ◦ y = False (F). These show that ◦ is a NeutroOperation over X and ∴ (X◦)
is a NeutroAlgebra.

Let ◦ be a binary operation defined for all x, y ∈ X by

x ◦ y =

{
−e if x ≤ y
e if x ≥ y

where e is the base of Naperian Logarithm. It is clear that ◦ is an AntiOperation on X and ∴ (X, ◦) is
an AntiAlgebra.

(4) Let X = R.

(i) (X,+) and (X,×) are neither NeutroAlgebras nor PartialAlgebras.
(ii) For all x, y ∈ X such that x, y = 0,±1, we have x − y = y − x = 0 ∈ X (True), otherwise for

other elements, the result is False so that − is NeuroCommutative over X .
(iii) For all 0 6= x, y ∈ X , x ÷ y ∈ X (True) (Inner) but for all x ∈ X , x ÷ 0 = indeterminate

(Indeterminacy). It can be shown that ÷ is NeutroAssociative over X . Hence, (X,÷) is a Neu-
troSemigroup and therefore, it is a NeutroAlgebra which we call a NeutroField.

Let ◦ be a binary operation defined for all x, y ∈ X by

x ◦ y =

{
−
√
−1 if x ≤ y√
−1 if x ≥ y

It is clear that ◦ is an AntiOperation on X and ∴ (X, ◦) is an AntiAlgebra.

(5) Let X = C.

(i) (X,+) and (X,×) are neither NeutroAlgebras nor AntilAlgebras.
(ii) For all z, w ∈ X such that z, w = 0,±i, we have z − w = w − z = 0 ∈ X (True), otherwise for

other elements, the result is False so that − is NeutroCommutative over X .
(iii) For all 0 6= z, w ∈ X , z ÷ w ∈ X (True) (Inner) but for all z ∈ X , z ÷ 0 = indeterminate

(Indeterminacy). Therefore, (X,÷) is a NeutroAlgebra which we call a NeutroField.

Let ◦ be a binary operation defined for all z, w ∈ X by

z ◦ w =

 i if | z |=| w |
j if | z |≤| w |
k if | z |≥| w |

where ijk = −1. It is clear that ◦ is an AntiOperation on X and ∴ (X, ◦) is an AntiAlgebra.

Theorem 2.1. For all prime number n ≥ 2, (Zn,+,×) is a NeutroAlgebra called a NeutroField.

Proof. Suppose that n ≥ 2 is a prime number. Clearly, 1 is the multiplicative identity element in Zn. For all
0 6= x ∈ Zn, there exist a unique y ∈ Zn such that x× y = 1 (True) (T). However, for 0 = x ∈ Zn, there does
not exist any unique y ∈ Zn such that x× y = 1 (False) (F). This shows that (Zn,×) is a NeutroGroup. Since
(Zn,+) is an abelian group, it follows that (Zn,+,×) is a NeutroDivisionRing called a NeutroField.
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3 Conclusion
We have in this paper examined NeutroAlgebras and AntiAlgebras viz-a-viz the classical number systems
N,Z,Q,R,C of natural, integer, rational, real and complex numbers respectively. In our future papers, we
hope to study more algebraic properties of NeutroAlgebras and NeutroSubalgebras and NeutroMorphisms
between them.
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Abstract
The objective of this paper is to study Neutrosophic Quadruple Hypervector Spaces and present some of their
basic definitions and properties. This paper generalizes the concept of Neutrosophic Hypervector spaces by
presenting their Neutrosophic Quadruple forms. Some notions such as Neutrosphic hypersubspaces, linear
combination, linearly dependence and linearly independence are generalized. Some interesting results and
examples to illustrate the new concepts introduced are presented.
Keywords: Neutrosophic Quadruple (NQ), Neutrosophic Quadruple set, NQ Hypervector spaces, Super
strong NQ Hypervector spaces, strong NQ Hypervector spaces, Weak NQ Hypervector spaces, NQ field,
Neutrosophic field, NQ Hypersubspaces, NQ bases.

1 Introduction
Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as
their interactions with different ideational spectra. Neutrosophic set and neutrosophic logic were introduced
in 1995 by Smarandache as generalizations of fuzzy set and respectively intuitionistic fuzzy logic. In neutro-
sophic logic, each proposition has a degree of truth (T ), a degree of indeterminacy (I), and a degree of falsity
(F ), where T, I, F are standard or non-standard subsets of ]−0, 1+[, see [272829].
The notion of neutrosophic algebraic structures was introduced by Kandasamy and Smarandache in 2006, see
32.33 Since then, several researchers have studied the concepts and a great deal of literature has been produced.
For example, Agboola and Akinleye introduced the concept of neutrosophic hypervector spaces in1 and in2

they studied neutrosophic vector spaces. In,34 Vasantha K., Ilanthenral K. and Smarandache F. introduced
for the first time the concept of neutrosophic qudruple vector spaces over the classical fields R,C and Zp. A
comprehensive review of neutrosophy, neutrosophic triplet set, neutrosophic quadruple set and neutrosophic
algebraic structures can be found in [34910111214151718192021223031 ].

The concept of hyperstructure was first introduced by Marty16 in 1934 at the 8th congress of Scandinavian
Mathematicians and then he established the definition of hypergroup in 1935 to analyze its properties and
applied them to groups of rational algebraic functions. M. Krasner13 introduced the notions of hyperring and
hyperfield and use them as technical tools in the study of the approximation of valued fields. These concepts
have been developed and generalized by many researchers.
The notion of hypervector spaces was introduced by M. Scafati Tallini24 in 1988. Hypervector spaces have
been further expanded by other researchers. For more detailed information on hypervector spaces, the reader
should see [567823242526].
The present paper is concerned with introducing the concept of neutrosophic quadruple hypervector spaces.
Some of their elementary properties are presented.

2 Preliminaries
In this section, some basic definitions and properties that will be useful in this work are given.
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Definition 2.1. A neutrosophic quadruple number is a number of the form (a, bT, cI, dF ) where T, I, F have
their usual neutrosophic logic meanings and a, b, c, d ∈ R or C. The set NQ defined by
NQ = {(a, bT, cI, dF ) : a, b, c, d ∈ R or C} is called neutrosophic quadruple set.

Definition 2.2. 4 Suppose in an optimistic way we consider the prevalence order T > I > F . Then the
combination of the usual Neutrosophic tools T, I, F are :
TI = IT = max{T, I} = T,
TF = FT = max{T, F} = T,
IF = FI = max{I, F} = I,
TT = T 2 = T,
II = I2 = I,
FF = F 2 = F
Analogously, suppose in a pessimistic way we consider the prevalence order T < I < F. Then we have:
TI = IT = max{T, I} = I,
TF = FT = max{T, F} = F,
IF = FI = max{I, F} = F,
TT = T 2 = T,
II = I2 = I,
FF = F 2 = F
We shall adopt the pessimistic way in this work.

The following operations are defined on NQ, for x = (a, bT, cI, dF ) and y = (e, fT, gI, hF ) ∈ NQ
we have that

x+ y = (a, bT, cI, dF ) + (e, fT, gI, hF ) = (a+ e, (b+ f)T, (c+ g)I, (d+ h)F ) and

x− y = (a, bT, cI, dF )− (e, fT, gI, hF ) = (a− e, (b− f)T, (c− g)I, (d− h)F ) are in NQ.

For x = (a, bT, cI, dF ) ∈ NQ and k ∈ R where k is a scalar and x is a vector in NQ.

k.x = k.(a, bT, cI, dF ) = (ka, kbT, kcI, kdF ) ∈ NQ.

If x = 0 = (0, 0, 0, 0) ∈ NQ usually termed as zero neutrosophic quadruple vector and for any scalar k ∈ R
we have k · 0 = 0.
Further

(k + p)x = kx+ px, k(px) = (kp)x, k(x+ y) = kx+ ky.

for all k, p ∈ R and x, y ∈ NQ. −x = (−a,−bT,−cI,−dF ) which is in NQ.

Definition 2.3. Let a = (a1, a2T, a3I, a4F ), b = (b1, b2T, b3I, b4F ) ∈ NQ. Then

a · b = (a1, a2T, a3I, a4F ) · (b1, b2T, b3I, b4F )
= (a1b1, (a1b2 + a2b1 + a2b2)T, (a1b3 + a2b3 + a3b1 + a3b2 + a3b3)I,

(a1b4 + a2b4, a3b4 + a4b1 + a4b2 + a4b3 + a4b4)F ).

Theorem 2.4. 4 (NQ,+) is an abelian group.

Theorem 2.5. 4 (NQ, ·) is a commutative monoid.

Theorem 2.6. 4 (NQ, ·) is not a group.

Theorem 2.7. 4 (NQ,+, ·) is a commutative ring.

Theorem 2.8. 34 (NQ,+) = {(a, bT, cI, dF )|a, b, c, d ∈ R or C or Zp; p a prime,+} be the Neutrosophic
quadruple group. Then V = (NQ,+, o) is a Neutrosophic Quadruple vector space (NQ − vectorspace)
over R or C or Zp, where ′o′ is the special type of operation between V and R (or C or Zp) defined as scalar
multiplication.

Definition 2.9. 34 Let V = (NQ,+) be a NQ vector space over R (or C or Zp). A subset L of V is said to
be NQ linearly dependent or simply dependent, if there exists distinct vectors a1, a2, · · · , ak ∈ L and scalars
d1, d2, · · · , dk ∈ R (or C ◦ Zp) not all zero such that d1 ◦ a1 + d2 ◦ a2 + · · ·+ dk ◦ ak = 0.
We say the set of vectors a1, a2, · · · , ak is NQ linearly independent if it is not NQ linearly dependent.
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Definition 2.10. 34 Let V = (NQ,+) be a NQ vector space over R (or C or Zp) . A subset W of V is said to
be Neutrosophic Quadruple vector subspace of V if W itself is a Neutrosophic Quadruple vector space over R
(or C or Zp).

Definition 2.11. 1 Let P (V ) be the power set of a set V , P ∗(V ) = P (V )− {∅} and let K be a field.
The quadruple (V,+, •,K) is called a hypervector space over a field K if:

1. (V,+) is an abelian group.

2. • : K × V −→ P ∗(V ) is a hyperoperation such that for all k,m ∈ K and u, v ∈ V, the following
conditions hold:

(a) (k +m) • u ⊆ (k • u) + (m • u),
(b) k • (u+ v) ⊆ (k • u) + (k • v),
(c) k • (m • u) = (km) • u, where k • (m • u) = {k • v : v ∈ m • u},
(d) (−k) • u = k • (−u),
(e) u ∈ 1 • u.

A hypervector space is said to be strongly left distributive (resp. strongly right distributive) if equality holds in
(a) (resp. in (b)). (V,+, •,K) is called a strongly distributive hypervector space if it is both strongly left and
strongly right distributive.

Definition 2.12. 1 Let (V,+, •,K) be any strongly distributive hypervector space over a field K and let

V (I) =< V ∪ (I) >= {u = (a, bI) : a, b ∈ V }

be a set generated by V , and I . The quadruple (V (I),+, •,K) is called a weak neutrosophic strongly dis-
tributive hyper vector space over a field K.
For every element u = (a, bI), v = (d, eI) ∈ V (I), and k ∈ K we define

u+ v = (a+ d, (b+ e)I ∈ V (I),

k • u = {(x, yI) : x ∈ k • a, y ∈ k • b}.

If K is a neutrosophic field, that is, K = K(I), then the quadruple (V (I),+, •,K(I)) is called a strong
neutrosophic strongly distributive hyper vector space over a neutrosophic field K(I).
For every element u = (a, bI), v = (d, eI) ∈ V (I), and α = (k,mI) ∈ K(I), we define

u+ v = (a, bI) + (d, eI) = (a+ d, (b+ e)I),

α • u = {(x, yI) : (x ∈ k • a, y ∈ k • b ∪m • a ∪m • b)}.

The elements of V (I) are called neutrosophic vectors and the elements of K(I) are called neutrosophic
scalars. The zero neutrosophic vector of V (I), (0, 0I), is denoted by θ, the zero element 0 ∈ K is represented
by (0, 0I) in K(I) and 1 ∈ K is represented by (1, 0I) ∈ K(I).

Theorem 2.13. 1 Every strong neutrosophic hypervector space is a weak neutrosophic hy- pervector space

Theorem 2.14. 1 Every weak neutrosophic hypervector space is a strongly distributive hypervector space

3 Formulation of a Neutrosophic Quadruple(NQ) Hypervector Spaces
and its Subspaces

In this section, we develop the concept of neutrosophic quadruple hypervector spaces and present some of
their basic properties. Except otherwise stated, all neutrosophic quadruple numbers will be real neutrosophic
quadruple numbers of the form (a, bT, cI, dF ) where a, b, c, d ∈ R. The elements of V (T, I, F ) will be called
neutrosophic quadruple vectors and the elements of K(I) and K(T, I, F ) will be called neutrosophic scalars
and neutrosophic quadruple scalars respectively. (0, 0T, 0I, 0F ), the zero vector of V (T, I, F ) will be denoted
by θ, the zero element ofK(T, I, F ) will be denoted by 0 ∈ K while 1 ∈ K will be denoted by (1, 0T, 0I, 0F )
in K(T, I, F ).
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Definition 3.1. Let (V,+, •,K) be any strongly distributive hypervector space over a field K and let

V (T, I, F ) =< V ∪ (T, I, F ) >= {u = (a, bT, cI, dF ) : a, b, c, d ∈ V }.

be a set generated by V , T , I and F. The quadruple (V (T, I, F ),+, •,K) is called a weak neutrosophic
quadruple strongly distributive hypervector space over a field K.

For every element u = (a, bT, cI, dF ), v = (e, fT, gI, hF ) ∈ V (T, I, F ) and k ∈ K we define

u+ v = (a+ e, (b+ f)T, (c+ g)I, (d+ h)F ) ∈ V (T, I, F ),

k • u = {(r, xT, yI, zF ) : r ∈ k • a, x ∈ k • b, y ∈ k • c, z ∈ k • d}.
Definition 3.2. Let (V,+, •,K) be any strongly distributive hypervector space over a field K and let

V (T, I, F ) =< V ∪ (T, I, F ) >= {u = (a, bT, cI, dF ) : a, b, c, d ∈ V }.

be a set generated by V , T , I and F. The quadruple (V (T, I, F ),+, •,K(I)) is called a strong neutrosophic
quadruple strongly distributive hypervector space over a neutrosophic field K(I).

For every element u = (a, bT, cI, dF ), v = (e, fT, gI, hF ) ∈ V (T, I, F ) and α = (k,mI) ∈ K(I), we
define

u+ v = (a+ e, (b+ f)T, (c+ g)I, (d+ h)F ) ∈ V (T, I, F ),

α • u = {(r, xT, yI, zF ) : (r ∈ k • a, x ∈ k • b, y ∈ k • c ∪m • a ∪m • b ∪m • c, z ∈ k • d ∪m • d)}.
Definition 3.3. Let (V,+, •,K) be any strongly distributive hypervector space over a field K and let

V (T, I, F ) =< V ∪ (T, I, F ) >= {u = (a, bT, cI, dF ) : a, b, c, d ∈ V }

be a set generated by V , T , I and F.
The quadruple (V (T, I, F ),+, •,K(T, I, F )) is called a super strong neutrosophic quadruple strongly dis-
tributive hypervector space over a neutrosophic field K(T, I, F ).

For every element u = (a, bT, cI, dF ), v = (e, fT, gI, hF ) ∈ V (T, I, F ) and α = (k,mT, nI, tF ) ∈
K(T, I, F ), we define

u+ v = (a+ e, (b+ f)T, (c+ g)I, (d+ h)F ) ∈ V (T, I, F ),

α • u = {(r, xT, yI, zF ) : r ∈ k • a, x ∈ k • b ∪m • a ∪m • b, y ∈ k • c ∪m • c ∪ n • a ∪ n • b ∪ n • c,
z ∈ k • d ∪m • d ∪ n • d ∪ t • a ∪ t • b ∪ t • c ∪ t • d}.
Example 3.4. Let n be a positive integer and let V (T, I, F ) = Rn(T, I, F ) denote the neutrosophic quadruple
set of column neutrosophic quadruple vectors of length n with entries from the field R :

Rn(T, I, F ) =




(a1, b1T, c1I, d1F )
(a2, b2T, c2I, d2F )

...
(an, bnT, cnI, dnF )

 : ai, bi, ci, di ∈ R, i = 1, 2 · · ·n


For all

u =


(a1, b1T, c1I, d1F )
(a2, b2T, c2I, d2F )

...
(an, bnT, cnI, dnF )

 , v =


(e1, f1T, g1I, h1F )
(e2, f2T, g2I, h2F )

...
(en, fnT, gnI, hnF )

 ∈ V (T, I, F )

and k ∈ K define:

u+ v =


(a1, b1T, c1I, d1F )
(a2, b2T, c2I, d2F )

...
(an, bnT, cnI, dnF )

+


(e1, f1T, g1I, h1F )
(e2, f2T, g2I, h2F )

...
(en, fnT, gnI, hnF )



=


(a1 + e1, (b1 + f1)T, (c1 + g1)I, (d1 + h1)F )
(a2 + e2, (b2 + f2)T, (c2 + g2)I, (d2 + h2)F )

...
(an + en, (bn + fn)T, (cn + gn)I, (dn + hn)F )


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and

k•


(a1, b1T, c1I, d1F )
(a2, b2T, c2I, d2F )

...
(an, bnT, cnI, dnF )

 =




(r1, x1T, y1I, z1F )
(r2, x2T, y2I, z2F )

...
(rn, xnT, ynI, znF )

 :

r1 ∈ k • a1, x1 ∈ k • b1, y1 ∈ k • c1, z1 ∈ k • d1
r2 ∈ k • a2, x2 ∈ k • b2, y2 ∈ k • c2, z2 ∈ k • d2

...
rn ∈ k • an, xn ∈ k • bn, yn ∈ k • cn, zn ∈ k • dn

 .

Then (V (T, I, F ),+, •,K) is a weak neutrosophic quadruple strongly distributive hypervector space over the
field K.

Example 3.5. Let V (T, I, F ) = R2(T, I, F ) and let K = R(I). For all
u = ((a1, b1T, c1I, d1F ), (e1, f1T, g1I, h1F )), v = ((a2, b2T, c2I, d2F ), (e2, f2T, g2I, h2F )) ∈ V (T, I, F )
and α = (k,mI) ∈ K(I), define:

u+ v = ((a1 + a2, (b1 + b2)T, (c1 + c2)I, (d1 + d2)F ), (e1 + e2, (f1 + f2)T, (g1 + g2)I, (h1 + h2)F )).

α • u = {((r, xT, yI, zF ), (p, qT, sI, tF )) :
(r ∈ k • a1, x ∈ k • b1, y ∈ k • c1 ∪m • a1 ∪m • b1 ∪m • c1, z ∈ k • d1 ∪m • d1)
(p ∈ k • e1, q ∈ k • f1, s ∈ k • g1 ∪m • e1 ∪m • f1 ∪m • g1, t ∈ k • h1 ∪m • h1)}.

Then (V (T, I, F ),+, •,K(I)) is an strong neutrosophic quadruple strongly distributive hypervector space
over the neutrosophic field K(I).

Example 3.6. Let V (T, I, F ) = R2(T, I, F ) and let K = R(T, I, F ). For all
u = ((a1, b1T, c1I, d1F ), (e1, f1T, g1I, h1F )), v = ((a2, b2T, c2I, d2F ), (e2, f2T, g2I, h2F )) ∈ V (T, I, F )
and α = (k,mT, nI, wF ) ∈ K(T, I, F ), define:

u+ v = ((a1 + a2, (b1 + b2)T, (c1 + c2)I, (d1 + d2)F ), (e1 + e2, (f1 + f2)T, (g1 + g2)I, (h1 + h2)F )).

α • u = {((r, xT, yI, zF ), (p, qT, sI, tF )) :
(r ∈ k • a1, x ∈ k • b1 ∪m • a1 ∪m • b1, y ∈ k • c1 ∪m • c1 ∪ n • a1 ∪ n • b1 ∪ n • c1,
z ∈ k • d1 ∪m • d1 ∪ n • d1 ∪ w • a1 ∪ w • b1 ∪ w • c1 ∪ w • d1)
(p ∈ k • e1, q ∈ k • f1 ∪m • e1 ∪m • f1, s ∈ k • g1 ∪m • g1 ∪ n • e1 ∪ n • f1 ∪ n • g1,
t ∈ k • h1 ∪m • h1 ∪ n • h1 ∪ w • e1 ∪ w • f1 ∪ w • g1 ∪ w • h1)}.

Then (V (T, I, F ),+, •,K(T, I, F )) is a super strong neutrosophic quadruple strongly distributive hyper-
vector space over the neutrosophic quadruple field K(T, I, F ).
From here on, every weak( strong [super strong]) neutrosophic quadruple strongly distributive hypervector
space will simply be called a weak( resp.(strong [super strong])) NQ-Hypervector space.

Proposition 3.7. .

1. Every super strong NQ-Hypervector space is a strong NQ-Hypervector space.

2. Every super strong NQ-Hypervector space is a weak NQ-Hypervector space.

3. Every strong NQ-Hypervector space is a weak NQ-Hypervector space.

Proof:

1. This is true, since K(I) ⊆ K(T, I, F ).

2. This is true, since K ⊆ K(T, I, F ).

3. This is true, since K ⊆ K(I).

Proposition 3.8. Every weak NQ-Hypervector space is a strongly distributive hypervector space.

Proof: Suppose that V (T, I, F ) is a weak NQ-Hypervector space over a field K.
That (NQ,+) is a vector space is seen in [4].

Let u = (a, bT, cI, dF ), v = (e, fT, gI, hF ) ∈ V (T, I, F ) and k,m ∈ K be arbitrary. Then
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(1). k • u+m • u = {(p, qT, rI, sF ) : p ∈ k • a, q ∈ k • b, r ∈ k • c, s ∈ k • d}
+ {(t, wT, xI, yF ) : t ∈ m • a,w ∈ m • b, x ∈ m • c, y ∈ m • d}

= {(p+ t, (q + w)T, (r + x)I, (s+ y)F ) : p+ t ∈ k • a+m • a, q + w ∈ k • b+m • a,
r + x ∈ k • c+m • c, s+ y ∈ k • d+m • d}.

Also

(k +m) • u = {(p′, q′T, r′I, s′F ) : p′ ∈ (k +m) • a, q′ ∈ (k +m) • b, r′ ∈ (k +m) • c, s′ ∈ (k +m) • d}
= {(p′, q′T, r′I, s′F ) : p′ ∈ k • a+m • a, q′ ∈ k • b+m • a, r′ ∈ k • c+m • c, s′ ∈ k • d+m • d}
= k • u+m • u.

(2). k • u+ k • v = {(p, qT, rI, sF ) : p ∈ k • a, q ∈ k • b, r ∈ k • c, s ∈ k • d}
+ {(t, wT, xI, yF ) : t ∈ k • e, w ∈ k • f, x ∈ k • g, y ∈ •h}

= {(p+ t, (q + w)T, (r + x)I, (s+ y)F ) : p+ t ∈ k • a+ k • e, q + w ∈ k • b+ k • f,
r + x ∈ k • c+ k • g, s+ y ∈ k • d+ k • h}.

Also,
k • (u+ v) = k • (a+ e, (b+ f)T, (c+ g)I, (d+ h)F )

= {(p′, q′T, r′Is′F ) : p′ ∈ k • (a+ e), q′ ∈ k • (b+ f), r′ ∈ k • (c+ g), s′ ∈ k • (d+ h)}
= {(p′, q′T, r′I, s′F ) : p′ ∈ k • a+ k • e, q′ ∈ k • b+ k • f, r′ ∈ k • c+ k • g,

s′ ∈ k • d+ k • h}
= k • u+ k • v.

(3). k • (m • u) = k • {(p, qT, rI, sF ) : p ∈ m • a, q ∈ m • b, r ∈ m • c, s ∈ m • d}
= {(p′, q′T, r′I, s′F ) : p′ ∈ k • p, q′ ∈ k • q, r′ ∈ k • r, s′ ∈ k • s}
= {(p′, q′T, r′I, s′F ) : p′ ∈ k • (m • a), q′ ∈ k • (m • b), r′ ∈ (m • c), s′ ∈ (m • d)}
= {(p′, q′T, r′I, s′F ) : p′ ∈ (km) • a, q′ ∈ (km) • b, r′ ∈ (km) • c, s′ ∈ (km) • d}
= (km) • (a, bT, cI, dF )
= (km) • u.

(4). (−k) • u = {(p, qT, rI, sF ) : p ∈ (−k) • a, q ∈ (−k) • b, r ∈ (−k) • c, s ∈ (−k) • d}
= {(p, qT, rI, sF ) : p ∈ k • (−a), q ∈ k • (−b), r ∈ k • (−c), s ∈ k • (−d)}
= k • (−a,−bI)
= k • (−u).

(5). 1 • u = {(p, qT, rI, sF ) : p ∈ 1 • a, q ∈ 1 • b, r ∈ 1 • c, s ∈ 1 • d}
= {(a, bT, cI, dF ) : a ∈ 1 • a, b ∈ 1 • b, c ∈ 1 • c, d ∈ 1 • d}.

Showing that u ∈ 1 • u.
Therefore we say that V (T, I, F ) is a strongly distributive hypervector space.

Proposition 3.9. Let V (T, I, F ) be a super strong(strong) NQ-Hypervector space over a neutrosophic quadru-
ple field K(T, I, F )(neutrosophic field K(I)). Then

1. V (T, I, F ) generally is not a strongly distributive hypervector space.

2. V (T, I, F ) always contain a strongly distributive hypervector space

Proposition 3.10. Let (V (T, I, F ),+1, •1) and (U(T, I, F ),+2, •2) be any two super strong NQ-Hypervector
space over a neutrosophic quadruple field K(T, I, F ). Let

V (T, I, F )× U(T, I, F ) = {((v, v1T, v2I, v3F ), (u, u1T, u2I, u3F )) :
(v, v1T, v2I, v3F ) ∈ V (T, I, F ), (u, u1T, u2I, u3F ) ∈ U(T, I, F )} .

For all

x = ((v, v1T, v2I, v3F ), (u, u1T, u2I, u3F )), y = ((v′, v′1T, v
′
2I, v

′
3F ), (u

′, u′1T, u
′
2I, u

′
3F )) ∈ V (T, I, F )×U(T, I, F )

and α = (k, k1T, k2I, k3F ) ∈ K(T, I, F )

x+ y = ((v + v′, (v1 + v′1)T, (v2 + v′2)I, (v3 + v′3)F ), (u+ u′, (u1 + u′1)T, (u2 + u′2)I, (u3 + u′3)F )).

α • x = {((p, p1T, p2I, p3F ), (q, q1T, q2I, q3F )) :
(p ∈ k • v, p1 ∈ k • v1 ∪ k1 • v ∪ k1 • v1, p2 ∈ k • v2 ∪ k1 • v2 ∪ k2 • v ∪ k2 • v1 ∪ k2 • v2,
p3 ∈ k • v3 ∪ k1 • v3 ∪ k2 • v3 ∪ k3 • v ∪ k3 • v1 ∪ k3 • v2 ∪ k3 • v3)
(q ∈ k • u, q1 ∈ k • u1 ∪ k1 • u ∪ k1 • u1, q2 ∈ k • u2 ∪ k1 • u2 ∪ k2 • u ∪ k2 • u1 ∪ k2 • u2,
q3 ∈ k • u3 ∪ k1 • u3 ∪ k2 • u3 ∪ k3 • u ∪ k3 • u1 ∪ k3 • u2 ∪ k3 • u3)}.

Then (V (T, I, F )× U(T, I, F ),+, •,K(T, I, F )) is a super strong NQ-Hypervector space.
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Proposition 3.11. Let (V (T, I, F ),+1, •1) and (U(T, I, F ),+2, •2) be any two strong NQ-Hypervector
space over a neutrosophic field K(I). Let

V (T, I, F )× U(T, I, F ) = {((v, v1T, v2I, v3F ), (u, u1T, u2I, u3F )) :
(v, v1T, v2I, v3F ) ∈ V (T, I, F ), (u, u1T, u2I, u3F ) ∈ U(T, I, F )}

for all
x = ((v, v1T, v2I, v3F ), (u, u1T, u2I, u3F )), y = ((v′, v′1T, v

′
2I, v

′
3F ), (u

′, u′1T, u
′
2I, u

′
3F )) ∈ V (T, I, F )×

U(T, I, F ) and α = (k, k1I) ∈ K(I)

x+ y = ((v + v′, (v1 + v′1)T, (v2 + v′2)I, (v3 + v′3)F ), (u+ u′, (u1 + u′1)T, (u2 + u′2)I, (u3 + u′3)F )).

α • x = {((p, p1T, p2I, p3F ), (q, q1T, q2I, q3F )) :
(p ∈ k • v, p1 ∈ k • v1, p2 ∈ k • v2 ∪ k1 • v ∪ k1 • v1 ∪ k1 • v2, p3 ∈ k • v3 ∪ k1 • v3)
(q ∈ k • u, q1 ∈ k • u1, q2 ∈ k • u2 ∪ k1 • u ∪ k1 • u1 ∪ k1 • u2, q3 ∈ k • u3 ∪ k1 • u3)}.

Then (V (T, I, F )× U(T, I, F ),+, •,K(I)) is a strong NQ-Hypervector space.

Proposition 3.12. Let (V (T, I, F ),+1, •1) and (U(T, I, F ),+2, •2) be any two weak NQ-Hypervector spaces
over a field K. Let

V (T, I, F )× U(T, I, F ) = {((v, v1T, v2I, v3F ), (u, u1T, u2I, u3F )) :
(v, v1T, v2I, v3F ) ∈ V (T, I, F ), (u, u1T, u2I, u3F ) ∈ U(T, I, F )}.

For all
x = ((v, v1T, v2I, v3F ), (u, u1T, u2I, u3F )), y = ((v′, v′1T, v

′
2I, v

′
3F ), (u

′, u′1T, u
′
2I, u

′
3F )) ∈ V (T, I, F )×

U(T, I, F ) and k ∈ K

x+ y = ((v + v′, (v1 + v′1)T, (v2 + v′2)I, (v3 + v′3)F ), (u+ u′, (u1 + u′1)T, (u2 + u′2)I, (u3 + u′3)F )).

k • x = {((p, p1T, p2I, p3F ), (q, q1T, q2I, q3F )) : (p ∈ k • v, p1 ∈ k • v1, p2 ∈ k • v2, p3 ∈ k • v3)
(q ∈ k • u, q1 ∈ k • u1, q2 ∈ k • u2, q3 ∈ k • u3)}.

Then (V (T, I, F )× U(T, I, F ),+, •,K) is a weak NQ-Hypervector space.

Proposition 3.13. Let V (T, I, F ) be any super strong NQ-Hypervector space over a neutrosophic quadruple
field K(T, I, F ), let U(T, I, F ) be any strong NQ-Hypervector space over a neutrosophic field K(I) and let
W (T, I, F ) be any weak NQ-Hypervector space over a field K . Then

1. (V (T, I, F )× U(T, I, F ),+, •,K(I)) is a strong NQ-Hypervector space.

2. (V (T, I, F )×W (T, I, F ),+, •,K) is a weak NQ-Hypervector space.

3. (U(T, I, F )×W (T, I, F ),+, •,K) is a weak NQ-Hypervector space.

Proof:

1. From 1 of 3.7, we know that every super strong NQ-Hypervector space is a strong NQ-Hypervector
space. Then by applying 3.11 to this, we obtained the required result.

2. From 2 of 3.7, we know that every super strong NQ-Hypervector space is a weak NQ-Hypervector space.
Then by 3.12 the proof follows .

3. From 3 of 3.7, we know that every strong NQ-Hypervector space is a weak NQ-Hypervector space.
Then by 3.12 the proof follows .

Definition 3.14. A nonempty subset N(T, I, F ) of a super strong NQ-Hypervector space
(V (T, I, F ),+, •,K(T, I, F )) over a neutrosophic quadruple field K(T, I, F ) is called a super strong NQ-
Hypersubspace of V (T, I, F ) if (N(T, I, F ),+, •,K(T, I, F )) is itself a super strong NQ-Hypervector space
over K(T, I, F ). It is essential that N(T, I, F ) contains a proper subset which is a Hypervector space over K.

Definition 3.15. A nonempty subset N(T, I, F ) of a strong NQ-Hypervector space
(V (T, I, F ),+, •,K(I)) over a neutrosophic field K(I) is called a strong NQ-Hypersubspace of V (T, I, F )
if (N(T, I, F ),+, •,K(I)) is itself a strong NQ-Hypervector space over K(I). It is essential that N(T, I, F )
contains a proper subset which is a Hypervector space over K.
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Proposition 3.16. Let N [T, I, F ] be a subset of a super strong NQ-Hypervector space
(V (T, I, F ),+, •,K(T, I, F )) over a neutrosophic quadruple field K(T, I, F ). Then N(I, T, F ) is a super
strong NQ-Hypersubspace of V (T, I, F ) if and only if for all u = (a, bT, cI, dF ), v = (e, fT, gI, hF ) ∈
V (T, I, F ) and α = (k,mT, nI, tF ) ∈ K(T, I, F ) the following conditions hold:

1. N [T, I, F ] 6= ∅,

2. u+ v ∈ N [T, I, F ],

3. α • v ⊆ N [T, I, F ],

4. N [T, I, F ] contains a proper subset which is a hypervector space over K.

Proof:
If N(T, I, F ) is a super strong NQ-Hypersubspace of V (T, I, F ), then obviously conditions 1 , 2, 3 and 4
hold.
Conversely, let N [T, I, F ] be a subset of V (T, I, F ) such that N(T, I, F ) satisfies the four conditions 1, 2,3
and 4.
To proof that N(T, I, F ) is a NQ-Hypersubspace of V (T, I, F ). It is enough to prove that

1. N(T, I, F ) has a zero NQ-vector.

2. Each NQ-vector in N(T, I, F ) has an additive inverse.

Since N(T, I, F ) is non-empty, let u = (a, bT, cI, dF ) ∈ N(T, I, F ).
Now for (0, 0T, 0I, 0F ) ∈ K(T, I, F ) and by condition 3 we have that

(0, 0T, 0I, 0F ) • u = (0, 0T, 0I, 0F ) • (a, bT, cI, dF ) ⊆ N(T, I, F ) =⇒ θ ∈ N(I, T, F ).

Therefore N(T, I, F ) has a zero vector. Again, since −(1, 0T, 0I, 0F ) ∈ K(T, I, F ) then
−(1, 0T, 0I, 0F ) • u = −(1, 0T, 0I, 0F ) • (a, bT, cI, dF ) ⊆ N =⇒ −u ∈ N(T, I, F ).
Hence each NQ-vector in N(T, I, F ) has an additive inverse.

Proposition 3.17. Let N [T, I, F ] be a subset of a strong NQ-Hypervector space
(V (T, I, F ),+, •,K(I)) over a neutrosophic field K(I). Then N(I, T, F ) is a strong NQ-hypersubspace of
V (T, I, F ) if and only if for all u = (a, bT, cI, dF ), v = (e, fT, gI, hF ) ∈ V (T, I, F ) and α = (k,mI) ∈
K(I) the following conditions hold:

1. N [T, I, F ] 6= ∅,

2. u+ v ∈ N [T, I, F ]

3. α • v ⊆ N [T, I, F ]

4. N [T, I, F ] contains a proper subset which is a hypervector space over K

Proof : Follow similar approach as the proof of 3.16, above.

Corollary 3.18. Let N [T, I, F ] be a NQ-hypersubspace of a NQ-hypervector space V (T, I, F ) if and only if

1. N [T, I, F ] is non-empty.

2. α • u+ β • v ⊆ N [T, I, F ], for all α = (k1,m1T, n1I, r1F ), β = (k2,m2T, n2I, r2F ) ∈ K(T, I, F )
and u = (a, bT, cI, dF ), v = (e, fT, gI, hF ) ∈ N [T, I, F ].

3. N [T, I, F ] contains a proper subset which is a hypervector space over K.

Example 3.19. Let V (T, I, F ) be a super strong NQ-Hypervector space defined in Example 3.6.
Let N(T, I, F ) = K(T, I, F )× {(0, 0T, 0I, 0F )} ⊆ V (T, I, F )
Then N(T, I, F ) is a super strong NQ-Hypersubspace

Proof: Since θ = ((0, 0T, 0I, 0F ), (0, 0T, 0I, 0F )) ∈ N(T, I, F ). Then N(T, I, F ) 6= ∅
Now let
u = ((a1, b1T, c1I, d1F ), (0, 0T, 0I, 0F )), v = ((a2, b2T, c2I, d2F ), (0, 0T, 0I, 0F )) ∈ N(T, I, F ) and
α = (k,mT, nI, wF ), β = (k′,m′T, n′I, w′F ) ∈ K(T, I, F ), with a1, b1, c1, d1, a2, b2, c2, d2 ∈ N and
k,m, n,w, k′,m′, n′, w′ ∈ K
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Then α • u+ β • v
= (k,mT, nI, wF )•[(a1, b1T, c1I, d1F ), (0, 0T, 0I, 0F )]+(k′,m′T, n′I, w′F )•[(a2, b2T, c2I, d2F ), (0, 0T, 0I, 0F )]

⊆{((x, yT, zI, tF ), (p, qT, rI, sF )) : x ∈ k • a1, y ∈ k • b1 ∪m • a1 ∪m • b1, z ∈ k • c1 ∪m •
c1 ∪ n • a1 ∪ n • b1 ∪ n • c1, t ∈ k • d1 ∪m • d1 ∪ n • d1 ∪w • a1 ∪w • b1 ∪w • c1 ∪w • d1, p ∈ k • 0, q ∈
k•0∪m•0∪m•0, r ∈ k•0∪m•0∪n•0∪n•0∪n•0, s ∈ k•0∪m•0∪n•0∪w•0∪w•0∪w•0∪w•0}
+ {((x′, y′T, , z′I, t′F ), (p′, q′T, r′I, s′F )) : x′ ∈ k′ • a2, y′ ∈ k′ • b2 ∪m′ • a2 ∪m′ • b2, z′ ∈ k′ • c2 ∪m′ •
c2∪n′ •a2∪n′ •b2∪n′ •c2, t′ ∈ k′ •d2∪m′ •d2∪n′ •d2∪w′ •a2∪w′ •b2∪w′ •c2∪w′ •d2, p′ ∈ k′ •0, q′ ∈
k′•0∪m′•0∪m′•0, r′ ∈ k′•0∪m′•0∪n′•0∪n′•0∪n′•0, s′ ∈ k•0∪m′•0∪n′•0∪w′•0∪w′•0∪w′•0∪w′•0}
= {((x1, y1T, z1I, t1F ), (x′1, y′1T, z′1I, t′1F )) : x1 ∈ k • a1 + k′ • a2,
y1 ∈ k • b1 + k′ • b2 ∪m • a1 +m′ • a2 ∪m • b1 +m′ • b2, z1 ∈ k • c1 + k′ • c2 ∪m • c1 +m′ • c2 ∪n • a1 +
n′ •a2 ∪n • b1+n′ • b2 ∪n • c1+n′ • c2, t ∈ k • d1+ k′ • d2 ∪m • d1+m′ • d2 ∪n • d1+n′ • d2 ∪w •a1+
w′ • a2 ∪w • b1 +w′ • b2 ∪w • c1 +w′ • c2 ∪w • d1 +w′ • d2, x′1 ∈ 0, y′1 ∈ 0, z′1 ∈ 0, t′1 ∈ 0} ⊆ N(T, I, F ).
=⇒ α • u+ β • v ⊆ N(T, I, F ).
Lastly, we can see from the definition of N(T, I, F ) that N(T, I, F ) contains a proper subset which is a hy-
pervector space over K.
To this end we can conclude that N(T, I, F ) is a super strong NQ-Hypervector space.

Proposition 3.20. The intersection of any two

1. super strong NQ-Hypersubspaces of a super strong NQ-Hypervector space V (T, I, F ) over a neutro-
sophic quadruple field (K, I, F ) is again a super strong NQ-Hypersubspace of V (T, I, F ).

2. strong NQ-Hypersubspaces of a strong NQ-Hypervector space V (T, I, F ) over a neutrosophic field
K(I) is again a strong NQ-Hypersubspace of V (T, I, F ).

3. weak NQ-Hypersubspaces of a weak NQ-Hypervector space V (T, I, F ) over a field K is again a weak
NQ-Hypersubspace of V (T, I, F ).

Proof: Same as in classical case.

Proposition 3.21. Let S(T, I, F ) be a super strong NQ-Hypersubspace,U(T, I, F ) be a strong NQ-Hypersubspace
andW (T, I, F ) be weak NQ-Hypersubspace of a super strong NQ-Hypervector space (V (T, I, F ),+, •,K(T, I, F )),
strong NQ-Hypervector space (V (T, I, F ),+, •,K(I)) and weak NQ-Hypervector space (V (T, I, F ),+, •,K)
respectively. Then

1. S(T, I, F )∩U(T, I, F ) is a strong NQ-Hypersubspace of strong NQ-Hypersubspace (V (T, I, F ),+, •,K(I)).

2. S(T, I, F )∩W (T, I, F ) is a weak NQ-Hypersubspace of weak NQ-Hypersubspace (V (T, I, F ),+, •,K).

3. U(T, I, F )∩W (T, I, F ) is a weak NQ-Hypersubspace of weak NQ-Hypersubspace (V (T, I, F ),+, •,K).

Proof:

1. By 1 of 3.7 we have that every super strong NQ-Hypervector space is a strong NQ-Hypervector space.
Then by 2 of 3.20 the proof follows.

2. By applying 2 of 3.7 and 3 of 3.20 the proof follows easily.

3. By 3 of 3.7 we have that every strong NQ-Hypervector space is a weak NQ-Hypervector space. Then
by applying 3 of 3.20 the proof follows.

Proposition 3.22. Let U1[T, I, F ], U2[T, I, F ], · · · , Un[T, I, F ] be NQ-Hypersubspace of a
super strong[strong] NQ-Hypervector space V (T, I, F ) over a neutrosophic field K(T, I, F )(resp.[K(I)]).
Then

⋂n
i=1 Ui is a NQ-Hypersubspace of V (T, I,K).

Proof: Same as in classical case.

Example 3.23. Let M1[T, I, F ] = K(T, I, F )× {(0, 0T, 0I, 0F )} ⊆ V (T, I, F ) and
M2[T, I, F ] = {(0, 0T, 0I, 0F )} ×K(T, I, F ) ⊆ V (T, I, F ).
Following the approach in Example 3.19, we can establish that M1[T, I, F ] and M2[T, I, F ] are
NQ-Hypersubspaces of V (T, I, F ).
Let ((a, bT, cI, dF ), (0, 0T, 0I, 0F )) ∈M1[T, I, F ] and ((0, 0T, 0I, 0F ), (e, fT, gI, hF )) ∈M2[T, I, F ].
Then
((a, bT, cI, dF ), (0, 0T, 0I, 0F )) + ((0, 0T, 0I, 0F ), (e, fT, gI, hF )) = (((a + 0), (b + 0)T, (c + 0)I, (d +
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0)F ), ((0 + e), (0 + f)T, (0 + g)I, (0 + h)F )) = ((a, bT, cI, dF ), (e, fT, gI, hF ))
But {((a, bT, cI, dF ), (e, fT, gI, hF ))} is not a NQ-subset of M1[T, I, F ] ∪M2[T, I, F ].
Therefore M1[T, I, F ] ∪M2[T, I, F ] is not a NQ-Hypersubspace of V (T, I, F ).
This observation is recorded in the following remark.

Remark 3.24. Let M1[T, I, F ] and M2[T, I, F ] be NQ-Hypersubspaces of a super strong NQ-Hypervector
space V (T, I, F ) over a NQ fieldK(T, I, F ), then generally, The union of two NQ-Hypersubspaces of a super
strong NQ-Hypervector space V (T, I, F ) is not necessarily a NQ-Hypersubspace of V (T, I, F ).

Definition 3.25. Let N1[T, I, F ] and N2[T, I, F ] be any two NQ-Hypersubspaces of a super strong NQ-
Hypervector space V (T, I, F ) over a NQ fieldK(T, I, F ) then the sum ofN1[T, I, F ] andN2[T, I, F ] denoted
by N1[T, I, F ] + N2[T, I, F ] is called NQ Hyperlinear sum or NQ linear sum of the NQ-Hypersubspaces
N1[T, I, F ] and N2[T, I, F ]. And it is defined by the set⋃

{n1 + n2 : n1 = (a1, b1T, c1I, d1F ) ∈ N1[T, I, F ], n2 = (a2, b2T, c2I, d2F ) ∈ N2[T, I, F ]}

The NQ Hyperlinear sum ofN1[T, I, F ] andN2[T, I, F ] is called the direct sum of the NQ-Hypersubspaces
N1[T, I, F ] and N2[T, I, F ] if N1[T, I, F ] ∩N2[T, I, F ] = {θ}.

Proposition 3.26. Let N1[T, I, F ] and N2[T, I, F ] be any two NQ-Hypersubspaces of a super strong NQ-
Hypervector space V (T, I, F ) over a NQ field K(T, I, F ). Then

1. NQ Hyperlinear sum of N1[T, I, F ] and N2[T, I, F ] is a NQ-Hypersubspace of V (T, I, F ).

2. NQ Hyperlinear sum of N1[T, I, F ] and N2[T, I, F ] is the least NQ-Hypersubspace of V (T, I, F ) con-
taining N1[T, I, F ] and N2[T, I, F ].

Proof:

1. Since θ = (0, 0T, 0I, 0F ) ∈ N1[T, I, F ] and θ = (0, 0T, 0I, 0F ) ∈ N2[T, I, F ],
then {θ + θ} ⊆ N1[T, I, F ] +N2[T, I, F ]
=⇒ {θ} ⊆ N1[T, I, F ] +N2[T, I, F ] =⇒ θ ∈ N1[T, I, F ] +N2[T, F, I],
therefore N1[T, I, F ] +N2[T, I, F ] is non-empty.
Let u = (a, bT, cI, dF ), v = (e, fT, gI, hF ) ∈ N1[T, I, F ] +N2[T, I, F ] , then ∃
u1 = (a1, b1T, c1I, d1F ), u2 = (a2, b2T, c2I, d2F ) ∈ N1[I1, I2] and v1 = (e1, f1T, g1I, h1F )
v2 = (e1, f1T, g1I, h1F ) ∈ N2[I1, I2] such that u ∈ u1 + v1 and v ∈ u2 + v2.
Let α = (p, qT, rI, sF ), β = (p′, q′T, r′I, s′F ) ∈ K(T, I, F ).

Then α • u+ β • v ⊆ α • (u1 + v1) + β • (u2 + v2)
= (p, qT, rI, sF )•((a1+e1), (b1+f1)T, (c1+g1)I, (d1+h1)F )+(p′, q′T, r′I, s′F )•((a2+e2), (b2+
f2)T, (c2 + g2)I, (d2 + h2)F )
⊆ {(x1, y1T, z1I, w1F ) : x1 ∈ p • (a1 + e1), y1 ∈ p • (b1 + f1) ∪ q • (a1 + e1) ∪ q • (b1 + f1), z1 ∈
p • (c1 + g1) ∪ q • (c1 + g1) ∪ r • (a1 + e1) ∪ r • (b1 + f1) ∪ r • (c1 + g1), w1 ∈ p • (d1 + h1) ∪ q •
(d1 + h1) ∪ r • (d1 + h1) ∪ s • (a1 + e1) ∪ s • (b1 + f1) ∪ s • (c1 + g1) ∪ s • (d1 + h1)}
+ {(x2, y2T, z2I, w2F ) : x2 ∈ p′ • (a2 + e2), y2 ∈ p′ • (b2 + f2)∪ q′ • (a2 + e2)∪ q′ • (b2 + f2), z2 ∈
p′ • (c2 + g2) ∪ q′ • (c2 + g2) ∪ r′ • (a2 + e2) ∪ r′ • (b2 + f2) ∪ r′ • (c2 + g2), w2 ∈ p′ • (d2 + h2) ∪
q′ • (d2 + h2) ∪ r′ • (d2 + h2) ∪ s′ • (a2 + e2) ∪ s′ • (b2 + f2) ∪ s′ • (c2 + g2) ∪ s′ • (d2 + h2)}
= {(x, yT, zI, wF ) : x ∈ (p • a1 + p • e1 + p′ • a2 + p′ • e2), y ∈ (p • b1 + p • f1 + p′ • b2 + p′ • f2)∪
(q • a1 + q • e1 + q′ • a2 + q′ • e2) ∪ (q • b1 + q • f1 + q′ • b2 + q′ • f2),
z ∈ (p • c1 + p • g1 + p′ • c2 + p′ • g2) ∪ (q • c1 + q • g1 + q′ • c2 + q′ • g2) ∪ (r • a1 + r • e1 + r′ •
a2 + r′ • e2) ∪ (r • b1 + r • f1 + r′ • b2 + r′ • f2) ∪ (r • c1 + r • g1 + r′ • c2 + r′ • g2)
w ∈ (p • d1 + p • h1 + p′ • d2 + p′ • h2)∪ (q • d1 + q • h1 + q′ • d2 + q′ • h2)∪ (r • d1 + r • h1 + r′ •
d2 + r′ • h2)∪ (s • a1 + s • e1 + s′ • a2 + s′ • e2)∪ (s • b1 + s • f1 + s′ • b2 + s′ • f2)∪ (s • c1 + s •
g1 + s′ • c2 + s′ • g2) ∪ (s • d1 + s • h1 + s′ • d2 + s′ • h2)}
= {(k1,m1T, n1I, j1F ) : k1 ∈ (p • a1+ p′ • a2),m1 ∈ (p • b1+ p′ • b2)∪ (q • a1+ q′ • a2)∪ (q • b1+
q′ •b2), n1 ∈ (p•c1+p′ •c2)∪ (q •c1+q′ •c2)∪ (r •a1+r′ •a2)∪ (r •b1+r′ •b2)∪ (r •c1+r′ •c2),
j1 ∈ (p • d1 + p′ • d2)∪ (q • d1 + q′ • d2)∪ (r • d1 + r′ • d2)∪ (s • a1 + s′ • a2)∪ (s • b1 + s′ • b2)∪
(s • c1 + s′ • c2) ∪ (s • d1 + s′ • d2)}
+ {(k2,m2T, n2I, j2F ) : k2 ∈ (p • e1 + p′ • e2),m2 ∈ (p • f1 + p′ • f2)∪ (q • e1 + q′ • e2)∪ (q • f1 +
q′ •f2), n2 ∈ (p•g1+p′ •g2)∪ (q •g1+q′ •g2)∪ (r •e1+r′ •e2)∪ (r •f1+r′ •f2)∪ (r •g1+r′ •g2)
j2 ∈ (p • h1 + p′ • h2)∪ (q • h1 + q′ • h2)∪ (r • h1 + r′ • h2)∪ (s • e1 + s′ • e2)∪ (s • f1 + s′ • f2)∪
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(s • g1 + s′ • g2) ∪ (s • h1 + s′ • h2)} ⊆ N1[T, I, F ] +N2[T, I, F ].
Hence α • u+ β • v ⊆ N1[T, I, F ] +N2[T, I, F ].
Now since N1, N2 are proper subsets of N1[T, I, F ] and N2[T, I, F ] respectively, with both N1 and
N2 being hypervector spaces. Then N1 + N2 is a hypervector space which is properly contained in
N1[T, I, F ]+N2[T, I, F ]. Then we can conclude thatN1[T, I, F ]+N2[T, I, F ] is a NQ-Hypersubspace.

2. Let N [T, I, F ] be NQ-Hypersubspace of V (T, I, F ) such that N1[T, I, F ] ⊆ N [T, I, F ] and
N2[T, I, F ] ⊆ N [T, I, F ].
Let u = (a, bT, cI, dF ) ∈ N1[T, I, F ] + N2[T, I, F ], then ∃u1 = (a1, b1T, c1I, d2F ) ∈ N1[T, I, F ]
and u2 = (a2, b2T, , c2I, d2F ) ∈ N2[T, I, F ] such that u ∈ u1 + u2.
Since N1[T, I, F ] ⊆ N [T, I, F ] and N2[T, I, F ] ⊆ N [T, I, F ], then u1, u2 ∈ N [T, I, F ].
Again since N [T, I, F ] is a NQ-Hypersubspace of V (T, I, F ), then we have that
u1 + u2 ⊆ N [T, I, F ] =⇒ u ∈ N [T, I, F ].
Hence N1[T, I, F ] +N2[T, I, F ] ⊆ N [T, I, F ] and the proof follows.

Proposition 3.27. Let V (T, I, F ) be a super strong NQ-Hypervector space over a NQ-field K(T, I, F ),
let u1 = (a1, b1T, c1I, d1F ), u2 = (a2, b2T, c2I, d2F ), · · · , un = (an, bnT, cnI, d2F ) ∈ V (T, I, F ) and
α1 = (k1,m1T, r1I, t1F ), α2 = (k2,m2T, r2I, t2F ) · · · , αn = (kn,mnT, rnI, tnF ) ∈ K(T, I, F ). Then

1. N(T, I, F ) =
⋃
{α1 • u1 + α2 • u2 + · · · + αn • un : α1, α2, · · · , αn ∈ K(T, I, F )} is a NQ-

Hypersubspace of V (T, I, F ).

2. N(T, I, F ) is the smallest NQ-Hypersubspace of V (T, I, F ) containing u1, u2, · · · , un.

Proof:

1. Follow similar approach as that of proposition 3.26 above.

2. Suppose that H(T, I, F ) is a super strong NQ-Hypersubspace of V (T, I, F ) containing
u1 = (a1, b1T, c1I, d1F ), u2 = (a2, b2T, c2I, d2F ), · · · , un = (an, bnT, cnI, dnF ).
Let t ∈ N(T, I, F ), then there exists α1 = (k1,m1T, p1I, q1F ), α2 = (k2,m2T, p2I, q2F ), · · · ,
αn = (kn,m1T, p1I, q1F ) ∈ K(T, I, F ) such that

t ∈ α1 • (a1, b1T, c1I, d1F )+α2 • (a2, b2T, c2I, d2F )+ · · ·+αn • (an, bnT, cnI, dnF ) ⊆ H(T, I, F )

Therefore t ∈ H(T, I, F ) =⇒ N(T, I, F ) ⊆ H(T, I, F ).
Hence N(T, I, F ) is the smallest NQ-Hypersubspace of V (T, I, F ) containing u1, u2, · · · , un.

Note: The NQ-Hypersubspace N(T, I, F ) of the super strong NQ-Hypervector space V (T, I, F ) over a NQ
fieldK(T, I, F ) of proposition 3.27 is said to be generated or spanned by the NQ-Hypervectors u1, u2, · · · , un
and we write N(T, I, F ) = span{u1, u2, · · · , un}.

Definition 3.28. LetN1[T, I, F ] andN2[T, I, F ] be two NQ-Hypersubspaces of a super strong NQ-Hypervector
space (V (T, I, F ),+, •,K(T, I, F )) over a NQ field K(T, I, F ). V (T, I, F ) is said to be the direct sum of
N1[T, I, F ] and N2[T, I, F ] written V (T, I, F ) = N1[T, I, F ]⊕N2[T, I, F ] if every element v ∈ V (T, I, F )
can be written uniquely as v = n1 + n2 where n1 ∈ N1[T, I, F ] and n2 ∈ N2[T, I, F ].

Proposition 3.29. LetN1[T, I, F ] andN2[T, I, F ] be two NQ-Hypersubspaces of a super strong NQ-Hypervector
space (V (T, I, F ),+, •,K(T, I, F )) over a NQ field K(T, I, F ). V (T, I, F ) = N1[T, I, F ]⊕N2[T, I, F ] if
and only if the following conditions hold:

1. V (T, I, F ) = N1[T, I, F ] +N2[T, I, F ].

2. N1[T, I, F ] ∩N2[T, I, F ] = {θ}.

Proof : Same as in classical case.

Example 3.30. Let V (T, I, F ) = R3(T, I, F ) be a super strong NQ-Hypervector space over a NQ-field
R(T, I, F ) and let
N1(T, I, F ) = {(u, θ, w) : u = (a, bT, cI, dF ), w = (k,mT, nI, pF ) ∈ R(T, I, F )} and
N2(T, I, F ) = {(θ, v, θ) : v = (e, fT, gI, hF ) ∈ R(T, I, F )}, be super strong NQ-Hypersubspaces of
V (T, I, F ). Then V (T, I, F ) = N1(T, I, F )⊕N2(T, I, F ).
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To see this, let x = (u, v, w) ∈ V (T, I, F ), then x = (u, θ, w) + (θ, v, θ), so
x ∈ N1(T, I, F ) +N2(T, I, F ). Hence V (T, I, F ) = N1(T, I, F ) +N2(T, I, F ).
To show that N1(T, I, F ) ∩N2(T, I, F ) = {θ}, let x = (u, v, w) ∈ N1(T, I, F ) ∩N2(T, I, F ).
Then v = θ, i.e (e, fT, gI, hF ) = (0, 0T, 0I, 0F ) because x lies in N1(T, I, F ), and u = w = θ i.e
(a, bT, cI, dF ) = (k,mT, nI, pF ) = (0, 0T, 0I, 0F ) because x lies in N2(T, I, F ). Thus x = (θ, θ, θ) = θ,
so θ = (0, 0T, 0I, 0F ) is the only NQ-Hypervector in N1(T, I, F ) ∩N2(T, I, F ).
Hence N1(T, I, F ) ∩N2(T, I, F ) = {0, 0T, 0I, 0F} = {θ}.
=⇒ V (T, I, F ) = N1(T, I, F )⊕N2(T, I, F ).

Definition 3.31. Let N [T, I, F ] be a NQ-Hypersubspace of a super strong NQ-Hypervector space
(V (T, I, F ),+, •,K(T, I, F )) over a NQ-fieldK(T, I, F ). The quotient V (T, I, F )/N [T, I, F ] is defined by
the set

{[v] = v +N [T, I, F ] : v ∈ V (T, I, F )}.

If for every [u], [v] ∈ V (T, I, F )/N [T, I, F ] and α ∈ K(T, I, F ), we define:

[u]⊕ [v] = (u+ v) +N [T, I, F ]

and
α� [u] = [α • u] = {[x] : x ∈ α • u},

it can be shown that (V (T, I, F )/N [T, I, F ],⊕,�,K(T, I, F )) is a super strong NQ-Hypervector space over
NQ-field K(T, I, F ) called a super strong NQ quotient hypervector space.

4 Linear Dependence, Independence, Bases and Dimensions of NQ-
Hypervector Space

Definition 4.1. Let (V (T, I, F ),+, •,K(T, I, F )) be a super strong NQ-Hypervector space over a NQ field
K(T, I, F ) and let
B(T, I, F ) = {u1 = (a1, b1T, c1I, d1F ), u2 = (a2, b2T, c2I, d2F ), · · · , un = (an, bnT, cnI, dnF )} be a
subset of V (T, I, F ). B(T, I, F ) is said to generate or span V (T, I, F ) if V (T, I, F ) = span(B(T, I, F )).

Example 4.2. Let V (T, I, F ) = R4(T, I,K) be a super strong NQ-Hypervector space over a NQ field
R(T, I, F ) and let B(T, I, F ) = {u1 = ((1, 0T, 0I, 0F ), (0, 0T, 0I, 0F ), (0, 0T, 0I, 0F ), (0, 0T, 0I, 0F )),
u2 = ((0, 0T, 0I, 0F ), (1, 0T, 0I, 0F ), (0, 0T, 0I, 0F ), (0, 0T, 0I, 0F )),
u3 = ((0, 0T, 0I, 0F ), (0, 0T, 0I, 0F ), (1, 0T, 0I, 0F ), (0, 0T, 0I, 0F )),
u4 = ((0, 0T, 0I, 0F ), (0, 0T, 0I, 0F ), (0, 0T, 0I, 0F ), (1, 0T, 0I, 0F ))}.
Then B(T, I, F ) spans V (T, I, F ).

Definition 4.3. Let (V (T, I, F ),+, •,K(T, I, F )) be a super strong NQ-Hypervector space over NQ-field
K(T, I, F ). The NQ vector u = (a, bT, cI, dF ) ∈ V (T, I, F ) is said to be a linear combination of the NQ
vectors u1 = (a1, b1T, c1I, d1F ), u2 = (a2, b2T, c2I, d2F ), · · · , un = (an, bnT, cnI, dnF ) ∈ V (I1, I2) if
there exists NQ-scalarsα1 = (k1,m1T, s1I, t1F ), α2 = (k2,m2T, s2I, t2F ), · · · , αn = (kn,mnT, snI, tnF ) ∈
K(T, I, F ) such that

u ∈ α1 • u1 + α2 • u2 + · · ·+ αn • un.

Example 4.4. Let V (T, I, F ) = R(T, I, F ) be a weak NQ-Hypervector space over a field K = R. An
element v = (1, 1T, 4I, 7F ) ∈ V (T, I, F ) is a linear combination of the elements v1 = (1, 2T,−1I,−2F ),
v2 = (3, 5T, 2I, 3F ) ∈ V (T, I, F )
Since

(1, 1T, 4I, 7F ) ∈ −2 • (1, 2T,−1I,−2F ) + 1 • (3, 5T, 2I, 3F ).

Definition 4.5. Let (V (T, I, F ),+, •,K(T, I, F )) be a super strong NQ-Hypervector space over a NQ field
K(T, I, F ) and let
B(T, I, F ) = {u1 = (a1, b1T, c1I, d1F ), u2 = (a2, b2T, c2I, d2F ), · · · , un = (an, bnT, cnI, dnF )} be a
subset of V (T, I, F ).

1. B(T, I, F ) is called a linearly dependent set if there exists NQ scalars α1 = (k1,m1T, s1I, t1F ), α2 =
(k2,m2T, s2I, t2F ), · · · , αn = (kn,mnT, snI, tnF ) (not all zero) such that

θ ∈ α1 • u1 + α2 • u2 + · · ·+ αn • un.
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2. B(T, I, F ) is called a linearly independent set if

θ ∈ α1 • u1 + α2 • u2 + · · ·+ αn • un

implies that α1 = α2 = · · · = αn = (0, 0T, 0I, 0F ) = θ

Example 4.6. Let V (T, I, F ) = R(T, I, F ) be a weak NQ-Hypervector space over a field K = R. The sub-
set B(T, I, F ) = {(5,−7T, 5I, 4F ), (3,−4T, 2I, 2F ), (−2, 3T,−3T,−2T )} of V (T, I, F ) is NQ linearly
dependent set since

θ ∈ 1 • (5,−7T, 5I, 4F ) + (−1) • (3,−4T, 2I, 2F ) + 1 • (−2, 3T,−3T,−2T )

Example 4.7. Let V (T, I, F ) = R(T, I, F ) be a weak NQ-Hypervector space over a fieldK = R. The subset
B(T, I, F ) = {(7, 0T, 0I, 0F ), (0, 3T, 5I, 0F ), (0, 0T, 0T,−8T )} of V (T, I, F ) is NQ linearly independent
set over R because we can not find a, b, c ∈ R such that

θ ∈ a • (7, 0T, 0I, 0F ) + b • (0, 3T, 5I, 0F ) + c • (0, 0T, 0T,−8T )

If possible then θ ∈ a • (7, 0T, 0I, 0F ) + b • (0, 3T, 5I, 0F ) + c • (0, 0T, 0T,−8T ) implies that;
0 ∈ a • 7 + b • 0 + c • 0 which forces a = 0,
0 ∈ a • 0 + b • 3 + c • 0 which forces b = 0,
0 ∈ a • 0 + b • 5 + c • 0 which forces b = 0 and
0 ∈ a • 0 + b • 0 + c • −8 which forces c = 0.
Thus the equations are consistent and a = b = c = 0.

Proposition 4.8. Let (V (T, I, F ),+, •,K) be a weak NQ-Hypervector space over a field K. Any singleton set
of non-null NQ vector of the weak NQ-Hypervector space V (T, I, F ) is linearly independent.

Proof: Suppose that θ 6= v = (a, bT, cI, dF ) ∈ V (T, I, F ). Let θ ∈ k • v and suppose that θ 6= k ∈ K.
Then k−1 ∈ K and therefore, k−1 • θ ⊆ k−1 • (k • v) so that

θ ∈ (k−1k) • v
= 1 • v
= {(x, yT, zI, wF ) : x ∈ 1 • a, y ∈ 1 • b, z ∈ 1 • c, w ∈ 1 • d}
= {(x, yT, zI, wF ) : x ∈ {a}, y ∈ {b}, z ∈ {c}, w ∈ {d}}
= {(a, bT, cI, dF )}
= {v}

This shows that v = θ which is a contradiction. Hence, k = θ and thus, the singleton {v} is a linearly
independent set.
We note that the singleton set will be linearly dependent if it contains a null NQ-vector and θ 6= k ∈ K. This
observation is recorded in the next proposition.

Proposition 4.9. Let (V (T, I, F ),+, •,K) be a weak NQ-Hypervector space over a field K. Any set of NQ-
vectors of the weak NQ-Hypervector space V (T, I, F ) containing the null NQ-vector is always linearly de-
pendent.

Proof: Follows from Proposition 4.8

Proposition 4.10. Let (V (T, I, F ),+, •,K) be a weak NQ-Hypervector space over a field K and let

B(I1, I2) = {u1 = (a1, b1T, c1I, d1F ), u2 = (a2, b2T, c2I, d2F ), · · · , un = (an, bnT, cnI, dnF )}

be a subset of V (T, I, F ). Then B(T, I, F ) is a linearly dependent set if and only if at least one element of
B(T, I, F ) can be expressed as a linear combination of the remaining elements of B(T, I, F ).

Proof : Suppose that B(T, I, F ) is a linearly dependent set. Then there exists scalars k1, k2, · · · , kn not
all zero in K such that

θ ∈ k1 • u1 + k2 • u2 + · · ·+ kn • un.

Suppose that k1 6= 0, then k−11 ∈ K and therefore

k−11 • θ ⊆ k−11 • (k1 • u1 + k2 • u2 + · · ·+ kn • un)
= (k−11 k1) • u1 + (k−12 k2) • u2 + · · ·+ (k−1n kn) • un
= 1 • u1 + (k−11 k2) • u2 + · · ·+ (k−11 kn) • un
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This implies that

−u1 ∈ (k−11 k2) • u2 + · · ·+ (k−11 kn) • un
(u1) ∈ (−1) • [(k−11 k2) • u2 + · · ·+ (k−11 kn) • un]

⊆ (−1) • ((k−11 k2) • u2 + · · ·+ (−1) • (k−1n kn) • un)
⊆ (−k−11 k2) • u2 + (−k−11 k3) • u3 + · · ·+ (−k−11 kn) • un.

This shows that u1 ∈ span{u2, u3, · · · , un}.
Conversely, suppose that u1 ∈ span{u2, u3, · · · , un} and suppose that 0 6= −1 ∈ K. Then there exists
k2, k3, · · · , kn ∈ K such that

u1 ∈ k2 • u2 + k3 • u3 + · · ·+ kn • un
and we have

u1 + (−u1) ∈ (−1) • u1 + k2 • u2 + k3 • u3 + •+ kn • un.

from which we have
θ ∈ (−1) • u1 + k2 • u2 + k3 • u3 + · · ·+ kn • un.

Since −1 6= 0 ∈ K, it follows that B(T, I, F ) is a linearly dependent set.

Proposition 4.11. Let (V (T, I, F ),+, •,K(T, I, F )) be a super strong NQ-Hypervector space over a NQ-
fieldK(T, I, F ) and letM(T, I, F ) andN(T, I, F ) be subsets of V (T, I, F ) such thatM(T, I, F ) ⊆ N(T, I, F ).

1. If M(T, I, F ) is linearly dependent, then N(T, I, F ) is linearly dependent.

2. If N(T, I, F ) is linearly independent, then M(T, I, F ) is linearly independent.

Proof: Same as in classical case.

Definition 4.12. Let V (T, I, F ) be a super strong(strong) NQ-Hypervector space over a NQ field K(T, I, F )
(resp. neutrosophic field K(I)) and let
B(T, I, F ) = {u1 = (a1, b1T, c1I, d1F ), u2 = (a2, b2T, c2I, d2F ), · · · , un = (an, bnT, cnI, dnF )} be a
subset of V (T, I, F ). B(T, I, F ) is said to be a basis for V (T, I, F ) if the following conditions hold:

1. B(T, I, F ) is a linearly independent set

2. V (T, I, F ) = span(B(T, I, F )).

IfB(T, I, F ) is finite and its cardinality is n, then V (T, I, F ) is called an n-dimensional super strong(strong)
NQ-Hypervector space and we write dimss(V (T, I, F ))(resp.(dimsV (T, I, F ))) = n. If B(T, I, F ) is not
finite, then V (T, I, F ) is called an infinite-dimensional super strong(strong) NQ-Hypervector space.

Example 4.13. In 4.2, B(T, I, F ) is a basis for V (T, I, F ) and dimssV (T, I, F ) = 4

Proposition 4.14. Let (V (T, I, F ),+, •,K(T, I, F )) be a finite dimensional super strong NQ-Hypervector
space over a NQ field K(T, I, F ) and let
B(T, I, F ) = {x1 = (a1, b1T, c1I, d1F ), x2 = (a2, b2T, c2I, d2F ), · · · , un = xn = (an, bnT, cnI, dnF )}
be a basis for V (T, I, F ) . Then every non null NQ-Hypevector x = (a, bT, cI, dF ) ∈ V (T, I,K) has a
unique representation.

Proof: SinceB(T, I, F ) is a basis for V (T, I, F ) and x ∈ V (T, I,K), there existα1 = (k1,m1T, n1I, t1F ),
α2 = (k2,m2T, n2I, t2F ), · · · , αn = (kn,mnT, nnI, tnF ) such that

x ∈ α1 • x1 + α2 • x2 + · · ·+ αn • xn (1).

Suppose we also let x ∈ β1 • x1 + β2 • x2 + · · ·+ βn • xn, for some β1 = (p1, q1T, r1I, s1F ),
β2 = (p2, q2T, r2I, s2F ), · · · , βn = (pn, qnT, rnI, snF ) ∈ K(T, I, F ).
Therefore, −x ∈ (−1) • x ⊆ (−1) • (β1 • x1 + β2 • x2 + · · ·+ βn • xn)

=⇒ −x ∈ ((−1) • (β1 • x1)) + ((−1) • (β2 • x2)) + · · ·+ ((−1) • (βn • xn))
= ((−1 • β1) • x1) + ((−1 • β2) • x2) + · · ·+ ((−1 • βn) • xn))
= (−β1) • x1 + (−β2) • x2 + · · ·+ (−βn) • xn.

Therefore
−x ∈ (−β1) • x1 + (−β2) • x2 + · · ·+ (−βn) • xn (2).

Doi :10.5281/zenodo.3752906 33



International Journal of Neutrosophic Science (IJNS) Vol. 4, No.1 , PP.20-35 , 2020

From (1) and (2) we obtain

x+ (−x) ⊆ (α1 • x1 + α2 • x2 + · · ·+ αn • xn) + ((−β1) • x1 + (−β2) • x2 + · · ·+ (−βn) • xn).

Therefore θ ∈ x+ (−x) ⊆ (α1 + (−β1)) • x1 + (α2 + (−β2)) • x2 + · · ·+ (αn + (−βn)) • xn.
Since {x1, x2, · · · , xn} is a basis for V (T, I, F ) and

θ ∈ (α1 − β1) • x1 + (α2 − β2) • x2 + · · ·+ (αn − βn) • xn.

Then it follows that θ ∈ αi − βi, for all i = 1, 2, · · · , n. Hence ai = bi , for all i = 1, 2, · · · , n.

5 Conclusion
In this paper, we have studied Hypervector Space in the Neutrosophic Quadruple (NQ) environment. Their
basic properties have been extended and established in the Neutrosophic Quadruple (NQ) environment. We
hope to study the homomorphsms and establish more advanced properties of this structure in our future work.
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Abstract  

In this paper, neutrosophic crisp supra bi-topological structure, which is a more general structure than neutrosophic 

crisp supra topological spaces, is built on neutrosophic crisp sets. The necessary arguments which are pairwise 

neutrosophic crisp supra open set, pairwise neutrosophic crisp supra closed set, pairwise neutrosophic crisp supra 

closure, pairwise neutrosophic crisp supra interior is defined, and their basic properties are presented. Finally, many 

examples are presented.   

Keywords: Neutrosophic crisp supra bi-topological spaces, neutrosophic crisp supra pairwise open (closed) sets, 

neutrosophic crisp supra bi-open  (closed) sets. 
 

1. Introduction 

The concept of neutrosophy is a new branch of Philosophy introduced by Smarandache [1,2], and has many 

applications in different fields of sciences such as topology. As a generalization of the concept of topological spaces, 

Salama and Smarandache [3] defined neutrosophic crisp topological spaces in 2014. The crisp supra topological space 

was introduced by Mashhour et al. [4] In 1983, as a generalization of the concept of topological space. 

Jayaparthasarathy et al.[5] generalized this concept and introduced the concept of neutrosophic supra topological space 

in 2019, by using the neutrosophic fuzzy sets. Also, Al-Hamido presented a more general study, where he created the 

concept of neutrosophic crisp supra topological spaces [6] in 2020. In 2018 AL-Nafee et al. [7] introduced the notion 

of new neutrosophic crisp points and neutrosophic crisp separation axioms in neutrosophic crisp topological space. 

The concept of supra bi-topological spaces was introduced by Gowri, and Rajayal [8 ] as an extension of supra 

topological spaces in 2017. On the other hand, the concept of bi-topological spaces was introduced by Kelly [9] as an 

extension of topological spaces in 1963. He did define bi-topological space as a set endowed with two topologies.  

The concept of neutrosophic bi-topological spaces was introduced by Al-Hamido [10 ] as an extension of neutrosophic 

topological spaces in 2019. This concept has been studied in [11]. Also, the concept of neutrosophic crisp bi-

HP
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topological spaces was introduced by Al-Hamido [12] as an extension of neutrosophic crisp topological spaces in 

2018. Since the discovery of neutrosophic topological space and neutrosophic crisp topological space, there has been 

a concerted research efforts to find new neutrosophic open sets and neutrosophic crisp open sets, for more detail see 

[13-31]. 

In this paper, we use the neutrosophic crisp sets to introduce neutrosophic crisp supra bi-topological space. Also, we 

introduce new class of neutrosophic crisp supra open (closed) sets in this space, as pairwise neutrosophic crisp supra 

open set, pairwise neutrosophic crisp supra closed set, pairwise neutrosophic crisp supra closure, and we study some 

basic properties of this new neutrosophic crisp supra open (closed) sets. 

2. Preliminaries 

In this part, we recall some basic definitions and properties which are useful in this paper.  

Definition 2.1. [3]  

Let � ≠ ∅ be a fixed set. A neutrosophic crisp set (NCS) U is an object having the form U =< ��,��,�� >; 

��,��	���	�� are subsets of X, satisfying ��Ç�� = ∅,��Ç�� = ∅		���		��Ç�� = ∅. 

Definition 2.2. [3]  

∅� maybe defined in four ways as a neutrosophic crisp set, as follows : 

1. ∅�=<∅, ∅, X>. 
2. ∅�=<∅, X, ∅ >. 
3. ∅�=<∅, X, X >. 
4. ∅�=<∅, ∅, ∅ >. 

�� may be defined in four ways as a neutrosophic crisp set, as follows : 

1. ��=<X, ∅, ∅>. 
2. ��=<X, X, ∅ >. 
3. ��=<X, ∅, X >. 
4. ��=<X, X, X >. 

Definition 2.3. [3]  

Let � ≠ ∅ be a fixed set, and U =< ��,��,�� >,V =< ��,��,�� > are two neutrosophic crisp sets, then:  

UÈV may be defined as two ways, as follows : 

1. � ∪ � =< �� ∪ ��,�� ∪ ��,�� ∩ �� >. 

2. � ∪ � =< �� ∪ ��,�� ∩ ��,�� ∩ �� >. 

� ∩ � may be defined as two ways, as follows : 

3. � ∩ � =< �� ∩ ��,�� ∩ ��,�� ∪ �� >. 
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4. � ∩ � =< �� ∩ ��,�� ∪ ��,�� ∪ �� >. 

Definition 2.4. [3]  

A neutrosophic crisp topology (NCT) on a non-empty set  is a family T of neutrosophic crisp subsets in  may 

be satisfying the following axioms: 

1. �� and  ∅�belong to T. 

2. T is closed under finite intersection.  

3. T is closed under arbitrary union. 

The pair (X, T) is a neutrosophic crisp topological space (NCTS) in X. Moreover,  the elements in T are said to be 

neutrosophic crisp open sets (NCOS). A neutrosophic crisp set F is closed (NCCS) if and only if its complement 

is a neutrosophic crisp open set. 

Definition 2.5. [6]   

A neutrosophic crisp supra topology (NCST) on a non-empty set X is a family S of neutrosophic crisp subsets in X  

may be satisfying the following axioms: 

1. �� and  ∅�belong to S. 

2. S is closed under arbitrary union. 

The pair(X, S) is said to be a neutrosophic crisp supra topological space (NCSTS) in X. Moreover,  the elements in 

S are said to be neutrosophic crisp supra open sets (NCSOS). A neutrosophic crisp set F is neutrosophic crisp supra 

closed (NCSCS) if and only if its complement is neutrosophic crisp supra open. 

3. Neutrosophic crisp supra bi-topological space 

In this section, we introduce the neutrosophic crisp supra bi-topological space. Moreover, we introduce new types of 

neutrosophic crisp supra open (closed) sets in this space and study their properties. 

Definition 3.1.  

Let �,� is two neutrosophic crisp supra topologies on a nonempty set X then (�,�,�)  is  a neutrosophic 

crisp supra bi-topological space (SBi-NCTS for short ). 

Example 3.2.  

Let X={a,b}, 1={∅�, ��, A, B, E}, 2={∅�, ��, B, G}; A={<{a},,>}, B={<,{b},>}, E={<{a},{b},>}, 

G={<,,{a}>}.   

Then 	(	X	,
�
)	,(	X	,

�
) are neutrosophic crisp supra spaces. Therefore(�,�,�)  is a neutrosophic crisp 

supra bi-topological space. 

Definition 3.3.  

X X

cF

cF
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Let (X,�,�) be a neutrosophic crisp supra bi-topological space. Elements in � ∪ � are said to be 

neutrosophic crisp supra bi-open sets ( SBi-NCOS for short ). A neutrosophic crisp set F is neutrosophic crisp supra 

closed (SBi-NCCS for short ) if and only if its complement Fc is a neutrosophic crisp supra bi-open set. 

- The family of all neutrosophic crisp supra bi-open sets is denoted by ( SBi-NCOS(X) ). 

- The family of all neutrosophic crisp supra bi-closed sets is denoted by ( SBi-NCCS(X) ). 

Example  3.4.   

In Example 3.2, the neutrosophic crisp supra bi-open sets (SBi-NCOS) are :  

SBi-NCOS(X) ={∅�, ��, A, B, E , G}. 

Remark  3.5.  

1. Every neutrosophic crisp supra open sets in 	(	X	,
�
)	or	(	X	,

�
) is a neutrosophic crisp supra bi-open set. 

2. Every neutrosophic crisp supra closed sets in 	(	X	,
�
)	or	(	X	,

�
) is a neutrosophic crisp supra bi-closed 

set. 

Remark 3.6.  

Every neutrosophic crisp supra bi-topological space (�,�,�)  induces two neutrosophic crisp supra 

topological spaces as 	(	X	,
�
)	,(	X	,

�
) . 

Remark 3.7.  

If (�,) is neutrosophic crisp supra topological space. Then (�,,) is a neutrosophic crisp supra bi-
topological space. 

Remark 3.8. 

 Let (�,�,�) is a neutrosophic crisp supra bi-topological space ( SBi-NCTS). Then the union of two 

neutrosophic crisp supra bi-open (bi-closed) sets is not necessary a neutrosophic crisp supra bi-open (bi-closed)  

set as the following example shows that. 

Example 3.9. 

Let X={a,b}, 1={∅�, ��, A }, 2={∅�, XN, B }; A={<{a},∅,∅>}, B={<,{b},{a}>}. Then (X,�,�)  is a 

neutrosophic crisp supra bi-topological space. 

A, B are two neutrosophic crisp supra bi-open sets but AÈB={<{a},{b},∅>} is not a neutrosophic crisp supra 

bi-open set. 

Also, 	�� ,	��  are two neutrosophic crisp supra bi-closed sets but 	��È��  ={<X, X, {b}>} is not a neutrosophic 

crisp supra bi-closed set. 

Remark 3.10.  

Let (�,�,�) be  a neutrosophic crisp supra bi-topological space ( SBi-NCTS ). Then the intersection of two 

neutrosophic crisp supra bi-open (bi-closed) sets is not necessary a neutrosophic crisp supra bi-open (bi-closed)  

set as the following example shows that. 

Example 3.11.  
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In Example 3.9, A, B are two neutrosophic crisp supra bi-open sets, but AÇB={<∅, ∅,{a}>} is not neutrosophic 

crisp supra bi-open set. 

Also,  �� ,	��  are two neutrosophic crisp supra bi-closed sets, but ��Ç��   ={<{b},{a},X>} is not neutrosophic 

crisp supra bi-closed set. 

4. The interior and the closure via neutrosophic Supra bi-open (closed) sets  

In this section we define the closure and interior neutrosophic crisp supra set based on these new varieties of 

neutrosophic crisp supra open and closed sets. Also, we introduce the basic properties of closure and the interior.  

Definition 4.1. 

 Let (X,�,�) be  a  neutrosophic crisp supra bi-topological space, and A be a neutrosophic crisp  supra set then 

: 

The union of any neutrosophic crisp supra bi-open sets contained in A is called a neutrosophic crisp supra bi-

interior of A ( NCSint(A) ). 

NCSint(A) =È{B  ;BA; BSBi-NCOS(X)}. 

Theorem 4.2. 

 Let (�,�,�) be  a neutrosophic crisp supra bi-topological space. If A, B are neutrosophic crisp supra sets then 

: 

1. NCSint(A)  A. 

2. NCSint(A) is not necessary a neutrosophic crisp supra bi-open set. 

3. AB    NCSint(A)    NCSint(B). 

Proof : 

1. The proof follows from the definition of NCSint(A) as a union of any neutrosophic crisp supra bi-open sets 

contained in A. 

2. The proof follows from Remark 3.8. 

3. Obvious. 

Definition 4.3. 

 Let (X,�,�) be a neutrosophic crisp supra bi-topological space. If A is neutrosophic crisp supra set then : 

The intersection of any a neutrosophic crisp supra bi-closed sets containing A is called neutrosophic crisp supra 
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bi-closure of A ( (NCScl(A) ). 

NCScl(A)=Ç{B  ;BÊA; BSBi-NCCS(X)}. 

Theorem 4.4.  

Let (X,�,�) be  a neutrosophic crisp supra bi-topological space and A be a neutrosophic crisp supra set then: 

1. A NCScl(A). 

2. NCScl(A) is not necessary a neutrosophic crisp supra bi-closed set. 

Proof : 

1. The proof follows from the definition of NCScl(A) as an intersection of any neutrosophic crisp supra bi-

closed set contained A. 

2. The proof follows from Remark 3.10. 

5. Pairwise neutrosophic crisp supra open (closed) sets  

In this section, we introduce new concept of open and closed sets in neutrosophic crisp supra bi-topological space, 

as a pairwise neutrosophic crisp supra open(closed) sets. Also, we investigate the basic properties of this new concept 

of open and closed sets in SBi-NCTS . 

Definition 5.1  

Let (X,�,�)  be a neutrosophic crisp supra bi-topological space. A neutrosophic crisp supra set A over X is said 

to be a pairwise neutrosophic crisp supra open set in (X,�,�) if there exists a neutrosophic crisp supra open set B 

in � and a neutrosophic crisp supra open set C in � such that A=B∪C .  

Definition 5.2 

Let (�,�,�)  be a neutrosophic crisp supra bi-topological space. A neutrosophic crisp supra set A over X is said 

to be a pairwise neutrosophic crisp supra closed set in (�,�,�) if its crisp neutrosophic complement is a pairwise 

neutrosophic crisp supra open set in (�,�,�). Obviously, a neutrosophic crisp set A over X is a pairwise 

neutrosophic crisp supra closed set in (X,�,�) if there exists a neutrosophic crisp supra closed set B in ( � )c 

and a neutrosophic crisp supra closed set C  in ( � )c such that A=B∩C .  

The family of all pairwise neutrosophic crisp supra open (closed) sets in (X,�,�) s denoted by 

PNCSO(X,�,�) [PNCSC(X,�,�)]. 

Example 5.3  

In Example 3.9, the family of all pairwise neutrosophic crisp supra open (closed) sets in (X,�,�)  
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PNCSO(X, 1, 2)={	∅�, ��, A, B,  AÈB };  

AÈB={<{a},{b},∅>}. 

Theorem 5.4  

Let (�,�,�)  be a neutrosophic crisp supra bi-topological space. Then the family of all  pairwise neutrosophic 

crisp supra open set is a neutrosophic crisp supra topology on X. This neutrosophic crisp supra topology is denoted 

by �� . 

Proof: 

Since ∅�È∅� = ∅� , hence ∅� 1, 2 Therefore ∅�  PNCSO(X, 1, 2). Similarly, ��  PNCSO(X, 1, 2). 

Let {(��): � ∈ �} ⊆ �����(�,�,�). �� is a pairwise neutrosophic crisp supra open set, ∀	� ∈ �.  

There exist ���∈ � and ���∈ � such that = ��� ∪ ��� ∀	� ∈ �, which implies that: 

 ⋃ ���∈� = ⋃ (����∈� ∪ ���) = (⋃ [����∈� ]) ∪ (⋃ [����∈� ]). 

Since �,� are neutrosophic crisp supra topologies, ⋃ [�
�1�∈� ] ∈ � and ⋃ [�

�2�∈� ] ∈ �.  

Therefore ⋃ ���∈�  is a pairwise neutrosophic crisp supra open set. 

Remark 5.5  

Let (�,�,�) be a neutrosophic crisp supra bi-topological space. Then an arbitrary intersection of pairwise 

neutrosophic crisp supra closed sets is a pairwise neutrosophic crisp closed set. 

Proof: 

Let {(��): � ∈ �} ⊆ ����(�,�,�). Then �� is a pairwise neutrosophic crisp supra closed set ∀� ∈ �, 

therefore there exist ���∈ (�)
� and ���∈ (

�
)�  such that �� = ��� ∩ ��� ∀� ∈ � which implies that: 

 ⋂ ���∈� = ⋂ (����∈� ∩ ���) = (⋂ [����∈� ]) ∩ (⋂ [����∈� ]). 

Now, since �,� are neutrosophic crisp supra topologies, ⋂ [�
�1�∈� ] ∈ (�)

�
 and ⋂ [�

�2�∈� ] ∈ (�)
�
. Therefore, 

⋂ ���∈�  is a pairwise neutrosophic crisp supra closed set. 

Remark 5.6. 

1) Every neutrosophic crisp supra open sets in 	(	X	,
�
)	or	(	X	,

�
) is a pairwise neutrosophic crisp supra 

open set. 

2) Every neutrosophic crisp supra closed sets in 	(	X	,
�
)	or	(	X	,

�
) is a pairwise neutrosophic crisp supra 

closed set. 

Proof. Straightforward. 
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Remark 5.7. 

 Let (X,�,�) be  a  neutrosophic crisp supra bi-topological space then : 

1) Every neutrosophic crisp supra bi-open sets is a pairwise neutrosophic crisp supra open set, but the converse 

is not true. 

2) Every neutrosophic crisp supra bi-closed sets is a pairwise neutrosophic crisp supra closed set, but the 

converse is not true. 

Proof. Straightforward. 

Example 5.8.  

In Example 3.9 AÈB is pairwise neutrosophic crisp supra open sets in (X,�,�) ,but it is not a neutrosophic crisp 

supra bi-open set . 

Definition 5.9.  

Let (�,�,�) be  a neutrosophic crisp supra bi-topological space (SBi-NCTS) and let A be a neutrosophic crisp 

set. then the union of any neutrosophic crisp a pairwise supra open sets , contained in A is called pairwise 

neutrosophic crisp supra interior of A (PNS��int(A)). and let A be a neutrosophic crisp set. 

PNS��int(A) =∪ {� ∶ �	�	; �	 ∈ 	PNCSO(X,1,2)}. 

Theorem 5.10.  

Let (�,�,�) be  a neutrosophic crisp supra bi-topological space, and let A be a neutrosophic crisp set. then :  

1. PNS��int(A)   A. 

2. PNS��int(A)is pairwise neutrosophic crisp supra open set . 

Proof : 

1. The proof follows from the definition of PNS��int(A) as a union of any pairwise neutrosophic crisp supra 

open sets ,contained in A. 

2. The proof follows from Theorem 5.4. 

Definition 5.11.  

Let (�,�,�) be  neutrosophic crisp supra bi-topological space (SBi-NCTS) and let A be a neutrosophic crisp 

set. Then the intersection of any neutrosophic crisp a pairwise supra closed sets , containing A is called pairwise 

neutrosophic crisp supra closer of A (PNS��cl(A)). 

PNS��cl(A) =∪ {� ∶ �Ê	�	; �	 ∈ 	PNCSC(X,1,2)}. 
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Theorem 5.12.  

Let (�,�,�) be  neutrosophic crisp supra bi-topological space , A be a neutrosophic crisp set then : 

1.  APNS��cl(A) . 

2. PNS��cl(A) is a pairwise neutrosophic crisp supra closed set. 

Proof : 

1. The proof follows from the definition of  PNS��cl(A) as a intersection of any pairwise neutrosophic crisp 

supra closed set containing  in A. 

2. The proof follows from remark 5.5. 

Remark 5.13.  

The following diagram shows the relationship between different types of neutrosophic crisp open sets that were studied 

in section 3 and section 5. 

 
 
 
 

 
 

NCSOS(X,1) or NCSOS(X,2)                           SBi-NCOS(X)                        PNCOS(X,1,2) 
                                                                                                            
   
 

6. Conclusion   

  
In this paper, we have defined a new topological space by using neutrosophic crisp sets due to Salama [3]. This 

new space called neutrosophic crisp supra bi-topological space .Then we have introduced new neutrosophic crisp 

open(closed) sets in neutrosophic crisp supra bi-topological space Also we studied some of their basic properties and 

their relationship with each other. We introduced pairwise neutrosophic crisp supra closure, pairwise neutrosophic 

crisp supra interior, we also have provided examples where such properties fail to be preserved. In addition, Many 

results have been established. This paper is just the beginning of a new structure, and we have studied a few ideas 

only, it will be necessary to carry out more theoretical research to establish a general framework for the practical 

application. In the future, using these notions, various classes of mappings on neutrosophic crisp supra bi-topological 

space, separation axioms on the neutrosophic crisp supra bi-topological spaces, neutrosophic crisp supra bi-α-open 

sets, neutrosophic crisp supra bi-β-open sets , neutrosophic crisp supra  bi-pre-open sets , Neutrosophic crisp supra  

bi-semi-open sets and many researchers can be studied.  

 



International Journal of Neutrosophic Science (IJNS)                                                   Vol. 4, No. 1,  PP. 36-46, 2020 

 

DOI: 10.5281/zenodo.3758401 
 

 45

References 

[1] F. Smarandache, “Neutrosophy / Neutrosophic probability, set, and logic”, American Research Press, 1998. 

See also: http://gallup.unm.edu/~smarandache/NeutLog.txt. 

[2] F. Smarandache, “Neutrosophy and Neutrosophic Logic, First International Conference on Neutrosophy, 

Neutrosophic Logic, Set, Probability, and Statistics” University of New Mexico, Gallup, NM 87301, USA 2002. 

[3] A. A Salama, F.Smarandache and Kroumov, “Neutrosophic crisp Sets and Neutrosophic crisp Topological 

Spaces” Neutrosophic Sets and Systems Vlo.2, pp.25-30, (2014). 

[4] S. Mashhour, A. A. Allam, F. S. Mahmoud, and F.H. Khedr, “On Supra topological spaces”, Indian Jr.Pure 

and  Appl.Math.No.4, 14, pp.502-510, 1983. 

[5] G. Jayaparthasarathy, V. F. Little Flower, M. Arockia Dasan, “Neutrosophic Supra Topological Applications 

in Data Mining Process”, Neutrosophic Sets and Systems,vol. 27, pp.80-97, 2019. 

[6] R. K. Al-Hamido, “Neutrosophic Crisp Supra Topological Spaces”, Neutrosophic Sets and Systems, 

Communicated, 2020.  

[7] A. B.AL-Nafee, R.K. Al-Hamido, F.Smarandache, “Separation Axioms In Neutrosophic Crisp Topological 

Spaces”, Neutrosophic Sets and Systems, vol. 25, pp.25-32, 2019. 

[8] R. Gowri, A. K. R. Rajayal, “On Supra Bi-topological spaces”, IOSR Journal of Mathematics (IOSR-JM), Vol 

113 .No.5,pp. 55-58, 2017. 

[9] J. C. Kelly, “Bi-topological spaces”, Proceedings of the London Mathematical Society, vol. No.31,pp. 71-89, 

1963. 

[10] R. K. Al-Hamido, “A study of multi-Topological Spaces”, PhD Theses, AlBaath university , Syria, 2019. 

[11] T. Y, Ozturk, A. Ozkan “Neutrosophic Bi-topological Spaces”, Neutrosophic Sets and Systems, vol. 30, pp.88-

97, 2019. 

[12] R.K. Al-Hamido, “Neutrosophic Crisp Bi-Topological Spaces”, Neutrosophic Sets and Systems, vol. 21,pp. 

66-73, 2018.  

[13] W. F. Al- Omeri, “Neutrosophic crisp sets via neutrosophic crisp topological spaces”, Neutrosophic Sets and 

Systems, vol. 13, pp.96–104, 2016. 

[14]  W. F. Al- Omeri, S. Jafari, “On Generalized Closed Sets and Generalized Pre-Closed Sets in Neutrosophic 

Topological Spaces”, Mathematics,vol. 7,  pp.1-12, 2019. doi:doi.org/10.3390/math7010001. 

[15] R.K. Al-Hamido, Q.  H.  Imran, K. A. Alghurabi, T. Gharibah, “On Neutrosophic Crisp Semi Alpha Closed 

Sets”, Neutrosophic Sets and Systems”, vol. 21, pp.28-35, 2018.  

[16] R.K. Al-Hamido, T. Gharibah, S. Jafari F.Smarandache, “On Neutrosophic Crisp Topology via N-Topology”, 

Neutrosophic Sets and Systems, vol. 21, 96-109, 2018.  

[17] Q.  H.  Imran, F. Smarandache, R.K. Al-Hamido, R. Dhavasselan, “On Neutrosophic Semi Alpha open Sets”, 

Neutrosophic Sets and Systems, vol. 18, pp.37-42, 2017. 



International Journal of Neutrosophic Science (IJNS)                                                   Vol. 4, No. 1,  PP. 36-46, 2020 

 

DOI: 10.5281/zenodo.3758401 
 

 46

[18] M. Parimala , M. Karthika , F. Smarandache , S. Broumi, “On αω-closed sets and its connectedness in terms 

of neutrosophic topological spaces”, International Journal of Neutrosophic Science,  Vol. 2 ,pp. 82-88 , 2020. 

[19] A.A. Salama, S.A. Alblowi, “Neutrosophic Set and Neutrosophic Topological Spaces”, IOSR Journal of 

Mathematics,vol.  3, no. 4, pp.31-35, 2012. 

[20] A. A. Salama, “Basic Structure of Some Classes of Neutrosophic Crisp Nearly Open Sets & Possible 

Application to GIS Topology”, Neutrosophic Sets and Systems, vol. 7, pp.18-22, 2015. 

[21] S. A. Alblowi, A. A. Salama, M. Eisa, “New concepts of neutrosophic sets”, International Journal of 

Mathematics and Computer Applications Research (IJMCAR),vol 4, pp.59-66, 2014. 

[22] I. Hanafy, A. A. Salama, K. Mahfouz, “Correlation of neutrosophic data”, International Refereed Journal of 

Engineering and Science (IRJES), vol. 1, pp.39-43, 2012. 

[23] I. M. Hanafy, A. A. Salama and K. M. Mahfouz, “Neutrosophic crisp events and its probability”, International 

Journal of Mathematics and Computer Applications Research (IJMCAR), vol. 3,pp. 171-178, 2013. 

[24] A. Salama, “Neutrosophic Crisp Points and Neutrosophic Crisp Ideals”, Neutrosophic Sets and Systems, vol. 

1, pp.50-54, 2013. 

[25] V. Christianto, F. Smarandache , M. Aslam, “How we can extend the standard deviation notion with 

neutrosophic interval and quadruple neutrosophic numbers”, International Journal of Neutrosophic Science,  

vol. 2, No. 2, pp.72-76 , 2020. 

[26] E. O. Adeleke, A. A. A. Agboola , F. Smarandache, “Refined Neutrosophic Rings I ”, International Journal of 

Neutrosophic Science,  vol. 2 , No. 2, pp.77-81 , 2020. 

[27] E. O. Adeleke , A. A. A. Agboola , F. Smarandache, “Refined Neutrosophic Rings II”, International Journal of 

Neutrosophic Science,   vol 2. , No. 2, pp.89-94 , 2020. 

[28] M. A. Ibrahim, A. A. A. Agboola , E. O. Adeleke, S. A. Akinleye, “Introduction to Neutrosophic Subtraction 

Algebra and Neutrosophic Subtraction Semigroup”, International Journal of Neutrosophic Science, vol. 2 , 

No. 1, pp.47-62 , 2020. 

[29] S. Broumi, D. Nagarajan, A. Bakali, M. Talea, F. Smarandache, M. Lathamaheswari and J. Kavikumar,  

“Implementation of Neutrosophic Function Memberships Using MATLAB Program”, Neutrosophic Sets and 

Systems, vol. 27, pp.44-52, 2019.  DOI: 10.5281/zenodo.3275355 

[30] S. Broumi, M. Talea, A. Bakali, F. Smarandache, D. Nagarajan, M. Lathamaheswari and M. Parimala, 

“Shortest path problem in fuzzy, intuitionistic fuzzy and neutrosophic environment: an overview”, Complex 

& Intelligent Systems, vol. 5, pp.371–378, 2019.https://doi.org/10.1007/s40747-019-0098-z 

[31] S. Broumi, D. Nagarajan, A. Bakali, M. Talea, F. Smarandache, M. Lathamaheswari”, The shortest path 

problem in interval valued trapezoidal and triangular neutrosophic environment”, Complex & Intelligent 

Systems, 5, pp.391–402, 2019. https://doi.org/10.1007/s40747-019-0092-5.  



International Journal of Neutrosophic Science (IJNS)                                                   Vol. 4, No. 1,  PP. 47-71, 2020 

 

DOI: 10.5281/zenodo.3758466 

 
 47 

  

 

 

Exponential Laws and Aggregation Operators on Neutrosophic Cubic 

Sets 

 

Majid Khan 1, Ismat Beg 2,* and Muhammad Gulistan 1 

1 Hazara University, Mansehra, Pakistan majid_swati@yahoo.com  ,  gulistanmath@hu.edu.pk 
2  Lahore School of Economics, Lahore, Pakistan  ibeg@lahoreschool.edu.pk 

 
* Correspondence: ibeg@lahoreschool.edu.pk 

 

Abstract  

This paper presents operational laws along with their cosine measure for the numbers whose base 

is an interval value and study their properties. Consequent upon these definitions and properties 

neutrosophic cubic weighted exponential averaging and dual neutrosophic cubic weighted 

exponential averaging aggregation operators are defined. A multi attribute decision making method 

is then developed for proposed aggregation operators. An example is constructed as an application. 

The validity of multi attribute decision making method is also tested and comparative analysis is 

provided to compare these aggregation operators with existing results. 

 

Keywords: : Neutrosophic cubic number; dual neutrosophic cubic number; neutrosophic cubic exponential 

weighted averaging; dual neutrosophic cubic exponential weighted averaging ; multi attribute decision making. 

1.Introduction  

The decision making is an imperative part of cognitive based human activity. Multi attribute decision making 

method (MADM) provides a better environment to rank the set of alternatives under different criteria. The problem 

arises when vague and insufficient data is available. This uncertainty in data can be handle by fuzzy set theory (FS) 

presented by Zadeh  [1] and its extensions like interval valued fuzzy set (IVFS)  [2,3], intuitionistic fuzzy set [4], 

interval valued intuitionistic fuzzy set (IVIFS) [5], cubic set (CS) [6]. The intuitionistic fuzzy set attracted the 

researcher due to its structure of both membership, non-membership and hesitant component. Over the last few 

decades, several researchers used it for decision making problems [7,8,9,10,11,12]. In IFS the hesitancy component 

is depended upon the choice of membership degree and non-membership degree which restricted the choice of 

choosing. Smarandache defined a novel tool, neutrosophic set NS [13] to deal with vagueness in more desirable way. 

NS are generalization of IFS [14]. In NS all the components are independent. Soon after its presentation, it is further 

extended into INS [15], NCS [16] etc. The collection and manipulation of data is a hard job. In daily life problems we 

are often in a situation that the extraction of accurate and precise information is not possible due to the vague nature 

of problem, communication gaps, hesitancy etc. Thus NS and its extension are better tools to deal with such situation 

in comparison with IFS and cubic set. This characteristic of NS and INS attracted the researchers to apply it in different 

field of decision making process [17,18,19,20,21,22,23,24,25]. Neutrosophic Cubic Number (NCN) is a combination 

of INS and NS which makes it a better choice so that expert can choose the value in the form of an interval value and 

single value. NCS provides a better plate form to deal with vague and insufficient data. In recent pass researchers have 

HP
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applied NCS to aggregation operators and decision making problem. Zhan et al. [26] worked on multi criteria decision 

making on neutrosophic cubic sets. Banerjee et al. [27] used GRA for multi criteria decision making on neutrosophic 

cubic set. Lu and Ye [28] defined cosine measure to neutrosophic cubic set. Pramanik et al. [29] used similarity 

measure to neutrosophic cubic set in 2017. Majid et al. [30] presented neutrosophic cubic Einstein geometric 

aggreagtion operators. Khalid et al. [31] introduced MBJ – Neutrosophic Translation on G-Algebra and Schweizer 

[32] studied two probabilities for the three states of neutrosophy. In their works all these researchers defined 

arithematic and Einstein operation and aggregations operators under neutrosophic cubic environment. It is observed 

in decision making process that the weight is based on the assumption to be in [0,1] and their sum is one. The aim of 

this work is to deal the situation where the weight is crisp or interval value. To support this task some new operational 

laws along with some aggregation operators are defined on NCS. 

Contribution In this work, we propose methodologies to measures the aggregate value of neutrosophic cubic values 

using exponential form. 

- The neutrosophic cubic exponential operational laws are defined along with some important properties. 

- Based on these operations and properties neutrosophic cubic exponential aggregations operators are defined. 

Validity and comparative analysis are discussed. 

- The neutrosophic cubic set is the combination of both neutrosophic and interval neutrosophic, this 

characteristic enable us to deal both interval valued neutrosophic and neutrosophic set at the same time. 

Organization This study consist of nine sections.  Section 1 covers the introductory work of researchers over the 

some past decades. In section 2 the preliminaries work is reviewed which enable us to start this work. In section 3 

some exponential operational laws with base crisp and interval value are introduced, dual neutrosophic cubic number  

(DNCN) are defined and  some useful properties are obtained. Cosine measures is defined to compare two NCN and 

DNCN. Section 4, presents neutrosophic cubic weighted exponential averaging (NCWEA) operators and dual 

neutrosophic cubic weighted exponential averaging (DNCWEA) aggregations operators are defined in which the 

weight is in the form of crisp value or interval valued and the exponents are NCS. Section 5 develops a decision 

making process for the proposed aggregations operators. An illustrative example is provided as an application in 

section 6. In Section 7, the validity test is performed for DM problem to check the validity of MADM. In section 8, 

the MADM based upon proposed aggregation operators is compared with some neutrosophic cubic weighted 

averaging (NCWA) and neutrosophic cubic Einstein weighted averaging (NCEWA) aggregation operators. The paper 

ends with conclusion in section 9. 

 

2. Preliminaries 

Definition 2.1 [13] A structure   ( ), ( ), ( ) |N N NN T y I y F y y Y   NS, where  ,NT NI  and NF   are fuzzy sets 

and respectively called truth, indeterminacy and falsity functions. 

Definition 2.2 [15] An INS in Y is a structure   ( ), ( ), ( ) |N N NN T y I y F y y Y  where ( )NT y , ( )NI y and 

( )NF y   are interval valued fuzzy truth, indeterminacy an falsity function in  Y respectively. 

Definition 2.3 [16] A structure   , ( ), ( ), ( ), ( ), ( ), ( ) /N N N N N NA y T y I y F y T y I y F y y Y  is NCS in  Y  in which  

 ( ) , , ( ) , , ( ) ,L U L U L U

N N N N N N N N NT y T T I y I I F y F F            
 is  an INS and   , ,N N NT I F is NS in Y . Simply denoted by  

 , , , , ,N N N N N NN T I F T I F  where ,[0,0] [3,3],0 3.N N N N N NT I F T I F       
YN denotes the 

collection of NCS in Y .  

For the sake of convenience the NCS are written as  , , , , , , , ,L U L U L U

A A A A A A A A AA T T I I F F T I F           
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Definition 2.4 [30] The sum of two NCN,   , , , , , , , ,L U L U L U

A A A A A A A A AA T T I I F F T I F              and  

B  TB
L ,TB

U , IB
L , IB

U , FB
L ,FB

U ,TB, IB,FB   is defined as  

[ , ],[ , ],

[ , ], , ,

L L L L U U U U L L L L U U U U

A B A B A B A B A B A B A B A B

L L U U

A B A B A B A B A B A B

T T T T T T T T I I I I I I I I
A B

F F F F T T I I F F F F

        
   

  
 

 

Definition 2.5 [30] The product of two NCN,   , , , , , , , ,L U L U L U

A A A A A A A A AA T T I I F F T I F              and  

 , , , , , , , ,L U L U L U

B B B B B B B B BB T T I I F F T I F             is defined as 

[ , ],[ , ],[ , ],

, ,

L L U U L L U U L L L L U U U U

A B A B A B A B A B A B A B A B

A B A B A B A B A B

T T T T I I I I F F F F F F F F
A B

T T T T I I I I F F

    
   

    

 

Definition 2.6 [30] The scalar multiplication on a NCN  , , , , , , , ,L U L U L U

A A A A A A A A AA T T I I F F T I F              and a Scalar     

is defined 

         

[1 (1 ) ,1 (1 ) ],[1 (1 ) ,1 (1 ) ],

[ , ], , ,1 1

L U L U

A A A A

L U

A A A A A

T T I I
A

F F T I F

   

    


        
 
  
 

 

Theorem 2.7 [30] Let  , , , , , , , ,L U L U L U

A A A A A A A A AA T T I I F F T I F              be a NCN, then the exponential operation 

is defined by 

   

     

[( ) , ( ) ],[( ) , ( ) ],[1 1 ,1 1 ],

1 1 ,1 1 ,

L U L U L U

A A A A A A

A A A

T T I I F F
A

T I F

 
   



  

    
 
 

    

 

3. Exponential operational laws with crisp and interval parameters on neutrosophic cubic sets 

 

Operational laws has a key role in any work. In this section we develop some exponential laws in neutrosophic 

cubic environment in which the exponential parameters are crisp and interval value. 

Definition 3.1 Let  , , , , , , , ,L U L U L U

A A A A A A A A AA T T I I F F T I F              be a NCN the exponential law for crisp value  

   is defined as  
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       

   
 

 
 

 
 

 
 

 
 

 
 

 
 

     

1 1 1 1

1

1 1 1 1

1

, , , ,

, 0,1

1 ,1 ,1 ,1 ,

1/ , 1/ , 1/ , 1/ ,

1 1/ ,1 1/ ,1 1/ ,1 1/ , 1/

L U L U
A A A A

L U
A A A A A

L U L U
A A A A

L U
A A A A A

T T I I

F F T I F

A

T T I I

F F T I F

   



   



       
       

 
      
   

 
              

              

, 1








  

 


 

In both cases  
A   is a NCN. 

Example 3.2 Let       0.2,0.8 , 0.4,0.7 , 0.1,0.5 ,0.7,0.2,0.6A   be a NCN, 0.5   and  3  , then 

      
      

0.574,0.870 , 0.659,0.812 , 0.066,0.292 ,0.384,0.129,0.757 , 0.5

0.801,0.411 , 0.641,0.460 , 0.104,0.425 ,0.539,0.198,0.514 , 3

A
  

  
 

 

Definition 3.3 Let   , , , , , , , , ,L U L U L U

A A A A A A A A AA T T I I F F T I F              be a NCN and  

      1,1 , 1,1 , 0,0 ,0,0,1A   be maximum NCN, then the cosine measure(𝐶𝑚) is defined as  

       cos 1 1 1 1 1 , 0,1
18

L U L U L U

m A A A A A A A A A mC A T T I I F F T I F C A
 

               
 

 

Remark 3.4 If mC (A) and mC (B) be the cosine measures of two NCN then  ( ) ( )m mC A C B A B     and  

( ) ( )m mC A C B A B    

 Theorem 3.5 Let  1 1 1 1 1
, , , , 1 ,1 ,1 ,1 ,

L U L U L U
A A A A A A A A AT T I I F F T I F

A
                  

     
 be a neutrosophic 

cubic value and 
1 2 ,    then    1 2

A A
     for 

1 2, [0,1]     and     1 2

A A
    for  1 2, 1.    

 Proof: Let 
1 2    and  

1 2, [0,1]     then  

 
       

         

1 1 1 1

1 1 1 1

1
1

1 1 1 1 1

, , , ,

1 ,1 ,1 ,1 ,

L U L U
A A A A

L U
A A A A A

T T I I

A

F F T I F

   



       
       

   
          
   

 

and 

 
       

         

1 1 1 1

2 2 2 2

2
1

2 2 2 2 2

, , , ,

1 ,1 ,1 ,1 ,

L U L U
A A A A

L U
A A A A A

T T I I

A

F F T I F

   



       
       

   
          
   

 

Since         
1 1 1 1

1 2 1 2, ,
L L U U
A A A AT T T T   

              
1 1 1 1

1 2 1 2, ,
L L U U
A A A AI I I I   

       

         1 2 1 21 1 ,1 1 ,
L L U U
A A A AF F F F

               1 21 1 ,A AT T
      

    1 21 1 ,A AI I
        

1 1

1 2

A AF F 
   , so 
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 

     

     

     

 

     

     

     

1 1

1 1 1

1 1

1 1 1 1

1

1 1 1

1 1

2 2 2

1 1

2 2 2 2

1

2 2 2

1 1

cos ( ) 1 1
18

1

1 1

cos ( ) 1 1
18

1

L L L
A A A

U U U
A A A

A A A

L L L
A A A

U U U
A A A

A A A

T I F

T I FA

T I F

T I F

T I FA

T I F





 

 



 

 



         
  
              
         

  

       

          

      


 
 
 
 
  

 

 

obviously     1 2 ,
A A

     if  
1 2    and  

1 2, 1,     then  1 20 / ,1/ 1.     

Remark 3.6  Considering some values of   , we can affirm some special cases of   .
A

   

1.  If 1,   then          1,1 , 1,1 , 0,0 ,0,0,1 .
A

    

2.  If       1,1 , 1,1 , 0,0 ,0,0,1A   , then         1,1 , 1,1 , 0,0 ,0,0,1 .
A

    For each value of .   

3.  If       0,0 , 0,0 , 1,1 ,1,1,0A   ,then                , , , , 1 ,1 ,1 ,1 , .
L U
A A A AA F F T I               

  
 

Theorem 3.7 Let  , , , , , , , , ,L U L U L U

A A A A A A A A AA T T I I F F T I F             , , , , , , , ,L U L U L U

B B B B B B B B BB T T I I F F T I F           
  and 

 , , , , , , , ,L U L U L U

C C C C C C C C CC T T I I F F T I F            be three NCNs and    0,1 1, 1/if then      then the 

following holds. 

 
A B B A      

  
A B B A      

     A B C A B C         

  A B C A B C        

Proof Straight forward, so omitted. 

Theorem 3.8 Let  , , , , , , , , ,L U L U L U

A A A A A A A A AA T T I I F F T I F             , , , , , , , ,L U L U L U

B B B B B B B B BB T T I I F F T I F             be two 

NCNs and   be a scalar then the following holds. 

 A B   A B
  

  
A B   A   B    

  1 2 A  1 A 2 A
  

  
A 1 2  A 12

  

Proof:  Consider  
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  1 2A
 

   

Definition 3.9 Let  , , , , , , , , ,L U L U L U

A A A A A A A A AA T T I I F F T I F             , , , , , , , ,L U L U L U

B B B B B B B B BB T T I I F F T I F             be two 

NCN, then  ,d A B  is referred as DNCN. 

Definition 3.10 Let  , , , , , , , ,L U L U L U

A A A A A A A A AA T T I I F F T I F             be a NCN the exponential law for interval 

value parameter for ,L U       is defined as 
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In both cases it is neutrosophic cubic dual. 

Example 3.11 Let       0.3,0.7 , 0.2,0.7 , 0.3,0.8 ,0.5,0.5,0.6A  be a NCN and  0.3,0.7  ,  4,8  , then  

 

   
 

   
 

 

   
 

0.430,0.696 , 0.381,0.696 ,

0.303,0.618 ,0.514,0.452,0.617
, 0.3,0.7

0.779,0.898 , 0.751,0.989 ,

0.101,0.248 ,0.807,0.836,0.867

0.378,0.659 , 0.329,0.659 ,

0.340,0.670 ,0.564,0.500,0.574

A

  
  
  

  
  
  
  

 

   
 

 , 4,8
0.233,0.535 , 0.189,0.535 ,

0.464,0.810 ,0.712,0.646,0.435










  
  
              

 

Definition 3.12 Let    , , 1, 2i i id A B i   be two DNCN and 𝜛 be a real number then the algebraic operations 

are defined as 

  ,i j i j i jd d A A B B        

  ,i j i j i jd d A A B B        

   1 1 1,d A B     

       1 1 1,d A B
   

 
  

In these operations, first we use an interval exponential operational laws and then operation between NCNs or 


A


L 1TA L

, L 1TA U

,

L 1IA L

, L 1IA U

,

1  L FA L

, 1  L FA U

,

1  L TA , 1  L IA , L 1FA

,

U 1TA L

, U 1TA U

,

U 1IA L

, U 1IA U

,

1  U FA L

, 1  U FA U

,

1  U TA , 1  U IA , U 1FA

,L ,U  0,1

1/L 1TA L

, 1/L 1TA U

,

1/L 1IA L

, 1/L 1IA U

,

1  1/L FA L

, 1  1/L FA U

,

1  1/L TA , 1  1/L IA , 1/L 1FA

,

1/U 1TA L

, 1/U 1TA U

,

1/U 1IA L

, 1/U 1IA U

,

1  1/U FA L

, 1  1/U FA U

,

1  1/U TA , 1  1/U IA , 1/U 1FA

,L ,U  1



International Journal of Neutrosophic Science (IJNS)                                                   Vol. 4, No. 1,  PP. 47-71, 2020 

 

DOI: 10.5281/zenodo.3758466 

 
 58 

real numbers are used. Hence it provide both the rationality of interval exponential operational laws and NCNs 

or real number operational laws as well.  

 Definition 3.13 Let     , , , , , , , , , , , , , , , , ,L U L U L U L U L U L U

L L L L L L L L L U U U U U U U U UA A A A A A A A A A A A A A A A A A
d T T I I F F T I F T T I I F F T I F                          be a 

DNCN and               * 1,1 , 1,1 , 0,0, ,0,0,1 , 1,1 , 1,1 , 0,0, ,0,0,1d   be the maximum DNCN, then the 

cosine measure(𝐶𝑚) is defined as  

    36
cos 1 1 1 1 1 1 1 1 1 1 ,L U L U L U L U L U L U

L L L L L L L L L U U U U U U U U Um A A A A A A A A A A A A A A A A A A
C d T T I I F F T I F T T I I F F T I F                               

   0,1mC d   

Definition 3.14 Let  1mC d  and  2mC d  be the cosine measures of two NCN  then  

   1 2 1 2m mC d C d d d    and    1 2 1 2m mC d C d d d   . 

 

4. Neutrosophic Cubic Exponential Weighted Aggregation operator 

Using definitions 3.1 and 3.10, in this section we propose the NCWEA and DNCWEA operators, where the base 

is crisp value or an interval numbers and the exponent is a NCNs. 

Definition 4.1 We define the Neutrosophic cubic weighted exponential averaging operator (NCWEA) as  

𝑁𝐶𝑊𝐸𝐴(𝑁1, 𝑁2, … 𝑁𝑚) =
𝑚
⊗

𝑖 = 1
(𝛻𝑖)𝑁𝑖 

where 
iN ( 1,2,..., )i m  are weight and  ( 1, 2,..., )i i m   real numbers respectively. 

Theorem 4.2 Let  , , , , , , , ,L U L U L U

i i i i i i i i ii N N N N N N N N NN T T I I F F T I F             for ( 1,2,..., )i m  be the collection 

of NCs and  ( 1, 2,..., )i i m    are real numbers respectively, then the NCWEA is a NCs, where 
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 

   

   

   

     

 

 

1 1

1 1

1 1

1 1

1 1

1

1 1 1

1 2

1

, ,

, ,

,  0,1

1 ,1 ,

1 ,1 ,

, ,...,

1/

L L
N Ni i

L L
N Ni i

L U
N Ni i

N N Ni i i

m m
T T

i i
i i

m m
I I

i i
i i

m m
F F

i i
i i

m m m
T I F

i i i
i i i

m
m

i
i

if

NCWEA N N N

 

 

 

 

 



  



  
      

  
       

  
       

 
 
       

 


  

   

   

     

1 1

1

1 1

1 1

1 1

1

1 1 1

, 1/ ,

1/ , 1/ ,

,  1

1 1/ ,1 1/ ,

1 1/ ,1 1/ , 1/

L U
N Ni i

L U
N Ni i

L U
N Ni i

N N Ni i i

m
T T

i
i

m m
I I

i i
i i

m m
F F

i i
i i

m m m
T I F

i i i
i i i

if

 



 

 

 



  













        
            
  

       
 
 
       

 





  

 

where 
 ( 1,2,..., )iN i m  is the weight of ( 1, 2,..., ).i i m    

Proof  To prove the theorem we use mathematical induction, let  [0,1]i    where  1,2,...,i m   

For  2,m    we have 

   
2

1 2
1

, iN

i
i

NCWEA N N


   

   1 2

1 2

N N
     
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                  
 
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Assuming for  ,n m   is a NCs that is  
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We prove the result for  1,n m    is a NCs.  
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If  1,i    then  0 1/ 1,i     and then using above procedure a similar proof can be obtained for the following 

aggregation operators 
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This complete the proof.  

 

Definition 4.3 Let   , , , , , , , ,L U L U L U

i i i i i i i i ii N N N N N N N N NN T T I I F F T I F              for  ( 1,2,..., )i m   be the 

collection of NCs and , ( 1,2,..., )L U

i i i m         be the collection of interval numbers, then the DNCWEA 

operator is defined as 
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

    

 where ( 1,2,..., )iN i m  is the weight corresponding to   , ( 1,2,..., ).L U

i i i i m        

 

Theorem 4.4 Let   , , , , , , , ,L U L U L U

i i i i i i i i ii N N N N N N N N NN T T I I F F T I F              for ( 1,2,..., )i m   be the collection 

of NCs and , ( 1,2,..., )L U

i i i m        be collection of interval numbers, then the DNCWEA operator is  given 

by  
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 1 2, ,..., mNCWEA N N N   

 

The proof is analogous to Theorem 4.2. 

 

5. Decision making method based on the NCWEA and DNCWEA operators 

Based on NCWEA and DNCWEA operators, a decision making problem can be dealt. In such MADM problem 

the weight is NCs and alternative value are crisp or interval numbers. 

For this consider the MADM problem with m alternative  1 2, ,..., mA a a a  and  1 2, ,..., nC y y y   be n 

attributes. An expert has evaluated these attributes in the form of NCs and the suitable alternative in the form of crisp 
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value [0,1]ij   1/ ,if 1ij ij     or interval numbers. 

  , 0,1 1/ ,if 1 ; 1/ ,if 1L U L L U U
ij ij ij ij ij ij ij

             for  1,2,..., ; 1,2,..., .i m j n    

Step 1:  A preference value decision matrix 
ijD      or 

ijD       is constructed for 𝑚 alternatives and n 

attributes, where weight is expressed as  , , , , , , , ,L U L U L U

j j j j j j j j jj N N N N N N N N NN T T I I F F T I F     
     

  1,2,...,j n   in NCs form for 

corresponding attributes. 

Step 2:  Using the suitable aggregation operator like NCEWA or DNCEWA the overall aggregated value is obtained. 

Step 3:  Using the measurement function of definition 3.3 or definition 3.14, values are ranked. 

Step 4:  The best alternative is chosen amongst the ranked. 
 

6. Example 

Next we provide an illustrative example as an application to our aggregation operators. 

Example 6.1 

Our example from daily life is an application to pick the best alternative using the decision making matrix 

with base either crisp values or interval numbers and weight as neutrosophic cubic number. 

A steering committee is interested to prioritize the set of information improvement project using a multi-attribute 

decision making method. The committee must prioritized the implementation and development of set of six 

information technologies improvement projects  ( 1,2,...,6)ja j   . The weight of these six attributes are expressed 

in term of NCs  

 

             
             
      

1 2 3 4 5 6

0.5,0.6 , 0.2,0.5 , 0.4,0.8 ,0.7,0.8,0.4 , 0.2,0.5 , 0.7,0.9 , 0.3,0.7 ,0.8,0.5,0.3 ,

, , , , , 0.4,0.7 , 0.2,0.5 , 0.5,0.7 ,0.3,0.6,0.2 , 0.3,0.6 , 0.4,0.7 , 0.2,0.5 ,0.6,0.4,0.7 ,

0.2,0.5 , 0.3,0.7 , 0.2,0.6 ,0.5,0.3,0.8 , 0.

a a a a a a 

      1,0.6 , 0.3,0.6 , 0.4,0.8 ,0.6,0.9,0.4

 
  
 
 
  

 

by decision maker. The three factors (alternatives)  1 2 3, ,y y y ,
1y - productivity to maximize the efficiency and 

effectiveness, 2y differentiation from products and services of competitors, and - 3y management to assist the 

managers in enhancing the planning, are considered to assess the contribution of these project. The goal of committee 

is to choose best alternative among them. 

Step 1: The decision maker(s) is (are) required to make the suitable judgement of alternatives   1,2,3iy i    with 

respect to these attributes  ( 1,2,...,6)ja j    and give the evaluated information of the crisp values   0,1 ,ij    

which is structured as follow.  

0.7 0.6 0.5 0.8 0.5 0.4

0.5 0.7 0.9 0.4 0.6 0.7

0.2 0.3 0.6 0.5 0.7 0.6

ijD

 
       
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Step 2: Utilizing the NCEWA operator to evaluate these preferences of alternatives 
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       0,0.2445 , 0.0874,0.2959 , 0.6964,0.9082 ,0.8499,0.8748,0.1523

 

Similarly        2 0.1266,0.2859 , 0.1491,0.3657 , 0.5789,0.8545 ,0.8381,0.8054,0.2616d   

      3 0.0367,0.1275 , 0.0459,0.1827 , 0.8126,0.9684 ,0.9568,0.9521,0.0606d   

Step 3: We have   1 0.9998067,mC d   2 0.9998217mC d    and   3 0.9997450,mC d    here  

     2 1 3m m mC d C d C d    the ranking order of alternatives are  
2 1 3.y y y    

Step 4: The best alternative on the basis of these calculations is  2y   management to assist the managers in improving 

their planning. 

If the suitable judgment of each attribute  1,2,3iy i  is made for interval numbers of interval valued 

decision making matrix: 

In such a case the proposed MADM is based on DNCWEA operator may be applied to choose the suitable 

alternative, described in the following steps: 

Step 1: First of all the interval valued decision making matrix is formed by decision maker: 

 
           
           
           

0.5,0.8 0.4,0.6 0.2,0.5 0.7,0.9 0.4,0.6 0.3,0.4

0.4,0.5 0.6,0.8 0.8,0.9 0.4,0.6 0.5,0.6 0.7,0.8

0.2,0.3 0.3,0.5 0.5,0.7 0.4,0.5 0.6,0.8 0.5,0.8

ijD

 
 

    
 
 

 

Step 2: The proposed MADM based on DNCWEA operator is applied to decision making matrix considering NC 

values of attributes  ( 1,2,...,6)ja j    as weight for alternatives   1,2,3 .iy i    
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j j

T I F
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 

 

 

 

 



  








 
 
 



  

      
  

     
 
  

       
 
 
       

 














 
 
 
 
 
 
 
 
 
 
   

      
      

0.0163,0.1001 , 0.0220,0.1216 , 0.8766,0.9819 ,0.9547,0.9691,0.0348 ,

0.1061,0.2962 , 0.1424,0.3700 , 0.1524,0.4290 ,0.2675,0.8458,0.1773

  
  
  

 

      
      

2

0.0835,0.2133 , 0.09542,0.2875 , 0.6657,0.9098 ,0.8921,0.8609,0.1802

0.2221,0.3792 , 0.2173,0.4416 , 0.4986,0.7823 ,0.7512,0.7240,0.2018
d

  
  
  

 

      
      

3

0.0211,0.0951 , 0.0274,0.1384 , 0.8525,0.9804 ,0.9703,0.9682,0.0426

0.1069,0.2433 , 0.1125,0.2970 , 0.7165,0.9052 ,0.8853,0.8736,0.1526
d

  
  
  

 

Step 3: To rank the value the cosine measure is determined for the values computed in Step 2,  

     1 2 30.3346, 0.3613, 0.2460.m m mC d C d C d     The ranked alternatives are as  
2 1 3.y y y    

Step 4: The best alternative on the basis of these calculations is  2y   management to assist the managers in improving 

their planning. 

 

7. Validity Test 

Wang and Triantaphyllou [33] proposed criteria to figure out the validity of a MADM method. 

Test Criterion 1: "The replacement of a non-optimal alternative with an arbitrary worse value does not change the 

index of best alternative". 

Test Criterion 2: "The transitive property is satisfied by an effective MADM method ". 

Test Criterion 3: "If MADM problem is decomposed into the sub DM problem and the same MADM procedure is 

applied to sub problem for ranking of alternatives, the order ranking of the alternatives must be similar to ranking of 

un decomposed DM problem". 
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Validity Test by Criterion 1 

We change the rating value of non-optimal alternative 3y by  3 0.3 0.8 0.4 0.2 0.9 0.5 ,y


   we 

have       3 0.0307,0.1155 , 0.0272,0.1118 , 0.8034,0.9585 ,0.9348,0.9462,0.0579d   

and   3 0.1695,mC d    made no changes in said method. 

 

Fig.1: Comparison of graph by changing an alternative with non-optimal alternative. 

 

The graph indicates that if the non-optimal value does not cause any change in optimal alternative, which is 

1 (𝑦1) in this graph and 3(𝑦3) is non-optimal alternative. 

 

Validity Test by Criterion 2 

Under this criterion we decompose the decision matrix into     1 2 1 3, , ,y y y y   and   2 3, ,y y   we observe 

that  
2 1y y , 

1 3y y and 
2 3.y y  That is transitive property is satisfied. 

 

Validity Test by Criterion 3 

By validity test in criterion 2, we observe that the sub DM satisfy the original ranking order, that is  

2 1 3.y y y    

Hence validity test 1,2 and 3 are satisfied by MADM. 

 

8. Comparison Analysis 

In this section we compare the exponential aggregation operator with NCWA operator. 
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 
 
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 


 

      

      

      

1

2

3

0.7311,0.9551 , 0.8277,0.9352 , 0.0154,0.2351 ,0.1429,0.1102,0.9072

0.7309,0.9682 , 0.8384,0.9880 , 0.0153,0.2411 ,0.0910,0.1086,0.9062

0.5974,0.9262 , 0.7160,0.9608 , 0.0334,0.3001 ,0.1484,0.1461,0.9072

d

d

d













 

In this case    1 20.9831, 0.9851,m mC d C d
 

  and  3 0.9663.mC d


  This yields that  

2 1 3.y y y    

Here the role of real number (base) is change by weight in neutrosophic cubic weighted aggregation operator 

(NCWA) operator, we observe the same result as by NCEWA operator. 

Now we compare the exponential aggregation operator with NCWA operator. 
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In this case    1 20.9725, 0.9753,m mC d C d
 

  and  3 0.9574mC d


  This yields that  
2 1 3.y y y   Here 

the role of real number (base) is change by weight in neutrosophic cubic Einstein weighted aggregation operator 

(NCEWA) operator, we observe the we get the same result as by NCEWA operator. 
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Fig.2: Graphical comparison of NCWEA with NCWA and NCEWA. 

From the graph it is clear that NCWEA produce same result as NCWA and NCEWA, so we have a good tool to 

deal the cases in which neutrosophic cubic values appears in exponential form. 

 

9. Conclusion 

This manuscript presents a novel exponential operational laws (EOL) on NCSs with base crisp value and interval 

value which is an effective addition to the existing laws. We evaluated some properties and relations. Based upon 

these EOLs, we established NCWEA and DNCWEA operators. These aggregation operators are applied to establish 

a MADM for solving the daily life problem with the neutrosophic cubic information. The proposed method is used 

upon a daily life problem as an application. A comparative analysis with neutrosophic cubic weighted aggregation 

operator (NCWA) and neutrosophic cubic Einstein weighted aggregation operator (NCEWA) is provided to show the 

effectiveness of the approach. The graphical representation is accomplished between these operators. It is concluded 

that these newly defined operational laws and the proposed aggregation operators can parallelly be used to solve the 

MADM problems in more accomplished manner.  
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Abstract  

In this paper we introduce the notions of AH-ideal and AHS-ideal as new kinds of neutrosophic substructures 

defined in a neutrosophic ring. We investigate the properties of these substructures and some related concepts as 

AH-weak  principal ideal, AH-weak prime ideal and AH-weak maximal ideal. 

Keywords: Neutrosophic ring, AH-ideal, AHS-ideal, Neutrosophic substructure, AHS-homomorphism. 

1. Introduction 

Neutrosophy as a branch of philosophy introduced by Smarandache has many applications in both real world and 

mathematical concepts, especially, in algebra. The notion of neutrosophic groups and rings is defined by Kandasamy 

and Smarandache in [9], and studied widely in [3 , 4, 7]. Studies were carried out on neutrosophic rings, 

neutrosophic hyperring, and neutrosophic refined rings. See [1-2]. Neutrosophic rings have many interesting 

properties and substructures such as neutrosophic subrings and  neutrosophic ideals. They are defined and studied 

widely. See [1 ,3 , 4]. In this work we focus on subsets with form P+QI where P,Q are ideals in the ring R. Two new 

kinds of  neutrosophic substructures which we call AH-ideals and AHS-ideals can be defined by the previous aspect. 

We prove many theorems which describe their essential properties. Also, we introduce some related concepts such 

as AH-weak principal ideal, AH-weak prime ideal and AH-weak maximal ideal which have many interesting 

properties similar to the properties of the classical principal, maximal and prime ideals defined in classical rings. 

For our purpose we introduce the concept of AHS-homomorhism and AHS-isomorphism. 

Motivation 

Since the neutrosophic ring under addition and multiplication (+ and ⨯) R(I)={a+bI ; �, � ∈ � , � �� � ����} can be 

represented as R+RI [4], we are interested in studying the subsets with form P+QI; where P, Q are ideals in R, in 

addition to investigating their properties.  
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Received: January 15, 2020     Revised: March 08, 2020     Accepted: April 14, 2020



International Journal of Neutrosophic Science (IJNS)                                                     Vol. 4 No. 2,  PP. 72-81, 2020 

 

DOI:10.5281/zenodo.3759799 
 

 73

 

2. Preliminaries 

In this section we introduce a short revision of some theorems and definitions about ideals and neutrosophic ideals. 

Definition 2.1:[8] 

Let (R,+,⨯) be a ring and  P be an ideal of  R  

(a) P is called prime if � ⨯ � ∈ � implies � ∈ � �� � ∈ � ��� �, � ∈ �. 

(b)P is called maximal if there is no proper ideal J is containing P. 

(c) P is called principal if P=<a> for some a∈ �. 

(d) The set M = {� ∈ � ; ∃� ∈ � ���ℎ �� ∈ �} is called the root ideal of P and we denote it by √�. 

Theorem 2.2:[8] 

Let R, T be two commutative rings and �: � → � be a ring homomorphism; let P be an ideal in R and J an ideal in T 

such � ≠ � ��� ���� ≤ � ≠ �, then 

(a) P is prime in R if and only if f(P) is prime in T. 

(b) P is maximal in R if and only if f(P) is maximal in T. 

(c) J is prime in T if and only if ���(�) is prime in R. 

(d) J is maximal in T if and only if ���(�) is maximal in R. 

Definition 2.3:[9] 

Let (R,+,⨯) be a ring, then R(I)={� + �� ;  �, � ∈ �} is called the neutrosophic ring; where I is a neutrosophic 

indeterminate element with the condition �� = �. 

Definition 2.4:[9] 

Let R(I) be a neutrosophic ring, a non-empty subset P of R(I) is called a neutrosophic ideal if : 

(a) P is a neutrosophic subring of R(I). 

(b) for every � ∈ � ��� � ∈ �(�), we have  � × � , � × � ∈ �. 

Theorem 2.5: [8] 

Let P, Q be two ideals in the ring R, then � ∩ � , � + � , � × � are ideals in R. 
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For definitions of P+Q, P⨯Q, [see 8, pp. 49-53]. 

3. Main concepts and discussion 

Definition 3.1: 

Let R be a ring and R(I) be the related  neutrosophic ring and  � = �� + ��� = {�� + ��� ;  �� ∈ �� , �� ∈

��}; ��, �� are two subsets of R. 

(a)We say that P is an AH-ideal if ��, �� are ideals in the ring R. 

(b)We say that P is an AHS-ideal if �� = ��. 

(c) �he AH-ideal P is called null if ��, �� ∈ {� , � }. 

Theorem 3.2: 

Let R(I) be a neutrosophic ring and � = �� + ��� be an AH-ideal, then P is not a neutrosophic ideal in general by 

the classical meaning. 

Proof: 

Since ��, �� are ideals, they are subgroups of (R,+), thus � = �� + ��� is a neutrosophic subgroup of (R(I),+). Now 

suppose that 

� = �� + ��� ∈ �(�), � = �� + ��� ∈ �. 

We have � =  ���� + (���� + ���� + ����)�, we remark that ���� + ���� + ����does not nessecary belong to �� 

because �� ���� ��� ������ �� �� thus P is not supposed to be an ideal. See example 3.17. 

It is easy to see that if �� = ��, then � = �� + ��� is a neutrosophic ideal in the classical meaning.    

Remark 3.3: 

We can define the right AH-ideal as ��, �� are right ideals in R, and the left AH-ideal as ��, �� are left ideals in R. 

Definition 3.4: 

 Let R(I) be a neutrosophic ring and � = �� + ��� , � = �� + ��� be two AH-ideals. Then we define: 

� + � = (�� + ��)+ (�� + ��)�. 

� ∩ � = (�� ∩ ��)+ (�� ∩ ��)�. 

� ⨯ � =  ���� + (���� + ���� + ����)�. 
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Theorem 3.5: 

Let R(I) be a neutrosophic ring and � = �� + ��� , � = �� + ��� be two AH-ideals, then 

 P + Q and � ∩ �, P⨯Q are AH-ideals. 

Proof: 

�� × ��, �� + ��,  �� ∩ �� for � ∈ {0,1} are ideals in R as a result of Theorem 2.5, thus we get the proof. See example 

3.17. 

Definition 3.6: 

Let R(I) be acommutativeneutrosophic ring and � = �� + ��� be an AH-ideal then the AH-root of P can be defined 

as: �� − ���(�) = ��� + ��� �. 

Theorem 3.7: 

Every AH-root of an AH-ideal is also AH-ideal.  

Proof: 

Since ���  is an ideal in R we get that ��� + ��� � is an AH-ideal of the neutrosophic ring R(I). 

It is easy to see that if P is an AHS-ideal then the AH-root of P is also an AHS-ideal because ��� = ���. 

Definition 3.8: 

Let R(I) be a neutrosophic ring and � = �� + ��� be an AH-ideal. Then we define the AH-factor as: �(�) �⁄ =

� ��⁄ + � ��⁄  �. 

Theorem 3.9: 

Let R(I) be a neutrosophic ring and � = �� + ��� be an AH-ideal then �(�) �⁄  is a  ring with the following two 

binary operations 

[(�� + ��)+ (�� + ��)�] + [(�� + ��)+ (�� + ��)�] =  

[(�� + �� + ��)+ (�� + �� + ��)�] 

[(�� + ��)+ (�� + ��)�] × [(�� + ��)+ (�� + ��)�] =[(�� × �� + ��)+ (�� × �� + ��)�]. 

Proof: 
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Since ��, �� are ideals in R, then� ��⁄ , � ��⁄ are rings, so �(�) �⁄  under the previous operations is closed. It is 

obvious that (�(�) �⁄  , + ) is abelian neutrosophic group. 

Addition is well defined, suppose that [(�� + ��)+ (�� + ��)�] = [(�� + ��)+ (�� + ��)�] so (�� + ��) =

(�� + ��)  and (�� + ��) = (�� + ��) thus �� − �� ∈ ��, �� − �� ∈ �� 

[(�� + ��)+ (�� + ��)�] = [(�� + ��)+ (�� + ��)�]so(�� + ��) = (�� + ��)  and (�� + ��) = (�� + ��) thus 

�� − �� ∈ ��, �� − �� ∈ �� 

[(�� + ��)+ (�� + ��)�] + [(�� + ��)+ (�� + ��)�] = [(�� + �� + ��)+ (�� + �� + ��)�]and 

[(�� + ��)+ (�� + ��)�] + [(�� + ��)+ (�� + ��)�] = [(�� + �� + ��)+ (�� + �� + ��)�] 

We can see that (�� + ��)− (�� + ��) = (�� − ��)+ (�� − ��) ∈ �� and (�� + ��)− (�� + ��) = (�� − ��)+

(�� − ��) ∈ ��thus  [(�� + �� + ��)+ (�� + �� + ��)�] = [(�� + �� + ��)+ (�� + �� + ��)�]. 

Multiplication is well defined.Since�� − �� ∈ ��then (�� − ��)× �� = �� × �� − �� × �� ∈ ��, by the same we 

find �� × (�� − ��) = �� × �� − �� × �� ∈ �� that implies (�� × �� − �� × ��)+ (�� × �� − �� × ��) =

(�� × �� − �� × ��) ∈ �� 

By the same argument we find (�� × �� − �� × ��) ∈ ��thus  (�� × �� + ��)= (�� × �� + ��) and (�� × �� +

��) = (�� × �� + ��);thus addition and multiplication are well defined.  

The multiplication is associative and distributive with respect to addition. 

Let � = (�� + ��)+ (�� + ��)� , � = (�� + ��)+ (�� + ��)� , � = (�� + ��)+ (�� + ��)� be three elements in  

�(�) �⁄  we have: 

� × (� + �) = [(�� + ��)+ (�� + ��)� ] × [(�� + �� + ��)+ (�� + �� + ��)�] =  

[�� × (�� + ��)+ ��] +  [�� × (�� + ��)+ ��]� = [�� × �� + �� × �� + ��] + [�� × �� + �� × �� + ��]� = 

[(�� + ��)+ (�� + ��)�]× [(�� + ��)+ (�� + ��)�]+ [(�� + ��)+ (�� + ��)�]× [(�� + ��)+ (�� + ��)�] =� ×

� +  � × �. 

Following the same argument,we can prove that (� + �)× � =  � × � + � × �. 

Thus we get the proof. 

Definiton 3.10: 

Let R(I), T(J) be two neutrosophic rings and the map �: �(�)→ �(�) we say that f is aneutrosophic AHS-

homomrphism if 



International Journal of Neutrosophic Science (IJNS)                                                     Vol. 4 No. 2,  PP. 72-81, 2020 

 

DOI:10.5281/zenodo.3759799 
 

 77

The restriction of the map � on R is a ring homomorphism from R to T i.e.��: � → �is homomorphism and 

�(� + �I)= ��(�)+ ��(�)�. 

We say that R(I), T(J) are AHS-isomomrphic neutrosophic rings if there is a neutrosophic AHS-homomorphism  

�: �(�) → �(�)which is a bijective map i.e ( R ≅ �), we say that f is a neutrosophic AHS-isomorphism. 

Example 3.11: 

Suppose that  R = (��, +  ,× ), � = (���, +  ,× ) are two rings, we have �: �(�)→ �(�); �(� + ��) = 5� + 5�� is an 

AHS-homomorphism because ��: � → � ; ��(�) = 5� is a homomorphism between R and T. 

The previous example shows that AHS-homomorphism is not supposed to be a neutrosophic ring homomorphism 

defined in[3] because �(�) = �(0 + 1. �) = �(0)+ �(1)� = 0 + 5� = 5� ≠ �. 

It is easy to see that if �: �(�) → �(�) is a neutrosophic AHS-homomorphism then ���(�)� = ��(�)+ ��(�)�. 

The AH-kernel of �: �(�) → �(�) can be defined as �� − ���� = ����� + ����� � 

In the last example we have ����� = {0,2,4} thus  �� − ���� = ����� + ������= {0, 2, 4, 2I, 4I, 2+4I, 2+2I, 

4+2I, 4+4I }. 

If Q = �� + ��� is an AH-ideal of T(J),then the inverse image of Q is  

���(�) = ��
��(��)+ ��

��(��)�. 

Theorem 3.12: 

Let R(I), T(J) be two neutrosophic rings and f: R(I)→T(J) is a neutrosophic ring AHS-homomorphism, let � = �� +

��� be an AH-ideal of R(I) and � = �� + ��� be an AH-ideal of T(J), then we have 

(a) f(P) is an AH-ideal of f(R(I)). 

(b) ���(�) is an AH-ideal of R(I). 

(c) If P is AHS-ideal of R(I), then f(P) is an AHS-ideal of f(R(I)). 

(d) �� − ���� = ����� + ������ is an AHS-ideal;�� is the restriction of f on the ring R. 

(e) The AH-factor �(�) ����⁄  �� ��� − �������ℎ�� �� �(�(�)).  

Proof: 

(a) Since f can be restricted on R, by Definition 3.10, we can write 
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�(�) = ��(��)+ ��(��)�. Since ��(��); � ∈ {0,1} is an ideal in f(R), thus f(P) is an AH-ideal in f(R(I)). 

(b) Since ���(�) = ��
��(��)+ ��

��(��)� and ��
��(��);  � ∈ {0,1}  is an ideal in R so ���(�) is an AH-ideal of T(J). 

(c) We have �� = ��, so ��(��) = ��(��) and f(P) must be an AHS-ideal. 

(d) Since ����� is an ideal of R then �� − ���� = ����� + ������ is an AHS-ideal of R(I). 

(e) Since f is a ring homomorphism, then � �����⁄ ≅ �(�) so we get: 

�(�) ����⁄ = � �����⁄ + � �����⁄ � ≅ ��(�)+ ��(�)� = �(�(�)). 

We mean by the symbol ≅ the concept of AHS-isomorphism introduced in  Definition 3.10. 

[For more clarity see Examples 3.17 and  3.18]. 

Definition 3.13: 

Let R(I) be a neutrosophic commutative ring and � = �� + ��� be an AH-ideal. Then we say that 

(a) P is a weak prime AH-ideal if ��, �� are prime ideals in R. 

(b) P is a weak maximal AH-ideal if ��, �� are maximal ideals in R. 

(c) P is a weak principal AH-ideal if ��, �� are principal ideals in R. 

Definition 3.14: 

Let R(I) be a commutative neutrosophicring,we call it a weak principal AH-ring if every AH-ideal is a weak AH-

principal  ideal. 

Theorem 3.15: 

Let R(I), T(J) be two commutative neutrosophic rings with a neutrosophicAHS-homomorphism f: R(I)→T(J) then 

If P = �� + ��� is an AHS- ideal of R(I) and AH-Ker f ≤ P≠ �(�) then 

(a) P is a weak prime AHS-ideal if and only if f(P) is a weak prime AHS-ideal in f(R(I)). 

(b) P is a weak maximal AHS-ideal if and only if f(P) is a weak maximal AHS-ideal in f(R(I)). 

(c) If Q = �� + ��� is an AH-ideal of T(J) then it is a weak prime AH-ideal if and only if ���(�) is a weak prime in 

R(I). 

(d) If Q = �� + ���is an AHS-ideal of T(J) then it is a weak maximal AHS-ideal if and only if ���(�) is a weak 

maximal in R(I). 
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Proof: 

(a) We have AH-Ker f ≤ P so ����� ≤ �� , ����� ≤ ��.We can find  

��(��) = ��(��)and both of them are ideals in f(R); thus �(�) = ��(��)+ ��(��)� is a weak prime AHS-ideal in 

f(R(I)) if and only if P is a weak prime AH-ideal in R(I) as a result of theorem 2.2. 

(b) Following the same argument, we can get the proof. 

(c) We have that ���(�) = ��
��(��)+ ��

��(��)�, and ��
��(��), ��

��(��) are prime in R if and only if ��, �� are 

prime in T, then the proof holds. 

(d) We have ���(�) = ��
��(��)+ ��

��(��)�, and ��
��(��), ��

��(��) are maximal in R if and only if ��, �� are 

maximal in T by theorem (2.2), thus the proof holds. 

Remark 3.16: 

It is easy to see that if P is an AH-ideal in R(I) then (a) and (b) are still true. 

(c), (d) are still true if Q is an AHS-ideal. 

Example 3.17: 

In this example we clarify some of introduced concepts. 

Let R(I)=��(�), �� = {0,2,4}, �� = {0,3} are two ideals in �� then we have 

(a) P=�� + ��� = {0,2,4 ,2+3I,4+3I, 3I} is an AH-ideal. 

(b) Q=�� + ��� = {0,3,3 + 3�, 3�} is an AHS-ideal because �� = ��. 

(c) We have: � ��⁄ ={�� , 1+�� } and � ��⁄ = {�� , 1 + �� , 2 + ��}; thus the AH-factor  

�(�) �⁄  = { �� + ���,  �� + (1 + ��)�, �� + (2 + ��)�, (1+��)+  ���, (1+��)+ (1 + ��)�, (1+��)+ (2 + ��)� } 

We shoud remark that �� = �� + 0. � and 0 = 0 + 0.I. 

(d)We can clarify the addition on the AH-factor  �(�) �⁄  as: 

[�� + (1 + ��)�] + [(1 + ��)+ (2 + ��)� ]= [(0+1)+��] + [(1+2)+��] I = (1+��) + (3+��) I = (1+��)+  ���. 

We can clarify the multiplication on the AH-factor  �(�) �⁄  as: 

[�� + (1 + ��)�] × [(1 + ��)+ (2 + ��)� ] = [(0 × 1)+ ��] + [(1 × 2)+ ��]� = �� + (2 + ��)�. 

(e) We can see that � ∩ � = (�� ∩ ��)+ (�� ∩ ��)� = {0} + ��� = {0,3�} which it is an AH-ideal. 
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(f) P+Q = (�� + ��)+ (�� + ��)� = � + ��� = {0,1,2,3,4,5,3�, 1 + 3�, 2 + 3�, … … 5 + 3�}. 

Example 3.18: 

Suppose that R = (�� , +  ,× ), � = (��� , +  ,× ) are two commutative rings, we have �: �(�) → �(�); �(� + ��)=

5� + 5��. 

f is a neutrosophicAHS-homomrphism because��: � → � ;  ��(�)= 5� is a homomorphism. 

We have: � = ����� = {0,2,4}, ��(�) = {0,5}, � � ≅ ��(�)⁄ = {0,5}, � �⁄ = { � , (1 + �)}. 

The AH-factor  �(�) ����⁄ = � � ⁄ + � � ⁄ �={ (P + P.J), (P + [1+P]J), ([1+P]+P J), ([1+P]+[1+P]J) } 

Which is AH-isomomrphic to f(R(I))= ��(�)+ ��(�)� = {0,5} + ({0,5})� = { 0, 5,5�, 5 + 5�}. 

Q=�� + ��� = {0,3,3 + 3�, 3�}is an AHS-ideal defined in Example 3.17, we have �(�) = {0,5,5�, 5 + 5�}, which is 

an AHS-ideal of T(J). 

�� = {0,2,4,6,8}is a ideal of T thus S= �� + ��� = {0,2,4,6,8,2�, 4�, 6�, 8�, 2 + 2�, 2 + 4�, 2 + 6�, 2 + 8�, 4 + 2�, 4 +

4�, 4 + 8�, 4 + 6�, 8 + 2�, 8+4J, 8+6J,8+8J} is an AHS-ideal of T(J). 

��
��(��) = {0,2,4} so ���(�)= ��

��(��)+ ��
��(��)� = {0,2,4,2�, 4�, 2 + 2�, 2 + 4�, 4 + 2�, 4 + 4�}is an AHS-ideal 

of R(I). 

Example 3.19: 

In the ring R (�� , +  ,× ) we have two maximal ideals P={0,3}, Q={0,2,4}thus P+QI and Q+PI are two weak 

maximal AH-ideals of R(I). 

Example 3.20: 

(a) In the ring R=(�� , +  ,× ) we have only one maximal ideal P={0,2,4,6} so P+PI is a weak maximal AHS-ideal of 

R(I). 

(b) We have Q ={0,4 } is an ideal in R,��= {0,2,4,6}= P thus the AH-root of Q+QI is equal to P+PI. 

Example 3.21: 

In the ring (Z,+, × ) each ideal P is principal thus each AH-ideal S=P+QI is weak principal AH-ideal so Z(I) is a 

weak principal AH-ring. 

Example 3.22: 

(a) In the ring (Z,+, × ), P= <3>, Q=<2> are two prime and maximal ideals so P+QI ={3n+2mI; n, m∈ � } is weak 
prime AH-ideal and weak maximal AH-ideal. 
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(b)The map ��: � → ��; �(�) = � ��� 6 is a homomorphism so the related AH-homomorphism is 

�: �(�)→ ��(�); �(� + ��) = [� ��� 6] +  [� ���6]� and AH-kerf = 6Z + 6ZI is contained in P+QI. 

(c) �(� + ��)= �(�)+ �(�)� = {0,3} + {0, ,2, ,4}� which is a weak maximal / prime AH-ideal in ��(�) since  

{0,3 } , {0,2,4} are maximal and prime in ��. 

(d) Since Q= {0,2,4} is maximal in ��, P=Q+QJ is a weak maximal / prime AH-ideal of ��(�) and we find  

���(�) = ���
��(�)+ ���

��(�)� = < 2 > + < 2 >I which is a weak maximal/ prime AHS-ideal in Z(I). 

Conclusion 

In this article we introduced the concepts of AH-ideals and AHS-ideals in a neutrosophic ring. Some related 

concepts as weak  principal ideal, AH-weak prime ideal and AH-weak maximal ideal are presented with some useful 

tools as AHS-homomorphism/isomorphism. We investigated the essential properties of these concepts and proved 

many related theorems concerning these properties. 
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Abstract  

Real humankind problems have different sorts of ambiguity in the creation, and amidst them, one of the significant 

issues in solving the integer linear programming issues. In this commitment, the conception of aggregation of ranking 

function has been focused on a distinct framework of reference. Here, we build up another framework for neutrosophic 

integer programming issues having triangular neutrosophic numbers by using the aggregate ranking function. To 

legitimize the proposed technique, scarcely numerical analyses are given to show the viability of the new model. At 

long last, conclusions are talked about. 

Keywords: Neutrosophic triangular numbers, integer programming, aggregate ranking function. 

1.Introduction 

Professor Zadeh  [1] was originally presented the idea of a fuzzy set theory (in 1965). The idea of fuzziness has a 

leading feature to solve efficiently in engineering and statistical problem. Applying the uncertainty theory, plentiful 

varieties of realistic problems can be solved, networking problems, decision-making problems, influence on social 

science, etc. As a result, by considering fuzzy parameters in linear programming, fuzzy linear programming is defined. 

Accordingly, various researchers have demonstrated their attentiveness to various sorts of fuzzy linear programming 

(FLP) issue and proposed a diverse system for dealing with FLP issues. If the parameters and constraints are fuzzy 

numbers, then it is called fully fuzzy numbers. A general class of fully FLP (FFLP) was introduced by Buckley and 

Featuring [46]. Many authors [2, 30-35, 37] considered issues either fuzzy linear programming implies either just the 

right-hand side or the constraints have been fuzzy or simply factors are fuzzy. Fuzzy IP  problem is also the main part 

of LP problem. Allahviranloo et al. [3] offered a technique for solving IP problems. Fan et al., also [4] offered a 

general technique for resolving IP under fuzzy environment. Dehghan et al. [38] proposed practical methodologies to 

resolve a fully fuzzy linear system  (FFLS) that is proportional to the remarkable systems. Lotfi et al. [39] proposed a 

procedure for symmetric triangular fuzzy number, gained another system for dealing with FFLP issues by changing 

over two relating LPs. To overcome these obstruction Kumar et al. [36] introduced another system for discovering the 

fuzzy ideal arrangement of FFLP issue with uniformity imperatives. After that Edalatpanah [14-15], Das [8-12], Das 

HP
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et al. [5-6] have portrayed to deal with the FFLP issue with the assistance of situating limit and lexicographic 

methodology. Wan and Dong [42] proposed a new approach for trapezoidal fuzzy linear programming problems 

thinking about the acceptance degree of fuzzy constraints violate. 

 Pertaining the concept of Zadeh’s research paper, Atanassov [40] created phenomenally the intuitionistic fuzzy set 

where he meticulously elucidates the concept of membership and nonmembership function. Smarandache [16] in 1998 

germinated the notion of having neutrosophic set holding three different fundamental elements (i) truth, (ii) 

indeterminate, and (iii) falsity. Each and every attribute of the neutrosophic sets are very relevant factors to our real-

life models. Afterward, Wang et al. [44] progressed with a single typed neutrosophic set, which serves the solution to 

any sort of complicated problem in a very efficient way. Neutrosophic hypothesis applied in numerous fields of 

sciences, so as to take care of the issues identified with indeterminacy, see [20, 22, 27-28,41, 45, 48-49]. In like 

manner, Abdel-Baset [23] added the neutrosophic LP models the place their parameters are tended with trapezoidal 

neutrosophic numbers and introduced a method for getting them. Das and Jatindra [43] introduced a strategy for 

solving neutrosophic LP problem having triangular neutrosophic numbers by using ranking function. Edalatpanah [13, 

21] presented some direct approaches of neutrosophic LP problem having the triangular fuzzy number. Again, 

Edalatpanah [17-20] established some aggregate ranking functions for data envelopment analysis (DEA) based on 

triangular neutrosophic numbers. Mohamed et al., [47] introduced another score function for neutrosophic integer 

programming problems having triangulay neutrosophic numbers. Banerjee and Pramanik [25] added the LP problem 

with single objective in neutrosophic number (NN) conditation with the assistance of goal programming. Likewise, 

Pramanik and Dey [24] detailed arrangement technique to linear bi-level programming problem in NN condition. 

Maiti et al. [26] introduced a strategy  for multi-level-multi-objective LP problems by the assistance of goal 

programming. Hussian et al. [29] proposed a neutrosophic LP issue using ranking function. A IP issue under 

neutrosophic condition  having triangular neutrosophic numbers was proposed by Nafei and Nasseri [7].  

The motivation of this research paper, to develop an aggregate ranking function and usage of our function in 

integer programming (IP) problem. We propose IP problem based on triangular neutrosophic numbers. We likewise 

change the neutrosophic IP issue into a crisp IP model through the use of the aggregate ranking function.  Any standard 

methodologies explain this crisp  IP issue. 

This research paper is prepared as follows: in the next segment, some fundamental concepts, mathematical operation 

on triangular neutrosophic numbers are introduced. In the next following segment, the proposed strategy for solving 

the IP problem is examined. Following this segment, the sub-section of Limitation and shortcoming of the existing 

method, sub-section of neutrosophic IP is discussed. In the next subsection, we discuss the proposed algorithm for 

solving our problem. In segment before determination, a numerical model is given to uncover the viability of the 

proposed model. At long last, conclusions are given in the last segment.  

2. Preliminaries   

Right now, some fundamental concepts and neutrosophic numbers have been examined  under this segment.  
Definition 1.  [16] 

Assume S  be a space of objectives and s S . A neutrosophic set N in S   may be interpret via three membership 

functions for truth, indeterminacy along with falsity and represent  by  ( )I s , ( )I s  and ( )I s  are real standard or 
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real nonstandard subsets of ]0 ,1 [. 
That is 

( ) : 0 ,1 , ( ) : 0 ,1 ( ) : 0 ,1I I Is S s S and s S                    . There is no limitation on the sum of 

( )I s , ( )I s  and ( )I s ,  so 0 sup ( ) sup ( ) sup ( ) 3 .I I Is s s        

Definition 2. [16] 

A single-valued neutrosophic set (SVNS) I  through S  taking the form  { , ( ), ( ), ( ); }I I II s s s s s S    , where 

S  be a space of discourse, ( ) : 0 ,1 , ( ) : 0 ,1 ( ) : 0 ,1I I Is S s S and s S                   with 

0 ( ) ( ) ( ) 3I I Is s s      for all s S . ( )I s , ( )I s  and ( )I s  respectively represent truth membership, 

indeterminacy membership, and falsity membership degree of 
 s  to I . 

Definition3 [43]. A triangular neutrosophic number (TNNs) is signified via 1 2 3( , , ), ( , , )I b b b      is an 

extended version of the three membership functions for the truth, indeterminacy, and falsity of s can be defined 

as follows: 

 
 

 
 

1

1 2

2 3

1

3

2 3

3 2

          b ,

                      s ,
( )

        b ,

0                       something else.

I

b

b

b

s b
s b

b

b
s

s
s b

b








 
  





 


 





 

 
 

 
 

2

1 2

2 3

2

3

2 3

3 1

,           b ,

,                       s
( )

,         b ,

1,                       something els .

,

e

I

s
s b

b

b
s

s b
s b

b

b

b

b








 
  





 


 





 

 
 

 
 

1

1 2

2 1

2

3

2 3

3 2

,           b ,

,                       s
( )

,         b ,

1,                       something els .

,

e

I

s
s b

b

b
s

s b
s b

b

b

b

b








 
  





 


 




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Where, ( ) ( ) ( ) 3 .0 ,I I Is s s s I       Additionally, when 1 0,b  I is called a nonnegative TNN. 

Similarly, when 1 0,b  I  becomes a negative TNN. 
 

Definition 5 [19]. Arithmetic Operation 

Suppose 1 2 3
1 1 1 1 1 1 1( , , ), ( , , )IA b b b      and 1 2 3

2 2 2 2 2 2 2( , , ), ( , , )IA b b b     be two TNNs. Then the 

mathematical computation  will be explained as: 

1 1 2 2 3 3
1 2 1 2 1 2 1 2 1 2 1 2 1 2( ) ( , , ), ( , , )I Ii A A b b b b b b                

1 3 2 2 3 1
1 2 1 2 1 2 1 2 1 2 1 2 1 2( ) ( , , ), ( , , )M Mii A A b b b b b b                

1 1 2 2 3 3 1 2
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1( ) ( , , ), ( , , ) , 0, 0 ,M Miii A A b b b b b b b bif             

1 2 3
1 1 1 1 1 1

1 3 2 1
1 1 1 1 1 1

( , , ),( , , ) , 0
( )

( , , ),( , , ) , 0

M
b b b if

iv A
b b b if

      


      

  

    

1 2 3
3 31 1 1

1 2 1 2 1 2 1 23 2 1
2 2 2

3 2 1
3 31 1 1 1

1 2 1 2 1 2 1 23 2 1
2 2 2 2

3 2 1
3 31 1 1

1 2 1 2 1 2 1 21 2 3
2 2 2

( , , ); , , ( 0, 0)

( ) ( , , ); , , ( 0, 0)

( , , ); , , ( 0, 0)

M

M

b b b
b b

b b b

A b b b
v b b
A b b b

b b b
b b

b b b

     

     

     


    





     


     


 

3. Proposed model 

Before going to our main algorithm, first of all, we tend to begin a subsidiary i.e., drawback as well as restriction 

of the available method [7] 

3.1 Shortcoming and Limitation of the existing method 

First of all, we investigate drawback as well as restrictions of an available  method [7] under exclusive ranking 

function.  

Nafei and Nasseri [7] suggested a model for IP problems by utilizing the ranking function. However, the author uses 

some scientific presumption to resolve the problem that may be invalid in any case. This has been examined in 

Example 3.1 and Example 3.2. 

Definition 6:  One can examine any two TNNs in response to the ranking functions. Let 

1 2 3( , , ); , ,NI b b b      be a triangular neutrosophic numbers (TNNs); then 

1 3 22
( )

4
N b b b

R I   
 

      
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Example-3.1 Let 1(4,8,10);0.5,0.3,0.6 (3,7,11);0.4,0.5,0.6N NI and I     then  ( ) 7.9NR I    

and 1( ) 7.7NR I   

Based on definition 5: 

1 (7,15, 21);0.4,0.5,0.6N NI I    then 1( ) 15.2N NR I I    

We observe that 1 1( ) ( ) ( )N N N NR I I R I R I   .  

Here, we observed that the author used an invalid mathematical assumption i.e. ranking function, to solve the problem.  

Therefore, we consider an aggregation ranking function, which was defined by Edalatpanah [19]. 

Definition 7. Let 
1 2 3( , , ); , ,NI b b b      be a triangular neutrosophic numbers (TNNs); then the aggregation 

ranking function is as follows: 

  
1 2 3(2 min max max )

( ) ( )
9

NR I b b b
    

     

 

Example-3.2 Let 1(4,8,10);0.5,0.3,0.6 (3,7,11);0.4,0.5,0.6N NI and I     then  ( ) 3.91NR I    

and 1( ) 3.03NR I   

Based on definition 5: 

1 (7,15, 21);0.4,0.5,0.6N NI I    then 1

(2 0.4 0.5 0.6)
( ) (22 21) 6.94

9
N NR I I

  
       

Hence,  

 1 1( ) ( ) ( )N N N NR I I R I R I   .  

Here, we observed from the above examples the existing method [7] uses the ranking function is invalid, and 

Definition-7 of ranking function is valid. Therefore, we consider the aggregation ranking function to solve integer 

programming.  

3.2 Neutrosophic IP model  

In this section, IP problem with neutrosophic elements are often described  as the succeeding : 

' '

1

n

j j
j

Max Z c x


    

Subject to               (1) 

  
' '

1

, 1, 2,..., ,
n

ij j i
j

a x b i m


    

          0, 1,2,..., .jx j n   and it is an integer
 

 

where jx  is nonnegative neutrosophic triangular numbers and , ,j ij ic a b   represented the neutrosophic numbers.  
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In our neutrosophic model we choose to maximize the degree of acceptance and limit the degree of rejection and 

indeterminacy of the neutrosophic objective function and constraints. Now the model are often typed as follows: 

 

 

 

max

min

min

x

x

x







  

Subject to 

    

   

   

   

     

0 ( ) 3

, , 0

0 int .

x x

x x

x x x

x x x

x is eger

 

 

  

  





   





      (2) 

The problem may be typed for the equal structure as follows: 

                                          max , min , min    

Subject to 

 

 

 

0 3

0.

x

x

x

x

 

 

 

 

 

  











   



        (3) 

the place   represents the least degree of acceptance,   represents the largest degree of rejection and   represents 

the largest degree of indeterminacy.  

Now the model may be turned into the following model: 

       max( )      

Subject to 

 

 

 

0 3

0, int .

x

x

x

x is eger

 

 

 

 

 

  











   



     (4) 
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Finally, the model may be typed  as: 

min(1 )       

Subject to 

 

 

 

0 3

0, int .

x

x

x

x is eger

 

 

 

 

 

  











   



          (5) 

4. Proposed method  

Here, we propose an algorithm which is solved our problem (1) and the steps are given as: 

Step 1. Build the problem as the model (1). 

Step 2. Consider , , ; , , , , , ; , ,l m r l m r
b b b c c cb b b b T I F c c c c T I F      and using Definition 5, the LP 

problem (1) can be transformed into problem (6).  

1

( ) ( , , )
n

l m r
j j j j

j

Max or Min Z c c c x


   

subject to                  (6) 

   1 2 3( , , ; , , ) ( , , ; , , ), 1, 2,...., .l m r
ij ij ij a a a j i i i b b ba a a T I F x b b b T I F i m 

 

     0, int , 1,2,..., .jx eger j n   

Step 3. Using arithmetic operations, defined in Section 2 and Definition 7, the problem obtained in Step-2, is converted 

into the following crisp IP problem. 

1

( ) ( , , )
n

l m r
j j j j

j

Max or Min Z c c c x


   

subject to                  (7) 

   1 2 3( , , ; , , ) ( , , ; , , ), 1,2,...., .l m r
ij ij ij a a a j i i i b b ba a a T I F x b b b T I F i m  

 

     0, int , 1,2,..., .jx eger j n   

 

Step 4. Find the optimal solution jx  by solving the crisp IP problem got in Step-3.  

Step 5. Find the optimal value by placing  jx  in 
1

n

j j
j

c x

  . 
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Step 6. From Step 5, solve the LP problem using the simplex method ignoring integer restrictions. If the obtained 

solution satisfies integer restrictions, then Stop, otherwise go to the next step by using Gomory’s cutting plane 

algorithm.    

Step 7. Add the constraints to the given set of constraints of the problem and solve the modified problem. If its optimal 

solution is integral, stop, otherwise repeating the step till an optimal integer solution is obtained. 

5. Numerical Example 

Here, we consider a case of [7] to represent the model and  to quantify the effectiveness of our proposed model, we 

tackle a numerical model. 

Example-1  

1 2

1 2

1 2

1 2

max 4 3

. .

4 2 12

3 6 5

, 0, int .

x x

s t

x x

x x

x x eger



 

 



 

  

  

   

where 

  

4 (2,4,6);(0.8,0.6,0.4)

3 (1,3,5);(0.75,0.5,0.3)

4 (0, 4,8);(1,0.0,0.5)

2 (1, 2,3);(1,0.5,0.5)

12 (5,12,19);(1,0.25,0.25)

3 (1,3,5);(0.75,0.0,0.25)

5 (3,5,7);(0.8,0.6,0.4)

6 (1,6,11); (1,

 

 

 

 

 

 

 

















 0,0) 

  

By utilizing the aggregation ranking  function proposed in Definition 7 the above issue can be changed over to crisp 

model as follows: 

1 2

1 2

1 2

1 2

max 2.4 1.95

. .

3.33 1.3 6

2.5 6 3

, 0, int

x x

s t

x x

x x

x x eger



 

 



  

By following the steps introduced in the last segment, the optimal solution integer programming problem of 

the above problem is 1 21, 0x x   and the objective solution is 2.4Z  . 

6. Conclusions  
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In this investigation, we present the neutrosophic IP and suggest a novel model to tackle it. In view of the present 

ranking function of triangular neutrosophic, numbers are not valid, therefore a aggregation ranking function was 

adopted for solving the problem. A new algorithm, the use of these ranking functions, is introduced to gain the 

effectivity of IP problems. For calculating the integer programming, we use Gomory’s cutting plane algorithm.  

At long last, we utilize a numerical application to delineate the common sense and legitimacy of the proposed strategy. 

Also, the weaknesses of the current calculations are brought up and to show the benefits of the proposed calculations. 

At long last, from the acquired outcomes, it tends to be presumed that the model is proficient and advantageous.  
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Abstract  

In this paper, we present the new kind of MN-subalgebra for neutrosophic cubic set which is called neutrosophic cubic 
MN-subalgebra where M represents the initial of author’s first name Mohsin and N represents the initial of second 
author’s first name Neha. We investigate this neutrosophic cubic MN-subalgebra on BF-algebra through some 
significant properties of BF-algebra. We also use R-intersection, p-intersection, p-union upper bound, lower bound 
and some important characteristics to study the behaviour of neutrosophic cubic MN-subalgebra [NCMNSU] on BF-
algebra. 

Keywords: BF-algebra, Neutrosophic cubic set, Neutrosophic cubic MN-subalgebra. 

1. Introduction  

Fuzzy and interval-valued fuzzy sets were prsented by Zadeh [20,21] Jun et al. [3,4] defined the cubic set and proved 
the axioms for cubic subgroups. Neggers and Kim [7] defined and investigated the B-algebra. Ahn and Ko [9] studied 
the structure of BF-algebra. Walendziak [19] proved the conditions of B-algebra. Senapati et al. [13] worked on fuzzy 
dot subalgebra and interval-valued fuzzy subalgebra with respect to t-norm in B-algebra.[14,6] many researches 
worked on B-algebra and BG-algebra. Khalid et al. [15] studied the neutrosophic soft cubic subalgebra with different 
characteristics. Khalid et al. [16] studied the effects of magnification of translation for MBJ-neutrosophic set. Khalid 
et al. [17] investigated the T-ideal under the MBJ-neutrosophic on B-algebra. Khalid et al. [18] presented the 
multiplication of neutrosophic cubic set. Smarandache [11,12] is the first person who presented the theory of 
neutrosophy set which invloveed indeterminacy. Jun et al. [5] introduced neutrosophic cubic set. Senapati et al. [22] 
studied the cubic subalgebras and cubic closed ideals in detailed on B-algebra. 

The purpose of this paper is to introduce the idea of neutrosophic cubic MN-subalgebra. We investigate many results 
to study the neutrosophic cubic MN-subalgebra in detailed way by using different concepts like p-intersection, R-
intersection and many others. 

2. Preliminaries 

In this section, some basic definitions are presented that are necessary for this paper.   

Definition 2.1 [19] A nonempty set X with a constant 0 and a binary operation ∗ is called BF–algebra, when it fulfills 
these conditions for all t!, t" ∈ X. 
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1. t! ∗ t! = 0 

2. t! ∗ 0 = t! 

3. 0 ∗ (t! ∗ t") = t" ∗ t! for all t!, t" ∈ X. 

A BF-algebra is denoted by (X,∗ ,0). 

Definition 2.2 [9]  A nonempty subset S of BF-algebra X is called a subalgebra of X, if t! ∗ t" ∈ S ∀ t!, t" ∈ S. 

Definition 2.4 [9]  A mapping f ∶ X → Y of BF-algebra is called homomorphism if f	(t! ∗ t") = f	(t!) ∗ f	(t") ∀ t!, t" 
∈ X.  

Definition 2.4 [21] Let X be the set of elements which are denoted generally by t!. Then a fuzzy set C in X is defined 
as C = {< t!, ν#(t!) > 	 |t! ∈ X}, where ν#(t!) is called the membership value of t! in C and ν#(t!) ∈ [0,1]. For a 
family C$ = {< t!, ν#!(t!) > 	 |t! ∈ X} of fuzzy sets in X, where i ∈ U and U is index set, they defined the join (∨) meet 
(∧) operations as:  

 ∨$∈& C$ = (∨$∈& ν#!)(t!) = sup{ν#!|i ∈ U} 

 and  

 ∧$∈& C$ = (∧$∈& ν#!)(t!) = inf{ν#!|i ∈ U} 

 respectively, ∀ t! ∈ X.  

The finding of supremum and infimum between two intervals is not simple. Biswas [2] explained a procedure to find 
max/sup and min/inf between two intervals or a set of intervals.   

Definition 2.5 [2] Let two elements P!, P" ∈ P[0,1]. If P! = [(t!)!', (t!)!(] and P" = [(t!)"', (t!)"(], then 
rmax(P!, P") = [max((t!)!', (t!)"'),max	((t!)!(, (t!)"()] which is denoted by P! ∨) P" and rmin(P!, P") =
[min((t!)!', (t!)"'),min((t!)!(, (t!)"()] which is denoted by P! ∧) P". Thus, if P$ = [((t!)!)$', ((t!)")(] ∈ P[0,1]	 for 
	i = 1,2,3, …, then we define rsup$(P$) = [sup$(((t!)!)$'), sup$(((t!)!)$()], i. e., ∨$) P$ = [∨$ ((t!)!)$',∨$ ((t!)!)$(]. In 
the same way we define rinf$(P$) = [inf$(((t!)!)$'), inf$(((t!)!)$()], i. e., ∧$) P$ = [∧$ ((t!)!)$',∧$ ((t!)!)$(]. Now we 
call P! ≥ P" ⇐ (t!)!' ≥ (t!)"' and (t!)!( ≥ (t!)"(. Similarly the relations P! ≤ P" and P! = P" are defined.   

Definition 2.6 [1] A fuzzy set C = {< t!, µ#(t!) > |t! ∈ X} is called a fuzzy subalgebra of X if ν#(t! ∗ t") ≥
min{ν#(t!), ν#(t")} ∀ t!, y ∈ X.  

 Jun et al. [5], defined and investigated neutrosophic cubic set.  

Definition 2.7 [5] Let X be a nonempty set. A neutrosophic cubic set in X is pair 𝒞 = (ℵ, S) where ℵ =
{〈t!; ℵ*(t!), ℵ+(t!), ℵ,(t!)〉	|t! ∈ X} is an interval neutrosophic set in X and S = {〈t!; S*(t!), S+(t!), S,(t!)〉	|t! ∈ X} 
is a neutrosophic set in X.  

 Definition 2.8 [5] For any 𝒞$ = (ℵ$, S$), where ℵ$ = {⟨t!; ℵ$*(t!), ℵ$+(t!), ℵ$,(t!)⟩|t! ∈ X}, S$ = {⟨t!; S$*(t!), S$+(t!), 
S$,(t!)〉	|t! ∈ X} for i ∈ u, P-union, P-inersection, R-union and R-intersection are defined respectively by 

P-union ∪-
$∈.

𝒞$ = ( ∪
$∈.
ℵ$, ∨$∈. S$), P-intersection ∩-

$∈.
𝒞$ = ( ∩

$∈.
ℵ$, ∧$∈. S$), 

R-union ∪/
$∈.

𝒞$ = ( ∪
$∈.
ℵ$, ∧$∈. S$),	R-intersection: ∩/

$∈.
𝒞$ = ( ∩

$∈.
ℵ$, ∨$∈. S$), where  
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	∪$∈. ℵ$ = {⟨t!; (∪$∈. ℵ$*)(t!), (∪$∈. ℵ$+)(t!), (∪$∈. ℵ$,)(t!)⟩|t! ∈ X}, 

	∨$∈. S$ = {⟨t!; (∨$∈. S$*)(t!),∨$∈. S$+)(t!), (∨$∈. S$,)(t!)⟩|t! ∈ X},  

∩$∈. ℵ$ = {⟨t!; (∩$∈. ℵ$*)(t!), (∩$∈. ℵ$+)(t!), (∩$∈. ℵ$,)(t!)⟩|t! ∈ X},  

∧$∈. S$ = {⟨t!; (∧$∈. S$*)(t!), (∧$∈. S$+)(t!), (∧$∈. S$,)(t!)⟩|t! ∈ X}.  

Definition 2.9 [22] Let C = {〈t!, ℵ(t!), S(t!)〉} be a cubic set, where ℵ(t!) is an interval-valued fuzzy set in X,	S(t!) 
is a fuzzy set in X. Then C is cubic subalgebra with following axioms: 

C1: ℵ(t! ∗ t") ≥ rmin{ℵ(t!), ℵ(t")}, 

C2: S(t! ∗ t") ≤ max{S(t!), S(t")} ∀ t!, t" ∈ X. 

 
3. NEUTROSOPHIC CUBIC MN-SUBALGEBRAS 

 

Definition 3.1 Let ℜ = (ℵ, S) be a cubic set, where X is subalgebra. Then ℜ is NCMNSU under binary operation ∗ if 
it satisfies the following conditions:  

                                                   ℵ0(𝑡! ∗ 𝑡") ≥ 𝑟𝑚𝑖𝑛{ℵ0(𝑡!), ℵ0(𝑡")},	
(N1)                                                         	ℵ1(𝑡! ∗ 𝑡") ≤ 𝑟𝑚𝑎𝑥{ℵ1(𝑡!), ℵ1(𝑡")}, 

                                                  	ℵ2(𝑡! ∗ 𝑡") ≤ 𝑟𝑚𝑎𝑥{ℵ2(𝑡!), ℵ2(𝑡")}.	

                                                    𝑆0(𝑡! ∗ 𝑡") ≤ 𝑚𝑎𝑥{𝑆0(𝑡!), 𝑆0(𝑡")} ,	
(N2)                                                          	𝑆1(𝑡! ∗ 𝑡") ≤ 𝑚𝑖𝑛{𝑆1(𝑡!), 𝑆1(𝑡")}, 

				𝑆2(𝑡! ∗ 𝑡") ≥ 𝑚𝑖𝑛{𝑆2(𝑡!), 𝑆2(𝑡")} .	
 

Where E means existenceship/membership value, I means indeterminacy existenceship/membership value and N 
means non existenceship/membership value.  

Example 3.1  Let X = {0, t!, t", t3, t4, t5} be a BF-algebra with the following Cayley table.   

⋇ 0 t! t" t3 t4 t5 

0 0 t5 t4 t3 t" t! 

t! t! 0 t5 t4 t3 t" 

t" t" t! 0 t5 t4 t3 

t3 t3 t" t! 0 t5 t4 

t4 t4 t3 t" t! 0 t5 

t5 t5 t4 t3 t" t! 0 

 

A neutrosophic cubic set ℜ = (ℵ6, S6) of X is defined by   
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        0 t! t" t3 t4 t5 

							ℵ*  [0.2,0.4] [0.1,0.4] [0.2,0.4] [0.1,0.4] [0.2,0.4] [0.1,0.4] 

							ℵ+  [0.7,0.9] [0.6,0.8] [0.7,0.9] [0.6,0.8] [0.7,0.9] [0.6,0.8] 

							ℵ,  [0.3,0.2] [0.2,0.1] [0.3,0.2] [0.2,0.1] [0.3,0.2] [0.2,0.1] 

    

 0 t! t" t3 t4 t5 

S* 0.1 0.3 0.1 0.3 0.1 0.3 

S+ 0.3 0.5 0.3 0.5 0.3 0.5 

S, 0.5 0.6 0.5 0.6 0.5 0.6 

 

All the conditions of Definition 3.1 are satisfied by the set ℜ. Thus ℜ = (ℵ6, S6) is a NCMNSU of X. 

Proposition 3.1 Let ℜ = {〈t!, 	ℵ6(t!), 	S6(t!)〉} is a NCMNSU of X, then ∀ t! ∈ X, ℵ*(t!) ≥ ℵ*(0),	ℵ+(t!) ≤
ℵ+(0),	ℵ,(t!) ≤ ℵ,(0) andS*(t!) ≤ S*(0),	S+(t!) ≥ S+(0),	S,(t!) ≥ S,(0). Thus, ℵ*,+,,(0) and S*,+,,(0) are the 
upper bound and lower bound of ℵ*,+,,(t!) and S*,+,,(t!) respectively. 

Proof. ∀ t! ∈ X, we have ℵ*(0) = ℵ*(t! ∗ t!) ≥ rmin{ℵ*(t!), ℵ*(t!)} = ℵ*(t!) ⇒ ℵ*(0) ≥ ℵ*(t!), ℵ+(0) =
ℵ+(t! ∗ t!) ≤ rmax{ℵ+(t!), ℵ+(t!)} = ℵ+(t!) ⇒ ℵ+(0) ≤ ℵ+(t!), ℵ,(0) = ℵ,(t! ∗ t!) ≤ rmax{ℵ,(t!), ℵ,(t!)} =
ℵ,(t!) ⇒ ℵ,(0) ≤ ℵ,(t!) and S*(0) = S*(t! ∗ t!) ≤ max{S*(t!), S*(t!)} = S*(t!) ⇒ S*(0) ≤ S*(t!), S+(0) =
S+(t! ∗ t!) ≥ min{S+(t!), S+(t!)} = S+(t!) ⇒ S+(0) ≥ S+(t!), S,(0) = S,(t! ∗ t!) ≥ min{S,(t!), S,(t!)} = S,(t!) 
⇒ S,(0) ≥ S,(t!).  

Theorem 3.1 Let ℜ={〈t!, ℵ6(t!), S6(t!)〉} be a NCMNSU of X. If there exists a sequence {(t!)8} of X such that 
lim8→:ℵ6((t!)8) = [1,1] and lim8→:S6((t!)8) = 0. Then ℵ6(0) = [1,1] and S6(0) = 0.   

Proof. Using above proposition, ℵ*(0) ≥ ℵ*(t!) ∀ t! ∈ X, ∴ ℵ*(0) ≥ ℵ*((t!)8) for n ∈ Z(. Consider, [1,1] ≥ ℵ*(0) 
≥ lim8→:ℵ*((t!)8) = [1,1]. So, ℵ*(0) = [1,1], ℵ+(0) ≤ ℵ+(t!) ∀ t! ∈ X, ∴ ℵ+(0) ≥ ℵ+((t!)8) for n ∈ Z(. Consider, 
[1,1] ≤ ℵ+(0) ≤ lim8→:ℵ+((t!)8) = [1,1]. So, ℵ+(0) = [1,1], ℵ,(0) ≤ ℵ,(t!) ∀ t! ∈ X, ∴ ℵ,(0) ≤ ℵ,((t!)8) for 
n ∈ Z(. Consider, [1,1] ≤ ℵ,(0) ≤ lim8→:ℵ,((t!)8) = [1,1]. So, ℵ,(0) = [1,1]. Hence, ℵ6(0) = [1,1]. Again, 
using proposition, S*(0) ≤ S*(t!) ∀ t! ∈ X, ∴ S*(0) ≤ S*((t!)8) for n ∈ Z(. Consider, 0 ≤ S*(0) ≤
lim8→:S*((t!)8) = 0. So, S*(0) = 0, using proposition, S+(0) ≥ S+(t!) ∀ t! ∈ X, ∴ S+(0) ≥ S+((t!)8) for n ∈ Z(. 
Consider, 0 ≥ S+(0) ≥ lim8→:S+((t!)8) = 0. So, S+(0) = 0, using proposition, S,(0) ≥ S,(t!) ∀ t! ∈ X, ∴ S,(0) ≥
S,((t!)8) for n ∈ Z(. Consider, 0 ≥ S,(0) ≥ lim8→:S,((t!)8) = 0. So, S,(0) = 0. Hence, S6(0) = 0.  

Theorem 3.2  The R-intersection of any set of neutrosophic cubic MN-sunalgebra of X is NCMNSU of X. 

Proof. Let ℜ$ = {⟨t!, (ℵ$)6, (S$)6⟩|t! ∈ X} where i ∈ k, is family of sets of NCMNSU of X and t!, t" ∈ X. Then	(∩
(ℵ$)*)(t! ∗ t") = rinf(ℵ$)*(t! ∗ t") ≥ rinf	{rmin{(ℵ$)*(t!), (ℵ$)*(t")}} = rmin{rinf(ℵ$)*(t!), rinf(ℵ$)*(t")} =
rmin{(∩ (ℵ$)*)(t!), (∩ (ℵ$)*)(t")} ⇒ (∩ (ℵ$)*)(t! ∗ t") ≥ rmin{(∩ (ℵ$)*)(t!), (∩ (ℵ$)*)(t")}, (∩ (ℵ$)+)(t! ∗ t")	 
= rinf(ℵ$)+(t! ∗ t") ≤ rinf{rmax{(ℵ$)+(t!), (ℵ$)+(t")}} = rmax{rinf(ℵ$)+(t!), rinf(ℵ$)+(t")} = rmax{(∩ (ℵ$)+(t!), 
(∩ (ℵ$)+)(t")} ⇒ (∩ (ℵ$)+)(t! ∗ t") ≤ rmax{(∩ (ℵ$)+)(t!), (∩ (ℵ$)+)(t")}, (∩ (ℵ$),)(t! ∗ t") = rinf(ℵ$),(t! ∗ t") 
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≤ rinf{rmax{(ℵ$),(t!), (ℵ$),(t")}} = rmax{rinf(ℵ$),(t!), rinf(ℵ$),(t")} = rmax{(∩ (ℵ$),)(t!), (∩ (ℵ$),)(t")} 
⇒ (∩ (ℵ$),)(t! ∗ t") ≤ rmax{(∩ (ℵ$),)(t!), (∩ (ℵ$),)(t")}, and (∨ (S$)*)(t! ∗ t") = sup	(S$)*(t! ∗ t") ≤ sup	{ 
max{(S$)*(t!), (S$)*(t")}} = max	{sup	(S$)*(t!), sup	(S$)*(t")} = max	{(∨ (S$)*)(t!), (∨ (S$)*)(t")} ⇒ (∨ (S$)*) 
(t! ∗ t") ≤ max	{(∨ (S$)*)(t!), (∨ (S$)*)(t")}, (∨ (S$)+)(t! ∗ t") = sup	(S$)+(t! ∗ t") ≥ sup	{min	{(S$)+(t!), (S$)+( 
t")}} = min	{sup	(S$)+(t!), sup	(S$)+(t")} = min	{(∨ (S$)+)(t!), (∨ (S$)+)(t")} ⇒ (∨ (S$)+)(t! ∗ t") ≥ min	{(∨ (S$ 
)+)(t!), (∨ (S$)+)(t")}, (∨ (S$),)(t! ∗ t") = sup	(S$),(t! ∗ t") ≤ sup	{min	{(S$),(t!), (S$),(t")}} = min	{sup(S$), 
(t!), sup(S$),(t")} = min{(∨ (S$),)(t!), (∨ (S$),)(t")} ⇒ (∨ (S$),)(t! ∗ t") ≤ min{(∨ (S$),)(t!), (∨ (S$),)(t")}, 
which show that R-intersection of ℜ$ is NCMNSU of X.  

Theorem 3.3 Let ℜ$ = {⟨t!, (ℵ$)6, (S$)6⟩|t! ∈ X} be a collection of sets of NCMNSU of X, where i ∈ k. If 
inf	{max	{(S$)*(t!), (S$)*(t!)}} = max	{inf	(S$)*(t!), inf	(S$)*(t!)}, inf	{min	{(S$)+(t!), (S$)+(t!)}} = min	{inf	(S$)+ 
(t!), inf(S$)+(t!)}, inf{min{(S$),(t!), (S$),(t!)}} = min{inf(S$),(t!), inf(S$),(t!)} ∀ t! ∈ X, then the P-intersection 
of ℜ$ is also a NCMNSU of X. 

Proof. Suppose that ℜ$ = {⟨t!, (ℵ$)6, (S$)6⟩|t! ∈ X} where i ∈ k, be a collection of sets of NCMNSU of X such that 
inf	{max	{(S$)*(t!), (S$)*(t!)}} = max	{inf	(S$)*(t!), inf	(S$)*(t!)}, inf	{min	{(S$)+(t!), (S$)+(t!)}} = min	{inf	(S$)+ 
(t!), inf(S$)+(t!)}, inf	{min	{(S$),(t!), (S$),(t!)}} = min	{inf(S$),(t!), inf(S$),(t!)}}} ∀ t! ∈ X. Now for t!, t" ∈ X. 
Then	(∩ (ℵ$)*)(t! ∗ t") = rinf(ℵ$)*(t! ∗ t") ≥ rinf{rmin{(ℵ$)*(t!), (ℵ$)*(t")}} = rmin{rinf(ℵ$)*(t!), rinf(ℵ$)*( 
t")} = rmin{(∩ (ℵ$)*)(t!), (∩ (ℵ$)*)(t")} ⇒ (∩ (ℵ$)*)(t! ∗ t") ≥ rmin{(∩ (ℵ$)*)(t!), (∩ (ℵ$)*)(t")}, (∩ (ℵ$)+)( 
t! ∗ t") = rinf(ℵ$)+(t! ∗ t") ≤ rinf{rmax{(ℵ$)+(t!), (ℵ$)+(t")}} = rmax{rinf(ℵ$)+(t!), rinf(ℵ$)+(t")} = rmax{(∩
(ℵ$)+)(t!), (∩ (ℵ$)+)(t")} ⇒ (∩ (ℵ$)+)(t! ∗ t") ≤ rmax{(∩ (ℵ$)+)(t!), (∩ (ℵ$)+)(t")}, (∩ (ℵ$),)(t! ∗ t")=rinf	(ℵ$),) 
(t! ∗ t")≤ rinf{rmax{(ℵ$),(t!), (ℵ$),(t")}} = rmax{rinf(ℵ$),(t!), rinf(ℵ$),(t")} = rmax{(∩ (ℵ$),)(t!), (∩ (ℵ$ 
),)(t")} ⇒ (∩ (ℵ$),)(t! ∗ t") ≤ rmax{(∩ (ℵ$),)(t!), (∩ (ℵ$),)(t")}, and (∧ (S$)*)(t! ∗ t") = inf	(S$)*(t! ∗ t") ≤
inf	{max	{(S$)*(t!), (S$)*(t")}} = max	{inf	(S$)*(t!), inf	(S$)*(t")} = max	{(∧ (S$)*)(t!), (∧ (S$)*)(t")} ⇒	(∧(S$	
)*(t! ∗ t") ≤ max	{(∧ (S$)*)(t!), (∧ (S$)*)(t")}, (∧ (S$)+)(t! ∗ t") = inf	(S$)+(t! ∗ t") ≥ inf	{min{(S$)+	(t!), (S$)+	
)+(t")}} = min	{inf	(S$)+(t!), inf	(S$)+(t")} = min	{(∧ (S$)+)(t!), (∧ (S$)+)(t")} ⇒ (∧ (S$)+)(t! ∗ t") ≥ min	{(∧ (S$	
)+)(t!), (∧ (S$)+)(t")}, (∧ (S$),)(t! ∗ t") = inf	(S$),(t! ∗ t") ≥ inf	{min{(S$),(t!), (S$),(t")}} = min	{inf	(S$),(t!	
), inf(S$),(t")} = min{(∧ (S$),)(t!), (∧ (S$),)(t")} ⇒ (∧ (S$),)(t! ∗ t") ≥ min{(∧ (S$),)(t!), (∧ (S$),)(t")}. 
Which show that P-intersection of ℜ$ is NCMNSU of X.  

Theorem 3.4 Let ℜ$ = {⟨t!, (ℵ$)6, (S$)6⟩|t! ∈ X} where i ∈ k, be a collection of sets of NCMNSU of X. If 
rsup{rmin{(ℵ$)*(t!), (ℵ$)*(t")}} = rmin{rsup(ℵ$)*(t!), rsup(ℵ$)*(t")}, rsup{rmax	{(ℵ$)+(t!), (ℵ$)+(t")}} = rma 
x	{rsup(ℵ$)+(t!), rsup(ℵ$)+(t")}, rsup{rmax	{(ℵ$),(t!), (ℵ$),(t")}} = rmax	{rsup(ℵ$),(t!), rsup(ℵ$),(t")}, and  
sup	{max	{(S$)*(t!), (S$)*(t")}} = max	{sup	(S$)*(t!), sup	(S$)*(t")}, sup	{min	{(S$)+(t!), (S$)+(t")}} = min{sup( 
S$)+(t!), sup(S$)+(t")}, sup{min{(S$),(t!), (S$),(t")}} = min{sup(S$),(t!), sup(S$),(t")} ∀ t!, t" ∈ X. Then P-
union of ℜ$ is NCMNSU of X. 

Proof. Let ℜ$ = {⟨t!, (ℵ$)6, (S$)6⟩|t! ∈ X} where i ∈ k, be a collection of sets of NCMNSU of X. ∀ t!, t" ∈ X, we have 
some conditions mentioned in theorem. Then for t!, t" ∈ X. (∪ (ℵ$)*)(t! ∗ t") = rsup(ℵ$)*(t! ∗ t") ≥
rsup{rmin{(ℵ$)*(t!), (ℵ$)*(t")}} = rmin{rsup(ℵ$)*(t!), rsup(ℵ$)*(t")} = rmin{(∪ (ℵ$)*)(t!), (∪ (ℵ$)*)(t")} ⇒
(∪ (ℵ$)*)(t! ∗ t") ≥ rmin{(∪ (ℵ$)*)(t!), (∪ (ℵ$)*)(t")}, (∪ (ℵ$)+)(t! ∗ t") = rsup(ℵ$)+(t! ∗ t") ≤ rsup{rmax{(ℵ$ 
)+(t!), (ℵ$)+(t")}} = rmax{rsup(ℵ$)+(t!), rsup(ℵ$)+(t")} = rmax{(∪ (ℵ$)+)(t!), (∪ (ℵ$)+)(t")} ⇒ (∪ (ℵ$)+)(t! ∗ t" 
) ≤ rmax{(∪ (ℵ$)+)(t!), (∪ (ℵ$)+)(t")}, (∪ (ℵ$),)(t! ∗ t") = rsup(ℵ$),(t! ∗ t") ≤ rsup{rmax{(ℵ$),(t!), (ℵ$),(t" 

)}} = rmax{rsup(ℵ$),(t!), rsup(ℵ$),(t")} = rmax{(∪ (ℵ$),)(t!), (∪ (ℵ$),)(t")} ⇒ (∪ (ℵ$),)(t! ∗ t") ≤ rmax{ 
(∪ (ℵ$),)(t!), (∪ (ℵ$),)(t")}, and (∨ (S$)*)(t! ∗ t") = sup	(S$)*(t! ∗ t") ≤ sup	{max	{(S$)*(t!), (S$)*(t")}} =
max	{sup	(S$)*(t!), sup	(S$)*(t")} = max	{(∨ (S$)*)(t!), (∨ (S$)*)(t")} ⇒ (∨ (S$)*)(t! ∗ t") ≤ max	{(∨ (S$)*)(t! 
), (∨ (S$)*)(t")}, (∨ (S$)+)(t! ∗ t") = sup	(S$)+(t! ∗ t") ≥ sup	{min	{(S$)+(t!), (S$)+(t")}} = min	{sup	(S$)+(t!),sup 
(S$)+(t")} = min	{(∨ (S$)+)(t!), (∨ (S$)+)(t")} ⇒ (∨ (S$)+)(t! ∗ t") ≥ min	{(∨ (S$)+)(t!), (∨ (S$)+)(t")}, (∨ (S$),)( 
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t! ∗ t") = sup	(S$),(t! ∗ t") ≥ sup	{min	{(S$),(t!), (S$),(t")}} = min	{sup	(S$),(t!), sup	(S$),(t")} = min	{(∨
(S$),)(t!), (∨ (S$),)(t")} ⇒ (∨ (S$),)(t! ∗ t") ≥ min{(∨ (S$),)(t!), (∨ (S$),)(t")}, which show that P-union of ℜ$ 
is NCMNSU of X.  

Theorem 3.5  If neutrosophic cubic set ℜ = (ℵ6, S6) of X is subalgebra, then ∀ t! ∈ X, ℵ*(0 ∗ t!) ≥ ℵ*(t!), ℵ+(0 ∗
t!) ≤ ℵ+(t!), ℵ,(0 ∗ t!) ≤ ℵ,(t!) and S*(0 ∗ t!) ≤ S*(t!), S+(0 ∗ t!) ≥ S+(t!), S,(0 ∗ t!) ≥ S,(t!). 

Proof. ∀ t! ∈ X, ℵ*(0 ∗ t!) ≥ rmin{ℵ*(0), ℵ*(t!)} = rmin{ℵ*(t! ∗ t!), ℵ*(t!)} ≥ rmin{rmin{ℵ*(t!), ℵ*(t!)}, ℵ* 
(t!)} = ℵ*(t!), ℵ+(0 ∗ t!) ≤ rmax{ℵ+(0), ℵ+(t!)} = rmax{ℵ+(t! ∗ t!), ℵ+(t!)} ≤ rmax{rmax{ℵ+(t!), ℵ+(t!)}, ℵ+(t! 
)} = ℵ+(t!), ℵ,(0 ∗ t!) ≤ rmax{ℵ,(0), ℵ,(t!)} = rmax{ℵ,(t! ∗ t!), ℵ,(t!)} ≤ rmax{rmax{ℵ,(t!), ℵ,(t!)	}, ℵ, 
(t!)} = ℵ,(t!) and now ∀ t! ∈ X, S*(0 ∗ t!) ≤ max{S*(0), S*(t!)} = max	{S*(t! ∗ t!), S*(t!)} ≤ max	{max{S*( 
t!), S*(t!)}, S*(t!)} = S*(t!), S+(0 ∗ t!) ≥ min{S+(0), S+(t!)} = min	{S+(t! ∗ t!), S+(t!)} ≥ min	{min	{S+(t!), S+(t! 
)}, S+(t!)} = S+(t!), S,(0 ∗ t!) ≥ min{S,(0), S,(t!)} = min	{S,(t! ∗ t!), S,(t!)} ≥ min	{min	{S,(t!)	, S,(t!)}, S, 
(t!)} = S,(t!)  

Theorem 3.6 If netrosophic cubic set ℜ = (ℵ6, S6) of X is subalgebra then ℜ(t! ∗ t") = ℜ(t! ∗ (0 ∗ (0 ∗ t"))) ∀ 
t!, t" ∈ X. 

Proof. Let X be a BF-algebra and t!, t" ∈ X. Then we know by ([13] Proposition 2.5) that t" = 0 ∗ (0 ∗ t"). Hence, 
ℵ6(t! ∗ t") = ℵ6(t! ∗ (0 ∗ (0 ∗ t"))) and S6(t! ∗ t") = S6(t! ∗ (0 ∗ (0 ∗ t"))). Therefore, ℜ6(t! ∗ t") = ℜ6(t! ∗
(0 ∗ (0 ∗ t"))).  

Theorem 3.7 If netrosophic cubic set ℜ = (ℵ6, S6) of X is subalgebra then ℵ*(0) ≥ rmin{ℵ*(t"), ℵ*(t!}), ℵ+(0) ≤
rmax	{ℵ+(t"), ℵ+(t!)}, ℵ,(0) ≤ rmax	{ℵ,(t"), ℵ,(t!)}, and S*(0) ≤ max 	{S*(t") , S*(t!)}, S+(0) ≥ min	{S+(t"), S+ 
(t!)}, S,(0) ≥ min{S,(t"), S,(t!)}, ∀ t!, t" ∈ X. 
Proof. Here we use the ([13] Proposition 2.5) and above Proposition, now for t!, t" ∈ X ℵ*(0) = ℵ*(t! ∗ t!) ≥ 
rmax{ℵ*(t!), ℵ*(t!)} = rmin	{ℵ*(0 ∗ (0 ∗ t!)), ℵ*(0 ∗ (0 ∗ t!))} = rmin	{ℵ*(0 ∗ (0 ∗ t")), ℵ*(0 ∗ (0 ∗ t!))} = 
rminℵ*(t"), ℵ*(t!)},ℵ+(0) = ℵ+(t! ∗ t!) ≤ rmax	{ℵ+(t!), ℵ+(t!)} = rmax	{ℵ+(0 ∗ (0 ∗ t!)), ℵ+(0 ∗ (0 ∗ t!))} = 
rmax{ℵ+(0 ∗ (0 ∗ t")), ℵ+(0 ∗ (0 ∗ t!))} = rmax{ℵ+(t"), ℵ+(t!)},	ℵ,(0) = ℵ,(t! ∗ t!) ≤ rmax{ℵ,(t!), ℵ,(t!)} = 
rmax{ℵ,(0 ∗ (0 ∗ t!)), ℵ,(0 ∗ (0 ∗ t!))} = rmax{ℵ,(0 ∗ (0 ∗ t")), ℵ,(0 ∗ (0 ∗ t!))} = rmax{ℵ,(t"), ℵ,(t!)}. 
Now,   S*(0) = S*(t! ∗ t!) ≤ max{S*(t!), S*(t!)} = max{S*(0 ∗ (0 ∗ t!)), S*(0 ∗ (0 ∗ t!))} = max{S*(0 ∗ (0 ∗
t")), S*(0 ∗ (0 ∗ t!))} = max{S*(t"), S*(t!)},S+(0) = S+(t! ∗ t!) ≥ min	{S+(t!), S+(t!)} = min	{S+(0 ∗ (0 ∗ t!)), 
S+(0 ∗ (0 ∗ t!))} = min	{S+(0 ∗ (0 ∗ t")), S+(0 ∗ (0 ∗ t!))} = min	{S+(t"), S+(t!)}, S,(0) = S,(t! ∗ t!) ≥ min	{S, 
(t!), S,(t!)} = min	{S,(0 ∗ (0 ∗ t!)), S,(0 ∗ (0 ∗ t!))} = min	{S,(0 ∗ (0 ∗ t")), S,(0 ∗ (0 ∗ t!))} = min	{S,(t"), 
S,(t!)}.  

Theorem 3.8 If neutrosophic cubic set ℜ = (ℵ6, S6) of X is NCMNSU, then ∀ t!, t" ∈ X, ℵ6(t! ∗ (0 ∗ t")) ≥
rmin{ℵ6(t!), ℵ6(t")} and S6(t! ∗ (0 ∗ t")) ≤ max{S6(t!), S6(t")}. 

Proof. Here we use above Proposition for proof. Let t!, t" ∈ X. Then we have ℵ*mt! ∗ (0 ∗ t")n ≥
rmin{ℵ*(t!), ℵ*(0 ∗ t")} ≥ rmin{ℵ*(t!), ℵ*(t")},ℵ+(t! ∗ (0 ∗ t")) ≤ rmax{ℵ+(t!), ℵ+(0 ∗ t")} ≤ rmax{ℵ+(t!), ℵ+( 
t")}, ℵ,mt! ∗ (0 ∗ t")n ≤ rmax{ℵ,(t!), ℵ,(0 ∗ t")} ≤ rmax{ℵ,(t!), ℵ,(t")} and S*(t! ∗ (0 ∗ t")) ≤ max	{S*(t!), 

S*(0 ∗ t")} ≤ max	{S*(t!), S*(t")}, S+(t! ∗ (0 ∗ t")) ≥ min	{S+(t!), S+(0 ∗ t")} ≥ min	{S+(t!), S+(t")}, S,(t! ∗ (0 ∗
t")) ≥ min{S,(t!), S,(0 ∗ t")} ≥ min{S,(t!), S,(t")}.  

Theorem 3.9 If a neutrosophic cubic set ℜ = (ℵ6, S6) of X satisfies the following conditions, then ℜ refers to a 
NCMNSU of X:   
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1.  ℵ*(0 ∗ t!) ≥ ℵ*(t!), ℵ+(0 ∗ t!) ≤ ℵ+(t!), ℵ,(0 ∗ t!) ≤ ℵ,(t!) and S*(0 ∗ t!) ≤ S*(t!), S+(0 ∗ t!) ≥ S+(t!), 
S,(0 ∗ t!) ≥ S,(t!) ∀ t! ∈ X.  

 2.  ℵ*mt! ∗ (0 ∗ t")n ≥ rmin{ℵ*(t!), ℵ*(t")}, ℵ+mt! ∗ (0 ∗ t")n ≤ rmax{ℵ+(t!), ℵ+(t")}, ℵ,mt! ∗ (0 ∗ t")n ≤ rmax{ 
ℵ,(t!), ℵ,(t")} and S*mt! ∗ (0 ∗ t")n ≤ max{S*(t!), S*(t")}, S+mt! ∗ (0 ∗ t")n ≥ min{S+(t!), S+(t")}, S,(t! ∗ (0 ∗
t")) ≥ min{S,(t!), S,(t")}, ∀ t!, t" ∈ X.  

Proof. Assume that the neutrosophic cubic set ℜ = (ℵ6, S6) of X satisfies the both axioms above. Then by lemma, we 
have ℵ*(t! ∗ t") = ℵ*(t! ∗ (0 ∗ (0 ∗ t"))) ≥ rmin{ℵ*(t!), ℵ*(0 ∗ t")} ≥ rmin{ℵ*(t!), ℵ*(t")}, ℵ+(t! ∗ t") = ℵ+( 
t! ∗ (0 ∗ (0 ∗ t"))) ≤ rmax	{ℵ+(t!), ℵ+(0 ∗ t")} ≤ rmax	{ℵ+(t!), ℵ+(t")}, ℵ,(t! ∗ t") = ℵ,(t! ∗ (0 ∗ (0 ∗ t"))) ≤
rmax{ℵ,(t!), ℵ,(0 ∗ t")} ≤ rmax{ℵ,(t!), ℵ,(t")}, and S*(t! ∗ t") = S*(t! ∗ (0 ∗ (0 ∗ t"))) ≤ max{S*(t!), S*(0 ∗
t")} ≤ max{S*(t!), S*(t")}, S+(t! ∗ t") = S+(t! ∗ (0 ∗ (0 ∗ t"))) ≥ min{S+(t!), S+(0 ∗ t")} ≥ min{S+(t!), S+(t")}, 
S,(t! ∗ t") = S,(t! ∗ (0 ∗ (0 ∗ t"))) ≥ min{S,(t!), S,(0 ∗ t")} ≥ min{S,(t!), S,(t")} ∀ t!, t" ∈ X. Hence, ℜ is 
NCMNSU of X.  

Theorem 3.10 A neutrosophic cubic set ℜ = (ℵ6, S6) of X is NCMNSU of X ⇐ ℵ6" , ℵ6# and S6 are fuzzy subalgebra 
of X.   

Proof. Let ℵ6', κp;(6 and S6 are fuzzy subalgebra of X and t!, t" ∈ X. Then ℵ*'(t! ∗ t") ≥ min{ℵ*'(t!), ℵ*'(t")}, 
ℵ+'(t! ∗ t") ≤ max{ℵ+'(t!), ℵ+'(t")} , ℵ,'(t! ∗ t") ≤ max{ℵ,'(t!), ℵ,'(t")},ℵ*((t! ∗ t") ≥ min{ℵ*((t!), ℵ*((t")}, ℵ+((t! 
∗ t") ≤ max{ℵ+((t!), ℵ+((t")}, ℵ,((t! ∗ t") ≤ max{ℵ,((t!), ℵ,((t")}, and S*(t! ∗ t") ≤ max{S*(t!), S*(t")}, S+(t! ∗
t") ≥ min{S+(t!), S+(t")} , 	S,(t! ∗ t") ≥ min{S,(t!), S,(t")}. Now,ℵ*(t! ∗ t") = [ℵ*'(t! ∗ t"), ℵ*((t! ∗ t")] ≥[min 
{ℵ*'(t!), ℵ*'(t")},min{ℵ*((t!), ℵ*((t")}] ≥ rmin{[ℵ*'(t!), ℵ*((t")], [ℵ*'(t!), ℵ*((t")]} = rmin{ℵ*(t!), ℵ*(t")}, ℵ+(t! ∗
t") = [ℵ+'(t! ∗ t"), ℵ+((t! ∗ t")] ≤ [max	{ℵ+'(t!), ℵ+'(t")},max	{ℵ+((t!), ℵ+((t")}] ≤ rmax{[ℵ+'(t!), ℵ+((t")], [ℵ+'(t!) 
, ℵ+((t")]} = rmax	{ℵ+(t!), ℵ+(t")}, ℵ,(t! ∗ t") = [ℵ,'(t! ∗ t"), ℵ,((t! ∗ t")] ≤ [max	{ℵ,'(t!), ℵ,'(t")},max{ℵ,((t!), 
ℵ,((t")}] ≤ rmax{[ℵ,'(t!), ℵ,((t")], [ℵ,'(t!), ℵ,((t")]} = rmax{ℵ,(t!), ℵ,(t")}. Therefore, ℜ is NCMNSU of X. 
Conversely, assume that ℜ is a NCMNSU of X. For any t!, t" ∈ X,	{ℵ*'(t! ∗ t"), ℵ*((t! ∗ t")} = ℵ*(t! ∗ t") ≥
rmin{ℵ*(t!), ℵ*(t")} = rmin{[ℵ*'(t!), ℵ*((t!)], [ℵ*'(t"), ℵ*((t")]}	=	[min{ℵ*'(t!), ℵ*'(t")} ,min{ℵ*((t!), ℵ*((t")}], 
{ℵ+'(t! ∗ t"), ℵ+((t! ∗ t")] = ℵ+(t! ∗ t") ≤ rmax{ℵ+(t!), ℵ+(t")} = rmax{[ℵ+'(t!), ℵ+((t!)], [ℵ+'(t"), ℵ+((t")]} =[max 
{ℵ+'(t!), ℵ+'(t")},max	{ℵ+((t!), ℵ+((t")}], [ℵ,'(t! ∗ t"), ℵ,((t! ∗ t")] = ℵ,(t! ∗ t") ≤ rmax{ℵ,(t!), ℵ,(t")} = rmax 
{[ℵ,'(t!), ℵ,((t!)], [ℵ,'(t"), ℵ,((t")]}	=[max{ℵ,'(t!), ℵ,'(t")} ,max{ℵ,((t!), ℵ,((t")}]. Thus,	ℵ*'(t! ∗ t") ≥ min	{ℵ6'( 
t!), ℵ6'(t")},ℵ+'(t! ∗ t") ≤ max{ℵ+'(t!), ℵ+'(t")},ℵ,'(t! ∗ t") ≤ max{ℵ,'(t!), ℵ,'(t")},ℵ*((t! ∗ t") ≥ min	{ℵ6((t!), ℵ6( 
(t")},ℵ+((t! ∗ t") ≤ max{ℵ+((t!), ℵ+((t")},ℵ,((t! ∗ t") ≤ max{ℵ,((t!), ℵ,((t")}, and	S*(t! ∗ t") ≤ max	{S*(t!), S*(t" 
)}, S+(t! ∗ t") ≥ min{S+(t!), S+(t")}, S,(t! ∗ t") ≥ min{S,(t!), S,(t")}. Hence ℵ6(, ℵ6' and S6 are fuzzy subalgebra 
of X.  
Theorem 3.11 Let ℜ = (ℵ6, S6) be a NCMNSU of X and n ∈ ℤ((the set of positive integer). Then 1. ℵ*(ℸ8t! ∗ t!) 
≥ ℵ*(t!) for n ∈ 𝕆. 2. ℵ+(ℸ8t! ∗ t!) ≤ ℵ+(t!) for n ∈ 𝕆. 3. ℵ,(ℸ8t! ∗ t!) ≤ ℵ,(t!) for n ∈ 𝕆. 4. S*(ℸ8t! ∗ t!) ≤
ℵ*(t!) for n ∈ 𝕆. 5. S+(ℸ8t! ∗ t!) ≥ ℵ+(t!) for n ∈ 𝕆. 6. S,(ℸ8t! ∗ t!) ≥ ℵ,(t!) for n ∈ 𝕆. 7. ℵ6(ℸ8t! ∗ t!) = ℵ6(t!) 
for n ∈ 𝔼. 8. S6(ℸ8t! ∗ t!) = ℵ6(t!) for n ∈ 𝔼.   

Proof. Let t! ∈ X and n is odd. Then n = 2q − 1 for some positive integer q. We prove the theorem by induction. 

Now ℵ*(t! ∗ t!) = ℵ*(0) ≥ ℵ*(t!), ℵ+(t! ∗ t!) = ℵ+(0) ≤ ℵ+(t!), ℵ,(t! ∗ t!) = ℵ,(0) ≤ ℵ,(t!) and S*(t! ∗ t!) =
S*(0) ≤ S*(t!), S+(t! ∗ t!) = S+(0) ≥ S+(t!), S,(t! ∗ t!) = S,(0) ≥ S,(t!). Suppose that ℵ*(ℸ"<'!t! ∗ t!) ≥
ℵ*(t!), ℵ+(ℸ"<'!t! ∗ t!) ≤ ℵ+(t!), ℵ,(ℸ"<'!t! ∗ t!) ≤ ℵ,(t!) and S*(ℸ"<'!t! ∗ t!) ≤ S*(t!), S+(ℸ"<'!t! ∗ t!) ≥
S+(t!), S,(ℸ"<'!t! ∗ t!) ≥ S,(t!). Then by assumption, ℵ*(ℸ"(<(!)'!t! ∗ t!) = ℵ*(ℸ"<(!t! ∗ t!) = ℵ*(ℸ"<'!t! ∗ (t! ∗
(t! ∗ t!))) = ℵ*(ℸ"<'!t! ∗ t!) ≥ ℵ*(t!), ℵ+(ℸ"(<(!)'!t! ∗ t!) = ℵ+(ℸ"<(!t! ∗ t!) = ℵ+(ℸ"<'!t! ∗ (t! ∗ (t! ∗ t!))) = 
ℵ+(ℸ"<'!t! ∗ t!) ≤ ℵ+(t!), ℵ,(ℸ"(<(!)'!t! ∗ t!)=ℵ,(ℸ"<(!t! ∗ t!) = ℵ,(ℸ"<'!t! ∗ (t! ∗ (t! ∗ t!))) = ℵ,(ℸ"<'!t! ∗
t!) ≤ ℵ,(t!) and S*(ℸ"(<(!)'!t! ∗ t!)=S*(ℸ"<(!t! ∗ t!) = S*(ℸ"<'!t! ∗ (t! ∗ (t! ∗ t!))) = S*(ℸ"<'!t! ∗ t!) ≤ S*(t!), 
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S+(ℸ"(<(!)'!t! ∗ t!)=S+(ℸ"<(!t! ∗ t!) = S+(ℸ"<'!t! ∗ (t! ∗ (t! ∗ t!))) = S+(ℸ"<'!t! ∗ t!) ≥ S+(t!), S,(ℸ"(<(!)'!t! ∗
t!)=S,(ℸ"<(!t! ∗ t!) = S,(ℸ"<'!t! ∗ (t! ∗ (t! ∗ t!))) = S,(ℸ"<'!t! ∗ t!) ≥ S,(t!), which prove (1),(2),(3),(4),(5) 
and (6), similarly we can prove the remaining cases (7) and (8).  

Note: The sets denoted by Iℵ$ and I@$ are also subalgebras of X, which are defined as: Iℵ$={t! ∈ X|ℵ6(t!) = ℵ6(0)}, 
I@$={t! ∈ X|S6(t!) = S6(0)}.  
 
Theorem 3.12 Let ℜ = (ℵ6, S6) be a NCMNSU of X. Then the sets Iℵ$ and I@$ are subalgebras of X. 

Proof. Let t!, t" ∈ Iℵ$. Then ℵ6(t!) = ℵ6(0) = ℵ6(t") and ℵ6(t! ∗ t") ≥ rmin{ℵ6(t!), ℵ6(t")} = ℵ6(0). By using 
Proposition 2.3, we know that ℵ6(t! ∗ t") = ℵ6(0) or equivalently t! ∗ t" ∈ Iℵ$. 
Let t!, t" ∈ Iℵ$. Then S6(t!) = S6(0) = S6(t") and S6(t! ∗ t") ≤ max {S6(t!), S6(t")} =S6(0). Again by using 
Proposition 2.3, we know that S6(t! ∗ t") = S6(0) or equivalently t! ∗ t" ∈ Iℵ$. Hence the sets IAB$%  and I@$ are 
subalgebras of X.  

Theorem 3.13  Let B be a nonempty subset of X and ℜ = (ℵ6, S6) be a neutrosophic cubic set of X defined by   

 ℵ6(t!) = x
[κ6& , κ6'], if	t! ∈ B
[φ6& , φ6'] otherwise,		 , SC(t!) = }ω6, if	t! ∈ B

ϱ6, otherwise 

 ∀ [κ6& , κ6'],[φ6& , φ6'] ∈ D[0,1] and ω6, ϱ6 ∈ [0,1] with [κ*& , κ*'] ≥ [φ*& , φ*'], [κ+& , κ+'] ≤ [φ+& , φ+'], [κ,& , κ,'] 
≤ [φ,& , φ,'], and ω* ≤ ϱ*, ω+ ≥ ϱ+, ω, ≥ ϱ,. Then ℜ is a NCMNSU of X ⇐ B is a subalgebra of X. Moreover, 
Iℵ$=B=I@$ . 

Proof. Let ℜ be a NCMNSU of X and t!, t" ∈ X such that t!, t" ∈ B. Then ℵ*(t! ∗ t") ≥ rmin{ℵ*(t!), ℵ*(t")} =
rmin{[κ*& , κ*'], [κ*& , κ*']} = [κ*& , κ*'], ℵ+(t! ∗ t") ≤ rmax{ℵ+(t!), ℵ+(t")} = rmax{[κ+& , κ+'], [κ+& , κ+']} = [κ+& , κ+'] 
, ℵ,(t! ∗ t") ≤ rmax{ℵ,(t!), ℵ,(t")} = rmax{[κ,& , κ,'], [κ,& , κ,']} = [κ,& , κ,'] and S*(t! ∗ t") ≤ max	{S*(t!), S* 
(t")} = max	{ω*, ω*} = ω*, S+(t! ∗ t") ≥ min{S+(t!), S+(t")} = min	{ω+, ω+} = ω+, S,(t! ∗ t") ≥ min	{S,(t!), S,( 
t")} = min{ω,, ω,} = ω,,. Therefore t! ∗ t" ∈ B. Hence, B is a subalgebra of X. Conversely, suppose that B is a 
subalgebra of X and t!, t" ∈ X. Consider two cases. 
 
Case 1: If t!, t" ∈ B then t! ∗ t" ∈ B, thus ℵ*(t! ∗ t") = [κ*& , κ*'] = rmin{ℵ*(t!), ℵ*(t")}, ℵ+(t! ∗ t") = [κ+& , κ+'] =
rmax{ℵ+(t!), ℵ+(t")}, ℵ,(t! ∗ t") = [κ,& , κ,'] = rmax	{ℵ,(t!), ℵ,(t")}, and S*(t! ∗ t") = ω* = max	{S*(t!), S*( 
t")}, S+(t! ∗ t") = ω+ = min{S+(t!), S+(t")}, S,(t! ∗ t") = ω, = min{S,(t!), S,(t")}. 

Case 2: If t! ∉ B or t" ∉ B, then ℵ*(t! ∗ t") ≥ [φ*& , φ*'] = rmin{ℵ*(t!), ℵ*(t")}, ℵ+(t! ∗ t") ≤ [φ+& , φ+'] =
rmax{ℵ+(t!), ℵ+(t")}, ℵ,(t! ∗ t") ≤ [φ,& , φ,'] = rmin{ℵ,(t!), ℵ,(t")}, and S*(t! ∗ t") ≤ ϱ* = max	{S*(t!), S*( 
t")}, S+(t! ∗ t") ≥ ϱ+ = min{S+(t!), S+(t")}, S,(t! ∗ t") ≥ ϱ+ = min{S,(t!), S,(t")}. Hence ℜ is a NCMNSU of X. 
Now, Iℵ$={t! ∈ X, ℵ6(t!) = ℵ6(0)}={t! ∈ X, ℵ6(t!) = [κ6& , κ6']} = B, and I@$= {t! ∈ X, S6(t!) = S6(0)}	=	{t! ∈ X, 
S6(t!) = ω6}	= B.  
 
Theorem 3.14  Let ℜ = (ℵ6, S6) be a neutrosophic cubic set of X. For [s*& , s*'], [s+& , s+'], [s,& , s,'] ∈ D[0,1] and 
t*& , t+& , t,& ∈ [0,1], the set U(ℵ6|([s*& , s*'], [s+& , s+'], [s,& , s,']))	={t! ∈ X|ℵ*(t!) ≥ [s*& , s*'], ℵ+(t!) ≤ [s+& , s+'], ℵ, 
(t!) ≤ [s,& , s,']} is called upper ([s*& , s*'], [s+& , s+'], [s,& , s,'])-level of ℜ and L(S6|(t*& , t+& , t,&)) =	{t! ∈
X|S*(t!) ≤ t*& , S+(t!) ≥ t+& , S,(t!) ≥ t,&} is called lower (t*& , t+& , t,&)-level of ℜ.   If ℜ = (ℵ6, S6) is NCMNSU of 
X, then the upper [s6& , s6']-level and lower t6&-level of ℜ are subalgebras of X.   
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Proof. Let t!, t" ∈ U(ℵ6|[s6& , s6']). Then ℵ*(t!) ≥ [s*& , s*'] and ℵ*(t") ≥ [s*& , s*']. It follows that ℵ*(t! ∗ t") ≥
rmin{ℵ*(t!), ℵ*(t")} ≥ [s6& , s6'] ⇒ t! ∗ t" ∈ U(ℵ*|[s*& , s*']), ℵ+(t!) ≤ [s+& , s+']	and	ℵ+(t") ≤ [s+& , s+'].	It follows 
that ℵ+(t! ∗ t") ≤ rmax{ℵ+(t!), ℵ+(t")} ≤ [s+& , s+'] ⇒ t! ∗ t" ∈ U(ℵ+|[s+& , s+']), ℵ,(t!) ≤ [s,& , s,'] and ℵ,(t") ≤
[s,& , s,']. It follows that ℵ,(t! ∗ t") ≤ rmax{ℵ,(t!), ℵ,(t")} ≤ [s,& , s,'] ⇒ t! ∗ t"	 ∈	 U(ℵ,|[s,& , s,']). Hence, 
U(ℵ6|[s6& , s6'] is a subalgebra of X. Let t!, t" ∈ L(S6|t6&). Then S*(t!) ≤ t*& and S*(t") ≤ t*&. It follows that S*(t! ∗
t") ≤ max{S*(t!), S*(t")} ≤ t*& ⇒ t! ∗ t" ∈ L(S*|t*&), S+(t!) ≥ t+& and S+(t") ≥ t+&. It follows that S+(t! ∗ t") ≥
min{S+(t!), S+(t")} ≥ t+& ⇒ t! ∗ t" ∈ L(S+|t+&), S,(t!) ≥ t,& and S,(t") ≥ t,&. It follows that S,(t! ∗ t") ≥
min{S,(t!), S,(t")} ≥ t,& ⇒ t! ∗ t" ∈ L(S,|t,&), Hence L(S6|t6&) is a subalgebra of X.  

Theorem 3.15 Let ℜ = (ℵ6, S6) is NCMNSU of X. Then ℵm[s6& , s6']; t6&n	= U(ℵ6|[s6& , s6']) ∩ L(S6|t6&)= {t! ∈
X|ℵ*(t!) ≥ [s*& , s*'], ℵ+(t!) ≤ [s+& , s+'], ℵ,(t!) ≤ [s,& , s,'], S*(t!) ≤ t*& , S+(t!) ≥ t+& , S,(t!) ≥ t,&} is a subalge- 
bra of X. 

Proof. This theorem can be proved by using Theorem 3.14. The converse of Theorem 3.15 is not valid, for which we 
present the example. 

Example 3.2 Let 𝑋 = {0, 𝑡!, 𝑡", 𝑡3, 𝑡4, 𝑡5} be a BF-algebra used in above example and ℜ = (ℵ6, S6) is a neutrosophic 
cubic set defined by  

          0 𝑡! 𝑡" 𝑡3 𝑡4 𝑡5 

ℵD [0.5,0.7] [0.6,0.7] [0.6,0.7] [0.2,0.3] [0.4,0.5] [0.4,0.5] 

ℵ1 [0.4,0.6] [0.5,0.6] [0.5,0.6] [0.5,0.7] [0.4,0.4] [0.4,0.8] 

ℵE [0.3,0.5] [0.3,0.6] [0.3,0.6] [0.3,0.6] [0.2,0.3] [0.2,0.3] 

   

        0 𝑡! 𝑡" 𝑡3 𝑡4 𝑡5 

𝑆D       0.2       0.4       0.4        0.6        0.4       0.6 

𝑆1       0.3        0.5       0.5       0.7        0.5       0.7 

𝑆E       0.4         0.6       0.6       0.8       0.6        0.8 

 
Now ℵ([𝑠6& , 𝑠6']; 𝑡6&)	=	𝑈(ℵ6|[𝑠6& , 𝑠6']) ⋂ 𝐿(𝑆6|𝑡6&)	=	{𝑡! ∈ 𝑋|ℵD(𝑡!) ≥ [𝑠C& , 𝑠C&], 𝑆D(𝑡!) ≤ 𝑡D} = {0, 𝑡!, 𝑡3}⋂  
{0, 𝑡!, 𝑡", 𝑡3} = {0, 𝑡!, 𝑡3} is a subalgebra of X, similarly we can find this for indterminate and non membership 
elelments. But ℜ = (ℵ6, S6)  is not a neutrosophic cubic subalgebra, since ℵD(𝑡! ∗ 𝑡4) = [0.2,0.3] ≱ [0.4,0.5] =
𝑟𝑚𝑖𝑛{ℵD(𝑡!), ℵD(𝑡4)}, ℵ1(𝑡! ∗ 𝑡") = [0.4,0.8] ≰ [0.4,0.6] = 𝑟𝑚𝑎𝑥{ℵ1(𝑡!), ℵ1(𝑡")}, similarly we can find this for non 
membership elelment and 𝜆D(𝑎" ∗ 𝑎4) = 0.6 ≰ 0.4 = 𝑚𝑎𝑥{𝜆D(𝑎"), 𝜆D(𝑎4)}, similarly we can find this for 
indeterminate and non membership elelments. 
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4.  CONCLUSION 
 

In this paper, neutrosophic cubic MN-subalgebra was introduced and its few helpful results and new characteristics 
were studied. The investigation of this new sort of subalgebra will help analysts to apply this subalgebra on various 
algebras. We are recommending some ideas like multiplication, and cartesian product to apply this work. 

 

References 

[1] S. S.  Ahn, K. Bang, “On fuzzy subalgebras in B-algebra”, Communications of the Korean Mathematical Society 
18, pp. 429-437, 2003.  

[2] R. Biswas, “Rosenfeld’s fuzzy subgroup with interval valued membership function”, Fuzzy Sets and Systems, 63, 
pp. 87-90, 1994.  

[3] Y. B. Jun, C. S. Kim, K. O Yang, “Cubic sets”, Annuals of Fuzzy Mathematics and Informatics, 4, pp. 83-98, 
2012.  

[4] Y. B. Jun, S. T. Jung, M. S. Kim,  “Cubic subgroup”, Annals of Fuzzy Mathematics and Infirmatics, 2, pp. 9-15, 
2011.  

[5]  Y. B. Jun, F. Smarandache, C. S. Kim,  “Neutrosophic cubic sets”, New Math. and Natural Comput., 8, 41, 2015.  

[6] C. B. Kim, H. S. Kim, “On BG-algebra”, Demonstration Mathematica, 41, pp. 497-505, 2008.  

[7] W. Andrzej, “On BF-algebras”, Mathematica Slovaca, 57, 2007.  

[8] J. Neggers, H. S. Kim, “A fundamental theorem of B-homomorphism for B-algebras”, International Mathematical 
Journal, 2, pp. 215-219, 2002.  

[9] S. S. Ahn,  J. M. Ko, “Structure of BF-algebras”, Applied Mathematical Sciences, pp. 6369–6374, 2015.  

[10] A. B. Saeid, “Interval-valued fuzzy B-algebras”, Iranian Journal of Fuzzy System, 3, pp. 63-73, 2006.  

[11] F. Smarandache, “Neutrosophic set a generalization of the intuitionistic fuzzy set”, International Journal of Pure 
and Applied Mathematics. 24, 3, pp. 287-297, 2005.  

[12] F. Smarandache, “A unifying field in logics, Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic 
Probability”, American Reserch Press, Rehoboth, NM, 1999.  

[13] T. Senapati, M. Bhowmik, M. Pal, “Fuzzy dot subalgebras and fuzzy dot ideals of B-algebra”, Journal of 
Uncertain System, 8, pp. 22-30, 2014.  

[14] T. Senapati, M. Bhowmik, M. Pal, “Interval-valued intuitionistic fuzzy BG-subalgebras”, The Journal of Fuzzy 
Mathematics, 20, pp. 707-720, 2012.  

[15] M. Khalid, R. Iqbal, S. Broumi, “Neutrosophic soft cubic subalgebras of G-algebras”, Neutrosophic Sets and 
Systems, 28, pp. 259-272, 2019. 

[16] M. Khalid, B. Y. Jun, M. M. Takallo, N. A. Khalid, “Magnification of MBJ-Neutrosophic translation on G-
Algebra”, International Journal of Neutrosophic Science, 2, 1, pp. 27–37, 2020.  



International Journal of Neutrosophic Science (IJNS)                                                   Vol. 4, No. 2,  PP. 93-103, 2020 

 

Doi: 10.5281/zenodo.3782870 
 

 103 

[17] M. Khalid, A. N. Khalid, R. Iqbal, “MBJ-neutrosophic T-ideal on B-algebra”, International Journal of 
Neutrosophic Science, 1, 1, pp. 24-33, 2020.  

[18] M. Khalid, A. N. Khalid, H. Khalid, S. Broumi, “Multiplicative interpretation of neutrosophic cubic set on B-
Algebra”, International Journal of Neutrosophic Science, 1, 1, pp. 58-67, 2020.  

[19] A. Walendziak, “Some axiomation of B-algebras”, Mathematics Slovaca, 56, pp. 301-306, 2006.  

[20] L.A Zadeh, “Fuzzy sets”, Information and control, 8, pp. 338-353, 1965.  

[21] L.A Zadeh, “The concept of a linguistic variable and its application to approximate reasoning”, Information 
science, 8, pp. 199-249, 1975.  

[22] T. Senapati, C. H. Kim, M. Bhowmik, M. Pal, “Cubic subalgebras and cubic closed ideals of B-algebras”, Fuzzy 
Information and Engineering, 7, pp. 129-149, 2015. 

 

 
 
 



International Journal of Neutrosophic Science (IJNS)                                                 Vol. 4, No. 2, PP. 104-116, 2020 

 

DOI: 10.5281/zenodo.3782888 

 
 104 

  

 

 

The Special Neutrosophic Functions 
 

Ahmed Hatip, Department of Mathematics, Gaziantep University, Turkey  

Tel: +905535518350, kollnaar5@gmail.com 

 

Abstract  

  In this study, we introduce the notion of special neutrosophic functions as new kinds of neutrosophic function 

defined in a neutrosophic logic. As particular cases, we present the notions of neutrosophic Floor (greatest integer), 

neutrosophic Absolute Function and neutrosophic Signum Function. Moreover, we draw its neutrosophic graph 

representation and discuss similarities and differences for these special neutrosophic functions between the classic 

case and neutrosophic case. We investigate some properties and prove them. However, we often need the definition 

of absolute value function, especially in the metric space. Therefore, we introduce its initial definition in this study. 

Keywords: Neutrosophic relation, Neutrosophic function, Neutrosophic derivative, Neutrosophic integral 

Neutrosophic representation.  

 

1. Introduction  

In our life, there is three main types of logic. The first one is the classical logic which has two values, ‘true or 

false’, ‘0 or 1’. The second one is the fuzzy logic which was first introduced by Dr. Lotfi Zadeh in 1960s. It has more 

than two values. This means that it has more than ‘true or false’ because they are considered simple in this type of 

logic. With fuzzy logic, propositions can be represented with degrees of truth and falseness [1, 2, 3]. The final type of 

logic is the neutrosophic logic which is an extension of the fuzzy logic in which indeterminacy I  is included taking 

into consideration ( ,nI nI I n N    ) [4, 5]. This idea has inspired a lot of researchers and opened up a wide 

range of scientific research in many ways. 

Due to the importance of calculus, Florentin Smarandache presented the basic of Neutrosophic Pre-calculus and 

Neutrosophic Calculus, which studies the neutrosophic functions [6, 7]. A neutrosophic Function : DNf R  

is a function, which has some indeterminacy, with respect to its domain of definition, to its range, or to the relation 

that connect between elements in D  with elements in R .Especially; he also defined the neutrosophic exponential 

function and neutrosophic logarithmic function. 

 The idea of the perception of pentagonal neutrosophic number from different aspects and the score function in 

pentagonal neutrosophic domain was introduced in [8,9]. Additionally, in [10,11,12,13,14,15,16] the single 

neutrosophic value and its properties of different kinds have been identified. Moreover, a lot of algebraic neutrosophic 

structures have been identified, such as neutrosophic R-modules [17,18] and also in the area of neutrosophic 

topological space [19,20]. 
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2.Preliminary 

In this section, we present the basic definitions that are useful in this research.  

2.1 Neutrosophic Subset Relation[6]: 

A Neutrosophic Subset Relation  , between two sets A and B  , is a set of ordered pairs of the form 

 ,A B    , where A   is a subset of  A  , and B    a subset of  B , with some indeterminacy. A neutrosophic relation 

 , besides sure ordered pairs   ,A B   that 100% belong to  , can also contain potential ordered pairs  ,A B    

, where A   is a subset of  A , and B    a subset of  B , which may be possible to belong to  , but it is unknown 

in what degree, or that partially belong to    with the neutrosophic value  , ,T I F  where 𝑇  means degree of 

appurtenance to  , 𝐼 means degree of indeterminate appurtenance, and 𝐹 means degree of non-appurtenance. 

  

2.2 Neutrosophic Functions[6]: 

A Neutrosophic Function is a neutrosophic relation in which the vertical line test does not necessarily work. 

However, in this case, the neutrosophic function coincides with the neutrosophic relation. Generally, a neutrosophic 

function is a function that has some indeterminacy [with respect to one or more of its formula, domain, or range]. 

 

Example [6]: Let’s we have    1,2,: 3   , , ,f a b c d  is a neutrosophic function defined as:  

   1 ,  2 ,a bf f   but  3    c df or  [we are not sure], so we can write  3f I . If we consider a 

neutrosophic diagram representation of this neutrosophic function, we have: 

 

 

 

    

 

 

                                                        Fig (1) 

 

The color arrows mean that we are not sure if the element 3 is connected to the element  c  , or if 3 is connected 

to d . Similarly, for a graph representation: 

 

 

 

 

 

 

 

 

 

 

                       Fig(2)                                          

 1 

 2 

 3 

 a 

 b 

 c 

 d 

1       2      3   

d - 

c - 

b - 

a - 
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This example can be rephrased in another way, that 3 is connected with d only partially, let’s say   
0.6, 0.2, 0.5

3,d   

which means that  60%  the 3  is connected with  d , 20% . It is not clear whether it is connected or unconnected, and 

50%  the 3 is not connected with  d . The sum of components 0.6 0.2 0.5 1.3     is more than 1 because the 

three sources providing information about connection, indeterminacy, non-connection respectively are independent 

and use different criteria of evaluation. 

As we see, this neutrosophic function is neither a function nor a relation in the classical case. 

Example: [6] Let’s consider :h R R   a different type of neutrosophic function defined as: 

   , 2,3 ,x R h x    so we can write  h x I . Therefore, we just know that this function is bounded by the 

horizontal lines 𝑦 = 2  and  𝑦 = 3 . 

 

 

 

 

 

 

 

 

 

 

                                                                           

                                                                                     Fig (3) 

We can modify  h x and get a constant neutrosophic function (or thick function):  :l R P R    defined 

as:     , 2,3x R l x    Where  P R  is the set of all subsets of R .  

For example, is the vertical segment of line [2, 3]. 

 

 

 

 

 

 

 

 

 

 

 

                                                   

 

                                                                                      Fig (4) 

 

Example:[6] A non-constant neutrosophic thick function:  :k R P R  defined as: 

   , 2 , 2 1x R k x x x     whose neutrosophic representation is: 

  

2                 y=2 

3                 y=3 

 h x   

2           y=2       

3          y=3        

 l x   

7 
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                                                                                     Fig (5)                                                   

2.3 Neutrosophic Derivative[6] :  

The general definition of the neutrosophic derivative of function  Nf x   is: 

 
       

0

inf inf ,sup sup
limN
h

f X h f X f X h f X
f x

h

         

Example: Let’s  :f R R I   a  neutrosophic function defined as:    2 32 ,Nf x x x x    then :   

 
     

     

 

2 32 3

0

2 32 3

0 0

2 3

2

2 2 ,
lim

2 2
lim , lim

2 ,

2 2,3

N
h

h h

x h x h x x x h x
f X

h

x h x h x x x h x

h h

d d
x x x

dx dx

x x



 

       
  

       
  
  

 
  
 

   

  

Example: Let  :f R R I   a  neutrosophic function defined as:    23Nf x x x I  then :   

 
   

   

 

0

2 2

0

0

lim

3 3
lim

3 2
lim 3 2 0 3 2

N N

N
h

h

h

f x h f x
f x

h

x h x h I x x I

h

h xI hI
xI I xI

h







 
 

         

  
      

 

2.4 Neutrosophic Integral [7] 

Using the neutrosophic measure, we will define a neutrosophic integral. The neutrosophic integral of a function 

Nf   is written as: ( )X Nf dv  

1        2 

5 - 

4 - 

3 - 

2 - 

 

      

 k x   
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Where X  is a neutrosophic measure space, and also the integral is taken with respect to the neutrosophic measure  

v . Indeterminacy related to integration can occur in various ways: with respect to the value of the integrated function, 

with respect to the lower or upper limit of integration, or with respect to the space and its measure. 

Example: Let  :f R R I   a  neutrosophic function defined as:    3 22 3f x x x I    then : 

   

 

3 2

3 2

3
4

[4 3 ]

4 [ 3 ]

3
3

F x x x I dx

x dx x I dx

x
x I xI c

  

  

   



       

 

 

3. The Special Neutrosophic Functions: 

3.1 Piecewise function: 

A Neutrosophic piecewise Function is a piecewise function that has some indeterminacy [with respect to one or 

more of: its domain, formula, or range]. 

 The Neutrosophic piecewise function is may not be a classical function in general. However, we can say when 

indeterminacy doesn’t exist we will be back the classical case again.  

Example: Let’s consider a neutrosophic piecewise function which has indeterminacy with respect to its domain: 

  
 

 

2

1

| 1,1

2,3 | 1 1

x x
f x

x or

  


 
 

  

It's clear that is    1 11 1 1f f      and    2,3f I        

As in the classical way we can draw the neutrosophic graph: 

 

 

 

 

Fig (6) 

Integration neutrosophic Constant 

: ,c a bI a b R     

 

  2

1f x x   
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Example: Let’s consider a neutrosophic piecewise function, which has indeterminacy with respect to its formula: 

 
 2

[2 1,6 ] | 0

1,3 | 0

x x x
f x

x

 
 


  

It's clear that   2 : 0f x I x     and     2 0 1,3f    

As in the classical way, we can draw the neutrosophic graph: 

 

 

 

 

 

 

                         

                                                                         Fig (7)                                                                            

Example: Let’s consider a neutrosophic piecewise function, which has indeterminacy with respect to its range: 

 3

1
| 5

5

2 4 | 5

x
xf x

or x


  


   

It's clear that    3 5f I  and    3

1
: 5

5
f x x

x
 


  

As in the classical way, we can draw the neutrosophic graph: 

 

 

 

 

Fig (8)                                              
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3.2 Signum function:  

A Neutrosophic signum Function ( sgnN ) is a signum function which has some indeterminacy [with respect 

to one or more of: its domain, formula, or range] in two ways as follows: 

 

 

1: 0 0

1) sgn 0 : 0 0

1: 0 0

1: 0

2) sgn 0 : 0

1: 0

x and I

N x I x and I

x and I

x

N x I x

x


 


   


  





  
 

  

The indeterminacy here is suitable to the problem conditions.  

A Neutrosophic signum Function may be continuous at (0) due to the indeterminacy in contrary to the classical case.  

Example: Let’s consider a neutrosophic signum function, which has indeterminacy with respect to its domain: 

1: 3 0

sgn( 3 2 ) 0 : 3 0

1: 3 0

x and I

N x I x and I

x and I


 


    


  


  

As in the classical way, we can draw the neutrosophic graph: 

 

 

 

 

 

 

                                                                      Fig (9) 

From the graph, we notice that the Neutrosophic signum function is continuous at 3 in the contrary to the 

classical case, and when there is no indeterminacy the green color will fade. Therefore, we will go back to the 

classical case. 
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Example: Let’s consider a neutrosophic signum function which has indeterminacy with respect to its formula and 

range: 

 

1: 5

sgn 2 0 : 2

1: 3

x

N x I x I

x




     
  

  

As in the classical way we can draw the neutrosophic graph: 

 

 

 

 

 

 

                                                    Fig(10) 

Notice what the indeterminacy has made in the graph. It becomes like a spectrum around zero. 

3.3 Neutrosophic Absolute Function 

A Neutrosophic Absolute Function ( Nabs ) is an Absolute Function which has some indeterminacy [with 

respect to one or more of: its domain, formula, or range] in three ways as follows: 

 

: 0 0

0 : 01 0

0

)

: 0

Na I I

x x and I

bs x x and I

x x and I


 


    


  


  

 

: 0

2) 0 : 0

: 0

x x

a x IN b x

x x

s




  
 

  

 

: 0

3) 0 : 0

: 0

x I x

N bsa x I I x

x I x

 


   
  
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Properties: 

   

   

     

1)

2) 0 0

3) 2

Nabs x I abs x I

Nabs I abs I I

Nabs x I I abs x I Nabs x I

  

   

     

  

     

   

   

   

   

4)

:

Nabs x y I Nabs x I Nabs y I

proof

Nabs x y I abs x y I

abs x abs y I

abs x I abs y I

Nabs x I Nabs y I

     

    

  

   

   

  

 

 

 

5)Nabs x I y I

abs x I y I

x y I
abs x y I

x y I

  

   

 
    

  

 

Example: Let’s consider a neutrosophic Absolute function which has indeterminacy with respect to its domain: 

 

: 0 0

3 0 : 0 0

: 0 0

x x and I

Nabs x I I x and I

x x and I


 


    


  


  

 

 

 

 

 

 

 

               Fig (11) 
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Example: Let’s consider a neutrosophic Absolute function which has indeterminacy with respect to its formula, and 

range: 

   

2 : 4

2 0 : 1,4

2 : 1

x x

Nabs x I x

x x

 


   


 

  

As in the classical way, we can draw the neutrosophic graph: 

 

  

 

 

 

 

                                

                                                                   Fig (12) 

3.4 Neutrosophic Floor (greatest integer) Function   

A Neutrosophic Floor (greatest integer) ( Nfloor   ) is a floor (greatest integer) that has some indeterminacy 

[with respect to one or more of: its domain, formula, or range] in two ways as follows: 

.

.

1 : 1 0

1) 0 : 0 1

1 :1 2

.

.

x I

Nfloor x I x I

x I





    


    


  





 

As in the classical way, we can draw the neutrosophic graph: 
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                                                                                      Fig (13) 

Here we can say that there is no difference between the neutrosophic case and the classical case. 

.

.

1 : 1 0

2) 0 : 0 1

1 :1 2

.

.

I x

Nfloor x I x

I x





    


   

  






   

As in the classical way, we can draw the neutrosophic graph: 

 

 

 

 

 

 

    

     Fig (14)                                                                   
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Properties: 

 

1) : 0 a 1

2)

Nfloor x I x I x a I

n N I

Nfloor n I n I

n I

       

 

  

 

  

3)

:

Nfloor x y I Nfloor x I Nfloor y I

proof

Nfloor x y I x y I

x y I

x I y I

Nfloor x I Nfloor y I

     

    

  

   

   

 

 4)

:

n N I

Nfloor x n I Nfloor x I n

proof

Nfloor x n I x n I

x n I

x I n

Nfloor x I n

 

    

    

  

  

  

  

4. Conclusions   

In this research, we firstly obtained new kinds of neutrosophic functions and focused on the Neutrosophic 

representation and proved some properties. In addition, we showed that the neutrosophic functions is not a function 

in the classical case, but in some especial cases there were an coincidence between the neutrosophic case and the 

classical case. 

 

 

5. Future Research Directions  

        As a future work, this article can be extended to include continuity and derivation and integration as well as the 

definition and applications of the Neutrosophic Cartesian. 
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Abstract  

In this article, the main objective was to examine the articulation mechanism of the guiding principles of evidentiary 

law, the backbone of the criminal procedure directed at judges so as not to make inexcusable mistakes. A new theory 

called reasoned equivalence based on numerical neutrosophics by considering each evidentiary principle <A> along 

with its opposite or negation <Anti-A> and the spectrum of neutralities <Neut-A>. The data collection techniques 

responded to participant observation and the Delphi technique, after having gathered the opinion of 60 collaborating 

criminal lawyers about the problem through the exercise of the profession. The construction of the instrument fell to 

an observation guide. The results gave the judicial practice a marked formative value, by establishing relationships 

between the content of the evidence and the development of oral litigation techniques aimed at the promotion and 

evacuation of evidence to contribute to a certain criminal process, the evidence necessary to that the judge can come 

to the knowledge and conviction of the procedural truth of the facts. 

Keywords: Criminal; equivalence reasoned; evidence; method; neutrosophic numbers; process 

1. Introduction  

     Proving in its broadest and most contemporary expression tautologically means convincing the judge about the 

certainty of the existence of an event. Besides, it is constituting a legitimate and open reaffirmation of the probationary 

right. In most criminal cases it is affirmed that proof is the verification of something; the truth about a fact. Criminal 

evidence is the circumstances submitted to the judge for his judgment. Therefore, it shows the veracity of what is 

alleged about the facts in a trial [1], [2].  

     It is very important to deepen the knowledge of what concerns the presentation of evidence in a criminal procedure. 

The function of the test, in general terms, supports: (...) the obtaining of the truth (...). The material truth of the facts 

would reside in total knowledge of them by the judge [3]. That said, the emphasis should be put especially in the 

interrogation, including recognition of places, people, or things as well as proof of judicial inspection, since this gives 

validity to the criminal process. Therefore, it is necessary that the criminal procedures meet impermissible minimum 

requirements and it is not illegitimate to avoid the nullity of the act or the whole process. As a consequence, it would 

make it very difficult for the Judge to arrive at the truth of the facts; the purpose that pursues all investigation in the 

criminal process [4], [5], [6]. 

     Any consideration that can be made regarding the subject under study is relatively complex given the needs that 

currently arise when accessing justice, therefore some factors must be overcome to have effective, transparent justice 

and expeditiously, and thus, fulfill the mission that all legal professionals have, the defenders, prosecutors of the Public 

Prosecutor's Office, criminal lawyers in practice and officials of the Judicial Power [7].  

HP
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     Next, the considerations after the transformation of the object of study, the following variables arise in 

chronological order: (i) the statement of the accused; (ii) the interrogation or examination; (iii) cross-examination or 

contrary-examination; (iv) the test of judicial inspection ex-ante ocular inspection; (v) the recognition of people, 

things, places and; (vi) the proof evaluation system. 

     The investigation motivates us to recognize the absolute independence of the Administration of Justice. It requires 

that the power of attorney exercise the power on itself, without the interference of another power that displays 

unlimited faculties on the justice operator, much more if this same organism who designates it, appoints and swears 

it, to finally sanction it disciplinary way proceeding for “inexcusable error” considered in Article 109, Number 7, of 

the Organic Code of the Judicial Function [8]; and not only of the internal independence which was submitted; but the 

same external independence is subject to interference that the political power does on the justice administration call 

by this legal figure that has not had a sustainable and satisfactory legal explanation. 

     The fundamental contribution of the study focuses on the demonstration of the importance of the evidence right, 

the backlist of the criminal process, specifically from the moment the arrest of the alleged suspect arises based on the 

principles of general interest, the social order of the freedom of the accused, protected on a level of equality in 

opportunities. 

     The problem is determined by the assumptions where the vice of the illegal evidence appears during the criminal 

processes, to search through the analysis of the same solution that offers the appropriate procedural corrective. 

     In this sense, it holds in the indicated cases that, in the Ecuadorian criminal process, sometimes the judge excludes 

evidence without vices of illegality at violating the principle of probation [6].      

     Successive and contemporaneously, concerning the evidence obtained illicitly: The judge at the time of assessing 

the evidence produced a trial must analyze with great care, firstly, if the proof does not suffer from the illegality, that 

is, contrary to a constitutional or legal rule [9]. 

     Based on the arguments presented, empowered in the evidentiary dimension, the general educational objective at 

a critical-transferential level was circumscribed in examine the purpose of the judicial evidence in the criminal process, 

the means and, the probative sources based on the general principles of legality and legitimacy of the criminal 

evidence.  

2. Problem formulation   

     The problem is determined by the assumptions where the vice of the criminal evidence appears in the course of the 

processes, to search through the analysis of the same solution that offers the appropriate procedural corrective to each 

of these processes; pursuing the understanding and scope of the evidentiary mechanisms for the factual determination 

of reality in the construction of judicial evidence, in correspondence with the following hypothesis: 

     How is the legality and legitimacy of the criminal evidence articulated for probation?  

3. Neutrosophic numbers of unique value to represent the jurisdiction in the criminal procedural field  

     The definition of truth value in neutrosophic logic is represented as � = {(�,) ∶ �, �, � ⊆ [0.1]} �, representing a 

neutrosophic valuation [10], 11]. Specifically, one of the mathematical theories that generalize the classical and fuzzy 

theories is the demonstration of statistical hypotheses, which is used in the present study [12], [13]. It is considered as 

a mapping of a group of propositional formulas to �, and for each sentence, to obtain the result through the following 

expression. 



International Journal of Neutrosophic Science (IJNS)                                                Vol. 4, No. 2,  PP. 117-124, 2020 

 

DOI: 10.5281/zenodo.3783805 
 

 119

� (�) = (�, �, �) 

     Starting from U that represents the universe of discourse and the neutrosophic set Ie ⊂ U. 

     Where: 

     Ie is formed by the set of evaluative indicators that define a legal jurisdiction. 

     It should be noted that the following triads are used in legal Sciences: <A> be a physical entity (i.e. concept, notion, 

object, space, field, idea, law, property, state, attribute, theorem, theory), <antiA> be the opposite of <A>, and 

<neutA> be their neutral (i.e. neither <A> nor <antiA>, but in between) [14]. 

     In the physical field, formal logic operates as a “Paradoxist Physics Neutrosophic Physics is an extension of 

Paradoxist Physics, since Paradoxist Physics is a combination of physical contradictories <A> and <antiA> only that 

hold together, without referring to their neutrality <neutA>. Paradoxist Physics describes collections of objects or 

states that are individually characterized by contradictory properties, or are characterized neither b a property nor by 

the opposite of that property, or are composed of contradictory sub-elements. Such objects or states are called 

paradoxist entities”. [14]. 

     Let T (x), I (x), F (x) be the functions that describe the degrees of correlation or non-correlation, respectively, of a 

generic element x ∈ U, concerning the neutrosophic set Ie. 

     Therefore, when considering the clear (classic) principle of legality and legitimacy of criminal evidence. Yes only 

if the criminal procedural law, it is equivalent to excluding the illegality of the evidence by refuting it as exclusionary 

when it is qualified by the judge as pertinent to the criminal process by recognizing that in criminal trials in Ecuador 

there is evidentiary freedom, therefore it is valid to affirm that in all In criminal trials, there is a 100% evaluation of 

the criminal evidence by the judge. 

     Using the notation of neutrophilic numbers, we write that in Ecuador there is (1, 0, 0) probation, which means that 

country is 100% legal, 0% undetermined legal, and 0% illegal. 

     However, the investigation shows that some courts exclude the validity of criminal evidence, invoking aspects such 

as impertinence of the evidence, misusing evidentiary law. Therefore, it is determined that probation is among the said 

in proportion to a fifth (20%) excluding equivalent to (0.8, 0, 0.2) - freedom and probative legitimacy [15]. 

4. Problem solution 

     Within the framework of rational choice, microanalysis is carried out based on a dual result that reveals open and 

axial coding (Andréu Abela et. al, 2007) [16] oriented to find the signifier of the data. 

     The open coding consisted of the analytical procedure employing which the data were delimited giving way to the 

thoughts, ideas, and meanings that contain it, to discover, catalog and develop concepts to arrive at a new theory called 

Reasoned Equivalence (RE), consisting of If there is Probative Legality (PL) and Legitimacy of the Evidence (LE), it 

is defined as logically equivalent to Probatory Freedom (PF), therefore, it is not possible to exclude the Evidence 

(EV), represented under the following formula: 
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     Chart 1. Proposed formula for a theory of reasoned equivalence. Source [17]. 

     Indicates that, in light of the proposed reasoned equivalence theory, it will positively impact the sphere of criminal 

procedural law, given that, among other things, the judge must act and adhere to the framework in the objective 

assessment of the evidentiary means alleged in safeguarding the interests of the intervening parties in all judgment. 

Otherwise, the court decision could be counterattacked in appeal (superior court), even in administrative headquarters 

for inexcusable error. 

     In such a way that the legal principle of non-exclusion from criminal evidence operates as a proposition that is 

partially true and partially false or partially indeterminate for the operators of justice. 

     So evidentiary law is a branch of procedural science in criminal matters for a category of the population that may 

be convenient; but also negative for another part of the intervening parties in the criminal trials. 

     Everything will depend on the role to be played, either as a defense or accuser party into procedures record trial. 

     It is limited that, under being the dynamic neutrosophic degrees, that is, they are not static, they can continually 

change over time around hidden parameters that influence each other. 

     Thus, in all societies we find neutrosophic degrees of positive (T), indeterminate, or neutral (I) and negative (F) 

attributes, therefore, we could say that in any society, we have the following neutrosophic degrees. The degrees T, I, 

F are independent concerning each other [18]. 

     (Ti, Ii, Fi) - inequality, (Tu Iu, Fu) - dissatisfaction, (Tc, Ic, Fc) -contradiction, (Tw, Iw, Fw), error of law, among 

others, unlike Auguste Compte in Smarandache (who coined the term “perfect sociology”, given that we are people 

imperfect by nature and to that extent, we can make the mistake of fact and law [19]. 

     On the other hand, a line-by-line analysis was carried out, which led to an important theoretical approach by 

correlating the context in which the central category (criminal evidence) is found and the subcategories (declaration 

of the accused, interrogation or examination, cross-examination) or counter-examination, judicial inspection, 

recognition of things, people and places and the valuation system), without prioritizing them, given the absence of 

hierarchies: axial codification emerged [17]. 

     Even when the axial coding is not predominant because the process of establishing relationships was executed 

against the central category; but certainly plausible; by establishing a flexible class of the subcategories described 

above with the properties and dimensions around a category taken as a transversal axis (criminal evidence), a scheme 

was obtained that facilitates the understanding of the phenomena that provide a procedural process to configure the 

category central. 

     This finding demanded to describe previously in what legal context the evidentiary function is developed at present 

with a greater emphasis in the generalization this time from the lens of the probation articulated to the system of 

evaluation of the criminal test based on the theory of reasoned equivalence proposal. 

 

 

Theoretical construction developed to solve a scientific problem 

RE = PL + LE ⇔ PF ≠ EV 
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5. Evaluative indicators of the principles in the evidence 

     The legal means of evidence constitute the regulated instruments provided by the national legislator; they identify 

the indicators that represent the conviction of the alleged allegations on which the oral litigation of the exercise of 

probative law is based. Indicators are the key element for determining the truth in all criminal proceedings. Chart 2 

shows the evaluative indicators obtained in the activity. 

_________________________________________________________________________________________ 
N°    Evaluative indicator 
__________________________________________________________________________________________ 
I1    Legality and legitimacy of the documentary evidence 
I2    Freedom from testimonial evidence 
I3    Relevance of expert evidence 
I4    Unlawfulness of other evidence 
I5    Exclusion from legal evidence 
___________________________________________________________________________________________ 

Chart 2. Evidence indicators.  

     After the analysis of the information codified in the Organic Integral Criminal Code of Ecuador [20], the 

coefficients of knowledge, argumentation, and jurisdiction were determined, in the evaluation of the judge, the legal 

proposal provided by five criteria (Strongly Agree, Agree, Little agree, Disagree, Did not answer), applied to five 

variables based on the Likert scale. 

     For data collection, a Likert questionnaire is designed. This type of questionnaire is described as the method that 

uses an instrument or form, intended to obtain answers about the problem under study and that the researched or 

consulted person completes by himself [21]. 

 

        Chart 3. Questions asked internet to key informants 

     Most respondents who reached ninety-nine percent strongly agree that inexcusable error is not conceptualized in 

the Organic Code of the Judicial Function, but is generically incorporated into very serious offenses but without a 

clear definition of its meaning, for what has been done extensive interpretations of the norm, causing the rights of 

judicial officials to be violated. 

How do you evaluate inexcusable 
error regarding the illegal 
exclusion of evidence in 
jurisdictional practice?

How do you assess compliance 
regarding the assessment of 
evidence in jurisdictional 

practice?

How do you assess the 
performance in the criminal trial 

lawyers during a criminal 
process?
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     In attention to the intentional sample population, it was made up of 60 criminal lawyers, who without the need to 

physically gather them, collaborated with the information from the data provided. Meanwhile, the data collection 

instrument fell into a guide for observation and recording of debate and dialogue structured with 3 questions 

concerning the sensitive experience of the professional exercise of key informants to reveal information. Therefore, 

the participant-observation allowed to check the phenomenon that is in front of the view, with the concern of avoiding 

and preventing the observation errors that could alter the perception of a phenomenon or the correct expression of it. 

In this sense, the observer is distinguished from the key informant since the latter does not attempt to reach the 

diagnosis [22]. 

     The analysis carried out and expressed allowed determining the values of the cut-off point of the categories. These 

values were related to the step value category (N-P) of each expressed variable. 

     In the analysis of the results of the assessment of the contribution of the model, it was found that all items were 

evaluated as Strongly Agree, Agree or Disagree, as shown in chart 3. 

___________________________________________________________________________________________ 

Capita   C1   C2  C3  C4             C5 

                    Strongly Agree             Agree          Little agree            Disagree          Did not answer  

____________________________________________________________________________________________ 

1    99%          1%  0%  0%  0% 

2    10%        15%  75%  0%  0% 

3   44%        16%  40%  0%  0% 

____________________________________________________________________________________________ 

Chart 3. Refined Neutrosophic [14]. Result of the observation guide instrument applied to 

key informants (collaborated criminal lawyers) to evaluate the proposal made. 

     Among the criteria issued by the experts consulted using the Delphi methodology [23, 24], the following elements 

prevail: 

     - The indicators for measuring the exercise of evidentiary law to assess jurisdictional practice were considered 

correct. 

     - The fulfillment of the evaluative indicators of the jurisdictional practice “Little agreement” being considered 

under its development by the repetition in the exclusion of the evidence on the part of the judge when the time of their 

evacuation arrives at the procedural stage of evaluation and preparatory trial. 

     - The growth of the indicator criminal trial lawyers during a criminal process is considered practically between 

“Strongly agree” and “Little agree”. 

     In addition to the favorable criteria on the proposed model, the following suggestions and recommendations were 

issued by the experts: 

     It must be considered that, although the level obtained in the evaluative indicator of jurisdictional practice must 

prevail the guiding principle of probation, as long as the evidence is legal and legitimate by establishing that there is 
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no place to exclude criminal evidence based on the principle of discretion of the judge for the responsibility that he 

carries while avoiding abuses in the administration of justice. 

     It is important to indicate considerations on the contribution that is made to the research, given that, among other 

things, from a positive point of view, [25] inclined to reflect on the evidence system in general, it contributes ideology 

to be able to affirm that contemporary theories or standards of evidence are not fully met. In other words, it argues 

that: contemporary law not only programs its forms of production but also its substantial contents, linking them 

normatively with constitutionally recognized principles and values [26]. 

6. Conclusions   

     As a corollary, armed with the elements that link the various critiques to the content of each test, the theory of 

reasoned equivalence proposed, bet that judicial operators, who sometimes act within surrealism, are inserted to the 

extent that for some reason consider that the object of knowledge is separate from the subject that knows or what is 

the same that the knowledge of the object differs from the subject to know. The judge cannot ex officio promote any 

evidence. However, his faculty should endow it with such a possibility, at least with the limitations of the case since 

it is at the expense of his investiture. 

 

     Therefore, it should be noted that for the simple fact, that there is currently individual background to this movement 

surrealist, sometimes negatively, to demonstrate a particular disposition of the spirit that plunges into the depths of 

the real, seeking a basis to affirm its faculty to the detriment of judicial activism. To that extent, the pretext of 

surrealism will be useful for the discovery of its essence -as it is intended to demonstrate-, its permanent updating and 

way of assuming the reality [27]. 

 

     In such a way that knowledge is an exact reproduction of reality, and if it is totally or partially unknown, it is 

because elements of judgment are missing, or simply the evidence was disturbed. Considering, whether or not it is 

conducive or apt, in the abstract, to be able to prove a fact or legal act, it is a point of law, because it deals with the 

application of the legal means that regulate the test in a particular case and therefore, the concept of the court of appeal 

may be attacked in cassation by mistake of law if it is considered wrong.  

 

     This is important because in some countries certain proof can and other proof cannot be used as evidence in criminal 

cases, meaning that the rules on the admissibility of evidence and the high standard of proof required in criminal 

proceedings it necessarily needs to apply in this respect. In that case, juridically that would be an inexcusable error, 

and ethically, an illegal judge decision. 

 

     Given the strict rules on the admissibility of evidence and the high standard of proof required in the criminal justice 

systems of Ecuador, including, as appropriate, through legislative changes, that would facilitate the use of such 

evidence in criminal proceedings. 

 

     Finally, in an attempt to contribute, the proposed theory of equivalence bets on a greater and better administration 

of justice. It will tend to make criminal trials more expeditious, but above all mayor transparency when it comes time 

to acquit the accused or on the contrary condemn those whom injustice deserves it. 
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