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Aim and Scope 

International Journal of Neutrosophic Science (IJNS) is a peer-review journal publishing high quality 

experimental and theoretical research in all areas of Neutrosophic and its Applications. IJNS is 

published quarterly. IJNS is devoted to the publication of peer-reviewed original research papers lying in 

the domain of neutrosophic sets and systems. Papers submitted for possible publication may concern with 

foundations, neutrosophic logic and mathematical structures in the neutrosophic setting. Besides providing 

emphasis on topics like artificial intelligence, pattern recognition, image processing, robotics, decision 

making, data analysis, data mining, applications of neutrosophic mathematical theories contributing to 

economics, finance, management, industries,  electronics, and communications are promoted. Variants of 

neutrosophic sets including refined neutrosophic set (RNS). Articles evolving algorithms making 

computational work handy are welcome. 

Topics of Interest 

IJNS promotes research and reflects the most recent advances of neutrosophic Sciences in diverse 

disciplines, with emphasis on the following aspects, but certainly not limited to: 

�  Neutrosophic sets                                              �  Neutrosophic algebra 

�  Neutrosophic topolog                                        �  Neutrosophic graphs 

�  Neutrosophic probabilities                                �  Neutrosophic tools for decision making 

�  Neutrosophic theory for machine learning       �  Neutrosophic statistics 

�  Neutrosophic numerical measures                    �  Classical neutrosophic numbers 

�  A neutrosophic hypothesis                                �  The neutrosophic level of significance 

�  The neutrosophic confidence interval               �  The neutrosophic central limit theorem 

�  Neutrosophic theory in bioinformatics  

�and medical analytics                                            �  Neutrosophic tools for big data analytics 

�  Neutrosophic tools for deep learning                  �  Neutrosophic tools for data visualization 

�  Quadripartitioned single-valued  

�neutrosophic sets                                                   �  Refined single-valued neutrosophic sets 

� Applications of neutrosophic logic in image processing  

�  Neutrosophic logic for feature learning, classification, regression, and clustering 
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Abstract
In this paper we give a comprehensive presentation of the notions of filter base, filter and ultrafilter on single
valued neutrosophic set and we investigate some of their properties and relationships. More precisely, we
discuss properties related to filter completion, the image of neutrosophic filter base by a neutrosophic induced
mapping and the infimum and supremum of two neutrosophic filter bases.
Keywords: neutrosophic set, single valued neutrosphic set, neutrosophic induced mapping, single valued
neutrosophic filter, neutrosophic completion, single valued neutrosophic ultrafilter.

1 Introduction
The notion of neutrosophic set was introduced in 1999 by Smarandache [20] as a generalization of both the
notions of fuzzy set introduced by Zadeh in 1965 [22] and intuitionistic fuzzy set introduced by Atanassov in
1983 [2].

In 2012, Salama and Alblowi [17] introduced the notion of neutrosophic topological space which gen-
eralizes both fuzzy topological spaces given by Chang [8] and that of intuitionistic fuzzy topological spaces
given by Coker [9]. Further contributions to Neutrosophic Sets Theory, which also involve many fields of
theoretical and applied mathematics were recently given by numerous authors (see, for example, [6], [3], [4],
[15], [1], [13], [14] and [16]). In particular, in [18] Salama and Alagamy introduced and studied the notion of
neutrosophic filter and they gave some applications to neutrosophic topological space.

In General Topology, filter bases, filters and ultrafilters are widely known notions and very popular tools
for proving many properties and characterizations (see, for example [5, 7, 10]).
Rather surprisingly, despite the fact that the class of single valued neutrosophic sets, is more versatile and
has a particular aptitude for application purposes and resolution of practical real-world problems than that of
neutrosophic sets, the authors of this article were not able to find any generalizations of such notions respect
on single valued neutrosophic sets, in known scientific literature.

In this paper, we introduce the notions of filter base, filter and ultrafilter on single valued neutrosophic sets,
and we prove some of their fundamental properties and relationships which may be useful for further studies
and applications in the class of single valued neutrosophic topological spaces.

2 Preliminaries
In this section we present some basic definitions and results on neutrosophic sets and suitably exemplify them.
Terms and undefined concepts are used as in [10] and [11].

The original definition of neutrosophic set, given in 1999 by Smarandache [20], refers to the interval
]0−, 1+[ of the nonstandard real numbers and although it is consistent from a philosophical point of view,
unfortunately, it is not suitable to be used for approaching real-world problems. For such a reason, in 2010,
the same author, jointly with Wang, Zhang and Sunderraman [21], also introduced the notion of single valued
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neutrosophic set which, referring instead to the [0, 1] unit range of the usual R set of real numbers, can be
usefully used in scientific and engineering applications.

Notation 2.1. Let U be a set, I = [0, 1] be the unit interval of the real numbers, for every r ∈ I , with r we
denote the constant mapping r : U→ I that, for every u ∈ U is defined by r(u) = r.
For every family {fi}i∈I of mappings fi : U→ I , we denote by:

•
∧

i∈I fi the infimum mapping
∧

i∈I fi : U → I that, for every u ∈ U is defined by
(∧

i∈I fi
)
(u) =∧

i∈I fi(u) = inf {fi(u) : i ∈ I}, and by

•
∨

i∈I fi the supremum mapping
∨

i∈I fi : U → I that, for every u ∈ U is defined by
(∨

i∈I fi
)
(u) =∨

i∈I fi(u) = sup {fi(u) : i ∈ I}.

In particular, if f and g are two mappings from U to I , we denote their infimum (which is the minimum) by
f ∧ g and their supremum (which is the maximum) by f ∨ g.

Definition 2.2. [21] Let U be an initial universe set and A ⊆ U, a single valued neutrosophic set over U
(SVN-set for short), denoted by Ã = 〈U, µA, σA, ωA〉, is a set of the form

Ã = {(u, µA (u) , σA (u) , ωA (u)) : u ∈ U}

where µA : U→ I , σA : U→ I and ωA : U→ I are the membership function, the indeterminacy function
and the nonmembership function of A, respectively. For every u ∈ U, µA (u), σA (u) and ωA (u) are said the
degree of membership, the degree of indeterminacy and the degree of nonmembership of u, respectively.

Since I = [0, 1], it clearly results 0 ≤ µA (u) + σA (u) + ωA (u) ≤ 3, for every u ∈ U.

Notation 2.3. The set of all the single valued neutrosophic sets over a universeU will be denoted by SVN (U).

Definition 2.4. [20, 21] Let Ã = 〈U, µA, σA, ωA〉 and B̃ = 〈U, µB , σB , ωB〉 be two SVN-sets over the
universe set U, we say that Ã is a neutrosophic subset (or simply a subset) of B̃ and we write Ã b B̃ if, for
every u ∈ U, it results µA (u) ≤ µB (u), σA (u) ≤ σB (u) and ωA (u) ≥ ωB (u). We also say that Ã is
contained in B̃ or that B̃ contains Ã.

It is worth noting that the relation b satisfies the reflexive, antisymmetrical and transitive properties and
so that (SVN (U),b) forms a partial ordered set (poset) but not a totally ordered set (loset) as shown in the
following example.

Example 2.5. Let U = {a, b, c} be a finite universe set and Ã = 〈U, µA, σA, ωA〉 , B̃ = 〈U, µB , σB , ωB〉 be
two SVN-sets on SVN (U) respectively defined by the following tabular representations:

U

Ã µA σA ωA

a 0.5 0.3 0.2
b 0.6 0.2 0.3
c 0.4 0.2 0.7

U

B̃ µB σB ωB

a 0.2 0.2 0.2
b 0.4 0.1 0.6
c 0.8 0.3 0.1

Then Ã 6b B̃ because µA (a) = 0.5 > 0.2 = µB (a) and B̃ 6b Ã because ωB (c) = 0.1 < 0.7 = ωA (c) and
so the SVN-sets Ã and B̃ are not comparable.

Definition 2.6. [20, 21] Let Ã = 〈U, µA, σA, ωA〉 and B̃ = 〈U, µB , σB , ωB〉 be two SVN-sets over the
universe set U, we say that Ã is a neutrosophically equal (or simply equal) to B̃ and we write Ã = B̃ if
Ã b B̃ and B̃ b Ã.

Definition 2.7. [21] The SVN-set 〈U, 0, 0, 1〉 is said to be the neutrosophic empty set overU and it is denoted
by ∅̃, or more precisely by ∅̃U in case it is necessary to specify the corresponding universe set.

Definition 2.8. [21] The SVN-set 〈U, 1, 1, 0〉 is said to be the neutrosophic absolute set over U and it is
denoted by Ũ.

Evidently, for every A ∈ SVN (U), it results ∅̃ b A b Ũ.

Doi :10.5281/zenodo.3830930 9
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Definition 2.9. [20, 21] Let Ã = 〈U, µA, σA, ωA〉 be a SVN-set over the universe set U, the neutrosophic
complement (or, simply, the complement) of Ã, denoted by Ã{, is the SVN-set Ã{= 〈U, ωA, 1− σA, µA〉 that
is Ã{= {(u, ωA (u) , 1− σA (u) , µA (u)) : u ∈ U}.

It is a simple matter to verify that for every Ã = 〈U, µA, σA, ωA〉 ∈ SVN (U), it results
(
Ã{
){
= Ã and,

in particular, that Ũ{= ∅̃ and ∅̃{= Ũ.

Remark 2.10. It is important to point out that, unlike in the crisp sets theory, the neutrosophic intersection of
a SVN-set with its complement is not always the neutrosophic empty set, and the neutrosophic intersection of
a SVN-set with its complement is not always the neutrosophic absolute set. In fact, if we consider the universe
set U = {a, b} and the SVN-set on SVN (U) defined by the following tabular representations:

U

Ã µA σA ωA

a 0.2 0.6 0.8
b 1 0.5 0

we can easily verify that the neutrosophic intersection, Ã e Ã{ and the neutrosophic union, Ã d Ã{ are,
respectively, given by the following tabular representations:

U

Ã e Ã{ µ
ÃeÃ{ σ

ÃeÃ{ ω
ÃeÃ{

a 0.2 0.4 0.8
b 0 0.5 1

and

U

Ã d Ã{ µ
ÃdÃ{ σ

ÃdÃ{ ω
ÃdÃ{

a 0.8 0.6 0.2
b 1 0.5 0

and so that Ã e Ã{ 6= ∅̃ and Ã d Ã{ 6= Ũ.

Proposition 2.11. [21] For every pair Ã = 〈U, µA, σA, ωA〉 and B̃ = 〈U, µB , σB , ωB〉 of SVN-sets in
SVN (U), we have that Ã b B̃ iff B̃{b Ã{.

Definition 2.12. [18] Let
{
Ãi

}
i∈I

be a family of SVN-sets Ãi = 〈U, µAi
, σAi

, ωAi
〉 over a common

universe set U, its neutrosophic union (or simply union), denoted by
⋃⋃

i∈I
Ãi, is the neutrosophic set

Ã = 〈U, µA, σA, ωA〉 where µA =
∨

i∈I µAi
, σA =

∨
i∈I σAi

, and ωA =
∧

i∈I ωAi
.

In particular, the neutrosophic union of two single SVN-sets Ã = 〈U, µA, σA, ωA〉 and B̃ = 〈U, µB , σB , ωB〉,
denoted by Ã d B̃, is the neutrosophic set defined by 〈U, µA ∨ µB , σA ∨ σB , ωA ∧ ωB〉.

Definition 2.13. [18] Let
{
Ãi

}
i∈I

be a family of SVN-sets Ãi = 〈U, µAi
, σAi

, ωAi
〉 over a common universe

set U, its neutrosophic intersection (or simply intersection), denoted by
⋂⋂

i∈I
Ãi, is the neutrosophic set

Ã = 〈U, µA, σA, ωA〉 where µA =
∧

i∈I µAi
, σA =

∧
i∈I σAi

, and ωA =
∨

i∈I ωAi
. In particular, the

neutrosophic intersection of two SVN-sets Ã = 〈U, µA, σA, ωA〉 and B̃ = 〈U, µB , σB , ωB〉, denoted by
Ã e B̃, is the neutrosophic set defined by 〈U, µA ∧ µB , σA ∧ σB , ωA ∨ ωB〉.

Definition 2.14. [21] Let Ã = 〈U, µA, σA, ωA〉 and B̃ = 〈U, µB , σB , ωB〉 be two SVN-sets over U, we say
that Ã and B̃ are neutrosophically disjoint if Ã e B̃ = ∅̃. On the contrary, if Ã e B̃ 6= ∅̃ we say that Ã
neutrosophically meets B̃ (or that Ã and B̃ neutrosophically meet each other).

Doi :10.5281/zenodo.3830930 10
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Definition 2.15. [18] Let A,B ⊆ SVN (U) be two nonempty families of SVN-sets over U, we say that A
neutrosophically meets B (or that A and B neutrosophically meet each other) if every member of A neutro-
sophically meets any member of B, that is if for every Ã ∈ A and every B̃ ∈ B it results Ã e B̃ 6= ∅̃.
In particular, if C̃ = 〈U, µC , σC , ωC〉 is a SVN-set over U which neutrosophically meets each member of the
family A, we say that C̃ neutrosophically meets A.

The neutrosophic operators of union, intersection and complement satisfy many relations similar to those
of crisp set theory, which are summarized in the following propositions.

Proposition 2.16. [21] For every SVN-set Ã = 〈U, µA, σA, ωA〉 ∈ SVN (U), we have:

(1) Ã d Ã = Ã

(2) Ã d ∅̃ = Ã

(3) Ã d Ũ = Ũ

(4) Ã e Ã = Ã

(5) Ã e ∅̃ = ∅̃
(6) Ã e Ũ = A

Proposition 2.17. [21] For every pair Ã = 〈U, µA, σA, ωA〉 and B̃ = 〈U, µB , σB , ωB〉 of SVN-sets in
SVN (U), we have:

(1) Ã d B̃ = B̃ d Ã

(2) Ã e B̃ = B̃ e Ã

Proposition 2.18. [21] For every triplet Ã = 〈U, µA, σA, ωA〉, B̃ = 〈U, µB , σB , ωB〉 and C̃ = 〈U, µC , σC , ωC〉
of SVN-sets in SVN (U), we have:

(1) Ã e
(
B̃ e C̃

)
=
(
Ã e B̃

)
e C̃

(2) Ã d
(
B̃ d C̃

)
=
(
Ã d B̃

)
d C̃

Proposition 2.19. [21] Let Ã = 〈U, µA, σA, ωA〉, B̃ = 〈U, µB , σB , ωB〉 ∈ SVN (U) be two SVN-sets over
a universe U, then:

(1) Ã b B̃ iff Ã e B̃ = Ã

(2) Ã b B̃ iff Ã d B̃ = B̃

Proposition 2.20. [21] For every pair Ã = 〈U, µA, σA, ωA〉 and B̃ = 〈U, µB , σB , ωB〉 of SVN-sets in
SVN (U), we have:

(1) Ã d
(
Ã e B̃

)
= Ã

(2) Ã e
(
Ã d B̃

)
= Ã

Proposition 2.21. [21] Let Ã = 〈U, µA, σA, ωA〉, B̃ = 〈U, µB , σB , ωB〉, C̃ = 〈U, µC , σC , ωC〉 and D̃ =

〈U, µD, σD, ωD〉 be SVN-sets in SVN (U) such that Ã b B̃ and C̃ b D̃, then:

(1) Ã d C̃ b B̃ d D̃

(2) Ã e C̃ b B̃ e D̃

Proposition 2.22. [21] Let
{
Ãi

}
i∈I

be a family of SVN-sets Ãi = 〈U, µAi
, σAi

, ωAi
〉 over a common

universe set U, then, for every i ∈ I , we have that
⋂⋂

i∈I
Ãi b Ãi b

⋃⋃
i∈I

Ãi.

Proposition 2.23. [21] Let respectively Ã = 〈U, µA, σA, ωA〉 ∈ SVN (U) be a SVN-set and
{
B̃i

}
i∈I
⊆

SVN (U) be a family of SVN-sets B̃i = 〈U, µBi
, σBi

, ωBi
〉 over a common universe set U, then we have:

(1) Ã e
(⋃⋃

i∈I
B̃i

)
=
⋃⋃

i∈I

(
Ã e B̃i

)
(2) Ã d

(⋂⋂
i∈I

B̃i

)
=
⋂⋂

i∈I

(
Ã d B̃i

)
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Proposition 2.24. [21] Let
{
Ãi

}
i∈I
⊆ SVN (U) be a family of SVN-sets Ãi = 〈U, µAi

, σAi
, ωAi

〉 over a

common universe set U, it results:

(1)
(⋃⋃

i∈I
Ãi

){
=
⋂⋂

i∈I
Ã{

i

(2)
(⋂⋂

i∈I
Ãi

){
=
⋃⋃

i∈I
Ã{

i

Definition 2.25. [12, 19] Let f : U → V be a mapping between two universe sets U and V, and Ã =

〈U, µA, σA, ωA〉 be a SVN-set overU. The neutrosophic image of Ã by f , denoted by f̃
(
Ã
)

, is the SVN-set
over V defined by:

f̃
(
Ã
)
= 〈V, f (µA) , f (σA) , f (ωA)〉

where the mappings f (µA) : V→ I , f (σA) : V→ I and f (ωA) : V→ I are defined respectively by:

f (µA) (v) =

 inf
u∈f−1({v})

µA (u) if f−1 ({v}) 6= ∅

0 otherwise
,

f (σA) (v) =

 inf
u∈f−1({v})

σA (u) if f−1 ({v}) 6= ∅

0 otherwise
,

f (ωA) (v) =

 sup
u∈f−1({v})

ωA (u) if f−1 ({v}) 6= ∅

1 otherwise

for every v ∈ V.

Definition 2.26. [12, 19] Let f : U → V be a mapping between two universe sets U and V, and B̃ =

〈V, µB , σB , ωB〉 be a SVN-set over V. The neutrosophic inverse image of B̃ by f , denoted by f̃−1
(
B̃
)

, is
the SVN-set over U defined by:

f̃−1
(
B̃
)
=
〈
U, f−1(µB) , f

−1(σB) , f
−1(ωB)

〉
where the mappings f−1(µB) : U → I , f−1(σB) : U → I and f−1(ωB) : U → I are defined respectively
by:

f−1(µB) (u) = µB (f(u)) ,

f−1(σB) (u) = σB (f(u)) ,

f−1(ωB) (u) = ωB (f(u))

for every u ∈ U.

Remark 2.27. Let us note that the notation used to denote neutrosophic images and neutrosophic inverse
images implicitly underlines the fact that they are not real images or counterimages since the mapping f is
defined between the universe sets U and V while the definition refers to the sets SVN (U) and SVN (V)
of all the SVN-sets of that respective universe sets. More properly, this means that we consider a mapping
f̃ : SVN (U)→ SVN (V) induced by f : U→ V over the corresponding sets of all SVN-sets.

Example 2.28. Let U = {a, b, c} and V = {α, β, γ, δ} be two finite universe sets, f : U → V be a mapping
defined by f(a) = f(c) = β and f(b) = α. Let us consider a SVN-set Ã = 〈U, µA, σA, ωA〉 on SVN (U) and
a SVN-set B̃ = 〈U, µB , σB , ωB〉 on SVN (V) respectively defined by the following tabular representations:

U

Ã µA σA ωA

a 0.5 0.3 0.2
b 0.6 0.2 0.3
c 0.4 0.2 0.7

V

B̃ µB σB ωB

α 0.1 0.7 0.9
β 0.5 0.3 0.1
γ 0.8 0.4 0.2
δ 0.4 0.6 0.8

Doi :10.5281/zenodo.3830930 12



International Journal of Neutrosophic Science (IJNS) Vol. 6, No. 1, PP. 08-21, 2020

Then the neutrosophic image f̃
(
Ã
)
= 〈V, f (µA) , f (σA) , f (ωA)〉 of Ã by f and the neutrosophic inverse

image f̃−1
(
B̃
)
=
〈
U, f−1(µB) , f

−1(σB) , f
−1(ωB)

〉
of B̃ by f are given by:

V

f̃
(
Ã
)

f (µA) f (σA) f (ωA)

α 0.6 0.2 0.3
β 0.4 0.2 0.7
γ 0 0 1
δ 0 0 1

and:

U

f̃−1
(
B̃
)

f−1(µB) f−1(σB) f−1(ωB)

a 0.5 0.3 0.1
b 0.1 0.7 0.9
c 0.5 0.3 0.1

respectively.

Proposition 2.29. [19] Let f : U→ V be a mapping between two universe setsU andV, Ã = 〈U, µA, σA, ωA〉
be a SVN-set over U and B̃ = 〈V, µB , σB , ωB〉 be a SVN-set over V, then the following hold:

(1) f̃
(
∅̃U
)
= ∅̃V

(2) f̃−1
(
∅̃V
)
= ∅̃U

(3) f̃−1
(
Ṽ

)
= Ũ

(4) Ã b f̃−1
(
f̃
(
Ã
))

and the identity holds if f̃ is injective

(5) f̃
(
f̃−1

(
B̃
))

b B̃ and the identity holds if f̃ is surjective

(6) f̃−1
(
B̃{
)
= f̃−1

(
B̃
)
{

Proposition 2.30. [19] Let f : U→ V be a mapping between two universe setsU andV, Ãi = 〈U, µAi
, σAi

, ωAi
〉

(with i = 1, 2) be SVN-sets over U and B̃i = 〈V, µBi
, σBi

, ωBi
〉 (with i = 1, 2) be SVN-sets over V, then the

following hold:

(1) if Ã1 b Ã2 then f̃
(
Ã1

)
b f̃

(
Ã2

)
(2) if B̃1 b B̃2 then f̃−1

(
B̃1

)
b f̃−1

(
B̃2

)
Proposition 2.31. [19] Let f : U→ V be a mapping between two universe setsU andV,

{
Ãi

}
i∈I

be a family

of SVN-sets Ãi = 〈U, µAi , σAi , ωAi〉 over U and
{
B̃i

}
i∈I

be a family of SVN-sets B̃i = 〈V, µBi , σBi , ωBi〉
over V , then the following hold:

(1) f̃
(⋃⋃

i∈I
Ãi

)
=
⋃⋃

i∈I
f̃
(
Ãi

)
(2) f̃

(⋂⋂
i∈I

Ãi

)
b
⋂⋂

i∈I
f̃
(
Ãi

)
and the identity holds if f̃ is injective

(3) f̃−1
(⋃⋃

i∈I
Ãi

)
=
⋃⋃

i∈I
f̃−1

(
Ãi

)
(4) f̃−1

(⋂⋂
i∈I

Ãi

)
=
⋂⋂

i∈I
f̃−1

(
Ãi

)
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3 Single Valued Neutrosophic Filters
In [18], A.A. Salama and H. Alagamy introduced the notion of filter on neutrosophic set. That study, unfortu-
nately, is rather incomplete and certainly not exhaustive because it does not cover the neutrosophic equivalent
of many fundamental notions and properties such as those concerning the lower or upper bound of two filter
bases, the proof of the ultrafilter’s existence, etc. For this reason, together with the fact that – as already men-
tioned – the class of the single valued neutrosophic sets lends itself with greater ductility to resolution of real
life problems and applications, we give here a comprehensive presentation about theory of filters on SVN-sets
which includes new notions and properties that are not present in that article.

Definition 3.1. Let A ⊆ SVN (U) be a nonempty family of SVN-sets over the universe set U, we say
that F is a single valued neutrosophic filter subbase (SVN-filter subbase for short, or simply a filter sub-
base) on SVN (U) if it has the finite intersection property, i.e. if for every Ã1, . . . Ãn ∈ A (with Ãi =

〈U, µAi , σAi , ωAi〉 for every i = 1, . . . n, and n ∈ N∗), it results
⋂⋂ n

i=1
Ãi 6= ∅̃.

Definition 3.2. A nonempty family F ⊆ SVN (U) of SVN-sets over the universe set U is single valued
neutrosophic filter base (SVN-filter base for short, or simply a filter base) on SVN (U) if the following two
conditions hold:

(i) ∅̃ /∈ F
(ii) for every F̃ , G̃ ∈ F there exists some H̃ ∈ F such that H̃ b F̃ e G̃.

Definition 3.3. A nonempty family F ⊆ SVN (U) of SVN-sets over the universe set U is single valued
neutrosophic filter (SVN-filter for short or simply a filter) on SVN (U) if:

(i) F is a SVN-filter base, and

(ii) for every F̃ = 〈U, µF , σF , ωF 〉 ∈ F and every Ã = 〈U, µA, σA, ωA〉 ∈ SVN (U) such that F̃ b Ã it
follows that Ã ∈ F .

An equivalent definition of SVN-filter is given by the following proposition.

Proposition 3.4. A nonempty family F ⊆ SVN (U) of SVN-sets over the universe set U is a SVN-filter on
SVN (U) if and only if the following three conditions hold:

(i) ∅̃ /∈ F
(ii) for every F̃ , G̃ ∈ F , it follows that F̃ e G̃ ∈ F

(iii) for every F̃ ∈ F and every Ã ∈ SVN (U) such that F̃ b Ã we have that Ã ∈ F .

Proof. Let F be a SVN-filter over U. Evidently, conditions (i) and (iii) are satisfied. Let F̃ , G̃ ∈ F . By
condition (ii) of the definition of SVN-filter base, there exists some H̃ ∈ F such that H̃ b F̃ e G̃ and so, by
the peculiar condition of SVN-filter, it also follows that F̃ e G̃ ∈ F .

Conversely, if F is a nonempty family of SVN-sets over the universe set U satisfying conditions (i), (ii)
and (iii), it is enough to note that (ii) implies condition (ii) of Definition 3.2 and so that F is SVN-filter over
U.

It is a simple routine to show that the condition (ii) of the Proposition 3.4 can be generalized to any finite
neutrosophic intersection as it is pointed out in the following corollary.

Corollary 3.5. A nonempty family F ⊆ SVN (U) of SVN-sets over the universe set U is a SVN-filter on
SVN (U) if and only if the following three conditions hold:

(i) ∅̃ /∈ F

(ii) for every F̃1, . . . F̃n ∈ F , it follows that
⋂⋂

i∈I
F̃i ∈ F

(iii) for every F̃ ∈ F and every Ã ∈ SVN (U) such that F̃ b Ã we have that Ã ∈ F .

Remark 3.6. Evidently every SVN-filter is a SVN-filter base and every SVN-filter base is a SVN-filter sub-
base. It is also trivial to note that every SVN-filter on SVN (U) contains U.

Example 3.7. Let U = {a, b, c} be a finite universe set and let F =
{
F̃ , G̃, H̃, Ũ

}
⊆ SVN (U) be a set

of the SVN-sets F̃ = 〈U, µF , σF , ωF 〉 , G̃ = 〈U, µG, σG, ωG〉 , H̃ = 〈U, µH , σH , ωH〉 and Ũ = 〈U, 1, 1, 0〉
respectively defined by the following tabular representations:
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U

F̃ µF σF ωF

a 0.4 0.3 0.2
b 0.8 0.2 0.1
c 0.6 0.5 0.4

U

G̃ µG σG ωG

a 0.7 0.1 0.3
b 0.9 0.2 0.2
c 0.2 0.6 0.5

U

H̃ µH σH ωH

a 0 0.4 0.8
b 0.5 0.3 0.6
c 0.1 0.8 0.5

U

Ũ µU σU ωU

a 1 1 0
b 1 1 0
c 1 1 0

It is easy to check that F is a SVN-filter base on SVN (U). However, by using Proposition 3.4, we have that
F is not a SVN-filter since, for example, the neutrosophic intersection W̃ = F̃ e G̃ of F̃ , G̃ ∈ F computated
as shown in the following tabular representation:

U

W̃ µW σW ωW

a 0.4 0.3 0.3
b 0.8 0.2 0.2
c 0.2 0.6 0.5

is a SVN-set over U which does not belong to the family F .

Notation 3.8. The set of all the single valued neutrosophic filters over the universe set U will be denoted by
F(U).

Definition 3.9. Let F and G be two SVN-filter bases on SVN (U), we say that G is finer than F if F ⊆ G.
We also say that F is coarser than G.

Let us note that the set F(U) equipped with the finess relation ⊆ forms a poset although it is not a loset.

Proposition 3.10. Let S be a SVN-filter subbase on SVN (U) and let

S∗ =

{
n⋂⋂

i=1

Ãi : Ãi = 〈U, µAi
, σAi

, ωAi
〉 ∈ S, n ∈ N∗

}

be the set of all finite neutrosophic intersections of S. Then S∗ is a SVN-filter base on SVN (U) containing S,
i.e. S ⊆ S∗.

Proof. Let S be a SVN-filter subbase over U. Since, by Definition 3.1, S has the finite intersection property,
it is evident that S∗ satisfies the condition (i) of Definition 3.2. Furthermore, for every Ã, B̃ ∈ S∗, there exist
some m,n ∈ N∗, Ãi = 〈U, µAi

, σAi
, ωAi

〉 ∈ S (with i = 1, . . .m) and B̃j =
〈
U, µBj

, σBj
, ωBj

〉
∈ S

(with j = 1, . . . n) such that Ã =
⋂⋂m

i=1
Ãi and B̃ =

⋂⋂ n

j=1
B̃i and so, by definition of S∗, it is clear that

Ã e B̃ ∈ S∗. Thus, S∗ also satisfies condition (ii) of Definition 3.2 and it is a SVN-filter base. Finally,
for every Ã ∈ S , since by Proposition 2.16 (4) it results Ã e Ã = Ã, we have that Ã ∈ S∗ and hence that
S ⊆ S∗.

Definition 3.11. Let S be a SVN-filter subbase on SVN (U) , the SVN-filter base S∗ defined in the proposition
above is called the neutrosophic filter base generated by its neutrosophic filter subbase S.

Proposition 3.12. Let F be a SVN-filter base on SVN (U) and let

〈F〉 =
{
Ã = 〈U, µA, σA, ωA〉 ∈ SVN (U) : ∃F̃ = 〈U, µF , σF , ωF 〉 ∈ F , F̃ b Ã

}
be the set of all neutrosophic supersets of members of F , then 〈F〉 is a SVN-filter on SVN (U) containing F ,
i.e. F ⊆ 〈F〉.
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Proof. Let F be a SVN-filter base over U. Evidently, every member of 〈F〉 is nonempty and for every
Ã, B̃ ∈ 〈F〉, there exist some F̃ , G̃ ∈ F such that F̃ b Ã and G̃ b B̃. So, by Proposition 2.21 (2), it follows
that F̃ e G̃ b Ã e B̃ and, by condition (ii) of Definition 3.2, we have that there exists some H̃ ∈ F such that
H̃ b F̃ e G̃ which implies that H̃ b Ãe B̃ and hence that Ãe B̃ ∈ 〈F〉. Furthermore, for every Ã ∈ 〈F〉 and
B̃ ∈ SVN (U) such that Ã b B̃, we have that there exists some F̃ ∈ F such that F̃ b Ã and, consequently,
F̃ b B̃ which means that B̃ ∈ 〈F〉. Thus, 〈F〉 satisfies all the conditions of Proposition 3.4 and so it is a
SVN-filter on SVN (U). Furthemore, we have that F ⊆ 〈F〉 since it is clear that for every Ã ∈ F , it results
Ã b Ã and hence Ã ∈ 〈F〉.

Definition 3.13. Let F be a SVN-filter base on SVN (U), the SVN-filter 〈F〉 defined in the proposition above
is called the neutrosophic filter completion of F . Additionally, we say that F is a neutrosophic filter base for
the SVN-filter 〈F〉.

Proposition 3.14. If F and G are two SVN-filter bases on SVN (U) such that F ⊆ G then 〈F〉 ⊆ 〈G〉.

Proof. In fact, for every Ã ∈ 〈F〉 we have that there exists some F̃ ∈ F such that F̃ b Ã and since F ⊆ G it
also follows that F̃ ∈ G and hence that Ã ∈ 〈G〉.

Definition 3.15. Let F and G be two SVN-filter bases on SVN (U). We say that F and G are equivalent if
they are both neutrosophic filter base for the same SVN-filter, that is if 〈F〉 = 〈G〉.

Remark 3.16. It is a simple matter to verify that:

(1) if S is a SVN-filter base on SVN (U) then S∗ = S,

(2) if F is a SVN-filter on SVN (U) then F∗ = F and 〈F〉 = F .

Proposition 3.17. If S is a SVN-filter subbase on SVN (U) then 〈S∗〉 is the coarsest SVN-filter on SVN (U)
containing S, i.e. such that:

(i) S ⊆ 〈S∗〉, and

(ii) for every SVN-filterH on SVN (U) such that S ⊆ H it follows that 〈S∗〉 ⊆ H.

Proof. Let S be a SVN-filter subbase over U. Condition (i) is trivially verified since by Propositions 3.10 and
3.12, we immediately have that S ⊆ S∗ ⊆ 〈S∗〉. Now, suppose that H is a SVN-filter on SVN (U) such that
S ⊆ H and let Ã ∈ 〈S∗〉. Then, for some n ∈ N∗, there exist B̃1, . . . B̃n ∈ S such that

⋂⋂ n

i=1
B̃i b Ã. Since

S ⊆ H, it follows that every B̃i ∈ H (for i = 1, . . . n) and, by Corollary 3.5, we obtain that
⋂⋂ n

i=1
B̃i ∈ H

and therefore that Ã ∈ H which proves condition (ii) and concludes our proof.

Definition 3.18. Let S be a SVN-filter subbase on SVN (U), the SVN-filter 〈S∗〉 defined in the proposition
above is called the neutrosophic filter generated by its neutrosophic filter subbase S.

In particular, if Ã = 〈U, µA, σA, ωA〉 is a nonempty SVN-set over the universe set U, the SVN-filter
〈S∗〉 generated by the singleton S =

{
Ã
}

, being the coarser (smallest) SVN-set containing S, coincides

with the family of all single valued neutrosophic superset of Ã, is denoted simply with
〈
Ã
〉

and is called the

SVN-principal filter generated by Ã.

Proposition 3.19. If F is a finite SVN-filter base on SVN (U), then the neutrosophic filter completion 〈F〉 is
a SVN-principal filter over U.

Proof. Let F =
{
F̃1, . . . F̃n

}
(with F̃i = 〈U, µFi

, σFi
, ωFi
〉, i = 1, . . . n) be a finite SVN-filter base and let

G̃ =
⋂⋂ n

i=1
F̃i. We will show that G =

{
G̃
}

is an equivalent SVN-filter base for the SVN-filter 〈F〉. In fact,

since F is a SVN-filter base, by Remark 3.16 (1), we have that G̃ ∈ F∗ = F . Thus G ⊆ F and by Proposition
3.14 it follows that 〈G〉 ⊆ 〈F〉. On the other hand, for every Ã ∈ 〈F〉, we have that there exists some
j = 1, . . . n such that F̃j b Ã and since by Proposition 2.22 we know that G̃ =

⋂⋂ n

i=1
F̃i b F̃j , it follows that

G̃ b Ã and so that Ã ∈ 〈G〉. This proves that 〈F〉 ⊆ 〈G〉 and consequently that 〈F〉 = 〈G〉 =
〈
G̃
〉

, i.e. that

〈F〉 is a SVN-principal filter generated by G̃.
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Proposition 3.20. Let F and G be two SVN-filter bases on SVN (U) and let

F ∧ G =
{
F̃ d G̃ : F̃ = 〈U, µF , σF , ωF 〉 ∈ F , G̃ = 〈U, µG, σG, ωG〉 ∈ G

}
be the set of all neutrosophic unions of the members of F and G, then F ∧G is a SVN-filter base on SVN (U).
Additionally, if F and G are SVN-filter over U then F ∧ G is a SVN-filter on SVN (U) which is coarser than
both F and G, i.e. F ∧ G ⊆ F and F ∧ G ⊆ G.

Proof. If F and G are two SVN-filter bases on SVN (U), for every F̃ ∈ F and G̃ ∈ G, it is evident that
F̃ d G̃ 6= ∅̃ and so that F ∧G verifies the condition (i) of Definition 3.2. Moreover, for every Ã1, Ã2 ∈ F ∧G,
we have that there exist some F̃1, F̃2 ∈ F and G̃1, G̃2 ∈ G such that Ã1 = F̃1 d G̃1 and Ã2 = F̃2 d G̃2. Since
F and G are SVN-filter bases, there exist F̃3 ∈ F and G̃3 ∈ G such that F̃3 b F̃1 e F̃2 and G̃3 b G̃1 e G̃2.
So, F̃3 d G̃3 ∈ F ∧ G and, by using Proposition 2.23, it results F̃3 d G̃3 b

(
F̃1 e F̃2

)
d
(
G̃1 e G̃2

)
=(

F̃1 d
(
G̃1 e G̃2

))
e
(
F̃2 d

(
G̃1 e G̃2

))
b
(
F̃1 d G̃1

)
e
(
F̃2 d G̃2

)
= Ã1e Ã2 and this means that F ∧G

also verifies condition (ii) of Definition 3.2 and hence that it is a SVN-filter base on SVN (U).
Now, suppose thatF and G are are SVN-filters and let F̃ ∈ F , G̃ ∈ G and Ã ∈ SVN (U) such that F̃ dG̃ b Ã.
Since F is a SVN-filter and F̃ b F̃ d G̃ b Ã, we have that Ã ∈ F . Analogously, by the fact that G is a SVN-
filter and G̃ b F̃ d G̃ b Ã, we have that Ã ∈ G. Thus Ã = Ã d Ã ∈ F ∧ G and this proves that F ∧ G is a
SVN-filter over U.
In such a situation, for every F̃ d G̃ ∈ F ∧ G, with F̃ ∈ F and G̃ ∈ G, being F̃ b F̃ d G̃, we have that
F̃ d G̃ ∈ F and so that F ∧ G ⊆ F . In a similar way, one can also proves that F ∧ G ⊆ G.

Proposition 3.21. Let F and G be two SVN-filter bases on SVN (U) such that F nuetrosophically meets G
and let

F ∨ G =
{
F̃ e G̃ : F̃ = 〈U, µF , σF , ωF 〉 ∈ F , G̃ = 〈U, µG, σG, ωG〉 ∈ G

}
be the set of all neutrosophic intersections of the members of F and G, then F ∨ G is a SVN-filter base on
SVN (U).
Additionally, if F and G are SVN-filters over U then F ∨ G is a SVN-filter on SVN (U) which is finer than
both F and G, i.e. F ⊆ F ∨ G and G ⊆ F ∨ G.

Proof. Since F neutrosophically meets G, it is clear that ∅̃ /∈ F ∨ G, i.e. that F ∨ G verifies the condition
(i) of Definition 3.2. Moreover, for every Ã1, Ã2 ∈ F ∨ G, we have that there exist some F̃1, F̃2 ∈ F and
G̃1, G̃2 ∈ G such that Ã1 = F̃1 e G̃1 and Ã2 = F̃2 e G̃2. Since F and G are SVN-filter bases, there exist
F̃3 ∈ F and G̃3 ∈ G such that F̃3 b F̃1 e F̃2 and G̃3 b G̃1 e G̃2. So, F̃3 e G̃3 ∈ F ∨ G and it results
F̃3 e G̃3 b

(
F̃1 e F̃2

)
e
(
G̃1 e G̃2

)
=
(
F̃1 e G̃1

)
e
(
F̃2 e G̃2

)
= Ã1 e Ã2 and this means that F ∨G also

verifies the condition (ii) of Definition 3.2 is verified and hence that it is a SVN-filter base on SVN (U).
Now, suppose that F and G are SVN-filters and let F̃ ∈ F , G̃ ∈ G and Ã ∈ SVN (U) such that F̃ e G̃ b Ã.
Since F̃ = F̃ d

(
F̃ e G̃

)
b F̃ d Ã and F is a SVN-filter, we have that F̃ d Ã ∈ F . In a similar way, since

G̃ b G̃ d Ã and G is a SVN-filter, it follows that G̃ d Ã ∈ G and hence that
(
F̃ d Ã

)
e
(
G̃ d Ã

)
∈ F ∨ G.

By Proposition 2.23 (2) and Proposition 2.19 (2) we have that
(
F̃ d Ã

)
e
(
G̃ d Ã

)
=
(
F̃ e G̃

)
d Ã = Ã and

so that Ã ∈ F ∨ G which proves that F ∨ G is a SVN-filter over U.
In such a situation, for every F̃ ∈ F and for any fixed G̃ ∈ G, we have that F̃ e G̃ b F̃ with F̃ e G̃ ∈ F ∨ G
and so that also F̃ ∈ F ∨ G which proves that F ⊆ F ∨ G. In a similar way, one can also proves that
G ⊆ F ∨ G.

Proposition 3.22. Let F be a SVN-filter base on SVN (U) and Ã = 〈U, µA, σA, ωA〉 be a SVN-set over U

which neutrosophically meets F , then the set F ∨ Ã =
{
F̃ e Ã : F̃ ∈ F

}
of all neutrosophic intersections

of Ã with the members of F is a SVN-filter base over U. Additionally, if F is a SVN-filter then F ∨ Ã is a
SVN-filter on SVN (U) which is finer than F , i.e. F ⊆ F ∨ Ã.

Proof. Since by hypothesis F neutrosophically meets Ã = 〈U, µA, σA, ωA〉 it is evident that ∅̃ /∈ F ∨ Ã.
Moreover, for every G̃1, G̃2 ∈ F ∨ Ã there exist F̃1, F̃2 ∈ F such that G̃1 = F̃1 e Ã and G̃2 = F̃2 e Ã. Since
F is a SVN-filter base, there exists some F̃3 ∈ F such that such that F̃3 b F̃1 e F̃2. So, let G̃3 = F̃3 e Ã, we
note that G̃3 ∈ F ∨ Ã and it results G̃3 b G̃1e G̃2 which proves that F ∨ Ã is a SVN-filter base on SVN (U).
Now, suppose that F is a SVN-filter over U and let F̃ ∈ F and B̃ ∈ SVN (U) such that F̃ e Ã b B̃, with
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B̃ b Ã. Since F̃ = F̃ d
(
F̃ e Ã

)
b F̃ d B̃ and F is a SVN-filter, we have that F̃ d B̃ ∈ F and hence that(

F̃ d B̃
)
e Ã ∈ F ∨ Ã. Moreover, by Proposition 2.23 (2) and Proposition 2.19 (2), B̃ b Ã and F̃ e Ã b B̃

imply that
(
F̃ d B̃

)
e Ã =

(
F̃ e Ã

)
d
(
B̃ e Ã

)
=
(
F̃ e Ã

)
d B̃ = B̃ and hence that B̃ ∈ F ∨ Ã which

proves that F ∨ Ã is a SVN-filter over U.
In such a situation, for every F̃ ∈ F , we have that F̃ e Ã ∈ F ∨ Ã and since F̃ e Ã b F̃ and F ∨ Ã is a
SVN-filter, it follows that also F̃ ∈ F ∨ Ã and hence that F ⊆ F ∨ Ã.

Proposition 3.23. Let f : U→ V be a mapping between two universe sets U and V and let F be a SVN-filter
base on SVN (U). Then, the family f̃ (F) =

{
f̃
(
F̃
)
: F̃ ∈ F

}
of all neutrosophic images on SVN (U) by

the mapping f is a neutrosophic filter base on SVN (V).

Proof. Let us consider a mapping f : U → V and a SVN-filter base F over U. Evidently, for every Ã ∈ F ,
being Ã 6= ∅̃U, by Proposition 2.29 (1), we also have that f̃

(
F̃
)
6= ∅̃V and this means that f̃ (F) satisfies

the condition (i) of Definition 3.2. Moreover, for every G̃1, G̃2 ∈ f̃ (F), there are some F̃1, F̃2 ∈ F such
that G̃1 = f̃

(
F̃1

)
and G̃2 = f̃

(
F̃2

)
. Since F is a SVN-filter base, there exists some F̃3 ∈ F such that

F̃3 b F̃1 e F̃2. Hence, said G̃3 = f̃
(
F̃3

)
, we have that G̃3 ∈ f̃ (F), while by Proposition 2.30 (1) and

Proposition 2.31 (2), we obtain that G̃3 = f̃
(
F̃3

)
b f̃

(
F̃1 e F̃2

)
b f̃

(
F̃1

)
e f̃

(
F̃2

)
= G̃1 e G̃2. This

shows that f̃ (F) satisfies also the condition (ii) of Definition 3.2 and concludes our proof.

4 Single Valued Neutrosophic Ultrafilters
In this section we consider the class of SVN-ultrafilters, first proving that it is not empty and then establishing
some characterizations and properties that we think may be useful for further investigations.

Definition 4.1. Let U be a SVN-filter base on SVN (U), we say that it is a SVN-ultrafilter if it is maximal in
the partial ordered set (F(U),⊆) of all SVN-filters overU, that is if there is no SVN-filter on SVN (U) strictly
finer than U , or, equivalently, if any other SVN-filter containing U coincides with U .

Proposition 4.2. Every SVN-filter base on SVN (U) is contained in some SVN-ultrafilter over U.

Proof. Let F be a SVN-filter base over U and let us consider the set S = {G ∈ F(U) : F ⊆ G} of all SVN-
filters on SVN (U) containingF . Obviously S is a nonempty subset of the poset (F(U),⊆) because 〈F〉 ∈ S.
Now, let C be a nonempty chain of S and defineM =

⋃
G∈C G as the union of all SVN-filters of C. Now, we

have thatM is a SVN-filter over U because it satisfies all the conditions of Definitions 3.3 and 3.2, that is:

(i) For every G̃ ∈ M, we have that there exists some G ∈ C such that G̃ ∈ G and since G is a SVN-filter,
we immediately have that G̃ 6= ∅̃.

(ii) For every G̃1, G̃2 ∈ M, there are some G1,G2 ∈ C such that G̃1 ∈ G1 and G̃2 ∈ G2. Since C is a chain,
i.e. a totally ordered subset of (S,⊆), G1 and G2 must be comparable and, without loss of generality, we
can suppose that G1 ⊆ G2. Thus, G̃1, G̃2 ∈ G2 and since G2 is a SVN-filter, there exists some G̃3 ∈ G2
such that G̃3 b G̃1 e G̃2 with G̃3 ∈ G2 ⊆

⋃
G∈C G =M.

(iii) For every G̃ ∈ M, and Ã ∈ SVN (U) such that G̃ b Ã, there exists some G ∈ C such that G̃ ∈ G and
since G is a SVN-filter, we immediately have that also Ã ∈ G and hence that Ã ∈ G ⊆

⋃
G∈C G =M.

Moreover, being F ⊆ G, for every G ∈ C, we have that F ⊆
⋃
G∈C G =M and so thatM ∈ S is an upper

bound for C. Hence, by the Zorn’s Lemma (see [11]), it follows that (S,⊆) has a maximal element, that is a
SVN-ultrafilter U containing F .

Proposition 4.3. Let U be a SVN-filter base on SVN (U). Then U is a SVN-ultrafilter over U if and only if
for every Ã = 〈U, µA, σA, ωA〉 ∈ SVN (U) which neutrosophically meets U we have that Ã ∈ U .

Proof. Suppose that U is a SVN-ultrafilter and consider a SVN-set Ã = 〈U, µA, σA, ωA〉 ∈ SVN (U) which
neutrosophically meets U , By Proposition 3.22, we have that U ∨ Ã is a SVN-filter such that U ⊆ U ∨ Ã but,
being U a SVN-ultrafilter, it must necessarily follow that U ∨ Ã = U and so that Ã ∈ U .
Conversely, suppose that every SVN-set which neutrosophically meets the SVN-filter base U belongs to U . In
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order to prove first that U is a SVN-filter over U, let Ũ ∈ U and Ã ∈ SVN (U) such that Ũ b Ã. We claim
that Ã meets U . In fact, for each Ṽ ∈ U , since U is a SVN-filter base, we have that there exist some W̃ ∈ U
such that W̃ b Ũ e Ṽ b Ũ b Ã and, by Proposition 2.21 (2), we have that W̃ e Ṽ b Ã e Ṽ . On the other
hand, being also W̃ b Ũ e Ṽ b Ṽ , by Proposition 2.19 (1), we have W̃ e Ṽ = W̃ and hence that W̃ b Ãe Ṽ ,
with W̃ ∈ U . Thus, by Definition 3.2, it follows that Ã e Ṽ 6= ∅̃ and, by hypothesis, we obtain that Ã ∈ U ,
which proves that U is a SVN-filter on SVN (U).
Moreover, in order to prove that U is SVN-ultrafilter over U, suppose, by contradiction, that there is some
SVN-filterM over U such that U ⊂ M and so that there exists some M̃ ∈ M such that M̃ /∈ U . Hence, by
hypothesis, we have that M̃ does not meet U , i.e. that there exists some Ũ ∈ U such that Ũ e M̃ = ∅̃ but,
being M̃ ∈M and Ũ ∈ U ⊂M, this contradicts the fact thatM is a SVN-filter and concludes our proof.

Corollary 4.4. If U is a SVN-ultraffilter on SVN (U), then for every Ã = 〈U, µA, σA, ωA〉 ∈ SVN (U) it
results Ã ∈ U or Ã{∈ U .

Proof. Let Ã = 〈U, µA, σA, ωA〉 ∈ SVN (U) an suppose, by contradiction, that Ã /∈ U and Ã{ /∈ U . By
Proposition 4.3, we should have that neither Ã does not neutrosophically meet U nor Ã{does not neutrosoph-
ically meet U , i.e. that there are some Ũ1, Ũ2 ∈ U such that Ũ1 e Ã = ∅̃ and Ũ2 e Ã{ = ∅̃. Since U is a
SVN-filter base, it follows that there exists some Ũ3 ∈ U such that Ũ3 b Ũ1e Ũ2. Hence, by Proposition 2.22,
we have that Ũ3 b Ũ1 and Ũ3 b Ũ2 and, by Proposition 2.21 (2), it also follows that Ũ3 e Ã b Ũ1 e Ã and
Ũ3eÃ{b Ũ2eÃ{. Hence, Ũ3eÃ = ∅̃ and Ũ3eÃ{= ∅̃. Thus, by Propositions 2.16 (4), 2.20 and 2.23 (1),we
have that Ũ3 = Ũ3 e Ũ3 =

(
Ũ3 d

(
Ũ3 e Ã

))
e
(
Ũ3 d

(
Ũ3 e Ã{

))
= Ũ3 e

((
Ũ3 e Ã

)
d
(
Ũ3 e Ã{

))
=

Ũ3 e
(
∅̃ d ∅̃

)
= ∅̃ which is a contradiction to the fact that Ũ3 ∈ U and U is a SVN-filter.

Remark 4.5. In the classical filter’s theory on crisp sets, the condition of Corollary 4.4 is a ultrafilters charac-
terization, but in the case of filters on single valued neutrosophic sets the converse does not hold. This is due
to the fact that, as pointed out in Remark 2.10, in general, the neutrosophic intersection of a SVN-set with its
neutrosophic complement is not the neutrosophic empty set, and it can be confirmed by the following example.

Example 4.6. Let U = {a, b, c} be a finite universe set and consider the SVN-principal filter F =
〈
Ã
〉
={

Ã, B̃, C̃, Ũ
}

generated by Ã, where the SVN-sets Ã = 〈U, µA, σA, ωA〉 , B̃ = 〈U, µB , σB , ωB〉 , C̃ =

〈U, µC , σC , ωC〉 and Ũ = 〈U, 1, 1, 0〉 are respectively defined by the following tabular representations:

U

Ã µA σA ωA

a 0.8 0.4 0
b 0 0.1 0.9
b 0 0 1

U

B̃ µB σB ωB

a 0.9 0.5 0
b 0.8 0.6 0.1
c 0 0.2 0.3

U

C̃ µC σC ωC

a 1 0.5 0
b 0 0.2 0.8
c 0.7 0.6 0.5

U

Ũ µU σU ωU

a 1 1 0
b 1 1 0
c 1 1 0

After observing that Ã b B̃ and Ã b C̃, one can easily check that
〈
Ã
〉

is a SVN-ultrafilter on SVN (U).

However, if we consider the SVN-set Z̃ = 〈U, µZ , σZ , ωZ〉 defined by the following tabular representation:

U

Z̃ µZ σZ ωZ

a 0 0 1
b 0.7 0.3 0.5
c 0.8 0.4 0.6

it is a trivial matter to verify that neither Z̃ nor its complement Z̃ { belong to
〈
Ã
〉

.
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5 Conclusions and Perspectives
In this paper we have introduced the notions of SVN-filter base, SVN-filter and SVN-ultrafilter on the set
SVN (U) of all the single valued neutrosophic sets and we have investigated some of their fundamental prop-
erties and relationships concerning, in particular, the SVN-filter and SVN-filter base generated by some neu-
trosophic filter subbase, the neutrosophic filter completion, the principal SVN-filters, the infimum and the
supremum of two SVN-filter bases, the image of a SVN-filter base by a neutrosophic induced mapping be-
tween two universe sets, the existence of SVN-ultrafilters and some their characterizations.
We expect to continue the research on these topics by investigating supplementary features and properties
related to SVN-filters and we hope that this comprehensive study will stimulate further developments in the
theory of Neutrosophic Sets and will provide useful tools to demonstrate in an elegant and concise way new
properties for the class of single valued neutrosophic topological spaces.
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Abstract
It is customary in mathematics that almost all new developments maintain compatibility with what is already
proved and accepted. Following this way, neutrosophic logic has the classical logic as subset. However, in
mathematics, all the affirmations must be proved first to be accepted, so the claim that the neutrosophic logic
encompass classical logic must be also proved. Thus, this paper show that the main properties of the classical
logic hold when translated to neutrosophic form at propositional level.

Keywords: Neutrosophic Logic; Classical Logic.

1 Introduction
Neutrosophic Logic (NL) is a recent logic born in the middle of the nineties by Florentin Smarandache,1 it is
characterized by having another component added to the common (standard) components of any logic, namely,
truth and falsity. This added component is called indeterminacy.

Formally, a propositional neutrosophic logic variable x is represented by the triple

x = (t, i, f)

where t is the degree of truth, i is the degree of indeterminacy and f is the degree of falsity.

In this way, neutrosophic logic clearly embodies indeterminacy as component that must be treated in its
framework, while other logics this element is not explicit (though sometimes taken in account).

In a general way, the definition of the components representing the truth, indeterminacy and falsity are
sets. Thus, the neutrosophic logic can be considered as (and indeed it is) a multivalued logic. Now it is time to
present the formal definition.

Definition 1.1. Let T , I , F be sets (real standard or non-standard) in the non-standard unity interval ]−0, 1+[,
with

supT = t sup, infT = t inf

supI = i sup, infI = i inf

supF = f sup, infF = f inf

and

n sup = t sup+ i sup+ f sup

n inf = t inf + i inf + f inf
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then the triplet X = (T, I, F ) represents the values of the truth (T ), indeterminacy (I) and falsity (F ) with
respect of the variable X . The sets T , I and F are called neutrosophic components.

Additionally, the following restrictions must hold:

n sup = t sup+ i sup+ f sup ≤ 3+

n inf = t inf + i inf + f inf ≥− 0

The use of real non-standard mathematics is just one of many topics that makes neutrosophic logic dif-
ferent from others types of logics. Here, should also be noted that the use of non-standard values allows the
neutrosophic logic to distinguish between absolute truth (truth in all possible worlds, represented by 1+) and
relative truth (truth in one or just a few worlds, represented by 1). The same applies for absolute falsity (rep-
resented by −0) and relative falsity (represented by 0).

The definition 1.1 is so general that the set (or subsets) does not necessarily have to be intervals, they can be
any type of sets (discrete, continuous, open or closed or half-open/half-closed intervals, intersections or unions
of the previous sets, etc.) in accordance with the given proposition. Also, a subset may have one element only
in special cases of this logic.

The degree of generality is such that every time that someone wish to apply the neutrosophic logic to any
specific matter, the operators and their meanings must be first defined. Besides, the most common case of
neutrosophic logic use is real intervals or points in the real unitary interval.

Not being viable to list all possible nuances, it is time show how the neutrosophic logic encompass the
classical logic.

2 Neutrosophic Logic and Classical Logic
Classical logic (or crisp logic) is nowadays a branch of mathematical logic which roots dated before Christ
birth, being definitely developed from centuries XIX and XX from the works of Boole, Frege, Russell and
Whitehead, just to name a few.

What constitutes a main characteristic of the classical logic is its bivalence, just two absolute values are
considered, V (verum) for truth and F (falsum) for falsity, that can be conveniently substituted by 1 and 0 (or
any two different signs). Thus, in the framework of the classical logic, indeterminacy cannot be considered
(here is not being considered variants of the classical logic developed from the beginning of the XX century,
such as modal logic, temporal logic and alike).

Now, let V = (1, 0, 0) represent the truth value in classical logic, now represented in neutrosophic form.
Also, let F = (0, 0, 1) represent the falsity value. With these two values, it is easy to see how one can be the
negation of the other, being enough to define the negation operator as:

¬x = ¬(t, 0, f) = (f, 0, t)

thus, ¬ (1, 0, 0)︸ ︷︷ ︸
V

= (0, 0, 1)︸ ︷︷ ︸
F

and ¬ (0, 0, 1)︸ ︷︷ ︸
F

= (1, 0, 0)︸ ︷︷ ︸
V

.

Likewise, if the operators ∨ (disjunction) and ∧ (conjunction) are defined as:

(t1, 0, f1) ∨ (t2, 0, f2) = {max{t1, t2}, 0,min{f1, f2})
(t1, 0, f1) ∧ (t2, 0, f2) = {min{t1, t2}, 0,max{f1, f2})

then, those operators have the same behavior of their classical counterparts, being given by the following table:

Table 1: Disjunction and conjunction operators in NL with behavior of the classical ones.
p1 p2 ∨ ∧

(1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0)
(1, 0, 0) (0, 0, 1) (1, 0, 0) (0, 0, 1)
(0, 0, 1) (1, 0, 0) (1, 0, 0) (0, 0, 1)
(0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1)
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In classical logic, the set operators CS = {¬,∨,∧} is said to be complete, that is, all the other operators
in classical logic can be defined based in these operators. However, someone must be careful if he/she wishes
that the operators and properties in classical logic holds in NL. The properties that remain true with the already
given definitions of negation, conjunction and disjunction are next given.

Theorem 2.1 (Double Negation). Let x = (t, 0, f) be a neutrosophic logical variable representing a classical
logic variable. The double negation propriety remains true, that is

¬¬x = x

Proof.
¬¬x = ¬(¬x) = ¬(¬(t, 0, f)) = ¬(f, 0, t) = (t, 0, f)

Theorem 2.2 (Commutativity). Let x = (t1, 0, f1) and y = (t2, 0, f2) be neutrosophic logic variables repre-
senting classical logic variables. The operators ∨ and ∧ are commutative.

Proof.

x ∨ y = (t1, 0, f1) ∨ (t2, 0, f2) = (max{t1, t2}, 0,min{f1, f2}) =
(max{t2, t1}, 0,min{f2, f1}) = (t2, 0, f2) ∨ (t1, 0, f1) = y ∨ x

x ∧ y = (t1, 0, f1) ∧ (t2, 0, f2) = (min{t1, t2}, 0,max{f1, f2}) =
(min{t2, t1}, 0,max{f2, f1}) = (t2, 0, f2) ∧ (t1, 0, f1) = y ∧ x

Theorem 2.3 (Associativity). Let x = (t1, 0, f1), y = (t2, 0, f2) and z = (t3, 0, f3) be neutrosophic logic
variables representing classical logic variables. The operators ∨ and ∧ are associative.

Proof.

x ∨ (y ∨ z) = (t1, 0, f1) ∨ ((t2, 0, f2) ∨ (t3, 0, f3)) = (t1, 0, f1) ∨ (max{t2, t3}, 0,min{f2, f3)}) =
(max{t1,max{t2, t3}}, 0,min{f1,min{f2, f3}}) = ({max{t1, t2, t3}, 0,min{f1, f2, f3}) =
(max{max{t1, t2}, t3}, 0,min{min{f1, f2}, f3}) = (max{t1, t2}, 0,min{f1, f2}) ∨ (t3, 0, f3) =

((t1, 0, f1) ∨ (t2, 0, f3)) ∨ (t3, 0, f3) = (x ∨ y) ∨ z

x ∧ (y ∧ z) = (t1, 0, f1) ∧ ((t2, 0, f2) ∧ (t3, 0, f3)) = (t1, 0, f1) ∧ (min{t2, t3}, 0,max{f2, f3)}) =
(min{t1,min{t2, t3}}, 0,max{f1,max{f2, f3}}) = ({min{t1, t2, t3}, 0,max{f1, f2, f3}) =
(min{min{t1, t2}, t3}, 0,max{max{f1, f2}, f3}) = (min{t1, t2}, 0,max{f1, f2}) ∧ (t3, 0, f3) =

((t1, 0, f1) ∧ (t2, 0, f3)) ∧ (t3, 0, f3) = (x ∧ y) ∧ z

Theorem 2.4 (Distributivity). Let x = (t1, 0, f1), y = (t2, 0, f2) and z = (t3, 0, f3) be neutrosophic logic
variables representing classical logic variables. The operators ∨ and ∧ are distributive.

Proof. At first, this property does not seem to be valid owing to the fact that when it is translated into the
definitions of the operators in NL, the left and right side yields different formulas.

For x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z):

x ∨ (y ∧ v) = x ∨ ((t2, 0, f2) ∧ (t3, 0, f3)) = x ∨ (min{t2, t3}, 0,max{f2, f3}) =
(t1, 0, f1) ∨ (min{t2, t3}, 0,max{f2, f3}) =
(max{t1,min{t2, t3}}, 0,min{f1,max{f2, f3}})

and

(x ∨ y) ∧ (x ∨ z) = ((t1, 0, f1) ∨ (t2, 0, f2)) ∧ ((t1, 0, f1) ∨ (t3, 0, f3)) =

(max{t1, t2}, 0,min{f1, f2}) ∧ (max{t1, t3}, 0,min{f1, f3}) =
(min{max{t1, t2},max{t1, t3}}, 0,max{min{f1, f2},min{f1, f3}})

Doi :10.5281/zenodo.3830094 24



International Journal of Neutrosophic Science (IJNS) Vol. 6, No. 1, PP. 22-31, 2020

For x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z):

x ∧ (y ∨ z) = x ∧ ((t2, 0, f2) ∨ (t3, 0, f3)) = x ∧ (max{t2, t3}, 0,min{f2, f3}) =
(t1, 0, f1) ∧ (max{t2, t3}, 0,min{f2, f3}) =
(min{t1,max{t2, t3}}, 0,max{f1,min{f2, f3}})

and

(x ∧ y) ∨ (x ∧ z) = ((t1, 0, f1) ∧ (t2, 0, f2)) ∨ ((t1, 0, f1) ∧ (t3, 0, f3)) =

(min{t1, t2}, 0,max{f1, f2}) ∨ (min{t1, t3}, 0,max{f1, f3}) =
(max{min{t1, t2},min{t1, t3}}, 0,min{max{f1, f2},max{f1, f3}})

But now, checking the truth tables for x ∨ (y ∧ z) (Table 2) and (x ∨ y) ∧ (x ∨ z) (Table 3), can be seen that
both of the sides yields the same result.

Table 2: Truth table for x ∨ (y ∧ z).
x y z max{t1,min{t2, t3}} min{f1,max{f2, f3}} Result

(1, 0, 0) (1, 0, 0) (1, 0, 0) 1 0 (1, 0, 0)
(1, 0, 0) (1, 0, 0) (0, 0, 1) 1 0 (1, 0, 0)
(1, 0, 0) (0, 0, 1) (1, 0, 0) 1 0 (1, 0, 0)
(1, 0, 0) (0, 0, 1) (0, 0, 1) 1 0 (1, 0, 0)
(0, 0, 1) (1, 0, 0) (1, 0, 0) 1 0 (1, 0, 0)
(0, 0, 1) (1, 0, 0) (0, 0, 1) 0 1 (0, 0, 1)
(0, 0, 1) (0, 0, 1) (1, 0, 0) 0 1 (0, 0, 1)
(0, 0, 1) (0, 0, 1) (0, 0, 1) 0 1 (0, 0, 1)

Table 3: Truth table for (x ∨ y) ∧ (x ∨ z).

x y z min{max{t1, t2},max{t1, t3}} max{min{f1, f2},min{f1, f3}} Result
(1, 0, 0) (1, 0, 0) (1, 0, 0) 1 0 (1, 0, 0)
(1, 0, 0) (1, 0, 0) (0, 0, 1) 1 0 (1, 0, 0)
(1, 0, 0) (0, 0, 1) (1, 0, 0) 1 0 (1, 0, 0)
(1, 0, 0) (0, 0, 1) (0, 0, 1) 1 0 (1, 0, 0)
(0, 0, 1) (1, 0, 0) (1, 0, 0) 1 0 (1, 0, 0)
(0, 0, 1) (1, 0, 0) (0, 0, 1) 0 1 (0, 0, 1)
(0, 0, 1) (0, 0, 1) (1, 0, 0) 0 1 (0, 0, 1)
(0, 0, 1) (0, 0, 1) (0, 0, 1) 0 1 (0, 0, 1)

Similarly, the same occurs for x ∧ (y ∨ z) (Table 4) and (x ∧ y) ∨ (x ∧ z) (Table 5).

Table 4: Truth table for x ∧ (y ∨ z).
x y z min{t1,max{t2, t3}} max{f1,min{f2, f3}} Result

(1, 0, 0) (1, 0, 0) (1, 0, 0) 1 0 (1, 0, 0)
(1, 0, 0) (1, 0, 0) (0, 0, 1) 1 0 (1, 0, 0)
(1, 0, 0) (0, 0, 1) (1, 0, 0) 1 0 (1, 0, 0)
(1, 0, 0) (0, 0, 1) (0, 0, 1) 0 1 (0, 0, 1)
(0, 0, 1) (1, 0, 0) (1, 0, 0) 0 1 (0, 0, 1)
(0, 0, 1) (1, 0, 0) (0, 0, 1) 0 1 (0, 0, 1)
(0, 0, 1) (0, 0, 1) (1, 0, 0) 0 1 (0, 0, 1)
(0, 0, 1) (0, 0, 1) (0, 0, 1) 0 1 (0, 0, 1)
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Table 5: Truth table for (x ∧ y) ∨ (x ∧ z).

x y z min{max{t1, t2},max{t1, t3}} max{min{f1, f2},min{f1, f3}} Result
(1, 0, 0) (1, 0, 0) (1, 0, 0) 1 0 (1, 0, 0)
(1, 0, 0) (1, 0, 0) (0, 0, 1) 1 0 (1, 0, 0)
(1, 0, 0) (0, 0, 1) (1, 0, 0) 1 0 (1, 0, 0)
(1, 0, 0) (0, 0, 1) (0, 0, 1) 0 1 (0, 0, 1)
(0, 0, 1) (1, 0, 0) (1, 0, 0) 0 1 (0, 0, 1)
(0, 0, 1) (1, 0, 0) (0, 0, 1) 0 1 (0, 0, 1)
(0, 0, 1) (0, 0, 1) (1, 0, 0) 0 1 (0, 0, 1)
(0, 0, 1) (0, 0, 1) (0, 0, 1) 0 1 (0, 0, 1)

Theorem 2.5 (De Morgan’s Laws). Let x = (t1, 0, f1) and y = (t2, 0, f2) be neutrosophic logic variables
representing classical logic variables. Then, it is true that ¬(x∨ y) = ¬x∧¬y and ¬(x∧ y) = ¬x∨¬y, that
is, the De Morgan’s Laws remain valid.

Proof.

¬(x ∨ y) = ¬((t1, 0, f1) ∨ (t2, 0, f2)) = ¬(max{t1, t2}, 0,min{f1, f2})
= (min{f1, f2}, 0,max{t1, t2}) = (f1, 0, t1) ∧ (f2, 0, t2)

= ¬(t1, 0, f1) ∧ ¬(t2, 0, f2) = ¬x ∧ ¬y

¬(x ∧ y) = ¬((t1, 0, f1) ∧ (t2, 0, f2)) = ¬(min{t1, t2}, 0,max{f1, f2})
= (max{f1, f2}, 0,min{t1, t2}) = (f1, 0, t1) ∨ (f2, 0, t2)

= ¬(t1, 0, f1) ∨ ¬(t2, 0, f2) = ¬x ∨ ¬y

Definition 2.6 (Tautology). A tautology in NL representing a classical logic variable is an expression that is
always equal to (1, 0, 0), independent of the values of its components. A tautology may be represented by τ .

Definition 2.7 (Contradiction). A contradiction in NL representing a classical logic variable is an expres-
sion that is always equal to (0, 0, 1), independent of the values of its components. A contradiction may be
represented by γ.

Theorem 2.8 (Law of Noncontradiction). Let x = (t1, 0, f1) be a neutrosophic logic variable representing a
classical logic variable. The Law of Noncontradicition, that is, ¬(x ∧ ¬x), remains valid, being a tautology.

Proof.

¬(x ∧ ¬x) = ¬((t1, 0, f1) ∧ ¬(t1, 0, f1)) = ¬((t1, 0, f1) ∧ (f1, 0, t1))

= ¬(min{t1, f1}, 0,max{f1, t1}) = (max{f1, t1}, 0,min{t1, f1})

The result above is always equal to (1, 0, 0). To comprehend this, consider that x is (1, 0, 0) or (0, 0, 1),
exclusively. So, t1 = 1 and f1 = 0, or t1 = 0 and f1 = 1, such max{f1, t1} is always equal to 1 and
min{t1, f1} equal to 0. The following table indicates this as well.

Table 6: Table for the noncontradiction law.
x ¬x max{f1, t1} min{t1, f1} Result

(1, 0, 0) (0, 0, 1) 1 0 (1, 0, 0)
(0, 0, 1) (1, 0, 0) 1 0 (1, 0, 0)

Thus, ¬(x ∧ ¬x) = τ .

Remark 2.9. The Law of Noncontradiction can be summarized in a few words: it’s false that one proposition
can be true and false simultaneously.
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Theorem 2.10 (Law of Excluded Middle). Let x = (t1, 0, f1) be a neutrosophic logic variable representing a
classical logic variable. The Law of Excluded Middle (tertium non datur), that is, x∨¬x, remains valid, being
a tautology.

Proof.

(x ∨ ¬x) = (t1, 0, f1) ∨ ¬(t1, 0, f1) = (t1, 0, f1) ∨ (f1, 0, t1)

= (max{t1, f1}, 0,min{f1, t1})

The result above is always equal to (1, 0, 0). To comprehend this, consider that x is (1, 0, 0) or (0, 0, 1),
exclusively. So, t1 = 1 and f1 = 0, or t1 = 0 and f1 = 1, such max{t1, f1} is always equal to 1 and
min{f1, t1} equal to 0. The following table reveals this as well.

Table 7: Table for the law excluded middle.
x ¬x max{t1, f1} min{f1, t1} Result

(1, 0, 0) (0, 0, 1) 1 0 (1, 0, 0)
(0, 0, 1) (1, 0, 0) 1 0 (1, 0, 0)

Thereby, x ∧ ¬x = τ .

Remark 2.11. The Law of Excluded Middle can be summarized in a few words: one proposition can be true
or false, not being accepted another value.

Theorem 2.12 (Identity Laws). Let x = (t1, 0, f1) be a neutrosophic logic variable representing a classical
logic variable. It is true that: (i) x ∨ γ = x, (ii) x ∧ γ = γ, (iii) x ∨ τ = τ and (iv) x ∧ τ = x.

Proof.
(i) x ∨ γ = (t1, 0, f1) ∨ (0, 0, 1) = (max{t1, 0}, 0,min{f1, 1}). As t1 ≥ 0, then max{t1, 0} = t1 and as
f1 ≤ 1, then min{f1, 1} = f1. So, (max{t1, 0}, 0,min{f1, 1}) = (t1, 0, f1) = x.

(ii) x ∧ γ = (t1, 0, f1) ∧ (0, 0, 1) = (min{t1, 0}, 0,max{f1, 1}). As t1 ≥ 0, then min{t1, 0} = 0 and as
f1 ≤ 1, then max{f1, 1} = 1. So, (min{t1, 0}, 0,max{f1, 1}) = (0, 0, 1) = γ.

(iii) x ∨ τ = (t1, 0, f1) ∨ (1, 0, 0) = (max{t1, 1}, 0,min{f1, 0}). As t1 ≤ 1, then max{t1, 1} = 1 and as
f1 ≥ 0, then min{f1, 0} = 0. So, (max{t1, 1}, 0,min{f1, 0}) = (1, 0, 0) = τ .

(iv) x ∧ τ = (t1, 0, f1) ∧ (1, 0, 0) = (min{t1, 1}, 0,max{f1, 0}). As t1 ≤ 1, then min{t1, 1} = t1 and as
f1 ≥ 0, then max{f1, 0} = f1. So, (min{t1, 1}, 0,max{f1, 0}) = (t1, 0, f1) = x.

Theorem 2.13 (Idempotent Laws). Let x = (t1, 0, f1) be a neutrosophic logic variable representing a classi-
cal logic variable. It is true that: (i) x ∧ x = x and (ii) x ∨ x = x.

Proof.
(i) x ∧ x = (t1, 0, f1) ∧ (t1, 0, f1) = (min{t1, t1}, 0,max{f1, f1}) = (t1, 0, f1) = x.
(ii) x ∨ x = (t1, 0, f1) ∨ (t1, 0, f1) = (max{t1, t1}, 0,min{f1, f1}) = (t1, 0, f1) = x.

Now, let’s turn the attention to the operator→ (conditional) and↔ (biconditional).

The conditional operator has, in the classical form (now represented in neutrosophic form), the following
table:

Table 8: Table for the conditional operator.
x y x→ y

(1, 0, 0) (1, 0, 0) (1, 0, 0)
(1, 0, 0) (0, 0, 1) (0, 0, 1)
(0, 0, 1) (1, 0, 0) (1, 0, 0)
(0, 0, 1) (0, 0, 1) (1, 0, 0)

Theorem 2.14. The conditional operator→ is equivalent to ¬(x ∧ ¬y), that in turn is equivalent to ¬x ∨ y.
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Proof. Let x = (t1, 0, f1) and y = (t2, 0, f2) be neutrosophic logic variables representing classical logic
variables, then:

¬(p ∧ ¬q) = ¬((t1, 0, f1) ∧ (f2, 0, t2)) = ¬(min{t1, f2}, 0,max{f1, t2}) = (max{f1, t2}, 0,min{t1, f2})
¬p ∨ q = (f1, 0, t1) ∨ (t2, 0, f2) = (max{f1, t2}, 0,min{t1, f2})

So, ¬(p ∧ ¬q) and ¬p ∨ q are equals. Now, let’s examine the truth table bellow:

Table 9: Table showing that z → y = ¬(p ∧ ¬q) = ¬p ∨ q.
x y (max{f1, t2}, 0,min{t1, f2})

(1, 0, 0) (1, 0, 0) (1, 0, 0)
(1, 0, 0) (0, 0, 1) (0, 0, 1)
(0, 0, 1) (1, 0, 0) (1, 0, 0)
(0, 0, 1) (0, 0, 1) (1, 0, 0)

From the truth table, it turns out that ¬(p ∧ ¬q) = ¬p ∨ q and equivalent to x→ y.

The biconditional operator has, in the classical form (now represented in neutrosophic form), the following
table:

Table 10: Table for the biconditional operator.
x y x↔ y

(1, 0, 0) (1, 0, 0) (1, 0, 0)
(1, 0, 0) (0, 0, 1) (0, 0, 1)
(0, 0, 1) (1, 0, 0) (0, 0, 1)
(0, 0, 1) (0, 0, 1) (1, 0, 0)

From the table, it is notable that the result is true iff the two variables have the same value.

Theorem 2.15. The biconditional operator↔ is equivalent to (x→ y) ∧ (y → x).

Proof. Let x = (t1, 0, f1) and y = (t2, 0, f2) be neutrosophic logic variables representing classical logic
variables, then:

x→ y = ¬x ∨ y = (f1, 0, t1) ∨ (t2, 0, f2) = (max{f1, t2}, 0,min{t1, f2})
y → z = ¬y ∨ x = (f2, 0, t2) ∨ (t1, 0, f1) = (max{f2, t1}, 0,min{t2, f1})

(x→ y) ∧ (y → x) = (min{max{f1, t2},max{f2, t1}}, 0,max{min{t1, f2},min{t2, f1}})

Let’s examine the truth table:

Table 11: Table showing that x↔ y = (x→ y) ∧ y(→ x).
x y x→ y y → x (x→ y) ∧ (y → x)

1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
1 0 0 0 0 1 0 0 1 1 0 0 0 0 1
0 0 1 1 0 0 1 0 0 0 0 1 0 0 1
0 0 1 0 0 1 1 0 0 1 0 0 1 0 1

From the truth table, it turns out that x↔ y is equivalent to (x→ y) ∧ y(→ x).

Furthermore, other operators could be defined, for example, the operators ⊕ (XOR), ↓ (NOR) and ↑
(NAND).

Definition 2.16 (Exclusive OR - XOR). The operator ⊕ (Exclusive OR - XOR) has its behavior given by the
following truth table:

Table 12: Table for the Exclusive OR operator.
x y x⊕ y

1 0 0 1 0 0 0 0 1
1 0 0 0 0 1 1 0 0
0 0 1 1 0 0 1 0 0
0 0 1 0 0 1 0 0 1
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A rapid view on the table truth of the operator XOR is enough to perceive that XOR is the negation of
biconditional operator, so ¬(x↔ y) = x⊕ y. To observe this, consider the following.

Theorem 2.17. The negation of x→ y, that is, ¬(x→ y) is equivalent to x ∧ ¬y.

Proof.

¬(x→ y) = ¬(¬x ∨ y) = ¬(¬x) ∧ ¬y = x ∧ ¬y

Now, given that x ↔ x = (x → y) ∧ (y → x), then ¬(x ↔ y) = ¬(x → y) ∨ ¬(y → x) =
(x ∧ ¬y) ∨ (y ∧ ¬x). So, letting x = (t1, 0, f1) and y = (t2, 0, f2):

(x ∧ ¬y) ∨ (y ∧ ¬x) = ((t1, 0, f1) ∧ (f2, 0, t2)) ∨ ((t2, 0, f2),∧(f1, 0, t1)) =
= (min{t1, f2}, 0,max{f1, t2} ∨ (min{t2, f1}, 0,max{f2, t1})
= (max{min{t1, f2},min{t2, f1}}, 0,min{max{f1, t2},max{f2, t1}})

Now, examining the truth table, one can be sure that x⊕ y is equal to ¬(x↔ y).

Table 13: Table showing that x⊕ y has the same value as ¬(x↔ y).
x ¬y y ¬x x ∧ ¬y y ∧ ¬x (x ∧ ¬y) ∨ (y ∧ ¬x)

(1, 0, 0) (0, 0, 1) (1, 0, 0) (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1)
(1, 0, 0) (1, 0, 0) (0, 0, 1) (0, 0, 1) (1, 0, 0) (0, 0, 1) (1, 0, 0)
(0, 0, 1) (0, 0, 1) (1, 0, 0) (1, 0, 0) (0, 0, 1) (1, 0, 0) (1, 0, 0)
(0, 0, 1) (1, 0, 0) (0, 0, 1) (1, 0, 0) (0, 0, 1) (0, 0, 1) (0, 0, 1)

Definition 2.18 (Operators NOR and NAND). The operators ↓ (NOR) and ↑ (NAND) has behavior given by
the following truth table:

Table 14: Table for the operators ↓ (NOR) and ↑ (NAND).
x y ↓ ↑

1 0 0 1 0 0 0 0 1 0 0 1
1 0 0 0 0 1 0 0 1 1 0 0
0 0 1 1 0 0 0 0 1 1 0 0
0 0 1 0 0 1 1 0 0 1 0 0

As the acronym suggests, NOR and NAND are the negations of OR and AND, that is, ↓= ¬∨ and ↑= ¬∧,
being enough to look at the truth table of OR and AND and negate the entries of the respective columns.

So far was showed that the main connectives and properties of the classical logic remains true when trans-
lated to neutrosophic form. However, for any logic be useful, it must supply rules of inference, and this is the
scope of the following lines.

Theorem 2.19 (Modus Ponens). Let x = (t1, 0, f1) and y = (t2, 0, f2) be neutrosophic logic variables
representing classical logic variables. If x→ y is true and x is true, then could be inferred that y is true. This
is represented by

x→ y, x ` y

This rule is named as modus ponens (mode that assert).

Proof. Its enough to see the truth table of the conditional operator (Table 8). In the first line of the truth table,
x → y is true iff x and y are true, so, given that x → y and x are true, one must infer that y is also true. This
is the only possibility.

Theorem 2.20 (Modus Tollens). Let x = (t1, 0, f1) and y = (t2, 0, f2) be neutrosophic logic variables
representing classical logic variables. If x → y is true and ¬y is true, then could be inferred that ¬x is true.
This is represented by

x→ y,¬y ` ¬x

This rule is named as modus tollens (mode that denies).
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Proof. It is know that x→ y = ¬x ∨ y (Theorem 2.15), so:

¬x ∨ y = ¬x ∨ (¬¬y) (double negation of y - Theorem 2.1)
= ¬(¬y) ∨ ¬x (commutativity of the operator ∨ - Theorem 2.2)

= ¬y → ¬x (backing to conditional form)

Another way to discern this is looking at the truth table of the conditional operator (Table 8). In the fourth line
of the truth table, x→ y is true iff x and y are false, so, given that x→ y is true and ¬x is true, can be inferred
that ¬y is also true. This is the only possibility.

Theorem 2.21 (And Elimination). Let x = (t1, 0, f1) and y = (t2, 0, f2) be neutrosophic variables repre-
senting classical logic variables. If x ∧ y is true, then can be inferred that x (or y) is also true. This can be
represented by:

x ∧ y ` x or x ∧ y ` y

Proof. It is enough to recall that the result given by the conjunction operator is true iff both of its operands are
true (first line/last column of the Table 1).

Theorem 2.22 (And Introduction). Let x = (t1, 0, f1) and y = (t2, 0, f2) be neutrosophic variables repre-
senting classical logic variables. If x and y are both true, then can be inferred that x∧ y is also true. This can
be represented by:

x, y ` x ∧ y

Proof. Its enough to recall that the result given by the conjunction operator is true iff both of its operands are
true (first line/last column of the Table 1).

Theorem 2.23 (Or Introduction). Let x = (t1, 0, f1) and y = (t2, 0, f2) be neutrosophic variables represent-
ing classical logic variables. If x is true, then x ∨ y is true, independent of the logical value of y. This can be
represented by:

x ` x ∨ y

Proof. Its enough to recall that the result given by the disjunction operator is false iff both of its operands are
false. However, as the first component is true, the result of the operation is true (first line/third column of the
Table 1). Note that the theorem remains true if the roles of x and y are swapped, that is: y ` x ∨ y.

Theorem 2.24 (Unit Resolution). Let x = (t1, 0, f1) and y = (t2, 0, f2) be neutrosophic variables represent-
ing classical logic variables. If x ∨ y is true and one of their elements is false, then the other element must be
true. This can be represented by:

x ∨ y,¬y ` x or x ∨ y,¬x ` y

Proof. Its enough to recall the result given by the disjunction operator in the second and third line/third column
of the Table 1.

Theorem 2.25 (Resolution). Let x = (t1, 0, f1) and y = (t2, 0, f2) and z = (t3, 0, f3) be neutrosophic logic
variables representing classical logic variables. The conditional operator is transitive, that is

x→ y, y → z ` x→ z

Proof. Firstly, take as hypothesis that x→ y is true and x is true, so under the rule of modus ponens (Theorem
2.19), it is possible to infer that y is true, that is

x→ y, x ` y (1)

Now, take as hypothesis that y → z is true. Noting that y is true by (1), it is possible to conclude that z is true,
that is

y → z, y ` z (2)

Finally, given that x (by assumption) is true and z is true by (2), can be concluded that x→ z is true (recall
the first line from the Table 8). So,

x→ y, y → z ` x→ z (3)
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The rules of inference given are not the only ones, there are several other. However, it must be sufficient to
demonstrate that the main characters of the classical logical remain true when translated to neutrosophic form.

Is something missing? Yes. For example, the view of the classical logic as a formal system (propositional
calculi), not to mention first, second and higher-order logics, have not been addressed.

3 Conclusion
This short paper has shown that neutrosophic logic, a recent type of logic, encompass the classical logic, at
least at the propositional level. Then, it could be said that the classical logic is a type of neutrosophic logic, or
that CL is a subset of NL.

Given the limited scope, it is not reasonable to show all aspects of the classical logic translated in neutro-
sophic form. However, this could be done in another time if the necessity arises.

Now, which future directions of research can be pursued? Given that the neutrosophic branch is in a wide
scope, there are a bunch of paths, but of possible interest is to compare neutrosophic logic with other logics,
mainly the class of the paraconsistent annotated Logics.

The paraconsistent annotated logics are a family of non-classical logics initially employed in logical pro-
gramming by Subrahmanian.2 Due to the obtained applications, a study of the foundations of the underlying
logic of the investigated programming languages became convenient. It was verified that it was a paraconsis-
tent logic, in some cases, also contained characteristics of paracomplete and non-alethic logic. To be concise
and short, the class of paraconsistent annotated logics has been applied to several fields, from digital circuits3,4

decision making,5 neural networks,6 just to name a few.

Finally, it is worth follow this way? The answer to this question cannot be given here, but consider that
comparing the strengths of neutrosophic logic and other logics, one or another can be enhanced, and as lateral
effect, the general knowledgment grows with this.

Acknowledgments: The first author is in profound debit with Wandercy Savedra Gomes, a very understanding
old friend, that kindly made the revision of the english language for this work.
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Abstract  

The main goal of this paper is to propose a new type of separation axioms via neutrosophic crisp semi open sets 

and neutrosophic crisp points in neutrosophic crisp topological spaces, namely neutrosophic crisp semi separation 

axioms. Finally, we examine the relationship between them in details. And also includes the study of the 

connections between these neutrosophic crisp semi separation axioms and the existing neutrosophic crisp 

separation axioms. Moreover, many examples are presented, to illustrate the concepts introduced in this paper. and 

investigate their fundamental properties, relationships and characterizations. 

Keywords: Neutrosophic crisp semi separation axiom, neutrosophic crisp separation axiom, neutrosophic crisp 

point.  

 
 

1. Introduction 

After F.Samarandache established the concept of neutrosophy in 1980 the neutrosophy in 1980 as a new logic which 

generalizes the fuzzy logic, many of the pure mathematical concepts, especially in topology, were found according 

to this new logic. One of the most important topological developments according to this logic is finding out and 

defining the neutrosophic crisp topological space [1] in 2014 by A. Salama and et al. Since the elements of the 

neutrosophic crisp sets[1] are neutrosophic crisp points, A. Salama defined the concept of neutrosophic crisp points 

[1,2] in 2014. Recently, the neutrosophic crisp set theory may have applications in image processing [3],[4], the 

field of geographic information systems[5] and possible applications to database[6]. Also, neutrosophic sets [7] have 

applications in the medical field [8], [9], [10], [11]. We can't use neutrosophic crisp points were defined in [1,2] for 

defining the neutrosophic crisp separation axioms and this encouraged A. Al-nafey, R. Al-Hamido and F. 

Smarandache to think of presenting another new concept of the neutrosophic crisp points [12] in 2018, which 

enabled them to define separation axioms in the neutrosophic crisp space for the first time in [12] . Moreover, 

neutrosophic crisp semi open sets were first defined and investigated by A. Salama [5 ] in 2015. Since the separation 
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axioms are considered one of the very important useful topics and one of the newly studied in topology, we thought 

of developing and generalizing the neutrosophic crisp separation axioms to neutrosophic crisp semi separation 

axioms. Finally, we study the relations between them on the one hand and between the separation neutrosophic 

crisps in [12] on the other hand. Many researchers studied topology, and they had many contributions to 

neutrosophic toplogy as [13], [14], [15], [16] and [17] and in neutrosophic bitopology in [18], [19], [20] and [21], 

and in neutrosophic algebra in [22], [23], [24], [25] and [26].  

In this paper, Section 2 focuses on the related definitions. Section 3 presents new separation axioms in the 

neutrosophic crisp topological spaces, the relationship among these new separation axioms and the neutrosophic 

crisp separation axioms is determined.   

2. Preliminaries" 

Throughout the paper, (χ,Ҭ) means neutrosophic crisp topological space (N�TS).   

 N�. OS (N�. CS) means a neutrosophic crisp open(closed) sets and N�S. OS means a neutrosophic crisp semi open set 
in N�TS.  
Now, we recall some definitions which are useful in this paper. 
 
Definition 2.1. [1] Let � ≠ ∅ be a fixed set. A neutrosophic crisp set (N�. S) U is an object with the U=< U1, U2, 

U3> shape ; ��, �� ��� ��are subsets of X. 

Definition 2.2. [1]  

∅� can be defined in four ways, as below : 

1. , , .N      
2. , , .N X     
3. , , .N X X    
4. , , .N      

�� can be defined in four ways, as below : 

1. , , .NX X     
2. , , .NX X X    
3. , , .N X X     
4. , , .NX X X X   

Definition 2.3. [1]  

Let χ ≠ ∅ be a fixed set, and U =< ��, ��, �� >, V =< ��, ��, �� > are two neutrosophic crisp sets, then:  

�È� can be defined as two ways, as below : 

1. � ∪ � =< �� ∪ ��, �� ∪ ��, �� ∩ �� >. 
2. � ∪ � =< �� ∪ ��, �� ∩ ��, �� ∩ �� >. 

� ∩ � can be defined as two ways, as below : 

1. � ∩ � =< �� ∩ ��, �� ∩ ��, �� ∪ �� >. 
2. � ∩ � =< �� ∩ ��, �� ∪ ��, �� ∪ �� >. 

Definition 2.4. [1]  

A neutrosophic crisp topology (NCT) on a non-empty set χ is a family Ҭ of neutrosophic crisp subsets in χ may be 
satisying the following axioms: 

1. XN and  N belong to Ҭ. 
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2. T is closed under finite intersection.  

3. T is closed under arbitrary union. 

The pair (χ,Ҭ)is neutrosophic crisp topological space (NCTS) in Ҭ. Moreover,  the elements in Ҭ are said to be 
neutrosophic crisp open sets (NCOS). A neutrosophic crisp set F is closed (NCCS) if and only if its complement 

is neutrosophic crisp open set. 
Definition 2.5. [12].",   
 Let χ be a non-empty set. And  x,y,z χ, then: 
a. x��

{x},∅,∅ > is called a neutrosophic crisp point (NCP��
) in χ . 

b.  y��
∅,{y},∅ > is called a neutrosophic crisp point (NCP��

) in χ.  

c. z��
∅,∅, {z} > is called a neutrosophic crisp point (NCP��

) in χ . 

The set of all neutrosophic crisp points (NCP��
, NCP��

, NCP��
) is denoted by NCP�.  

Definition 2.6. [12]", 
 Let (χ,Ҭ) be an NcTS. Then  χ is called: 

a. Ɲ�Ҭo-space if for every x��
 y��

χ there exists Nc.OS Ϻ in χ .containing one of them but not  the other. 

b. Ɲ�Ҭo-space if ∀ x��
 y��

� there exists Nc.OS Ϻ in χ .containing one of them but not  the other.  

c. Ɲ�Ҭo-space if ∀ x��
 y��

χ there exists Nc.OS Ϻ in χ .containing one of them but not the other. 

d. Ɲ�Ҭ1-space if for every x��
 y��

χ there exists Nc.OS Ϻ 1, Ϻ2 in χ such that x��
 Ϻ 1, y��

  Ϻ 1 and x��
  

Ϻ2 , y��
  Ϻ2. 

e. Ɲ�Ҭ1-space if ∀ x��
  y��

χ there exist Nc.OS Ϻ 1, Ϻ2 in χ such that x��
 G1, y��

  G1 and x��
  G2 , y��

  
G2. 

f. Ɲ�Ҭ1-space if ∀ x��
  y��

χ there exist Nc.OS Ϻ 1, Ϻ2 in χ such that x��
M1, y��

 M1 and x��
  M2 , y��

  

M2. 

g. Ɲ�Ҭ2-space if for every x��
 y��

χ there exist Nc.OS Ϻ 1, Ϻ2 in χ such that x��
 Ϻ 1, y��

  Ϻ 1 and x��
  Ϻ2 

, y��
  Ϻ2. with M1∩M2= ∅. 

h. Ɲ�Ҭ2-space if ∀ x��
  y��

χ there exist Nc.OS Ϻ 1, Ϻ2 in χ such that x��
 M1, y��

  M1 and x��
  M2 , y��

 

 M2 with M1∩M2= ∅.  

i. Ɲ�Ҭ2-space if ∀ x��
  y��

χ there exist Nc.OS Ϻ1, Ϻ2 in χ such that x��
 Ϻ1, y��

  Ϻ1 and x��
  Ϻ2, y��

  

Ϻ2  with Ϻ1∩ Ϻ2 = ∅. 

3. Separation axioms in a neutrosophic crisp topological space 

Definition 3.1. ", 
 Let (χ,Ҭ) be an NcTS. Then  χ is called: 

a. Ɲ�semiҬo-space if for every x��
 y��

χ there exists NcS.OS Ϻ in χ containing one of them but not  the other. 

b. Ɲ�semiҬo-space if ∀ x��
 y��

� there exists NcS.OS Ϻ in χ containing one of them but not  the other.  

c. Ɲ�semiҬo-space if ∀ x��
 y��

χ there exists NcS.OS Ϻ in χ containing one of them but not the other. 

Definition 3.2. ", 
 Let (χ,Ҭ) be an NcTS. Then  χ is called: 

a. Ɲ�semiҬ1-space if for every x��
 y��

χ there exist NcS.OS Ϻ 1, Ϻ2 in χ such that x��
 Ϻ 1, y��

  Ϻ 1 and x��
 

 Ϻ2 , y��
  Ϻ2. 

b. Ɲ�semiҬ1-space if ∀ x��
  y��

χ there exist NcS.OS Ϻ 1, Ϻ2 in χ such that x��
 G1, y��

  G1 and x��
  G2 , 

y��
  G2 

c. Ɲ�semiҬ1-space if ∀ x��
  y��

χ there exist NcS.OS Ϻ 1, Ϻ2 in χ such that x��
M1, y��

 M1 and x��
  M2 , 

y��
  M2  

Definition 3.3. ", 
 Let (χ,Ҭ) be an NcTS. Then  χ is called: 

a. Ɲ�semiҬ2-space if for every x��
 y��

χ there exists NcS.OS Ϻ 1, Ϻ2 in χ such that x��
 Ϻ 1, y��

  Ϻ 1 and 

x��
  Ϻ2 , y��

  Ϻ2. with M1∩M2= ∅. 

cF
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b. Ɲ�semiҬ2-space if ∀ x��
  y��

χ there exists NcS.OS Ϻ 1, Ϻ2 in χ such that x��
 M1, y��

  M1 and x��
  M2 

, y��
  M2 with M1∩M2= ∅.  

c. Ɲ�semiҬ2-space if ∀ x��
  y��

χ there exists NcS.OS Ϻ1, Ϻ2 in χ such that x��
 Ϻ1, y��

  Ϻ1 and x��
  

Ϻ2, y��
  Ϻ2  with Ϻ1∩ Ϻ2 = ∅. 

Theorem 3.4. 

Let (χ,Ҭ) be an NcTS, then : 
1. Every Ɲ�Ҭ0-space is Ɲ�semiҬ0-space.  
2. Every Ɲ�Ҭ0-space is Ɲ�semiҬ0-space.  
3. Every Ɲ�Ҭ0-space is Ɲ�semiҬ0-space. 

Proof:  
1. Suppose that (χ,Ҭ) is an Ɲ�Ҭ0-space , therefore for every two  x��

  y��
 , there exists an Nc.OS Ϻ in χ 

.containing one of them to which the other does not belong. So there exists an NcS.OS Ϻ in χ .containing 
one of them to which the other does not belong, therefore X is Ɲ�semiҬ0-space. 

2. Similar to Proof 1. 
3. Similar to Proof 1.  

 
Remark 3.5. ", 
The converse of theorem 3.4 is not true., as it is shown in the following examples. 
Example 3.6. 
Let χ = {�, �, �}, Ҭ = {∅� , �� , �}, � = {< { �}, ∅, ∅ >}. 
���. �� = Ҭ ∪ {� = {< { �, �}, ∅, ∅ >}, � = {< { �, �}, ∅, ∅ >}. 
Let x��

= {< { �}, ∅, ∅ >} y��
= {< { �}, ∅, ∅ >}χ there is no a Nc.OS Ϻ in χ .containing one of them but not  

the other. Therefore (χ,Ҭ)  is not Ɲ�Ҭ0-space. 
Then (χ,Ҭ) Ɲ�����Ҭ0-space, But (χ,Ҭ)  is not Ɲ�Ҭ0-space. 
Example 3.7. 
Let χ = {�, �, �}, Ҭ = {∅� , �� , �}, � = {< ∅, { �}, ∅ >}. 
���. �� = Ҭ ∪ {� = {< ∅, { �, �}, ∅ >}, � = {< ∅, { �, �}, ∅ >}. 
Let x��

= {< ∅, { �}, ∅ >} y��
= {< ∅, {�}, ∅ >}χ there is no a Nc.OS Ϻ in χ .containing one of them but not  

the other. Therefore (χ,Ҭ)  is not Ɲ�Ҭ0-space. 
Then (χ,Ҭ) Ɲ�����Ҭ0-space, But (χ,Ҭ)  is not Ɲ�Ҭ0-space. 
Example 3.8. 
Let χ = {�, �, �}, Ҭ = {∅� , �� , �}, � = {< ∅, { �}, ∅ >}. 
���. �� = Ҭ ∪ {� = {< ∅, ∅, { �, �} >}, � = {< ∅, ∅, { �, �}, >}. 
Let x��

= {< ∅, ∅, { �} >} y��
= {< ∅, ∅, {�} >}χ there is no a Nc.OS Ϻ in χ .containing one of them but not  

the other. Therefore (χ,Ҭ)  is not Ɲ�Ҭ0-space. 
Then (χ,Ҭ) Ɲ�����Ҭ0-space, But (χ,Ҭ)  is not Ɲ�Ҭ0-space. 
Theorem 3.9. 

Let (χ,Ҭ) be an NcTS, then : 
1. Every Ɲ�Ҭ1-space is Ɲ�semiҬ1-space.  
2. Every Ɲ�Ҭ1-space is Ɲ�semiҬ1-space.  
3. Every Ɲ�Ҭ1-space is Ɲ�semiҬ1-space. 

 
Proof: 

1. Suppose that (χ,Ҭ) is an Ɲ�Ҭ1-space , therefore for every two  x��
  y��

 , there exist an Nc.OS Ϻ 1, Ϻ2 in χ 

such that x��
 Ϻ 1, y��

  Ϻ 1 and x��
  Ϻ2 , y��

  Ϻ2. So there exists an NcS.OS Ϻ 1, Ϻ2 in χ such that 

x��
 Ϻ 1, y��

  Ϻ 1 and x��
  Ϻ2 , y��

  Ϻ2. 
Therefore X is Ɲ�semiҬ1-space. 

2. Similar to Proof 1. 
3. Similar to Proof 1. 

Remark 3.10. 
The converse of a theorem 3.9 is not true, as it is shown in the following example. 
Example 3.11. 
Let χ = {�, �, �}, Ҭ = {∅� , �� , �, �, �}, � = {< { �}, ∅, ∅ >}, � = {< { �}, ∅, ∅ >}, � = {< { �, �}, ∅, ∅ >}. 



International Journal of Neutrosophic Science (IJNS)                                                   Vol. 6, No. 1,  PP. 32-40, 2020 

 

DOI: 10.5281/zenodo.3831081 
 

 36

���. �� = Ҭ ∪ {� = {< { �, �}, ∅, ∅ >}, � = {< { �, �}, ∅, ∅ >}. 
Let x��

= {< { �}, ∅, ∅ >} y��
= {< { �}, ∅, ∅ >}χ there is no Nc.OS Ϻ 1, Ϻ2 in χ such that x��

 Ϻ1, y��
  Ϻ1  

and x��
  Ϻ2 , y��

  Ϻ2. Therefore (χ,Ҭ)  is not Ɲ�Ҭ1-space. 

Then (χ,Ҭ) Ɲ�����Ҭ1-space, But (χ,Ҭ)  is not Ɲ�Ҭ1-space. 
Also (χ,Ҭ) Ɲ�����Ҭ2-space, But (χ,Ҭ)  is not Ɲ�Ҭ2-space. 

Example 3.12. 
Let χ = {�, �, �}, Ҭ = {∅� , �� , �, �, �}, � = {< ∅, { �}, ∅ >}, � = {< ∅, { �}, ∅ >}, � = {< ∅, { �, �}, ∅ >}. 
���. �� = Ҭ ∪ {� = {< ∅, { �, �}, ∅ >}, � = {< ∅, { �, �}, ∅ >}. 
Let x��

= {< ∅, { �}, ∅ >} y��
= {∅, < { �}, ∅ >}χ there are no a Nc.OS Ϻ 1, Ϻ2 in χ such that x��

 Ϻ1, y��
  

Ϻ 1 and x��
  Ϻ2 , y��

  Ϻ2. Therefore (χ,Ҭ)  is not Ɲ�Ҭ1-space. 

Then (χ,Ҭ) Ɲ�����Ҭ1-space, But (χ,Ҭ)  is not Ɲ�Ҭ1-space. 

Also (χ,Ҭ) Ɲ�����Ҭ2-space, But (χ,Ҭ)  is not Ɲ�Ҭ2-space. 

Example 3.13. 
Let χ = {�, �, �}, Ҭ = {∅� , �� , �, �, �}, � = {< ∅, ∅, { �} >}, � = {< ∅, ∅, { �} >}, � = {< ∅, ∅, { �, �} >}. 
���. �� = Ҭ ∪ {� = {< ∅, ∅, { �, �} >}, � = {< ∅, ∅, { �, �} >}. 
Let x��

= {< ∅, ∅, { �} >} y��
= {< ∅, ∅, { �} >}χ there are no Nc.OS Ϻ 1, Ϻ2 in χ such that x��

 Ϻ1, y��
  

Ϻ 1 and x��
  Ϻ2 , y��

  Ϻ2. Therefore (χ,Ҭ)  is not Ɲ�Ҭ1-space. 

Then (χ,Ҭ) Ɲ�����Ҭ1-space, But (χ,Ҭ)  is not Ɲ�Ҭ1-space. 
Also (χ,Ҭ) Ɲ�����Ҭ2-space, But (χ,Ҭ)  is not Ɲ�Ҭ2-space. 

Theorem 3.14. 

Let (χ,Ҭ) be an NcTS, then : 
1. Every Ɲ�Ҭ2-space is Ɲ�semiҬ2-space.  
2. Every Ɲ�Ҭ2-space is Ɲ�semiҬ2-space.  
3. Every Ɲ�Ҭ2-space is Ɲ�semiҬ2-space. 

 
Proof: 

1. Suppose that (χ,Ҭ) is an Ɲ�Ҭ2-space , therefore for every two  x��
  y��

 , there exists an Nc.OS Ϻ 1, Ϻ2 in χ 

such that x��
 Ϻ 1, y��

  Ϻ 1 and x��
  Ϻ2 , y��

  Ϻ2. with M1∩M2= ∅. So there exists NcS.OS Ϻ 1, Ϻ2 

in χ such that x��
 Ϻ 1, y��

  Ϻ 1 and x��
  Ϻ2 , y��

  Ϻ2. with M1∩M2= ∅. 

Therefore X is Ɲ�semiҬ2-space. 
2. Similar to Proof 1. 
3. Similar to Proof 1.  

Remark 3.15. 
The converse of the Theorem 3.14 is not true., as it is shown in the following example. 
Example 3.16. 
Let χ = {�, �, �}, Ҭ = {∅� , �� , �, �, �}, � = {< { �}, ∅, ∅ >}, � = {< { �}, ∅, ∅ >}, � = {< { �, �}, ∅, ∅ >}. 
���. �� = Ҭ ∪ {� = {< { �, �}, ∅, ∅ >}, � = {< { �, �}, ∅, ∅ >}. 
Let x��

= {< { �}, ∅, ∅ >} y��
= {< { �}, ∅, ∅ >}χ there are no a Nc.OS Ϻ 1, Ϻ2 in χ such that x��

 Ϻ1, y��
  

Ϻ 1 and x��
  Ϻ2 , y��

  Ϻ2. Therefore (χ,Ҭ)  is not Ɲ�Ҭ1-space. 

Then (χ,Ҭ) Ɲ�����Ҭ1-space, but (χ,Ҭ)  is not Ɲ�Ҭ1-space. 
Also (χ,Ҭ) Ɲ�����Ҭ2-space, but (χ,Ҭ)  is not Ɲ�Ҭ2-space. 

Example 3.17. 
Let χ = {�, �, �}, Ҭ = {∅� , �� , �, �, �}, � = {< ∅, { �}, ∅ >}, � = {< ∅, { �}, ∅ >}, � = {< ∅, { �, �}, ∅ >}. 
���. �� = Ҭ ∪ {� = {< ∅, { �, �}, ∅ >}, � = {< ∅, { �, �}, ∅ >}. 
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Let x��
= {< ∅, { �}, ∅ >} y��

= {∅, < { �}, ∅ >}χ there are no Nc.OS Ϻ 1, Ϻ2 in χ such that x��
 Ϻ1, y��

  

Ϻ 1 and x��
  Ϻ2 , y��

  Ϻ2. Therefore (χ,Ҭ)  is not Ɲ�Ҭ1-space. 

Then (χ,Ҭ) Ɲ�����Ҭ1-space, but (χ,Ҭ)  is not Ɲ�Ҭ1-space. 

Also (χ,Ҭ) Ɲ�����Ҭ2-space, but (χ,Ҭ)  is not Ɲ�Ҭ2-space. 

Example 3.18. 
Let χ = {�, �, �}, Ҭ = {∅� , �� , �, �, �}, � = {< ∅, ∅, { �} >}, � = {< ∅, ∅, { �} >}, � = {< ∅, ∅, { �, �} >}. 
���. �� = Ҭ ∪ {� = {< ∅, ∅, { �, �} >}, � = {< ∅, ∅, { �, �} >}. 
Let x��

= {< ∅, ∅, { �} >} y��
= {< ∅, ∅, { �} >}χ there are no Nc.OS Ϻ 1, Ϻ2 in χ such that x��

 Ϻ1, y��
  

Ϻ 1 and x��
  Ϻ2 , y��

  Ϻ2. Therefore (χ,Ҭ)  is not Ɲ�Ҭ1-space. 

Then (χ,Ҭ) Ɲ�����Ҭ1-space, But (χ,Ҭ)  is not Ɲ�Ҭ1-space. 
Also (χ,Ҭ) Ɲ�����Ҭ2-space, But (χ,Ҭ)  is not Ɲ�Ҭ2-space. 

Theorem 3.19. 

Let (χ,Ҭ) be an NcTS, then : 

1. Ɲ�semiҬ2-space  Ɲ�semiҬ1-space  Ɲ�semiҬ0-space.  
2. Ɲ�semiҬ2-space  Ɲ�semiҬ1-space  Ɲ�semiҬ0-space.  
3. Ɲ�semiҬ2-space  Ɲ�semiҬ1-space  Ɲ�semiҬ0-space.  

The converse of the Theorem 3.19 is not true. 
Example 3.20. 
Let � = {�, �, �}, ��� = {∅� , �� , �}, � = {< { �}, ∅, ∅ >}. 
���. �� = {� = {< { �}, ∅, ∅ >}, � = {< { �, �}, ∅, ∅ >}, � = {< { �, �}, ∅, ∅ >}. 
Then (χ,Ҭ) Ɲ�����Ҭ0-space, but (χ,Ҭ) is not Ɲ�����Ҭ1-space. So (χ,Ҭ) Ɲ�����Ҭ0-space, But (χ,Ҭ)  
is not Ɲ�����Ҭ2-space. 
Remark. 3.21. 
Relations among the different types of neutrosophic crisp separation axioms which were studied in this paper, 
appear in the following diagram. 
 

 
 
Ni-T2-space                    Ni-T1-space                 Ni-To-space. 
                                                                      
   

                                                                                   
 
Ni-ST2-space               Ni-ST1-space                    Ni-STo-space. 

                                                                          

i=0,1,2. 
 
 
 
 
Definition 3.22.ee, 

An NcTS  (χ,Ҭ) is called: 
a. Ɲ����Ҭ0-space if (�, �) is Ɲ�����Ҭ0-space and Ɲ�����Ҭ0-space and  Ɲ�����Ҭ0-space. 
b. Ɲ����Ҭ1-space if (�, �) is Ɲ�����Ҭ1-space and Ɲ�����Ҭ1-space and  Ɲ�����Ҭ1-space. 
c. Ɲ����Ҭ2-space if (�, �) is Ɲ�����Ҭ2-space and Ɲ�����Ҭ2-space and  Ɲ�����Ҭ2-space. 
Remark 3.23. 
For an NcTS (χ,Ҭ) 
1. Every Ɲ����Ҭ0-space if (�, �) is Ɲ�����Ҭ0-space.  
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2. Every Ɲ����Ҭ0-space if (�, �) is Ɲ�����Ҭ0-space. 
3. Every Ɲ����Ҭ0-space if (�, �) is Ɲ�����Ҭ0-space. 
The converse is not true. as it is shown in the below example..  
Example 3.24.. 
Assume that Ҭ = {x, y} , Ҭ� = {��, ∅�, A } ,Ҭ� = {��, ∅�, B }, Ҭ� = {��, ∅�, G }. 
A {x},∅,∅> 
B ∅,{y},∅> 
G ∅,∅,{x}> 

Then: (χ,Ҭ) is Ɲ�����Ҭ0-space but not Ɲ����Ҭ0-space. 

          (χ,Ҭ) is Ɲ�����Ҭ0-space but not Ɲ����Ҭ0-space. 

          (χ,Ҭ) is Ɲ�����Ҭ0-space but not Ɲ����Ҭ0-space. 
Remark 3.25..,  
For an NcTS (χ,Ҭ) 

1. Every Ɲ����Ҭ1-space if (�, �) is Ɲ�����Ҭ1-space.  

2. Every Ɲ����Ҭ1-space if (�, �) is Ɲ�����Ҭ1-space. 

3. Every Ɲ����Ҭ1-space if (�, �) is Ɲ�����Ҭ1-space. 
The converse is not true. as it is shown in the following example..  
Example 3.26..,  
Assume that = {x, y} ,�� = {�� , ∅� , A, B } , �� = {��, ∅�, G , F }. 
A {x},{y},∅> 
B {y},{x},∅> 
G ∅,∅,{x}> 
F ∅,∅,{y}> 
Then: (χ,Ҭ1)is Ɲ�����Ҭ1-space but not Ɲ����Ҭ1. 
           (χ,Ҭ1)is Ɲ�����Ҭ1-space but not Ɲ����Ҭ1. 
            (χ,Ҭ2)is Ɲ�����Ҭ1-space but not Ɲ����Ҭ1. 
Remark 3.27..,  
For an NcTS (χ,Ҭ) 

1. Every Ɲ����Ҭ2-space if (�, �) is Ɲ�����Ҭ2-space.  

2. Every Ɲ����Ҭ2-space if (�, �) is Ɲ�����Ҭ2-space. 

3. Every Ɲ����Ҭ2-space if (�, �) is Ɲ�����Ҭ2-space. 
The converse is not true. as it is shown in the example.  
Remark 3.28.., ,  
For an neutrosophic. crisp topological space (�, �)  
1. Every Ɲ����Ҭ1-space but not Ɲ����Ҭ0-space. 
2. Every Ɲ����Ҭ2-space but not Ɲ����Ҭ1-space. 
The converse is not true. as it is shown in the following example..: 
Example 3.29..,  
Assume that = {x, y} , � = {�� , ∅� , A, B, G }.  

A {x},∅,∅> 
B ∅,{y},∅> 
G ∅,∅,{x}> 
Then: (�,�) is Ɲ����Ҭ0-space but not Ɲ����Ҭ1-space. 
 
 
 

Conclusion  

In this paper, we have defined a new type of neutrosophic. crisp separation axioms by using neutrosophic crisp semi 

open sets and certain point in the neutrosophic. crisp topological spaces. Moreover,we study the connections 

between neutrosophic crisp semi separation axioms and the existing neutrosophic crisp separation axioms. And 
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many examples are presented, to illustrate the concepts introduced in this paper. Also, investigate their fundamental 

properties and characterizations. 
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Abstract
The objective of this paper is to formally present the concept of NeutroGroups by considering three NeutroAx-
ioms (NeutroAssociativity, existence of NeutroNeutral element and existence of NeutroInverse element). Sev-
eral interesting results and examples of NeutroGroups, NeutroSubgroups, NeutroCyclicGroups, NeutroQuo-
tientGroups and NeutroGroupHomomorphisms are presented. It is shown that generally, Lagrange’s theorem
and 1st isomorphism theorem of the classical groups do not hold in the class of NeutroGroups.

Keywords: Neutrosophy, NeutroGroup, NeutroSubgroup, NeutroCyclicGroup, NeutroQuotientGroup and
NeutroGroupHomomorphism.

1 Introduction
In 2019, Florentin Smarandache2 introduced new fields of research in neutrosophy which he called Neu-
troStructures and AntiStructures respectively. The concepts of NeutroAlgebras and AntiAlgebras were re-
cently introduced by Smarandache in.3 Smarandache in4 revisited the notions of NeutroAlgebras and AntiAl-
gebras where he studied Partial Algebras, Universal Algebras, Effect Algebras and Boole’s Partial Algebras
and showed that NeutroAlgebras are generalization of Partial Algebras. In,1 Agboola et al examined Neu-
troAlgebras and AntiAlgebras viz-a-viz the classical number systems N, Z, Q, R and C. The mention of Neu-
troGroup by Smarandache in2 motivated us to write the present paper. The concept of NeutroGroup is formally
presented in this paper by considering three NeutroAxioms (NeutroAssociativity, existence of NeutroNeutral
element and existence of NeutroInverse element). We study NeutroSubgroups, NeutroCyclicGroups, Neutro-
QuotientGroups and NeutroGroupHomomorphisms. We present several interesting results and examples. It is
shown that generally, Lagrange’s theorem and 1st isomorphism theorem of the classical groups do not hold in
the class of NeutroGroups.

For more details about NeutroAlgebras, AntiAlgebras, NeutroAlgebraic Structures and AntiAlgebraic
Structures, the readers should see.1–4

2 Formal Presentation of NeutroGroup and Properties
In this section, we formally present the concept of a NeutroGroup by considering three NeutroAxioms (Neu-
troAssociativity, existence of NeutroNeutral element and existence of NeutroInverse element) and we present
its basic properties.

Definition 2.1. Let G be a nonempty set and let ∗ : G × G → G be a binary operation on G. The couple
(G, ∗) is called a NeutroGroup if the following conditions are satisfied:

(i) ∗ is NeutroAssociative that is there exits at least one triplet (a, b, c) ∈ G such that

a ∗ (b ∗ c) = (a ∗ b) ∗ c (1)

and there exists at least one triplet (x, y, z) ∈ G such that

x ∗ (y ∗ z) 6= (x ∗ y) ∗ z. (2)
1Correspondence:aaaola2003@yahoo.com
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(ii) There exists a NeutroNeutral element in G that is there exists at least an element a ∈ G that has a single
neutral element that is we have e ∈ G such that

a ∗ e = e ∗ a = a (3)

and for b ∈ G there does not exist e ∈ G such that

b ∗ e = e ∗ b = b (4)

or there exist e1, e2 ∈ G such that

b ∗ e1 = e1 ∗ b = b or (5)
b ∗ e2 = e2 ∗ b = b with e1 6= e2 (6)

(iii) There exists a NeutroInverse element that is there exists an element a ∈ G that has an inverse b ∈ G
with respect to a unit element e ∈ G that is

a ∗ b = b ∗ a = e (7)

or there exists at least one element b ∈ G that has two or more inverses c, d ∈ G with respect to some
unit element u ∈ G that is

b ∗ c = c ∗ b = u (8)
b ∗ d = d ∗ b = u. (9)

In addition, if ∗ is NeutroCommutative that is there exists at least a duplet (a, b) ∈ G such that

a ∗ b = b ∗ a (10)

and there exists at least a duplet (c, d) ∈ G such that

c ∗ d 6= d ∗ c, (11)

then (G, ∗) is called a NeutroCommutativeGroup or a NeutroAbelianGroup.
If only condition (i) is satisfied, then (G, ∗) is called a NeutroSemiGroup and if only conditions (i) and (ii)

are satisfied, then (G, ∗) is called a NeutroMonoid.

Definition 2.2. Let (G, ∗) be a NeutroGroup. G is said to be finite of order n if the cardinality of G is n that
is o(G) = n. Otherwise, G is called an infinite NeutroGroup and we write o(G) =∞.

Example 2.3. Let U = {a, b, c, d, e, f} be a universe of discourse and let G = {a, b, c, d} be a subset of U.
Let ∗ be a binary operation defined on G as shown in the Cayley table below:

∗ a b c d
a b c d a
b c d a c
c d a b d
d a b c a

.

It is clear from the table that:

a ∗ (b ∗ c) = (a ∗ b) ∗ c = d,

b ∗ (d ∗ c) = a, but (b ∗ d) ∗ c = b.

This shows that ∗ is NeutroAssociative and hence (G, ∗) is a NeutroSemiGroup.
Next, let Nx and Ix represent the neutral element and the inverse element respectively with respect to any

element x ∈ G. Then

Na = d,

Ia = c,

Nb, Nc, Nd do not exist,
Ib, Ic, Id do not exist.

This in addition to (G, ∗) being a NeutroSemiGroup implies that (G, ∗) is a NeutroGroup.
It is also clear from the table that ∗ is NeutroCommutative. Hence, (G, ∗) is a NeutroAbelianGroup.
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Example 2.4. Let G = Z10 and let ∗ be a binary operation on G defined by x ∗ y = x + 2y for all x, y ∈ G
where + is addition modulo 10. Then (G, ∗) is a NeutroAbeliaGroup. To see this, for x, y, z ∈ G, we have

x ∗ (y ∗ z) = x+ 2y + 4z, (12)
(x ∗ y) ∗ z = x+ 2y + 2z. (13)

Equating (16) and (17) we obtain z = 0, 5. Hence only the triplets (x, y, 0), (x, y, 5) can verify associativ-
ity of ∗ and not any other triplet (x, y, z) ∈ G. Hence, ∗ is NeutroAssociative and therefore, (G, ∗) is a
NeutroSemigroup.

Next, let e ∈ G such that x ∗ e = x+ 2e = x and e ∗ x = e+ 2x. Then, x+ 2e = e+ 2x from which we
obtain e = x. But then, only 5 ∗ 5 = 5 in G. This shows that G has a NeutroNeutral element. It can also be
shown that G has a NeutroInverse element. Hence,(G, ∗) is a NeutroGroup.

Lastly,

x ∗ y = x+ 2y, (14)
y ∗ x = y + 2x. (15)

Equating (18) and (19), we obtain x = y. Hence only the duplet (x, x) ∈ G can verify commutativity of ∗ and
not any other duplet (x, y) ∈ G. Hence, ∗ is NeutroCommutative and thus (G, ∗) is a NeutroAbelianGroup.

Remark 2.5. General NeutroGroup is a particular case of general NeutroAlgebra which is an algebra which
has at least one NeutroOperation or one NeutroAxiom (axiom that is true for some elements, indeterminate
for other elements, and false for the other elements). Therefore, a NeutroGroup is a group that has either one
NeutroOperation (partially well-defined, partially indeterminate, and partially outer-defined), or atleast one
NeutroAxiom (NeutroAssociativity, NeutroElement, or NeutroInverse).

It is possible to define NeutroGroup in another way by considering only one NeutroAxiom or by consider-
ing two NeutroAxioms.

Theorem 2.6. Let (Gi, ∗), i = 1, 2, · · · , n be a family of NeutroGroups. Then

(i) G =
⋂n
i=1Gi is a NeutroGroup.

(ii) G =
∏n
i=1Gi is a NeutroGroup.

Proof. Obvious.

Definition 2.7. Let (G, ∗) be a NeutroGroup. A nonempty subset H of G is called a NeutroSubgroup of G if
(H, ∗) is also a NeutroGroup.

The only trivial NeutroSubgroup of G is G.

Example 2.8. Let (G, ∗) be the NeutroGroup of Example 2.3 and let H = {a, c, d}. The compositions of
elements of H are given in the Cayley table below.

∗ a c d
a b d a
c d b d
d a c a

.

It is clear from the table that:

a ∗ (c ∗ d) = (a ∗ c) ∗ d = a,

d ∗ (c ∗ a) = a, but (d ∗ c) ∗ a = d 6= a.

Na = d,

Ia = c,

Nc, Nd do not exist,
Ic, Id do not exist.
a ∗ d = d ∗ a = a, but c ∗ d = d, d ∗ c = c 6= d.

All these show that (H, ∗) is a NeutroAbelianGroup. Since H ⊂ G, it follows that H is a NeutroSubgroup of
G.

It should be observed that the order of H is not a divisor of the order of G. Hence, Lagrange’s theorem
does not hold.

Doi :10.5281/zenodo.3840761 43



International Journal of Neutrosophic Science (IJNS) Vol. 6, No. 1, PP. 41-47, 2020

Theorem 2.9. Let (G, ∗) be a NeutroGroup and let (Hi, ∗), i = 1, 2, · · · , n be a family of NeutroSubgroups
of G. Then

(i) H =
⋂n
i=1Hi is a NeutroSubgroup of G.

(ii) H =
∏n
i=1Hi is a NeutroSubgroup of G.

Proof. Obvious.

Definition 2.10. Let H be a NeutroSubgroup of the NeutroGroup (G, ∗) and let x ∈ G.

(i) xH the left coset of H in G is defined by

xH = {xh : h ∈ H}. (16)

(i) Hx the right coset of H in G is defined by

Hx = {hx : h ∈ H}. (17)

Example 2.11. Let (G, ∗) be the NeutroGroup of Example 2.3 and let H be the NeutroSubgroup of Example
2.8. Hl the set of distinct left cosets of H in G is given by

Hl = {{a, b, d}, {a, c}, {b, d}}

and Hr the set of distinct right cosets of H in G is given by

Hr = {{a, b, d}, {a, b, c}, {b, c, d}, {a, d}}.

It should be observed that Hl and Hr do not partition G. This is different from what is obtainable in the
classical groups. However, the order of Hl is 3 which is not a divisor of the order of G and therefore, [G : H]
the index of H in G is 3, that is [G : H] = 3. Also, the order of Hr is 4 which is a divisor of G. Hence,
[G : H] = 4.

Example 2.12. Let U = {a, b, c, d} be a universe of discourse and let G = {a, b, c} be a NeutroGroup given
in the Cayley table below:

∗ a b c
a a c b
b c a c
c a c d

.

Let H = {a, b} be a NeutroSubgroup of G given in the Cayley table below:

∗ a b
a a c
b c a

.

Then, the sets of distinct left and right cosets of H in G are respectively obtained as:

Hl = {{a, c}},
Hr = {{a, }, {c}, {b, c}}.

In this example, the order of Hl the set of distinct left cosets of H in G is 1 which is not a divisor of the order
of G and therefore, [G : H] = 1. However, the order of Hr the set of distinct right cosets of H in G is 3 which
is a divisor of the order of G and therefore, [G : H] = 3. This is also different from what is obtainable in the
classical groups.

Consequent on Examples 2.8, 2.11 and 2.12, we state the following theorem:

Theorem 2.13. Let H be a NeutroSubgroup of the finite NeutroGroup (G, ∗). Then generally:

(i) o(H) is not a divisor of o(G).

(ii) There is no 1-1 correspondence between any two left(right) cosets of H in G.

Doi :10.5281/zenodo.3840761 44



International Journal of Neutrosophic Science (IJNS) Vol. 6, No. 1, PP. 41-47, 2020

(iii) There is no 1-1 correspondence between any left(right) coset of H in G and H .

(iv) IfNx = e that is xe = ex = x for any x ∈ G, then eH 6= H ,He 6= H and {e} is not a NeutroSubgroup
of G.

(v) o(G) 6= [G : H]o(H).

(vi) The set of distinct left(right) cosets of H in G is not a partition of G.

Definition 2.14. Let (G, ∗) be a NeuroGroup. Since ∗ is associative for at least one triplet (x, x, x) ∈ G, the
powers of x are defined as follows:

x1 = x

x2 = xx

x3 = xxx
...

...
xn = xxx · · ·x n factors ∀n ∈ N.

Theorem 2.15. Let (G, ∗) be a NeutroGroup and let x ∈ G. Then for any m,n ∈ N, we have:

(i) xmxn = xm+n.

(ii) (xm)
n
= xmn.

Definition 2.16. Let (G, ∗) be a NeutroGroup. G is said to be cyclic if G can be generated by an element
x ∈ G that is

G =< x >= {xn : n ∈ N}. (18)

Example 2.17. Let (G, ∗) be the NeutroGroup given in Example 2.3 and consider the following:

a1 = a, a2 = b, a3 = c, a4 = d.

b1 = b, b2 = d, b3 = c, b4 = a.

c1 = c, c2 = b, c3 = a, c4 = d.

d1 = d, d2 = a, d3 = a, d4 = a.

∴ G = < a >=< b >=< c >,G 6=< d > .

These show that G is cyclic with the generators a, b, c. The element d ∈ G does not generate G.

Definition 2.18. Let H be a NeutroSubgroup of the NeutroGroup (G, ∗). The sets (G/H)l and (G/H)r are
defined by:

(G/H)l = {xH : x ∈ G} (19)
(G/H)r = {Hx : x ∈ G}. (20)

Let xH, yH ∈ (G/H)l and let �l be a binary operation defined on (G/H)l by

xH �l yH = x ∗ yH ∀ x, y ∈ G. (21)

Also, let xH, yH ∈ (G/H)r and let �r be a binary operation defined on (G/H)r by

Hx�r Hy = Hx ∗ y ∀ x, y ∈ G. (22)

It can be shown that the couples ((G/H)l,�l) and ((G/H)r,�r) are NeutroGroups.

Example 2.19. Let G and H be as given in Example 2.12 and consider

(G/H)l = {aH, bH, cH} = {aH} = {{a, c}}.

Then ((G/H)l,�l) is a NeutroGroup.
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Definition 2.20. Let (G, ∗) and (H, ◦) be any two NeutroGroups. The mapping φ : G → H is called a
NeutroGroupHomomorphism if φ preserves the binary operations ∗ and ◦ that is if for all x, y ∈ G, we have

φ(x ∗ y) = φ(x) ◦ φ(y). (23)

The kernel of φ denoted by Kerφ is defined as

Kerφ = {x : φ(x) = eH} (24)

where eH ∈ H is such that Nh = eH for at least one h ∈ H .
The image of φ denoted by Imφ is defined as

Imφ = {y ∈ H : y = φ(x) for some h ∈ H}. (25)

If in addition φ is a bijection, then φ is called a NeutroGroupIsomorphism and we write G ∼= H . Neu-
troGroupEpimorphism, NeutroGroupMonomorphism, NeutroGroupEndomorphism, and NeutroGroupAuto-
morphism are similarly defined.

Example 2.21. Let (G, ∗) be a NeutroGroup of Example 2.12 and let ψ : G×G→ G be a projection given
by

ψ((x, y)) = x ∀x, y ∈ G.

Then ψ is a NeutroGroupHomomorphism. The Kerψ = {(a, a), (a, b), a, c)} which is a NeutroSubgroup of
G×G as shown in the Cayley table below.

∗ (a, a) (a, b) (a, c)
(a, a) (a, a) (a, c) (a, b)
(a, b) (a, c) (a, a) (a, c)
(a, c) (a, a) (a, c) (a, d)

and Imψ = {a, b, c} = G.

Consequent on Example 2.21, we state the following theorem:

Theorem 2.22. Let (G, ∗) and (H, ◦) be NeutroGroups and let Nx = eG such that eG ∗ x = x ∗ eG = x for
at least one x ∈ G and let Ny = eH such that eH ∗ y = y ∗ eH = y for at least one y ∈ H . Suppose that
φ : G→ H is a NeutroGroupHomomorphism. Then:

(i) φ(eG) = eH .

(ii) Kerφ is a NeutroSubgroup of G.

(iii) Imφ is a NeutroSubgroup of H.

(iv) φ is injective if and only if Kerφ = {eG}.

Example 2.23. Considering Example 2.19, let φ : G→ G/H be a mapping defined by φ(x) = xH for all x ∈
G. Then, φ(a) = φ(b) = φ(c) = aH = {a, c} from which we have that φ is a NeutroGroupHomomorphism.

Kerφ = {x ∈ G : φ(x) = eG/H} = {x ∈ G : xH = eG/H = e{{a,c}}} 6= H.

Consequent on Example 2.23, we state the following theorem:

Theorem 2.24. Let H be a NeutroSubgroup of a NeutroGroup (G, ∗). The mapping ψ : G → G/H defined
by

ψ(x) = xH ∀ x ∈ G

is a NeutroGroupHomomorphism and the Kerψ 6= H .

Theorem 2.25. Let φ : G → H be a NeutroGroupHomomorpism and let K = Kerφ. Then the mapping
ψ : G/K → Imφ defined by

ψ(xK) = φ(x) ∀ x ∈ G

is a NeutroGroupEpimorphism and not a NeutroGroupIsomorphism.
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Proof. That ψ is a well defined surjective mapping is clear. Let xK, yK ∈ G/K be arbitrary. Then

ψ(xKyK) = ψ(xyK)

= φ(xy)

= φ(x)φ(y)

= ψ(xK)ψ(yK).

Kerψ = {xK ∈ G/K : ψ(xK) = eφ(x)}
= {xK ∈ G/K : φ(x) = eφ(x)}
6= {eG/K}.

This shows that ψ is a surjective NeutroGroupHomomorphism and therefore it is a NeutroGroupEpimorphism.
Since ψ is not injective, it follows that G/K 6∼= Imφ which is different from what is obtainable in the classical
groups.

Theorem 2.26. NeutroGroupIsomorphism of Neutrogroups is an equivalence relation.

Proof. The same as the classical groups.

3 Conclusion
We have formally presented the concept of NeutroGroup in this paper by considering three NeutroAxioms
(NeutroAssociativity, existence of NeutroNeutral element and existence of NeutroInverse element). We pre-
sented and studied several interesting results and examples on NeutroSubgroups, NeutroCyclicGroups, Neu-
troQuotientGroups and NeutroGroupHomomorphisms. We have shown that generally, Lagrange’s theorem
and 1st isomorphism theorem of the classical groups do not hold in the class of NeutroGroups. Further studies
of NeutroGroups will be presented in our future papers. Other NeutroAlgebraicStructures such as NeutroR-
ings, NeutroModules, NeutroVectorSpaces etc are opened to studies for Neutrosophic Researchers.

4 Appreciation
The author is very grateful to all anonymous reviewers for valuable comments and suggestions which we have
found very useful in the improvement of the paper.
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Abstract  

  In this paper we have defined the concept of neutrosophic queueing systems and defined its neutrosophic 

performance measures. An important application of neutrosophic logic in queueing systems we face in real life were 

discussed, that is the neutrosophic events accuring times, because of its wide applications in networking and 

simulating communication systems specialy when probability distribution is not known, and because it’s more 

realistic to consider and to not ignore the imprecise events times. Event-based table of a neutrosophic queueing 

system was presented and its neutrosophic performance measures were derived, i.e. neutrosophic mean waiting time 

in queue, neutrosophic mean waiting time in system, neutrosophic expected number of customers in queue and 

neutrosophic expected number of customers in system. Neutrosophic Little’s Formulas (NLF) were also defined 

which is a main tool in queueing systems problems to make it easier finding performance measures from each other. 

Keywords: Neutrosophic Logic; Queueing Theory; Performance Measures; Little’s Formula  
 

1.Introduction  

Neutrosophic Logic that was presented by F.Smarandache in 1995 as generalization of intuitionistic fuzzy logic 

has lots of applications in many branches of science specially in probability, statistics and operation research 

[1,2,3,4,5,6,7]. In these three mentioned branches of science we face lots of imprecise, ambiguity, fluctuation and 

incomplete data [3,4,5,6,7]. Before the foundation of neutrosophic logic we couldn’t deal with these cases 

[8,9,10,11,12]. Queueing theory or waiting lines theory is one of the most important applications of probability theory 

and operations research presented by Erlang in 1909, which is a modelling of systems where customers have to wait 

unitl they get required services [13]. Queueing theory has many applications in traffic flow, scheduling, designing 

communication networks and facility design [13,14,15]. 

In queueing theory, efficiency of service providing systems can be determined depending on the time that 

customer must wait unitl he takes his desired service and the cost that is resulting from system’s design [14,15]. 

Modeling a queuenig system depends on lots of characteristics including: interarrival times, departures times, 

servicing times, number of servers, etc. but these are not always determined exactly and most times are inaccurate 

[3,10,14] . 

In classical cirsp qeues researcher often use rates, midpoints or most probable values to represent in queue’s 

parameters [16,17]. The extension of classical queueing theory to neutrosophic queueing theory means that the 

elements of the queue are imprecise, i.e. times of arrivals, timer of taking services and departures are not known 

exactly. In this paper, the definition of neutrosophic performance measures of a general queue depending on event-
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based table and NLF was introduced, then a solved example was presented to show the power of neutrosophic crisp 

sets [3,5,18] in solving problems better and more accurate than in classical crisp logic. 

2. Neutrosophic queues  

2.1 Definitions and notions 

Suppose that the queueing system consists of one waiting line. Arriving customer takes his service from only 

one server. If the server is busy then arriving customer waits in the queue until the server is empty. The server can 

serve one customer at time according to first comes first served policy. The customer departs after he takes his service. 

Let by definition: 

 ��(�) denotes the neutrosophic time of customer (n) arrival. 

 ��(�) denotes the neutrosophic service time of customer (n). 

 ��(�) denotes the neutrosophic interarrival time of customer (n) and customer (n+1) so: 

��(�) = ��(���) − ��(�) 

 ��(�) denotes the neutrosophic time that customer (n) starts taking the service so: 

��(���) = max���(�), ��(���)�	 

 ��(�) denotes the neutrosophic time of customer (n) departure that is:  

��(�) = ��(�) + ��(�) 

 ���
(�)

 denotes waiting time in queue of customer (n) so: 

���
(�)

= ��	
(�) − ��(�) 

 ��	
(�) denotes waiting time in system of customer (n) so: 

��(�) = ���
(�)

+ ��(�) 

 ��� denotes the neutrosophic mean waiting time in queue. 

 �� denotes the neutrosophic mean waiting time in system. 
 ���  denotes the neutrosophic expected number of customers in queue. 

 �� denotes the neutrosophic expected number of customers in system. 

NLF will be then (based on classical little’s formula in [14,15]): 

�� = � ∗ �� 
��� = � ∗ ��� 

Where � is the arrival rate, that is total number of arrivals divided by the time between last departure and starting 

time. 

Among this paper, neutrosophic statistical numbers presented in [19] will be used, which is an effective method 

to describe indeterminacy in data specially data that it is not useful to be presented in the form (T, I, F) like parameters 

of distributions, statistical data, statistical data tables, frequency tables, time series, etc [4, 5, 10 ,19, 20]. 

2.2 Example 

Suppose that we have the following event-based table of a queueing system representing arriving customers to an 

ATM (all times are in minutes): 

 

Customer ��(�) ��(�) 

1 0 [1,2] 

2 [3,4] 4 
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3 6 2 

4 8 1 

5 12 [1,2] 

6 [13,14] 2 

Table 1: Input data 

Lets calculate the performance measures of this ATM system according to Neutrosophic queues then 

according to cirsp queues: 

 

Neutrosophic Solution: 

For customer 1: we start when the system is empty so ��(�) = 0 that is the arrival time of ther first customer. 

Since the system is empty then the arrival customer will be served without any waiting so ��(�) = 0. 

The service time for this customer is ��(�) = [1,2] so the departure time will be ��(�) = ��(�) + ��(�) = 0 +

[1,2] = [1,2] that is the time of start serving the customer plus the serving time. 

The waiting time in queue is the difference between starting serving the customer ��(�)and arriving time of this 

customer ��(�) so : ���
(�)

= ��	
(�) − ��(�) = 0 − 0 = 0. 

Waiting time in system is sum of waiting time in queue and serving time that is :  ��(�) = ���
(�)

+ ��(�) = 0 +

[1,2] = [1,2]. 

Interarrival time between first and next customer is ��(�) = ��(�) − ��(�) = [3,4] − 0 = [3,4]. 

For customer 2: ��(�) = [3,4] that is the arrival time of the second customer. 

The service starting time of this customer (customer 2) will be its arriving time if the server is empty or it will be 

immediately after the departure time of the previous customer if the server is busy, so it’s ��(�) =

max���(�), ��(�)� = max([1,2], [3,4]) = [3,4]. 

The service time for this customer is ��(�) = 4 so the departure time will be �(�) = ��(�) + ��(�) = [3,4] + 4 =

[7,8] . 

The waiting time in queue is the difference between starting serving the customer ��(�)and arriving time of this 

customer ��(�) so : ���
(�)

= ��	
(�) − ��(�) = [3,4] − [3,4] = 0. 

Waiting time in system is sum of waiting time in queue and serving time that is :  ��(�) = ���
(�)

+ ��(�) = 0 +

4 = 4. 

Interarrival time between second and third customer is ��(�) = ��(�) − ��(�) = 6 − [3,4] = [2,3]. 
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For customer 3: ��(�) = 6. 

The service starting time of this customer will be ��(�) = max���(�), ��(�)� = max([7,8], 6) = [7,8]. 

The service time for this customer is ��(�) = 2 so the departure time will be �(�) = ��(�) + ��(�) = [7,8] + 2 =

[9,10] . 

The waiting time in queue is: ���
(�)

= ��	
(�) − ��(�) = [7,8] − 6 = [1,2]. 

Waiting time in system is :  ��(�) = ���
(�)

+ ��(�) = [1,2] + 2 = [3,4]. 

Interarrival time between third and forth customer is ��(�) = ��(�) − ��(�) = 8 − 6 = 2. 

And so on.. We can form the following table: 

 

Customer ��(�) ��(�) ��(�) ��(�) ��(�) ���
(�)

 ��	
(�) 

1 0 [1,2] [3,4] 0 [1,2] 0 [1,2] 

2 [3,4] 4 [2,3] [3,4] [7,8] 0 4 

3 6 2 2 [7,8] [9,10] [1,2] [3,4] 

4 8 1 4 [9,10] [10,11] [1,2] [2,3] 

5 12 [1,2] [1,2] 12 [13,14] 0 [1,2] 

6 [13,14] 2 - [13,14] [15,16] 0 2 

Table 2: Neutrosophic event-based queue table 

Now we can calculate the performance measures as follows: 

��� =
∑ ����

(�)
�
�

�
���

6
=

0 + 0 + [1,2] + [1,2] + 0 + 0

6
=

[2,4]

6
= [0.33,0.67]	������� 

Which means that customer will wait in the queue between 0.33 and 0.67 mins or between 20 and 40 secs before 

starting being served. 

�� =
∑ ���	

(�)�
�

�
���

6
=

[1,2] + 4 + [3,4] + [2,3] + [1,2] + 2

6
=

[13,17]

6
= [2.17,2.833]	������� 

Which means that customer will stay in the system between 2.17 and 2.833 that is between 2 mins and 10 secs and 2 

mins and 50 secs from the time he arrives until he departs from the system. 

We have also � =
�

��
= 0.375 that is the arrival rate because we totally have 6 customers arrived during 16 minutes. 
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Now using Little’s formula we have: 

�� = � ∗ �� = 0.375 ∗ [2.17,2.833] = [0.81375,1.062375]	��������� 

That means expected number of customers in the system will be between 0.81375 and 1.062375 customers. 

��� = � ∗ ��� = 0.375 ∗ [0.33,0.67] = [0.12375,0.25125]	��������� 

That means expected number of custoemrs in queue will range between 0.12375 and 0.25125 customers. 

Crisp Solution: 

To solve this kind of problems using crisp queues we may take midpoints of intervals, so: 

Customer �(�) �(�) 

1 0 1.5 

2 3.5 4 

3 6 2 

4 8 1 

5 12 1.5 

6 13.5 2 

Table 3: Input data converted into crisp data 

For customer 1: Since the system is empty then the arrival customer will be served without any waiting so �(�) = 0. 

The service time for this customer is approximatley �(�) = 	1.5 so the departure time will be approximately �(�) =

�(�) + �(�) = 0 + 1.5 = 1.5 that is the apprpximated time of start serving the customer plus the approximated 

serving time. 

The waiting time in queue is the difference between starting serving the customer �(�)and arriving time of this 

customer �(�) so : ��
(�)

= �	
(�) − �(�) = 0 − 0 = 0. 

Waiting time in system is sum of waiting time in queue and serving time that is :  �(�) = ��
(�)

+ �(�) = 0 + 1.5 =

1.5. 

Interarrival time between first and next customer is approximately �(�) = �(�) − �(�) = 3.5 − 0 = 3.5 

For customer 2: �(�) = 3.5 that is the approximated arrival time of the second customer. 
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The service starting time of this customer will be its arriving time if the server is empty or it will be immediately 

after the departure time of the previous customer if the server is busy, so it’s �(�) = max��(�), �(�)� =

max(1.5,3.5) = 3.5 

The service time for this customer is �(�) = 4 so the departure time will be �(�) = �(�) + �(�) = 3.5 + 4 = 7.5 . 

The waiting time in queue is the difference between starting serving the customer �(�)and arriving time of this 

customer �(�) so : ��
(�)

= �	
(�) − �(�) = 3.5 − 3.5 = 0. 

Waiting time in system is sum of waiting time in queue and serving time that is :  �(�) = ��
(�)

+ �(�) = 0 + 4 = 4. 

Interarrival time between second and third customer is �(�) = �(�) − �(�) = 6 − 3.5 = 2.5 

And so on.. We can form the following table: 

 

Customer �(�) �(�) �(�) �(�) �(�) ��
(�)

 �	
(�) 

1 0 1.5 3.5 0 1.5 0 1.5 

2 3.5 4 2.5 3.5 7.5 0 4 

3 6 2 2 7.5 9.5 1.5 3.5 

4 8 1 4 9.5 10.5 1.5 2.5 

5 12 1.5 1.5 12 13.5 0 1.5 

6 13.5 2 - 13.5 15.5 0 2 

Table 4: Crisp event-based queue table 

Now performance measures can be calculated as follows: 

 

�� =
∑ ���

(�)
�
�

�
���

6
=

0 + 0 + 1.5 + 1.5 + 0 + 0

6
=

3

6
= 0.5	������� ∈ [0.33,0.67] = ��� 

� =
∑ ��	

(�)�
�

�
���

6
=

1.5 + 4 + 3.5 + 2.5 + 1.5 + 2

6
=

15

6
= 2.5	������� ∈ [2.17,2.833] = �� 

We had before  � = 0.375, now using crisp Little’s formula: 

� = � ∗ � = 0.375 ∗ 2.5 = 0.9375	��������� ∈ [0.81375,1.062375] = �� 

�� = � ∗ �� = 0.375 ∗ 0.5 = 0.1875	��������� ∈ [0.12375,0.25125] = ��� 
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We notice that neutrosophic solutions are more accurate and realistic than crisp solutions. 

 

5. Conclusions   

In this article, we discussed basics of neutrosophic queueing theory and have shown the power of neutrosophic 

logic in modelling queues with imprecise and incomplete inputs in even-based tables of queues. We solved an example 

which contains indetermined times of arrivals, departures, services and services starting times and calculated the 

neutrosophic mean waiting time in queue, neutrosophic mean waiting time in system, neutrosophic expected number 

of customers in queue and neutrosophic expected number of customers in system then compared it to crisp solutions. 

We found that neutrosophic solutions can be considered as an extension to crisp solutions, also neutrosophic 

solutions are more accurate than crisp solutions. 

In future work author looking forward to study more complex applications of neutrosophic logic to more genereal 

queueing problems like bulk queues, balk queues, networks of queues and impatient customers behaviour in queues 

like jockeying and reneging. 
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Abstract  

In this paper, we initially introduce a novel type of matrix representation of Plithogenic 
Crisp/Fuzzy/Intuitionistic/Neutrosophic Hypersoft Set named as Plithogenic 
Crisp/Fuzzy/Intuitionistic/Neutrosophic Hypersoft Matrix, which is generated by multiple parallel sheets of 
matrices. Furthermore, these parallel sheets are representing parallel universes or parallel realities (a combination of 
attributes and sub-attributes w.r.t. subjects). We represent cross-sectional cuts of these hyper-soft matrices as parallel 
sheets (images of the expanded universe). Later, we utilize these Hypersoft matrices to formulate Plithogenic 
Subjective Crisp/Fuzzy/Intuitionistic/Neutrosophic Hyper-Super-Soft Matrix. These matrices are framed by the 
generalization of Whole Hyper-Soft Set to Subjective Whole Hyper-Soft Set and then their representation in such 
hyper-super-soft-matrix (parallel sheets of matrices) whose elements are matrices. The Hypersoft matrices and 
hyper-super-soft matrices are tensors of rank three and four, respectively, having three and four indices of variations. 
Later we provide an application of these Plithogenic Hyper super soft matrices in the form of Local, Global, 
Universal Subjective Ranking Model. The specialty of this model is that it offers precise classification of the 
universe from micro-universe to macro-universe levels by observing them through several angles of visions in many 
environments having several ambiguities and hesitation levels. This model provides optimal and neutral values of 
universes and can compact the expanded universe to a single point in such a way that the compacted universe reflects 
the cumulative effect of the whole universe. It further offers a transparent ranking by giving a percentage authenticity 
measure of the ranking. Finally, we provide an application of the model as a numerical example. 

Keywords: Plithogenic Hyper-Super-Soft matrices, Sheets of matrices, Expanded Universe, Compacted Universe, 

Subjective, Local, Global, Universal Ranking, 
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The theory of fuzziness in mathematics was initially introduced by Zadeh [�] in 1965 named as fuzzy set theory (FST). 

As in crisp Set, a member either completely belongs to a set � or completely doesn't belong to the set � which means 

we assignee membership to set � either � or � while in a fuzzy set, a doubt of belongingness is addressed as a natural 

trait of the human mind in decision making. The complete membership reduced according to the doubt of 

belongingness. We may say a fuzzy set is a set where each element of the universe of discourse �  has some degree of 

membership in the unit closed interval [�,�] in given set �, where � is a subset of universal Set �  with respect to an 

attribute say �   with an imposed condition that the sum of membership and non-membership is one unlike crisp Set 

where the membership is not partial but completely one or completely zero. In fuzzy Set, elements are represented 

with one variable quantity, i.e., degree of membership noted as ��(�)∈ [�,�]∀� ∈ �   and to express the degree of 

non-membership a notation ��(�)∈ [�,�]∀� ∈ �  was used. {�:��(�)} is the general representation of a fuzzy Set. 

Further generalization of fuzzy Set was made by Atanassov [2-3] in 1986, which is known as the Intuitionistic fuzzy 

set theory (IFS). IFS addresses the doubt on assigning the membership to an element in the previously discussed fuzzy 

Set. This expanded doubt is the natural trait of the human mind, known as the hesitation factor of IFS. By introducing 

the hesitation factor in IFS, the sum of opposite membership values was modified. In IFS, the sum of membership, 

non-membership, and hesitation is one. The degree of hesitation was generally expressed by the notation"�"now the 

modified condition is ��(�)+ ��(�)+ ��(�)= �∀� ∈ � . The elements of IFS expressed by using two variable 

quantities."��(�)"and "��(�)"{�:(��(�),��(�))}. Later Intuitionistic fuzzy set theory (IFS) was further modernized 

by Smarandache [1, 15, 17] in 1995, where he assigned an independent degree to the doubt which was aroused in IFS. 

He represented membership by �(�), the truth of an event and non-membership by �(�) falsity or opposite to truth 

and the Indeterminacy �(�) is the neutrality between the truth and its opposite. These three factors are considered as 

independent factors and represented in a unit cube in the non-standard unit interval ]��,�� [. Smarandache represented 

the elements of Standard Neutrosophic Set by using three independent quantities i.e. 

{�:(�(�),�(�),�(�))} with condition � ≤ (�(�)+ �(�)+ �(�)≤ � 

Soft Set was introduced by Molodtsov [5] in 1999, where he exhibited them as a parametrized family of a subset of 

the universal set. Soft Set further expanded by Deli, Broumi, Çağman [23][24]  in 2015. 

Later, Smarandache [16] in 2018 generalized the Soft Set to Hypersoft Set and Plithogenic Hypersoft Set by expanding 

the function of one attribute into a multi attributes/sub-attribute function. He assigned a combined 

membership		���×��×...×��
(�),	non-membership ���×��×...×��

(�) and indeteriminacy ���×��×...×��
(�) ∀� ∈ �   with 

condition ��∩ �� = �  and introduced hybrids of Crisp/ Fuzzy/ Intuitionistic Fuzzy and Neutrosophic hypersoft set 

and addressed many open problems of development of new literature and MADM techniques. 

We have answered some of the open concerns raised by Smarandache [16] in his article "Extension of Soft set to 

Hypersoft Set and then to Plithogenic Hypersoft Set" published in 2018, in our previous article, titled "Plithogenic 

Fuzzy Whole Hyper Soft Set, Construction of Local Operators and their Application in Frequency Matrix Multi-
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Attribute Decision Making Technique"[14]. With the help of this Matrix, some local operators for the Plithogenic 

Fuzzy Hypersoft Set (PFHSS) originated, and their numerical examples constructed. Once these local operators 

applied to (PFHSS) they gave birth to a new type of Soft Set termed as Plithogenic Fuzzy Whole Hypersoft set 

(PFWHSS). 

Now in this article on its first stage, we represent Plithogenic/Fuzzy/Intuitionistic/Neutrosophic Hyper Soft Set in 

different and advanced forms of Matrix termed as Plithogenic Crisp/Fuzzy/Intuitionistic/Neutrosophic Hypersoft 

Matrix (PC/F/I/NHS-Matrix). This special type of Matrix is generated by parallel sheets of matrices representing 

parallel universes or parallel realities.  Then by hybridization of this novel Hyper-soft Matrix and Plithogenic Fuzzy 

Whole Hyper Soft Set, we generate a more generalized and expanded version of Soft Set and name these new Soft 

Set, "Plithogenic Fuzzy/Intuitionistic/Neutrosophic Subjective Hyper- Soft Set." To represent these sets, we further 

generate a more expanded form of Hyper-Soft-Matrix naming as Plithogenic Crisp/Fuzzy/Intuitionistic/Neutrosophic 

Subjective Hyper-Super-Soft Matrix (PC/F/I/NHSSM) which is a more advance form of Matrix. These matrices are a 

hybridization of Super-matrices Introduced by Smarandache [8][9] and Hyper matrices [11].  

* Now the question arises why we are using hyper-soft and hyper-super-soft matrices for the expression of Plithogenic 

Hyper-Soft Set and Plithogenic Subjective Hyper-Soft Set? The answer is very simply and truly convincing that is, 

the Plithogenic universe is so vast and expanded interiorly (like having Fuzzy, Intuitionistic Fuzzy, Picture Fuzzy,  

Neutrosophic, Pythogorian, Universes with memberships non-memberships and indeterminacies) and exteriorly 

(dealing with many attributes, sub-attributes and might be sub-sub-attributes regarding many subjects. The expression 

for such a vastly expanded universe is not possible by using ordinary algebra or matrices. For the repercussion of an 

expanded universe with vast indeterminate data, we need some new theories like super or hyper-super algebra or 

hyper-soft and hyper-super-soft matrices. 

* This article is an initial draft or effort for initiating and opening a new dimension of expression by using hyper or 

hyper-super matrices. It is an expanding field, so in this paper, we introduce names and general expressions of these 

matrices in many environments. A detailed constructed example is presented in Crisp and Fuzzy environments to keep 

the length of the article within the required limits of the journal. Later, the detailed constructed examples in other 

suitable environments would be displayed in the form of upcoming articles. For further motivation see [20-26]. 

In this paper, we discuss some applications of these matrices in the Crisp and fuzzy environment. These Plithogenic 

Hyper Soft Matrices and Plithogenic Subjective Hyper Super Soft Matrices are tensors of rank three and four, 

respectively, having three and four indices of variations. The first index represents rows. The second index represents 

columns. The third index represents parallel sheets of matrices. The fourth index represents several packets of parallel 

sheets. 

In the second stage, we will utilize these special advanced matrices in the development of a ranking model named 

"Plithogenic Fuzzy/Intuitionistic/Neutrosophic  Local, Global, Universal Subjective Ranking model. This subjective 
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ranking model will provide several types of subjective ranking. Initially, it gives Local Subjective Ranking, then 

expands it to Global Subjective Ranking than further extends it to Universal Subjective ranking. 

This model offers decision making in different levels of fuzziness according to the state of mind of decision-makers. 

We may vary the level of fuzziness by choosing a suitable environment like Fuzzy, Intuitionistic Neutrosophic, or all 

environments combined in one environment, etc. 

This model offers a transparent decision by analyzing the universe through several angles of visions. The choice of 

aggregation operator provides a different angle of vision, either optimist pessimist or neutral.  

In this model, Local Subjective Ranking is associated with a particular angle of vision. Global Subjective Ranking 

combines several angles of vision to offer a transparent decision while the Universal, Subjective Ranking is through 

compacting the expanded universe to have an outer look of the universe.  

At the final stage, we provide an application of this subjective ranking model with the help of a numerical example. 

We aim to establish such data handling structures that can reduce the complexity and long calculations in decision-

making techniques. Decisions will often be made understeer and clear uncertainties (i.e., with incomplete and 

uncertain knowledge). With the help of our "Subjective ranking model," problems of incomplete and uncertain 

knowledge of Artificial Intelligence can be solved to a greater extent. 

We are giving such a Mathematical structure/pattern that would possibly deal with the expanded data and will shrink 

its size in such a manner that, in a glimpse, the outcome of it will be obvious to the observer. 

2. Preliminaries 

In this section, we present some basic definitions of soft sets, fuzzy soft sets, hypersoft Set, crisp hypersoft Set, fuzzy 

hypersoft Set, plithogenic hypersoft Set, plithogenic crisp hypersoft sets and plithogenic fuzzy hypersoft Set, hyper 

Matrix and super-matrix. 

Definition 2.1 [5] ( Soft Set) 

"Let �  be the initial universe of discourse, and � be a set of parameters or attributes with respect to �  let �(�) denote 

the power set of �, and � ⊆ � is a set of attributes. Then pair (�,�), where �:� ⟶  �(�) is called Soft Set over �. 

For � ∈ �, �(�) may be considered as Set of � elements or � approximate elements (�,�)= {(�(�)∈ �(�):� ∈

�,�(�)= ���� ∉ �} " 

Definition 2.2 [6] (Soft Subset) 

"For two soft sets (�,�) and (�,�) over a universe �, we say that (�,�) is a soft   subset of (�,�) if (i)     � ⊆ � , 

and (ii)     ∀� ∈ �, �(�)⊆  �(�) ." 

Definition 2.3 [7] (Fuzzy Set)  
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"Let �  be the universe. A fuzzy set �  over �  is a set defined by a membership function ��		representing a mapping 

��		:� ⟶ [�,�]. The vale of ��		(�) for the fuzzy set �  is called the membership value of the grade of membership 

of � ∈ �.	The membership value represents the degree of belonging to fuzzy set � . "A fuzzy set �  on �  can be 

presented as follows.  � = {(��(�)/�):� ∈ �,��(�)∈ [�,�]} " 

Definition 2.4 [4] (Fuzzy Soft Set) 

"Let �  be the initial universe of discourse, �(�) be all fuzzy sets over � . � be the Set of all parameters or attributes 

with respect to �  and � ⊆ � is a set of attributes. A fuzzy soft set �� on the universe �  is defined by the Set of ordered 

pairs as follows, �� = {�,��(�):� ∈ �,��(�)∈ �(�)}, where ��:� ⟶  �(�) such that ��(�)= �  if � ∉ �, 

��(�)= ����(�)(�)/�:� ∈ �,���(�)(�)∈ [�,�]� " 

Definition 2.5 [16] (Hypersoft set) 

"Let �  be the initial universe of discourse �(�) the power set of �. Let ��,��,...,��  for � ≥ � be � distinct 
attributes, whose corresponding attributes values are respectively the sets ��,��,...,��  with ��∩ �� = �  for �≠ � 

and �,�∈ {�,�,...,�}. Then the pair (�,�� × � ×...× ��) where, �:�� × � ×...× �� → �(�), is called a Hypersoft 

set over �" 

Definition 2.6 [16] (Crisp Universe of Discourse) 

"A Universe of Discourse �� is called Crisp if ∀� ∈ �� � ∈ ���%  to �� or membership of � �(�) with respect to � 

in �  is � denoted as �(�)" 

 

 

Definition 2.7 [16] (Fuzzy Universe of Discourse) 

"A Universe of  Discourse �� is called Fuzzy if ∀� ∈ �� 		� partially belongs to �� or membership of � �(�) ⊆

[�,�] where �(�) may be a subset, an interval, a hesitant set, a single value set, denoted as �(��)" 

Definition 2.8 [16] (Crisp Hypersoft set) 

"Let �� be the initial universe of discourse �(��) the power set of � . let ��,��,...,��  for � ≥ � be � distinct 
attributes, whose corresponding attributes values are respectively the sets ��,��,...,��  with ��∩ �� = �  for �≠ � 

and �,�∈ {�,�,...,�} Then the pair (��,�� × � ×...× ��) where,  ��:�� × � ×...× �� → �(��), is called Crisp 

Hypersoft set over ��." 

Definition 2.9 [16] (Fuzzy Hypersoft set) 

 "Let �� be the initial universe of discourse �(��) the power set of ��. Let ��,��,...,��  for � ≥ � be � distinct 
attributes, whose corresponding attributes values are respectively the sets ��,��,...,��  with ��∩ �� = �  for �≠ � 

and �,�∈ {�,�,...,�}. Then the pair (��,��,��,...,��) where, ��:�� × � ×...× �� → �(��), is called Fuzzy 
Hypersoft set over �� , Now instead of assigning combined membership ���×��×...×��

(�) ∀� ∈ �  for Hyper Soft sets 

if each attribute �� is assigned an individual membership ���(�), non-membership ���(�) and Indeteriminacy 

���(�)∀� ∈ �   �= �,�,...,� in Crisp, Fuzzy, Intuitionistic and Neutrosophic Hypersoft set then these generalized 

Crisp, Fuzzy, Intuitionistic and Neutrosophic Hypersoft sets are called Plithogenic Crisp, Fuzzy, Intuitionistic Fuzzy 

and Neutrosophic Hypersoft sets" 



International Journal of Neutrosophic Science (IJNS)                                                    Vol. 6, No. 2,  PP. 56-79, 2020 

 

DOI: 10.5281/zenodo.3841624 
 

 61

Definition 2.10 [8][9] (Super-matrix) 

"A Square or rectangular arrangements of numbers in rows and columns are matrices we shall call them as simple 

matrices while, super-matrix is one whose elements are themselves matrices with elements that can be either scalars 

or other matrices. � = �
��� ���
��� ���

�, where ��� = �
� −�
� �

�,��� = �
� ��
�� −��

�,��� = �
� −�
� �
−� �

�,  ��� =

�
� ��
−�� �
� �

� � is a super-matrix". 

Note: The elements of super-matrices are called sub-matrices i.e. ���,���,���,��� are sub-matrices of the super-

matrix �. 

in this example, the order of super-matrix � is � × � and order of sub-matrices ��� is � × �, ��� is � × � ��� is � × � 

and order of sub-matrix ��� is � × �, we can see that the order of super-matrix doesn't tell us about the order of its 

sub-matrices. 

Definition 2.11 [11] (Hyper-matrix) 

"For ��,...,��  ∈ � , a function �:(��)× ...× (��)→ � is a hyper-matrix, also called an order-d hyper-matrix or d-
hyper-matrix. We often just write ���...�� to denote the value �(��...��) of � at (��...��) and think of � (renamed as 

�) as specified by a d-dimensional table of values, writing � = ����...�����...��

��,...,��
, A 3-hypermatrix may be conveniently 

written down on a (2-dimensional) piece of paper as a list of usual matrices, called slices".  For example 

� = ������= �

���� ���� ���� . ���� ���� ����
���� ���� ���� . ���� ���� ����
���� ���� ���� . ���� ���� ����

� 

3.    Plithogenic Hyper-Soft Matrices and Plithogenic Subjective Hyper-Super-Soft Matrices  

In this section, we develop some literature about the Plithogenic Hypersoft Set in the following order. 

1.  Introduction to some basic new concepts and definitions relevant to the hypersoft Set. 

2. Generalization of plithogenic whole hypersoft Set to plithogenic subjective hypersoft Set in Crisp, Fuzzy, 

Intuitionistic, and Neutrosophic environments. 

3. Generation of new types of Plithogenic Hypersoft matrix and plithogenic Subjective Hyper-Super-Soft 

matrix in Crisp, Fuzzy, Intuitionistic, and Neutrosophic environments to represent these new type of sets. 

4. Development of expanded and compacted versions of plithogenic Subjective Hyper-Super-Soft Matrix in 

plithogenic environment.  

5. Utilization of new types of matrices for the development of a Subjective ranking model. The specialty of this 

model is that it offers the classification of non-physical phenomena and Plithogenic  

Definition 3.1 (Plithogenic Crisp/ Fuzzy,/Intuitionistic/ Neutrosophic/ Whole Hypersoft set) 

If Plithogenic Crisp/Fuzzy/Intuitionistic Fuzzy/Neutrosophic Hyper Soft set expressed by both individual 
memberships �

��
�(��) non-membership �

��
�(��) and Indeterminacy �

��
�(��) ∀�� ∈ �   �= �,�,...,�  ,  �= �,�,...,�  
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and � = �,�,...,� for each given attribute and Combined memberships ���(��), non-membership � ��(��) and 

indeteriminacy ���(��) ∀�� ∈ �  for the given � Combination of attributes/sub-attributes and subjects (� universe), 

then These Plithogenic Crisp/Fuzzy/Intuitionistic Fuzzy/Neutrosophic Hyper Soft set are called Plithogenic 

Crisp/Fuzzy/ Intuitionistic Fuzzy/Neutrosophic Whole Hypersoft set. 

Definition 3.2 (Plithogenic Crisp/Fuzzy,/Intuitionistic/Neutrosophic Subjective Hypersoft Set) 

If Plithogenic Crisp/Fuzzy/Intuitionistic/ Neutrosophic Hypersoft Set is reflected through subjects in such a way that 

it exhibits both an interior and exterior view of the universe, then, These Plithogenic 

Crisp/Fuzzy/Intuitionistic/Neutrosophic Hyper-Soft-Set titled, Plithogenic Crisp/Fuzzy/ Intuitionistic/ Neutrosophic 
Subjective Hypersoft set. The interior view of the universe is reflected through individual memberships �

��
�(��) non-

memberships �
��
�(��) and Indeterminacies �

��
�(��) ∀��∈ �   �= �,�,...,�  ,  �= �,�,...,�  and � = �,�,...,� of 

subjects and the exterior view  is reflected through  summative memberships ���
� (�), non-memberships � ��

� (�) and 

indeteriminacy ���
� (�) ∀��∈ �   united specifically for all attribute/sub-attributes and exhibited w.r.t subjects.  

Note: In Plithogenic Crisp/Fuzzy/ Intuitionistic Fuzzy/ Neutrosophic Subjective Hypersoft set the united membership 
���(��), non-membership � ��(��) and indeteriminacy � ��(��) ∀� ∈ �  are dependent on individual membership 

�
��
�(��), non-membership �

��
�(��) and Indeterminacy �

��
�(��). 

To achieve a universe, reflected through its subjects (matter for), some terminologies are introduced and described 

here.  

Definition 3.3 (Local Subjective Operators): The aggregation operators, used to cumulate the memberships �
��
�(��) 

non-memberships �
��
�(��) and Indeterminacies �

��
�(��)  Of subjects to achieve a universe reflected through its subjects 

are termed as local subjective operators. 

Definition 3.4 (Local Subjective Ranking):  Ranking of subjects under consideration by using a particular 

aggregation operator is called Local Subjective Ranking. This is the case of the classification of the micro-universe. 

Definition 3.5 (Global Subjective Ranking):  Ranking of subjects under consideration by using multiple aggregation 

operators and then obtaining a combined ordering in the form of final ranking is called Global Ranking. This is the 

case of combining several angles of visions. 

Definition 3.6 (Universal Ranking): Ranking of Universes by cumulating effects of attributes and subjects with the 

help of some local operators is called "Universal Ranking." In Universal Ranking, We converge the whole universe 

to a single numeric value. Where the combined effect of all attributes and subjects of the universe would be represented 

by a single numeric value and then writing these converged numeric values in descending order for universal ranking 

purpose. 

Definition 3.7 (Hyper-Soft-Matrix): Let �  be the initial universe of discourse �(�) be the powerset of �. Let 

��
�,��

�,...,��
� for � ≥ � be � distinct attributes, � = �,�,...� representing attributes values, a function �:�� × � ×

...× �� → �(�) is a hypersoft matrix, also called an order-� × � × � hypersoft matrix or d-hypersoft Matrix (� =

�), i.e., a matrix representing a hypersoft set is a hyper-soft matrix (HS-Matrix). As we know, all simple � × �  

Matrices on real vector space are tensors of rank 2, so the new Hyper-Soft Matrix having three indices of variations 

are tensors of rank 3. The Hyper-Soft Matrix is obtained by the generalization of ordinary matrices,  known as tensors 

of rank two. � = ������ is an example of Hyper-Soft Matrix where index � give variation on rows � gives a variation 

on columns, and	� gives variation on clusters of rows and columns. 
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The example and detailed illustration of the Hyper-Soft Matrix is presented in the form of the Plithogenic Crisp/Fuzzy 

Hypersoft Matrix. 

The detailed descriptions and applications of the Plithogenic Intuitionistic and Neutrosophic Hyper-Soft Matrix would 

be exhibited in upcoming versions of research articles.  

Definition 3.8 (Plithogenic Crisp/Fuzzy/Intuitionistic/Neutrosophic Hypersoft Matrix): Plithogenic 

Crisp/Fuzzy/Intuitionistic/Neutrosophic Hypersoft Set, when represented in the matrix form are called Plithogenic 

Crisp/Fuzzy/Intuitionistic/Neutrosophic Hyper Soft Matrices, i.e., if �  is a hypersoft matrix then � = ������, as ���� 

are elements of Matrix and would be expressed in Crisp, Fuzzy, Intuitionistic, Neutrosophic environments with 
memberships �

��
�(��) non-memberships �

��
�(��) and Indeterminacy �

��
�(��) ∀��∈ �   �= �,�,...,�  ,  �=

�,�,...,�  and � = �,�,...,�. 

A general form of Plithogenic Hyper-Soft Matrix in fuzzy environment is expressed as  

� = ��
��
�(��)� 

A general form of Plithogenic Hyper-Soft Matrix in Intuitionistic environment is expressed as  

� = �(�
��
�(��),���

�(��)� 

A general form of Plithogenic Hyper-Soft Matrix in Neutrosophic environment is expressed as  

� = �(�
��
�(��),���

�(��),���
�(��)� 

These matrices described as, 

 Let  �(�) be the universe of discourse in fuzzy or crisp environment and 

�:��
� × ��

� ×...× ��
� → �(�) 

The Plithogenic Crisp/Fuzzy Hypersoft Set having individual memberships �
��
�(��) ∀��∈ �   �= �,�,...,�   vary 

with respect to each attribute �� and sub-attribute ��
� (� = �,�,�,...,� ) where � represent Numeric values of 

attributes called sub-attributes and �= �,�,...,�  are the number of subjects under consideration. 

In fact in Plithogenic Crisp/Fuzzy Hyper Soft Matrix we have three types of variations introduced on memberships 
�
��
�(��) . First variation of � is with respect to subjects representing �  rows of � × �  Matrix. The second variation 

on � is with respect to attributes representing �  columns of � × �  Matrix. A third Variation on � is for sub-attributes 

and represented in the form of � layers or � level sheets of � × �  Matrix. These level cuts of Hyper Matrix are 

categorized in three types: 

1   Vertical front to back and interior level cuts are � × �  Matrix with � level sheets 

2   Vertical left to right and interior level cuts are � × �  Matrix with �  level sheets 

3   Horizontal upper lower and interior level cuts are � × �  Matrix with �  level sheets 

Definition 3.9 (Plithogenic Crisp/Fuzzy/Intuitionistic/Neutrosophic Cubical Hypersoft Matrix): 
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If In Plithogenic Hyper-Soft Matrix = � = �  . That is, the number of horizontal rows , vertical columns and parallel 

level cuts are equal, then it is termed a Cubicle Hypersoft Matrix. 

Definition 3.10 (Plithogenic Crisp/Fuzzy/Intuitionistic/Neutrosophic Square Rectangular Hypersoft Matrix): 

If In plithogenic hypersoft matrix � ≠ � = �  we shall have an equal number of horizontal rows vertical columns in 

all sheets, and the number of sheets is different from the number of rows and columns then this hypersoft Matrix is 

called Square Rectangular Hypersoft Matrices. For example is for the first numeric value of sub-attribute � = � we 

get the first sheet in the form of Matrix ������ and for second level of sub-attributes, we get the second sheet of Matrix 

������. This procedure will continue until the �th sheet obtained by taking � = �. These all sheets will form a hyper 

matrix ������. 

� −Hypermatrix for � numeric values of attributes forming � sheets of � ×  �  Matrix, and if we take � = � we will 

get � −Hypersoft Matrix in the form of three � ×  �  parallel sheets. 

If the environment of the plithogenic hypersoft Set is Crisp/Fuzzy/intuitionistic/neutrosophic, then the plithogenic 

hypersoft Matrix is called "Plithogenic Crisp/fuzzy/Intuitionistic/Neutrosophic hypersoft matrix." 

Plithogenic Crisp/Fuzzy Hypersoft Set when represented in a matrix form having memberships �
��
�(��), We name it 

as Plithogenic Crisp/Fuzzy Hyper-Soft Matrix is exibited as 

 

 Plithogenic Crisp/Fuzzy Hyper-Soft Matrix and level cuts, 

� = ��
��
�(��)� by fixing	� and giving variation to � , � the expanded form of �  is obtained as an � × �  matrix, having 

L level cuts. These L Level cuts are termed as Type-1 Level Cuts. 

� =

⎣
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⎢
⎢
⎢
⎢
⎢
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⎢
⎢
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⎢
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���
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���
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���
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                     (1) 
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Similarly, on the other side, each column of the front sheet with its back columns will form �  Level cuts of � × � 

matrix termed as Type-2 Level Cuts. 

These left to right slices are level cuts of type 2, can and be expressed on a two-dimensional page by giving step by 

step variation to � and expressed as, 

� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

⎣
⎢
⎢
⎢
⎢
⎢
⎡
���

�(��) ���
�(��) . . . ���

�(��)

���
�(��) ���

�(��) . . . ���
�(��)

. . . . . .

. . . . . .

. . . . . .
���

�(�� ) ���
�(�� ) . . . ���

�(�� )⎦
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎡
���

�(��) ���
�(��) . . . ���

�(��)

���
�(��) ���

�(��) . . . ���
�(��)

. . . . . .

. . . . . .

. . . . . .
���

�(�� ) ���
�(�� ) . . . ���

�(�� )⎦
⎥
⎥
⎥
⎥
⎥
⎤

.

.

.

⎣
⎢
⎢
⎢
⎢
⎢
⎡
���

� (��) ���
� (��) . . . ���

� (��)

���
� (��) ���

� (��) . . . ���
� (��)

. . . . . .

. . . . . .

. . . . . .
���

� (�� ) ���
� (�� ) . . . ���

� (�� )⎦
⎥
⎥
⎥
⎥
⎥
⎤

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

               (2) 

 Similarly, Type-3 Level Cuts are upper lower and central interior sheets. These sheets form �  cuts of � × � matrix. 

These top to bottom slices are level sheets of type 3 and can be expressed on a two-dimensional page by giving step 

by step variation to � in � = ��
��
�(��)� and described as,  
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� =
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 (3) 

In �
��
�(��) � provides row-wise variations of subjects, 		� provides column-wise variations of attributes, and � provides 

variations of sub-attributes in sheets of matrices. These are hyper matrices ������ In the journal of order � × � × �. 

 

Definition 3.11 (Hyper-Super Matrix): Such a Hyper matrix whose elements are presented in matrix form is titled 

as Hyper-Super Matrix. These matrices are expressed by using more than two variation indices. These Hyper Super 

matrices have multiple sheets of ordinary matrices, i.e., = �
������������

������������
� , B is an example of a hyper-super matrix. 

The elements of this Matrix ( ������, ������, ������ and ������ ) are hyper-matrices. 

 * Tthe literature regarding to Hyper super matrices like operators properties application would be explored in 

upcoming articles)   

A Hyper-Super Matrix, used to express a Plithogenic Subjective Hypersoft Set, is an example of Hyper-Super Matrix. 

The elements of this Matrix are matrices. These hyper-super matrices have multiple packets of parallel sheets and 

have more than three variations (� ≻ �) . 

The examples of HSS-Matrix are Plithogenic Crisp/Fuzzy/Intuitionistic/Neutrosophic Hyper-Super-Soft 

matrices 

A detailed illustration of the Plithogenic Crisp/fuzzy Hyper-Super-Soft Matrix is presented here, and the rest of the 

introduced matrices would be presented in upcoming articles. 

3.12 (Plithogenic Crisp/Fuzzy/Intuitionistic/Neutrosophic Subjective-Hyper-Super-Soft Matrices): 

If the matrix representation form of PC/FWHSS is in such a way that the last column matrix of each sheet of the hyper 

Matrix represents the Combined effect of memberships for sub-attributes with respect to each subject under 



International Journal of Neutrosophic Science (IJNS)                                                    Vol. 6, No. 2,  PP. 56-79, 2020 

 

DOI: 10.5281/zenodo.3841624 
 

 67

consideration, then these matrices are called Plithogenic Crisp/Fuzzy/Intuitionistic/Neutrosophic Subjective Hyper-

Super-Soft Matrices whose last column of cumulative memberships makes another matrix, we can see here the 

elements of hyper matrices are some matrices, so these matrices are basically hyper super matrices because these are 

such sheets of matrices whose elements are matrices. For example, if the combined memberships  for Plithogenic 

Crisp/ Fuzzy Subjective Hyper Soft Set are denoted by �
��
� (��) for �� subject, combined attributes for �th level of 

sub-attributes denoted by �� and operator used to cumulate memberships for given attributes denoted by �, (� =

�,�,�,�) one of the four local previously constructed operators (ref), then ��� = �������[����]� Is Plithogenic Crisp/ 

Fuzzy Subjective Hyper super Soft Matrix, which will provide categorization of subjects from last ��� memberships 
values. As ���� the elements of Matrix representing crisp/ fuzzy memberships and ���� representing cumulative 

crisp/fuzzy memberships for some subject with respect to all given attributes can be expressed as �
��
� (��). 

More generalized form of ��� is. ��� = �����
�(��)�����

� (��)�� and further expanded form with respect to � and � is, 
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                 (4) 

In Plithogenic Crisp/ Fuzzy Subjective Hyper super Soft Matrix, ��� we give four type of variations 

Example: Different cross-sectional cuts of ��� a super hyper matrix will form packets of multiple parallel sheets, i.e., 

multiple combinations of sheets, which is a more expanded universe. 

In ��� = �����
�(��)�����

� (��)��, Variations of � generates  rows, variations of � generates columns, variations of � 

generates combinations of rows and columns as parallel layers of � × �  matrix and variation of � = �,�,...�  will 

provide �  set of multiple � parallel layers of matrices. 

These sets of combinations of sheets may represent parallel universes, on a two-dimensional sheet of paper the 

expanded form of general hyper super-matrix  

��� = �����
�(��)�����

� (��)�� can be represented as 
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 (5) 



International Journal of Neutrosophic Science (IJNS)                                                    Vol. 6, No. 2,  PP. 56-79, 2020 

 

DOI: 10.5281/zenodo.3841624 
 

 69

It is observed that the multiple sets of parallel sheets (universes) are achieved by giving step by step variation to the 

fourth index �, which is used to represent several aggregation operators to homogenize attributes established as local 

operators. 

It is interesting to note That if we see the hyper-super-soft-matrix on a two-dimensional screen, then columns of sheets 

of � × � × � Matrix will form a general � × � matrices. 

Greater the numeric value of �
��
� (��) better is the �� subject under consideration. This shows that the whole effect of 

the Matrix can be visualized by observing the last column.���
��
�(��)�����

� (��)�� is representing a Hyper Super Soft 

Matrix and for subjective categorization with respect to different levels of sub-attributes is obtained by keeping in 

view a single sheet at a time, to achieve the purpose we shall use one of the sheets of this hyper super-matrix 

���
��
�(��)�����

� (��)�� by fixing � for a specific level of the attribute, and then we will vary " � " which is used to 

represent a particular aggregation operator, and this operator could be used to cumulate attributes effect at a certain 

level. 

��� =  �����
�(��)�����

� (��)�� will represent a single sheet of hyper super-matrix for � universe at a fixed numeric 

value of attribute of first level � = � and using particular operator � = �. 

By fixing a combination of attributes, sub-attributes and subjects means considering one of the parallel sheets (one 

parallel universe) of the hyper-super-soft- Matrix by using Plithogenic Fuzzy Subjective Hyper Super Soft Matrices. 

One may decide which subject is superior with respect to all attributes by analyzing the last column of the sheet (case 

of local Ranking), the subject which corresponds to the greater numeric value in the last column will be considered 

better, and then we will write them in descending order. 

4. Application 

Local, Global and Universal Subjective Ranking Model 

In this section, we utilize the local operators constructed in an earlier published article ([26]) in formulation of 

Subjective Ranking model in plithogenic Crisp/Fuzzy environment. 

1. The specialty of this model is that it offers the classification of subjects by observing them through several 

angles of vision.  

2. Different angles of visions can be expressed by choosing a suitable local operator 

3. This model offers classification in many environments where every environment has its ambiguity and 

uncertainty level.  

4. This Subjective ranking model provides the ranking from micro-universe to the macro universe level. 

5. Initially, this model provides the internal Ranking named "Local Subjective ranking" (classification of 

subjects of micro-universe). In Local Ranking, one perticular local operators is used for the classification 

purpose. 



International Journal of Neutrosophic Science (IJNS)                                                    Vol. 6, No. 2,  PP. 56-79, 2020 

 

DOI: 10.5281/zenodo.3841624 
 

 70

6. At the next stage, this model offers an external classification of subjects named "Global Subjective Ranking." 

In Global Ranking, we combine several operators to formulate an expression that reflected through many 

angles of visions.  

7. This model offers the third type of subjective Ranking named "Universal Subjective Ranking (case of macro 

universe Classification) 

8. This model would provide extreme and neutral values of universes that would be helpful to find out the 

optimal and neutral behaviors of all types of universe micro to macro levels. 

9. At the last stage, it provides a measure of the authority of classification by using the frequency matrix. 

Initially, we consider the case of plithogenic Crisp/fuzzy Subjective-Hyper-Super-Soft matrices for classification of 

subjects. Later we may generalize these models in Plithogenic Intuitionistic and Plithogenic Neutrosophic 

environments. Describe the subjective ranking model in the given steps. 

Step 1.   Construction of Universe:  Consider universe of discourse � = {��} �= �,�,�,..., �  . Consider some 

attributes and subjects needed to be classified where attributes are ��
� �= �,�,�,...,�  and � = �,�,...,� represents 

numeric values (levels) of ��, and subjects are  � = {��}⊂ �  where � can take some values from � to �  such that 

� ≤ �  and define mappings � and � such that, 		 

 �:��
� × ��

� × ��
� ×...× ��

� → �(�)       For some fixed � (level�) 

 �:��
� × ��

� × ��
� ×...× ��

� → �(�)       For some different fixed � (level �)  

Step 2. Plithogenic Crisp/Fuzzy Hyper Soft Matrix:  Write the data or information (Memberships) in the form of 

Plithogenic Fuzzy Hyper Soft Matrix � = ��
��
�(��)� 

Step 3.  Plithogenic Crisp/Fuzzy Subjective Hyper-super-Soft Matrix:  By using previously constructed local 

operators formulate Plithogenic Fuzzy Hyper super Soft Matrix 

                             ��� = �����
�(��)�����

� (��)�� . 

In formulating ��
��
� (��)� we might be handling some favorable, some neutral and some non-favorable attributes, the 

non-favorable attributes can be handled by replacing their corresponding memberships with standard compliments i.e. 
�
��
�
� (��)= � − ���

�(��), While for neutral attributes, the regular memberships can be used.The cumulative 

memberships �
��
� (��) are obtained by uniting regular memberships for favorable and neutral attributes and 

compliments of memberships for non-favorable attributes by using local operators. 

Step 4.   Local Ranking: The Local Ranking would be obtained by observing cumulative memberships ���
� (��) of 

last column of   

��� = �����
�(��)�����

� (��)��, 

Higher the membership value better is the subject corresponding to that membership. 
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At this stage, the classification of all sheets or one selected sheet would be provided according to the requirement. 

The process can be stopped here if transparent Ranking is achieved. 

If there are some ties or ambiguities, would be removed in the next step, and more transparent Ranking can be 

provided with authenticity measurement. 

Step 5.  Global Ranking: Final Global Subjective ordering can be provided by using the Frequency matrix. 

���=

��
��
.
.
.
�� ⎣
⎢
⎢
⎢
⎢
⎡
��� ��� . . . ���
��� ��� . . . ���
. . . . . .
. . . . . .
. . . . . .
�� � �� � . . . ��� ⎦

⎥
⎥
⎥
⎥
⎤

                              (6) 

In ��� the elements of the first column will represent the frequency of obtaining the first position of given subjects. 

The elements of the second column will represent the frequency of obtaining the second position, and so on. To find 
out which subject would attain the first position we observe the entries of the first column of ��� the subject 

corresponding to the highest value of the first column attains the first position, and then we delete the first position 

and the subject who have achieved that position. Afterward, for the selection of the second position, add the remaining 

frequencies of first positions in the frequencies of the second column and then look for the highest frequency in that 

column.  

Once second position is decided to delete column and row of that position correspondingly and continue the procedure 

until the latest position is assigned 

Step 6. Authenticity Measure of Global Ranking:  We may check the authenticity in the last step by taking ratios. 

percentage authenticity of j	�� position for i	��  subject  

 =
�������	���������	��	���	��������

�����	���������	��	�����������
× ��� =

���
�
(���)

∑
�
(���)

× ���						                     (7) 

Step 7. Universal Ranking: If comparison of universes is required we may provide by combining cumulative 

memberships of last column for fixed � and � for each universe. The universe having the largest cumulative 

memberships is considered as a better universe and then writes these cumulative memberships in a descending order. 

��� = ���
�
����(��)�             (8) 

��� = ���
�
��

��
� (��)�           (9) 

��� =
∑
�
��
��
� (��)�

�
                         (10) 

5   Local operators for Construction of Plithogenic crisp/fuzzy Subjective Hyper Super Soft matrices. 

 

These local operators for the plithogenic Crisp/Fuzzy hypersoft Set can be utilized to formulate Plithogenic 

Crisp/Fuzzy Subjective Hyper Super Soft Matrices. 
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By using local disjunction, local conjunction and local averaging operators we developed a combined (whole) 

memberships ���
� (��) for Plithogenic Hyper-Soft-Set. By applying local aggregation operators on Crisp/fuzzy 

Subjective hyper soft matrices � = ��
��
�(��)� the last column of cumulative memberships ��

� (��) is obtained. To 

achieve the purpose we use three local operators, � = � is used for ��� , � = � is used for ���, and � = � is used for 

averaging operator described as, 

∪�����
�(��)� = ���

�
��

��
�(��)� = ��

�(��)						 (12) 

∩�����
�(��)� = ���

�
(�

��
�(��))= ��

�(��)												 (13) 

������
�(��)� =

∑
�
��
��
�(��)�

�
= ��

�(��)				          (14) 

6   Application of Subjective ranking model in Crisp environment 

Numerical Example: 

To achieve the purpose, we will develop plithogenic Fuzzy hyper-soft matrix �  for two Plithogenic crisp Hyper Soft 

Sets with � Combination and � Combination of attributes, i.e., for � and � universes. 

By choosing different numeric values of � consider � Combination of attributes for � and � Combination of attributes 

for 		� . 

Step 1.  Construction of Universe: Consider � =  is a set of five candidates in the Mathematics department. � =

{�����,����,�����}⊂ �  is the Set of three candidates, � = {�����,����,�����}Who have Applied for the selection 

of the post of Assistant professor are our subjects required to be classified with respect to following ��
� attributes and 

sub-attributes. 

��
� =  Subject skill area with numeric values, � = �,� 

��
� =  Pure Mathematics, ��

� =  Applied Mathematics 

��
� =  Qualification with numeric values, � = �,� 

��
� =  Qualification like MS or Equivalent, ��

� =  Higher Qualification like Ph.D. or Equivalent 

��
� =  Teaching experience with numeric values, � = �,� 

��
� =  Five years or less, ��

� =  More than Five years 

��
� =  Age , with numeric values � = �,� 

��
� =   Age is less than forty years 		��

� =   Age is more than forty years 

Consider mapping � and �  such that, 

�:��
� × ��

� × ��
� ×...× ��

� → �(�) (choosing some numeric values of ��
� � ∈ (�,�) 
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�:��
� × ��

� × ��
� ×...× ��

� → �(�) (choosing some  different numeric values of ��
� � ∈ (�,�)Let the these 

candidates are considered as subjects under consideration, and attributes are ��
� �= �,�,�,� and � = �,�,� 

we are looking for a single employ amongst the three candidates, � = {�����,����,�����}= {��,��,��}, where 

��,��,�� represent �� subjects under consideration, initially we consider the first level for � = � i.e. 

1.   Subject skill area: Pure Mathematics �= �, � = � 

2.   Qualification: Qualification like MS or Equivalent �= �, � = � 

3.   Teaching experience: Five years or less �= �, � = � 

4.   Age: Age required is less than forty years �= �, � = � 

Let the Function is � is defined as, 

����
�,��

�,��
�,��

��= {��,��,��} let we name ��
�,	��

�,��
�,	��

� as � Combination representing the first level for � =

� 

Let the Function is � is defined as, 

�:��
� × ��

� × ��
� × ��

� → �(�) 

We are looking for another employ amongst these three candidates for the Category of applied mathematics with a 

different combination of attributes say � Combination for next level ( � = �). 

1.  Subject skill area: Applied Mathematics �= �, � = � 

2.  Qualification: Higher Qualification like Ph.D. or equivalent �= �, � = � 

3.  Teaching experience: More than five years  �= �, � = � 

4.   Age: Age is more than forty years  �= �, � = � 

����
�,��

�,��
�,��

��= {��,��,��} let we name ��
�,��

�,��
�,��

� as � Combination.with respect to. � = {��,��,��} 

Have memberships In PCHSS, PFHSS, which are assigned by decision-makers in crisp environment memberships, 

are considered as �, or �. 

While in a fuzzy environment, memberships are assigned by decision-makers between � and � by using five-point 

scale linguistic chart. 

Step 2.    Plithogenic Crisp Hyper Soft Matrix: 

 With respect to � = {��,��,��} memberships In PCHSS are, 

		����
�,��

�,��
�,��

��= �(�)= {��(�,�,�,�),��(�,�,�,�),��(�,�,�,�)} 

����
�,��

�,��
�,��

��= �(�)= {��(�,�,�,�),��(�,�,�,�),��(�,�,�,)} 
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The Plithogenic Crisp Hyper Soft matrix � = ��
��
�(��)� �for � = �, � = �,�,�,� and �= �,�,� i.e. � 

Combination (first level sheet) and � = �, � = �,�,�,� and �= �,�,� i.e.� Combination (second level sheet) will 

be represented as 		� = ��
��
�(��)� 

� =

⎣
⎢
⎢
⎢
⎢
⎡�
� � � �
� � � �
� � � �

�

�
� � � �
� � � �
� � � �

�
⎦
⎥
⎥
⎥
⎥
⎤

                    (14) 

In Crisp Hyper Soft matrix �  the first level sheet for � Combination of attribute values all memberships are one means 

the members fulfill the first level requirements fully but for second-level sheet i.e.� combination members may fulfill 

the requirements partially, but the crisp universe don't deal with partial belongingness, so all memberships are zero. 

 Step 3. 			Plithogenic Crisp Subjective Hyper-Super-Soft Matrix:     

The Plithogenic Crisp Hyper Soft matrix ��� = �����
�(��)�����

� (��)�� by using eq. � for = �,�,� , � = �,�,�,� and 

� = � , i.e., .� Combination (first level sheet), � = �, � Combination (second level sheet)  � = � (disjunction 

operator) first set of two-level sheets, � = � (conjunction operator) second Set of two-level sheets will be represented  

as, 

��� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

⎣
⎢
⎢
⎢
⎢
⎡�
� � � �
� � � �
� � � �

� �
�
�
�
�

�
� � � �
� � � �
� � � �

� �
�
�
�
�
⎦
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡�
� � � �
� � � �
� � � �

� �
�
�
�
�

�
� � � �
� � � �
� � � �

� �
�
�
�
�
⎦
⎥
⎥
⎥
⎥
⎤

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

        (15) 

It is obvious from this HSS-Matrix that in Crisp environment ��� representing trivial cases where the subjective 

categorization is not visible because all values in the last column are the same, so we in future Classifications we will 

use Plithogenic Fuzzy subjective Hyper-soft matrices for subjective categorization. Further, it is observed that the 

crisp universe case is trivial, where the categorization is not possible. So next steps would not proceed. 

Note: In the next levels, we will consider only a fuzzy environment to achieve transparent classification. 

  Application of Subjective ranking model in Fuzzy environment 

Step1.  Construction of Universe: To formulate Plithogenic Fuzzy Hyper Soft Matrix Step 1 and Step 2 are the same 

as already described in the crisp universe case. 

Step 2.  Plithogenic Fuzzy Hyper-Super-Soft Matrix: 

Memberships of � = {��,��,��} In PFHSS with respect to given attribute memberships are assigned by the decision-

makers by using linguistic five point scale method,[1], [18], [34] [35]  
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		����
�,��

�,��
�,��

��= �(�)= {��(�.�,�.�,�.�,�.�),��(�.�,�.�,�.�,�.�),��(�.�,�.�,�.�,�.�)} 

����
�,��

�,��
�,��

��= �(�)= {��(�.�,�.�,�.�,�.�),��(�.�,�.�,�.�,�.�),��(�.�,�.�,�.�,�.�)} 

The Plithogenic Fuzzy Hyper Soft matrix � = ��
��
�(��)� by using eq.1  for �= �,�,� , 

 � = �,�,�,� and � = �, i.e.� Combination (first level sheet) , � = �, � Combination (second level sheet) will be 

represented as, 

� =

⎣
⎢
⎢
⎢
⎢
⎡�
�.� �.� �.� �.�
�.� �.� �.� �.�
�.� �.� �.� �.�

�

�
�.� �.� �.� �.�
�.� �.� �.� �.�
�.� �.� �.� �.�

�
⎦
⎥
⎥
⎥
⎥
⎤

    (16) 

Step 3. 		Plithogenic Fuzzy Subjective Hyper Super Soft Matrix: 

The Plithogenic Fuzzy Hyper Super Soft matrix ��� = �����
�(��)�����

� (��)��by using eq. 5, 11, 12, and 13 for �=

�,�,� , � = �,�,�,� and � = �, i.e., � combination (first level sheet), � = �, � combination (second level sheet),  

� = �, (disjunction operator) first set of two-level sheets, � = �, (conjunction operator) second set of two-level sheets, 

� = � (averaging operator) a third set of two-level sheets will be represented  as, 

 

��� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

⎣
⎢
⎢
⎢
⎢
⎡�
�.� �.� �.� �.�
�.� �.� �.� �.�
�.� �.� �.� �.�

� �
�.�
�.�
�.�

�

�
�.� �.� �.� �.�
�.� �.� �.� �.�
�.� �.� �.� �.�

� �
�.�
�.�
�.�

�
⎦
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡�
�.� �.� �.� �.�
�.� �.� �.� �.�
�.� �.� �.� �.�

� �
�.�
�.�
�.�

�

�
�.� �.� �.� �.�
�.� �.� �.� �.�
�.� �.� �.� �.�

� �
�.�
�.�
�.�

�
⎦
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡�
�.� �.� �.� �.�
�.� �.� �.� �.�
�.� �.� �.� �.�

� �
�.��
�.��
�.���

�

�
�.� �.� �.� �.�
�.� �.� �.� �.�
�.� �.� �.� �.�

� �
�.�
�.���
�.�

�
⎦
⎥
⎥
⎥
⎥
⎤

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (17) 

 

Step 4.  Local Subjective Ranking: 

���� In eq. 17 provides the local ordering of subjects for � Combination of attributes or � universe (first level sheet 

for � = �) by using the first operator (� = �) given in eq. �� as  

�� ≻ �� ≻ �� (18) 
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����in eq.  17 provides the local ordering of subjects for � Combination of attributes or � universe (first level sheet 

for � = �) by using second operator (� = �) given in eq.  �� as  

�� = �� ≻ �� (19) 

which shows a tie between �� and �� which can be removed in the final Global Ranking of subjects by using 
frequency matrix ��� 

���� In eq. 17 provides the local ordering of subjects for � Combination of attributes (� universe) by using a third 

operator (� = �) given in eq. 13 as  

�� ≻ �� ≻ �� (20) 

Similarly 

���� in eq. �� provides the local ordering of subjects for � Combination of attributes  

(� universe) by using first operator (� = �) given in eq. 11 as 

�� ≻ �� ≻ �� (21) 

���� in eq.. 17provides the local ordering of subjects for � Combination of attributes  

(� universe) by using the second operator (� = �) given in eq. 12as  

�� ≻ �� ≻ �� (22) 

���� in eq.. 17 provides the local ordering of subjects for � Combination of attributes  

(� universe) by using the third operator (� = �) given in eq. 13 as 

�� ≻ �� ≻ �� (23) 

We can observe that the three local ordering of subjects under consideration in � Combination can be provided by 

using three operators described in eq., 11, 13, 12, to find cumulative memberships for � Combination first, then for 

� Combination and then writing in descending order. 

 

Step 5.  Global Subjective Ranking : 

Final global ordering of subjects can be provided by using frequency matrix ��� described in eq.. 6,��, 19, and 20 

In the frequency matrix ���
�  which is a square matrix of frequencies positions for first level sheet � Combination the 

������
�  represents frequencies of 

positions, i.e., the entries of the first column represents the frequencies of attaining first position by given subjects 
while ������ represents subjects.				 
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���
� = �

� � �
� � �
� � �

� 

Global Ranking of subjects from ���
�  is                  	   	�� ≻ �� ≻ ��                                                  (24) 

The frequency matrix for � universe is ���
�
			 

���
�
= �
� � �
� � �
� � �

� 

Global Ranking of subjects from ���
�

 is                   �� ≻ �� ≻ ��                                                       (25) 

We can observe that in both universes �� is the superior subject which means that in both Combination of attributes 

and sub-attributes �� is reflecting the best. 

Step 6. Authenticity measure of final Ranking: 

Percentage authenticity for first level � universe 

By using eq. 7 : 

Percentage authenticity of first position for �� = ��%  

Percentage authenticity of first position for �� = ��.��%  

Percentage authenticity of first position for �� = ���%  

Percentage authenticity for first level � universe 

By using eq. 7 : 

Percentage authenticity of first position for �� = ���%  

Percentage authenticity of first position for �� = ���%  

Percentage authenticity of first position for �� = ���%  

Step 7.  Final Universal Ranking: 

The final ordering of universes provided as. 

Maximum Universal Memberships of � and � universes: 

taking � = �,� for � and � universes and fixing � = � as described in eq. 8, we can provide maximum universal 

memberships of all given subjects with respect to attributes, 

�
��
� (�)= �.�,	�

��
� (�)= �.� (26) 

Where �  representing merged subjects, we can see by using operator � = �, � universe is better than � universe. 
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Minimum Universal Memberships of � and � universes: 

Taking � = �,� for � and � universes and fixing � = � as described in eq.. 9 we can provide minimum universal 

memberships of all given subjects with respect to attributes, 

�
��
� (�)= �.�,	�

��
� (�)= �.� (27) 

We can see by using operator � = �, � universe is better than � universe. 

Average Universal Memberships of � and � universes: 

similarly, taking � = �,� for � and � universes and fixing � = � as described in eq.. 10, we can provide average 

universal memberships of all given subjects with respect to attributes, 

�
��
� (�)= �.���,�

��
� (�)= �.���           (28) 

we can see by using operator � = �, � universe is better than � universe 

5. Conclusions   

1.   We can see from expressions 18, 19, 20 the final order in eq. 24 is the most frequently observed order in 
all these ranking orders which is also observed same in local ordering of � universe (Eq. 21, 22, 23) and is again same 
in final global ordering of � universe 25, which shows the final global Ranking is transparent and authentic. 

2. expressions   26, 27, 28 provides highest, lowest, and average cumulative memberships of universes. 

3. In Universal ordering, it is observed that on the Global Universal level, � universe is better than � universe. 

1. Local ordering:  we can observe local ordering by using the novel plithogenic hyper-super-soft-matrix and local 
operators. We can judge the performance of some fixed subjects in a particular  universe, i.e., one combination or 
level sheet. This is the case of the inner classification of the universe. 

2. Global ordering:   We can provide global ordering by considering the performance of some fixed subjects in multiple 
universes, i.e., different combinations of sub-attribute or level sheets are combined by using the frequency matrix. 
This is the case of combining several angles of visions in the final decision. 

3. Universal ordering:  We can compare these universes by combining the cumulative memberships of the last column 
for each universe. The universe having the largest cumulative average membership is the better and then can write 
them by descending order. 

4. Extreme Universal Memberships: We can also find out extreme values of these universes and can judge these 
subjects in a grand universe which is made by multiple smaller parallel universes so we can choose the best subject 
from all universes that is the one who is best in most universes or we can select one reality out of multiple parallel 
realities these facts are useful in the field of artificial intelligence. 
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Abstract  

In this paper, we introduce the concept of AH-subspace of a neutrosophic vector space and AHS-linear 

transformations. We study elementary properties of these concepts such as Kernel, AH-Quotient, and dimension. 
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1. Introduction 
 

Neutrosophy, as a new branch of philosophy and of logic, founded by Smarandache, got  its way in algebraic structure 

studies. Many neutrosophic algebraic structures were defined and studied such as neutrosophic groups, neutrosophic 

rings, neutrosophic refined rings, and neutrosophic vector spaces. See [3,4,5,6,9]. In 2019 and 2020 Smarandache 

[12,13,14] generalized the classical Algebraic Structures to NeutroAlgebraic Structures (or NeutroAlgebra) {whose 

operations and axioms are partially true, partially indeterminate, and partially false} as an extension of Partial Algebra, 

and to AntiAlgebraic Structures (or AntiAlgebra) {whose operations and axioms are totally false}. 

AH-substructures were firstly defined in neutrosophic rings in [1], and then they have been studied in refined 

neutrosophic rings in [2]. These structures have had many symmetric properties that illustrate a bridge between 

classical algebra and neutrosophic algebra. In this paper, we try to define AH-subspace and AHS-subspace of a 

neutrosophic vector space and  introduce some of its elementary properties. Also, some interesting concepts were 

defined and used in this study, such as neutrosophic AH-linear transformations, and AH-Quotient. 

Motivation 

This work is a continuation of works done in [1,2], that established the theory of neutrosophic AH-substructures in 

neutrosophic algebraic structures. 

2. Preliminaries 

Definition 2.3:[5] Let ( V, +, ∙ ) be a vector space over the field K then (V(I), +, ∙) is called a weak neutrosophic 

vector space over the field K, and it is called a strong neutrosophic vector space if it is a vector space over the 

neutrosophic field K(I). 

HP
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A neutrosophic field K(I) is a triple (K(I),+, ∙), where K is a classical field. A neutrosophic field is not a field by 

classical meaning, but it is a ring. 

Elements of V(I) have the form 	� + ��; �	, � ∈ �, i.e V(I) can be written as �(�) = � + ��. 

Definition 2.4: [5]  Let V(I) be a strong neutrosophic vector space over the neutrosophic field K(I) and W(I) be a 

non empty set of V(I), then W(I) is called a strong neutrosophic subspace if W(I) itself is a strong neutrosophic 

vector space. 

Definition 2.5:[5] Let U(I) and W(I) be two strong neutrosophic subspaces of V(I) then we say that V(I) is a direct 

sum of U(I) and W(I) if and only if for each element x ∈ �(�) then x can be written uniquely as x = y + z such y	∈
�(�) and z ∈ �(�) 

Definition 2.6:[5]  

Let U(I) and W(I) be twostrong neutrosophic subspaces of V(I) and let �: �(�) → �(�), we say that � is a neutrosophic 

vector space homomorphism if  

(a) �(�) = �. 

(b) � is a vector space homomorphism. 

We define the kernel of f by Ker f = { x∈ �(�); �(�) = 0 }. 

Definition 2.7:[5] 

Let ��, ��..�� ∈ �(�)	and	� ∈ �(�) we say that � is a linear combination of { ��; � = 1, .., �} if  

�= ���� + ⋯ + ���� such that �� ∈ �(�). 

The set { ��; � = 1, .., �} is called linearly independent if ���� + ⋯ + ���� = 0 implies	�� = 0 for all i. 

Theorem 2.10: [5]  

If { ��	, … , ��	} is a bases of V(I) and �: �(�) → �(�) is a neutrosophic vector space homomorphism then 

{f(��)	, … , �(��)} is a bases of W(I). 

Definition 2.8: [1] 

Let R(I) be a neutrosophic ring and � = �� + ��� = {�� + ���;	�� ∈ ��, �� ∈ ��}. 

(a) We say that P is an AH-ideal if ��	and�� are ideals in the ring R. 

(b) We say that P is an AHS-ideal if �� = ��. 

Definition 2.9: [2] 

Let (R(��, ��), +, × ) be a refined neutrosophic ring, and ��, ��, �� be three ideals in the ring R then the set 

� = (��, ����, ����) = {(�, ���, ���); � ∈ ��, � ∈ ��, � ∈ ��} is called a refined neutrosophic AH-ideal. 

If �� = �� = �� then P is called a refined neutrosophic AHS-ideal. 
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3. Main concepts and discussion 

Definition 3.1:  

Let V(I) = V+VI be a strong/weak neutrosophic vector space, the set  

� = � + �� = {� + ��; � ∈ �, � ∈ �}, where	P	and	Q 	are	subspaces	of	� is called an AH-subspace of V(I). 

If � = � then S is called an AHS-subspace of V(I). 

Example 3.2: 

We have V = �� is a vector space, � =	< (0,1) > , � =	< (1,0) > , are two subspaces of V. The set 

� = � + �� = {(0, �) + (�, 0)�; �, � ∈ �} is an AH-subspace of V(I). 

The set � = � + �� = {(0, �) + (0, �)�}; �, � ∈ � is an AHS-subspace of V(I). 

Theorem 3.3:  

Let �(�) 	= 	� + �� be a neutrosophic weak vector space, and let � = � + �� be an AH-subspace of 	�(�), i.e �, � 

are supspaces of V, then S is a subspace by the classical meaning. 

Proof:  

Suppose that � = � + ��, � = � + �� ∈ �; �, � ∈ �, �, � ∈ �, we have  

� + � = (� + �) + (� + �)� ∈ �. For each scalar � ∈ � we obtain �.� = �.� + (�.�)� ∈ �, since 

�	and	�	are	subspaces; thus � = � + �� is a subspace of V(I) over the field K. 

Remark 3.4:  

An AH-subspace S is not necessary a subspace of neutrosophic strong vector space V(I) over a neutrosophic field 

K(I), see Example 3.5. 

Example 3.5:  

Let S be the AH-subspace defined in Example 3.2, and � = 1 + � ∈ �(�) be a neutrosophic scalar, and � = (0,1) +

(2,0)� ∈ �, we have: 

�.� = (1 + �) ∙ � = (0,1) + [(2,0) + (0,1) + (2,0)]� = (0,1) + (4,1)�, since (4,1) does not belong to Q, we find 

that � ∙ � is not in S, thus S is not a subspace of V(I). 

The following theorem shows that any AHS-subspace is a subspace of  a neutrosophic strong vector space. 

Theorem 3.6:  

Let V(I) be a neutrosophic strong vector space over a neutrosophic field K(I), let � = � + �� be an AHS-subspace. S 

is a subspace of V(I). 

Proof: 

Suppose that � = � + ��, � = � + �� ∈ �; �, �, �, and	� ∈ �, we have 
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� + � = (� + �) + (� + �)� ∈ �. Let 	� = � + �� ∈ �(�) be a neutrosophic scalar, we find 

� ∙ � = (�.�) + (�.� + �.� + �.�)� ∈ �, since �.� + �.� + �.� ∈ �, thus we get the desired result. 

Definition 3.7:  

(a) Let V and W be two vector spaces, ��: � → � be a linear transformation. The AHS-linear transformation can be 

defined as follows: 

�: �(�) → �(�); �(� + ��) = ��(�) + ��(�)�.  

(b) If �	 = 	� + �� is an AH-subspace of V(I), �(�) = ��(�) + ��(�)�. 

(c) If �	 = 	� + �� is an AH-subspace of W(I), ���(�) = ��
��(�) + ��

��(�)�. 

(d) �� − ���	�	 = ����� + �����	� = {� + ��; �, � ∈ �����}.  

Theorem 3.8: 

Let W(I) and V(I) be two neutrosophic strong/weak vector spaces, and  �: �(�) → �(�) be an AHS-linear 

transformation, we have: 

(a) �� − ���	� is an AHS-subspace of V(I). 

(b) If  �	 = 	� + �� is an AH-subspace of V(I), �(�) is an AH-subspace of W(I). 

(c) If �	 = 	� + �� is an AH-subspace of W(I), ���(�) is an AH-subspace of V(I). 

Proof: 

(a) Since ����� is a subspace of V, we find that �� − ���	�	 = ����� + �����	� is an AHS-subspace of V(I). 

(b) We have �(�) = ��(�) + ��(�)�; thus L(S) is an AH-subspace of W(I), since ��(�), ��(�)are subspaces of W. 

(c) By regarding ���(�) = ��
��(�) + ��

��(�)�, ��
��(�)	and	��

��(�) are subspaces of V, we obtain that  ���(�) is an 

AH-subspace of V(I). 

Theorem 3.9:  

Let W(I) and V(I) be two neutrosophic strong vector spaces over a neutrosophic field K(I), and  �: �(�) → �(�) be 

an AHS-linear transformation, we have: 

�(� + �) = �(�) + �(�), �(�.�) = �.�(�), for all �, � ∈ �(�),� ∈ �(�). 

Proof: 

Suppose � = � + ��, � = � + ��; �, �, �, � ∈ �, ���	� = � + �� ∈ �(�), we have 

�(� + �) = �([� + �] + [� + �]�) = ��(� + �) + ��(� + �)� = 

[��(�) + ��(�)�] + [��(�) + ��(�)�] = �(�) + �(�). 

�.� = (�.�) + (�.� + �.� + �.�)�, �(�.�) = ��(�.�) + ��(�.� + �.� + �.�)� 
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= �.��(�) + [�.��(�) + �.��(�) + �.��(�)]� = (� + ��).(��(�) + ��(�)�) = �.�(�). 

Theorem 3.10:  

Let � = � + �� be an AH-subspace of a neutrosophic weak vector space V(I) over a field K, suppose that  

� = {��; 1 ≤ � ≤ �} is a bases of P and � = {��; 1 ≤ � ≤ �} is a bases of Q then � ∪ �� is a bases of S. 

Proof: 

 Let � = � + �� be an arbitrary element in S; � ∈ �, � ∈ �. Since P and Q are subspaces of V we can write 

� = ���� + ���� + ⋯ + ����;	�� ∈ �	���	�� ∈ �, � = ���� + ���� + ⋯ + ����;	�� ∈ �, �� ∈ �. 

Now we obtain � = (���� + ⋯ + ����) + (����� + ⋯ + �����); thus � ∪ �� generates the subspace S. 

� ∪ �� is linearly independent set. Assume that (���� + ⋯ + ����) + (����� + ⋯ + �����) = 0, this implies  

���� + ���� + ⋯ + ���� = 0 and  (���� + ���� + ⋯ + ����)� = 0. Since X and Y are linearly independent sets 

over K, we get �� = �� = 0	���	���	�, � and � ∪ �� is linearly independent then it is a bases of S. 

Result 3.11: 

Let � = � + �� be an AH-subspace of a neutrosophic weak vector space V(I) with finite dimension over a field K, 

from Theorem 3.10 and the fact that � ∩ �� = ∅, we find dim(�) = dim(�) + dim	(�). 

Example 3.12:  

Let V =��, P=<(0,0,1)>, Q=<(0,1,0)> be two subspaces of V, 

(a) � = � + �� = {(0,0,�) + (0, �, 0)�; 	�, � ∈ � }is an AH-subspace of V(I). 

(b) The set {(0,0,1), (0,1,0)�} is a basis of S, dim(�) = dim(�) + dim(�) = 1 + 1 = 2. 

(c) ��: � → �;	��(�, �, �) = (� + �, �, �)���	���	�, �, � ∈ � is a linear transformation, the corresponding AHS-

linear transformation is �: �(�) → �(�); �[(�, �, �) + (�, �, �)�] = ��(�, �, �) + ��(�, �, �)� = 

(� + �, �, �) + (� + �, �, �)�. 

(d) �(�) = ��(�) + ��(�) = ��{(0,0, �)}+ ��{(0, �, 0)}� = {(0,0, �) + (�, �, 0)�}; �, � ∈ �, which is an AH-

subspace of V(I). 

Example 3.13 : 

Let V=��, W=��, ��: � → �;	��(�, �) = (� + �, � + �, � + �) is a linear transformation. The corresponding AHS-

linear transformation  is 

�: �(�) → �(�); �[(�, �) + (�, �)�] = (� + �, � + �, � + �) + (� + �, � + �, � + �)�.  

����� =< (1,−1) > , �� − ���� = ����� + �����	� =< (1, −1) > +< (1,−1) > � = 

{(�, −�) + (�, −�)�; �, � ∈ �} which is an AHS-subspace of V(I). 

It is clear that dim(����) = 1 + 1 = 2 according to Theorem 3.10. 
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Definition 3.14:  

Let V(I) be a neutrosophic strong/weak vector space, � = � + �� be an AH-subspace of V(I), we define 

 AH-Quotient as: 

�(�) �⁄ = � �⁄ + (� �)⁄ �= (� + �) + (� + �)�; �, � ∈ �. 

Theorem 3.15: 

Let V(I) be a neutrosophic weak vector space over a field K, and � = � + �� be an AH-subspace of V(I). The AH-

Quotient �(�) �⁄  is a vector space over the field K with respect to the following operations: 

Addition: [(� + �) + (� + �)�] + [(� + �) + (� + �)]� = (� + � + �) + (� + � + �)�; �, �, �, � ∈ �. 

Multiplication by a scalar: (�).[(� + �) + (� + �)�] = (�.� + �) + (�.� + �)�;  

�, � ∈ �	and	� ∈ �. 

Proof: 

It is easy to check the operations completely are well defined, and (�(�) �⁄ , +) is abelian group. 

Let � = [(� + �) + (� + �)�] ∈ �(�) �⁄ , we have 1.� = �. 

Assume that �, � ∈ �, we have �.(�.�) = �.[(�.� + �) + (�.� + �)�] = (�.�.� + �) + (�.�.� + �)� =

(�.�).�. 

(� + �).� = [(� + �).� + �] + [(� + �).� + �]� = �.� + �.�. 

Let ℎ = [(� + �) + (� + �)�] ∈ �(�) �⁄ , � + ℎ = (� + � + �) + (� + � + �)�, 

�.(� + ℎ) = (�.� + �.� + �) + (�.� +�.� + �)�.� +�.ℎ. 

Example 3.16: 

We have V = �� is a vector space over the field R, � =< (0,1) > , � =< (1, 0) > 	are two subspaces of V, 

� = � + �� = {(0, �) + (�, 0)�; �, � ∈ �} is an AH-subspace of V(I). 

The AH-Quotient is �(�) �⁄ = {[(�, �) + �] + [(�, �) + �]�; �, �, �, � ∈ �}. 

We clarify operations on �(�) �⁄  as follows: 

� = [(2,1) + �] + [(1,3) + �]�, � = [(2,5) + �] + [(1,1) + �]� are two elements in	�(�) �⁄ ,� =

3	��	�	������	��	�. 

� + � = [(4,6) + �] + [(2,4) + �]�, 3.� = [(6,3) + �] + [(3,9) + �]�. 

Remark 3.17:  

If � = � + �� is an  AHS-subspace of a neutrosophic weak vector space V(I) over the field K, then AH-Quotient 

�(�) �⁄ = � �⁄ + � �⁄ � is a weak neutrosophic vector space, since � �⁄  is a vector space.  
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5. Conclusion 

In this article, we have defined the concepts of AH-subspace, AHS-subspace, and AHS-linear transformation in 

neutrosophic vector spaces. Also, we have studied some basic properties of these concepts. 
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Abstract 

In a recent paper, we describe a model of quantum communication based on combining consciousness 

experiment and entanglement, which can serve as impetus to stop 5G-network-caused diseases. Therefore, 

in this paper we consider superluminal physics and superluminal communication as a bridge or intermediate 

way between subluminal physics and action-at-a-distance (AAAD) physics, especially from neutrosophic 

logic perspective. Although several ways have been proposed to bring such a superluminal communication 

into reality, such as Telluric wave or Telepathy analog of Horejev and Baburin, here we also review two 

possibilities: quaternion communication and also quantum communication based on quantum noise. Further 

research is recommended in the direction outlined herein. Aim of this paper: We discuss possibilities to go 

beyond 4G and 5G network, and avoid the unnecessary numerous health/diseases problems caused by 

massive 5G network. Contribution: We consider quaternionic communication and quantum communication 

based on quantum noise, which are largely unnoticed in literature. Limitation: We don’t provide scheme for 

operationalization, except what we have provided in other paper. 
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1. Introduction  

In line with the rapid development of new branch of foundational mathematics, i.e. Neutrosophic Logic, here we 

discuss potential application of NL theory in the field of telecommunication. See for recent papers on NL: [31-35]. It 

is known that nowadays telecommunication systems are predominated by RF systems, including numerous wireless 

systems, such as 4G Wi-Fi, 4G network etc. And the world is now in transition stage towards 5G network deployment. 

A growing number of individuals are coming together in many countries - to  attempt  to  block or stop  the current 

telecoms roll-out of 5G electromagnetic  microwave radiation which has proved to be extremely harmful to all 

sentient life forms, including plant life.1 

 

It would prove invaluable if some methods could be found to render the 5G millimetre wave transmissions 

ineffective. In other words, to block or dissolve their ability to irradiate surrounding matter/life. Our concern is not 

to find a way to 'to protect the individual' but to prevent whole areas from being affected by microwaves via 

the tens of thousands of transmission bases that 5G requires - and from satellite sources. 

In literature, there are known proposals or experiments which were purported to suggest possible ways to develop 

superluminal communication, to name a few: Telluric wave and also Telepathy analog way. For instance, in biofield 

site, it is written, which can be paraphrased as follows: 

“Torsion fields is one of the names given to the more unpretentious parts of the biofield. Torsion fields have additionally 

been alluded to as orgone, od, tachyon, aether, Tesla waves, scalar waves, the zero point field and then some. There is no 

settled upon logical agreement on these increasingly inconspicuous parts of the biofield. Torsion fields are guessed to the 

moderating mode for separation recuperating, which happens immediately and which research has been demonstrated 

that to be difficult to be transmitted through exemplary electromagnetic frequencies.”2 

See also Horejev and Baburin’s paper [27]. Besides, there are also other suggestions of telepathic analog 

communications [28-30]. 

From Neutrosophic Logic perspective, we need to distinguish the subluminal communication from superluminal 

communication. In fact, Smarandache’s Hypothesis states that there is no speed limit of anything, including light and 

“particles [16]. One of us (FS) also wrote in this regards:  

“In a similar way as passing from Euclidean Geometry to Non-Euclidean Geometry, we can pass from 

Subluminal Physics to Superluminal Physics, and further to Instantaneous Physics (instantaneous traveling). 

In the lights of two consecutive successful CERN experiments with superluminal particles in the Fall of 2011, 

we believe these two new fields of research should begin developing. A physical law has a form in Newtonian 

physics, another form in the Relativity Theory, and different form at Superluminal theory, or at Instantaneous 

(infinite) speeds – according to the S-Denying Theory spectrum. First, we extend physical laws and formulas 

                                                           
1 A brief explanation here: https://www.5gspaceappeal.org/the-appeal 
2 https://www.biofieldlab.com/whatisthebiofield 
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to superluminal traveling and to instantaneous traveling. Afterwards, we should extend existing classical 

physical theories from subluminal to superluminal and instantaneous traveling.”3 

While the idea behind Smarandache hypothesis is quite simple and based on known hypothesis of quantum mechanics, 

called Einstein-Podolski-Rosen paradox, in reality such a superluminal physics seems still hard to accept by majority 

of physicists. 

The background idea and our motivation for suggesting to go beyond RF/subluminal communication towards 

superluminal communication are two previous papers: (a) there will be more than 720! (factorial) types of new diseases 

which may arise, if the 5G network is massively implemented – and the present covid-19 pandemic may be just the 

beginning; (b) in a recent paper [14], we describe a model of quantum communication based on combining 

consciousness experiment and entanglement, which can serve as impetus to stop 5G-network-caused diseases, and (c) 

another recent paper that we presented in CTPNP 2019, where we discuss a realistic interpretation of wave mechanics, 

based on a derivation of Maxwell equations from quaternionic Dirac equation [36]. From these previous papers, we 

come to conclusion to superluminal communication is not only possible, but it is indeed embedded in quaternionic 

Maxwell equations, which are close to their original idea by Prof. James Clerk Maxwell. 

Therefore, in this paper we consider superluminal physics and superluminal communication as a bridge or intermediate 

way between subluminal physics and action-at-a-distance (AAAD) physics, especially from Neutrosophic Logic 

perspective. Although several ways have been proposed to bring such a superluminal communication into reality, such 

as Telluric wave or Telepathy analog of Horejev and Baburin, here we also review two possibilities: quaternion 

communication and also quantum communication based on quantum noise. 

These two choices will be discussed in section 4. But first of all we will discuss what is the difference between 

subluminal communication and superluminal communication. 

 

2. What is the difference between subluminal communication and superluminal communication? 

According to Belrose, which can be paraphrased as follows:  

“The extremely plausibility of remote correspondences was established on the investigations of James Clerk 

Maxwell, and his conditions structure the premise of computational electromagnetics. Their accuracy was 

built up by Heinrich Hertz, when in 1887 he found EM radiation at UHF frequencies as anticipated by 

Maxwell. Since the spearheading work of Maxwell starting in the center 1850s, and of his adherents, a little 

gathering that got known as Maxwellians, which incorporated UK's Poynting and Heaviside, Maxwell's 

conditions have been read for longer than a century, and have demonstrated to be one of the best speculations 

in the historical backdrop of radioscience. For instance, when Einstein saw that Newtonian elements had as 

changed to be good with his exceptional hypothesis of relativity, he found that Maxwell's conditions were at 

                                                           
3 See Florentin Smarandache. url: http://fs.unm.edu/SuperluminalPhysics.htm 
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that point relativistically right. EM field impacts are created by the increasing speed of charges, thus Maxwell 

had naturally incorporated relativity with his conditions.” [25] 

History also told us that around a century ago, there was proponents of wireless telegraphy, including Marconi, and 

opponents of it, including Tesla. And there were records of conflict between Tesla and Marconi. History also told us 

that around the same months after wireless telegraphy networks were installed everywhere, there was a flu pandemic, 

just like we observed now. It is also known, that wireless telegraphy was based on RF technology, which is actually a 

subluminal physics, while Tesla preferred a superluminal technology beyond Radio Frequency (sometimes he referred 

to as non-Hertzian waves). See also [18-26]. 

For instance, Paul Brenner wrote: 

“Marconi's work is based on copies of patents of many other inventors without their permission. His so called  

original "two-circuit" device, a spark-gap transmitter plus a coherer-receiver, was similar to those used by 

Oliver Lodge in a series of worldwide reported tests in 1894. Tesla disputed that Marconi was able to signal 

for greater distances than anyone else when using the spark-gap and coherer combination. In 1900 Alexander 

Stepanovich Popov declared to the Congress of Russian Electrical Engineers: "[...] the emission and reception 

of signals by Marconi by means of electric oscillations [was] nothing new. In America, the famous engineer 

Nikola Tesla carried the same experiments in 1893." [20] 

It is also known from history books, that in the last century, the understanding of the nature of electromagnetic 

phenomena was proceeding with a constant rivalry between two concepts of interaction: namely, Newton 

instantaneous action at a distance (IAAAD) and Faraday-Maxwell short-range interaction. Finally, the discovery of 

Faraday’s law of induction (explicit time dependence of electromagnetic phenomena) and the experimental 

observation of electromagnetic waves seemed to confirm the short-range interaction. Nevertheless, the idea of IAAAD 

still has many supporters. Among the physicists who have developed some theories based, in any case, on this concept, 

we can find names such as Tetrode and Fokker, Frenkel and Dirac, Wheeler and Feynman, and Hoyle and Narlikar. 

This interest in the concept of IAAAD is explained by the fact that classical theory of electromagnetism is an 

unsatisfactory theory all by itself, and so there have been many attempts to modify either the Maxwell equations or 

the principal ideas of electromagnetism. 

As Augusto Garrido wrote in his review to Chubykalo et al’s book: 

“On the other hand, the famous article “Can Quantum-Mechanical Description of Physical Reality Be 

Considered Complete?” by Einstein, Rosen and Podolsky published in Physical Review in 1935 revived this 

discussion in a new panorama. In this article Einstein made public his position against the Copenhagen 

interpretation of the quantum mechanics. The controversy unleashed since then made this article a very 

popular one for its implications in our physical and philosophical understanding of the physical reality. The 

main objective of this article was to demonstrate that the quantum mechanics, the same way the Newtonian 

mechanics was for the relativistic mechanics, is an incomplete theory, and therefore, transitory of reality. For 

that reason Einstein made evident what is now known as the EPR paradox. According to EPR quantum 

mechanics is no local theory, that is to say, it permits action at a distance and, that is forbidden by the relativity 

theory, instantaneous action at a distance.  

Unfortunately for Einstein, and for common sense the experiment performed by Aspect seems to indicate 

that the IAAAD following from quantum mechanics exists. As a consequence of this confusion, physicists 
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are divided in two big groups according their position about IAAAD. These disputants are the quantum 

physicists and the relativists, who, almost after a century, have not been able to answer the old question 

whether the subject of their studies is a complete and integrated Universe – a physical Universe in its own 

right – or simply a assemblage of locally interacting parts.”[15] 

Therefore, to summarize the above paragraph, it seems we can distinguish among few technologies for 

communication: 

- Subluminal RF physics  subluminal wave  subluminal communication 

- Close to light speed physics  relativistic wave 

- Superluminal physics  superluminal wave  superluminal communication 

- Action at a distance physics  AAAD/quantum communication 

From Neutrosophic Logic perspective, we can see that superluminal physics and superluminal communication are an 

intermediate way between the subluminal physics and AAAD physics, because in NL theory there is always a 

possibility to find a third way or intermediate state.  

Summarizing: 

 Standpoint A (subluminal)  Intermediate (superluminal)  Standpoint B (AAAD) 

In the next sections, we will discuss shortly quantum entanglement and how it can be used in developing new 

telecommunication technologies. 

 

3. What is quantum entanglement? 

In its simplest form the quantum theory’s features can be reduced to: (a) wave function description of microscopic 

entities and (b) entanglement. Entanglement is a key property that makes quantum information theory di�erent from 

its classical counterpart.[14] 

According to Scolarici and Solombrino [5]:  

The essential difference in the concept of state in classical and quantum mechanics is clearly pointed out by 

the phenomenon of entanglement, which may occur whenever the product states of a compound quantum 

system are superposed. Entangled states play a key role in all controversial features of QM; moreover, the 

recent developments in quantum information theory have shown that entanglement can be considered a 

concrete physical resource that it is important to identify, quantify and classify. 

Nonetheless, they concluded: “our research has pointed out a puzzling situation, in which the same state of a physical 

system is entangled in CQM, while it seems to be separable in QQM.” 

While entanglement is usually considered as purely quantum effect, it by no means excludes possibility to describe it 

in a classical way.  
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In this regards, from history of QM we learn that there were many efforts to describe QM features in more or less 

classical picture. For example: Einstein in 1927 presented his version of hidden variable theory of QM, starting from 

Schrödinger’s picture, which seems to influence his later insistence that “God does not play dice” philosophy.[6][7] 

Efforts have also been made to extend QM to QQM (quaternionic Quantum Mechanics), for instance by Stephen Adler 

from IAS.[8] 

But in recent decades, another route began to appear, what may be called as Maxwell-Dirac isomorphism route, where 

it can be shown that there is close link between Maxwell equations of classical electromagnetism and Dirac equations 

of electron. Intuitively, this may suggest that there is one-to-one correspondence between electromagnetic wave and 

quantum wave function.  

4. Two possible ways of superluminal communications 

4.a. Maxwell-Dirac isomorphism through Quaternion algebra 

Textbook quantum theory is based on complex numbers of the form a0+a1i, with i the imaginary unit i2 = −1. It has 

long been known that an alternative quantum mechanics can be based on the quaternion or hyper-complex numbers 

of the form a0 +a1i + a2j + a3k, with i,j,k three non-commuting imaginary units.[8] 

On the other hand, recognizing that the Maxwell’s equations were originally formulated in terms of quaternionic 

language, some authors investigate formal correspondence between Maxwell and Dirac equations. To name a few 

who worked on this problem: Kravchenko and Arbab. These authors have arrived to a similar conclusion, although 

with a different procedures based on Gersten decomposition of Dirac equation.[4] 

This MD isomorphism can also be extended further to classical description of boson mass which was usually called 

Higgs boson[3], so it may be a simpler option compared to scale symmetry theory. 

 

4.b. Quaternionic QM and Entanglement 

Having convinced ourselves that Maxwell-Dirac isomorphism has sufficient reasoning to consider seriously in order 

to come up with realistic interpretation of quantum wave function, now let us discuss QQM and entanglement. 

Singh & Prabakaran are motivated to examine the geometry of a two qubit quantum state using the formalism of the 

Hopf map. However, when addressing multiple qubit states, one needs to carefully consider the issue of quantum 

entanglement. The “quaternions” again come in handy in studying the two qubit state. [10] 

In his exposition of Quaternionic Quantum Mechanics, J.P. Singh concluded that [9]:  

“Having established the compatibility of the Hopf fibration representation with the conventional theory for 

unentangled states, let us, now, address the issue of measurability of entanglement in this formalism. In the 
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context, “Wootters’ Concurrence” and the related “Entanglement of Formation” constitute well accepted 

measures of entanglement, particularly so, for pure states.  … 

It follows that any real linear combination of the “magic basis” would result in a fully entangled state with 

unit concurrence. Conversely, any completely entangled state can be written as a linear combination in the 

“magic basis” with real components, up to an overall phase factor. In fact, these properties are not unique to 

a state description in the “magic basis” and hold in any other basis that is obtained from the “magic basis” 

by an orthogonal transformation…” 

 

Singh & Prabakaran also suggest that this quaternionic QM may be useful for exploring quaternionic computing.[10]  

Therefore, it shall be clear that entanglement and quantum communication have a sound theoretical basis. 

 

4.c. Basic principles of quantum communication based on quantum noise 

Our proposed communication method can provide an infinite number of infinite bandwidth communications channels 

for each user. See our recent paper describing one of plausible way to do quantum communication [14]. 

Communication using this method travels much faster than light. It does not use radio waves and does not need wires. 

It cannot be monitored nor tracked nor interfered with. It cannot be regulated due to the infinities involved, and due 

to the fact that it is unmonitorable. Each user benefits personally from the perfect information security provided by 

quantum communications.  

Quantum communication does not harm any form of life, nor the environment, in any way, as quantum events are, 

and always have been, constantly a part of the Natural Environment. This method is not related to “Q-bits” nor 

“quantum teleportation” nor “quantum amplification” approaches, in any way. It is based on the Schrödinger equations 

of Quantum Mechanics. One of the features of the Schrödinger equations is a descriptive prediction of what is called 

“quantum noise”. This is the constant “hiss” that one hears when using an FM radio, and setting the frequency selector 

in between active broadcast channels. The sound is called “quantum noise” 

Quantum noise is observable at every location in the infinite volume universe. Quantum noise is the result of non-

local Subquantum processes which cause apparently random quantum behaviors in physical systems, particularly 

those which involve electric, magnetic, or electromagnetic fields.  

The situation is described by the quantum observable A of the system. This boils down to the fact that there is an 

expectation value in situations which involve quantum noise, which should normally appear as perfect randomity in 

the quantum system we are observing. Perfect randomity is called 3rd Order randomity and is completely 

unpredictable.  
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3rd Order randomity then represents the normal behavior of our quantum system as it interacts with Subquantum 

entities which are interacting with the system from up to infinity away and with up to an infinite velocity. 3rd Order 

randomity is the quantum expectation value of all Natural systems, in all locations and at all times. 

There are ways to detect and predict quantum noise and the physical changes produced by quantum noise in quantum 

systems (These methods will not be discussed at this time). When we detect the quantum noise, for example, in the 

form of “white noise” between radio stations, we expect the quantum spectrum centered on the channel of our receiver 

to exhibit 3rd Order randomity in both electromagnetic frequency and magnitude domains, in our selected channel. 

However, environmental factors such as the presence of physical or non-physical forms of Consciousness can act on 

the 3rd Order randomity so as to bring predictability and order to the stream of random number which our E/M detector 

array passes on to our discriminator system.  

Related to this, it was proved by instrumented experiments in the USA and in France during the 1990s that the 

Attention, Intentions, and Emotional State of operators of symplectic, complex, and standard electromagnetic 

transmission facilities, resulted in instantaneous changes in the radiation patterns of the transmission antennas. 

All of the above mentioned facts can be useful for developing a working quantum communication device, see for 

further exposition of our method in [14].  

 

5. Concluding remarks 

Despite its enormous practical success, many physicists and philosophers alike agree that the quantum theory is so 

full of contradictions and paradoxes which are difficult to solve consistently. Even after 90 years, the experts 

themselves still do not all agree what to make of it. In this paper, we review the most puzzling feature of QM, i.e. 

entanglement. 

In the meantime, the problem of the dangers of 5G creates a potential to develop new solutions of telecommunications, 

without having to use 5G/RF technologies. Therefore, in this paper we consider superluminal physics and 

superluminal communication as a bridge or intermediate way between subluminal physics and action-at-a-distance 

(AAAD) physics, especially from Neutrosophic Logic perspective. Although several ways have been proposed to 

bring such a superluminal communication into reality, such as Telluric wave or Telepathy analog of Horejev and 

Baburin, here we also review two possibilities: quaternion communication and also quantum communication based 

on quantum noise.  

From Neutrosophic Logic perspective, we discuss on superluminal physics and superluminal communication as an 

intermediate way between the subluminal physics and AAAD physics, because in NL theory there is always a 

possibility to find a third way or intermediate state.  

Summarizing: 
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 Standpoint A (subluminal)  Intermediate (superluminal)  Standpoint B (AAAD) 

This paper was inspired by an old question: Is there an alternate way to communication beyond RF method? 

Further research is recommended for future implementation. 
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Abstract  

  In this paper, the definition of neutrosophic thick function and its integral are introduced. The main objective is 

defining a differential linear equation based on the thick function and finding solutions for this equation. 

Keywords: Neutrosophic Thick Function, Neutrosophic Integration. 

1.Introduction 
 

Neutrosophic logic. Neutrosophy, Neutrosophic set, Neutrosophic probability and alike, are recent creations of 

F. Smarandache, being characterized by having the indeterminacy, as component of their framework and a notable 

feature of neutrosophic logic is that can be considered a generalization of fuzzy logic, encompassing the classical logic 

as well[1]. Also, in 2015, F. Smarandache has defined the concept of continuity of a neutrosophic function in [1], and 

neutrosophic mereo-limit [1], mereo-continuity. Moreover, in 2014, F. Smarandache has defined the concept of a 

neutro-oscillator differential in [3], and mereo-derivative. Finally, in 2013 F. Smarandache introduced neutrosophic 

integration in [2], and mereo-integral, besides the classical definitions of limit, continuity, derivative, and integral 

respectively. 

Among the recent applications there are: neutrosophic crisp set theory in image processing[4][5], neutrosophic 

sets medical field [6][7][8][9][10], geographic information systems [11] and possible applications to database [12]. 

Also, neutrosophic triplet group application to physics[13]. Moreover, several types of research have made multiple 

contributions to neutrosophic topology [14][15] [16] [17] [18] [19] [20] Also more researches have made multiple 

contributions to the neutrosophic analysis[21]. Finally, the neutrosophic integration may be applied in calculating the 

area between two neutrosophic functions.  

 

2. Preliminaries 
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In this paper �(�) = [��(�),��(�)]  is called a neutrosophic thick function. Now, we recall some definitions which 

are useful in this paper. 

Definition 2.1. [�]    

A neutrosophic crisp function: 

�: � → � is called a crisp relation if there exists an element � ∈ � with �(�) = � and �(�) = � where �,� ∈ � then 

� ≡ �. (this is the classical vertical line test). 

Definition 2.2. [1] 

Neutrosophic subset or crisp function: 

A neutrosophic (subset or crisp) function in general is a function that has some indeterminacy. 

Definition 2.3. [2] 

The neutrosophic constant thick function: 

�: � → �(�) ; ��� �������: �(�) = [2,3];  ��� ��� � ∈ � 

Where �(�) is the set of all subsets of �. 

For example, �(7), is the vertical segment of line [2,3] shown in figure 2.1. 

 

Figure 2.1. 
Definition 2.4. [2] 

A neutrosophic non-constant thick function: 

�: � → �(�) 

For example, �(�) = [2�,2� + 1];  
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Figure 2.2 

Let �(�) = [2�,2� + 1] then �(2) = [2(2),2(2) + 1] = [4,5]. The respective graph is the Figure 2.2 

Definition 2.5. [2] 

The general neutrosophic thick function is defined as: 

There is something confusing in the use of notations for intervals. For example,  it is used ���(�),��(�)� for open 

interval and ]��(�),��(�)] and [��(�),��(�)[ for half closed (or semi closed) intervals.  

�: � → �(�) ; �(�) = [��(�),��(�)] 

 

Figure 2.3 

3. A Neutrosophic Integration 

As in Euclidean integration, integration is the opposite of differentiation. 

In other words, the anti-thesis of the derivative of the neutrosophic function �(�) is also a neutrosophic function �(�). 

That the definition of neutrosophic integral is: 

�(�) = � �(�,�)��  

Where I represents the indeterminacy and constant integration is � + ��. 

Example 3.1.  

� ∶ � → � ∪ {�} ; �(�) = 5�� + (3� + 1)� 

Then: 
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�(�) = �[5�� + (3� + 1)�]�� = � 5���� + �(3� + 1)��� = 5
��

3
+ � 3

��

2
+ �� � + � + ��. 

Where � + ��  is the neutrosophic integration constant. 

4. Neutrosophic integration thick function 

In this section is given the definition of the neutrosophic thick function, as well the operation of integration over it. 

Definition 4.1. Let �(�) = [��(�),��(�)]  be a neutrosophic thick function. Then we define the integration of this 

function as: 

� �(�)�� = �[��(�),��(�)]�� = �� ��(�) �� + ��,� ��(�) �� + ��� = [�,�] 

Where �� = �� + ���� ,�� = �� + ����. 

Example 4.1. Let �(�) = [��(�),��(�)] = ����,����
� then: 

� �(�)�� = �����,����
��� = �� ��� �� + �� ,� ����

�� + ��  � = [�,�] 

� = � ��� �� + �� = �. �� − �� + �� 

� = � ����
�� + �� =

1

2
. ���

+ �� 

� �(�)�� = ��. �� − �� + ��,
1

2
. ���

+ ��� 

Where �� = �� + ���� ,�� = �� + ����. 

Example 4.2. let  �(�) = [��(�),��(�)] = �
�

���� ,
��

����� then: 

� �(�)�� = � �
1

1 + ��
,

��

1 + ��
� �� = ��

1

1 + ��
 �� + �� ,�

��

1 + ��
�� + ��  � = [�,�] 

� = �
1

1 + ��
 �� + �� = ��� ��(�) + �� 

� = �
��

1 + ��
�� + �� = � − ��� ��(�) + �� 

� �(�)�� = [��� ��(�) + ��,� − ��� ��(�) + ��] 

Where �� = �� + ���� ,�� = �� + ����. 

5. Neutrosophic linear differential equation 

In this section we define a linear differential equation based on the thick function and find solutions of this equation. 
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Neutrosophic identical linear differential equation 

Definition. We define the Neutrosophic identical linear differential equation by a neutrosophic thick function form: 

�́ + �(�)� = 0 ;  �(�) = [��(�),��(�)]   (1) 

Method of solution. 

�́ + �(�)� = 0 

�́ + [��(�),��(�)]� = 0 

�́ = −[��(�),��(�)]�  

 
�́

�
= −[��(�),��(�)] 

ln y

c
= − �[��(�),��(�)] �� =  − �� ��(�)  ��  ,� ��(�)  �� � 

� = ���� ∫ ��(�) ��,�� ∫ ��(�) ���   (2) 

Example 5.1. Find a solution to the equation: 

�́ + �
1

�
,2�� � = 0 

Solution. 

� = (� + ��) ��� ∫
�
�

 ��,�� ∫ �� ��� = (� + ��)��� �� �,����
� = (� + ��) �

1

�
,����

� 

5.4 Neutrosophic non-homogeneous linear differential equation 

Definition 5.5. We define the Neutrosophic non- homogeneous linear differential equation by a neutrosophic thick 

function which takes one of the following forms: 

�́ + [��(�),��(�)]� = �(�) … … (2) 

�́ + �(�)� = [��(�),��(�)] … … (3) 

�́ + [��(�),��(�)]� = [��(�),��(�)] … … (4) 

Now we will derive the solution of equation (2) and solution of equations (3), (4) can be driven in the same way: 

Method of solution. 

1- We find the complement factor of the equation (2) as follows: 

�(�) = �[∫ ��(�)��,∫ ��(�)��] = ��∫ ��(�)�� ,�∫ ��(�)��� 

2- We multiply equation (2) by the complement factor: 

�(�)�́ + �(�)[��(�),��(�)]� = �(�)�(�) 
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�(�)�́ + ���(�)�∫ ��(�)��,��(�)�∫ ��(�)���� = ��(�)�∫ ��(�)��,�(�)�∫ ��(�)��� 

3- Note that the left side is only the function derivative: �(�)� and therefor the equation can be sequenced as: 

���(�)�
�

= ��(�)�∫ ��(�)��,�(�)�∫ ��(�)��� 

4- By integrating the latter, we obtain the general solution of equation(2): 

� =
1

�(�)
�� + �� + �� �(�)�∫ ��(�)�� ,� �(�)�∫ ��(�)���� … … (5) 

Example 5.6. Find the general solution of the following neutrosophic non- homogeneous linear differential equation: 

�́ + �2�,
1

�
� � = � 

Solution. The equation is of the first form: 

�́ + [��(�),��(�)]� = �(�) 

First we find the complement factor: 

�(�) = �[∫ ��(�)��,∫ ��(�)��] = ��∫ ��(�)�� ,�∫ ��(�)��� = ��∫ ����,∫
�
�

��� = ����
 ,��� �� = ����

 ,�� 

Now by multiplying both sides of the equation by the complement factor, we find that the general solution can be 

written as: 

� =
1

�(�)
�� + �� + � ��(�)�� � =

1

����
 ,��

�� + �� + �� ����
��  ,� ���� �� 

where: 

� ����
�� =

1

2
 ���

 

� ���� =
1

3
 ��  

Thus the general solution of the given equation is: 

� =
1

����
 ,��

�� + �� + �
1

2
���

 ,
1

3
�� �� 

Example 5.7. Find the general solution for the following neutrosophic non- homogeneous linear differential equation: 

�́ + ���(�) � = [���(�),���(�)] 

Solution. The equation is of the form: 

�́ + �(�)� = [��(�),��(�)] 

We find the complement factor as: 
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�(�) = �∫ �(�)�� = �∫ ���(�)�� = ��� ���(�) = ���(�) 

Now by multiplying both sides of the equation by the complement factor, we find that the general solution can be  

written as: 

� =
1

�(�)
�� + �� + � �(�) . [���(�),���(�)]�� � =

1

���(�)
�� + �� + � ���(�) . [���(�),���(�)]�� �

=
1

���(�)
�� + �� + �� ����(�) �� ,� ���(�). ���(�) �� �� 

where: 

� ����(�) �� =
1

2
� −

1

4
���(2�) 

� ���(�). ���(�) �� =
1

2
� ���(2�)�� = −

1

4
���(2�) 

Thus the general solution of the given equation is: 

� =
1

���(�)
�� + �� + �

1

2
� −

1

4
���(2�) ,−

1

4
���(2�)��. 

Example 5.8. Find the general solution for the following neutrosophic non- homogeneous linear differential equation: 

�́ + �
1

�
,�� � = [��,�] 

Solution: the equation is of the third form: 

�́ + [��(�),��(�)]� = [��(�),��(�)] 

We find the complement: 

�(�) = �[∫ ��(�)��,∫ ��(�)��] = ��∫ ��(�)�� ,�∫ ��(�)��� = ���� � ,�
�
�

��
� = � �,�

�
�

��
�. 

Now by multiplying both sides of the equation by the complement factor, we find that the general solution is written 

as: 

� =
1

�(�)
�� + �� + � �(�) [��(�),��(�)]�� � =

1

� �,�
�
�

��
�

�� + �� + � � �,�
�
�

��
�  . [��,�]�� �

=
1

� �,�
�
�

��
�

�� + �� + �� �. �� � �,� �. �
�
�

��
�� ��

=
1

� �,�
�
�

��
�

�� + �� + �� ��  �� ,� �. �
�
�

��
�� �� 

where: 

� ��  �� =
1

4
�� 
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� �. �
�
�

��
 �� = �

�
�

��
 

Thus the general solution of the given equation is: 

� =
1

� �,�
�
�

��
�

�� + �� + �
1

4
�� ,�

�
�

��
�� 

6. Conclusion   

In this paper, a new type of neutrosophic integration has been defined by using the thick function, Moreover, we 

studied a linear differential equation based on the thick function and found solutions to this equation. In addition, 

solutions to other types of neutrosophic differential equations can be found depending on the thick function such as 

Bernoulli's equation. We will work on this in the future.  
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Abstract  

  In this paper, we generalize the classical Erlang service queueing model, which has determined and crisp parameters 

to neutrosophic Erlang service queueing model which is more accurate because it opens the ability to deal with 

imprecise and incomplete knowledge of parameters. We have used the neutrosophic statistical interval method 

introduced by F. Smarandache to describe the parameters of the Erlang service queueing model and to find the 

neutrosophic performance measures.  

Keywords: Erlang Service Queues; Neutrosophic Logic; Performance Measures; Neutrosophic Statistical Numbers. 
 

1.Introduction  

Queueing theory was developed by Erlang in 1909 to model waiting for lines and develop efficient systems that 

reduce customers' waiting times which makes it possible to serve more customers and increase profits to the 

organizations. The problem of classical queueing theory is the assumption of well and clear knowledge of the 

parameters of the queueing system (e.g. arrival rate, departure rate) which is often impossible [1,2]. 

Neutrosophic logic introduced by F. Smarandache in 1995 is a generalization of fuzzy logic and intuitionistic 

fuzzy logic [3,4,5,6,7,8]. This logic makes dealing with indeterminant data easier, clearer, and more realistic. So 

modelling queues using neutrosophic parameters makes decisions more efficient [9,10,11,12,13,14,15]. 

Extension of classical queueing theory to neutrosophic queueing theory means that parameters of queues can 

take indeterminant values that allow dealing with vagueness. 

In this paper, we show the power of neutrosophic crisp sets theory [16,17] to deal with imprecise parameters of 

the Erlang queueing model, and we derive neutrosophic performance measures of the mentioned queue, also solved 

examples showing the power of this extension are presented. 

 

2. Classical Erlang Service Model [1,2] 

In this model, customers arrive at a service system with one server according to exponential interarrival times 

with parameter � and served one by one according to Erlang service in k phases with parameter �, and the performance 

measures are: 

Expected number of customers in the system: 

�� = �
� + 1

2�
� �

��

�(� − �)
� +

�

�
 

Expected number of customers in the queue: 

HP
Typewriter
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�� = �� −
�

�
= �

� + 1

2�
� �

��

�(� − �)
� 

Expected waiting time in the system: 

�� =
��

�
 

�� = �
� + 1

2�
� �

�

�(� − �)
� +

1

�
 

Expected waiting time in the queue: 

�� =
��

�
 

�� = �
� + 1

2�
� �

�

�(� − �)
� 

Where � is arrival rate, � is departure (servicing) rate. 

3. Neutrosophic Erlang Service Model 

In this model, customers arrive at one server facility according to the Poisson process with neutrosophic 

(inaccurate, imprecise) parameter �� [17] where we are going to use neutrosophic statistical numbers presented in [9] 

so �� can be written as an interval as following �� = [��, ��] where ��, ��  are crisp real numbers. Customers are 

also served one by one according to Erlang service in k phases with neutrosophic parameter �� = [��, ��] where 

��, �� are also crisp real numbers. So the neutrosophic performance measures can be driven by replacing � by �� and 

� by �� as follows: 

Neutrosophic expected number of customers in the system: 

��� = �
� + 1

2�
� �

[��, ��]�

[��, ��]([��, ��] − [��, ��])
� +

[��, ��]

[��, ��]
 

��� = �
� + 1

2�
� ��

���

���
− ����

,
���

���
− ����

�� + �
��

��
,
��

��
�        (1) 

Neutrosophic expected number of customers in the queue: 

��� = �
� + 1

2�
� ��

���

���
− ����

,
���

���
− ����

��        (2) 

Neutrosophic expected waiting time in the system: 

��� =
���

��
=

���

[��, ��]
= ��� ∗ �

1

��
,

1

��
� 

��� = �
� + 1

2�
� ��

���

��

�� �
− ����

,

���

��

���
− ����

�� + �

��

��

��
,

��

��

��
�        (3) 

Neutrosophic expected waiting time in the queue: 

��� =
���

��
=

���

[��, ��]
= ��� ∗ �

1

��
,

1

��
� 

��� = �
� + 1

2�
� ��

���

��

�� �
− ����

,

���

��

���
− ����

��        (4) 

Notice that all the neutrosophic performance measures are presented as statistical numbers having lower bound and 

upper bound, also we can notice four cases: 

Case 1: When �� = ��and �� ≠ �� we have crisp arrival rate with neutrosophic departures. 
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Case 2: When �� = �� and �� ≠ ��  we have crisp departures with neutrosophic arrivals. 

Case 3: When  �� = �� and �� = �� the neutrosophic corresponds to the classical Erlang service queue. 

Case 4: When �� ≠ �� and �� ≠ �� we have neutrosophic arrivals and neutrosophic departures. 

4. Numerical Examples   

Example 1 (crisp arrival rate, neutrosophic departure rate) 

Suppose that a system consists of a machine gives a service to a customer in two phases each phase time is 
exponentially distributed and the machine serves in each phase between 3 and 5 customers per min. Customers arrive 
at the machine according to the Poisson process with arrival rate equals to 15 customers/h, and suppose that we want 
to calculate the following: 

The average number of customers in the system. 

The average number of customers in the queue. 

Mean waiting time in the system. 

Mean waiting time in the queue. 

 

Solution: 

From the given example we find that k=2, � = ��/� so � = �.��/��� , �� = [�, �]/min 

Before the foundation of neutrosophic logic, one can solve this example by assuming that � takes the midpoint of the 

range [1,2], that is � ≅ � so: 

Expected number of customers in the system: 

�� = �
� + 1

2�
� �

��

�(� − �)
� +

�

�
= �

2 + 1

2 ∗ 2
� �

0.25�

4(4 − 0.25)
� +

0.25

4
= 0.065625 ��������� 

Expected number of customers in the queue: 

�� = �
� + 1

2�
� �

��

�(� − �)
� = �

2 + 1

2 ∗ 2
� �

0.25�

4(4 − 0.25)
� = 0.003125 ��������� 

Expected waiting time in the system: 

�� = �
� + 1

2�
� �

�

�(� − �)
� +

1

�
= �

2 + 1

2 ∗ 2
� �

0.25

4(4 − 0.25)
� +

1

4
= 0.2625 ��� 

Expected waiting time in the queue: 

�� = �
� + 1

2�
� �

�

�(� − �)
� = �

2 + 1

2 ∗ 2
� �

0.25

4(4 − 0.25)
� = 0.0125 ��� 

 

But after derving(?) the neutrosophic solutions and using equations 1 to 4 we get: 

��� = �
� + �

��
� ��

���

�� �
− ����

,
�� �

���
− �� ��

�� + �
��

��
,
��

��
�

= �
� + �

� ∗ �
� ∗ ��

�.���

�� − �.�� ∗ �
,

�.���

�� − �.�� ∗ �
�� + �

�.��

�
,
�.��

�
� = [�.������, �.������] 

Which means that average number of customers in the system lies in the given range. 
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Notice that �� = 0.065625 ∈ ��� = [0.051974,0.089015] 

��� = �
� + 1

2�
� ��

���

���
− ����

,
���

���
− ����

�� = �
2 + 1

2 ∗ 2
� ∗ ��

0.25�

25 − 0.25 ∗ 5
,

0.25�

9 − 0.25 ∗ 3
�� 

= [0.001974,0.005682] 

Which means that average number of customers in queue lies in the given range. 
Also in thic case we notice that �� = 0.003125 ∈ [0.001974,0.005682] 

��� = �
� + 1

2�
� ��

���

��

�� �
− ����

,

���

��

���
− ����

�� + �

��

��

��
,

��

��

��
� = �

2 + 1

2 ∗ 2
� ��

0.25

25 − 0.25 ∗ 5
,

0.25

9 − 0.25 ∗ 3
�� + �

1

5
,
1

3
�

= [0.207895,0.356061] 

Which means that average waiting time in the system lies between 0.207895 and 0.356061 mins that is between 12 

and 21 secs approximately. 

Also �� = 0.2625 ∈ [0.207895,0.356061] = ��� 

��� = �
� + 1

2�
� ��

���

��

�� �
− ����

,

���

��

���
− ����

�� = �
2 + 1

2 ∗ 2
� ��

0.25

5� − 0.25 ∗ 5
,

0.25

3� − 0.25 ∗ 3
��

= [0.007895,0.022727] 

Which means that average waiting time in the queue lies between 0.007895 and 0.022727 mins that is between 0.5 

and 1.36 secs approximately. 

Also �� = 0.0125 ∈ [0.007895,0.022727] = ���  

From all above, we can clearly see that the neutrosophic solutions are more accurate than classical solutions. 

Example 2 (neutrosophic arrival rate, neutrosophic departure rate) 

Suppose that a system consists of a machine gives a service to a customer in three phases each phase time is 

exponentially distributed and the machine serves in each phase between 3 and 5 customers per min. Customers arrive 

at the machine according to the Poisson process with arrival rate lies between 1 and 2 customers/min, and suppose 

that we want to calculate the following: 

The average number of customers in the system. 

The average number of customers in the queue. 

Mean waiting time in the system. 

Mean waiting time in the queue. 

Solution: 

From the given example, we find that k=3, �� = [�, �]/��� , �� = [�, �]/min 
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Classical solutions can be derived by assuming � ≅ 1.5, � ≅  4 by taking midpoints of each interval, that gives: 

Expected number of customers in the system: 

 

�� = �
� + 1

2�
� �

��

�(� − �)
� +

�

�
= �

3 + 1

2 ∗ 3
� �

1.5�

4(4 − 1.5)
� +

1.5

4
= 0.525 ��������� 

Expected number of customers in the queue: 

�� = �
� + 1

2�
� �

��

�(� − �)
� = �

3 + 1

2 ∗ 3
� �

1.5�

4(4 − 1.5)
� = 0.15 ��������� 

Expected waiting time in the system: 

�� = �
� + 1

2�
� �

�

�(� − �)
� +

1

�
= �

3 + 1

2 ∗ 3
� �

1.5

4(4 − 1.5)
� +

1

4
= 0.35 ��� 

Expected waiting time in the queue: 

�� = �
� + 1

2�
� �

�

�(� − �)
� = �

3 + 1

2 ∗ 3
� �

0.25

4(4 − 0.25)
� = 0.1 ��� 

 

Neutrosophic solutions can be derived using equations 1 to 4 as follows: 

 

��� = �
� + �

��
� ��

���

�� �
− ����

,
�� �

���
− �� ��

�� + �
��

��
,
��

��
� = �

� + �

� ∗ �
� ∗ ��

�

�� − � ∗ �
,

�

� − � ∗ �
�� + �

�

�
,
�

�
�

= [�.������, �.������] 

Which means that average number of customers in system lies in the given range. 
 

Notice that �� = 0.525 ∈ ��� = [0.233333,1.555556] 

��� = �
� + 1

2�
� ��

���

���
− ����

,
�� �

���
− ����

�� = �
3 + 1

2 ∗ 3
� ∗ ��

1

25 − 1 ∗ 5
,

4

9 − 2 ∗ 3
�� 

= [0.03333,0.888889] 

Which means that average number of customers in the queue lies in the given range. 
Also in thic case we notice that �� = 0.15 ∈ [0.03333,0.888889] 

��� = �
� + 1

2�
� ��

���

��

���
− ����

,

�� �

��

���
− ����

�� + �

��

��

��
,

��

��

��
� = �

3 + 1

2 ∗ 3
� ��

1/2

25 − 1 ∗ 5
,

4/1

9 − 2 ∗ 3
�� + �

1/2

5
,
2/1

3
�

= [0.116667,1.555556] 

Which means that average waiting time in the system lies between 0.116667 and 1.555556 mins. 

Also �� = 0.35 ∈ [0.116667,1.555556] = ��� 

��� = �
� + 1

2�
� ��

���

��

�� �
− ����

,

���

��

���
− ����

�� = �
3 + 1

2 ∗ 3
� ��

1/2

25 − 1 ∗ 5
,

4/1

9 − 2 ∗ 3
�� = [0.016667,0.888889] 

Which means that average waiting time in the queue lies between 0.016667 and 0.8888889 mins. 
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Also �� = 0.1 ∈ [0.016667,0.888889] = ��� 

So we also see that neutrosophic solutions are more accurate and can be considered as an extension to classical 

solutions. 

5. Conclusions  

We conclude that neutrosophic logic can be applied to generalize the classical queueing theory and make it easy 

and clear to handle imprecise and incomplete data. We have chosen Erlang service models as a useful and important 

example of frequently used queueing systems.  

The author is looking forward to studying the ability to extend other queueing models using neutrosophic logic 

including batch arrivals and batch services, customers behavior in single and multi-queues. 
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