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Aim and Scope 

International Journal of Neutrosophic Science (IJNS) is a peer-review journal publishing high quality 

experimental and theoretical research in all areas of Neutrosophic and its Applications. IJNS is 

published quarterly. IJNS is devoted to the publication of peer-reviewed original research papers lying in 

the domain of neutrosophic sets and systems. Papers submitted for possible publication may concern with 

foundations, neutrosophic logic and mathematical structures in the neutrosophic setting. Besides providing 

emphasis on topics like artificial intelligence, pattern recognition, image processing, robotics, decision 

making, data analysis, data mining, applications of neutrosophic mathematical theories contributing to 

economics, finance, management, industries,  electronics, and communications are promoted. Variants of 

neutrosophic sets including refined neutrosophic set (RNS). Articles evolving algorithms making 

computational work handy are welcome. 

Topics of Interest 

IJNS promotes research and reflects the most recent advances of neutrosophic Sciences in diverse 

disciplines, with emphasis on the following aspects, but certainly not limited to: 

�  Neutrosophic sets                                              �  Neutrosophic algebra 

�  Neutrosophic topolog                                        �  Neutrosophic graphs 

�  Neutrosophic probabilities                                �  Neutrosophic tools for decision making 

�  Neutrosophic theory for machine learning       �  Neutrosophic statistics 

�  Neutrosophic numerical measures                    �  Classical neutrosophic numbers 

�  A neutrosophic hypothesis                                �  The neutrosophic level of significance 

�  The neutrosophic confidence interval               �  The neutrosophic central limit theorem 

�  Neutrosophic theory in bioinformatics  

�and medical analytics                                            �  Neutrosophic tools for big data analytics 

�  Neutrosophic tools for deep learning                  �  Neutrosophic tools for data visualization 

�  Quadripartitioned single-valued  

�neutrosophic sets                                                   �  Refined single-valued neutrosophic sets 

� Applications of neutrosophic logic in image processing  

�  Neutrosophic logic for feature learning, classification, regression, and clustering 
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�  Neutrosophic knowledge retrieval of medical images 

�  Neutrosophic set theory for large-scale image and multimedia processing 

�  Neutrosophic set theory for brain-machine interfaces and medical signal analysis 

� Applications of neutrosophic theory in large-scale healthcare data  

�  Neutrosophic set-based multimodal sensor data 

�  Neutrosophic set-based array processing and analysis 

� Wireless sensor networks Neutrosophic set-based Crowd-sourcing 

�  Neutrosophic set-based heterogeneous data mining  

�  Neutrosophic in Virtual Reality 

�  Neutrosophic and Plithogenic theories in Humanities and Social Sciences 

�  Neutrosophic and Plithogenic theories in decision making 

�  Neutrosophic in Astronomy and Space Sciences 
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Abstract  

An optimal decision-making environment demands feasible Multi-Attribute Decision-Making methods. 

Plithogenic n – Super Hypergraph introduced by Smarandache is a novel concept and it involves many attributes. 

This article aims to bridge the concept of Plithogenic n-Super Hypergraph in the vicinity of optimal decision 

making. This research work introduces the novel concepts of enveloping vertex, super enveloping vertex, dominant 

enveloping vertex, classification of the dominant enveloping vertex (input, intervene, output dominant enveloping 

vertices), plithogenic connectors. An application of Plithogenic n-super hypergraph in making optimum decisions 

is discussed under various decision-making scenarios. Several insights are drawn from this research work and will 

certainly benefit the decision-makers to overcome the challenges in building decisions. 

Keywords: Plithogenic n-super hypergraph, decision making, attributes, dominant enveloping vertex. 

 

1.Introduction  

It is quite inevitable for each one is taking up the role of decision-maker in their instances of life. Decision 

making isn’t an activity, but a process comprising of many tasks. The desired outcomes of decisions are a success, if 

it fails then the process has to be revived.  The cognitive contribution in choosing the best alternative with the 

consideration of criteria and criteria weights is not a simple task; it demands sequential steps and scientific 

approach. The managerial of either a start-up company or a multinational organization must possess the skills of 

making optimal decisions to make their companies march in the path of victory. The decision-making environment 

is not deterministic always and it is characterized mostly by uncertainty and impreciseness, to tackle these 

challenges the decision-makers are moving towards Multi-Criteria Decision Making methods (MCDM) to design 

optimal solutions. 

HP
Typewriter
Received:  March 07, 2020     Revised: April 30, 2020     Accepted: May 18, 2020
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 MCDM has been explored for the past seventy years and it has been broadly divided into MADM (Multi-

Attribute Decision Making) and MODM (Multi-Objective Decision Making) [1]. The former helps in the selection 

of the alternatives based on attribute description and the latter is based on optimization of decision maker’s multi 

objectives. MADM methods are gaining impetus in the decision-making environment as they are highly developed 

with robust mathematical principles and also these methods prevent small and medium-sized companies in 

purchasing expensive software or executing erudite systems of the decision process. MADM methods are more 

operative and the most widely used methods are Analytic Hierarchy Process (AHP) and Analytic Network Process 

(ANP) introduced by Satty [2]; Decision Making Trial and Evaluation Laboratory (DEMATEL) developed by 

Tzeng and Huang [3]; The Technique for Order Preferences by Similarity to an Ideal Solution (TOPSIS) method 

was proposed by Hwang and Yoon; Vlse Kriterijumska Optimizacija I Kompromisno Resenje (VIKOR) method was 

developed by Tzeng and Huang. 

   In the above described MADM methods, the major steps involved are (i) formulation of initial decision-making 

matrix (IDMM) comprising of values representing the degree of fulfilling the criteria by the alternatives. (ii) 

Normalization of the values in IDMM (iii) Determination of criterion weight (iv) Ranking of alternatives. In these 

MADM methods, the alternatives are ranked based only on the extent of criteria satisfaction, but the consistency of 

ranking is not checked as these methods do not provide space for it. The selection of alternatives is based only on 

attribute satisfaction and it does not consider any other input such as previous data related to the impacts or the 

effects of these kinds of chosen alternatives. These other inputs are not brought into the decision-making 

environment and the previous feedback review is also not incorporated into the decision-making environment.  

Let us consider the possible situations of exercising decision making in a company, for example in the 

selection of personnel, methods of production, the extension of product features, the above instances of decision-

making situations are not new to companies, as these processes are routine. In making decisions, certainly the 

managerial will be aware of the desired target to be achieved and will employ his previous experience or the 

feedback received by him from various sources as inputs in the selection of alternatives. The above-said MADM 

does not provide space for such kinds of feedback inputs. A comprehensive decision-making environment must 

comprise of alternative selection based on several inputs such as attribute satisfaction, feedback, and impact of 

attributes towards the desired output. To overcome such shortcomings, a novel MADM method is introduced in this 

research work with the integration of Plithogenic – super Hypergraphs introduced by Smarandache [4]. Plithogenic 

sets introduced by Smarandache [5] are the extension of neutrosophic sets that are characterized by truth, 

indeterminacy, and false functions. The robust nature of neutrosophic sets inspired several researchers to employ it 

in diverse fields. Gayathri et al [6] developed multiple attribute group decision making neutrosophic environments 

with the utilization of Jaccard index measures. Muhammad Naveed Jafar et al [7] used neutrosophic soft matrices 

with score function to evaluate new technology in Agriculture. Ajay et al [8] developed a single-valued triangular 

neutrosophic number approach of multi-objective optimization based on simple ratio analysis based on the MCDM 

method. Luis Andrés Crespo Berti [9] applied a neutrosophic system to tax havens with a criminal approach. Abdel-

Basset [10] developed three-way decisions based on neutrosophic sets and AHP-QFD framework for supplier 

selection problem, also developed a hybrid neutrosophic group ANP-TOPSIS framework for supplier selection 
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problem [11].Plithogenic sets that deal with attributes, degree of appurtenance, and degree of contradiction have 

been extensively used in decision making with quality function deployment for selecting supply chain sustainability 

metrics and for evaluating hospital medical care systems by Abdel-Basset et al [12,13]. In these decision making 

approaches plithogenic aggregation operations are used to make decisions based on the best and worst criteria with 

decision-makers' opinions as inputs. These methods of decision making focus primarily on evaluation and selection 

of alternatives based on combining plithogenic aggregation operators and do not provide space for any graphical 

representation of the relational impacts between the alternatives.  

In the proposed MADM each alternative is considered as an object encompassing several attributes. The 

decision-making environment consists of three kinds of objects namely input, intervention, and output. The 

alternatives are taken as inputs, desired target as output, and intervene (intermediate) objects are the objects that 

combine with the input objects. A company always works on target based. Personnel design project and work on it 

tirelessly to achieve various sets of goals. The project never gets accomplished with the attainment of a single goal 

but a series of goals. The success of a project is defined in various dimensions. In the proposed MADAM, the 

selection of alternatives is based on the degree of association between the attributes of inputs and the attributes of 

outputs independent or dependent on intervening objects. This decision-making approach is more comprehensive 

than the conventional MADM methods as it incorporates attributes and feedback into the input system. Also, many 

times the company prefers collaborative works and the effects of combined initiatives are high. Conventional 

MADM does not provide space for it, but the proposed MADM is designed exclusively for measuring the optimal 

combination. Also in MADM methods, graphical representations are not made so far to represent alternatives, 

criteria, and their relationship. In this novel MADM, plithogenic –n super hypergraphs are used to represent the 

objects as enveloping vertices and the association between the vertices by plithogenic connectors. 

 The article is structured as follows: Section 2 introduces new concepts used in novel MADM; section 3 

presents the application of novel MADM in optimal decision making; section 4 discusses the results and the last 

section concludes the work. 

2. Preliminaries 

2.1 Enveloping vertex 

A vertex representing an object comprising of attributes and sub-attributes in the graphical representation of a multi 

attribute decision-making environment.  

For instance  

Let us consider Personnel (V) as an input object, this input has a vital role in target achievement, the output object. 

These attributes are like databases. 

The attributes like Qualification (V1), Age (V2), Experience (V3) are taken into consideration 

Attribute sets = {Qualification, Age, Experience} 

Qualification = {Graduation, Graduation with additional degree} 

Age  = {25-35, 36-45} 

Experience = { Local, National ,International } 
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Local {0-5,6-10}, National{0-3,4-6}, International {0-2,2-5} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.1Enveloping vertex 

 

 

Thus an enveloping vertex comprises hyperedges, where each hyperedge represents values of the attributes. 

2.2 Super Enveloping vertex 

An enveloping vertex comprises of Super hyper edges 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.2 Super Enveloping vertex 
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2.3 Dominant Enveloping Vertex 

 An enveloping vertex is with dominant attribute values 

Attribute sets = {Qualification, Age, Experience} 

The dominant attribute values 

Qualification = {Graduation, Graduation with additional degree} 

Age  = {25-35, 36-45} 

Experience = { Local, National ,International } 

 

 

 

 

 

 

 

 

 

 

                                        Fig.2.3 Dominant Enveloping Vertex 

2.4 Dominant Super Enveloping Vertex 

 A super enveloping vertex with dominant attribute values 

Attribute sets = {Qualification, Age, Experience} 

The dominant attribute values 

Qualification = {Graduation, Graduation with additional degree} 

Age  = {25-35, 36-45} 

Experience = { Local, National ,International } 

Local {0-5,6-10}, National{0-3,4-6}, International {0-2,2-5} 

 

 

 

 

 

 

 

 

 

 

Fig.2.4 Dominant Super Enveloping Vertex 
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2.5 Classification of Dominant Enveloping Vertex 

The dominant enveloping vertex set are classified as input, intervene and output based on the nature of object’s 

representation. 

2.6 Plithogenic Connectors 

 The connectors associate the input enveloping vertex with output enveloping vertex. These connectors associate the 

effects of input attributes to output attributes and these connectors are weighted by plithogenic weights. 

Let us consider the MADM environment with the product as input object, advertising as intervene object and 

product success as the output object 

Product is the input enveloping vertex, advertising as intervening enveloping vertex and product success as the 

output enveloping vertex.  

Input attributes = {Design, Price} 

Design = {creative, conventional} 

Price = {High, moderate, low} 

Intervene attributes = { Target group, Medium of advertising} 

Target group ={female, children} 

Medium of advertising = { social networks, media} 

Output Attributes = { Profit, Customer Acquisition, Product Reach} 

Profit = { Expected, Beyond the target} 

Customer Acquisition = { High, Extremely High} 

Product Reach = { National, International} 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.5 Plithogenic Connectors 

 

C1 is the simple plithogenic connector representing the relation between the dominant input attributes to dominant 

output attributes. 
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C2 is the combined plithogenic connector representing the relation between the combined dominant input and 

intervene attributes to dominant output attributes. 

 

Dominant Attribute Relational Matrix Representation 

 

 V311 V322 V331 

V111 0.5 0.2 0.3 

V122 0.6 0.7 0.8 

V111,V221 0.5 0.6 0.4 

V111,V222 0.6 0.3 0.8 

V122,V221 0.4 0.6 0.8 

V122,V222 0.4 0.6 0.7 

 

 

3. Application of Novel MADM method  

3.1 Description of Decision-making Environment 

COVID 19 has locked the academic activities to a great extent; the stratagem of Work from Home is employed by 

the teaching fraternity to engage the learners. One of the biggest challenges to teaching community lies in handling 

online learning forums and they are badly in need of exposure to the E-learning system of education. To make 

academicians surpass this task, educational institutions are offering various online courses and organize E-

programmes to enhance the professional competency of faculty in partnership with several industries. In this period 

of the lockdown, the linkage between industries and institutions is getting enhanced in developing countries 

especially in India. The companies enter institutions as academic partners in establishing virtual laboratories and 

entertain many online programs in the form of webinars, online courses, and software training programs to handle 

online classes. The conduct of such programs will certainly contribute to the professional efficiency of faculty. 

Suppose if an institution decides to conduct any one of the forms of the online program, then it has to decide 

whether to conduct the program in partnership with industry or independently and also the decision of selecting the 

kind of online program is based on the feedback acquired from other institutions on the previous organization of 

such programs. The institution before organizing such programs should decide the component of professional 

efficiency to be enhanced and determine the contributing factors of the online program towards the same. An 

optimal solution to this decision-making situation is determined by using the representation of Plithogenic –n Super 

hypergraph and novel MADM method based on attributes. This decision-making method involves not only the 

selection process of alternatives based on criteria alike other multi-attribute decision-making methods but it provides 

space for the selection of alternatives independent or dependent on other alternatives based on their attributes. The 

outcome of decision making is also considered in the decision-making process. The selection of the alternatives is 

based on attributes of input objects, intervene objects and output objects. 

In this decision-making environment there exist five objects [3 input objects, 1 intervene object and 1 

output object] that are represented by enveloping vertices. The input enveloping vertices are Webinars, online 
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courses, training programs on computer languages, intervene enveloping vertex is Industrial partnership and the 

output enveloping vertex is Professional Efficiency. The description of the attributes of the objects are presented in 

Table 3.1 

Table 3.1 Description of Attributes 

Vertex Representation Vertex Attributes Vertex Sub Attributes 

V1 
Webinars 

 
 

V11 Focus 

 
V111 

 
General 

 
V1111 

 
Education 

 
V1112 

 
Health 

 
V1113 

 
Psychology 

 
V112 

 
Specific 

 
V1121 

 
Physics 

 
V1122 

Chemistry 

V1123 
Mathematics 

 

V1124 
Engineering 

 
 

 
V12 

 
 
 

 
Resource 
persons 

V121 Local 

V1211 
within the 

college 

 
V1212 

neighboring 
colleges 

V122 
 

National 
 

V1221 AICTE affiliated 

V1222 
 

Non-AICTE 
affiliated 

V123 
 
 

 
International 

V1231 
Affiliation with 
the host college 

V1232 
Non-affiliation 
with the host 

college 

V13 Duration 

V131 Day 

V1311 
 

One day 

V1312 
 

Two days 

V1313 
 

Three days 

V132 Week 

V1321 One 

 
V1322 

Two 

V14 
 

 
Target Group 

V141 Students 
V1411 Engineering 

V1412 Non-Engineering 
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V142 
Research Scholars 

 

V1421 Engineering 

V1422 Non-Engineering 

V143 Academicians 
V1431 Engineering 

V1432 Non-Engineering 

V2 
Online courses 

 
 

 
V21 

 
Course nature 

 
V211 

 
Basic 

V2111 remembrance 

V2112 understanding 

 

 
V212 

 
Moderate 

V2121 understanding 

V2122 application 

V213 Advanced 
V2131 Analysis 

V2132 Evaluation 

 
V22 

 
 
 

 
Course 

Delivery 

V221 Synchronous 

V2211 Zoom 

 
V2212 

Zoho 
 
 

V2213 
Examineer 

 

V2214 Google meet 

V222 
 

Asynchronous 
V2221 

Google 
Classroom 

V2222 
Youtube upload 

 

V23 Duration 

V231 Day 

V2311 
 

One day 

V2312 
 

Two days 

V2313 
 

Three days 

V232 Week 

V2321 One 

 
V2322 

Two 

V24 
 
 

 
Target 
Group 

 

V241 Students 
V2411 Engineering 

V2412 Non-Engineering 

V242 
Research Scholars 

 

V2421 Engineering 

V2422 Non-Engineering 

V243 Academicians 
V2431 Engineering 

V2432 Non-Engineering 

V3 

Training programme 
on Computer 

languages 
 

 
V31 

 
Course 
nature 

 
V311 

 
Basic 

V3111 remembrance 

V3112 understanding 

 
 

V312 
 

Moderate 
V3121 understanding 
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V3122 application 

V313 Advanced 
V3131 Analysis 

V3132 Evaluation 

 
V32 

 
 
 

 
Course 

Delivery 

V321 Synchronous 

V3211 Zoom 

 
V3212 

Zoho 
 
 

V3213 
Examineer 

 

V3214 Google meet 

V322 
 

Asynchronous 
V3221 

Google 
Classroom 

V3222 
Youtube upload 

 

V33 Duration 

V331 Day 

V3311 
 

One day 

V3312 
 

Two days 

V3313 
 

Three days 

V332 Week 

V3321 One 

 
V3322 

Two 

V34 
 
 

 
Target 
Group 

 

V341 Students 
V3411 Engineering 

V3412 Non-Engineering 

V342 
Research Scholars 

 

V3421 Engineering 

V3422 Non-Engineering 

V343 Academicians 
V3431 Engineering 

V3432 Non-Engineering 

V4 

Industrial 
Partnership 

 
 

 
V41 

 
MOU 

 
V411 

 
Internship 

V4111 Merit-based 

V4112 All students 

 
 

V412 
 

Placement 

V4121 Merit-based 

V4122 All students 

 
V42 

 
 
 

 
Financial 
Support 

V421 Equipment purchase 

V4211 Partial 

V4212 Complete 

V422 
 

Program 
organization 

V4221 Partial 

V4222 Complete 

  V431 Knowledge sharing V4311 Periodic 
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In the above table, the input objects such as webinars, online courses, training programs are represented as the input 

enveloping vertices V1, V2, and V3 in Fig 3.1,3.2 and 3.3 respectively. The intervening object Industrial Partnership 

is represented as V4 in Fig 3.4. The output object Professional Efficiency is represented as V5 in Fig 3.5. 

 

 

 

 

 

 

V43 
 
 
 

Technical 
Support 

V4312 Regular 

V432 Experts Visit 

V4321 Periodic 

V4322 Regular 

V5 
Professional 
Efficiency 

 

 
V51 

 
Publications 

 
V511 

 
National 

V5111 Scopus 

V5112 ICI 

 
 

V512 
 

International 

V5121 Scopus 

V5122 ICI 

 
V52 

 
 
 

 
Pedagogy 

V521 Teacher-Centered 

V5211 lecture 

V5212 chalk & talk 

V522 
 

Learner-Centered 
V5221 Blended 

V5222 ICT 

 
V53 

 
 
 

 
Content 

preparation 

V531 Own 
V5311 original 

V5312 modified 

V532 Experts Visit 
V5321 Web sources 

V5322 Youtube 

V54 
 

Course 
Delivery 

V541 
 

 
OER 

V5411 Zoom 

V5412 
Zoho 

 

V5413 Google meet 

V5414 
Examineer 

 

V542 
 

Asynchronous 

V5421 
 

Google 
Classroom 

V5422 
 

Youtube upload 
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Fig.3.1 Representation of Input Object V1                                                                            

 

 

 

                 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                            Fig.3.2 Representation of Input Object V2 
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                                                                            Fig.3.3 Representation of Input Object V3 

 

 

 

                           

 

 

 

 

 

 

 

 

 

 

                           

     Fig.3.4 Representation of Intervening Object V4 
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                                                    Fig.3.5 Representation of Output Object V5 

 

Each enveloping vertices comprises of many attribute and sub-attribute values. To determine the desired output with 

and without the combination of input and intervene objects, the dominant attributes are chosen by the decision-

makers. The dominant attribute values of the objects are represented in Table 3.2 

Table 3.2  Representation of Dominant Attributes 

Vertex Representation Vertex Attributes Vertex Sub Attributes 

V1 Webinars  
V11 

 
Focus 

 
V111 

 
General 

 
V1111 

 
Education 

 
V12 

 
 
 

 
Resource 
persons 

V122 
 

National 
 

V1221 

AICTE 
affiliated 

V13 Duration V131 Day V1312 
 

Two days 

V14 
 

 
Target Group 

V143 Academicians 
V1431 

Engineering 
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The Dominant Enveloping vertices are presented in Fig 3.6 

  

V2 Online courses 
Course Nature, 

 
 

 
V21 

 
Course nature 

 
V212 

 
Moderate 

V2122 
application 

 
V22 

 
 
 

 
Course 

Delivery 

V222 
 

Asynchronous  

V2221 

Google 
Classroom 

V23 Duration V231 Day V2312 
 

Two days 

V24 
 
 

 
Target Group 

 

V243 Academicians 
V2431 

Engineering 

V3 Training program on 
Computer languages  

 

 
V31 

 
Course nature 

 
V311 

 
Moderate 

V3122 
application 

 
V32 

 
 
 

 
Course 

Delivery 

V321 Synchronous 

V3214 

Google meet  

V33 Duration V332 Week V3321 
One 

V34 
 
 

 
Target Group 

 

V343 Academicians 
V3431 

Engineering 

V4 Industrial 
Partnership  

 
 

 
V41 

 
MOU 

 
V412 

 
Placement 

V4121 Merit-based 

V4122 
All students 

 
V42 

 
 
 

 
Financial 
Support 

V422 
 

Program organization 

V4222 

Complete 

 
V43 

 
 
 

 
Technical 
 Support 

V432 Experts Visit 
V4322 

Regular 

V4312 
Regular 

V5 Professional 
Efficiency  

 

 
V51 

 
Publications 

 
V511 

 
National 

V5111 
Scopus 

 
V52 

 
 
 

 
Pedagogy 

V522 
 

Learner-Centered 

V5221 

Blended 

 
V53 

 
 
 

 
Content 

preparation 

V531 Own 

V5311 

original 

V54 
 

Course 
Delivery 

V542 
 

Asynchronous V5421 
 

Google 
Classroom 
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                                                              Fig. 3.6 Dominant Enveloping vertices 

 

3.1 Decision-Making Scenario I 

The institution is certain of the dominant sub-attributes and makes decisions based on dominant attributes of the 

input objects. The graphical representation of attribute relation between input dominant enveloping vertices and the 

output dominating attribute vertex with simple plithogenic fuzzy connectors is presented in Fig 3.7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                   Fig.3.7 Representation of Decision-Making Scenario I 
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The dominant attribute relational matrix representation between the input objects on the output objects is presented 

as follows 

 V5111 V5221 V5311 V5421 

V1111 0.55 0.2 0.5 0.6 

V1221 0.8 0.5 0.5 0.8 

V1312 0.75 0.6 0.6 0.9 

V1431 0.65 0.8 0.1 0.4 

V2122 0.5 0.9 0.3 0.6 

V2211 0.3 0.5 0.6 0.8 

V2312 0.45 0.4 0.4 0.9 

V2431 0.6 0.8 0.2 0.4 

V3122 0.85 0.2 0.8 0.8 

V3214 0.9 0.3 0.9 0.9 

V3321 0.5 0.55 0.5 0.4 

V3431 0.6 0.8 0.2 0.4 

 

The frequency matrix as discussed by [14] shall be constructed to rank the dominant attributes of input objects 

contributing to the dominant attribute of the output object. This is a simple decision-making environment as it does 

not involve the role of an intervening object.  

3.2 Decision Making Scenario II 

The institution is certain of the dominant sub-attributes and makes decisions based on dominant attributes of the 

input and intervene objects. The graphical representation of attribute relation between input and intervene dominant 

enveloping vertices and the output dominating attribute vertex with combined plithogenic fuzzy connectors is 

presented in Fig.3.8 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.8 Representation of Decision-Making Scenario II 
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The dominant attribute relational matrix representation between the input and intervene objects on the output objects 

is presented as follows 

 V5111 V5221 V5311 V5421 

V1111,V4122 0.65 0.6 0.5 0.6 

V1111,V4212 0.8 0.65 0.7 0.8 

V1111,V4322 0.56 0.7 0.9 0.6 

V1221,V4122 0.75 0.8 0.85 0.6 

V1221,V4212 0.9 0.6 0.95 0.8 

V1221,V4322 0.6 0.8 0.45 0.9 

V1312,V4122 0.53 0.7 0.75 0.7 

V1312,V4212 0.43 0.5 0.6 0.7 

V1312,V4322 0.5 0.6 0.78 0.7 

V1431,V4122 0.62 0.85 0.8 0.69 

V1431,V4212 0.67 0.78 0.7 0.63 

V1431,V4322 0.6 0.89 0.58 0.7 

The frequency matrix shall be constructed to rank the combined dominant attributes of input and intervene objects 

contributing to the dominant attribute of the output object. This is a little complex decision-making environment as 

it involves the role of an intervening object. Fig 3.9 presents the graphical representation of it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                       Fig.3.9 Representation of Decision-Making Scenario II with Intervening object 

3.3 Decision Making Scenario III 

 The institution is certain of the dominant sub-attributes. Let us consider a situation, suppose if the institution 

decides to conduct a webinar with a focus on general, but not able to decide whether to give priority to Education, 

Health or Psychology, then the decision-making environment becomes more complex. The graphical representation 
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of all sub-attribute relation between input and the output dominating attribute vertex with simple plithogenic fuzzy 

connectors is presented in Fig. 3.10 

 

 

 

 

 

 

 

 

 

 

Fig. 3.10 Representation of Decision-Making Scenario III 

The dominant attribute relational matrix representation is as follows 

 V5111 V5221 V5311 V5421 

V1111 0.55 0.2 0.5 0.6 

V1112 0.6 0.55 0.7 0.85 

V1113 0.5 0.3 0.6 0.6 

V1221 0.8 0.4 0.4 0.8 

V1312 0.7 0.64 0.6 0.9 

V1431 0.6 0.89 0.62 0.4 

V2122 0.54 0.9 0.73 0.6 

V2211 0.83 0.5 0.6 0.8 

V2312 0.4 0.4 0.45 0.9 

V2431 0.6 0.8 0.72 0.49 

V3122 0.9 0.52 0.8 0.8 

V3214 0.95 0.63 0.9 0.9 

V3321 0.5 0.8 0.5 0.43 

V3431 0.6 0.8 0.52 0.4 

 

3.4 Decision-Making Scenario IV 

 This decision-making situation is characterized when the institution is uncertain of the dominant sub-attribute 

values of the input object. Suppose if the institution decides to conduct a webinar with focus on general, but not able 

to decide whether to give priority to Education, Health or Psychology, In this case, the dominant sub-attribute value 

is not certain and suppose it wishes to collaborate with the industry then the decision-making environment becomes 

highly complex. Fig 3.11 presents this graphically 
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Fig.3.11 Representation of Decision-Making Scenario IV 

 

The dominant attribute relational matrix representation is as follows 

 V5111 V5221 V5311 V5421 

V1111,V4122 0.65 0.6 0.5 0.6 

V1111,V4212 0.8 0.65 0.7 0.8 

V1111,V4322 0.56 0.7 0.9 0.6 

V1112,V4122 0.52 0.68 0.57 0.66 

V1112,V4212 0.45 0.67 0.72 0.56 

V1112,V4322 0.56 0.68 0.74 0.69 

V1113,V4122 0.67 0.79 0.83 0.79 

V1113,V4212 0.57 0.82 0.74 0.68 

V1113,V4322 0.5 0.7 0.7 0.6 

V1221,V4122 0.75 0.8 0.85 0.6 

V1221,V4212 0.9 0.6 0.95 0.8 

V1221,V4322 0.6 0.8 0.45 0.9 

V1312,V4122 0.53 0.7 0.75 0.7 

V1312,V4212 0.43 0.5 0.6 0.7 

V1312,V4322 0.5 0.6 0.78 0.7 

V1431,V4122 0.62 0.85 0.8 0.69 

V1431,V4212 0.67 0.78 0.7 0.63 

V1431,V4322 0.6 0.89 0.58 0.7 

 

 The ranking of the attributes contributing to Professional efficiency corresponding to each decision-making 

environment is presented in Table 3.3 
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                                        Table 3.3 Ranking of the attributes  

Decision Making 
Environment 

Ranking of the Attributes contributing to Professional Efficiency 

Decision Making 
Scenario I 

V1312 >V1221>V3122>V1221>V2122> 
V2211>V2431>V1111>V2312>V1431>V3431>V3321 

Decision Making 
Scenario II 

V1221,V4212>V1221,V4322>V1431,V4122>V1111,V4212,V1221,V4122>V1431, 
V4322>V1312,V4122>V1312,V4322>V1111,V4122>V1312,V4212 

Decision Making 
Scenario III 

V3214>V2431>V1312>V2122>V3122>V1111>V2211>V1431>V1221>V3431> 
V3321>V2312>V1112>V1113 

Decision Making 
Scenario IV 

V1221,V4212 > V1113,V4122    > V1221,V4122> V1431,V4122> V1111,V4212> V1113,V4212> V1431,V4212> 
V1431,V4322> V1111,V4322> V1221,V4322> V1312,V4122 > V1112,V4322 > V1312,V4322> V1113,V4322> 

V1112,V4122 > V1112,V4212> V1111,V4122> V1312,V4212 
 

4. Discussion 

 The ranking of the input attribute values of the dominant attributes contributing to the output dominant 

attribute values shows the significance of the individual contribution of each input attribute value. In the first 

decision-making scenario, the attribute values of the input object are ranked. In the second decision making a 

scenario the combined attribute values of input and intervene objects are ranked. This helps in finding the combined 

effect towards the attainment of the output attribute values. In the third decision-making scenario, the ranking of 

sub-attribute values are made, in this case, there was a choice to choose between Education (V1111), Health (V1112) or 

Psychology (V1113), but the preference s should be given to Education based on the ranking. In the fourth decision-

making scenario, the combined effects of sub-attribute values along with intervening attribute values are ranked and 

here also the combined effect of the sub-attribute value, Education is gaining more significance. The above decision-

making scenarios were focusing on the effects of one input object and the same can be applied to other input objects 

and the respective results can be determined. The same method of decision making can be applied to production 

sectors in strategy selection which considers many attribute values and sub-attribute values and this proposed 

plithogenic –n superhypergraph MADM can be applied in such decision-making scenario. 

5. Conclusion 

 This article presents the application of plithogenic n-super hypergraph in the context of optimal decision 

making. This research work introduces many new concepts such as enveloping vertex, dominant enveloping vertex, 

super enveloping vertex, and plithogenic connectors. This research work creates a new avenue in MADM by 

providing space for comprehensive decision making. A new approach to ranking the attribute values based on the 

frequency matrix is initiated. The theoretical description of plithogenic n-super hypergraph is translated into 

practical application in this research work and this will certainly open new vistas of research. This work can be 

further extended with various plithogenic sets. 
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Abstract  

In this paper, the concept of neutrosophic soft Mengerness, neutrosophic soft near Mengerness and neutrosophic 

soft almost Mengerness are introduced and studied. Some characterizations of neutrosophic soft almost 

Mengerness in terms of neutrosophic soft regular open or neutrosophic soft regular closed are given. 

Keywords: Neutrosophic soft sets, Mengerness on neutrosophic soft topological space, neutrosophic soft 

continuous. 

 

1. Introduction 

The concept of fuzzy set was introduced by  Zadeh in his classic paper [20]. C.L.Chang [6] has defined fuzzy 

topological spaces. Atannasov [3] introduced the notion of intuitionistic fuzzy sets, Çoker [7] defined the 

intuitionistic fuzzy topological spaces. Soft sets theory was proposed by Molodtsov [12] in 1999, as a new 

mathematical tool for handling problems which contain uncertainties. Maji et al [10] gave the first practical 

application of soft sets in decision-making problems. Shabir and Naz  [16] presented soft topological spaces and 

defined some concepts of soft sets on these spaces and separation axioms. The concept of neutrosophic set (NS) was 

first introduced by Smarandache [17,18,19] which is the generalization of classical sets, fuzzy set, intuitionistic 

fuzzy set etc. Following this concept Al-Omeri and Jafari defined and investigated Neutrosophic crisp sets via 

Neutrosophic crisp topological spaces [1,2]. The concept of connectedness and compactness on neutrosophic soft 

topological space was introduced by Bera and Mahapatra [4,5]. For more applications on neutrosophic logic the 

refrennces are suggested [21-23] 

The investigation of covering properties of topological spaces has a long history going back to papers by 

Menger and Rothberger [11,14]. However more recently a new theory called Selection Principles was introduced by 

Scheepers [15]. The theory of Selection Principles has extra ordinary connections with numerous subareas of 

mathematics, for example, Set theory and General topology, Uniform structures, and Ditopological texture spaces 

[9]. 

In 1999, Kocinac defined and characterized the almost Menger property [9]. Following this concept, Aqsa, 

Moizud Din Khan defined and investigated nearly Menger and nearly star- Menger spaces [13]. For  

In this paper we are concerned with the weaker forms of the fuzzy Mengerness in neutrosophic soft topological 

spaces. 
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2. Preliminaries 

In this section we now state certain useful definitions, theorems, and several existing results for neutrosophic 

soft topological spaces that we require in the next sections. 

 

Definition 2.1. [17] Let X be  a space of points (objects), with a generic element in X denoted by x. A neutrosophic 

set A is characterized by a truth-member function  ��, an indeterminacy-membership function  �� and a falsity-

membership function  ��. ��(�), ��(�) and ��(�) are real Standard or non Standard subsets of  ]�0,1�[. That is 

��,��,��: � →  ]�0,1�[. There is no restriction on the sum of  ��(�), ��(�), ��(�) and so,  

 �0 ≤ ��� ��(�) + ��� ��(�) + ��� ��(�) ≤ 3�. 

 

Definition 2.2. [12] Let U be an initial universe set and E be a set of parameters. Let P(U) denote the power set of 

U. Then for � ⊆ � , a pair (F,A) is called a soft set over U, where F:A→P(U) is a mapping. 

 

Definition 2.3. [15] Let U be an initial universe set and E be a set of parameters. Let NS(U) denote the set of 

neutrosophic sets (NSs) of U. Then for � ⊆ �, a pair (F,A) is called a neutrosophic soft set (NSS) over U, where 

F:A→NS(U) is a mapping. 

 

Definition 2.4. [8] Let U be an initial universe set and E be a set of parameters. LetNS(U) denote the set of 

neutrosophic sets (NSs) of U. Then, a neutrosophic soft set N over U is a set defined by a set valued function ��  

representing a mapping  ��: � → ��(�) where �� is called approximate function of the neutrosophic soft set N. In 

other words, the neutrosophic soft set is a parametrized family of some elements of the set NS(U) and therefore it 

can be written as a set of ordered pairs, 

 

� = ���,�< �,���(�)(�),���(�)(�),���(�)(�) >: � ∈ ���: � ∈ ��where���(�)(�),���(�)(�),���(�)(�) ∈ [0,1], 

 

respectively the truth-membership, indeterminacy-membership, falsity-membership function obvious. 

 

Definition 2.5. [8] The complement of a neutrosophic soft set N is denoted by �� and is defined by 

�� = ���,�< �,���(�)(�),1− ���(�)(�),���(�)(�) >: � ∈ ���: � ∈ ��, 

 

Let N� and N� be two NSSs over the common universe (U,E). Then N� is said to be the neutrosophic soft subset of 

N�  if for each � ∈ � and for each � ∈ �, 

 
����(�)(�) ≤ ����(�)(�),����(�)(�) ≥ ����(�)(�),����(�)(�) ≥ ����(�)(�). 

 

We write �� ⊆ �� and then �� is the is the neutrosophic soft superset of ��. 

 

Definition 2.6. [8] Let �� and �� be two NSSs over the common universe (U,E). Then their union is denoted by 

�� ∪ �� = �� and is defined as: 

 

�� = ���,�< �,����(�)(�),����(�)(�),����(�)(�) >: � ∈ ���: � ∈ ��where 

����(�)(�) = ����(�)(�) ⋄ ����(�)(�),����(�)(�) = ����(�)(�) ∗ ����(�)(�),����(�)(�) = ����(�)(�) ∗ ����(�)(�). 

 

Their intersection is denoted by �� ∩ �� = �� and is defined as: 

 

�� = ���,�< �,����(�)(�),����(�)(�),����(�)(�) >: � ∈ ���: � ∈ �� where 

����(�)(�) = ����(�)(�) ∗ ����(�)(�),����(�)(�) = ����(�)(�) ⋄ ����(�)(�),����(�)(�) = ����(�)(�) ⋄ ����(�)(�). 
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Definition 2.7.  [4] Let M and N be two NSSs over the common universe (U,E). Then M-N may be defined as, for each 

� ∈ � and for each � ∈ �. 

 

� − � = �< �,���(�)(�) ∗ ���(�)(�),���(�)(�) ⋄ �1− ���(�)(�)� ,���(�)(�) ⋄ ���(�)(�) >� ; 

 

A neutrosophic soft set N over (U,E) is said to be null neutrosophic soft set if 
���(�)(�) = 0,���(�)(�) = 1,���(�)(�)=1 for each � ∈ � and for each� ∈ �. It is denoted by Φ�. 

 

A neutrosophic soft set N over (U,E) is said to be absolute neutrosophic soft set if 
���(�)(�) = 1,���(�)(�) = 0,���(�)(�)=0 for each � ∈ � and for each � ∈ �.  It is denoted by 1�. 

 

Clearly, Φ�
� = 1�,1�

� = Φ�. 

 

Definition 2.8. [4] Let NSS(U,E) be the family of all neutrosophic soft sets over U via parameters in E and 

�� ⊆ ���(�,�). Then ��is called  neutrosophic soft topology on (U,E) if the following conditions are satisfied. 

 

(i) Φ�,1� ∈ ��, 

(ii) The intersection of any finite number of members of �� also belongs to ��. 

(iii) The union of any collection of members of  ��belongs to��. 

 

Then the triple (U,E, ��) is called a neutrosophic soft topological space. Every member of �� is called ��-open 

neutrosophic soft set. An NSS is called ��-closed iff its complement is ��-open. 

 

Definition 2.9. [4] Let (U,E, ��) be a neutrosophic soft topological space over (U,E) and � ∈ ���(�,�) be arbitrary. 

Then the interior of M is denoted by �� or int(M) and is defined as: 

 

�� =∪ {��: ���� ���������ℎ�� ���� ���� ����� ⊆ �}. 

 

Definition 2.10. [4] Let (U,E, ��) be a neutrosophic soft topological space over (U,E) and � ∈ ���(�,�) be arbitrary. 

Then the closure of A is denoted by �� or cl(A) and is defined as: 

 

� =̅∩ {��: ���� ���������ℎ�� ���� ������ ��� � ⊆ ��}. 

 

Theorem 2.11. [4] Let (U,E, ��) be a neutrosophic soft topological space over (U,E) and � ∈ ���(�,�). Then, 

(�)̅�=(��)� and (��)� = (��)�. 

 

Proposition 2.12. [4] Let �� and �� be two neutrosophic soft sets over (U,E). Then, 

 

(i) (�� ∪ ��)� = ��
� ∩ ��

�, 

(ii) (�� ∩ ��)� = ��
� ∪ ��

�. 

 

Definition 2.13. [4] Let (U,E, ��) be a neutrosophic soft topological space and � ∈ ��. A family  Ω = {��: � ∈ Γ} of 

neutrosophic soft sets is said to be a cover of M if  � ⊆∪ ��. 

 

If every member of that family which covers M is neutrosophic soft open then it is called open cover of  M.  

A subfamily of  Ω  which also covers M is called a subcover of M. 

 

Definition 2.14. [4] Let (U,E, ��)  be a neutrosophic soft topological space and  � ∈ ��. Suppose Ω be a cover of  M.  

If  Ω has a finite subcover which also covers M then M is called neutrosophic soft compact. 
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Definition 2.15. [4] Let �: � → � and  �: � → � be two functions where E is the parameter set each of the crisp sets U 

and V. Then the pair(�,�) is called and NSS function from (U,E) to (V,E). We write, (�,�): (�,�) → (�,�). 

 

Definition 2.16. [4] Let (M,E) and (N,E) be two NSSs defined over U and V, respectively and  (�,�) be an NSS 

function from (U,E) to (V,E). Then, 

 

(1) The image of (M,E) under (�,�), denoted by (�,�)(�,�), is an NSS over V and is defined as: 

 
(�,�)(�,�) = ��(�),�(�)� = {< �(�),�� (�)��(�)� >: � ∈ �}  where for each � ∈ �(�) and � ∈ �. 

 

�� (�)(�)(�) = { �,    ���������.
���� (�)������  (�)��[��(� )(�)(�)],   �� ��� ��(�),

 

 

�� (�)(�)(�) = {�,    ���������.
���� (�)�� ��� �  (�)��[��(� )(�)(�)],   �� ��� ��(�),

 

 

�� (�)(�)(�) = {�,    ���������.
���� (�)�� ����  (�)��[��(� )(�)(�)],   �� ��� ��(�),

 

 
(2) The pre-image of (N,E) under(�,�), denoted by (�,�)��(�,�), is an NSS over U and is defined by: 

 
(�,�)��(�,�) = ����(�),���(�)� where for each � ∈ ���(�) and � ∈ �. 

 
��

��(�)(�)(x)=����� (�)���(�)�, 

 

��
��(�)(�)(x)=����� (�)���(�)�,  

 

��
��(�)(�)(x)=����� (�)���(�)�, 

 

If � and � are injective(surjective), then (�,�) is injective (surjective). 

 

Definition 2.17. [4] Let (U,E, ��) and (V,E, ��) be two neutrosophic soft topological spaces.   

(�,�): (U,E,��) →(V,E, ��) is said to be a neutrosophic soft continuous mapping if for each (�,�) ∈ ��, the inverse 

image (�,�)��(�,�) ∈ �� i.e., the inverse image of each open NSS in  (V,E,��) is also open in (U,E,��). 

 

3. Neutrosophic Soft Mengerness 

Here, the notion of Mengerness, almost Mengerness and near Mengerness on neutrosophic soft topological 
space is developed with some basic theorems. 

Definition 3.1. (a) A neutrosophic soft topological space (U,E, ��)is called neutrosophic soft Menger iff every 
sequence {��: � ∈ �} of neutrosophic soft open covers of (U,E, ��), there exists a sequence {��: � ∈ �} such that for 
every � ∈ �,�� is a finite subset of �� and ∪�∈� �� = 1�. 

(b) A neutrosophic soft topological space (U,E, ��) is called neutrosophic soft almost Menger iff every sequence  
{��: � ∈ �} of neutrosophic soft open covers of (U,E, ��), there exists a sequence {��: � ∈ �} such that for every  
� ∈ �, �� is a finite subset of �� and ∪�∈� ��

∗ = 1�, where  ��
∗ = {��(�): � ⊆ ��}. 
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(c) A neutrosophic soft topological space (U,E,��) is called neutrosophic soft nearly compact iff every 
sequence  {��: � ∈ �} of neutrosophic soft open covers of (U,E,��), there exists a sequence {��: � ∈ �} such that for 
every � ∈ �,�� is a finite subset of �� and ∪�∈� ��

∗ = 1�, where ��
∗ = {���(��(�)): � ⊆ ��}. 

It is clear that in neutrosophic soft topological spaces we have the following implications: 
 
Neutrosophic soft Mengerneutrosophic soft nearly Mengerneutrosophic soft almost Menger. 

Theorem 3.2. A neutrosophic soft topological space (U,E,��) is called neutrosophic soft almost Menger iff for each 
family {��: � ∈ �} of neutrosophic soft open sets in (U,E,��) having the finite intersection property we have  
∩�∈� ��(��) ≠ Φ�. 

Proof. Let (U,E,��) be a neutrosophic soft almost Menger topological space. Consider {��: � ∈ �} be a sequence of 
neutrosophic soft open  sets in (U,E,��) having the finite intersection property. Suppose the  ∩�∈� ��(��) = Φ�. Then 
we have ∪�∈� [cl(��)]�=∩�∈� ���(��

�) = 1�. Since (U,E,��) neutrosophic soft almost Menger, for every � ∈ �, 
there exists a sequence {��: � ∈ �} such that �� is a finite subset of int(��

�) and ∪�∈� ��
∗ = 1�, where 

��
∗ = {��(�): � ⊆ ��}. But from �� ⊆ ���(��

�) and �� ⊆ ������(��)�,�� ��� �ℎ�� ∩�∈� �� = Φ�, which is a 
contradiction with the finite intersection property of  {��: � ∈ �}. 

Conversely, let {��: � ∈ �} be a neutrosophic soft open cover. If ∪�∈� ��
∗ ≠ 1�, where ��

∗ = {��(�): � ⊆ ��} and 
�� is a finite subset of ��, then {(��

∗ )�: � ∈ �} is an of neutrosophic soft open sequence with the finite intersection 
property. Hence, from the hypothesis it follows that 

∩�∈� ��((��
∗)�) ≠ Φ� =>∪�∈� [��([��(��

∗)�)]� ≠ 1�. Since ∪�∈� �� ⊆∪�∈� [��([��(��
∗)�] ≠ 1�,  

then  ∪�∈� �� ≠ 1�, which is a contradiction. 

Definition 3.3. A neutrosophic soft set N1 is called a neutrosophic soft regular open set iff N1=int(cl(N1)); a 
neutrosophic soft set N2 is called a neutrosophic soft regular closed set iff  N2=cl(int(N2)). 

Theorem 3.4. In a neutrosophic soft topological space (U,E,��) the following conditions are equivalent: 

(i) (U,E,��) is neutrosophic soft almost Menger. 

(ii) For each sequence {��: � ∈ �} of neutrosophic soft regular closed sets such that ∩�∈� �� = Φ�, there 

exists a sequence {��: � ∈ �} such that for every � ∈ �,�� is a finite subset of �� and ∩�∈� ��
∗ = Φ�, 

where ��
∗ = {���(�): � ⊆ ��}. 

(iii) ∩�∈� ��(��) ≠ Φ� holds for each sequence {��: � ∈ �} of neutrosophic soft regular open sets having 

the finite intersection property. 

(iv) For each sequence {��: � ∈ �} of neutrosophic soft regular open covers of (U,E,��), there exists a 

sequence {��: � ∈ �} such that for every � ∈ �, �� is a finite subset of �� and 

∪�∈� ��
∗ = {��(�): � ⊆ ��}. 

 

Proof. The proof of this theorem follows a similar pattern to Theorem 3.2. 

Definition 3.5. Let (U,E,��) and (V,E,��) be two neutrosophic soft topological spaces. Then 
 (�,�): (U,E,��) →  (V,E,��) is said to be a neutrosophic soft almost continuous mapping if for each (N,E) 
neutrosophic soft regular open set of (V,E,��),  the inverse image (�,�)��(�,�) ∈  ��. The inverse image of each 
neutrosophic soft regular open set in (V,E,��)  is neutrosophic soft  open in (U,E,��). 

Theorem 3.6. Let (U,E,��) and (V,E,��) be two neutrosophic soft topological spaces and   
(�,�): (U,E,��) →  (V,E,��) a neutrosophic soft almost continuous surjection mapping. If (M,E) is neutrosophic soft 
almost Menger in (U,E,��), then (�,�)(M,E) is so in (V,E,��). 
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Proof. Let {��,�): � ∈ �} be a neutrosophic soft open cover of (φ,ψ)(M,E) i.e., 

�(M,E) ⊆∪�∈�(��,�). Since (�,�) is neutrosophic soft almost continuous, 

{(�,�)�����(��((��,�))): � ∈ �} is a neutrosophic soft open cover of (M,E) . Since (M,E) is almost Menger, there 

is a sequence {(��,�): � ∈ �} such that �� is a finite subset of  {(�,�)�����(��((��,�))): � ∈ �} and 

∪�∈� (��
∗,�) = 1�, where (��

∗,�) = {��(�,�): � ⊆ ��}. For every � ∈ � and � ⊆ �� we can choose a 

member (��,�)  ⊆ (��,�) such that  (�,�) = (�,�)��(��,�). From the surjectivity of (�,�) we have  

(�,�) ⊆ ∪�∈� �� �(�,�)�� �������(��,�)��� = 1�.  

Hence (�,�)(M,E) ⊆ (�,�)[ ∪�∈� ��((�,�)���������(��,�)�)�]= 

∪�∈�(�,�)���(�,�)���������(��,�)�)�� = �(1�) = 1�. But from ������(��,�)� ⊆ ��(��,�) and from the 

neutrosophic soft almost continuity of  f,  

(�,�)(cl(�,�)�����(���(��,�)�))  ⊆ (�,�)( (�,�)����(��,�)))) ⊆ ��(��,�) for each � ∈ �,  

i.e., ∪�∈� ��(��,�) =  1�. Hence (�,�)(M,E) is neutrosophic soft almost Menger also. 

 

Definition 3.7. Let (U,E,��) and (V,E,��) be two neutrosophic soft topological spaces. Then   

(�,�): (U,E,��) →  (V,E,��) is said to be a neutrosophic soft weakly continuous mapping if for each (N,E) 

neutrosophic soft regular open set of (V,E,��),  (�,�)��(�,�) ⊆ ��� �(�,�)�����(�,�)��. 

 

Theorem 3.8. Let (U,E,��) and (V,E,��) be two neutrosophic soft topological spaces and  

(�,�): (U,E,��) →  (V,E,��) is said to be a neutrosophic soft weakly continuous surjection mapping. If 

(M,E) is neutrosophic soft Menger in (U,E,��),then (�,�)(�,�) is neutrosophic soft almost Menger in 

(V,E,��). 

 

Proof. By using a similar technique of the proof of Theorem 3.6, the theorem holds. 

 

Definition 3.9. Let (U,E,��) and (V,E,��) be two neutrosophic soft topological spaces.  

Then (�,�): (U,E,��) →  (V,E,��) is said to be a neutrosophic soft strongly  continuous mapping if for each 

(M,E) neutrosophic soft set of (V,E,��),(�,�)[��(�,�)] ⊆ (�,�)(�,�). 

 

Theorem 3.10. Let (U,E,��) and (V,E,��) be two neutrosophic soft topological spaces and 

 (�,�): (U,E,��) →  (V,E,��) a neutrosophic soft strongly  continuous surjection mapping. If (M,E) is 

neutrosophic soft almost Menger in (U,E,��), then (�,�)(�,�) is neutrosophic soft Menger in (V,E,��). 

 

Proof. By using a similar technique of the proof of Theorem 3.6, the theorem holds. 

 

Corollary 3.11. Let (U,E,��) and (V,E,��) be two neutrosophic soft topological spaces and 

 (�,�): (U,E,��) →  (V,E,��) a neutrosophic soft strongly  continuous surjection mapping. If (M,E) is 

neutrosophic soft nearly Menger in (U,E,��), then (�,�)(�,�) is neutrosophic soft Menger in (V,E,��). 

 

4. Conclusions 

In this paper, the concepts of neutrosophic soft Menger topological spaces, Neutrosophic topological spaces, 
Neutrosophic Bitopological spaces and Neutrosophic crisp supra bitopological spaces were introduced and studied. 
Some interesting properties were also established. It would be interesting to study similar properties for 
neutrosophic soft weakly Menger topological spaces, Neutrosophic crisp supra bitopological spaces, Neutrosophic 
Bitopological Spaces and Neutrosophic Topological Spaces. 
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Abstract 

In a previous paper in this journal (IJNS), it is mentioned about a possible approach to re-describe QED without 

renormalization route. As it is known that in literature, there are some attempts to reconcile vortex-based fluid 

dynamics and particle dynamics. Some attempts are not quite as fruitful as others. As a follow up to previous paper, 

the present paper will discuss two theorems for developing unification theories, and then point out some new proposals 

including by Simula (2020) on how to derive Maxwell equations in superfluid dynamics setting; this could be a new 

alternative approach towards “fluidicle” or “vorticle” model of QED. Further research is recommended in this new 

direction. 

 

Keywords: Neutrosophic logic, Vortex-based fluid dynamics, Fuidicle, Vorticle, QED, Renormalization, Maxwell-

Proca equations. 

PACS 2010: 02, 03, 41, 98 

 

1.Introduction  

In literature, there are some attempts to reconcile between vortex-based fluid dynamics and particle dynamics, see 

[15-21]. Some attempts are not quite fruitful as others, concerning describing classical electrodynamics. 
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This paper will continue our previous article, suggesting that it is possible to find a way out of the infinity problem in 

QED without renormalization route [14]. As in the previous paper [14], the role of neutrosophic Logic (developed by 

one of us, FS) here is to find a third way or intermediate solution between point particle and vortex, that is why it is 

suggested here a combined term: “vorticle” (from vortex and particle), or it may be called: “fluidicle” (from fluidic 

particle). These new words vorticle and fluidicle are intended to capture the essence of “middle way” representing the 

Neutrosophic Logic view. 

Here three possible approaches by Tapio Simula, Lehnert’s RQED, and also Carl Krafft, will also be discussed.  

The present paper will point out some new papers including by Simula [7] on how to derive Maxwell equations in 

superfluid dynamics setting, this could be a new alternative approach towards “fluidicle” or “vorticle” model of QED. 

 

2. A short review of progress QED theories in literature and two new theorems. 

There are some progress in the literature of QED, beyond what is called “renormalization” route, for instance by 

Daywitt, using a 7-dimensional spacetime and spinor wave [22-24].  

Other developments have been made by Prof. Bo Lehnert, which he calls: revised Quantum Electrodynamics. There 

are numerous possible ways to develop QED-like theories, and not only that some theoreticians have gone further to 

develop Unification Theories, SuperUnification, and even Theory of Everything (TOE). 

But almost all of them boiled down to mounting complexities and ever-increasing difficult technicalities, so it appears 

to be more direct approach to start with writing down two theorems as follows:  

 

2.a. Two new theorems and a corollary 

Based on the above discussions, actually, it is suggested two theorems and a corollary over here: 

Theorem 1: 

The true unified theory between gravitation, particles, and electromagnetic (UTGPE) fields should be based on a 

consistent model of vacuum, preferably by a kind of ether fluid dynamics. 

 

Theorem 2: 

The true UTGPE, albeit it is quite difficult to find, shall be founded on no more than 3-dimensional space and 1-

dimensional time (Newtonian space). 

 

Corollary: 
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It should be possible and indeed relatively easy to find theoretical ways to unify four fundamental forces by increasing 

spacetime dimensionality. Supra dimensional spacetime is one character of anti-realism theory of UTGPE. 

 

2.b. Implication. 

Therefore, a good candidate of true UTGPE, or at least a unification of gravitation and electromagnetic field in a 

quantum sense, should be better off based on such characteristics, as a consistent combination between a quantum 

feature of electrodynamics theory and/or quantum or sub-quantum1 model of aether fluid. 

 

3. Three possible alternatives on QED 

Allow us to begin this section with a quote from Sonin’s book [1], which can be paraphrased as follows: 

“The movement of vortices has been a region of study for over a century. During the old style time of vortex elements, 

from the late 1800s, many fascinating properties of vortices were found, starting with the outstanding Kelvin waves 

engendering along a disconnected vortex line (Thompson, 1880). The primary object of hypothetical investigations 

around then was a dissipationless immaculate fluid (Lamb, 1997). It was difficult for the hypothesis to find a shared 

opinion with try since any old style fluid shows gooey impacts. The circumstance changed after crafted by Onsager 

(1949) and Feynman (1955) who uncovered that turning superfluids are strung by a variety of vortex lines with quantized 

dissemination. With this revelation, the quantum time of vortex elements started.” 

Then it is possible find an expression that relates the topological and quantized vortices from the viewpoint of Bohr-

Sommerfeld quantization rules, which seem to remind us to the Old Quantum Theory, albeit from a different 

perspective. 

The quantization of circulation for nonrelativistic superfluid is given by [3]: 

  
sm

Nvdr


                                                                                                                                    (1) 

Where smN ,,  represents the winding number, reduced Planck constant, and superfluid particle’s mass, 

respectively [3]. And the total number of vortices is given by [44]: 

 


mr
N

22. 
                                                                                                                                    (2) 

                                                           
1 Added note: Robert N. Boyd has suggested his sub-quantum kinetic model of aether and also electron, using some features of 
Kelvin-Helmholtz vortex theorem. See for instance: V. Christianto, F. Smarandache & R.N. Boyd, Electron Model Based 
Helmholtz’s Electron Vortex & Kolmogorov’s Theory of Turbulence. Prespacetime J. vol. 10 (1), 2019. url: 
https://prespacetime.com/index.php/pst/article/view/1516 
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Some implications:  

a. Simula’s approach 

Provided it is acceptable that there is a neat correspondence between quantized vortices in superfluid helium and 

Bohr-Sommerfeld quantization rules, now let us quote from abstract of a recent paper where Tapio Simula wrote, 

which can be rephrased as follows [7]:  

“Right now, and electromagnetism have a similar starting point and are new properties of the superfluid universe, which 

itself rises up out of the hidden aggregate structure of progressively basic particles, for example, atoms. The Bose-Einstein 

condensate is identified as the tricky dull matter of the superfluid universe with vortices and phonons, separately, 

comparing to huge charged particles and massless photons.”[7] 

In Simula’s model, Maxwell equations can be re-derived right from superfluid vortices. 

 

b. Lehnert’s RQED 

And one more approach is worthy to mention here. Instead of Simula’s model of electromagnetic and gravitation fields 

in terms of superfluid vortices, we can also come up with a model of electrodynamics by Lehnert’s RQED from Proca 

equations. As Proca equations can be used to describe the electromagnetic field of superconductor, we find it as a 

possible approach too. 

Conventional electromagnetic theory based on Maxwell’s equations and quantum mechanics has been successful in 

its applications in numerous problems in physics and has sometimes manifested itself in a good agreement with 

experiments. Nevertheless, as already stated by Feynman, there are unsolved problems which lead to difficulties with 

Maxwell’s equations that are not removed by and not directly associated with quantum mechanics [20]. Therefore 

QED, which is an extension of Maxwell’s equations, also becomes subject to the typical shortcomings of 

electromagnetic in its conventional form. This reasoning makes a way for Revised Quantum Electrodynamics as 

proposed by Bo Lehnert. [11-13]   

In a series of papers, Bo Lehnert proposed a novel and revised version of Quantum Electrodynamics, which he calls 

as RQED. His theory is based on the hypothesis of a nonzero electric charge density in the vacuum, and it is based on 

Proca-type field equations [10, p. 23]: 

4,3,2,1,
1

0
2

2

2

2














  JA

tc
             (3) 

Where  

,, 









c

i
AA


                 (4) 
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With A and � standing for the magnetic vector potential and the electrostatic potential in three-space. In three 

dimensions, we got [20, p.23]: 

  ,0
0

0 t

E
CdivE

curlB










                (5) 

,
t

B
curlE




                  (6) 

 ,0,  divBcurlAB                 (7) 

,
t

A
E




                  (8) 

.
0


divE                  (9) 

These equations differ from the conventional form, by a nonzero electric field divergence equation (9) and by the 

additional space-charge current density in addition to displacement current at equation (5). The extended field 

equations (5)-(9) are easily found also to become invariant to a gauge transformation.[10, p.23] 

The main characteristic new features of the present theory can be summarized as follows [10, p.24]: 

a. The hypothesis of a nonzero electric field divergence in the vacuum introduces an additional degree of 

freedom, leading to new physical phenomena. The associated nonzero electric charge density thereby 

acts somewhat like a hidden variable. 

b. This also abolishes the symmetry between the electric and magnetic fields, and then the field equations 

obtain the character of intrinsic linear symmetry breaking. 

c. The theory is both Lorentz and gauge invariant. 

d. The velocity of light is no longer a scalar quantity but is represented by a velocity vector of the modulus 

c. 

e. Additional results: Lehnert is also able to derive the mass of Z boson and Higgs-like boson.[21] These 

would pave an alternative way to new physics beyond Standard Model. 

Now it should be clear that Lehnert’s RQED is a good alternative theory to QM/QED, and therefore it is also 

interesting to ask whether this theory can also explain some phenomena related to LENR and UDD reaction of Homlid 

(as argued by Celani et al).[8] 

A recent paper [8] presented arguments in favor of extending RQED to become a fluidic Maxwell-Proca equations, 

as follows: 
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Now it appears possible to arrive at fluidic Maxwell-Proca equations, as follows [8] 

 
2

0

E


 


  


,     (10) 

 0B 


,      (11) 

 0
ˆ HEB   ,      (12) 

    00
2

000 ˆˆˆ EaTvEAjBE e    ,   (13) 

where: 
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E
t




   





,     (14) 

 B A


,      (15) 

 0mc
 


.      (16) 

Since according to Blackledge, the Proca equations can be viewed as a unified wavefield model of electromagnetic 

phenomena [7], therefore the fluidic Maxwell-Proca equations can be considered as a unified wavefield model for 

electrodynamics of superconductor. 

Now, having defined Maxwell-Proca equations, it is possible to write down fluidic Maxwell-Proca-Hirsch equations 

using the same definition, as follows: 

                                    
2 2

0 02

1
( )( ) ( ),

L
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In literature, the above fluidic Maxwell-Proca-Hirsch equations have never been presented elsewhere before. Provided 

the above equations can be verified with experiments, they can be used to describe electrodynamics of 

superconductors.  

 

c. Krafft’s approach 

A third approach of describing elementary particles from aether vortices perspective is discussed by Carl F. 

Krafft [9]. See for example: 

 

 

Figure 1. A few elementary particles, source: Carl Frederich Krafft [9] 

 

4. Concluding remarks 

In this paper, continuing our previous article, it is argued that it is possible to find a way out of the infinity problem in 

QED without renormalization route [14]. As a follow up to previous paper, in the present paper, first of all, two 

theorems for developing unification theories have been discussed, along with pointing out some new proposals 

including by Simula (2020) on how to derive Maxwell equations in superfluid dynamics setting. This could be a new 

alternative approach towards “fluidicle” or “vorticle” model of QED. 
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Three possible approaches: Tapio Simula, Lehnert’s RQED and also Carl F. Krafft, have also been discussed. 

Nonetheless it should admitted that this article is not complete yet on possible ways to describe vorticle or fluidic as 

an alternative to QED. 

Hopefully this article will inspire further investigations in this line of thoughts. 
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Abstract  

This paper introduces the concept of n-refined neutrosophic vector spaces as a generalization of neutrosophic 

vector spaces, and it studies elementary properties of them. Also, this work discusses some corresponding concepts 

such as weak/strong n-refined neutrosophic vector spaces, and n-refined neutrosophic homomorphisms. 

Keywords: n-Refined weak neutrosophic vector space, n-Refined strong neutrosophic vector space, n-Refined 

neutrosophic homomorphism. 

1.Introduction 
Neutrosophy as a part of philosophy founded by F. Smarandache to study origin, nature, and indeterminacies 

became a strong tool in studying algebraic concepts. Neutrosophic algebraic structures were defined and studied 

such as neutrosophic modules,and neutrosopohic vector spaces, etc.See [1,2,3,4,5,6,7,8,9]. In 2013 

Smarandacheintroduceda perfect idea, when he extended the neutrosophic set to refined [n-valued] neutrosophic 

set, i.e. the truth value T is refined/split into types of sub-truths such as (T1, T2, …,)  similarly indeterminacy I is 

refined/split into types of sub-indeterminacies (I1, I2, …,) and the falsehood F is refined/split into sub-falsehood (F1, 

F2,..,) [10,11]. Refined neutrosophic algebraic structures were studied such as refined neutrosophic rings, refined 

neutrosophic modules, and n-refined neutrosophic rings [4,12]. 

In this article authors try to define n-refined neutrosophic vector spaces, subspaces, and homomorphisms and to  

present some of their elementary properties. 

For our purpose we use multiplication operation (defined in [12]) between indeterminacies ��, ��, … , �� as follows: 

�� �� = ����	(� ,�). 

This work is a continuation of the study on the n-refined neutrosophic structures that began in [12]. 

2. Preliminaries 
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Definition 2.1: [12] 

Let (R,+, ) be a ring and ��;1 ≤ � ≤ � be n indeterminacies. We define ��(I)={�� + ��� + ⋯ + ����	;	�� ∈ �} to 

be an n-refined neutrosophic ring. 

Definition 4.3: [12] 

(a) Let ��(I) be an n-refined neutrosophic ring and P = ∑ ����
�
���  = {�� + ��� + ⋯ + ����:	�� ∈ ��}, where �� is a 

subset of R, we define P to be an AH-subring if �� is a subring of R for all . AHS-subring is defined by the condition 

�� = �� for all �	, �. 

(b) P is an AH-ideal if��aretwo-side ideals of R for all �, the AHS-ideal is defined by the condition �� = �� for all 

�	, �. 

(c) The AH-ideal P is said to be null if �� = ����� = {0} for all�. 

Definition 2.3 :[5] 

Let ( V , + , ∙  ) be a vector space over the field K; then ( V(I) , + , ∙ ) is called a weak neutrosophic vector space over 

the field K, and it is called a strong neutrosophic vector space if it is a vector space over the neutrosophic field K(I). 

Definition 2.4 : [5] 

Let V(I) be a strong neutrosophic vector space over the neutrosophic field K(I) and W(I) be a non empty set of V(I) 

then W(I) is called a strong neutrosophic subspace if W(I) is itself a strong neutrosophic vector space. 

Definition 2.6 :[5] 

Let U(I) , W(I) be twostrong neutrosophic subspaces of V(I)and let �:�(�)→ �(�) , we say that f is a neutrosophic 

vector space homomorphism if  

(a) f(I)=I, 

(b) f is a vector space homomorphism. 

We define the kernel of f by Ker(f) = { x∈ �(�); f(x) = 0� (�)}. 

Definition 2.7 :[5] 

Let ��, ��..�� ∈ �(�)and� ∈ �(�); we say that x is a linear combination of { ��;�= 1, .., �} if  

x = ���� + ⋯ + ���� suchthat�� ∈ �(�). 

The set{ ��;�= �, .., �}is called linearly independent if ���� + ⋯ + ���� = �	implies	�� = �for all i.   

3. Main concepts and results 

Definition 3.1: 

Let (K,+,∙) be a field, we say that ��(�)= � + ��� + ⋯ + ��� = {�� + ���� + ⋯ + ����;�� ∈ �} is an n-refined 

neutrosophic field. 

It is clear that ��(�) is an n-refined neutrosophic field, but not a field in the classical meaning. 
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Example 3.2 : 

Let � = �be the field of rationals. The corresponding 3-refined neutrosophic field is 

��(�)= {� + ��� + ��� + ���;�, �, �, � ∈ �}. 

Definition 3.3 : 

Let (V,+,∙) be a vector space over the field K. Then we say that ��(�)= � + ��� + ⋯ + ��� = {�� + ���� + ⋯ +

����;	�� ∈ �} is a weak n-refined neutrosophic vector space over the field K. Elements of  ��(�)are called n-refined 

neutrosophic vectors, elements of K are called scalars. 

If we take scalars from the n-refined neutrosophicfield ��(�), we say that  ��(�) is a strong n-refined neutrosophic 

vector space over the n-refined neutrosophic field ��(�). Elements of ��(�) are called n-refined neutrosophic 

scalars. 

Remark 3.4: 

If we take n=1 we get the classical neutrosophic vector space. 

Addition on ��(�)is defined as: 

�����

�

���

+ �����

�

���

= �(��+ ��)��

�

���

. 

Multiplication by a scalar � ∈ �is defined as: 

� ∙ ∑ ����
�
��� = ∑ (�.��)��

�
��� . 

Multiplication by an n-refined neutrosophic scalar � = ∑ ����
�
��� ∈ ��(�)is defined as: 

(∑ ����)
�
��� ∙ (∑ ����)

�
��� = ∑ (��.��)����

�
�,��� , 

where �� ∈ �,�� ∈ �, ���� = ����	(�,�). 

Theorem 3.5 : 

Let (V,+,∙) be a vector space over the field K. Then a weak n-refined neutrosophic vector space ��(�) is a vector 

space over the field K. A strong n-refined neutrosophic vector space is not a vector space but a module over the n-

refinedneutrosophic field ��(I). 

Proof: 

It is similar to that of Theorem 2.3 in [5]. 

Example 3.6: 

Let � = �� be the finite vector space of integers modulo 2 over itself: 

(a) The corresponding weak 2-refined neutrosophic vector space over the field �� is 

��(�)= {0,1, ��, ��, �� + ��, 1 + �� + ��, 1 + ��, 1 + ��}. 
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Definition 3.7: 

Let ��(�) be a weak n-refined neutrosophic vector space over the field K; a nonempty subset ��(�) is called a weak 

n-refined neutrosophic subspace of ��(�) if ��(�) is a subspace of	��(�) itself. 

Definition 3.8: 

Let ��(�) be a strong n-refined neutrosophic vector space over the n-refined neutrosophic field��(�); a nonempty 

subset ��(�) is called a strong n-refined neutrosophic subspace of ��(�) if ��(�) is a submodule of��(�) itself. 

Theorem 3.9: 

Let ��(�) be a weak n-refined neutrosophic vector space over the field K, ��(�) be a nonempty subset of ��(�). 

Then ��(�) is a weak n-refined neutrosophic subspace if and only if: 

� + � ∈ ��(�),� ∙ � ∈ ��(�)for all �, � ∈ ��(�),� ∈ �. 

Proof: 

It holds directly from the condition of subspace. 

Theorem 3.10: 

Let ��(�) be a strong n-refined neutrosophic vector space over an n-refined neutrosophic field ��(�), ��(�) be a 

nonempty subset of ��(�). Then ��(�) is a strong n-refined neutrosophic subspace if and only if: 

� + � ∈ ��(�),� ∙ � ∈ ��(�)for all �, � ∈ ��(�),� ∈ ��(�). 

Proof: 

It holds directly from the condition of submodule. 

Example 3.11: 

Let � = ��	be a vector space over the field R, � =	< (0,1)> is a subspace of V, ��
�(�)= {(�, �)+ (�, �)�� +

(�, �)��;�, �,�, �, �, � ∈ �} is the corresponding weak/strong 2-refined neutrosophic vector space. 

��(�)= {�� + ���� + ����}= {(0, �)+ (0, �)�� + (0, �)��;�, �, � ∈ �}is a weak 2-refined neutrosophic subspace 

of the weak 2-refined neutrosophic vector space ��
�(�) over the field R. 

��(�)= {�� + ���� + ����}= {(0, �)+ (0, �)�� + (0, �)��;�, �, � ∈ �}is a strong 2-refined neutrosophic subspace 

of the strong 2-refined neutrosophic vector space ��
�(�) over the n-refined neutrosophic field ��(�). 

Definition 3.12: 

Let ��(�) be a weak n-refined neutrosophic vector space over the field K, � be an arbitrary element of ��(�), we say 

that x is a linear combination of {��, ��, … , �� }		��(�), or� = ���� + ���� + ⋯ + �� �� : �� ∈ �, �� ∈ ��(�). 

Example 3.13: 

Consider the weak 2-refined neutrosophic vector space in Example 3.11, 
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� = (0,2)+ (1,3)� ∈ ��
�(�), � = 2(0,1)+ 1(1,0)�� + 3(0,1)��, i.e � is a linear combination of the set 

{(0,1), (1,0)��, (0,1)��} over the field R. 

Definition 3.14: 

Let ��(�) be a strong n-refined neutrosophic vector space over an n-refined neutrosophic field ��(�), � be an 

arbitrary element of ��(�), we say that x is a linear combination of {��, ��, … , �� }��(�) is � = ���� + ���� +

⋯ + �� �� : �� ∈ ��(�), �� ∈ ��(�). 

Example 3.15: 

Consider the strong 2-refined neutrosophic vector space ��
�(�)= {(�, �)+ (�, �)�� + (�, �)��;�, �,�, �, �, � ∈ �} 

over the 2-refined neutrosophic field ��(�), 

� = (0,2)+ (3,3)�� + (−1,0)�� = (2 + ��)∙ (0,1)+ (1 + ��)∙ (1,1)�� + (�� − ��)∙ (1,0)��, hence x is a linear 

combination of the set {(0,1), (1,1)��, (1,0)��} over the 2-refined neutrosophic field ��(�). 

Definition 3.16: 

Let � = {��, … , �� } be a subset of a weak n-refined neutrosophic vector space ��(I) over the field K, X is a weak 

linearly independent set if ∑ ���� = 0	��������� = 0;	�� ∈ �
�
��� . 

Definition 3.17: 

Let � = {��, … , �� } be a subset of a strong n-refined neutrosophic vector space ��(I) over the n-refined 

neutrosophic field ��(�), X is a weak linearly independent set if ∑ ���� = 0	��������� = 0;	�� ∈ ��(�)
�
��� . 

Definition 3.18: 

Let ��(�),��(�) be two strong n-refined neutrosophic vector space over the n-refined neutrosophic field ��(�), let 

�:��(�)→ ��(�) be a well defined map. It is called a strong n-refined neutrosophic homomorphism if: 

�(�.� + �.�)= �.�(�)+ �.�(�)for all �, � ∈ ��(�), �, � ∈ ��(�). 

A weak n-refined neutrosophic homomorphism can be defined as the same. 

We can understand the strong n-refined homomorphism as a module homomorphism, weak n-refined neutrosophic 

homomorphism can be understood as a vector space homomorphism. 

Remark: 

The previous definition of n-refined homomorphism between two strong/weak n-refined vector spaces is a classical 

homomorphism between two modules/spaces. We can not add a similar condition to the concept of neutrosophic 

homomorphism (�(��)= ��), since �� is not supposed to be an element of ��(�)if V has more than one dimension for 

example. According to our definition,Ker(f) will be a subspace (which is different from classical neutrosophic vector 

space case) sicne� was defined as a classical homomorphism without any additional condition. 

Definition 3.19: 

Let �:��(�)→ ��(�) be a weak/strong n-refined neutrosophic homomorphism, we define: 

(a) ���(�)= {� ∈ ��(�);�(�)= 0}. 
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(b) ��(�)= {� ∈ ��(�);	∃� ∈ ��(�)and� = �(�)}. 

Theorem 3.20: 

Let �:��(�)→ ��(�) be a weak n-refined neutrosophic homomorphism. Then 

(a) ���(�)is a weak n-refined neutrosophic subspace of ��(I). 

(b) ��(�)is a weak n-refined neutrosophic subspace of ��(�). 

Proof: 

(a) �is a vector space homomorphism since ��(�),��(�) are vector spaces, hence ���(�) is a subspace of the vector 

space ��(�), thus ���(�) is a weak n-refined neutrosophic subspace of ��(�). 

(b) It holds by similar argument. 

Theorem 3.21: 

Let �:��(�)→ ��(�) be a strong n-refined neutrosophic homomorphism. Then 

(a) ���(�)is a strong n-refined neutrosophic subspace of ��(I). 

(b) ��(�)is a strong n-refined neutrosophic subspace of ��(�). 

Proof: 

(a) �is a module homomorphism since ��(�), ��(�) are modules over the n-refined neutrosophic field ��(�), hence 

���(�) is a submodule of the vector space ��(�), thus ���(�) is a strong n-refined neutrosophic subspace of ��(�). 

(b) Holds by similar argument. 

Example 3.22: 

Let ��
�(�)= {�� + ���� + ����;	��, ��, �� ∈ �

�}, ��
�(�)= {�� + ���� + ����;	��, ��, �� ∈ �

�} be two weak 2-

refined neutrosophic vector space over the field R. Consider �:��
�(�)→ ��

�(�), where 

�[(�, �)+ (�, �)�� + (�, �)��] = (�, 0, 0)+ (�, 0, 0)�� + (�, 0, 0)��, � is a weak 2-refined neutrosophic 

homomorphism over the field R. 

���(�)= {(0, �)+ (0, �)�� + (0, �)��;�, �, � ∈ �}. 

��(�)= {(�, 0,0)+ (�, 0,0)�� + (�, 0,0)��;�,�, � ∈ �}.  

Example 3.23: 

Let ��(�)= 	< (0,0,1)�� >	= {�.(0,0, �)��;� ∈ �, � ∈ ��(�)}, ��(�)= 	< (0,1,0)�� >	= {�.(0, �, 0)��;� ∈ �;� ∈

��(�)} be two strong 2-refined neutrosophic subspaces of the strong 2-refined neutrosophic vector space ��
�(�) over 

.� ∈ ��(�); �:��(�)→ ��(�);�[�(0,0, �)��] = �(0, �, 0)��(I). Define��refined neutrosophic field -2 

�is a strong 2-refinedneutrosophic homomorphism: 

Let � = ��(0,0, �)��, � = ��(0,0, �)�� ∈ ��(�);	��, �� ∈ ��(�), we have  
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� + � = (�� + ��)(0,0, � + �)��, �(� + �)= (�� + ��).(0, � + �, 0)�� = �(�)+ �(�). 

Let � = � + ��� + ��� ∈ ��(�) be a 2-refined neutrosophic scalar, we have 

� ∙ � = � ∙ ��(0,0, �)�� + � ∙ ��(0,0, �)���� + � ∙ ��(0,0, �)���� = ��(0,0, �.� + �.� + �.�)��, 

�(�.�)= ��(0, �.� + �.� + �.�, 0)�� = � ∙ �(�), hence � is a strong 2-refined neutrosophic homomorphism.  

���(�)= (0,0,0)+ (0,0,0)�� + (0,0,0)��. 

��(�)= ��(�). 

Remark 3.24:  

A union of two n-refined neutrosophic vector spaces ��(�)and��(�) is not supposed to be an n-refined neutrosophic 

vector space, since the addition operation can not be defined. For example consider � = ��,� = ��, � = 2.  

5. Conclusion   

In this paper we have introducedthe concept of weak/strong n-refined neutrosophic vector space. Also, some related 

concepts such as weak/strong n-refined neutrosophic subspace, weak/strong n-refined neutrosophic homomorphism 

have been presented and studied. 

Future research 

Authors hope that some corresponding notions will be studied in future such as weak/strong n-refined neutrosophic 

basis, and AH-subspaces. 
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Abstract  

  In this paper, a new approach of neutrosophic topological space (NA-NTS) is going to be introduced which is 

more general than neutrosophic topological space. Moreover, a new kind of neutrosophic sets and neutrosophic 

concepts in this new space is going to be created, which may makes us created a new kind in neutrosophic 

topology. We prove that a new approach of neutrosophic topological space is not a classical topological space. 

Also, a new approach of neutrosophic topological space is neither neutrosophic topological space nor neutrosophic 

crisp topological space. Many examples and theories are presented.. 

Keywords: New approach of neutrosophic topological spaces, new approach of neutrosophic open sets, new 

approach of neutrosophic closed sets. 

1. Introduction 

Recently, as a generalization of fuzzy set was defined  by Zadeh [1] and intuitionistic fuzzy set was defined by K. 

Atanassov[2], the concept of the neutrosophic set was first given by F. Smarandache [3,4]. A.A. Salama and S.A. 

Alblowi [5] presented neutrosophic topological space via neutrosophic sets. In recent years, the theory of 

neutrosophic theory becomes very widespread among scientists around the world. For more details about 

neutrosophic topological space and applications of neutrosophic set theory, the readers should see [6–13]. 

Recently, Agboola et al. in[14,15], presented the concept of neutrosophic ring and neutrosophic group. Then, in 

2015, Agboola in[16], presented the concept of refined neutrosophic algebraic structures. Also, he introduced  

refined neutrosophic groups. Recently, several works have been done to generalize the neutrosophic algebraic 

structures to refined neutrosophic algebraic structures. In 2020, Adeleke et al. In [17,18] studied several refined 

concepts such as refined neutrosophic rings and introduced their basic properties, refined neutrosophic ideals and 

refined neutrosophic homomorphisms in details. Many researchers had many contributions to neutrosophic ring [19] 

and neutrosophic topology as [20], [21] and [22]. Also, F. Smarandache extended the neutrosophic set to refined [n-

valued] neutrosophic set, and to refined neutrosophic logic, and to refined neutrosophic probability, See[23]. 

This paper is devoted to the study of a new approach of neutrosophic topology and new approach of neutrosophic 

topological space, and investigate its basic properties. Also, we prove that a new approach of neutrosophic 
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topological space is not a classical neutrosophic topological space. We provide many new definitions, important 

results, some theories and examples. 

 

2. Definition  

In this section, we recall  some basic definitions such as neutrosophic group, refined neutrosophic group and 

neutrosophic ring which are useful in the sequel. 

Definition 2.1. [17] Let (G, *) be any group, the neutrosophic group is generated by I and G under * denoted by 

N(G)={<GI>,*}. 

Definition 2.2: [19] 
Let R be any ring. The neutrosophic ring 〈R ∪ I〉 is also a ring generated by R and I under the operations of R. 
Example 2.3: [19] 

Let Z be the ring of integers; <Z ∪ I> = {a + bI : a, b ∈ Z}. <Z ∪ I> is a ring called the neutrosophic ring of 

integers.  Also Z≠ ⊆<Z∪I>. 

Definition 2.4: [5]  

A neutrosophic topology (NT) on a set X  Æ is a family Γ of neutrosophic subsets in X satisfying the following 

axioms. 

1. 1N ,  0N Γ. 

2. Γ is closed finite intersection.  

3. Γ is closed under arbitrary union. 

the pair (X, Γ) is called  neutrosophic topological space (NTS) in X. Moreover, elements of Γ are known as 
neutrosophic open sets (NOS) and their complements are neutrosophic closed sets(NCS).  

For a neutrosophic set A over X, the neutrosophic interior and the neutrosophic closure of A are defined as: 
Nint(A)=∪{G : G ⊆ A , G ∈ Γ } and Ncl (A)=∩{F : A ⊆ F , Fc∈ Γ }. 

3. A new Approach Of Neutrosophic Topological Space: 

In this section, we study a new approach of neutrosophic topological space, and investigate its basic properties. We 

denote the indeterminacy by ( I ). The indeterminacy I is taken to have the properties I.I = I2= I. 

Definition 3.1: 

Let χ Æ be any set, then we define (χ)N as following  (χ)N ={ aÅbI : a χ  ,b χ  {0 } } (the set N(χ) is  
generated by I and G), also, bI is indeterminacy and bI = I. 

- The power set of χ  is denoted by P(χ). 
- The power set of (χ)N is denoted by  P[(χ)N]. 

Definition 3.2: 

1. If A P(χ) and AÆ then (A)N  P[(χ)N]; (A)N ={ aÅbI : a χ  ,b χ  {0 } }, also, bI is 

indeterminacy and bI = I. But if A=Æ then (A)N =ÆÅI. 

2. If  (A)N  P[(χ)N], then (ÆÅI )  (A)N = (A)N and (ÆÅI)   (A)N = ÆÅI. 
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Example 3.3: 

Let X={1,2,3} then (χ)N ={ aÅbI : a χ  ,b χ  {0 } }={1, 2, 3, 1ÅI, 2ÅI, 3ÅI} 

We remove many elements in N(χ) such as 1Å2I, 1Å3I, 2Å2I, 2Å3I, 3Å2I, 3Å3I because, every one of them 

equal to member in {1ÅI, 2ÅI, 3ÅI}. 

If A={1,2}then, (A)N ={ aÅbI : a χ  ,b χ  {0 } }={1, 2, 1ÅI, 2ÅI}.  
Example 3.4: 

Let χ ={x, y} then (χ)N ={ aÅbI : a χ  ,b χ  {0 } }={ x,y, xÅI, yÅI} 

We remove many elements in N(χ) as xÅxI, xÅyI, yÅxI, yÅyI. because, every one of them equals to member 

in { xÅI, yÅI}. 

If B={x}then, (B)N ={ aÅbI : a χ  ,b χ  {0 } }={x, xÅI}.  

 Definition 3.5: 
 

Let χ  Æ, if T={Ai}i is topology on χ , then a new approach of neutrosophic topology (NA-NT) on χ  is a family 

Ʈ={(Ai)N}i of  (χ)N. 

The pair (χ,Ʈ) is called a new approach of neutrosophic topological space (NA-NTS) in χ. Moreover, members 
of Ʈ are known as a new approach of neutrosophic open sets (NA-NOS) and their complements are a new 

approach of neutrosophic closed sets (NA-NCS), members of P[(χ)N] are known as a new approach of 
neutrosophic sets (NA-NS).  

Remark 3.6: 
- NA-NOS(χ) means the family of the new approach of neutrosophic open sets on χ . 
- NA-NCS(χ) means the family of the new approach of neutrosophic closed sets on χ . 

 
Example 3.7: 
 Let χ ={e , f , g}. Ʈ = {Æ, �, �, �, �},	 
� = {�, �}, � = {�, �}, � = {�}. Ʈ = {ÆÅ�, (�)�, (�)�, (�)�, (�)�}	 
(�)� = {�, �, �Å�, �Å�}, (�)� = {�, �, �Å�	, �Å�}, (�)� = {�, �Å�}. 
Then(χ, Ʈ) is a new approach of neutrosophic space.  
Remark 3.8: 

New approach of neutrosophic topological space is not a classical topological space.  

Proof: 

Since ÆÏƮ, then new approach of neutrosophic topological space is not a classical topological space. 
Theorem 3.9: 

If I=0 then the new approach of neutrosophic topological space is a classical topological space. 

Proof: 

If I=0, then,	Ʈ = � therefore, new approach of neutrosophic topological space is a classical topological space. 

Remark 3.10: Let (Ai)N	Ʈ, for all i, then:  

1. i(Ai)N =(iAi)N. 

2. (A1 )N (A2 )N = (A1 A2 )N. 

Theorem 3.11: Let χ  Æ then if Ʈ={(Ai)N}i is a new approach of neutrosophic topology (NA-NT), then: 

=Ʈ{Æ,X} is N-topology on (χ)N, and (χ, ) is N-topological space. 

( N= neutrosophic, but we saied N-topology in this Theorem is for neutrosophic topology because in [4], is defined, 
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but they  don,t have the same concepts).   

Proof: 

- It is clear that Æ,X. 

- Let (A1)N, (A2 )N then A1, A2 T, but T is topology, therefore, A1 A2 T, hence  (A1 A2 )N 	Ʈ. 

               Therefore  (A1 )N (A2 )N = (A1 A2 )N  by remark 3.10. 

- For every i, let (Ai)N then AiT, but T is topology, therefore, iAi T, hence  (iAi)N 	Ʈ. 

Therefore,  i(Ai)N =(iAi)N  by remark 3.10. 

Therefore  is N-topology on (χ)N, and (χ, ) is N-topological space. 

Remark 3.12: 

New approach of neutrosophic topological space is not a neutrosophic topological space. 
Remark 3.13: 

New approach of neutrosophic topological space is not a neutrosophic crisp topological space. 

 
4. The interior and closure operations in a new approach of neutrosophic topological space: 
In this part, we define the closure and interior via new approach of neutrosophic open (closed) set.  
Definition 4.1: Let (χ, Ʈ) be  an NA-NTS, and A is a new approach of neutrosophic set (NA-NS) then : 
The union of any NA-NOS, contained in A is called the a new approach of neutrosophic interior of A  
(NA-int(A)). 
NA-int(A) = {B  ; BA ; B NA-NOS }. 
Theorem 4.2:  
Let (χ, Ʈ) be an NA-NTS, A, B are a new approach of the neutrosophic set (NA-NS) then : 

1. NA-int(A) A. 
2. NA-int(A) is NA-NOS. 
3. A  B    NA-int(A)  NA-int(B). 

Proof : 
1. Follows from the definition of NA-int(A) as a union of any NA-NOS, contains  in A. 
2. Since the union of any NA-NOS, is NA-NOS, then NA-int(A)={B  ; BA ; B NA-NOS(X) } is NA-

NOS.  
3. Proof is obvious. 

Definition 4.3: 
Let (χ, Ʈ) be  an NA-NTS, and A is a new approach of neutrosophic set (NA-NS) then : 
The intersection of any NA-NCS, including A is called a new approach of neutrosophic closure of A  
(NA-cl(A)). 
NA-cl(A)={B  ; BA ; B NA-NCS(χ) }. 
Theorem 4.4:  
Let (χ, Ʈ) be  an NA-NTS, and A is a new approach of neutrosophic set (NA-NCS) then : 

1. A  NA-cl(A). 
2. NA-cl(A) is NA-NCS. 

Proof : 
1. Follow from the definition of NA-cl(A) as an intersection of any NA-NCS contained in A. 
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2. Prof is obvious. 
Theorem 4.5:  
Let (χ, Ʈ) be  an NA-NTS, and A is a new approach of neutrosophic set (NA-NCS) then : 

1. NA-cl(χ-A)=	χ - (NA-int(A)). 
2. NA-int(χ-A)=	χ - (NA-cl(A)). 
3. NA-int(A)= χ - NA-cl(χ -A)). 
4. NA-cl(A)=	χ - (NA-int(χ -A)). 

Proof : 
1. χ - (NA-int(A))=	χ -[{B  ; BA ; B NA-NOS }] 

 ={	χ -B  ; χ -B χ -A ; χ -B NA-NOS(χ) }= NA-cl(χ -A) 
={	χ -B  ; χ -B A ; X-B NA-NOS(X) }=	χ - NA-int(A). 

2. X- NA-c(A)=	χ -[{B  ; BA ; B NA-NCS(χ) }] 
 ={	χ -B  ; χ -B χ -A ; χ -B NA-NCS(χ) }= NA-int(χ -A). 

3. Follows from (2) by put χ -A in place of A. 
4. Follows from (1) by put χ -A in place of A. 

Theorem 4.6:  
Let (χ, Ʈ) be  an NA-NTS, and A is a new approach of neutrosophic set (NA-NCS) then : 

1. A is NA-NCS, iff NA-cl(A) = A. 
2. A is NA-NOS, iff NA-N-int(A)= A. 

Proof : 
1. Follow from the definition of NA-cl(A) and Theorem 3.4.  
2. Follow from the definition of NA-int(A) and Theorem 3.2. 

Theorem 4.7:  
Let (χ, Ʈ) be  an NA-NTS, and A is a new approach of neutrosophic set (NA-NCS) then : 

1. NA-cl[NA-cl(A)]= NA-cl(A). 
2. NA-int[NA-int(A)]= NA-int(A). 

Proof : 
Prof is Obvious. 
Remark 4.8:  
Let (χ, Ʈ) be  an NA-NTS, A, B are a new approach of neutrosophic set (NA-NS) then : 
 

1. NA-int(AB)  NA-int(A)NA-int(B). 
2. NA-cl(AB)   NA-cl(A)NA-cl(B). 
3. NA-int(AB)  NA-int(A)NA-int(B). 
4. NA-cl(AB)  NA-cl(A)NA-cl(B). 

Proof: 
1. Since AB  A,  AB  B then NA-int(AB) NA-int (A) and NA-int(AB) NA-int(B), hence  

NA-int(AB) NA-int(A) NA-int(A).  
2. Since AB  A,  AB  B then NA-cl(AB) NA-cl(A) and NA-cl(AB) NA-cl(B), hence NA-

cl(AB) NA-cl(A)NA-cl(A). 
3. Since AAB,  BAB then NA-int(A) NA-int(AB) and NA-int(B)NA-int(AB), hence  

NA-int(A)NA-int(B) NA-int(AB). 
4. Since AAB,  BAB then NA-cl(A) NA-cl(AB) and NA-cl(B)NA-cl(AB), hence NA-cl(A) 

NA-cl(B)NA-cl(AB).  

Conclusion  

    In this work, we have introduced a new approach of neutrosophic topology and a new approach of neutrosophic 

topological space. Then, we have introduced a new approach of the neutrosophic open (closed) sets in a new 

approach of the neutrosophic topological space. Also, we studied some of their basic properties. Finally, This paper 
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is just a beginning of a new structure and we have studied a few ideas only. It will be necessary to carry out more 

theoretical research to establish a general framework for the practical application. In the future, using these notions, 

various classes of mappings and separation axioms on the new approach of neutrosophic topological space can be 

studied. 
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Abstract
The objective of this paper is to introduce the concept of NeutroRings by considering three NeutroAxioms
(NeutroAbelianGroup (additive), NeutroSemigroup (multiplicative) and NeutroDistributivity (multiplication
over addition)). Several interesting results and examples on NeutroRings, NeutroSubgrings, NeutroIdeals,
NeutroQuotientRings and NeutroRingHomomorphisms are presented. It is shown that the 1st isomorphism
theorem of the classical rings holds in the class of NeutroRings.

Keywords: Neutrosophy, NeutroGroup, NeutroSubgroup, NeutroRing, NeutroSubring, NeutroIdeal, Neutro-
QuotientRing and NeutroRingHomomorphism.

1 Introduction
The concept of neutrosophic logic/set introduced by Smarandache25 is a generalization of fuzzy logic/set in-
troduced by Zadeh30 and intuitionistic fuzzy logic/set introduced by Atanasov.14 In neutrosophic logic, each
proposition is characterized by truth value in the set T , indeterminacy value in the set I and falsehood value
in the set F where T, I, F are standard or nonstandard of the subsets of the nonstandard interval ]−0, 1+[
where −0 ≤ inf T + inf I + inf F ≤ supT + sup I + supF ≤ 3+. Statically, T, I, F are subsets, but
dynamically, the components of T, I, F are set-valued vector functions/operators depending on many param-
eters some of which may be hidden or unknown. Neutrosophic logic/set has several real life applications in
sciences, engineering, technology and social sciences. The concept has been used in medical diagnosis and
multiple decision-making.15, 18, 29 Neutrosophic set has been used and applied in several areas of mathematics.
For instance in algebra, neutrosophic set has been used to develop neutrosophic groups, rings, vector spaces,
modules, hypergroups, hyperrings, hypervector spaces, hypermodules, etc.1, 2, 4, 5, 7–13, 16, 17, 27, 28 In analysis,
neutrosophic set has been used to develop neutrosophic topological spaces22–24 and many other areas of math-
ematical analysis. The concept of neutrosophic logic/set is now well known and embraced in many parts of
world. Many researches have been conducted on neutrosophic logic/set and several papers have been published
in many international journals by many neutrosophic researchers scattered all over the world. Neutrosophic
Sets and Systems and International Journal of Neutrosophic Science are presently two international journals
dedicated to publication of research articles in neutrosophic logic/set.

Smarandache19 recently introduced new fields of research in neutrosophy called NeutroStructures and An-
tiStructures respectively. In,20 Smarandache introduced the concepts of NeutroAlgebras and AntiAlgebras and
in,21 he revisited the concept of NeutroAlgebras and AntiAlgebras where he studied Partial Algebras, Universal
Algebras, Effect Algebras and Boole’s Partial Algebras and he showed that NeutroAlgebras are generalization
of Partial Algebras. Motivated by the works of Smarandache in,19–21 Agboola et al in6 studied NeutroAlgebras
and AntiAlgebras viz-a-viz the classical number systems N, Z, Q, R and C. Also motivated by the work of
Smarandache in,19 Agboola3 formally introduced the concept of NeutroGroup by considering three NeutroAx-
ioms (NeutroAssociativity, existence of NeutroNeutral element and existence of NeutroInverse element). In,3

Agboola studied NeutroSubgroups, NeutroCyclicGroups, NeutroQuotientGroups and NeutroGroupHomomor-
phisms. Several interesting results and examples were presented and it was shown that generally, Lagrange’s
theorem and 1st isomorphism theorem of the classical groups do not hold in the class of NeutroGroups. In con-
tinuation of the work started in,3 the present paper is devoted to the presentation of the concept of NeutroRing
by considering three NeutroAxioms (NeutroAbelianGroup (additive), NeutroSemigroup (multiplicative) and

Doi :10.5281/zenodo.3877121 62

HP
Typewriter
Received: March 04, 2020     Revised: May 11, 2020     Accepted: June 02, 2020



International Journal of Neutrosophic Science (IJNS) Vol. 7, No. 2, PP. 62-73, 2020

NeutroDistributivity (multiplication over addition)). Several interesting results and examples on NeutroRings,
NeutroSubgrings, NeutroIdeals, NeutroQuotientRings and NeutroRingHomomorphisms are presented. It is
shown that the 1st isomorphism theorem of the classical rings holds in the class of NeutroRings.

2 Preliminaries
In this section, we will give some definitions, examples and results that will be useful in other sections of the
paper.

Definition 2.1. 21

(i) A classical axiom defined on a nonempty set is an axiom that is totally true (i.e. true for all set’s
elements).

(ii) A NeutroAxiom (or Neutrosophic Axiom) defined on a nonempty set is an axiom that is true for some
set’s elements [degree of truth (T)], indeterminate for other set’s elements [degree of indeterminacy (I)],
or false for the other set’s elements [degree of falsehood (F)], where T, I, F ∈ [0, 1], with (T, I, F ) 6=
(1, 0, 0) that represents the classical axiom, and (T, I, F ) 6= (0, 0, 1) that represents the AntiAxiom.

(iii) An AntiAxiom defined on a nonempty set is an axiom that is false for all set’s elements.

Therefore, we have the neutrosophic triplet: < Axiom, NeutroAxiom, AntiAxiom >.

Definition 2.2. 3 Let G be a nonempty set and let ∗ : G × G → G be a binary operation on G. The couple
(G, ∗) is called a NeutroGroup if the following conditions are satisfied:

(i) ∗ is NeutroAssociative that is there exists at least one triplet (a, b, c) ∈ G such that

a ∗ (b ∗ c) = (a ∗ b) ∗ c (1)

and there exists at least one triplet (x, y, z) ∈ G such that

x ∗ (y ∗ z) 6= (x ∗ y) ∗ z. (2)

(ii) There exists a NeutroNeutral element in G that is there exists at least an element a ∈ G that has a single
neutral element that is we have e ∈ G such that

a ∗ e = e ∗ a = a (3)

and for b ∈ G there does not exist e ∈ G such that

b ∗ e = e ∗ b = b (4)

or there exist e1, e2 ∈ G such that

b ∗ e1 = e1 ∗ b = b or (5)
b ∗ e2 = e2 ∗ b = b with e1 6= e2 (6)

(iii) There exists a NeutroInverse element that is there exists an element a ∈ G that has an inverse b ∈ G
with respect to a unit element e ∈ G that is

a ∗ b = b ∗ a = e (7)

or there exists at least one element b ∈ G that has two or more inverses c, d ∈ G with respect to some
unit element u ∈ G that is

b ∗ c = c ∗ b = u (8)
b ∗ d = d ∗ b = u. (9)
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In addition, if ∗ is NeutroCommutative that is there exists at least a duplet (a, b) ∈ G such that

a ∗ b = b ∗ a (10)

and there exists at least a duplet (c, d) ∈ G such that

c ∗ d 6= d ∗ c, (11)

then (G, ∗) is called a NeutroCommutativeGroup or a NeutroAbelianGroup.
If only condition (i) is satisfied, then (G, ∗) is called a NeutroSemiGroup and if only conditions (i) and (ii)

are satisfied, then (G, ∗) is called a NeutroMonoid.

Example 2.3. 3 Let U = {a, b, c, d, e, f} be a universe of discourse and let G = {a, b, c, d} be a subset of U.
Let ∗ be a binary operation defined on G as shown in the Cayley table below:

∗ a b c d
a b c d a
b c d a c
c d a b d
d a b c a

.

Then (G, ∗) is a NeutroAbelianGroup.

Example 2.4. 3 Let G = Z10 and let ∗ be a binary operation on G defined by x ∗ y = x+ 2y for all x, y ∈ G
where ′′+′′ is addition modulo 10. Then (G, ∗) is a NeutroAbelianGroup.

Definition 2.5. 3 Let (G, ∗) be a NeutroGroup. A nonempty subset H of G is called a NeutroSubgroup of G
if (H, ∗) is also a NeutroGroup.

The only trivial NeutroSubgroup of G is G.

Example 2.6. 3 Let (G, ∗) be the NeutroGroup of Example 2.3 and let H = {a, c, d}. The compositions of
elements of H are given in the Cayley table below.

∗ a c d
a b d a
c d b d
d a c a

.

Then, H is a NeutroSubgroup of G.

Definition 2.7. 3 Let (G, ∗) and (H, ◦) be any two NeutroGroups. The mapping φ : G → H is called a
homomorphism if φ preserves the binary operations ∗ and ◦ that is if for all x, y ∈ G, we have

φ(x ∗ y) = φ(x) ◦ φ(y). (12)

The kernel of φ denoted by Kerφ is defined as

Kerφ = {x : φ(x) = eH} (13)

where eH ∈ H is such that Nh = eH for at least one h ∈ H .
The image of φ denoted by Imφ is defined as

Imφ(x) = {y ∈ H : y = φ(x) for some h ∈ H}. (14)

If in addition φ is a bijection, then φ is an isomorphism and we write G ∼= H .

Theorem 2.8. 3 Let (G, ∗) and (H, ◦) be NeutroGroups and let Nx = eG such that eG ∗ x = x ∗ eG = x for
at least one x ∈ G and let Ny = eH such that eH ∗ y = y ∗ eH = y for at least one y ∈ H . Suppose that
φ : G→ H is a NeutroGroup homomorphism. Then:

(i) φ(eG) = eH .

(ii) Kerφ is a NeutroSubgroup of G.
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(iii) Imφ is a NeutroSubgroup of H.

(iv) φ is injective if and only if Kerφ = {eg}.

Theorem 2.9. 3 Let H be a NeutroSubgroup of a NeutroGroup (G, ∗). The mapping ψ : G → G/H defined
by

ψ(x) = xH ∀ x ∈ G

is a NeutroGroup homomorphism and the Kerψ 6= H .

Theorem 2.10. 3 Let φ : G → H be a NeutroGroup homomorpism and let K = Kerφ. Then the mapping
ψ : G/K → Imφ defined by

ψ(xK) = φ(x) ∀ x ∈ G

is a NeutroGroup epimorphism and not an isomorphism.

3 Development of NeutroRings and their Properties
The new concept of NeutroRing is developed and studied in this section by considering three NeutroAxioms
(NeutroAbelianGroup (additive), NeutroSemigroup (multiplicative) and NeutroDistributivity (multiplication
over addition)). Several interesting results and examples are presented.

Definition 3.1. (a) A NeutroRing (R,+, .) is a ring structure that has at least one NeutroOperation among
′′+′′ and ′′.′′ or at least one NeutroAxiom. Therefore, there are many cases of NeutroRing, depending
on the number of NeutroOperations and NeutroAxioms, and which of them are Neutro-Sophicated.

For the purposes of this paper, the following definition of a NeutroRing will be adopted:

(b) Let R be a nonempty set and let +, . : R × R → R be binary operations of ordinary addition and
multiplication on R. The triple (R,+, .) is called a NeutroRing if the following conditions are satisfied:

(i) (R,+) is a NeutroAbelianGroup.

(ii) (R, .) is a NeutroSemiGroup.

(iii) ′′.′′ is both left and right NeutroDistributive over ′′+′′ that is there exists at least a triplet (a, b, c) ∈
R and at least a triplet (d, e, f) ∈ R such that

a.(b+ c) = a.b+ a.c (15)
(b+ c).a = b.a+ c.a (16)
d.(e+ f) 6= d.e+ d.f (17)
(e+ f).d 6= e.d+ f.d. (18)

If ′′.′′ is NeutroCommutative, then (R,+, .) is called a NeutroCommutativeRing.
We will sometimes write a.b = ab.

Definition 3.2. Let (R,+, .) be a NeutroRing.

(i) R is called a finite NeutroRing of order n if the number of elements in R is n that is o(R) = n. If no
such n exists, then R is called an infinite NeutroRing and we write o(R) =∞.

(ii) R is called a NeutroRing with NeutroUnity if there exists a multiplicative NeutroUnity element u ∈ R
such that ux = xu = x that is Ux = u for at least one x ∈ R.

(iii) If there exists a least positive n such that nx = e for at least one x ∈ R where e is an additive
NeutroElement in R, then R is called a NeutroRing of characteristic n. If no such n exists, then R is
called a NeutroRing of characteristic NeutroZero.

(iv) An element x ∈ R is called a NeutroIdempotent element if x2 = x.

(v) An element x ∈ R is called a NeutroINilpotent element if for the least positive integer n, we have
xn = e where e is an additive NeutroNeutral element in R.

(vi) An element e 6= x ∈ R is called a NeutroZeroDivisor element if there exists an element e 6= y ∈ R such
that xy = e or yx = e where e is an additive NeutroNeutral element in R.
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(vii) An element x ∈ R is called a multiplicative NeutroInverse element if there exists at least one y ∈ R
such that xy = yx = u where u is the multiplicative NeutroUnity element in R.

Definition 3.3. Let (R,+, .) be a NeutroCommutativeRing with NeutroUnity. Then

(i) R is called a NeutroIntegralDomain if R has no at least one NeutroZeroDivisor element.

(ii) R is called a NeutroField if R has at least one NeutroInverse element.

Example 3.4. Let X = {a, b, c, d} be a universe of discourse and let R = {a, b, c} be a subset of X. Let ′′+′′

and ′′.′′ be binary operations defined on R as shown in the Cayley tables below:

+ a b c
a a b b
b c a c
c b c a

. a b c
a a a a
b a c a
c a c b

It is clear from the table that:

c+ (b+ c) = (c+ b) + c = a,

a+ (b+ c) = b, but (a+ b) + c = c 6= b.

a+ c = c+ a = b,

a+ b = b, but b+ a = c 6= b.

This shows that ′′+′′ is NeutroAssociative and NeutroCommutative. Hence, (R,+) is a commutative Neu-
troSemiGroup.

Next, let Nx and Ix represent additive neutral element and additive inverse element respectively with
respect to any element x ∈ R. Then

Na = a,

Ia = a.

Nb does not exist,
Ib does not exist.
Nc = b,

Ic = a.

Hence, (R,+) is a NeutroAbelianGroup.
Next, consider

b(cb) = (bc)b = a,

c(bc) = a but (cb)c = b 6= a.

This shows that (R, .) is NeutroAssociative.
Lastly, consider

a.(b+ c) = a.b+ a.c = a,

b.(c+ a) = c, but b.c+ b.a = a 6= c.

(b+ b).b = b.b+ b.b = a,

(b+ a).c = b, but b.c+ a.c = a 6= b.

a.b = b.a = a,

b.c = a, but c.b = c 6= a.

This shows that ′′.′′ is both left and right NeutroDistributive over ′′+′′ and it is NeutroCommutative. Hence,
(R,+, .) is a NeutroCommutativeRing. Since Ua = a that is aa = a, it follows that (R,+, .) is a NeutroCom-
mutativeRing with NeutroUnity.

It is observed that ′′a′′ is both NeutroIdempotent and NeutroNilpotent element in R. NeutroZeroDivisor
elements in R are ′′a, b, c′′. Again, R is a NeutroField but not a NeutroIntegralDomain.

Doi :10.5281/zenodo.3877121 66



International Journal of Neutrosophic Science (IJNS) Vol. 7, No. 2, PP. 62-73, 2020

Theorem 3.5. Every NeutroField R is not necessarily a NeutroIntegralDomain.

Example 3.6. LetX = Z10 and let⊕ and� be two binary operations onX defined by x⊕y = 2x+y and x�
y = x+4y for all x, y ∈ X where ′′+′′ is addition modulo 10. Then (X,⊕,�) is a NeutroCommutativeRing.
To see this:

(i) (X,⊕) is a NeutroAbelianGroup: Let x, y, z ∈ X . Then

x⊕ (y ⊕ z) = 2x+ 2y + z and (x⊕ y)⊕ = 4x+ 2y + z, equating these we have
2x+ 2y + z = 4x+ 2y + z

⇒ 2x = 0

∴ x = 0, 5.

Thus, only the triplets (0, x, y) and (5, x, y) can verify the associativity of ⊕ (degree of associativity =
20%) and therefore, ⊕ is NeutroAsociative.

(ii) Existence of NeutroNeutral and NeutroInverse elements: Let e ∈ X such that x⊕ e = 2x+ e = x
and e ⊕ x = 2e + x = x. Then 2x + e = 2e + x from which we obtain e = x. But then, only
0⊕ 0 = 0 and 5⊕ 5 = 5 in X (degree of existence of neutral element = 20%). This shows that X has
a NeutroNeutral element. It can also be shown that X has a NeutroInverse element.

(iii) NeutroComutativity of ⊕: Let x ⊕ y = 2x + y and y ⊕ x = 2y + x so that 2x + y = 2y + x
from which we obtain x = y. This shows that only the duplet (x, x) can verify commutativity of ⊕
(degree of commutativity = 10%) that is, ⊕ is NeutroCommutative. Hence, (X,⊕) is a NeutroAbelian-
Group.

(iv) (X,�) is a NeutroSemiGroup: Let x, y, z ∈ X . Then

x� (y � z) = x+ 4y + 16z and (x� y)� z = x+ 4y + 4z

so that x + 4y + 16z = x + 4y + 4z from which we obtain 12z = 0 so that z = 0, 5. Hence,
only the triplets (x, y, 0) and (x, y, 5) can verify associativity of � (degree of associativity = 20%) and
consequently, (X,�) is a NeutroSemigroup.

(v) NeutroDistributivity: Let x, y, z ∈ X . Then

x� (y ⊕ z) = x+ 8y + 4z, (x� y)⊕ (x� z) = 3x+ 8y + 4z so that
x+ 8y + 4z = 3x+ 8y + 4z

⇒ 2x = 0

∴ x = 0, 5.

This shows that only the triplets (0, y, z) and (5, y, z) can verify left distributivity of � over ⊕
(degree of left distributivity = 20%). Again,

(y ⊕ z)� x = 4x+ 2y + z, (y � x)⊕ (z � x) = 12x+ 2y + z so that
4x+ 2y + z = 12x+ 2y + z

⇒ 8x = 0

∴ x = 0, 5.

This shows that only the triplets (0, y, z) and (5, y, z) can verify right distributivity of � over ⊕
(degree of right distributivity = 20%). Thus,� is both left and right NeutroDistributive over⊕. Finally,
let x � y = x + 4y and y � x = y + 4x. Putting x + 4y = y + 4x we have x = y showing that
only the duplet (x, x) can verify the commutativity of � (degree of commutativity = 10%). Hence, �
is NeutroCommutative and accordingly, (X,⊕,�) is a NeutroCommutativeRing.

Theorem 3.7. Let (Ri,+, .), i = 1, 2, · · · , n be a family of NeutroRings. Then

(i) R =
⋂n
i=1Ri is a NeutroRing.

(ii) R =
∏n
i=1Ri is a NeutroRing.
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Proof. Obvious.

Definition 3.8. Let (R,+, .) be a NeutroRing. A nonempty subset S of R is called a NeutroSubring of R if
(S,+, .) is also a NeutroRing.

The only trivial NeutroSubring of R is R.

Example 3.9. Let (R,+, .) be the NeutroRing of Example 3.4 and let S = {a, b}. The compositions of
elements of S are given in the Cayley tables below.

+ a b
a a b
b c a

. a b
a a a
b a c

Then, S is a NeutroSubring of R. To see this:

(i) (S,+) is a NeutroAbelianGroup:

a+ (a+ b) = (a+ a) + b = b,

b+ (a+ b) = a, but (b+ a) + b = c 6= a.

Na = a,

Ia = a,

Nb does not exist,
Ib does not exist.

a+ a = a, but a+ b = b, b+ a = c 6= b.

Hence, (S,+) is a NeutroAbelianGroup.

(ii) (S, .) is a NeutroSemigroup:

a(ba) = (ab)a = a,

b(bb) = a, but (bb)b = c 6= a.

This shows that (S, .) is a NeutroSemigroup.

(iii) NeutroDistributivity:

a(a+ b) = aa+ ab = a,

b(b+ a) = a, but bb+ ba = b 6= a.

(b+ a)a = ba+ aa = a,

(a+ b)a = c, but aa+ ba = a 6= c.

This shows that both left and right NeutroDistributivity hold. Accordingly, (S,+, .) is a NeutroRing.
Since S is a subset of R, it follows that S is NeutroSubring of R.

Theorem 3.10. Let (R,+, .) be a NeutroRing and let {Si}, i = 1, 2, · · · , n be a family of NeutroSubrings of
R. Then

(i) S =
⋂n
i=1 Si is a NeutroSubring of R.

(ii) S =
∏n
i=1 Si is a NeutroSubring of R.

Proof. Obvious.

Definition 3.11. Let (R,+, .) be a NeutroRing. A nonempty subset I of R is called a left NeutroIdeal of R if
the following conditions hold:

(i) I is a NeutroSubring of R.

(ii) x ∈ I and r ∈ R imply that at least one xr ∈ I for all r ∈ R.

Definition 3.12. Let (R,+, .) be a NeutroRing. A nonempty subset I of R is called a right NeutroIdeal of R
if the following conditions hold:
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(i) I is a NeutroSubring of R.

(ii) x ∈ I and r ∈ R imply that at least one rx ∈ I for all r ∈ R.

Definition 3.13. Let (R,+, .) be a NeutroRing. A nonempty subset I of R is called a NeutroIdeal of R if the
following conditions hold:

(i) I is a NeutroSubring of R.

(ii) x ∈ I and r ∈ R imply that at least one xr, rx ∈ I for all r ∈ R.

Example 3.14. Let R = {a, b, c} be the NeutroRing of Example 3.4 and let I = S = {a, b} be the Neutro-
Subring of R given in Example 3.9. Consider the following:

aa = a, ab = a, ac = a, ba = a, bb = c 6∈ I, bc = a.

This shows that I is a left NeutroIdeal of R. Again,

aa = a, ba = a, ca = a, ab = a, bb = c 6∈ I, cb = c 6∈ I.

This also shows that I is a right NeutroIdeal of R. Hence, I is a NeutroIdeal of R.

Theorem 3.15. Let (R,+, .) be a NeutroRing and let {Ii}, i = 1, 2, · · · , n be a family of NeutroIdeals of R.
Then

(i) I =
⋂n
i=1 Ii is a NeutroIdeal of R.

(ii) I =
∑n
i=1 Ii is a NeutroIdeal of R.

Proof. Obvious.

Definition 3.16. Let (R,+, .) be a NeutroRing and let I be a NeutroIdeal of R. The set R/I is defined by

R/I = {x+ I : x ∈ R}. (19)

For x + I, y + I ∈ R/I with at least a pair (x, y) ∈ R, let ⊕ and � be binary operations on R/I defined as
follows:

(x+ I)⊕ (y + I) = (x+ y) + I, (20)
(x+ I)� (y + I) = xy + I. (21)

Then it can be shown that the tripple (R/I,⊕,�) is a NeutroRing which we call a NeutroQuotientRing.

Example 3.17. Let R be the NeutroRing of Example 3.4 and let I be its NeutroIdeal of Example 3.14. Then

a+ I = {a, b} = I,

b+ I = {a, c},
c+ I = {b, c},

∴ R/I = {a+ I, b+ I, c+ I} = {{a, b}, {a, c}, {b, c}}.

Consider the Cayley tables below:

⊕ a+ I b+ I c+ I
a+ I a+ I b+ I b+ I
b+ I c+ I a+ I c+ I
c+ I b+ I c+ I a+ I

� a+ I b+ I c+ I
a+ I a+ I a+ I a+ I
b+ I a+ I c+ I a+ I
c+ I a+ I c+ I b+ I

It easy to deduce from the tables that (R/I,⊕,�) is a NeutroRing.

Theorem 3.18. Let I be a NeutroIdeal of the NeutroRing R. Then R/I is a NeutroCommutativeRing with
NeutroUnity if and only if R is a NeutroCommutativeRing with NeutroUnity.

Proof. Easy.
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Definition 3.19. Let (R,+, .) and (S,+′, .′) be any two NeutroRings. The mapping φ : R → S is called
a NeutroRingHomomorphism if φ preserves the binary operations of R and S that is if for at least a pair
(x, y) ∈ R, we have:

φ(x+ y) = φ(x) +′ φ(y), (22)
φ(x.y) = φ(x).′φ(y). (23)

The kernel of φ denoted by Kerφ is defined as

Kerφ = {x : φ(x) = eR} (24)

where eR ∈ R is such that Nr = eR for at least one r ∈ R.
The image of φ denoted by Imφ is defined as

Imφ = {y ∈ S : y = φ(x) for at least one y ∈ S}. (25)

If in addition φ is a NeutroBijection, then φ is called a NeutroRingIsomorphism and we write R ∼= S.
NeutroRingEpimorphism, NeutroRingMonomorphism, NeutroRingEndomorphism and NeutroRingAutomor-
phism are defined similarly.

Example 3.20. Let R be the NeutroRing of Example 3.4 and let φ : R×R→ R be a mapping defined by

φ((x, y)) =

{
a if x = y,
d if x 6= y.

It can be shown that φ is a NeutroRingHomomorphism. The Kerφ = {(a, a), (b, b), (c, c)} which is a Neu-
troSubgRing of R×R as can be seen in the Cayley tables below.

+ (a, a) (b, b) (c, c)
(a, a) (a, a) (b, b) (b, b)
(b, b) (c, c) (a, a) (c, c)
(c, c) (b, b) (c, c) (a, a)

. (a, a) (b, b) (c, c)
(a, a) (a, a) (a, a) (a, a)
(b, b) (a, a) (c, c) (a, a)
(c, c) (a, a) (c, c) (b, b)

Imφ = {a, d} 6⊆ R.

Theorem 3.21. Let R and S be two NeutroRings. Let Nx = eR for at least one x ∈ R and let Ny = eS for at
least one y ∈ S. Suppose that φ : R→ S is a NeutroRingHomomorphism. Then:

(i) φ(eR) is not necessarily equals eS .

(ii) Kerφ is a NeutroSubring of R.

(iii) Imφ is not necessarily a NeutroSubring of S.

(iv) φ is NeutroInjective if and only if Kerφ = {eR} for at least one eR ∈ R.

Example 3.22. Let R = {a, b, c} be the NeutroRing of Example 3.4 and let I = {a, b} be the NeutroIdeal of
R given in Example 3.14. Let φ : R → R/I be a mapping defined by φ(x) = x + I for at least one x ∈ R.
Then φ(a) = a + I = {a, b} = I, φ(b) = b + I = {a, c} and φ(c) = c + I = {b, c} from which we obtain
that φ is a NeutroRingHomomorphism.

Kerφ = {x ∈ R : φ(x) = eR/I} = {x ∈ R : x+ I = eR/I = a+ I} = I.

Theorem 3.23. Let I be a NeutroIdeal of a NeutroRing R. Then the mapping ψ : R→ R/I defined by

ψ(x) = x+ I for at least one x ∈ R

is a NeutroRingEpimomorphism and the Kerψ = I .

Theorem 3.24. Let φ : R → S be a NeutroRingHomomorpism and let K = Kerφ. Then the mapping
ψ : R/K → Imφ defined by

ψ(x+K) = φ(x) for at least one x ∈ R

is a NeutroRingIsomorphism.
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Proof. Let x+K, y +K ∈ R/K with at least a pair (x, y) ∈ R. Then

ψ((x+K)⊕ (y +K)) = ψ((x+ y) +K)

= φ(x+ y)

= φ(x) + φ(y)

= ψ(x+K)⊕ ψ(y +K).

ψ((x+K)� (y +K)) = ψ((xy) +K)

= φ(xy)

= φ(x)φ(y)

= ψ(x+K)� ψ(y +K).

Kerψ = {x+K ∈ R/K : ψ(x+K) = eφ(x)}
= {x+K ∈ R/K : φ(x) = eφ(x)}
= {eR/K}.

This shows that ψ is a NeutroBijectiveHomomorphism and therefore it is a NeutroRingIsomorphism that is
R/K ∼= Imφ which is the same as what is obtainable in the classical rings.

Theorem 3.25. NeutroRingIsomorphism of NeutroRings is an equivalence relation.

Proof. The proof is the same as the classical rings.

4 Conclusion
We have for the first time introduced in this paper the concept of NeutroRings by considering three NeutroAx-
ioms (NeutroAbelianGroup (additive), NeutroSemigroup (multiplicative) and NeutroDistributivity (multipli-
cation over addition)). Several interesting results and examples on NeutroRings, NeutroSubgrings, NeutroIde-
als, NeutroQuotientRings and NeutroRingHomomorphisms are presented. It is shown that the 1st isomorphism
theorem of the classical rings holds in the class of NeutroRings. More advanced properties of NeutroRings
will be presented in our future papers. Other NeutroAlgebraicStructures such as NeutroModules, NeutroVec-
torSpaces etc are opened to be developed and studied by other Neutrosophic researchers.

5 Appreciation
The author is very grateful to all anonymous reviewers for their valuable observations, comments and sugges-
tions which have contributed immensely to the quality of the paper.
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Abstract  

This paper studies classical homomorphisms between n-refined neutrosophic ring and m-refined neutrosophic ring. 

It proves that every m-refined neutrosophic ring ��(�) is a homomorphic image of n-refined neutrosophic ring 

��(�), where � ≤ �. Also, it presents a discussion of kernels and some corresponding isomorphisms between 

those rings. 

Keywords:n-Refined neutrosophic ring, Ring homomorphism, Ring extension. 

1.Introduction 
Neutrosophy is a new kind of logic founded by Smarandache, concerns with origin, nature, and indeterminacy.  

Neutrosophic ideas found their way in algebra and its applications. Neutrosophical algebraic studies began with 

Smarandache and Kandasamy in [5]. They presented many neutrosophical structures such as neutrosophic rings, 

groups, and loops. Many generalizations came to light, such as n-refined neutrosophic structures, refined 

neutrosophic rings, n-refined neutrosophic rings, refined neutrosophic ideals, refined neutrosophic homomorphisms, 

and AH-substructures.See[1-8]. 

In [3], Abobala proved that each neutrosophic ring R(I) is a homomorphic image of the refined neutrosophic ring 

�(��, ��). This result means that a refined neutrosophic ring  �(��, ��) is a ring extension of R(I). This extension can 

be represented by the homomorphism �: �(��, ��) → �(�); �(�, ���, ���) = � + (� + �)�. In this paper we generalize 

the previous result into n-refined neutrosophic rings. Also, we prove that each m-refined neutrosophic ring ��(�) is 

a homomorphic image of n-refined neutrosophic ring ��(�), where � ≤ �. 

All homomorphisms through this paper are taken by classical meaning in Ring Theory, not by neutrosophical 

meaning. For example, see[1, 2]. 

Motivation 

This paper generalizes some results introduced in [3] about refined neutrosophic rings, into n-refined neutrosophic 

rings. Also, it clarifies that n-refined neutrosophic ideas have an algebraic origin, since n-refined neutrosophic ring 

��(�) can be realized as a classical ring extension of the ring R. 

2. Preliminaries 

In this section, we show some concepts we used through the paper. 

Theorem2.1: [3] 

HP
Typewriter
Received: March 09, 2020     Revised: May 27, 2020     Accepted: June 04, 2020



International Journal of Neutrosophic Science (IJNS)                                                  Vol. 7, No. 2,  PP. 74-78, 2020 

 

DOI: 10.5281/zenodo.3879508 
 

 75

Let  (R ,+,×) be a ring and R(I), R(��, ��) the related neutrosophic ring and refined neutrosophic ring respectively, we 

have: 

(a) There is a ring homomorphism �: R(��, ��) → �(�). 

(b) The additive group (Ker(f),+) is isomorphic to the additive group (R,+). 

Theorem 2.2: [3] 

Let R be a ring, where Char(R) = 2, there is a subring of R(��, ��)	���	� with property � ≅ �; R(��, ��) �⁄ ≅ �(�). 

Definition 2.3: [6] 

 Let (R,+,×) be a ring and ��; 1 ≤ � ≤ � be n indeterminacies. We define ��(I)={�� + ��� + ⋯+ ����	; 	�� ∈ �} to 

be n-refined neutrosophic ring. 

Addition and multiplication on ��(I)are defined as: 

∑ ���� + ∑ ���� = ∑ (�� + ��)��	,
�
��� ∑ ���� × ∑ ���� = ∑ ��� × �������

�
�,���

�
���

�
���

�
���

�
��� . 

Where × is the multiplication defined on the ring R. 

3. Main results 

In the following section, we discuss the main results and theorems. 

Lemma 3.1: 

Let R be a ring with unity 1, ��(�), ����(�) be the corresponding n-refined neutrosophic ring, and 

 (n-1) refined neutrosophic ring respectively. Then: 

(a) ����(�)is a homomorphic image of ��(�). 

(b) ��(�) �⁄ ≅ ����(�); � is a ring with property � ≅ �. 

Proof: 

(a) Define the map 

�: ��(�) → ����(�); �(�� + ���� + ⋯+ ����) = �� + ���� + ⋯+ �������� + (���� + ��)����. 

�is well defined. Consider� = ∑ ���� = ∑ ���� = �,�
���

�
���  we have �� = �� for all �, thus 

�� + ���� + ⋯+ �������� + (���� + ��)���� = �� + ���� + ⋯+ �������� + (���� + ��)����, this means �(�) =

�(�). 

�is a classical ring homomorphism. 

Let  � = ∑ ����, � = ∑ ����
�
���

�
���  be two arbitrary elements in ��(�), we have: 

� + � = ∑ (��+��)��
�
��� , 

�. � = ∑ (��. ��)����
�
�,��� = ∑ ���. ������� +

���
�,��� (�������� + ����). (�������� + ����) = 



International Journal of Neutrosophic Science (IJNS)                                                  Vol. 7, No. 2,  PP. 74-78, 2020 

 

DOI: 10.5281/zenodo.3879508 
 

 76

∑ ���. ������� + (����. ���� + ����. �� + ������)���� + ��. ����
���
�,��� . 

�(� + �) = ∑ (��+��)�� + (���� + �� + ���� + ��)���� = �(�) + �(�)���
��� . 

�(�. �) = ∑ ���. ������� + (����. ���� + ����. �� + ������ + ��. ��)����
���
�,��� , 

�(�). �(�) = 

[�� + ���� + ⋯+ �������� + (���� + ��)����]. [�� + ���� + ⋯+ �������� + (���� + ��)����]. 

Hence �(�. �) = �(�). �(�). 

(b) ���(�) = {� = ∑ ����
�
��� ∈ ��(�): �(�) = 0}, this implies �� = 0	���	���	0 ≤ � ≤ � − 2 and 

���� = −��, so ���(�) = {��(�� − ����); �� ∈ �}= K. 

By first isomorphism theory we find 

��(�) �⁄ ≅ ����(�). Consider �:� → �; ����(�� − ����)� = ��. Where �� ∈ �. 

It is easy to see that � is a well defined map, � is an isomorphism: 

Let = ��(�� − ����), � = ��(�� − ����);��, �� ∈ �; � ∈ {� − 1, �} be two arbitrary elements in K, 

� + � = (�� + ��)(�� − ����), �(� + �) = �� + �� = �(�) + �(�). 

�. � = ��. ���� − ��. ������ − ��. ������ + ��. ������ = ��. ��(�� − ����), 

�(�. �) = ��. �� = �(�). �(�). 

It is clear that � is bijective. Thus we get the proof. 

Theorem 3.2: 

Let R be a ring with unity 1, ��(�), ��(�) be the corresponding n-refined, m-refined neutrosophic ring with � ≤ �. 

Then ��(�) is a homomorphic image of ��(�). 

Proof: 

If � = � then it is clear. 

Suppose that � < �. Then by previous lemma, we get a series of ring homomorphisms 

��(�) →�� ����(�) →���� ����(�) … →������
����(�) →���� ��(�). 

������������ …��������is a ring homomorphism between ��(�), ��(�) since it is a product of homomorphisms, 

thus our proof is complete. 

Example 3.3: 

Let � = ��be the ring of integers modulo 6, ��(�) = {� + ��� + ��� + ��� + ���; �, �, �, �, � ∈ �} be the 

corresponding 4-refined neutrosophic ring, ��(�) = {� + ��� + ��� + ���; �, �, �, � ∈ �} be the corresponding 3-

refined neutrosophic ring. We have: 
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(a) �: ��(�) → ��(�); �(� + ��� + ��� + ��� + ���) = � + ��� + ��� + (� + �)��is a homomorphism. 

(b) ���(�) = {�(�� − ��); 	� ∈ �} ≅ �, and ��(�) ���(�)⁄ ≅ ��(�). 

(c) �: ��(�) → ��(�); �(� + ��� + ��� + ���) = � + ��� + (� + �)��is a homomorphism too. 

(d) ���:��(�) → ��(�); ���(� + ��� + ��� + ��� + ���) = � + ��� + (� + � + �)��is a homomorphism between 

��(�), ��(�). 

Result 3.4: 

According to Theorem 3.2,  if��(�) is an n-refined neutrosophic ring. Then: 

��(�) ��⁄ ≅ ����(�), ����(�) ���� ≅ ����(�),… , ��(�) �� ≅ �⁄⁄ ,Where �� ≅ �. 

So, we have the following series of ring extensions � → ��(�) → ⋯ → ����(�) → ��(�). For each ring  

��(�); 1 ≤ � ≤ �there is a subring � ≅ �, with property ��(�) �⁄ ≅ ����(�). 

According to the previous result, we can understand the n-refined neutrosophic ring ��(�) as an extension of R with 

n steps. Each step can be represented by a ring homomorphism. 

Remark 3.5: 

The main application of Result 3.4 that it clarifies the algebraic nature of n-refined neutrosophic idea in the case of 

n-refined neutrosophic ring. 

Splitting I into n subindeterminacies ��, … , �� is a logical idea introduced by Smarandache in [7,8]. This work shows 

that it has an algebraic origin in rings, since the n-refined neutrosophic ring ��(�)can be considered as a classical 

ring extention based on classical homomorphisms. 

5. Conclusion 

In this article we have studied classical homomorphisms between n-refined neutrosophic ring ��(�) and m-refined 

neutrosophic ring ��(�), where	� ≤ �. Also,we haveproved the following results: 

1) Each m-refined neutrosophic ring is a homomorphic image of n-refined neutrosophic ring, where � ≤ �. 

2) Each n-refined neutrosophic ring ��(�) is a ring extension of the ring R by n steps. Each one can be represented 

by a ring homomorphism.  

Funding: “This research received no external funding”  

Conflicts of Interest: “The authors declare no conflict of interest.”  

References 

[1]Abobala, M., "On Some Special Substructures of Neutrosophic Rings and Their Properties", International Journal 

of Neutrosophic Science", Vol.4 , pp.72-81, 2020. 

[2]Abobala, M., "On Some Special Substructures of Refined Neutrosophic Rings", International Journal of     
Neutrosophic Science, Vol. 5, pp.59-66, 2020. 

[3]Abobala, M., "Classical HomomorphismsBetween Refined Neutrosophic Rings and Neutrosophic Rings", 

International Journal of Neutrosophic Science, Vol. 5, pp.72-75, 2020. 



International Journal of Neutrosophic Science (IJNS)                                                  Vol. 7, No. 2,  PP. 74-78, 2020 

 

DOI: 10.5281/zenodo.3879508 
 

 78

[4]Adeleke, E.O., Agboola, A.A.A., and Smarandache, F., "Refined Neutrosophic Rings I", International Journal of  

Neutrosophic Science, Vol. 2 , pp.77-81, 2020. 

[5]Kandasamy, V.W.B., and Smarandache, F., "Some Neutrosophic Algebraic Structures and Neutrosophic N-

Algebraic Structures", Hexis, Phonex, Arizona 2006. 

[6]Smarandache, F., and Abobala, M., "n-Refined Neutrosophic Rings", International Journal of Neutrosophic 

Science, Vol. 6, pp.83-90 , 2020. 

[7]Smarandache, F., "Symbolic Neutrosophic Theory", EuropaNovaasbl, Bruxelles, 2015. 

[8].Smarandache, F., "n-Valued Refined Neutrosophic Logic and Its Applications in Physics", Progress in Physics, 

Vol. 4, pp.143-146, 2013. 

 

 

 

 

 
 

 

 



International Journal of Neutrosophic Science (IJNS)                                                    Vol. 7, No. 2,  PP. 79-86, 2020 

 

DOI: 10.5281/zenodo.3879702 
 

 79

  

 

 

AH-Substructures in Neutrosophic Modules 

 
1Mohammad Abobala and 2Riad K. Alhamido 

 1Faculty of Science, Tishreen University, Lattakia, Syria 

2Faculty of Science, Alfurat University, Deir Elzor, Syria 

1e-mail: mohammadabobala777@gmail.com 

2e-mail: Riad-hamido1983@hotmail.com  

Abstract  

This article introduces the concept of AH-submodule, AHS-submodule of a neutrosophic module, and AHS-

homomorphism. This work presents some basic notions and properties of these concepts such as AH-Kernel, AH-

Quotient, and dimension, and determines the algebraic structure of weak neutrosophic module over a commutative 

ring R.  

Keywords: Neutrosophic module, AH-submodule, AHS-submodule, AH-Quotient. 

1. Introduction 
Neutrosophy as a new branch of philosophy founded by Smarandache has an interesting effect in real world 

problems, applications and algebraic studies. Recently, neutrosophic sets have been applied in the medical field such 

as diagnosis of bipolar disorder diseases [1], evaluation hospital medical care systems [2], intelligent medical 

decision support model based on soft computing and many other ares [3], and  novel group decision making model 

for heart disease [4]. 

 Many neutrosophic algebraic structures have been defined and studied such as neutrosophic rings, neutrosophic 

groups, neutrosophic vector spaces and refined neutrosophic rings. See[7, 8, 9, 10, 11, 12, 13, 14]. AH-substructures 

were defined for the first time in neutrosophic rings in [5],  then they were introduced in refined neutrosophic rings 

in [2]. These structures have many symmetric properties which illustrate a  line between classical algebra and 

neutrosophical algebra. AH-ideal in a neutrosophic ring R(I) is a set with form � + �� where �, � are ideals in R, 

other AH-structures can be defined to have many parts, each part has a special structure such (subspace, ideal, and 

submodule). AH-substructures were studied in refined neutrosophic  rings, and neutrosophic vector spaces too [6,8]. 

In this paper we try to define AH-submodule and AHS-submodule of a neutrosophic module and introduce some of 

their elementary properties. Also, some interesting concepts were defined and applied in this study, such as 

neutrosophic module AHS-homomorphism, and AH-Quotient module. 

Motivation 

This work is an extension of  studies about AH-substructures in neutrosophical algebraic structures in [5,6,8]. 

2. Preliminaries 

HP
Typewriter
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In the following part, we recall some notions which will be used in our study. 

Definition 2.1: [15] 

Let (N, + , .) be a module over the ring R. Then (N(I), +, .) is called a weak neutrosophic module over the ring R, 

and it is called a strong neutrosophic module if it is a module over the neutrosophic ring R(I). 

Here elements of N(I) have the form 	� + ��; �	, � ∈ �, i.e N(I) can be written as �(�) = � + ��. 

Definition 2.2: [15] 

Let M(I) be a strong neutrosophic module over the neutrosophic ring R(I) and W(I) be a nonempty set of M(I), then 

W(I) is called a strong neutrosophic submodule if W(I) itself is a strong neutrosophic module. 

Definition 2.3: [15] 

Let U(I) and W(I) be two strong neutrosophic modules and let �: �(�) → �(�), we say that f is a neutrosophic 

vector space homomorphism if  

(a) �(�) = �. 

(b) � is a module homomorphism. 

We define the kernel of f by Ker(f) = { x∈ �(�); �(�) = 0 }. 

Definition 2.4: [6] 

Let R(I) be a neutrosophic ring and � = �� + ��� = {�� + ���;	�� ∈ ��, �� ∈ ��}. 

(a) We say that P is an AH-ideal if ��and	�� are ideals in the ring R. 

(b) We say that P is an AHS-ideal if �� = ��. 

Definition 2.5: [6] 

Let (R(��, ��), +,× ) be a refined neutrosophic ring, and ��, ��, �� be three ideals in the ring R then the set 

� = (��, ����, ����) = {(�, ���, ���); � ∈ ��, � ∈ ��, � ∈ ��} is called a refined neutrosophic AH-ideal. 

If �� = �� = �� then P is called a refined neutrosophic AHS-ideal. 

3. Main concepts and discussion 

In this section we introduce our main definitions, results, and we illustrate some examples. 

Definition 3.1:  

Let �(�) 	= 	� + �� be a strong/weak neutrosophic module, the set 

� = � + �� = {� + ��; � ∈ �, � ∈ �}, where	P	and	Q 	are	submodules	of	� is called an AH-submodule of M(I). 

If � = �, S is called an AHS-submodule of M(I). 
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Example 3.2: 

We have M = �� = � × � is a module over R, � =< (0,1) > , � =< (1,0) > , are two submodules of M. The set 

� = � + �� = {(0, �) + (�, 0)�; �, � ∈ �} is an AH-submodule of M(I). 

The set � = � + �� = {(0, �) + (0, �)�}; �, � ∈ � is an AHS-submodule of M(I). 

Theorem 3.3: 

Let �(�) 	= 	� + �� be a neutrosophic weak module over the ring R, and let � = � + �� be an AH-submodule of 

�(�), then S is a submodule. 

Proof: 

Suppose that � = � + ��, � = � + �� ∈ �; �, � ∈ �, �, � ∈ �,  

� + � = (� + �) + (� + �)� ∈ �. For each scalar � ∈ � we obtain �. � = �. � + (�. �)� ∈ �, since 

�	and	�	are	submodules; thus � = � + �� is a submodule of M(I) over the ring R. 

Theorem 3.4: 

Let M(I) be a neutrosophic strong module over a neutrosophic ring R(I), let � = � + �� be an AHS-submodule. 

Then S is a submodule of M(I). 

Proof: 

Suppose that � = � + ��, � = � + �� ∈ �; �, �, �, � ∈ �, 

� + � = (� + �) + (� + �)� ∈ �. Let 	� = � + �� ∈ �(�) be a neutrosophic scalar, we find 

�. � = (�. �) + (�. � + �. � + �. �)� ∈ �, since �. � + �. � + �. � ∈ �, thus we get the desired result. 

A strong AH-submodule is not supposed to be a submodule. For examples see [4]. 

Definition 3.5: 

(a) Let M and W be two modules, ��:� → � be a homomorphism. The AHS-homomorphism can be defined as 

follows: 

�:�(�) → �(�); �(� + ��) = ��(�) + ��(�)�.  

(b) If �	 = 	� + �� is an AH-submodule of M(I), �(�) = ��(�) + ��(�)�. 

(c) If �	 = 	� + �� is an AH-submodule of W(I), ���(�) = ��
��(�) + ��

��(�)�. 

(d) �� − ���(�) 	= ���(��) + ���(��)	� = {� + ��; �, � ∈ ���(��)}.  

Theorem 3.6: 

Let W(I) and M(I) be two neutrosophic strong/weak modules, and  �:�(�) → �(�) be an AHS-homomorphism: 

(a) �� − ���(�) is an AHS-submodule of M(I). 
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(b) If  �	 = 	� + �� is an AH-submodule of M(I), �(�) is an AH-submodule of W(I). 

(c) If �	 = 	� + �� is an AH-submodule of W(I), ���(�) is an AH-submodule of M(I). 

Proof: 

(a) Since ���(��) is a submodule of M, we find that �� − ���(�) 	= ���(��) + ���(��)� is an AHS-

submodule of M(I). 

(b) We have �(�) = ��(�) + ��(�)�; thus L(S) is an AH-submodule of W(I), since ��(�), ��(�)are submodules 

of W. 

(c) By regarding that ���(�) = ��
��(�) + ��

��(�)�, 	��
��(�)	and	��

��(�) are submodules of M, we obtain that  

���(�) is an AH-subModule of M(I). 

Theorem 3.7: 

Let W(I) and M(I) be two neutrosophic strong modules over a neutrosophic ring R(I), and  �:�(�) → �(�) be an 

AHS-homomorphism. Then 

�(� + �) = �(�) + �(�), �(�. �) = �. �(�), for all �, � ∈ �(�),� ∈ �(�). 

Proof: 

Suppose � = � + ��, � = � + ��; �, �, �, � ∈ �, ���	� = � + �� ∈ �(�), we have 

�(� + �) = �([� + �] + [� + �]�) = ��(� + �) + ��(� + �)� = [��(�) + ��(�)�] + [��(�) + ��(�)�] =

�(�) + �(�).  

�. � = (�. �) + (�. � + �. � + �. �)�, �(�. �) = ��(�. �) + ��(�. � + �. � + �. �)� 

= �. ��(�) + [�. ��(�) + �. ��(�) + �. ��(�)]� = (� + ��). (��(�) + ��(�)�) = �. �(�). 

Theorem 3.8: 

Let � = � + �� be an AH-submodule of a neutrosophic weak module M(I) over a ring R, suppose that  

� = {��; 1 ≤ � ≤ �} is a bases of P and � = {��; 1 ≤ � ≤ �} is a bases of Q then � ∪ �� is a bases of S. 

Proof: 

 Let � = � + �� be an arbitrary element in S; � ∈ �, � ∈ �. Since P and Q are submodules of M we can write 

� = ���� + ���� + ⋯+ ����;	�� ∈ �	���	�� ∈ �, � = ���� + ���� +⋯+ ����;	�� ∈ �, �� ∈ �. 

Now we obtain � = (���� + ⋯+ ����) + (����� + ⋯+ �����); thus � ∪ �� generates the subspace S. 

� ∪ �� is linearly independent set. Assume that (���� + ⋯+ ����) + (����� + ⋯+ �����) = 0, this implies  

���� + ���� + ⋯+ ���� = 0 and  (���� + ���� + ⋯+ ����)� = 0. Since X and Y are linearly independent sets 

over R, we get �� = �� = 0	���	���	�, � and � ∪ �� is linearly independent then it is a basis of S. 

Result 3.9: 
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Let � = � + �� be an AH-submodule of a neutrosophic weak module M(I) with finite dimension over a ring R, 

from Theorem 3.8 and the fact that � ∩ �� = ∅, we find dim (�) = dim (�) + dim 	(�). 

Example 3.10: 

Let M =�� = � × � × � is a module over the ring Z, � =< (0,0,1) > , � =< (0,1,0) >  be two submodules of M, 

(a) � = � + �� = {(0,0,�) + (0, �, 0)�; 	�, � ∈ � }is an AH-submodule of M(I). 

(b) The set {(0,0,1), (0,1,0)�} is a bases of S, dim (�) = dim (�) + dim (�) = 1 + 1 = 2. 

(c) ��:� → �;	��(�, �, �) = (� + �, �, �)���	���	�, �, � ∈ � is a homomorphism, the corresponding AHS-

homomorphism is  

�:�(�) → �(�); �[(�, �, �) + (�, �, �)�] = ��(�, �, �) + ��(�, �, �)� =(� + �, �, �) + (� + �, �, �)�. 

(d) �(�) = ��(�) + ��(�) = ��{(0,0,�)}+ ��{(0, �, 0)}� = {(0,0, �) + (�, �, 0)�}; �, � ∈ �, which is an AH-

submodule of M(I). 

Example 3.11 : 

Let M=�� = � × �, W=�� = � × � × � be two modules over the ring Z, ��:� → �;	��(�, �) = (� + �, � +

�, � + �) is a homomorphism. The corresponding AHS-homomorphism  is 

�:�(�) → �(�); �[(�, �) + (�, �)�] = (� + �, � + �, � + �) + (� + �, � + �, � + �)�.  

����� =< (1,−1) > , �� − ���(�) = ���(��) + ���(��)	� =< (1,−1) > +< (1,−1) > � = 

{(�, −�) + (�, −�)�; �, � ∈ �} which is an AHS-submodule of M(I). 

We find dim (���(�)) = 1 + 1 = 2. 

Definition 3.12: 

Let M(I) be a neutrosophic strong/weak module, � = � + �� be an AH-submodule of M(I), we define 

 AH-Quotient module as: 

�(�) �⁄ = � �⁄ + (� �)⁄ �= (� + �) + (� + �)�; �, � ∈ �. 

Theorem 3.13: 

Let M(I) be a neutrosophic weak module over a ring R, and � = � + �� be an AH-submodule of M(I). The AH-

Quotient �(�) �⁄  is a module with respect to the following operations: 

Addition: [(� + �) + (� + �)�] + [(� + �) + (� + �)]� = (� + � + �) + (� + � + �)�; �, �, �, � ∈ �. 

Multiplication by a scalar: (�). [(� + �) + (� + �)�] = (�. � + �) + (�. � + �)�; 

�, � ∈ �	and	� ∈ �. 

Proof: 

It is easy to check that operations are well defined, and (�(�) �⁄ ,+) is abelian group. 
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Let � = [(� + �) + (� + �)�] ∈ �(�) �⁄ , we have 1. � = �. 

Assume that �, � ∈ �, we have �. (�. �) = �. [(�. � + �) + (�. � + �)�] = (�. �. � + �) + (�. �. � + �)� =

(�. �). �. 

(� + �). � = [(� + �). � + �] + [(� + �). � + �]� = �. � + �. �. 

Let ℎ = [(� + �) + (� + �)�] ∈ �(�) �⁄ , � + ℎ = (� + � + �) + (� + � + �)�, 

�. (� + ℎ) = (�. � + �. � + �) + (�. � +�. � + �)�. � + �. ℎ. 

Example 3.14: 

We have M = �� = � × � is a module over the ring Z, � =< (0,1) > ,� =< (1, 0) > 	are two submodules of M, 

� = � + �� = {(0, �) + (�, 0)�; �, � ∈ �} is an AH-subspace of M(I). 

The AH-Quotient is �(�) �⁄ = {[(�, �) + �] + [(�, �) + �]�; �, �, �, � ∈ �}. 

We clarify operations on �(�) �⁄  as follows: 

� = [(2,1) + �] + [(1,3) + �]�, � = [(2,5) + �] + [(1,1) + �]� are two elements in	�(�) �⁄ ,� =

3	��	�	������	��	�. 

� + � = [(4,6) + �] + [(2,4) + �]�, 3. � = [(6,3) + �] + [(3,9) + �]�. 

Remark 3.15: 

If � = � + �� is an  AHS-submodule of a neutrosophic weak module M(I) over the ring R, then AH-Quotient 

�(�) �⁄ = � �⁄ + � �⁄ � is a weak neutrosophic module, since � �⁄  is a module. 

We introduce the following result, it determines the algebraic structure of neutrosophic module. 

Theorem 3.16: 

Let (N,+,.) be a module over the commutative ring R, �(�) be the corresponding weak neutrosophic module over R. 

Then 

�(�) ≅ � × �. 

Proof: 

Define �:� × � → �(�); �(�, �) = � + ��; �, � ∈ �, it is easy to see that � is well defined bijective map. 

Let (�, �), (�, �) ∈ � × �, � ∈ �, we have (�, �) + (�, �) = (� + �, � + �), �. (�, �) = (�. �, �. �), 

�[(�, �) + (�, �)] = (� + �) + (� + �)� = (� + ��) + (� + ��) = �(�, �) + �(�, �). 

�[�. (�, �)] = �. � + �. �� = �. (� + ��) = �. �(�). Hence � is a module isomorphism. 

Result 3.17: 

Theorem 3.16 shows that the concept of weak neutrosophic module is a rediscovering of direct product of a module 

with itself, thus all results in [11] can be obtained easily according to this result. 
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According  to the previous result, we can find that every submodule of a weak neutrosophic module is an AH-

submodule, since every submodule of � × � has the form � × �; �,� are submodules of M. 

5. Conclusion 

In this article, we have defined the concepts of AH-submodule, AHS-submodule, and AHS-homomorphism in 

neutrosophic module as new generalizaion of AH-substructures in neutrosophic vector spaces. Also, we have 

studied some basic properties of these concepts. 

On the other hand, we have proved that every weak neutrosophic module M(I) over any commutative ring R is 

isomorphic to the direct product of M with itself. 

Future Aspect 

This study can be extended into more neutrosophic structures. 
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Abstract  

Modules are one of the fundamental and rich algebraic structure concerning some binary operations in the study of 

algebra. In this paper, some basic structures of refined neutrosophic R-modules and refined neutrosophic submodules 

in algebra are generalized. Some properties of refined neutrosophic R-modules and refined neutrosophic submodules 

are presented. More precisely, classical modules and refined neutrosophic rings are utilized. Consequently, refined 

neutrosophic R- modules that are completely different from the classical modular in the structural properties are 

introduced. Also, neutrosophic R-module homomorphism is explained and some definitions and theorems are 

presented.   

  

Keywords: Refined neutrosophic group, refined neutrosophic ring, refined neutrosophic R-module, weak refined 

neutrosophic R-module, strong refined neutrosophic R-module, refined neutrosophic R-module homomorphism. 
 

1. Introduction 

Neutrosophy is a new branch of philosophy that studies the nature, origin, and scope of neutralities as well as their 

interaction with ideational spectra. Neutrosophy is the base of neutrosophic logic, which is an extension of fuzzy logic 

in which indeterminacy is included. Florentin Smarandanche introduced the notion of neutrosophy as a new branch 

of philosophy in 1995. After that, he introduced the concept of neutrosophic logic and neutrosophic set where each 

proposition in neutrosophic logic is approximated to have the percentage of truth in a subset T , the percentage of 

indeterminacy in a subset I  and the percentage of falsity in a subset F   so that this neutrosophic logic is called an 

extension of fuzzy logic as well as an extension of intuitionistic fuzzy logic. 

Neutrosophic set is the generalization of the classical set, neutrosophic group, and neutrosophic ring the generalization 

of classical group and ring, etc. The same way neutrosophic R-module is the generalization of the classical R-module. 

By utilizing the idea of neutrosophic theory, Vasantha Kanadasamy and Florentin Smarandache [11] studied 

neutrosophic algebraic structures by inserting an indeterminate element I in the algebraic structure and then 

combining ‘ I ’ with the corresponding binary operation for corresponding binary operation.  

Agboola in [1], introduced the concept of refined neutrosophic algebraic structures and studied refined neutrosophic 

groups in particular. Since the introduction of refined neutrosophic algebraic structures, many neutrosophic 

researchers have established and studied more refined neutrosophic algebraic structures. Adeleke et al. [5] studied 

refined neutrosophic rings and refined neutrosophic subrings and presented their fundamental properties. Also in [6], 

Adeleke et al. studied refined neutrosophic ideals and refined neutrosophic homomorphisms and presented their basic 

HP
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properties. The present paper is devoted to the study of refined neutrosophic R-module. More properties of refined 

neutrosophic R-module will be presented. For more details about neutrosophy, refined neutrosophic logic, 

neutrosophic groups, and refined neutrosophic groups, the readers should see [2-4, 7-10, 12-25]. 

2. Preliminaries 

In this section, we present the basic definitions that are useful in this research. 

Definition 2.1. [1] Let   1 2, , ,I IX   be any refined neutrosophic algebraic structure where + and    are ordinary 

addition and multiplication respectively. 1 2   I and I  are the split components of the indeterminacy factor I  that is 

1 2I I I    with , R or C    . Also, 1 2   I and I they are taken to have the properties 

2 2
1 1 2 2,I I I I   and 1 2 2 1 1I I I I I   .  

For any two elements, we define  

 

. 

 

Definition 2.2. [1] Let  ,*G    be any group. The couple   1 2 ,, *G I I  is called a refined neutrosophic group 

generated by 1 2,   .G I and I     1 2 ,, *G I I is said to be commutative if, for all   1 2, ,*,x I Iy G  we have 

* *x y y x  Otherwise, we   1 2 ,, *G I I are called a non-commutative refined neutrosophic group. 

Example2.3. [1] Let  
       

       
1 2

2 1 2

1 2 1 2 1 2

0,0,0 , 1,0,0 , 0, ,0 , 0,0,
,

0, , , 1, ,0 , 1,0, , 1, ,

I I
I I

I I I I I I

  
  
  

� . Then   12 2, ,*Z I I   it is a 

commutative refined neutrosophic group of integers modulo2. Generally, for a positive integer 2n  ,  

  12 2, ,*Z I I  it is a finite commutative refined neutrosophic group of integers modulo n. 

Theorem2.4. [1]  

(1) Every refined neutrosophic group is a semigroup but not a group. 

 (2) Every refined neutrosophic group contains a group. 

Definition 2.5. [1] Let   1 2 ,, *G I I be a refined neutrosophic group and let  1 2, ,H I I  be a nonempty subset of

 1 2,G I I .  1 2, ,H I I is called a refined neutrosophic subgroup of  1 2,G I I if   1 2 ,*, ,I IH it is a refined 

neutrosophic group. It must contain a proper subset which is a group. Otherwise,  1 2, ,H I I it will be called a 

pseudo refined neutrosophic subgroup  1 2,G I I . 

Definition 2.6. [1]  Let   1 2 ,, *G I I  and   1 2 ,, ,I IH   be two refined neutrosophic groups. 

        

   
 

 

1 2 1 2 1 2

1

1 2 1 2

2

1) , , , , , ,

, ,
2) , , , ,

x y a bI cI d eI fI a d b e I c f I

ad ae bd be bf ce I
x y a bI cI d eI fI

af cd cf I

      

    
        
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 Then the mapping:      1 2 1 2: ,*, , ,I HI IG I     is called a neutrosophic homomorphism if the following 

conditions hold: 

  
     

 

1 2, ,*

1) *

: 2

,

2) 1,k k

x y G

x y x y

I k

I I

I

  



 



 

   

(1) The kernel of    denoted by ker   is defined by the set       1 2 1 2, ,, 0: 0 0g G gI I I I   .          

(2) The image of   denoted by Im   is defined by the set       1 2 1 2, , , :h H I I g G I I g h    . 

3. On refined Neutrosophic R-module: 

Definition 3.1 Let  , ,.M   be any R-module over a commutative ring R . The triple   1 2, , ,M I I     is called 

a weak refined neutrosophic R-module over a ring  R  generated by 1 2,    .M I and I  

If  1 2,M I I  is a refined neutrosophic R-module over a refined neutrosophic ring  1 2, ,R I I  then  1 2,M I I

is called a refined strong neutrosophic R-module. 

Theorem 3.2. Every strong refined neutrosophic R-module is a weak refined neutrosophic R-module.  

Proof: Suppose that  1 2,M I I is a strong refined neutrosophic R-module over a refined neutrosophic ring

 1 2,R I I  .  1 2 ,R R I I   for every ring R , it follows that  1 2,M I I is a weak refined neutrosophic R-

module. 

Theorem 3.3. Every weak (strong) refined neutrosophic R-module is an R-module. 

Proof: If we have      1 2 1 2 1 2, , , , , ,m a bI cI n d eI fI M I I     where , , , , ,a b c d e f M  and 

     1 2 1 2 1 2, , , , , , : , , , , ,p qI rI s tI uI R I I p q r s t u R           then:    

      
      

1 2

1 2 1 2

1) , ,

, , , ,

m n a d b e I c f I

p qI rI a d b e I c f I

     

   
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 

          
      

 

 

    
    

1

2

1

2

1 2

1 2

,

,

,

,

, ,

, ,

p a b

p b e q a d q b e q c f r b e I

p c f r a d r c f I

pa pb

pb pe qa qd qb qe qc qf rb re I

pc pf ra rd rc rf I

pa pb qa qb rc re I pc ra rc I

sd se td te tf ue I sf ud uf I

m n 

 
 
          
 
     

 
 

          
 

     

      

      

 

  

       

       

 

          
      

 

 

 

1 2 1 2 1 2

1 2 1 2

1

2

1

2

1 2

2) , , , , , ,

, , , ,

,

,

,

,

, ,

m p qI rI s tI uI a bI cI

p s q t I r u I a bI cI

p s a

p s b q t a q t b q t c r u b I

p s c r u a r u c I

ap as

pb bs qa ta qb tb qc tc rb ub I

pc sc ra ua rc uc I

p qI rI a

   

   

 
 
          
 
      

 
 

          
 

     

      1 2 1 2 1 2, , , , , ,bI cI s tI uI a bI cI

m n 



 

  

        

       

1 2 1 2 1 2

1 2 1 2

3) , , , , , ,

, , , ,

m p qI rI s tI uI a bI cI

ps pt qs qt qu rt I pu rs ru I a bI cI

 

      
 

  
     

   

      

1

2

,

,

ps a

ps b pt qs qt qu rt a pt qs qt qu rt b
I

pt qs qt qu rt c pu rs ru b

ps c pu rs ru a pu rs ru c I

 
 
           

            
        
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 

   

   

    

1

2

,

,

p sa

p sb ta tc tb ub qsa q sb ta tc tb ub
I

q sc ua uc r sb ta tc tb ub

p sc ua uc rsa r sc ua uc I

 
 
            

            
        

  

4)  For    1 21,0,0 ,R I I   we have: 

     

    
1 2 1 2

1 2

1,0,0 1,0 ,0 , ,

1 , 1 0 0 0 0 , 1 0 0

m I I a bI cI

a b a b c b I c a c I

 

      
     

                  1 2, ,a bI cI m    

Therefore, that  1 2,M I I  is an R-module. 

Lemma 3.4: If we have  1 2,M I I  as a refined neutrosophic R  module over a refined neutrosophic ring 

 1 2,R I I   and if we take        1 2 1 2 1 2 1 2, , , , , , , ,m a bI cI n d eI fI and s x yI zI M I I       where

, , , , , , , ,a b c d e f x y z M      1 2 1 2, , , : , ,p qI rI R I I p q r R     then:
                                                                                                 

1)  m s n s m n       

   

   

     

1 2 1 2

1 2 1 2

2) 0,0 ,0 0,0 ,0

3) 0,0 ,0 0,0 ,0

4)

I I I I

I I m I I

m m m



  





    

  

Definition 3.5: Let  1 2,M I I be a strong refined neutrosophic R- module over a refined neutrosophic ring

 1 2,R I I and let  1 2,N I I be a nonempty subset of  1 2,M I I .  1 2,N I I is called a strong refined 

neutrosophic submodule of  1 2,M I I  if  1 2,N I I is itself a strong refined neutrosophic R- module over 

 1 2,R I I . It is essential that  1 2,N I I contains a proper subset which is an R-module. 

Definition 3.6: Let  1 2,M I I be a weak refined neutrosophic R-module over a ring R and let N (I) be a nonempty 

subset of  1 2,M I I .  1 2,N I I is called a weak refined neutrosophic submodule of  1 2,M I I , if  1 2,N I I

is itself a weak refined neutrosophic R-module over R. It is essential that  1 2,N I I contains a proper subset, which 

is an R-module. 
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Theorem 3.7: If we have  1 2,M I I  as a refined neutrosophic R  module over a ring  1 2,R I I  and if we take 

 1 2,N I I  as a subset of  1 2,M I I ,  1 2,N I I is a strong refined neutrosophic submodule of  1 2,M I I if 

and only if the following conditions hold:
 

1)    1 2 1 21 2 1 2, ,,n n N n nI I IN I       

   

   
12

1 2 1 2

1 23) , , : , ,,

, ,

for all r I I R R

n N n

I I

I I I IN

     



  

  
  

3)    1 2,N I I  must have a proper subset which is a R  module. 

Corollary 3.8: If we have   1 2,M I I  as a refined neutrosophic R  module over a refined neutrosophic ring 

 1 2,R I I  and if we take  1 2,N I I  as a subset of  1 2,M I I , then
 

 1 2,N I I  is refined neutrosophic 

submodule of  1 2,M I I if and only if the following conditions hold: 

     

   

1 2 1 2 1 2

1 2 1 2 1 2 1 2

1) , , , , , , : , , , , ,

, ,

for all p qI rI s tI uI R I I p q r s t u R

n n N I I implies n n N I I

 

 

 

   
  

2)   1 2,N I I  must have a proper subset which is a R  module. 

Example 3.9. Let  1 2,M I I be a weak (strong) refined neutrosophic R-module.  1 2,M I I is a weak (strong) 

refined neutrosophic submodule called a trivial weak (strong) neutrosophic submodule.  

Example 3.10. Let       1 2 1 2 1 2, ,:,m n ij ijaM I I M I I Ia R I
       be a strong refined neutrosophic R-

module over the strong refined neutrosophic ring  1 2,R I I   and let  

          1 2 1 2 1 2 1 2: , 0,, , , ,00n m ij ij n mN N b b R trace NI I I I I I I I 
        

Then  1 2,N I I is a strong refined neutrosophic submodule of  1 2,M I I . 
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Theorem 3.11: Let  1 2,M I I be a strong refined neutrosophic R-module over a refined neutrosophic ring 

 1 2,R I I and let   1 2,n n
N I I


 be a family of strong refined neutrosophic submodules of  1 2,M I I . Then  

 1 2,nN I I  is a strong refined neutrosophic submodule of  1 2,M I I .  

Proof: Clearly      
1 2

1 2 1 2,
0,0 ,0 ,

M I I
I I N I I  and  1 2,   nN I I Ø  . Since for  

     
1 2

1 2 1 2,
, 0,0 ,0 ,nM I I

n I I N I I    Let be      1 2 1 2 1 2,, , , , ,na bI cI d eI fI N Iy Ix     and 

let be    1 2 1 2, , ,p qI rI R I I    . Then  1 2,, nN I Ix y x    . Since, for 

 1 2, ,nn x y N I I      and  1 2,nNx I I   Hence  1 2,nN I I is a strong refined neutrosophic 

submodule of  1 2,M I I .  

Remark: Let  1 2,M I I be a strong refined neutrosophic R-module over a refined neutrosophic ring  1 2,R I I

and let  11 2,N I I  and  12 2,N I I  be two distinct strong refined neutrosophic submodules of  1 2,M I I . 

Generally,    1 21 2 1 2, ,N NI I I I  is not a strong refined neutrosophic submodule  1 2,M I I .  

However, if    1 21 2 1 2, ,N NI I I I or    1 21 2 1 2, ,N NI I I I  then    1 21 2 1 2, ,N NI I I I is a 

strong neutrosophic submodule of  1 2,M I I . 

Definition 3.12. If we have  1 2,M I I  and  1 2,N I I  as two refined neutrosophic R  modules over a ring 

refined neutrosophic ring  1 2,R I I , a mapping    1 2 1 2: , ,M I I N I I   is said to be a refined neutrosophic 

homomorphism R  module, precisely when:  

1)      rm r m r m r m        for all  1 2, ,Mm I Im   and  1 2, ,r r R I I   

2)    1 1 2 2,I I I I   . 

Endomorphism, epimorphism, monomorphism, automorphism, and isomorphism of φ have the same definitions as 

those of the classical cases. 

Definition 3.13.  Let  1 2,M I I and  1 2,N I I be strong refined neutrosophic R-modules over a refined 

neutrosophic ring  1 2,R I I and let    1 2 1 2: ,,M N I II I   be a refined neutrosophic R-module 

homomorphism then:               
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(1) The kernel of    denoted by ker   is defined by the set       1 2 1 2, 00 ,: ,0m mM I I I I   .          

(2) The image of   denoted by Im   is defined by the set       1 2 1 2, , :n N I I m M I I m n    . 

Example 3.14. Let  1 2,M I I be a strong refined neutrosophic R-module over a refined neutrosophic ring

 1 2,R I I . The mapping    1 2 1 2: ,,M M I II I  defined by  m m   for all  1 2,m M I I  is 

refined neutrosophic R-module homomorphism and  1 2ker 0,0 ,0I I   .         

Example 3.15. The mapping    1 2 1 2: ,,M M I II I  defined by    1 20,0 ,0m I I   for all 

 1 2,m M I I is refined neutrosophic R-module homomorphism. 

Definition 3.15. Let  1 2,M I I and  1 2,N I I be strong refined neutrosophic R-modules over a refined 

neutrosophic ring  1 2,R I I  and let    1 2 1 2: ,,M N I II I  be a refined neutrosophic R-module 

homomorphism. Then: 

 (1) ker is not a strong refined neutrosophic submodule of  1 2,M I I but a submodule of M.           

(2) Im is a strong refined neutrosophic submodule of  1 2,N I I . 

Proof:     (1) Obviously,  1 2 1 2, ,I I M I I   but    1 1 2 20, 0I I I I      . That ker is a submodule 

of M is clear.     

(2) Clear.  

 5. Conclusion  

In this paper, the refined neutrosophic R-modules and refined neutrosophic submodules which are completely different 

from the classical modules and submodules in the structural properties were defined. It was shown that every refined 

neutrosophic R-module is an R-module. Finally, refined neutrosophic R-module homomorphism was explained and 

some definitions and theorems were given. 
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Abstract
The objective of this paper is to present the concept of a refined neutrosophic vector space. Weak(strong)
refined neutrosophic vector spaces and subspaces, and, strong refined neutrosophic quotient vector spaces are
studied. Several interesting results and examples are presented. It is shown that every weak (strong) refined
neutrosophic vector space is a vector space and it is equally shown that every strong refined neutrosophic vec-
tor space is a weak refined neutrosophic vector space.
Keywords: Neutrosophy, neutrosophic vector space, neutrosophic vector subspace, refined neutrosophic vec-
tor space, refined neutrosophic vector subspace, refined neutrosophic quotient vector space.

1 Introduction and Preliminaries
Neutrosophy is a new branch of philosophy that studies the origin, nature and scope of neutralities, as well as
their interactions with different ideational spectra. The concept of neutrosophic logic/set was introduced by
Smarandache in [20, 22] as a generalization of fuzzy log/set [29] and respectively intuitionistic fuzzy logic/set [9].
In neutrosophic logic, each proposition has a degree of truth (T ), a degree of indeterminancy (I) and a degree
of falsity (F ),where T, I, F are standard or non-standard subsets of ]−0, 1+[. In [21], Smarandache introduced
the notion of refined neutrosophic components of the form < T1, T2, · · · , Tp; I1, I2, ·, Ir;F1, F2, · · · , Fs >
of the neutrosophic components < T, I, F >. The refinement has given rise to the introduction of refined
neutrosophic set and the extension of neutrosophic numbers a + bI into refined neutrosophic numbers of the
form (a + b1I1 + b2I2 + · · · + bnIn) where a, b1, b2, · · · , bn are real or complex numbers. Agboola in [4]
introduced the concept of refined neutrosophic algebraic structures and studied refined neutrosophic groups
with their basic and fundamental properties. Since then, several neutrosophic researchers have studied this
concept and a great deal of results have been published. Recently, Adeleke et al. studied refined neutrosophic
rings and refined neutrosophic subrings in [1] and also in [2], they presented several results and examples on
refined neutrosophic ideals and refined neutrosophic ring homomorphisms.

The concept of neutrosophic vector space was introduced by Vasantha Kandasamy and Florentin Smaran-
dache in [23]. Further studies on neutrosophic vector spaces were carried out by Agboola and Akinleye in [8]
where they generalized some properties of vector spaces and showed that every neutrosophic vector space over
a neutrosophic field (resp. field) is a vector space. A comprehensive review of neutrosophic set, neutrosophic
soft set, fuzzy set, neutrosophic topological spaces, neutrosophic vector spaces and new trends in neutrosophic
theory can be found in [3, 5–7, 10–19, 23–28].
In the present paper, we present the concept of a refined neutrosophic vector space. Weak(strong) refined
neutrosophic vector spaces and subspaces, and, strong refined neutrosophic quotient vector spaces are studied.
Several interesting results and examples are presented. It is shown that every weak (strong) refined neutro-
sophic vector space is a vector space and it is equally shown that every strong refined neutrosophic vector
space is a weak refined neutrosophic vector space.

For the purposes of this paper, it will be assumed that I splits into two indeterminacies I1 [contradiction
(true (T ) and false (F ))] and I2 [ignorance (true (T ) or false (F ))]. It then follows logically that:

Doi :10.5281/zenodo.3884059 97

HP
Typewriter
Received: March 27, 2020     Revised: May 03, 2020     Accepted: May 28, 2020



International Journal of Neutrosophic Science (IJNS) Vol.7 , No.2 , PP.97-109, 2020

I1I1 = I21 = I1,
I2I2 = I22 = I2, and
I1I2 = I2I1 = I1.

Definition 1.1. 4 If ∗ : X(I1, I2) ×X(I1, I2) 7→ X(I1, I2) is a binary operation defined on X(I1, I2), then
the couple (X(I1, I2), ∗) is called a refined neutrosophic algebraic structure and it is named according to the
laws (axioms) satisfied by ∗.

Definition 1.2. 4 Let (X(I1, I2),+, .) be any refined neutrosophic algebraic structure where + and . are ordi-
nary addition and multiplication respectively.
For any two elements (a, bI1, cI2), (d, eI1, fI2) ∈ X(I1, I2), we define

(a, bI1, cI2) + (d, eI1, fI2) = (a+ d, (b+ e)I1, (c+ f)I2),

(a, bI1, cI2).(d, eI1, fI2) = (ad, (ae+ bd+ be+ bf + ce)I1, (af + cd+ cf)I2).

Definition 1.3. 4 If ′′+′′ and ′′.′′ are ordinary addition and multiplication, Ik with k = 1, 2 have the following
properties:

1. Ik + Ik + · · ·+ Ik = nIk.

2. Ik + (−Ik) = 0.

3. Ik · Ik · · · · Ik = Ink = Ik for all positive integers n > 1.

4. 0 · Ik = 0.

5. I−1k is undefined and therefore does not exist.

Definition 1.4. 4 Let (G, ∗) be any group. The couple (G(I1, I2), ∗) is called a refined neutrosophic group
generated by G, I1 and I2. (G(I1, I2), ∗) is said to be commutative if for all x, y ∈ G(I1, I2), we have
x ∗ y = y ∗ x. Otherwise, we call (G(I1, I2), ∗) a non -commutative refined neutrosophic group.

Definition 1.5. 4 If (X(I1, I2), ∗) and (Y (I1, I2), ∗′) are two refined neutrosophic algebraic structures, the
mapping

φ : (X(I1, I2), ∗) −→ (Y (I1, I2), ∗′)
is called a neutrosophic homomorphism if the following conditions hold:

1. φ((a, bI1, cI2) ∗ (d, eI1, fI2)) = φ((a, bI1, cI2)) ∗′ φ((d, eI1, fI2)).

2. φ(Ik) = Ik for all (a, bI1, cI2), (d, eI1, fI2) ∈ X(I1, I2) and k = 1, 2.

Example 1.6. 4 Let
Z2(I1, I2) = {(0, 0, 0), (1, 0, 0), (0, I1, 0), (0, 0, I2), (0, I1, I2), (1, I1, 0), (1, 0, I2), (1, I1, I2)}.
Then (Z2(I1, I2),+) is a commutative refined neutrosophic group of integers modulo 2.
Generally for a positive integer n ≥ 2, (Zn(I1, I2),+) is a finite commutative refined neutrosophic group of
integers modulo n.

Example 1.7. 4 Let (G(I1, I2), ∗) and and (H(I1, I2), ∗′) be two refined neutrosophic groups.
Let φ : G(I1, I2)×H(I1, I2)→ G(I1, I2) be a mapping defined by φ(x, y) = x and let
ψ : G(I1, I2) × H(I1, I2) → H(I1, I2) be a mapping defined by ψ(x, y) = y. Then φ and ψ are refined
neutrosophic group homomorphisms.

Definition 1.8. 1 Let (R,+, .) be any ring. The abstract system (R(I1, I2),+, .) is called a refined neutro-
sophic ring generated by R, I1, I2. (R(I1, I2),+, .) is called a commutative refined neutrosophic ring if
for all x, y ∈ R(I1, I2), we have xy = yx. If there exists an element e = (1, 0, 0) ∈ R(I1, I2) such that
ex = xe = x for all x ∈ R(I1, I2), then we say that (R(I1, I2),+, .) is a refined neutrosophic ring with unity.

Definition 1.9. 1 Let (R(I1, I2),+, .) be a refined neutrosophic ring and let n ∈ Z+.

(i) If nx = 0 for all x ∈ R(I1, I2), we call (R(I1, I2),+, .) a refined neutrosophic ring of characteristic n
and n is called the characteristic of (R(I1, I2),+, .).

(ii) (R(I1, I2),+, .) is call a refined neutrosophic ring of characteristic zero if for all x ∈ R(I1, I2), nx = 0
is possible only if n = 0.
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Example 1.10. 1

(i) Z(I1, I2),Q(I1, I2),R(I1, I2),C(I1, I2) are commutative refined neutrosophic rings with unity of char-
acteristics zero.

(ii) Let Z2(I1, I2) = {(0, 0, 0), (1, 0, 0), (0, I1, 0), (0, 0, I2),
(0, I1, I2), (1, I1, 0), (1, 0, I2), (1, I1, I2)}. Then (Z2(I1, I2),+, .) is a commutative refined neutro-
sophic ring of integers modulo 2 of characteristic 2. Generally for a positive integer n ≥ 2, (Zn(I1, I2),+, .)
is a finite commutative refined neutrosophic ring of integers modulo n of characteristic n.

Example 1.11. 1 Let MR
n×n(I1, I2) =



a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
an1 an2 · · · ann

 : aij ∈ R(I1, I2)

 be a refined neutro-

sophic set of all n× n matrix.
Then (MR

n×n(I1, I2),+, .) is a non-commutative refined neutrosophic ring under matrix multiplication.

Theorem 1.12. 1 Let (R(I1, I2),+, .) be any refined neutrosophic ring. Then (R(I1, I2),+, .) is a ring.

2 Formulation of a Refined Neutrosophic Vector Space
In this section, we develop the concept of refined neutrosophic vector space and its subspaces and also present
some of their basic properties.

Definition 2.1. Let (V,+, .) be any vector space over a field K. Let V (I1, I2) =< V ∪ (I1, I2) > be a refined
neutrosophic set generated by V , I1 and I2. We call the triple (V (I1, I2),+, .) a weak refined neutrosophic
vector space over a field K, if V (I1, I2) is a refined neutrosophic vector space over a refined neutrosophic field
K(I1, I2), then V (I1, I2) is called a strong refined neutrosophic vector space. The elements of V (I1I2) are
called refined neutrosophic vectors and the elements of K(I1, I2) are called refined neutrosophic scalars.

If u = a + bI1 + cI2, v = d + eI1 + fI2 ∈ V (I1, I2) where a, b, c, d, e and f are vectors in V and
α = k +mI1 + nI2 ∈ K(I1, I2) where k,m and n are scalars in K, we define:

u+ v = (a+ bI1 + cI2) + (d+ eI1 + fI2) = (a+ d) + (b+ e)I1 + (c+ f)I2,

and

αu = (k +mI1 + nI2).(a+ bI1 + cI2) = k.a+ (k.b+m.a+m.b+m.c+ n.b)I1 + (k.c+ n.a+ n.c)I2.

Example 2.2. Let R2(I1, I2) denote the refined set of all ordered pairs (x, y) where x and y are refined neu-
trosophic real numbers given as x = a+ bI1 + cI2 and y = d+ eI1 + fI2.
Define addition and scalar multiplication on R2(I1, I2) by

(x, y) + (x′, y′) = (a+ bI1 + cI2, d+ eI1 + fI2) + (a′ + b′I1 + c′I2, d
′ + e′I1 + f ′I2)

= (a+ a′ + (b+ b′)I1 + (c+ c′)I2, d+ d′ + (e+ e′)I1 + (f + f ′)I2)
= (x+ x′, y + y′).

For α = (k +mI1 + nI2) ∈ R(I1, I2)
α(x, y) = (k +mI1 + nI2).(a+ bI1 + cI2, d+ eI1 + fI2)

= ((k +mI1 + nI2).(a+ bI1 + cI2), (k +mI1 + nI2).(d+ eI1 + fI2))
= (k.a+ (k.b+m.a+m.b+m.c+ n.b)I1 + (k.c+ n.a+ n.c)I2, k.d+

(k.e+m.d+m.e+m.f + n.e)I1 + (k.f + n.d+ n.f)I2, ).

Then R2(I1, I2) is strong refined neutrosophic vector space over R(I1, I2).

And if α ∈ R with scalar multiplication defined as

α(x, y) = α(a+ bI1 + cI2, d+ eI1 + fI2) = (α.a+ α.bI1 + α.cI2, α.d+ α.eI1 + α.fI2) = (α.x, α.y),

then R2(I1, I2) is weak refined neutrosophic vector space over R.

Example 2.3. Mm×n(I1, I2) = {[aij] : aij ∈ Q(I1, I2)} is a weak refined neutrosophic vector space over a
field Q and it is a strong refined neutrosophic vector space over a refined neutrosophic field Q(I1, I2).

Doi :10.5281/zenodo.3884059 99



International Journal of Neutrosophic Science (IJNS) Vol.7 , No.2 , PP.97-109, 2020

Example 2.4. Let V = Q(I1, I2)(
√
2) = {a + (bI1 + cI2)

√
2 : a, b, c ∈ Q}. Then V is a weak refined

neutrosophic vector space over Q. If u = a+ (bI1 + cI2)
√
2 and v = d+ (eI1 + fI2)

√
2

then u+ v = (a+ d) + (b+ e)I1
√
2 + (c+ f)I2

√
2 is again in V.

Also, for α ∈ Q, αu = α(a+ (bI1 + cI2)
√
2) = α.a+ (α.bI1 + α.cI2)

√
2 is in V.

Proposition 2.5. Every strong refined neutrosophic vector space is a weak refined neutrosophic vector space.

Proof. Suppose that V (I1, I2) is a strong refined neutrosophic vector space over a refined neutrosophic field
K(I1, I2) say. Since K ⊆ K(I1, I2) for every field K, we have that V (I1, I2) is also a weak refined neutro-
sophic vector space.

Proposition 2.6. Every weak (strong) refined neutrosophic vector space is a vector space.

Proof. Suppose that V (I1, I2) is a strong refined neutrosophic vector space over a refined neutrosophic field
K(I1, I2). That (V (I1, I2),+) is an abelian group can be established easily.
Let u = a+ bI1 + cI2, v = d+ eI1 + fI2 ∈ V (I1, I2), α = k+mI1 + nI2, β = p+ qI1 + rI2 ∈ K(I1, I2)
where a, b, c, d, e, f ∈ V and k,m, n, p, q, r ∈ K.
Then:

1. α(u+ v) = (k +mI1 + nI2)(a+ bI1 + cI2 + d+ eI1 + fI2)
= (k +mI1 + nI2)(a+ d+ (b+ e)I1 + (c+ f)I2)
= ka+kd+[kb+ke+ma+md+mb+me+mc+mf+nb+ne]I1+[kc+kf+na+nd+nc+nf ]I2
= [ka+ (kb+ma+mb+mc+nb)I1 + (kc+na+nc)I2] + [kd+ (ke+md+me+mf +ne)I1 +
(kf + nd+ nf)I2]
= (k +mI1 + nI2)(a+ bI1 + cI2) + (k +mI1 + nI2)(d+ eI1 + fI2)
= αu+ αv.

2. (α+ β)u = (k +mI1 + nI2 + p+ qI1 + rI2)(a+ bI1 + cI2)
= (k + p+ (m+ q)I1 + (n+ r)I2)(a+ bI1 + cI2)
= ka+ pa+[kb+ pb+ma+ qa+mb+ qb+mc+ qc+nb+ rb]I1+[kc+ pc+na+ ra+nc+ rc]I2
= [ka+(kb+ma+mb+mc+nb)I1+[kc+na+nc]I2]+[pa+(pb+qa+qb+qc+rb)I1+[pc+ra+rc]I2
= (k +mI1 + nI2)(a+ bI1 + cI2) + (p+ qI1 + rI2)(a+ bI1 + cI2)
= αu+ βu.

3. (αβ)u = ((k +mI1 + nI2)(p+ qI1 + rI2))(a+ bI1 + cI2)
= (kp+ (kq +mp+mq +mr + nq)I1 + (kr + np+ nr)I2)(a+ bI1 + cI2)
= kpa+ [kpb+ kqa+mpa+mqa+mra+ nqa+ kqb+mpb+mqb+mrb+ nqb+ kqc+mpc+
mqc+mrc+ nqc+ krb+ npb+ nrb]I1 + [kpc+ kra+ npa+ nra+ krc+ npc+ nrc]I2
= (k +mI1 + nI2)[pa+ (pb+ qa+ qb+ qc+ rb)I1 + (pc+ ra+ rc)I2]
= (k +mI1 + nI2)((p+ qI1 + rI2)(a+ bI1 + cI2))
= α(βu).

4. For 1 = 1 + 0I1 + 0I2 ∈ K(I1I2), we have
1u = (1 + 0I1 + 0I2)(a+ bI1 + cI2)
= a+ (b+ 0 + 0 + 0 + 0)I1 + (c+ 0 + 0)I2
= a+ bI1 + cI2.
Accordingly, V (I1, I2) is a vector space.

Example 2.7. Let P∞(I1, I2) be the set of refined neutrosophic formal power series in variable x of the form∑∞
n=0 anx

n = a0 + a1x+ a2x
2 + · · ·+ anx

n + · · · , with an ∈ R(I1, I2) and
an = pn + qnI1 + rnI2 for n = 1, 2, 3 · · ·
If addition and scalar multiplication (for α ∈ K(I1, I2)) are defined as:
(
∑∞
n=0 anx

n) + (
∑∞
n=0 bnx

n)) = (
∑∞
n=0(pn + qnI1 + rnI2)x

n) + (
∑∞
n=0(un + vnI1 + wnI2)x

n)
= (

∑∞
n=0(pn + un + (qn + vn)I1 + (rn + wn)I2)x

n)

α (
∑∞
n=0(pn + qnI1 + rnI2)x

n) = (
∑∞
n=0 α(pn + qnI1 + rnI2)x

n)
=

∑∞
n=0(e+ fI1 + gI2)(pn + qnI1 + rnI2)x

n

=
∑∞
n=0 epn + (eqn + fpn + fqn + frn + gqn)I1

+(ern + gpn + grn)I2.
Then P∞(I1, I2) is a strong refined neutrosophic vector space over K(I1, I2).
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Note 1. A refined neutrosophic formal power series can be loosely thought of as an object that is like a refined
neutrosophic polynomial. Alternatively, one may think of a refined neutrosophic formal power series as a
refined neutrosophic power series in which we ignore the questions of convergence by not assuming that the
variable x denotes any numerical value (not even an unknown value). Thus, we do not regard these refined
neutrososphic formal power series as infinite sum in Px of refined neutrosophic monomials.

Example 2.8. Let P (I1, I2) be the set of all refined neutrosophic polynomial in variable x with coefficients in
R[I1, I2]. Let p, q ∈ P (I1, I2) and α = (k + uI1 + vI2) ∈ K(I1, I2).

p = (a0 + b0I1 + c0I2) + (a1 + b1I1 + c1I2)x+ · · ·+ (an + bnI1 + cnI2)x
n,

and
q = (a′0 + b′0I1 + c′0I2) + (a′1 + b′1I1 + c′1I2)x+ · · ·+ (a′m + b′mI1 + c′mI2)x

m.

If m ≥ n, the sum of p and q is given by

p+ q = ((a0 + a′0) + (b0 + b′0)I1 + (c0 + c′0)I2) + ((a1 + a′1) + (b1 + b′1)I1 + (c1 + c′1)I2)x+ · · ·+
((an + a′n) + (bn + b′n)I1 + (cn + c′n)I2) + (a′n+1 + b′n+1I1 + c′n+1I2)x

n+1 + · · ·+
(a′m + b′mI1 + c′mI2)x

m.

A similar definition is given if m < n.
The product of p and a scalar α is given by

α·p = (k+uI1+vI2)(a0+b0I1+c0I2)+(k+uI1+vI2)(a1+b1I1+c1I2)x+· · ·+(k+uI1+vI2)(an+bnI1+cnI2)x
n.

Then (P (I1, I2),+, ·) is a strong refined vector space over a refined neutrosophic field K(I1, 12).

Proposition 2.9. Let F (I1, I2) be a refined neutrosophic field and (R(I1, I2), φ) a refined neutrosophic
F-algebra, where R(I1, I2) is a refined neutrosophic ring with identity. Then R(I1, I2) is a strong refined
neutrosophic vector space over F (I1, I2) with addition being that in R(I1, I2) and scalar multiplication
defined by ar = φ(a)r. Here φ : F (I1, I2) −→ R(I1, I2) is a neutrosophic homomorphism such that
φ((1 + 0I1 + 0I2)) = (1 + 0I1 + 0I2) and φ(Ik) = Ik.

Proof. 1. That (R(I1, I2),+) is a neutrosophic abelian group can be easily established.

Let x = a+ bI1 + cI2, y = d+ eI1 + fI2 ∈ R(I1, I2), α = k +mI1 + nI2,
β = u+ vI1 + wI2 ∈ F (I1, I2). Where a, b, c, d, e, f ∈ R and k,m, n, u, v, w ∈ F.

2. α(x+ y) = (k +mI1 + nI2)((a+ d+ (b+ e)I1 + (c+ f)I2)
= ka+kd+[kb+ke+ma+md+mb+me+mc+mf+nb+ne]I1+[kc+kf+na+nd+nc+nf ]I2
= [ka+ (kb+ma+mb+mc+nb)I1 + (kc+na+nc)I2] + [kd+ (ke+md+me+mf +ne)I1 +
(kf + nd+ nf)I2]
= (k +mI1 + nI2)(a+ bI1 + cI2) + (k +mI1 + nI2)(d+ eI1 + fI2)
= φ((k +mI1 + nI2))(a+ bI1 + cI2) + φ((k +mI1 + nI2))(d+ eI1 + fI2)
= φ(α)x+ φ(α)y.

3. (α+ β)x = (k +mI1 + nI2 + p+ qI1 + rI2)(a+ bI1 + cI2)
= (k + p+ (m+ q)I1 + (n+ r)I2)(a+ bI1 + cI2)
= ka+ pa+[kb+ pb+ma+ qa+mb+ qb+mc+ qc+nb+ rb]I1+[kc+ pc+na+ ra+nc+ rc]I2
= [ka+ (kb+ma+mb+mc+ nb)I1 + [kc+ na+ nc]I2]
+ [pa+ (pb+ qa+ qb+ qc+ rb)I1 + [pc+ ra+ rc]I2
= (k +mI1 + nI2)(a+ bI1 + cI2) + (p+ qI1 + rI2)(a+ bI1 + cI2)
= φ((k +mI1 + nI2))(a+ bI1 + cI2) + β((p+ qI1 + rI2))(a+ bI1 + cI2)
= φ(α)x+ φ(β)x.
= (φ(α) + φ(β))x = φ(α+ β)x, since φ is a refined neutrosophic homomorphism.

4. (αβ)u = ((k +mI1 + nI2)(p+ qI1 + rI2))(a+ bI1 + cI2)
= (kp+ (kq +mp+mq +mr + nq)I1 + (kr + np+ nr)I2)(a+ bI1 + cI2)
= kpa+ [kpb+ kqa+mpa+mqa+mra+ nqa+ kqb+mpb+mqb+mrb+ nqb+ kqc+mpc+
mqc+mrc+ nqc+ krb+ npb+ nrb]I1 + [kpc+ kra+ npa+ nra+ krc+ npc+ nrc]I2
= (k +mI1 + nI2)[pa+ (pb+ qa+ qb+ qc+ rb)I1 + (pc+ ra+ rc)I2]
= (k +mI1 + nI2)((p+ qI1 + rI2)(a+ bI1 + cI2))
= φ((k +mI1 + nI2))(φ((p+ qI1 + rI2))(a+ bI1 + cI2))
= φ(α)(φ(β)x).
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5. For 1 = 1 + 0I1 + 0I2 ∈ F (I1I2), we have
1x = (1 + 0I1 + 0I2)(a+ bI1 + cI2)
= φ(1 + 0I1 + 0I2)(a+ bI1 + cI2).

Accordingly, R(I1, I2) is a strong refined neutrosophic vector space over F (I1, I2).

Lemma 2.10. Let V (I1, I2) be a strong refined neutrosophic vector space over a refined neutrosophic field
K(I1, I2) and let x = a+bI1+cI2, y = d+eI1+fI2, z = k+mI1+nI2, ∈ V (I1, I2), β = u+vI1+wI2 ∈
K(I1, I2). Then

1. x+ z = y + z implies x = y.

2. 0x = 0.

3. β0 = 0.

4. (−β)x = β(−x) = −(βx).

Proof. 1. x+ z = y + z
(a+ bI1 + cI2) + (k +mI1 + nI2) = (d+ eI1 + fI2) + (k +mI1 + nI2)
=⇒ a+ k + (b+m)I1 + (c+ n)I2 = d+ k + (e+m)I1 + (f + n)I2
⇐⇒ a+ k = d+ k, b+m = e+m and c+ n = f + n
⇐⇒ a = d, b = e and c = f
=⇒ a+ bI1 + cI2 = d+ eI1 + fI2 =⇒ x = y.

2. Consider βx = ((u+ vI1 + wI2) + (0 + 0I1 + 0I2))(a+ bI1 + cI2)
= ((u+ 0) + (v + 0)I1 + (w + 0)I2)(a+ bI1 + cI2)
= (u+0)a+((u+0)b+(v+0)a+(v+0)b+(v+0)c+(w+0)b)I1+((u+0)c+(w+0)a+(w+0)c)I2
= ua+0a+(ub+0b+ va+0a+ vb+0b+ vc+0c+wb+0b)I1+(uc+0c+wa+0a+wc+0c)I2
= (ua+(ub+va+vb+vc+wb)I1+(uc+wa+wc)I2)+(0a+(0b+0a+0b+0c+0b)I1+(0c+0a+0c)I2)
= βx+ 0x
=⇒ 0x = 0.

3. Since β ∈ K(I1, I2),
β0 + β0 = (u0 + (u0 + v0 + v0 + v0 +w0)I1 + (u0 +w0 +w0)I2) + (u0 + (u0 + v0 + v0 + v0 +
w0)I1 + (u0 + w0 + w0)I2)
= (u0+u0+(u0+u0+v0+v0+v0+v0+v0+v0+w0+w0)I1+(u0+u0+w0+w0+w0+w0)I2)
= (u(0+0)+(u(0+0)+v(0+0)+v(0+0)+v(0+0)+w(0+0))I1+(u(0+0)+w(0+0)+w(0+0))I2
= (u0 + (u0 + v0 + v0 + v0 + w0)I1 + (u0 + w0 + w0)I2 = β0
=⇒ β0 = 0.

4. Let β ∈ K(I1, I2) and x ∈ V (I1, I2).
So βx+ (−β)x = (u+ vI1 + wI2)(a+ bI1 + cI2) + (−(u+ vI1 + wI2))(a+ bI1 + cI2)
= (ua+(ub+ va+ vb+ vc+wb)I1 +(uc+wa+wc)I2)+ (−ua+(−ub− va− vb− vc−wb)I1 +
(−uc− wa− wc)I2)
= (ua−ua+(ub−ub+va−va+vb−vb+vc−vc+wb−wb)I1+(uc−uc+wa−wa+wc−wc)I2)
= ((u−u)a+((u−u)b+(v−v)a+(v−v)b+(v−v)c+(w−w)b)I1+((u−u)c+(w−w)a+(w−w)c)I2)
= (0a+ (0b+ 0a+ 0b+ 0c+ 0b)I1 + (0c+ 0a+ 0c)I2)
= (0 + 0I1 + 0I2)(a+ bI1 + cI2) = 0x = 0 by 2.
Then βx+ (−β)x = 0 =⇒ (−β)x = −βx.
So βx + β(−x) = (u + vI1 + wI2)(a + bI1 + cI2) + ((u + vI1 + wI2))(−(a + bI1 + cI2)) =
(ua + (ub + va + vb + vc + wb)I1 + (uc + wa + wc)I2) + (u(−a) + (u(−b) + v(−a) + v(−b) +
v(−c) + w(−b))I1 + (u(−c) + w(−a) + w(−c))I2)
= (ua+ u(−a) + (ub+ u(−b) + va+ v(−a) + vb+ v(−b) + vc+ v(−c) +wb+w(−b))I1 + (uc+
u(−c) + wa+ w(−a) + wc+ w(−c))I2)
= (u(a−a)+(u(b−b)+v(a−a)+v(b−b)+v(c−c)+w(b−b))I1+(u(c−c)+w(a−a)+w(c−c))I2)
= (u0 + (u0 + v0 + v0 + v0 + w0)I1 + (u0 + w0 + w0)I2) = (u+ vI1 + wI2)(0 + 0I1 + 0I2)
= β0 = 0 by 3.
Then βx+ β(−x) = 0 =⇒ β(−x) = −βx.
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Definition 2.11. Let V (I1, I2) be a strong refined neutrosophic vector space over a refined neutrosophic field
K(I1, I2) and let W (I1, I2) be a nonempty subset of V (I1, I2). W (I1, I2) is called a strong refined neutro-
sophic subspace of V (I1, I2) if W (I1, I2) is itself a strong refined neutrosophic vector space over K(I1, I2).
It is essential that W (I1, I2) contains a proper subset which is a vector space.

Definition 2.12. Let V (I1, I2) be a weak refined neutrosophic vector space over a field K and let W (I1, I2)
be a nonempty subset of V (I1, I2). W (I1, I2) is called a weak refined neutrosophic subspace of V (I1, I2) if
W (I1, I2) is itself a weak refined neutrosophic vector space over K. It is essential that W (I1, I2) contains a
proper subset which is a vector space.

Proposition 2.13. Let V (I1, I2) be a strong refined neutrosophic vector space over a refined neutrosophic field
K(I1, I2) and let W (I1, I2) be a nonempty subset of V (I1, I2). W (I1, I2) is a strong refined neutrosophic
subspace of V (I1, I2) if and only if the following conditions hold:

1. u, v ∈W (I1, I2) implies u+ v ∈W (I1, I2).

2. u ∈W (I1, I2) implies αu ∈W (I1, I2) for all α ∈ K(I1, I2).

3. W (I1, I2) contains a proper subset which is a vector space.

Example 2.14. Let V (I1, I2) be a weak (strong) refined neutrosophic vector space. V (I1, I2) is a weak
(strong) refined neutrosophic subspace called a trivial weak (strong) refined neutrosophic subspace.

Example 2.15. Let K(I1, I2) = R(I1, I2) be a refined neutrosophic field and V (I1, I2) = R3(I1, I2) be a
strong refined neutrosophic vector space. Take W (I1, I2) to be the set of all vectors in V (I1, I2) whose last
component is 0 = 0 + 0I1 + 0I2. Then W (I1, I2) is strong refined neutrosophic subspace of V (I1, I2).

Proof. To see this, let

W (I1, I2) = {(x = a+ bI1 + cI2, y = d+ eI1 + fI2, 0 = 0+ 0I1 + 0I2) ∈ V (I1, I2) : a, b, c, d, e, f ∈ V }.

1. Given that u, v ∈W (I1, I2), where u = (x, y, 0) and v = (x′, y′, 0). Then
u+ v = (x, y, 0)+ (x′, y′, 0) = (a+ bI1 + cI2, d+ eI1 + fI2, 0+ 0I1 +0I2) + (a′+ b′I1 + c′I2, d

′+
e′I1 + f ′I2, 0 + 0I1 + 0I2)
= (a+ a′ + (b+ b′)I1 + (c+ c′)I2, d+ d′ + (e+ e′)I1 + (f + f ′)I2, 0 + 0 + (0 + 0)I1 + (0 + 0)I2)
= (a+ a′ + (b+ b′)I1 + (c+ c′)I2, d+ d′ + (e+ e′)I1 + (f + f ′)I2, 0 + 0I1 + 0I2).
Hence we have that u+ v ∈W (I1, I2).

2. Given u ∈W (I1, I2) and scalar α ∈ K(I1, I2) with α = r + sI1 + tI2.
Then αu = (r + sI1 + tI2)(a+ bI1 + cI2, d+ eI1 + fI2, 0 + 0I1 + 0I2)
((r + sI1 + tI2)(a+ bI1 + cI2), (r + sI1 + tI2)(d+ eI1 + fI2), (r + sI1 + tI2)(0 + 0I1 + 0I2))
= (ra+ (rb+ sa+ sb+ sc+ tb)I1 + (rc+ ta+ tc)I2, rd+ (re+ sd+ se+ sf + te)I1 + (rf +
td+ tf)I2, r0 + (r0 + s0 + s0 + s0 + t0)I1 + (r0 + t0 + t0)I2)
= (ra+ (rb+ sa+ sb+ sc+ tb)I1 + (rc+ ta+ tc)I2, rd+ (re+ sd+ se+ sf + te)I1 + (rf +
td+ tf)I2, 0 + 0I1 + 0I2) ∈W (I1, I2).

3. Since W ⊂ W (I1, I2) is a proper subset which is a vector space, W (I1, I2) is strong refined neutro-
sophic subspace.

Example 2.16. Let V (I1, I2) = R2(I1, I2) be a strong refined neutrosophic vectors space over a refined
neutrosophic field R(I1, I2) let

W (I1, I2) = {(x = a+ bI1 + cI2, y = d+ eI1 + fI2) ∈ V (I1, I2) : x = y witha, b, c, d, e, f ∈ V }.

Then W (I1, I2) is a strong refined neutrosophic subspace of V (I1, I2).

Example 2.17. Let V (I1, I2) = Mn×n(I1, I2) = {[aij ] : aij ∈ R(I1, I2)} be a strong refined neutrosophic
vector space over R(I1, I2) and let W (I1, I2) = An×n(I1, I2) = {[bij ] : bij ∈ R(I1, I2) and trace(A)= 0}.
Then W (I1, I2) is a strong refined neutrosophic subspace of V (I1, I2).
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Example 2.18. Let V (I1, I2) = R3(I1, I2) be a strong refined neutrosophic vectors space of column refined
neutrosophic vectors of length 3 over a refined neutrosophic field R(I1, I2). Consider

W (I1, I2) =


 x

y
0

 ;x = a+ bI1 + cI2, y = d+ eI1 + fI2 ∈ V (I1, I2) a, b, c, d, e, f ∈ V

 ⊆ V (I1, I2).

W (I1, I2) consisting of all refined neutrosophic vectors with 0 = 0 + 0I1 + 0I2 in the last entry.
Then W (I1, I2) is a strong refined neutrosophic subspace of V (I1, I2).

Proposition 2.19. Let V (I1, I2) be a strong refined neutrosophic vector space over a refined neutrosophic
field K(I1, I1) and Let {Un(I1, I2)}n∈λ be a family of strong refined neutrosophic subspaces of V (I1, I2).
Then

⋂
n∈λ Un(I1, I2) is a strong refined neutrosophic subspace of V (I1, I2).

Proof. Consider the collection of strong refined neutrosophic subspaces
{Un(I1, I2) : n ∈ λ} of V (I1, I2). Take u = a + bI1 + cI2, v = d + eI1 + fI2, α = k + pI1 + qI2 and
β = r + sI1 + tI2.
Let u, v ∈

⋂
n∈λ Un(I1, I2) then u, v ∈ Un(I1, I2) ∀ n ∈ λ. Now for all scalars α, β ∈ K(I1, I2) we have

that αu+ βv = (k + pI1 + qI2)(a+ bI1 + cI2) + (r + sI1 + tI2)(d+ eI1 + fI2)
= (ka+(kb+pa+pb+pc+qb)I1+(kc+qa+qc)I2)+(rd+(re+sd+se+sf+ te)I1+(rf+ td+ tf)I2)
= (ka+ rd) + (kb+ pa+ pb+ pc+ qb+ re+ sd+ se+ sf + te)I1 + (kc+ qa+ qc+ rf + td+ tf)I2.
Therefore αu+ βv ∈ Un(I1, I2) ∀ n ∈ λ =⇒ αu+ βv ∈

⋂
n∈λ Un(I1, I2).

Lastly, since Un(I1, I2) for all n ∈ λ contains a proper subset Un which is vector space, we have that⋂
n∈λ Un(I1, I2) is a strong refined neutrosophic subspace.

Proposition 2.20. Let V (I1, I2) be a strong refined neutrosophic vector space over the neutrosophic field
K(I1, I2) and let U1(I1, I2), U2(I1, I2) be any strong refined neutrosophic subspaces of V (I1, I2). Then
U1(I1, I2) ∪ U2(I1, I2) is a strong refined neutrosophic subspaces if and only if U1(I1, I2) ⊆ U2(I1, I2)
or U1(I1, I2) ⊇ U2(I1, I2).

Proof. Let U1(I1, I2) and U2(I1, I2) be any strong refined neutrosophic subspaces of V (I1, I2).
=⇒ Now, suppose U1(I1, I2) ⊆ U2(I1, I2) or U1(I1, I2) ⊇ U2(I1, I2) then we shall show the
U1(I1, I2) ∪ U2(I1, I2) is a strong refined neutrosophic subspaces of V (I1, I2).
Without loss of generality, suppose that U1(I1, I2) ⊆ U2(I1, I2).
Then we have that U1(I1, I2) ∪ U2(I1, I2) = U2(I1, I2). But U2(I1, I2) is defined to be a strong refined
neutrosophic subspace of V (I1, I2), so we can say that U1(I1, I2)∪U2(I1, I2) is a strong refined neutrosophic
subspace of V (I1, I2).
⇐= We want to show that if U1(I1, I2) ∪ U2(I1, I2) is a strong refined neutrosophic subspace of V (I1, I2)
then either U1(I1, I2) ⊆ U2(I1, I2) or U1(I1, I2) ⊇ U2(I1, I2).
Now suppose that U1(I1, I2) ∪ U2(I1, I2) is a strong refined neutrosophic subspace of V (I1, I2) and suppose
by contradiction that U1(I1, I2) 6⊆ U2(I1, I2) or U1(I1, I2) 6⊇ U2(I1, I2).
Thus there exist elements x1 = a1 + b1I1 + c1I2 ∈ U1(I1, I2)\U2(I1, I2) and
x2 = a2 + b2I1 + c2I2 ∈ U2(I1, I2)\U1(I1, I2). So we have that
x1, x2 ∈ U1(I1, I2) ∪ U2(I1, I2), since U1(I1, I2) ∪ U2(I1, I2) is a strong refined neutrosophic subspace, we
must have that x1 + x2 = x3 ∈ U1(I1, I2) ∪ U2(I1, I2).
Therefore x1 + x2 = x3 ∈ U1(I1, I2) or x1 + x2 = x3 ∈ U2(I1, I2)
=⇒ x2 = x3 − x1 ∈ U1(I1, I2) or x1 = x3 − x2 ∈ U2(I1, I2) which is a contradiction.
Hence U1(I1, I2) ⊆ U2(I1, I2) or U1(I1, I2) ⊇ U2(I1, I2) as required.

Remark 2.21. Let V (I1, I2) be a strong refined neutrosophic vector space over a refined neutrosophic field
K(I1, I2) and letW1(I1, I2) andW2(I1, I2) be two distinct strong refined neutrosophic subspaces of V (I1, I2).
W1(I1, I2) ∪W2(I) is a strong refined neutrosophic subspace of V (I1, I2) iff W1(I1, I2) ⊆ W2(I1, I2) or
W2(I1, I2) ⊆W1(I1, I2).

Definition 2.22. Let U(I1, I2) and W (I1, I2) be any two strong refined neutrosophic subspaces of a strong
refined neutrosophic vector space V (I1, I2) over a neutrosophic field K(I1, I2).

1. The sum of U(I1, I2) and W (I1, I2) denoted by U(I1, I2) +W (I1, I2) is defined by the set
{u+ w : u ∈ U(I1, I2), w ∈W (I1, I2)}.

2. V (I1, I2) is said to be the direct sum of U(I1, I2) and W (I1, I2) written
V (I1, I2) = U(I1, I2)⊕W (I1, I2) if every element v ∈ V (I1, I2) can be written uniquely as
v = u+ w where u ∈ U(I1, I2) and w ∈W (I1, I2).
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Proposition 2.23. Let U(I1, I2) and W (I1, I2) be any two strong refined neutrosophic subspaces of a strong
refined neutrosophic vector space V (I1, I2), over a refined neutrosophic field K(I1, I2).
Then U(I1, I2) +W (I1, I2) is a strong refined neutrosophic subspace of V (I1, I2).

Proof. Since U(I1, I2) and W (I1, I2) are nonempty strong refined neutrosophic subspaces,
U(I1, I2) +W (I1, I2) 6= {}.
Obviously U(I1, I2) +W (I1, I2) contains a proper subset U +W which is a vector space.
Now let x, y ∈ U(I1, I2) +W (I1, I2) and α, β ∈ K(I1, I2).
Then x = (u1 + u2I1 + u3I2)+ (w1 +w2I1 +w3I2), y = (u4 + u5I1 + u6I2)+ (w4 +w5I1 +w6I2) where
ui ∈ U,wi ∈ W, with i = 1, 2, 3, 4, 5, 6. α = k +mI1 + nI2, β = p + qI1 + rI2 where k,m, n, p, q, r ∈
K(I1, I2).
Then,
αx+ βy = (k+mI1 +nI2)[(u1 +w1) + (u2 +w2)I1 + (u3 +w3)I2] + (p+ qI1 + rI2)[(u4 +w4) + (u5 +
w5)I1 + (u6 + w6)I2]
= [(ku1 + kw1) + (ku2 + kw2 +mu1 +mw1 +mu2 +mw2 +mu3 +mw3 + nu2 + nw2)I1 + (ku3 +
kw3 +nu1 +nw1 +nu3 +nw3)I2] + [(pu4 + pw4)+ (pu5 + pw5 + qu4 + qw4 + qu5 + qw5 + qu6 + qw6 +
ru5 + rw5)I1 + (pu6 + pw6 + ru4 + rw4 + ru6 + rw6)I2]
= [(ku1 + pu4) + (ku2 + pu5 +mu1 + qu4 +mu2 + qu5 +mu3 + qu6 + nu2 + ru5)I1 + (ku3 + pu6 +
nu1 + ru4 + nu3 + ru6)I2] + [(kw1 + pw4) + (kw2 + pw5 +mw1 + qw4 +mw2 + qw5 +mw3 + qw6 +
nw2 + rw5)I1 + (kw3 + pw6 + nw1 + rw4 + nw3 + rw6)I2] ∈ U(I1, I2) +W (I1, I2).
Accordingly U(I1, I2) +W (I1, I2) is a strong refined neutrosophic subspace of V (I1, I2).

Proposition 2.24. Let U(I1, I2) and W (I1, I2) be strong refined neutrosophic subspaces of a strong refined
neutrosophic vector space V (I1, I2) over a refined neutrosophic field K(I1, I2).
V (I1, I2) = U(I1, I2)⊕W (I1, I2) if and only if the following conditions hold:

1. V (I1, I2) = U(I1, I2) +W (I1, I2) and

2. U(I1, I2) ∩W (I1, I2) = {0}.

Proof. The proof is similar to the proof in classical case.

Example 2.25. Let V (I1, I2) = R3(I1, I2) be a strong refined neutrosophic vector space over a refined
neutrosophic field R(I1, I2) and let
U(I1, I2) = {(u, 0, w) : u = a+ bI1 + cI2, w = g + hI1 + kI2 ∈ R(I1, I2)} and
W (I1, I2) = {(0, v, 0) : v = d+ eI1 + fI2 ∈ R(I1, I2)},
be strong refined neutrosophic subspaces of V (I1, I2). Then V (I1, I2) = U(I1, I2)⊕W (I1, I2).

To see this, let x = (u, v, w) ∈ V (I1, I2), then x = (u, 0, w) + (0, v, 0), so x ∈ U(I1, I2) +W (I1, I2).
Hence V (I1, I2) = U(I1, I2) +W (I1, I2).
To show that U(I1, I2) ∩W (I1, I2) = {0}, let x = (u, v, w) ∈ U(I1, I2) ∩W (I1, I2).
Then v = 0, i.e d+eI1+fI2 = 0+0I1+0I2 because x lies in U(I1, I2), and u = w = 0 i.e a+bI1+cI2 =
g + hI1 + kI2 = 0 + 0I1 + 0I2 because x lies in W (I1, I2).
Thus x = (0, 0, 0) = 0, so 0 = 0+0I1+0I2 is the only refined neutrosophic vector in U(I1, I2)∩W (I1, I2).
So U(I1, I2) ∩W (I1, I2) = {0 + 0I1 + 0I2} = {0}.
Hence, V (I1, I2) = U(I1, I2)⊕W (I1, I2).

Example 2.26. In the strong refined neutrosophic vector space V (I1, I2) = R5(I1, I2), consider the strong
refined neutrosophic subspaces

U(I1, I2) = {(a, b, c, 0, 0)|a = x1+y1I1+z1I2, b = x2+y2I1+z2I2, and c = x3+y3I1+z3I2 ∈ V (I1, I2)}

and
W = {0, 0, 0, d, e)|d = x4 + y4I1 + z4I2, e = x5 + y5I1 + z5I2 ∈ V (I1, I2)}.

Then V (I1, I2) = U(I1, I2)⊕W (I1, I2).

To see this, let x = (a, b, c, d, e) be any refined neutrosophic vector in V (I1, I2), then
x = (a, b, c, 0, 0) + (0, 0, 0, d, e), so x lies in U(I1, I2) +W (I1, I2).
Hence V (I1, I2) = U(I1, I2) +W (I1, I2). To show that U(I1, I2) ∩W (I1, I2) = {0}, let x = (a, b, c, d, e)
lie in U(I1, I2) ∩W (I1, I2).
Then d = e = 0 i.e x4 + y4I1 + z4I2 = x5 + y5I1 + z5I2 = 0 + 0I1 + 0I2 because x lies in U(I1, I2), and
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a = b = c = 0 i.e, x1 + y1I1 + z1I2 = x2 + y2I1 + z2I2 = x3 + y3I1 + z3I2 = 0 + 0I1 + 0I2 because x
lies in W (I1, I2).
Thus x = (0, 0, 0, 0, 0) = 0, so 0 = 0 + 0I1 + 0I2 is the only refined neutrosophic vector in
U(I1, I2) ∩W (I1, I2). So U(I1, I2) ∩W (I1, I2) = {0 + 0I1 + 0I2}.
Hence, V (I1, I2) = U(I1, I2)⊕W (I1, I2).

Example 2.27. Let V (I1, I2) = P2n(I1, I2) be the strong refined neutrosophic vector space over a neutro-
sophic field K(I1, I2). Then let

U1(I1, I2) = {p(t) ∈ P2n : a0 + a2t
2 + · · ·+ a2nt

2n,with a0, a2 · · · a2n ∈ R(I1, I2)}

U2(I1, I2) = {p(t) ∈ P2n : a1 + a3t
3 + · · ·+ a2n−1t

2n−1,with a1, a3 · · · a2n−1 ∈ R(I1, I2)}
be strong refined neutrosophic subspaces of P2n(I1, I2).
Then P2n(I1, I2) = U1(I1, I2)⊕ U2(I1, I2).

Proposition 2.28. Let U(I1, I2) and V (I1, I2) be strong refined neutrosophic vector spaces over a refined
neutrosophic field K(I1, I2). Then

U(I1, I2)× V (I1, I2) = {(u, v) : u ∈ U(I1, I2), v ∈ V (I1, I2)}

is a strong refined neutrosophic vector space over K(I1, I2) where addition and multiplication are defined by:

(u, v) + (u′, v′) = (u+ u′, v + v′),

α(u, v) = (αu, αv).

Proof. 1. We want to show that (U(I1, I2)× V (I1, I2),+) is refined neutrosophic abelian group .

(a) Clearly (U(I1, I2)× V (I1, I2,+) is closed, since for
(u, v), (u′, v′) ∈ (U(I1, I2) × V (I1, I2)) where (u, v) = ((a + bI1 + cI2), (d + eI1 + fI2)) we
have that
(u, v)+(u′, v′) = [((a+ bI1 + cI2), (d+ eI1 + fI2)) + ((a′ + b′I1 + c′I2), (d

′ + e′I1 + f ′I2))]
= [(a+ a′ + (b+ b′)I1 + (c+ c′)I2), (d+ d′ + (e+ e′)I1 + (f + f ′)I2]
= (u+ u′, v + v′) ∈ U(I1, I2)× V (I1, I2).

(b) Let (u, v), (u′, v′) and (u′′, v′′) ∈ U(I1, I2)× V (I1, I2). Then
[(u, v) + ((u,′ v′) + (u′′, v′′))] = [((a+ bI1 + cI2), (d+ eI1 + fI2))
+ ((a′ + a′′ + (b′ + b′′)I1 + (c′ + c′′)I2), (d

′ + d′′ + (e′ + e′′)I1 + (f ′ + f ′′)I2)]
= (a+a′+a′′+(b+b′+b′′)I1+(c+c′+c′′)I2), (d+d

′+d′′+(e+e′+e′′)I1+(f+f ′+f ′′)I2)
= [(a+ a′ + (b+ b′)I1 + (c+ c′)I2), (d+ d′ + (e+ e′)I1 + (f + f ′)I2)] +
((a′′ + b′′I1 + c′′I2), (d

′′ + e′′I1 + f ′′I2))
= [(u, v) + (u′, v′)] + (u′′, v′′).
Then we say that ′′+′′ is associative.

(c) The identity in U(I1, I2)× V (I1, I2)) is (0U(I1,I2), 0V (I1,I2)) where
0U(I1,I2) is the identity in U(I1, I2) and 0V (I1,I2) is the identity in V (I1, I2) then
(u, v) + (0U(I1,I2), 0V (I1,I2))
= [(a+ bI1 + cI2), (d+ eI1 + fI2)] + [(0 + 0I1 + 0I2), (0 + 0I1 + 0I2)]
= (a+ 0 + (b+ 0)I1 + (c+ 0)I2), (d+ 0 + (e+ 0)I1 + (f + 0)I2)
= (0 + a+ (0 + b)I1 + (0 + c)I2), (0 + d, (0 + e)I1 + (0 + f)I2)
= (a+ bI1 + cI2), (d+ eI1 + fI2) = (u, v).

(d) For each (u, v) ∈ U(I1, I2)× V (I1, I2)) the inverse is (−u,−v) where
−u ∈ U(I1, I2) and −v ∈ V (I1, I2) is the inverse of u and v respectively. Then
(u, v)+ (−u,−v) = [((a+ bI1+ cI2), (d+ eI1+ fI2))+ ((−a− bI1− cI2), (−d− eI1− fI2))]
= (a− a+ (b− b)I1 + (c− c)I2), ((d− d) + (e− e)I1 + (f − f)I2)
= (−a+ a+ (−b+ b)I1 + (−c+ c)I2), ((−d+ d) + (−e+ e)I1 + (−f + f)I2)
= (0 + 0I1 + 0I2), (0 + 0I1 + 0I2) = (0U(I1,I2), 0V (I1,I2)).

(e) For (u, v), (u′, v′) ∈ U(I1, I2)× V (I1, I2) we have that
(u, v) + (u′, v′) = [((a+ bI1 + cI2), (d+ eI1 + fI2)) + ((a′ + b′I1 + c′I2), (d

′ + e′I1 + f ′I2))]
= [(a+ a′ + (b+ b′)I1 + (c+ c′)I2), ((d+ d′) + (e+ e′)I1 + (f + f ′)I2)]
= [(a′ + a+ (b′ + b)I1 + (c′ + c)I2), ((d

′ + d) + (e′ + e)I1 + (f ′ + f)I2)]
= [((a′+ b′I1+ c

′I2), (d
′+e′I1+f

′I2))+((a+ bI1+ cI2), (d+eI1+fI2))] = (u′, v′)+(u, v).
Then we say that ′′+′′ is commutative.

Doi :10.5281/zenodo.3884059 106



International Journal of Neutrosophic Science (IJNS) Vol.7 , No.2 , PP.97-109, 2020

Let α = k +mI1 + nI2, β = r + sI1 + tI2 ∈ K(I1, I2), then

2. α((u, v) + (u′, v′)) = α[((a+ bI1 + cI2), (d+ eI1 + fI2)) + ((a′ + b′I1 + c′I2), (d
′ + e′I1 + f ′I2))]

= α[(a+ a′ + (b+ b′)I1 + (c+ c′)I2), ((d+ d′) + (e+ e′)I1 + (f + f ′)I2)]
= (αa+ αa′ + (αb+ αb′)I1 + (αc+ αc′)I2), ((αd+ αd′) + (αe+ αe′)I1 + (αf + αf ′)I2)
= ((αa+ αbI1 + αcI2), (αd+ αeI1 + αfI2)) + ((αa′ + αb′I1 + αc′I2), (αd

′ + αe′I1 + αf ′I2))
= (αu, αv) + (αu′, αv′)
= α(u, v) + α(u′, v′).

3. (α+ β)(u, v) = (k + r + (m+ s)I1 + (n+ t)I2)((a+ bI1 + cI2), (d+ eI1 + fI2))
= ((k+ r+(m+ s)I1+(n+ t)I2)(a+ bI1+ cI2), (k+ r+(m+ s)I1+(n+ t)I2)(d+ eI1+ fI2))
= [(ka+ ra+(ma+ sa)I1 +(na+ ta)I2 +(kb+ rb+mb+ sb+nb+ tb)I1 +((mc+ sc)I1 +(kc+
rc+ nc+ tc)I2)), (kd+ rd+ (md+ sd)I1 + (nd+ td)I2 + (ke+ re+me+ se+ ne+ te)I1 +
((mf + sf)I1 + (kf + rf + nf + tf)I2))]
= [(ka + maI1 + naI2) + (kb + mb + nb)I1 + (mcI1 + (kc + nc)I2), (kd + mdI1 + ndI2) +
(ke+me+ne)I1 + (mfI1 + (kf +nf)I2)] + [(ra+ saI1 + taI2 + (rb+ sb+ tb)I1 + (scI1 + (rc+
tc)I2)), (rd+ sdI1 + tdI2) + (re+ se+ te)I1 + (sfI1 + (rf + tf)I2))]
= [(k+mI1+n2)((a+bI1+cI2), (d+eI1+fI2))]+[(r+sI1+tI2)((a+bI1+cI2), (d+eI1+fI2))]
= α(u, v) + β(u, v).

4. (αβ)(u, v) = ((k +mI1 + nI2)(r + sI1 + tI2))(u, v)
= (kr + (ks+mr +ms+mt+ ns)I1 + (kt+ nr + nt)I2)((a+ bI1 + cI2), (d+ eI1 + fI2))
= (kra+ (krb+ ksa+mra+msa+mta+ nsa+ ksb+mrb+msb+mtb+ nsb+ ksc+mrc+
msc +mtc + nsc + ktb + nrb + ntb)I1 + (krc + kta + nra + nta + ktc + nrc + ntc)I2, krd +
(kre+ ksd+mrd+msd+mtd+ nsd+ kse+mre+mse+mte+ nse+ ksf +mrf +msf +
mtf + nsf + kte+ nre+ nte)I1 + (krf + ktd+ nrd+ ntd+ ktf + nrf + ntf)I2)
= ((k +mI1 + nI2)(ra + (rb + sa + sb + sc + tb)I1 + (rc + ta + tc)I2) (k +mI1 + nI2)(rd +
(re+ sd+ se+ sf + te)I1 + (rf + td+ tf)I2))
= α(βu, βv).

5. For (1 + 1I1 + 1I2) ∈ K(I1, I2), we have
(1 + 1I1 + 1I2) · (u, v) = (1 + 1I1 + 1I2)(a+ bI1 + cI2, d+ eI1 + fI2)
= 1a+(1b+1a+1b+1c+1b)I1+(1c+1a+1c)I2 1d+(1e+1d+1e+1f+1e)I1+(1f+1d+1f)I2
= ((1 + 1I1 + 1I2)(a+ bI1 + cI2), (1 + 1I1 + 1I2)(d+ eI1 + fI2))
= (a+ bI1 + cI2, d+ eI1 + fI2) = (u, v).

Proposition 2.29. Let U(I1, I2) be weak refined neutrosophic vector spaces over a field and V be a vector
space over a field K. Then

U(I1, I2)× V = {(u, v) : u = (a+ bI1 + cI2) ∈ U(I1, I2), v ∈ V }

is a weak refined neutrosophic vector space over K where addition and multiplication are defined by:

(u, v) + (u′, v′) = (u+ u′, v + v′),

α(u, v) = (αu, αv).

Proof. The proof follows the same approach as in the proof of Proposition 2.28

Definition 2.30. LetW (I1, I2) be a strong refined neutrosophic subspace of a strong refined neutrosophic vec-
tor space V (I1, I2) over a refined neutrosophic field K(I1, I2). The quotient V (I1, I2)/W (I1, I2) is defined
by the set

{v +W (I1, I2) : v ∈ V (I1, I2)}.

Proposition 2.31. The quotient V (I1, I2)/W (I1, I2) is a strong refined neutrosophic vector space over a
refined neutrosophic field K(I1, I2) if addition and multiplication are defined for all u + W (I1, I2), v +
W (I1, I2) ∈ V (I1, I2)/W (I1, I2) and α ∈ K(I1, I2) as follows:

(u+W (I1, I2)) + (v +W (I1, I2)) = (u+ v) +W (I1, I2),

α(u+W (I1, I2)) = αu+W (I1, I2).

This strong refined neutrosophic vector space (V (I1, I2)/W (I1, I2),+, .) over a neutrosophic fieldK(I1, I2)
is called a strong refined neutrosophic quotient space.
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3 Conclusion
In this paper, we have presented the concept of refined neutrosophic vector spaces. Weak(strong) refined neu-
trosophic vector spaces and subspaces, and, strong refined neutrosophic quotient vector spaces were studied.
Several interesting results and examples were presented. It was shown that every weak (strong) refined neu-
trosophic vector space is a vector space and it was equally shown that every strong refined neutrosophic vector
space is a weak refined neutrosophic vector space. This work will be continued in our next paper titled “On
Refined Neutrosophic Vector Spaces II”.
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