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Aim and Scope 

International Journal of Neutrosophic Science (IJNS) is a peer-review journal publishing high quality 

experimental and theoretical research in all areas of Neutrosophic and its Applications. IJNS is 

published quarterly. IJNS is devoted to the publication of peer-reviewed original research papers lying in 

the domain of neutrosophic sets and systems. Papers submitted for possible publication may concern with 

foundations, neutrosophic logic and mathematical structures in the neutrosophic setting. Besides providing 

emphasis on topics like artificial intelligence, pattern recognition, image processing, robotics, decision 

making, data analysis, data mining, applications of neutrosophic mathematical theories contributing to 

economics, finance, management, industries,  electronics, and communications are promoted. Variants of 

neutrosophic sets including refined neutrosophic set (RNS). Articles evolving algorithms making 

computational work handy are welcome. 

Topics of Interest 

IJNS promotes research and reflects the most recent advances of neutrosophic Sciences in diverse 

disciplines, with emphasis on the following aspects, but certainly not limited to: 

�  Neutrosophic sets                                              �  Neutrosophic algebra 

�  Neutrosophic topolog                                        �  Neutrosophic graphs 

�  Neutrosophic probabilities                                �  Neutrosophic tools for decision making 

�  Neutrosophic theory for machine learning       �  Neutrosophic statistics 

�  Neutrosophic numerical measures                    �  Classical neutrosophic numbers 

�  A neutrosophic hypothesis                                �  The neutrosophic level of significance 

�  The neutrosophic confidence interval               �  The neutrosophic central limit theorem 

�  Neutrosophic theory in bioinformatics  

�and medical analytics                                            �  Neutrosophic tools for big data analytics 

�  Neutrosophic tools for deep learning                  �  Neutrosophic tools for data visualization 

�  Quadripartitioned single-valued  

�neutrosophic sets                                                   �  Refined single-valued neutrosophic sets 

� Applications of neutrosophic logic in image processing  

�  Neutrosophic logic for feature learning, classification, regression, and clustering 
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�  Neutrosophic knowledge retrieval of medical images 

�  Neutrosophic set theory for large-scale image and multimedia processing 

�  Neutrosophic set theory for brain-machine interfaces and medical signal analysis 

� Applications of neutrosophic theory in large-scale healthcare data  

�  Neutrosophic set-based multimodal sensor data 

�  Neutrosophic set-based array processing and analysis 

� Wireless sensor networks Neutrosophic set-based Crowd-sourcing 

�  Neutrosophic set-based heterogeneous data mining  

�  Neutrosophic in Virtual Reality 

�  Neutrosophic and Plithogenic theories in Humanities and Social Sciences 

�  Neutrosophic and Plithogenic theories in decision making 

�  Neutrosophic in Astronomy and Space Sciences 
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Concepts of Neutrosophic Complex Numbers 

 

Yaser Ahmad Alhasan 
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Abstract 

In this paper, concept of neutrosophic complex numbers and its properties were presented inculding the conjugate of 
neutrosophic complex number, division of neutrosophic complex numbers, the inverted neutrosophic complex number 
and the absolute value of a neutrosophic complex number. Theories related to the conjugate of neutrosophic complex 
numbers are proved, the product of  a neutrosophic complex number by its conjugate equals the absolute value of 
number is also proved. This is an important introduction to define neutrosophic complex numbers in polar. 
 
 
Keywords: Classical neutrosophic numbers, Neutrosophic complex numbers, Conjugate. 

1. Introduction 

As an alternative to the existing logics, Smarandache proposed the neutrosophic Logic to represent a 

mathematical model of uncertainty, vagueness, ambiguity, imprecision, undefined, unknown, incompleteness, 

inconsistency, redundancy, contradiction, where the concept of neutrosophy is a new branch of philosophy introduced 

by Smarandache [3][7]. He presented the definition of the standard form of neutrosophic real number and conditions 

for the division of two neutrosophic real numbers to exist, he defined the standard form of neutrosophic complex 

number, and found root index  n ≥ 2 of a neutrosophic real and complex number [2][4], studying the concept of the 

Neutrosophic probability [3][5], the Neutrosophic statistics [4][6], and professor Smarandache entered the concept of 

preliminary calculus of the differential and integral calculus, where he introduced for the first time the notions of 

neutrosophic mereo-limit, mereo-continuity, mereoderivative, and mereo-integral [1][8]. Madeleine Al- Taha 

presented results on single valued neutrosophic (weak) polygroups [9]. Edalatpanah proposed a new direct algorithm 

to solve the neutrosophic linear programming where the variables and right 

hand side represented with triangular neutrosophic numbers [10]. Chakraborty used pentagonal neutrosophic number 

in networking problem, and Shortest Path Problem [11][12].  

This paper aims to study neutrosophic logic in the complex numbers by defining the conjugate of neutrosophic 

complex number, division of neutrosophic complex numbers, the inverted neutrosophic complex number, the absolute 

value of a neutrosophic complex number, I also have proven theories related to the conjugate of neutrosophic complex 

numbers, and finally we proved the product of a neutrosophic complex number by its conjugate equals the absolute 

value of  number. 

2. Preliminaries 

2.1 Neutrosophic Real Number [4] 

HP
Typewriter
Received: Febraury 27, 2020         Accepted: June 05, 2020
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Suppose that � is a neutrosophic number, then it takes the following standard form:   � = � + �� where  a , b are real 

coefficients, and I represent indeterminacy, such 0. I = 0  and I� = I, for all positive integers �. 

2.2 Neutrosophic Complex Number [4] 

Suppose that � is a neutrosophic complex number, then it takes the following standard form:   � = � + �� + �� + ��� 

where  a , b, c, d are real coefficients, and I indeterminacy, such that �� = − 1 ⇒ � = √− 1 .  

Note: we can say that any real number can be considered a neutrosophic number. 

For example: 2 = 2 + 0. � ,    ��:2 = 2 + 0. � + 0. � + 0. �. � 

2.3 Division of neutrosophic real numbers [4] 

Suppose that ��, ��  are two neutrosophic numbers, where 

�� = �� + ���  , �� = �� + ��� 

To find  (�� + ���) ÷ (�� + ���), we can write: 

        
�� + ���

�� + ���
≡ � + ��   

where x and y are real unknowns. 

�� + ��� ≡ (�� + ���)(� + ��) 

�� + ��� ≡ ��� + (��� + ��� + ���)� 

by identifying the coefficients, we get 

�� = ��� 

�� = ��� + (�� + ��)� 

We obtain unique one solution only, provided that: 

              �
�� 0
�� �� + ��

� ≠ 0   ⇒   ��(�� + ��) ≠ 0 

 Hence:   �� ≠ 0    ���  �� ≠ − ��  are the conditions for the division of two neutrosophic real numbers to exist. 

Then:    

�� + ���

�� + ���
=

��

��

+
���� − ����

��(�� + ��)
. � 

2.4 Root index  � ≥ � of a neutrosophic real number [4] 

1) Case:  � = � 

Let  � = � + bI  be a neutrosophic real number, then  

√� + bI = � + �. � 
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� + bI ≡ (� + �. �)� 

 � + bI ≡ �� + 2��. � + ��� 

 by identifying the coefficients, we get: 

               �� = � 

 �� + 2�� = � 

 Hence            � = ±√� 

      �� ± 2√�� − � = 0 

By solving the second equation in respect to y we find: 

� =
∓2√� ± √4� + 4b

2
= ∓√� ± √� + b 

 

Then we fined four solutions of √� + bI: 

 √� + bI = √� + �− √� + √� + b�. � 

Or:                  √� + bI = √� − �− √� + √� + b�. � 

Or:                   √� + bI = − √� + �√� + √� + b�. � 

Or:                   √� + bI = − √� + �√� − √� + b�. � 

particular case:   √� = ±� 

2) Case:  � > � 

√� + bI
�

= � + �. � 

� + bI ≡ (� + �. �)� 

� + bI ≡ �� + �� ��
� ���� ��

���

���

� . � 

�� = � ⇒            � = � √�
�

     ;   � ���

± √�
�

       ;   � ����    
 

  

� ��
� ���� �

�
� = �

���

���

 

Solve it in respect to �, we can distinguish two cases:  
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When the � and � solutions are real, we get neutrosophic real solutions, 

 When � and � solutions are complex, we get neutrosophic complex solutions. 

2.5 Multiplying two neutrosophic complex numbers [2] 

Let  �� , �� are two neutrosophic complex numbers, where 

z� = a� + c�I + b�i + d�iI      ,       z� = a� + c�I + b�i + d�iI   

Then:  

�� . �� = (�� + ��� + ��� + ���� )(�� + ��� + ��� + ����) 

= (���� − ����) + (���� + ���� + ���� − ���� − ���� − ����)� 

+(���� + ����)� + (���� + ���� + ���� + ���� + ���� + ����)�. � 

Example 2.1: 

(3 + 5� + 2�� )(1 + 3��) = 3 + 9�� + 5� − 15� + 2�� − 6� 

                                         = 3 − 21� + 5� + 11�� 

3. Conjugate of a neutrosophic complex number 

Definition 3.1: 

Suppose that � is a neutrosophic complex number, where  � = � + �� + �� + �. ��. We denote the conjugate of a 

neutrosophic complex number by �̅ and define it by the following form:  

  �̅ = � + �� − �� − �. �� 

Example 3.1:  

� = 4 + 5� − 7��        ⇒   �̅ = 4 − 5� + 7�� 

� = − 2� − � + 8��     ⇒   �̅ = − 2� + � − 8�� 

� = ��                           ⇒   �̅ = − ��    

As consequences, we have: 

1. the conjugate of neutrosophic complex number �̅ is the same neutrosophic complex number �.  
 

  (�)̅���� = � 

2. If  � = � + �� + �� + �. �� 

  then 

� + �̅ = 2(� + ��) = 2Re(z)    ���   � − �̅ = 2(� + �. �)� = 2��(�) 

   where ��(�) is the real part of the complex number and ��(�) is the imagine  
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3. We conclude from this, that the neutrosophic complex number is real if and only if = �̅ , and it is imaginary 

if and only if    � = − � ̅. 

Remark 3.1: 

The conjugate of the sum of two neutrosophic complex numbers is equal to the sum of their two conjugates. 

z� + z���������� = z�� + z��  

Proof: 

Suppose that �� , �� are two neutrosophic complex numbers, where 

z� = �� + ��� + ��� + ����      ,       z� = a� + ��� + ��� + ����   

Then: 

  z� + z� = (�� + a�) + (��� + ���) + (�� + ��)� + (�� + ��)�� 

z� + z���������� = (�� + a�) + (��� + ���) − (�� + ��)� − (�� + ��)�� 

              = �� + ��� − ��� − ���� + a� + ��� − ��� − ���� 

                             =  z�� + z��      

Theorem 3.1 

The conjugate of multiplication two neutrosophic complex numbers is equal to the multiplication of their two 

conjugates. 

z�. z�������� = z�� . z��  

Proof: 

Suppose that �� , �� are two neutrosophic complex numbers, where 

z� = �� + ��� + ��� + ����      ,       z� = a� + ��� + ��� + ����   

Then: 

  z�. z� = (�� + ��� + ��� + ���� )(�� + ��� + ��� + ����) 

= (���� − ����) + (���� + ���� + ���� − ���� − ���� − ����)� 

+(���� + ����)� + (���� + ���� + ���� + ���� + ���� + ����)�. � 

z�. z�������� = (���� − ����) + (���� + ���� + ���� − ���� − ���� − ����)� 

− (���� + ����)� − (���� + ���� + ���� + ���� + ���� + ����)�. � 

z�� . z�� = (�� + ��� − ��� − ���� )(�� + ��� − ��� − ����) 

          = (���� − ����) + (���� + ���� + ���� − ���� − ���� − ����)� 

− (���� + ����)� − (���� + ���� + ���� + ���� + ���� + ����)�. � 
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⇒     z�. z�������� = z�� . z��  

4. Division of neutrosophic complex numbers 

Suppose that �� , �� are two neutrosophic complex numbers, where 

z� = �� + ��� + ��� + ����      ,       z� = a� + ��� + ��� + ����  ;  z� ≠ 0  

Then:  

��

��

=
�� + ��� + ��� + ����

a� + ��� + ��� + ���� 
  

 multiply the numerator and denominator by conjugate of �� we get: 

��

��

=
(�� + ��� + ��� + ����)(a� + ��� − ��� − ����)

(a� + ��� + ��� + ����) (a� + ��� − ��� − ����)
 

=
(�� + ��� + ��� + ����)(a� + ��� − ��� − ����)

(a� + ���)� + (�� + ���)� 
 

=
(���� + ����) + (���� + ���� + ���� + ���� + ���� + ����)� 

(a� + ���)� + (�� + ���)� 

+
(���� − ����)� + (���� + ���� + ���� − ���� − ���� − ����)�. �

(a� + ���)� + (�� + ���)� 
 

 

=
(���� + ����) + (���� + ���� + ���� + ���� + ���� + ����)� 

(a� + ���)� + (�� + ���)� 
 

+
(���� − ����) + (���� + ���� + ���� − ���� − ���� − ����). �

(a� + ���)� + (�� + ���)� 
 . � 

 

Example4.1:  
3 + 5� + 2��

1 + 3��
 

Solution: 

multiply the numerator and denominator by conjugate of (1 − 3��) we get: 

3 + 5� + 2��

1 + 3��
=

(3 + 5� + 2��)(1 − 3��)

(1 + 3��)(1 − 3��)
=

3 − 21� + 5� + 11��

1 + 9�
 

=
3 − 21�

1 + 9�
+

5 + 11�

1 + 9�
�                 (1) 

Let us find:  



International Journal of Neutrosophic Science (IJNS)                                                     Vol. 8 No. 1,  PP. 9-18, 2020 

DOI: 10.5281/zenodo.3900293 
 

 15

3 − 21�

1 + 9�
≡ � + �� 

 3 − 21� ≡ (1 + 9�)(� + ��) 

 3 − 21� ≡ � + 9�� + 10�� 

 3 − 21� ≡ � + (9� + 10�)� 

⇒ �
� = 3

9� + 10� = − 21
 

⇒ �
� = 3

9(3) + 10� = − 21
     ⇒ �

� = 3

� = −
48

10
= − 4.8

 

⇒
3 − 21�

1 + 9�
≡ 3 − 4.8� 

Let us find:  

5 + 11�

1 + 9�
≡ � + �� 

5 + 11� ≡ (1 + 9�)(� + ��) 

5 + 11� ≡ � + 9�� + 10�� 

5 + 11� ≡ � + (9� + 10�)� 

⇒ �
� = 5

9� + 10� = 11
 

⇒ �
� = 3

9(5) + 10� = 11
     ⇒ �

� = 3

� = −
34

10
= − 3.4

 

⇒
5 + 11�

1 + 9�
≡ 5 − 3.4� 

By substitution in (1): 

3 + 5� + 2��

1 + 3��
= 3 − 4.8� + (5 − 3.4�)� 

= 3 − 4.8� + 5� − 3.4�� 

5. Inverted Neutrosophic complex number 

Suppose that � is a neutrosophic complex number, where  � = � + �� + �� + �. �� 

Then: 

1

�
=

1

� + �� + �� + �. ��
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=
� + ��

(� + ��)� + (� + ��)�
−

� − ��

(� + ��)� + (� + ��)�
 � 

Example 5.1: 

1

1 − 2��
=

1

1 + 4�
+

2�

1 + 4�
 � 

= 1 −
4

5
� +

2

5
�. � 

 

6. The absolute value of a neutrosophic complex number 

Suppose that � = � + �� + �� + �. �� is a neutrosophic complex number, the absolute value of a neutrosophic complex 

number defined by the following form: 

|�| = �(� + ��)� + (� + ��)� 

Example 6.1: 

 Let  � = 1 + 2� + ��, find the absolute value of  � . 

Solution:  

|�| = �(� + ��)� + (� + ��)� 

 = �(1 + 2�)� + (�)� 

 = √1 + 4� + 4� + � 

 = √1 + 10� 

 √1 + 10� ≡ � + �� 

 1 + 10� ≡ �� + 2��� + �� 

by identifying we get: 

�
�� = 1 

�� + 2�� = 10
 

 Since the absolute value is positive, we take:   � = 1 

By substitution in the second equation: 

�� + 2� = 10  ⟹    �� + 2� − 10 = 0   

  

� =
− 2 + 2√11

2
= − 1 + √11 ≈ 2.3 

Therefore, 
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|�| = |1 + 2� + ��| = 1 + 2.3� 

Theorem 6.1: 

Suppose that � = � + �� + �� + �. �� is a neutrosophic complex number, multiplication the absolute value of � by its 

conjugate equals to square of the absolute value of  . 

�. �̅ = |�|� 

 Proof: 

� = � + �� + �� + �. ��   ⟹   �̅ = � + �� − �� − �. ��    

  �. �̅ = (� + �� + �� + �. ��)( � + �� − �� − �. ��) 

                      = �� + ��� − ��� − ���� + ��� + ��� − ���� − ���� + ��� 

+���� + �� + ��� + ���� + ���� + ��� + ��� 

                 = (�� + 2��� + ���) + (�� + 2��� + ���) 

                = (� + ��)� + (� + ��)� = |�|� 

  

⟹          �. �̅ = |�|� 

Example 6.2: 

 Let  � = 4 − � + 2� + 3��, find  �. �̅ . 

Solution: 

�. �̅ = |�|� 

= (� + ��)� + (� + ��)� 

= (4 − �)� + (2 + 3�)� 

= 16 − 8� + � + 4 + 12� + 9� 

= 20 + 14� 

5. Conclusions   

In this paper, conjugate of neutrosophic complex number was defiend and used to find the division of 

neutrosophic complex numbers, the inverted neutrosophic complex number and the absolute value of a neutrosophic 

complex number. This research has proven theorems related to the conjugate of neutrosophic complex numbers. This 

approach can be applied to define the polar form and exponential form of the neutrosophic complex number.  
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Abstract  

  To deal with fluctations in decision-making, fuzzy / neutrosophic numbers are used. The problem having 
more fluctuations are difficult to sovle. Thus it is a dire need to define higher order number, also It is a very curious 
question by researchers all around the world that how octagonal neutrosophic number can be represented and how to 
be graphed? In this research article, the primarily focused on the representation and graphs of octagonal neutrosophic 
number. at last,  a case study is  done using  VIKOR method based on octagonal neutrosophic number. These 
representations will be helpful in multi-criteria decision making problems in the case that there are large number of 
fluctuations. Finally, concluded the present work with future directions. 

 

Keywords: Neutrosophic Number, Octagonal Number, VIKOR Method, MCDM, Uncertainty, Indeterminacy, 

Accuracy Function, De-neutrosophication. 

1. Introduction 

 The theory of uncertainty plays a very important role to solve different issues like modelling in engineering 

domain. To deal with uncertainty the first concept was given by [1], extended by [2] named as intuitionistic fuzzy 

numbers. In year 1995, Smarandache proposed the idea of neutrosophic set, and the idea was published in 1998 [3], 

they have three distinct logic components i) truthfulness ii) indeterminacy iii) falsity. This idea also has a concept of 

hesitation component the research gets a high impact in different research domain. In neutrosophic, truth membership 

is noted by �, indeterminacy membership is noted by �,  falsity membership is noted by	�, These are all independent 

and their sum is between 0≤ T + I + F ≤ 3. While when talking about intuitionistic fuzzy sets, uncertainty depends on 

the degree of membership and non-membership, but in neutrosophic sets then indeterminacy factor does not depend 

on the truth and falsity value. Neutrosophic fuzzy number can describe about the uncertainty, falsity and hesitation 

information of real-life problem.   

Researchers from different fields developed triangular, trapezoidal and pentagonal neutrosophic numbers, 

and presented the notions, properties along with applications in different fields [4-6]. The de-neutrosophication 

technique of pentagonal number and its applications are presented by [7-10].  

Scientists from different areas investigated the various properties and fluctuations of neutrosophic numbers and 

the properties of correlation between these numbers [6-7]. The applications in decision-making in different fields like 

phone selection [11-12], games prediction [13], supplier selection [14-16], medical [17], personnel selection [18-19]. 

HP
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Octagonal neutrosophic number and its types are presented by [20] in his recent work. The graphical 

representation and properties are yet to be defined while dealing with the concept of octagonal neutrosophic number 

a decision-maker can solve more fluctuations because they have more edges as compare to pentagonal. Table:1 

represents different numbers and their applicability. 

Edge Parameter Uncertainty  
Measurement 

Hesitation 
Measurement 

Vagueness  
Measurement 

Fluctuations  

Crisp number          *              *              *            *   

Fuzzy number determinable                *              *            *   

Intuitionistic Fuzzy 
number 

determinable determinable            *            *          

Neutrosophic 
number  

determinable determinable determinable determinable 

Table 1: Fuzzy numbers, their extensions and applicability 

1.1 Motivation 

From the literature, it is found that octagonal neutrosophic numbers (ONN) their notations, graphs and 
properties are not yet defined. Since it is not yet defined so also it will be a question that how and where it can be 
applied? For this purpose, is de-neutrosophication important?  How should we define membership, indeterminacy and 
non-membership functions? From this point of view ONN is a good choice for a decision maker in a practical scenario.  

1.2 Novelties  

The work contributed in this research is;  

 Membership, Non-membership and Indeterminacy functions 
 Graphical Representation of ONN. 
 De-neutrosophication technique of ONN. 
 Case study of personnel selection having octagonal fluctuations. 

1.3 Structure of Paper   

The article is structured as follows as shown in the Figure 1: 

           

Figure 1: Pictorial view of the structure of the article 

•Introduction

Section 1

•Preliminaries 

Section 2
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2. Preliminaries 

Definition 2.1: Fuzzy Number [1] 

A fuzzy number is generalized form of a real number. It doesn't represent a single value, instead a group of values, 
where each entity has its membership value between [0, 1]. Fuzzy number �̅  is a fuzzy set in R if it satisfies the given 
conditions. 

 ∃ relatively one � ∈ 	� with ��̅ (y) = 1. 
 ��̅ (y)  is piecewise continuous. 
 �̅ should be convex and normal. 

Definition 2.2: Neutrosophic Fuzzy Number [3] 

Let U be a universe of discourse then the neutrosophic set A is an object having the form  
A = {< x: T� (�), I�(�), F� (�),	>; x ∈ U} 
where the functions T,	I,	F : U→ [0,1] define respectively the degree of membership, the degree of indeterminacy, and 
the degree of non-membership of the element x ∈ X to the set A with the condition. 0 ≤T� (�) +	 I� (�) + F� (�)	 ≤ 
3.    
Definition 2.3: Accuracy Function [21] 

Accuracy function is used to convert neutrosophic number NFN into fuzzy number (De-neutrosophication using ��).   

A(F) = {	� =
[��������]	

�
	}  

�� represents the De-neutrosophication of neutrosophic number into fuzzy number. 

Definition 2.4: Pentagonal Neutrosophic Number [6] 

 Pentagonal Neutrosophic Number PNN is defined as, 

��� = 〈[(	Ω , �, ᶓ, ⱴ, ε):Ө], [(Ω�, �	�, ᶓ�, ⱴ�, ε�):Ψ ], [(Ω�, �	�, ᶓ�, ⱴ�, ε�):� ]	〉 

Where Ө,	Ψ  ,	�  ∈ [0,1]. 

The truth membership function (Ө): ℝ  → [	0, б],  

the indeterminacy membership function (Ψ ):� → [ᵹ	,1],  

and the falsity membership function ( � ):ℝ→ [ � 		,1]. 

3. Octagonal Neutrosophic Number [ONN] Representation and Properties  

In this section, we define ONN, representations and properties along with suitable examples. 

Definition 3.1: Side Conditions of Octagonal Neutrosophic Number [ONN] 

An Octagonal Neutrosophic Number denoted by; 

	��  〈[(	Ω , �, ᶓ, ⱴ, ε, � , ό, з):Ө], [(Ω�, �	�, ᶓ�, ⱴ�, ε�, � �, ό�, з�):Ψ ], [(Ω�, �	�, ᶓ�, ⱴ�, ε�, � �, ό�, з�):� ]	〉	should satisfy the 

following conditions: 

Condition 1: 

1. Өŝ: truth membership function (Өŝ): ℝ→ [	0,1],  
2. Ψŝ: indeterminacy membership function (Ψŝ):ℝ→ [ᵹ	,1],  
3. � ŝ:	falsity membership function (� ŝ):ℝ→ [ � 		,1].  
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Condition 2: 

1. Өŝ: truth membership function is strictly non-decreasing continuous function on the intervals [Ω , ε].		 
2. Ψŝ: indeterminacy membership function is strictly non-decreasing continuous function on the intervals 

[Ω�, ε�].		 
3. � ŝ:	falsity membership function is strictly non-decreasing continuous function on the intervals [Ω�, ε�].		 

Condition 3: 

1. Өŝ: truth membership function is strictly non-increasing continuous function on the intervals [ε, з].		 
2. Ψŝ: indeterminacy membership function is strictly non-increasing continuous function on the intervals 

[ε�, з�].		 
3. � ŝ:	falsity membership function is strictly non-increasing continuous function on the intervals [ε�, з�].		 

Definition 3.2 : Octagonal Neutrosophic Number [ONN] A Neutrosophic Number denoted by	��  is defined as, 

��=〈[(	Ω , �, ᶓ, ⱴ, ε, � , ό, з):Ө], [(Ω�, �	�, ᶓ�, ⱴ�, ε�, � �, ό�, з�):Ψ ], [(Ω�, �	�, ᶓ�, ⱴ�, ε�, � �, ό�, з�):� ]	〉 

Where Ө,	Ψ  ,	�  ∈ [0,1].  

The truth membership function (Өŝ): ℝ→ [	0,1],  

the indeterminacy membership function (Ψŝ):ℝ→ [ᵹ	,1],  

and the falsity membership function ( � ŝ):ℝ→ [ � 		,1] are given as: 

 

Өŝ(x)=

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
Өŝ�(x)									Ω ≤ � < �	

Өŝ�(x)									� ≤ 	� < ᶓ

Өŝ�(x)										ᶓ≤ 	� < ⱴ

Өŝ�(x)									ⱴ ≤ 	� < ε
б																		� = ε

Өŝ�(x)									ε≤ 	� < �

Өŝ�(x)								� ≤ 	� < ό

Өŝ�(x)								ό ≤ 	� < з
0																��ℎ������	

    

Ψŝ(x)=

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
Ψŝ�(x)									Ω

� ≤ � < �	�

Ψ ŝ�(x)										�	
� ≤ 	� < ᶓ�

Ψ ŝ�(x)										ᶓ
� ≤ 	� < ⱴ�

Ψŝ�(x)									ⱴ
� ≤ 	� < ε�

ᵹ																					� = ε�

Ψŝ�(x)									ε
� ≤ 	� < � �

Ψ ŝ�(x)								�
� ≤ 	� < 	 ό�

Ψŝ�(x)								ό
� ≤ 	� < з�

1																				��ℎ������	
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� ŝ(x)=

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
� ŝ�(x)									Ω

� ≤ � < �	�

� ŝ�(x)										�	
� ≤ 	� < ᶓ�

� ŝ�(x)										ᶓ
� ≤ 	� < ⱴ�

� ŝ�(x)									ⱴ
� ≤ 	� < ε�

� 																				� = ε�

� ŝ�(x)									ε
� ≤ 	� < � �

� ŝ�(x)								�
� ≤ 	� < 	ό�

� ŝ�(x)								ό
� ≤ 	� < з�

1																		��ℎ������	

   

Where ��=〈[(	Ω < � < ᶓ< ⱴ < ε< � < ό < з):Ө], ��Ω1 < �	1 < ᶓ1 < ⱴ1 < ε1 < � 1 < ό1 < з1�:Ψ �, [�Ω2 <

�	2 < ᶓ2 < ⱴ2 < ε2 < � 2 < ό2 < з2�:� ]	〉 

 

4. Graphical Representation of Octagonal Neutrosophic Number [ONN]  

In this section, graphs of truthiness, indeterminacy and falsity function are presented. 

Definition 4.1: Octagonal Neutrosophic Number [ONN] 

Өŝ(x)=

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

Өŝ�(0)								0.1 ≤ � < 0.2	

Өŝ�(0)									0.2 ≤ 	� < 0.3

Өŝ�(0.1)										0.3 ≤ 	� < 0.4

Өŝ�(0.1)									0.4 ≤ 	� < 0.5
1																	� = 0.5

Өŝ�(1)									0.5 ≤ 	� < 0.6

Өŝ�(0.1)							0.6 ≤ 	� < o. 7

Өŝ�(0.1)								0.7 ≤ 	� < 0.8
0																��ℎ������	

     

Ψ ŝ(x)=

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
Ψŝ�(1)											0.1 ≤ � < 0.2

Ψ ŝ�(1)									0.2 ≤ 	� < 0.3

Ψ ŝ�(0.9)										0.3 ≤ 	� < 0.4

Ψŝ�(0.9)									0.4 ≤ 	� < 0.5
0																				� = 0.5

Ψ ŝ�(0)									0.5 ≤ 	� < 0.6
Ψŝ�(0.9)								0.6 ≤ 	� < o. 7

Ψŝ�(0.9)								0.7 ≤ 	� < 0.8
1																				��ℎ������	

              

� ŝ(x)=

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

� ŝ�(1)										0.1 ≤ � < 0.2

� ŝ�(1)									0.2 ≤ 	� < 0.3

� ŝ�(0.9)											0.3 ≤ 	� < 0.4

� ŝ�(0.9)								0.4 ≤ 	� < 0.5
0																						� = 0.5

� ŝ�(0)								0.5 ≤ 	� < 0.6
� ŝ�(0.9)								0.6 ≤ 	� < o. 7

� ŝ�(0.9)								0.7 ≤ 	� < 0.8
1																		��ℎ������	
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4.1 Graphical Representation of Membership, Non-membership, Indeterminacy and ONN  

 

Figure 2: Graphical representation of the truthiness of ONN 

 

Figure 3: Graphical representation of the Falsity of ONN 
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Figure 4: Graphical representation of the Indeterminacy of ONN 

 

 

Figure 5: Graphical representation of the Octagonal Neutrosophic Number 
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5. Accuracy Function for De-neutrosophication of Octagonal Neutrosophic Number (ONN) 

5.1 De-neutrosophication of ONN into Neutrosophic Number  

On the way of development of De-neutrosophication technique, we can generate results into neutrosophic number 

according to the result of octagonal neutrosophic number and its membership functions. 

�����=(
����ᶓ�ⱴ���� �ό�з

�
), 

����� = (
����	��ᶓ��ⱴ������ ��ό��з�

�
), 

����� = (
����	��ᶓ��ⱴ������ ��ό��з�

�
)     

����
= �

Ω + � + ᶓ+ ⱴ+ ε+ � , ό, з

�
	,
Ω� + �	� + ᶓ� + ⱴ� + ε� + � � + ό� + з�

�
,
Ω� + �	� + ᶓ� + ⱴ� + ε� + � � + ό� + з�

�
� 

����=
�
����+�

����+�
����

�
  , 

 �����  represents the de-neutrosophication of trueness of neutrosophic octagonal number into neutrosophic. 

 �����  represents the de-neutrosophication of indeterminacy of neutrosophic octagonal number into 
neutrosophic. 

 �����  represents the de-neutrosophication of falsity of neutrosophic octagonal number into neutrosophic. 

 ����
 represents the de-neutrosophication of octagonal number into neutrosophic number.  

Example 1:  In Table: 3 five octagonal neutrosophic numbers ONN are defuzzified into Neutrosophic Number.  

 

 Octagonal Neutrosophic Number  ���� 

1 (0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8;0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9; 
0.1,0.3,0.4,0.5,0.6,0.7,0.8,0.9) 

(0.45,0.55,0.5375) 

2 (0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9;0.1,0.3,0.4,0.5,0.6,0.7,0.8,0.9; 
0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9) 

(0.55,0.5375,0.55) 

3 (0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.9;0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8; 
0.1,0.2,0.4,0.5,0.6,0.7,0.8,0.9) 

(0.4625,0.45,0.525) 

4 (0.1,0.2,0.4,0.5,0.6,0.7,0.8,0.9; 0.1,0.3,0.4,0.5,0.6,0.7,0.8,0.9; 
0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9) 

(0.45,0.5375,0.55) 

5 (0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9; 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8; 
0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.9) 

(0.55,0.45,0.4625) 

Table 2: De-neutrosophication of ONN into Neutrosophic number using Accuracy Function. 

5.2 De-neutrosophication of Neutrosophic Number  

On the way of development of de-Neutrosophication technique, we can generate results into fuzzy number according 

to the result of neutrosophic number. 

����=
�
������

������
����

�
  ,  

���� represents the de-neutrosophication of octagonal number into fuzzy number. 

Example 2:  In Table: 3 five octagonal neutrosophic numbers are defuzzified into Fuzzy.  
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 Octagonal Neutrosophic Number  ���� ���� 

1 (0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8;0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9; 
0.1,0.3,0.4,0.5,0.6,0.7,0.8,0.9) 

(0.45,0.55,0.5375) 0.5125 

2 (0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9;0.1,0.3,0.4,0.5,0.6,0.7,0.8,0.9; 
0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9) 

(0.55,0.5375,0.55) 0.54583 

3 (0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.9;0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8; 
0.1,0.2,0.4,0.5,0.6,0.7,0.8,0.9) 

(0.4625,0.45,0.525) 0.47916 

4 (0.1,0.2,0.4,0.5,0.6,0.7,0.8,0.9; 0.1,0.3,0.4,0.5,0.6,0.7,0.8,0.9; 
0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9) 

(0.45,0.5375,0.55) 0.5125 

5 (0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9; 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8; 
0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.9) 

(0.55,0.45,0.4625) 0.4875 

Table 3: De-neutrosophication of ONN using Accuracy Function. 

6.  Case Study 

To demonstrate the; 

 Feasibility 

 Productiveness  

of the proposed method, here is the most useful real-life candidate selection problem is presented.  

6.1 Problem Formulation 

Suppose we have three candidates which have different degree, experience and number of publications, the thing 

which matter the most to select one which have more potential to deal with situation. The potential of person depends 

upon degree, experience and number of publications they have. To improve the competitiveness capability, the best 

selection plays an important role, and to select the best one. Due to octagonal we can deal with more fluctuations. The 

background of formal education comparison also necessary. Same case for experience because it illustrates the 

personality and also mention that person is capable to handle the circumstances. Same as publications is also important 

for selection. With the concept of octagonal we have more expanse to deal with more edges. Suppose we are talking 

about degree we can mention his all necessary degrees with grades.  

6.2 Parameters 

Selection is a complex issue, to resolve this problem criteria and alternative plays an important role. Following criteria 
and alternatives are considered in this problem formulation. 

6.2.1  Alternatives 

Candidates are considered as the set of alternatives represented with �� =	< �,�, � > 

6.2.2. Criteria 

Following three criteria are considered for the selection 

 Degree 
 Experience 
 Publications 

6.3 Assumptions 

The decision makers {Ɗ1, Ɗ2, Ɗ3, Ɗ4, Ɗ5, Ɗ�, Ɗ�, Ɗ�} will assign ONN, according to his own interest, knowledge 
and experience, to the above-mentioned criteria and alternatives. 
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o Assigning Octagonal Neutrosophic Number ONN, by decision makers to the candidate �. 

Sr # No Criteria Octagonal Neutrosophic Number (ONN) 

1 Degree 
< (0.72,0.35,0.71,0.77,0.41,0.73,0.77,0.81), (0.93,0.83,0.93,0.88	,0.94,0.99,0.96,0.90), 
(0.86,0.95,0.99,0.97,0.94,0.93,0.95,0.91) > 

2 Experience 
< (0.75,0.65,0.96,0.54,0.73,0.65,0.83,0.56), (0.75,0.45,0.95,0.38,0.68,0.79,0.57,0.13),            
(0.36,0.59,0.68,0.79,0.47,0.36,0.47,0.95)	> 

3 Publications 
< (0.74,0.73,0.64,0.75,0.96,0.34,0.85,0.89), (0..35,0.46,0.58,0.79,0.85,0.71,0.64,0.96),                             
    (0.84,0.73,0.85,0.75,0.98,0.84,0.66,0.94)>               

Table 4(a): ONN by decision makers to each criterion to the candidate �.  

o Assigning Octagonal Neutrosophic Number ONN, by decision makers to the candidate �. 

Sr # No Criteria Octagonal Neutrosophic Number (ONN) 

1 Degree 
< (0.73,0.73,0.94,0.85,0.96,0.74,0.95,0.89), (0.33,0.46,0.59,0.79	,0.85,0.79,0.74,0.86), 
(0.48,0.33,0.55,0.75,0.68,0.64,0.36,0.70) > 

2 Experience 
< (0.75,0.55,0.96,0.54,0.93,0.65,0.73,0.56), (0.93,0.83,0.83,0.58,0.84,0.69,0.76,0.80),              
(0.66,0.59,0.68,0.99,0.47,0.46,0.87,0.95)	> 

3 Publications 
< (0.94,0.93,0.74,0.95,0.96,0.94,0.85,0.99), (0.28,0.26,0.58,0.35,0.45,0.61,0.64,0.36),                             
    (0.28,0.23, 0.25, 0.45, 0.68, 0.44, 0.26, 0.34)>               

Table 4(b): ONN by decision makers to each criterion to the candidate	�.  

o Assigning Octagonal Neutrosophic Number ONN, by decision makers to the candidate 	�. 

Sr # No Criteria Octagonal Neutrosophic Number (ONN) 

1 Degree < (0.73,0.83,0.93,0.56,0.95,0.95,0.73,0.88), (0.76,0.95,0.69,0.94,0.94,0.63,0.55,0.61), 
(0.74,0.73,0.85,0.75,0.48,0.34,0.66,0.74) > 

2 Experience 
< (0.73,0.65,0.96,0.54,0.63,0.65,0.81,0.59), (0.75,0.45,0.85,0.38,0.78,0.79,0.67,0.13),              
(0.38,0.59,0.68,0.79,0.97,0.36,0.67,0.85)	> 

3 Publications 
< (0.74,0.73,0.64,0.75,0.96,0.34,0.85,0.89), (0.35,0.44,0.58,0.79,0.75,0.71,0.54,0.96),                             
    (0.74,0.63,0.35,0.35,0.98,0.34,0.28,0.64)>               

Table 4(c): ONN by decision makers to each criterion to the candidate 	�.  

6.4 VIKOR Method 

Vikor method is best for solve the problem of multi criteria decision making.it is used to drive on ranking and for 

selection of a set of possibilities and solve consolation solution for a problem with aggressive criteria. Opricovic [12] 

introduced the idea of Vikor method in 1998. It is related with both positive and the negative ideal solution, it can 

change the variable into two or more alternative variables to find out the best compromise solution. By the help of 

Vikor method we can put new ideas for group decision making problem under the certain criteria.  

Vikor Method consist of following steps; 

Step 1.  Normalization of decision matrix and weight assigning. 

Step 2.  Now we will calculate the group unity value ���=[��
�, ��

�] and the individual regard value ���=[��
�, ��

�], where; 

��
� = � ��

��
����

�

��
����

�

.

�

 ,  ��
� = � ��

��
����

�

��
����

�

.

�
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And  

��
�= 	� � ��

���
����

�

��
����

��������
���   , ��

�= 	� � ��
���
����

�

��
����

��������
���  

 

Step 3. Here we will Calculate the comprehensive sorting index ���=[��
�,��

�], where  

���=σ
�����

∗

��	��∗
+(1- σ)	

�����
∗

��	��∗
 

Now by using algorithm of interval fuzzy number: 

��
�=σ

��
���∗

��	��∗
+(1- σ)	

��
���∗

��	��∗
 

and  

��
�=σ

��
���∗

��	��∗
+(1- σ)	

��
���∗

��	��∗
 

Here �∗= 	�			
��� ��

� , ��= 	�			
��� ��

�  , �∗= 	�			
��� ��

� , �∗= 	�			
��� ��

�  . Parameter σ is called decision mechanism index, and it lies 

between [0,1]. If σ >0.5, it is the decision making in the light of maximum group benefit (i.e., if σ is big, group utility 

is emphasized); if σ=0.5, here decision making in accordance with compromise. If σ <0.5, it is the decision making in 

the light of minimum individual regret value. In VIKOR, we take σ =0.5 generally, that is called compromise makes 

maximum group benefit and minimum individual regret value. 

Step 4.   The rank of fuzzy numbers is ��� , ���	���	���. 

Since ���  , ���	���	���  are all still individual numbers, now to compare the two-interval value we use the possible degree 

theory. 

Here number of interval number Α��= [Α�
�  , Α�

�], (i=1,2, 3,…,m), the comparison steps are given of these interval 

numbers; 

(a)  For any two intervals numbers Α��=[Α�
�  , Α�

�] and Α��=[Α�
�  , Α�

�], now we will calculate the possible degree  

���=	�(Α�� ≥ Α��) and now we will construct the possible degree matrix   � = (���)�×�, and the product by 

comparison of any two interval numbers Α��=[Α�
�  , Α�

�] and Α��=[Α�
�  , Α�

�], where i,j=1,2,3,….,m. Xu [18] 

proved that matrix  � = (���)�×� satisfies (��� ≥ 0, ��� + (���=1,	��� = 0.5 (i,j=1,2,3,…,m) 

The matrix � = (���)�×�  is called the fuzzy complementary judgement matrix, and we can rank the alternatives as 

follow. 

(b)  The rank of interval numbers Α��= [Α�
�  , Α�

�], (i=1,2,3,,m)  
Ranking formula is given below 

  �� =
�

�(���)
�� ���

�

���
+

�

�
− 1� ,i=1,2,3,…,m 

The smaller   �� , is the smaller Α��= [Α�
�  , Α�

�] is. 

Step 5.  Now we will rank the alternatives based on ���  , ���	���	���(i=1,2,3,…,m).here the smaller of interval number  

��� is, and the better alternative �� is. propose as a min {��� ∣ i=1,2,3,…,m} if these two condition are satisfied[16]: 
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(i) � (Α(�))−� (Α(�))≥ 1∕ (	� − 1), where Α(�) called the second alternative with second position in the 

ranking list by ℛ	; �	is the number of alternatives. 

(ii) Α(�)alternative also must be best ranked by {����� ���⁄ ℛ� ∣ I =1,2, 3…m}. 

 

Figure 6: Flowchart of VIKOR algorithm 

6.5 Numerical Analysis 

Suppose that U is the universal set. Let HR which is responsible for recruiting and interviewing, and wants to hire a 

new candidate in company. Three candidates �� =	< �,�, � > apply for this opportunity, which have different 

degrees, experiences and publications. On the base of choice parameters {ℂ� = Dergre, ℂ� = Experience, ℂ� =

Publication} we apply the algorithm to find the potential candidate.     

Step 1.  Associated Decision Matrix  

 

De-Neutrosophication of Octagonal Neutrosophic number by, 

�����=(
����ᶓ�ⱴ�����ό�з

�
), ����� = (

����	��ᶓ��ⱴ��������ό��з�

�
), ����� = (

����	��ᶓ��ⱴ��������ό��з�

�
)     

The associated neutrosophic matrix is, 

� = �

(0.65,0.92,0.93)												(0.84,0.67,0.56)											(0.82,0.88,0.66)

(0.70,0.59,0.58)												(0.70,0.78,0.70)											(0.69,0.60,0.66)

(0.86,0.66,0.82	)											(0.91,0.44,0.36)												(0.73,0.64,0.49)

� 

The associated fuzzy matrix is, 

Ranking of 
Alternatives

Rank of Fuzzy 
Number

Comprensive 
Sorting Index

Group Unity 
Value

Normalization
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� = �

(0.8333)												(0.6900)											(0.7866)
(0.6233)												(0.7266)											(0.6500)

(0.7800	)											(0.5700)											(0.6200)

� 

After calculating normalized decision matrix, we determine the positive ideal solution as well as negative ideal 

solution   

��={(0.65,0.92,0.93)}		  ��={(0.91,0.44,0.36)} 

Step 2.   Calculate the group utility value as ���= [��
�, ��

�] and ���= [��
�, ��

�]  

																			���= [0.2769,0.2000]   ��� =[0.1076,0.3846]  ��� =[0.4230,0.2230] 

And 								��� =[0.1461,0.1615]  ��� =[0.0384,0.2000]  ���= [0.2000,0.1307] 

Step 3.  Now we will calculate the comprehensive sorting index ���= [��
�,��

�]  

W1 = 0.0506 

W2 = 0.0275 

W3 = 0.0163 

Step 4.  Calculation of �� ,��	���	�� 

S1 = 0.2767  H1 = 0.1088  W1 = 0.0506 

S2 = 0.2394  H2 = 0.1165 W2 = 0.0275 

S3 = 0.2530  H3 = 0.1066  W3 = 0.0163 

Step 5.  Ordering of �� ,��	���	�� 

Order the alternatives, listed by the values Si; Hi and Wi: 

S2 = 0.2394       H3 = 0.1066     W3 = 0.0163 

S3 = 0.2530       H1 = 0.1088     W2 = 0.0275 

S1 = 0.2767       H2 = 0.1165      W1 = 0.0506 

According to the ranking S3 is the potential candidate for the company. 

 

7. Conclusion 

The concept of octagonal neutrosophic number has sufficient scope of utilization in different studies in various 
domain. In this paper, we proposed a new concept of octagonal neutrosophic number ONN, notion and graphical 
representation. The de-neutrosophication technique is carried out by implementing accuracy function and following 
points were concluded.  

 The octagonal neutrosophic number, function and graph add a new tool for modeling different aspects of 
daily life issues, science and environment. 

 Since this study has not yet been studied yet, the comparative study cannot be done with the 

existing methods. 
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 Detailed illustrations of truthiness, indeterminacy, falsity and de-neutrosophication techniques will provide 
all the required information in one platform to model any real-world problem. 

In forthcoming work, authors will define the types Symmetric, Asymmetric, along with their �-cuts. Proposed work 
can be used to model different dynamics, of applied sciences, such as MCDM and networking problems, etc. 
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Abstract  

   In this paper,  we present and study some of the basic properties of the new class of sets called weakly b-closed 

sets and weakly b- open sets in fuzzy neutrosophic bi-topological spaces. We referred to some results related to the 

new definitions, which we taked the case of equal in the definition of b-sets instead of subset. Then, we discussed 

the relations between the new defined sets by hand and others fuzzy neutrosophic sets which were studied before us 

on the other hand on fuzzy neutrosophic bi-topological spaces. Then, we have studied some of characteristics and 

some relations are compared with necessary examples.  

Keywords: Fuzzy neutrosophic sets, Fuzzy neutrosophic bi-topology, Fuzzy neutrosophic weakly b-closed sets, 

Fuzzy neutrosophic weakly b-open sets. 

1.Introduction  

    The notion of fuzzy set "FS" proved was show by L. Zadeh [1] where the membership of any element to this set 

"FS" be a single falue between 0 and 1. After that K Atanassov [2-4] introduced the notion of intuitionistic fuzzy 

sets "IFS" which was generalization of "FS", where the elements have membership and non-membership value 

between the same interval 0 and 1. As proved and indulged F. Smarandache [5] introduced the concept of 

neutrosophic sets "NSs" where he added the independed value between the value of "IFS" also in the same value, 0 

and 1, then in the next papers [6], studied the neutrosophic topological spaces "NTSs" on the non standard interval 

which made many important consequences and theorems so as so, foundation for all family of new mathematical 

theories generalizing both their  fuzzy topology counterparts and old classical topology, A. A. Salama [7] studied the 

term of neutrosophic topology "NT".  Finally, Y.Veereswari [8] gave an introduction of fuzzy neutrosophic 

topological spaces "FNTSs". 

     The concept of fuzzy neutrosophic weakly-αm generalized closed set and fuzzy neutrosophic b-closed sets "FN-b-

CS" was introduced and studied by F. Mohammed [9,10]. The term of  bi-topological spaces was studied in 

neutrosophic topology by R. Al-Hamido [11-13], so in this paper we will show the idea of  fuzzy neutrosophic 

weakly b-closed and fuzzy neutrosophic weakly b-closed sets also investigated some their properties on fuzzy 

neutrosophic bi-topological spaces and we getting some neccesarly properties as generalized of many authors 

studying, for more details and information about the applications of neutrosophic theory in new trends see  [14-21]. 
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2. Preliminaries: 

 In this section of our study, we will refer to some basic definition  and operations which are necessarily in our 

work. 

Definition 2.1 [7]: "Let UN be a  non-empty fixed set. The fuzzy neutrosophic set (FNS) µN is an object having the 

form  µN ={˂ u, λµN(u), ɣµN(u), VµN(u)˃: u ϵ UN} where the functions λµN(u), ɣµN(u),VµN(u): UN → [0,1] denote the 

degree of  membership function (namely λµN(u)), the  degree of indeterminacy function (namely ɣµN(u)) and the 

degree of non-membership function (namely VµN(u)) respectively of each element uϵ UN to the set µN and 0 ≤ 

λµN(u)+ ɣµN(u) +VµN(u) ≤ 3, for each u	∈ UN". 

Remark 2.2: "FNS µN = {˂ u, λµN(u), σµN(u), VµN(u) ˃: u ∈UN} can be identified to an ordered triple ˂ u, λµN, σµN, 

VµN ˃ in [0,1] on UN". 

Lemma 2.3 [8]: "Let UN be a non-empty set and the FNSs µN and ɣN be in the form: 

µN = {˂u, λµN, σµN, VµN˃ } and ɣN={˂u, λɣN, σɣN, VɣN˃} on UN. Then,   

(i) µN ⊆ ɣN iff λµN ≤ λɣN, σµN ≤ σɣN and VµN ≥ VɣN, 

(ii) µN = ɣN iff  µN ⊆ ɣN and ɣN ⊆ µN, 

(iii) (µN)c ={˂ u, VµN, 1-σµN, λµN ˃}, 

(iv) µN ∪ ɣN ={˂ u, Mx( λµN, λɣN), Mx( σµN, σɣN ), Mn( VµN, VɣN) ˃}, 

(v) µN ∩ ɣN ={˂ u, Mn( λµN, λɣN), Mn( σµN, σɣN), Mx(VµN, VɣN) ˃},  

(vi) 0N = {˂ u, 0, 0, 1˃} and  1N = { ˂ u, 1, 1, 0 ˃}." 

 Definition 2.4 [8]: "A Fuzzy neutrosophic topology ( For short, FNT) on a non-empty set UN is a family TN of 

fuzzy neutrosophic subset in UN satisfying the following axioms. 

(i) 0N, 1N ∈ TN, 

(ii) µN1 ∩ µN2 ∈ TN ∀ µN1, µN2 ∈ TN, 

(iii) ∪µNj ∈ TN, ∀ { µNj : j ∈ J} ⊆ TN. 

 In this case the pair (UN, TN) is called fuzzy neutrosophic topological space ( for short, FNTS). The elements of TN 

are called fuzzy neutrosophic-open sets ( for short, FN-OS ). The complement of  FN-OS in the FNTS (UN, TN ) is 

called fuzzy neutrosophic- closed set (for short,  FN-CS)." 

Definition 2.5 [8]: "Let (UN, TN ) is FNTS and µN =˂ u, λµN, σµN, VµN ˃ is FNS in UN. Then the fuzzy neutrosophic- 

closure (for short, FN-Cl ) and the fuzzy neutrosophic -interior (for short, FN-In) of µN are defined by:  

FN-Cl( µN ) = ∩ { ɣN : ɣN is FN-CS set in U and µN ⊆ ɣN }, 

FN-In ( µN ) = ∪ { ɣN : ɣN is FN-OS  set in U and ɣN ⊆ µN }. 

Now, the FN-Cl (µN) is FN-CS set and FN-In(µN) is FN-OS. set in UN. 

Further,  

(i) µN is FN-CS in U iff  FN-Cl(µN) = µN, 
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(ii) µN is FN-OS in U iff  FN-In(µN) = µN." 

Definition 2.6 [9,10]: "The FNS λN in FNTS (UN, TN) is called: 

(i) Fuzzy neutrosophic regular-open set (FNR-OS) iff µN =FN-In(FN-Cl(µN)), 

(ii) Fuzzy neutrosophic regular-closed set (FNR-CS.) iff µN = FN-Cl(FN-In(µN)), 

(iii) Fuzzy neutrosophic semi-open set (FNS-OS) iff µN ⊆ FN-Cl(FN-In(µN)), 

(iv) Fuzzy neutrosophic semi-closed set (FNS-CS) iff  FN-In(FN-Cl(µN)) ⊆ µN, 

(v) Fuzzy neutrosophic pre-open set (FNP-OS) iff µN ⊆ FN-In(FN-Cl(µN)), 

(vi) Fuzzy neutrosophic pre-closed set (FNP-CS) iff FN-Cl(FN-In(µN)) ⊆ µN, 

(vii) Fuzzy neutrosophic α-open set (FNα-OS) iff µN ⊆ FN-In(FN-Cl(FN-In(µN))), 

(viii) Fuzzy neutrosophic α-closed set (FNα-CS) iff FN-Cl(FN-In(FN-Cl(µN))) ⊆ µN, 

(ix) Fuzzy neutrosophic β-open set (FNβ-OS) iff µN ⊆ FN-Cl(FN-In(FN-Cl(µN))), 

(x) Fuzzy neutrosophic β-closed set (FNβ-CS) iff FN-In(FN-Cl(FN-In(µN))) ⊆ µN." 

Definition 2.7 [7]: "A fuzzy neutrosophic set K in FNTS UN is called fuzzy neutrosophic b-open set (for short, FNb-

OS) if and only if K ≤ In(Cl(K))⋁Cl(In (K))." 

Definition 2.8 [15]: "A fuzzy neutrosophic set K in FNTS UN is called fuzzy neutrosophic b-closed (for short, FNb-

CS) set iff  In(Cl K) ⋁ Cl(In K) ≤ K." 

Definition 2.9 [11]: "Let UN be a non-empty set and (U, TN1), (U, TN2) be two topological spaces then, the triple (UN, 

TN1, TN2) is a fuzzy neutrosophic bi-topological space ( for short, FN-bi-TS )." 

Definition 2.10 [11]: "Let UN be a non-empty set and TN1, TN2 be two topologies on UN. A subset A of UN is called 

fuzzy neutrosophic bi-open set ( for short, FN-OS ) if A ∈ TN1∪ TN2. A is called fuzzy neutrosophic bi-closed set ( for 

short, FN-CS) if 1N-A is FN-OS. 

Definition 2.11 [18]: "A FNS K in FN-bi-TS (U, TN1, TN2) is called fuzzy neutrosophic nowhere dense set if there 

exists no FN-OS. set V such that V ⊆ FN-Cl(K). That is FN-In(FN-Cl(K)) = 0N." 

Remark 2.12 [15]: "Let K be a FNS in FN-bi-TS (U, TN1, TN2). If K is a fuzzy neutrosophic nowhere dense set in 

(UN, TN1, TN2), then, FN-In(K) = 0N. " 

3.Weakly b-Closed Sets and Weakly b-open Sets in Fuzzy Neutrosophic bi-Topological Spaces                                           

 In this section, we introduce the concepts of weakly b-closed sets and weakly b-open sets and study some of their 

characteristics on fuzzy neutrosophic bi-topological spaces. 

Definition 3.1: A FNS K in a FN-bi-TS (UN,TN1, TN2) is said to be a fuzzy neutrosophic weakly b-closed set (for 

short, FNWb-CS) if FN-In(FN-Cl(K)) ∩ FN-Cl(FN-In(K)) = K. The complement 1N-K of a FNWb-CS  in a FN-bi-

TS (UN, TN1, TN2) is called a fuzzy neutrosophic weakly b-open set ( for short, FNWb-OS) in UN. The family of all 

FNWb-CS of a FN-bi-TS (UN, TN1, TN2) is denoted by FNWb-CS(UN).  

Example 3.2: Let UN = {a, b} on TN1 = {0N, E1, 1N} and TN2 ={0N, 1N} where E1 = ˂ u, (0.4a, 0.4b), (0.4a, 0.6b), (0.2a,  

0.3b) ˃ is a FN-bi-TS on UN.  

Let K = ˂ u, (0.4a, 0.4b), ((0.0a, 0.0b), (0.2a, 0.3b) ˃. 

Now, FN-In(FN-Cl(K)) ∩ FN-Cl(FN-In(K)) = E1 ∩1N- E1 = E1 =K.  
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Then, K is a FNWb -CS in FN-bi-TS  (UN, TN1, TN2). 

Remark 3.3: The following cases are independent to each other in general in a FN-bi-TS (UN, TN1, TN2). 

(i)  FN-CS and FNWb-CS. 

(ii)  FNR-CS and FNWb-CS. 

(iii)  FNP-CS and FNWb-CS.  

(iv) FNα-CS and FNWb-CS. 

Example 3.4: In Example 3.2,we have: 

(1) K is a FNWb-CS but not a FN-CS in U as FN-Cl(K) = 1N-E1≠ K.  

(2) K = ˂ u, (0.4a, 0.6b), (0.5a, 0.5b), (0.4a, 0.4b) ˃ is a FN-CS as FN-Cl(K) =1N-E1 = K,  but not a FNWb-CS in UN  

as FN-In(FN-Cl(K)) ∩ FN-Cl(FN-In(K)) = E1  ≠ K. 

(3) K = ˂ u, (0.4a, 0.4b), (0.5a, 0.5b), (0.4a, 0.6b) ˃ is a FNWb-CS in UN , but not a FNR-CS in UN as  

FN-Cl(FN-In(K)) = 1N-E1 ≠ K. 

(4) K = ˂ u, (0.4a, 0.6b), (0.5a, 0.5b), (0.4a, 0.4b) ˃ is a FNR-CS in UN as FN-Cl(FN-In(K)) = 1N-E1= K, but not a  

FNWb-CS in UN as FN-In(FN-Cl(K)) ∩ FN-Cl(FN-In(K)) ≠ K.  

(5) K = ˂ u, (0.4a, 0.6b), (0.5a, 0.5b), (0.4a, 0.4b) ˃ is a FNP-CS in UN as FN-Cl(FN-In(K)) = 1N-E1⊆ K, but not a  

FNWb-CS in UN as FN-In(FN-Cl(K)) ∩ FN-Cl(FN-In(K)) ≠ K.  

(6) K = ˂ u, (0.4a, 0.4b), (0.5a, 0.5b), (0.4a, 0.6b) ˃ is a FNWb-CS in UN but not a FNP-CS in UN as  

FN-Cl(FN-In(K)) = 1N-E1  ⊈ K.  

(7) K = ˂ u, (0.4a, 0.6b), (0.5a, 0.5b), (0.4a, 0.4b) ˃ is a FN-αclos. set in UN as FN-Cl(FN-In(FN-Cl(K))) = 1N-E1  ⊆  

K, but not a FNWb-CS in UN as FN-In(FN-Cl(K)) ∩ FN-Cl(FN-In(K)) = E1  ≠ K.  

(8) K = ˂ u, (0.4a, 0.4b), (0.5a, 0.5b), (0.4a, 0.6b) ˃ is a FNWb-CS in UN as FN-In(FN-Cl(K)) ∩ FN-Cl(FN-In(K)) =  

E1 = K, but not a FNα-CS in UN as FN-Cl(FN-In(FN-Cl(K))) = 1N- E1  ⊈ K.  

Theorem 3.5 : Let (UN, TN1, TN2) be a FN-bi-TS, then: 

(i) Every FNWb-CS is a FNb-CS. 

(ii) Every FNWb-CS is an FNS-CS.  

(iii) Every FNWb-CS is a FNβ-CS. 

Proof : (i) Let K be a FNWb-CS in FN-bi-TS ((UN, TN1, TN2), 

Then, FN-In(FN-Cl(K)) ∩ FN-Cl(FN-In(K)) = K. 
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Now, as K ⊆ K , we get FN-In(FN-Cl(K)) ∩ FN-Cl(FN-In(K)) ⊆ K. 

Therefore, K is a FNb-CS in (UN, TN1, TN2).  

(ii): Let K be a FNWb-CS in FN-bi-TS (UN, TN1, TN2). 

Then, FN-In(FN-Cl(K)) ∩ FN-Cl(FN-In(K)) = K. 

 Now, as FN-In(FN-Cl(K)) = FN-In(FN-Cl(FN-In(FN-Cl(K) ∩ FN-Cl(FN-In(K)))) 

                              ⊆ FN-In(FN-Cl(FN-Cl(K) ∩ FN-Cl(FN-In(K))))  

                              ⊆ FN-In(FN-Cl(K)) ∩ FN-Cl(FN-In(K))) = K. 

 Hence, K is a FNS-CS in (UN, TN1, TN2). 

(iii): Let K be a FNWb-CS in FN-bi-TS (UN, TN1, TN2). 

Then, FN-In(FN-Cl(K)) ∩ FN-Cl(FN-In(K)) = K. 

Now,  FN-In(FN-Cl(FN-In(K))) = FN-In(FN-Cl(FN-In(K))) ∩ FN-Cl(FN-In(K)) 

                                                    ⊆ FN-In(FN-Cl(K)) ∩ FN-Cl(FN-In(K)) = K. 

Therefore, we have FN-In(FN-Cl(FN-In(K))) ⊆ K. 

Hence, K is a FNβ-CS in (UN, TN1, TN2). 

Note: The converse of  Theorem 3.5 is not true in general. 

Example 3.6: In Example 3.2 

(1) Let K = ˂ u, (0.4a, 0.6b), (0.5a, 0.5b), (0.4a, 0.4b) ˃.  

Then, FN-In(FN-Cl(K)) ∩ FN-Cl(FN-In(K)) = E1 ≠ K.  

Therefore, K is a FNb-CS but, not a FNWb-CS UN as FN-In(FN-Cl(K)) ∩ FN-Cl(FN-In(K)) ≠ K.   

(2) If K =  ˂ u, (0.4a, 0.6b), (0.5a, 0.5b), (0.4a, 0.4b)˃ is a FNS-CS in UN as FN-In(FN-Cl(K)) = E1 ⊆ K, but not a  

FNWb-CS. 

(3) If  K = ˂ u, (0.4a, 0.6b), (0.5a, 0.5b), (0.4a, 0.4b) ˃ is a FNβ-CS in UN as  

FN-In(FN-Cl(FN-In(K))) = E1 ⊆ 1N-E1
, but, not a FNWb-CS in UN as FN-In(FN-Cl(K)) ∩ FN-Cl(FN-In(K)) ≠ K.  

Definition 3.7: Let (UN, TN1, TN2) be a FN-bi-TS, then the subset K of UN is called FN-clopen set (for shortly, FN- 

CLOP) iff K is FN-CS and FN-OS in the same time. 

Remark 3.8 : Every FN- CLOP  set is both FNR-OS and FNR-CS. 

Proposition 3.9: Let (UN, TN1, TN2) be a FN-bi-TS, then: 

(i) If  K is both a FNR-OS and a FNR-CS then, K is a FNWb-CS. 
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(ii) If K is both a FN-CLOP set then, K is a FNWb-CS. 

Proof: (i) Let K be both FNR-OS and FNR-CS in FN-bi-TS (UN, TN1, TN2). 

Then, FN-In(FN-Cl(K)) ∩ FN-Cl(FN-In(K)) = K ∩ K= K ⟹ K is a FNWb-CS. 

 (ii) Let K be a FN-CLOP set in FN-bi-TS (UN, TN1, TN2). 

Then, FN-In(FN-Cl(K)) ∩ FN-Cl(FN-In(K)) = FN-In(K) ∩ FN-Cl(K) = FN-In(K) = K. 

Therefore,  K is a FNWb-CS.   

Theorem 3.10: If K is both a FNWb-CS and a FN-CS in FN-bi-TS  (UN, TN1, TN2) then, K is a FN-OS.      

Proof: Let K be both a FNWb-CS and a FN-CS in FN-bi-TS (UN, TN1, TN2). 

Then, K = FN-In(FN-Cl(K)) ∩ FN-Cl(FN-In(K)). 

Now,  K = FN-In(FN-Cl(K)) ∩ FN-Cl(FN-In(K))  

               = FN-In(K) ∩ FN-Cl(FN-In(K)) = FN-In(K). 

Therefore, K is a FN-OS in FN-bi-TS ((UN, TN1, TN2). 

Definition 3.11: Let (UN, TN1, TN2) is FNTS and µN =˂ u, λµN, σµN, VµN ˃ is FNS in UN. Then the fuzzy neutrosophic  

semi-closure (for short, FN-sCl ) and the fuzzy neutrosophic –semi interior (for short, FN-sIn) of µN are defined  

by:  

FN-sCl( µN ) = ∩ { ɣN : ɣN is FNS-CS in U and µN ⊆ ɣN }= µN ∪	FN-In(FN-Cl(µN)), 

FN-sIn ( µN ) = ∪ { ɣN : ɣN is FNS-OS in U and ɣN ⊆ µN }= . 

Theorem 3.12: For any FNWb-CS K in a FN-bi-TS (UN, TN1, TN2), the following conditions hold:  

(i) If K is a FNR-OS then, FN-sCl(K) is a FNWb-CS.  

(ii) If K is a FNR-CS then, FN-sIn(K) is a FNWb-CS.  

Proof:(i) Let K be a FNR-OS in FN-bi-TS (UN, TN1, TN2).Then, FN-In(FN-Cl(K)) = K. 

By definition, we have FN-sCl(K) = K ∪	FN-In(FN-Cl(K)) = K ∪ K = K, by hypothesis.  

Since, K is a FNWb-CS in (UN, TN1, TN2), FN-sCl(K) is a FNWb-CS in UN,.  

(ii) Let K be a FNR-CS in (UN, TN1, TN2), then,  FN-Cl(FN-In(K)) = K. 

By definition, we have FN-sIn(K) = K ∩ FN-Cl(FN-In(K)) = K ∩ K = K, by hypothesis.  

Since, K is a FNWb-CS in(UN, TN1, TN2), FN-sIn(K) is a FNWb-CS. 

Theorem 3.13: For a FNS K in FN-bi-TS (UN, TN1, TN2), the following conditions are equivalent:  

(i) K is both a FN-OS and a FNWb-CS.  
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(ii) K is a FNR-OS.  

Proof: (i) ⇒ (ii) Let K be a FN-OS and a FNWb-CS in FN-bi-TS (UN, TN1, TN2). 

Then, FN-Cl(FN-In(K)) ∩ FN-In(FN-Cl(K)) = K and FN-In(FN-Cl(K)) ∩ FN-Cl(K) = K, 

Therefore, K = FN-In(FN-Cl(K)). 

Hence, K is a FNR-OS in (UN, TN1, TN2). 

(ii)⇒ (i) Let K be a FNR-OS in FN-bi-TS(UN, TN1, TN2). 

Since every FNR-OS is a FN-OS, K is a FN-OS in (UN, TN1, TN2)  and K = FN-In(FN-Cl(K)). 

Now, FN-In(FN-Cl(K)) ∩ FN-Cl(FN-In(K)) = K ∩ FN-Cl(FN-In(K)) = K ∩ FN- Cl(K) = K. 

Hence, K is a FNWb-CS in FN-bi-TS (UN, TN1, TN2). 

Definition 3.14: A FNS K in a FN-bi-TS (UN, TN1, TN2) is said to be a fuzzy neutrosophic weakly b-open set ( for  

short, FNWb-OS) iff  K = FN-In(FN-Cl(K)) ∪ FN-Cl(FN-In(K)).  

The family of all FNWb-OS of a FN-bi-TS (UN, TN1, TN2) is denoted by FNWb-OS(UN).  

Example 3.15: In Example 3.2, 

 Let K = ˂ u, (0.4a, 0.6b), (0.5a, 0.5b), (0.4a, 0.4b) ˃ be a FNS in (UN, TN1, TN2). 

Now, FN-In(FN-Cl( 1N-K )) ∩ Fn-Cl(FN-In( 1N-K )) = E1 ∩ 1N-E1 = E1 = 1N-K	⟹ 1N-K  is a FNWb-CS 

⟹ 1N-K  is a FNWb-CS in (UN, TN1, TN2). 

Hence, K is a FNWb-OS in (UN, TN1, TN2). 

Theorem 3.16: Every FNWb-OS are FNb-OS ( FNS-OS., FNβ-OS) but not conversely in general.  

Proof: Straight forward.  

Example 3.17: Obvious from Example 3.6 (1), (2), (3) by taking complement of  K in the respective examples.  

Theorem 3.18: Every FN-OS, FNR-OS, FNP-OS and FNα-OS are independent to FNWb-OS in FN-bi-TS (UN, TN1,  

TN2) and vice versa in general.  

Example 3.19: Obvious from Example 3.4 (1), (2), (3), (4), (5), (6), (7), (8), by taking the complement of A in the  

respective examples. 

Theorem 3.20: If K is a FNWb-OS and fuzzy neutrosophic nowhere dense in FN-bi-TS ((UN, TN1, TN2), then: 

(i) K is a FNR-CS.  

(ii) K is a FNS-CS. 

(iii) K is a FNα-CS. 
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(iv) K is a FNβ-CS.  

Proof: (i) Let K be a FNWb-OS and fuzzy neutrosophic nowhere dense in FN-bi-TS (UN, TN1, TN2). 

Then, K = FN-In(FN-Cl(K)) ∪ FN-Cl(FN-In(K)) = 0N ∪ FN-Cl(FN-In(K)) = FN-Cl(FN-In(K)). 

Therefore, FN-Cl(FN-In(K)) = K. 

Hence, K is a FNR-CS in (UN, TN1, TN2). 

(ii) Let K be a FNWb-OS and fuzzy neutrosophic nowhere dense in FN-bi-TS (UN, TN1, TN2). 

Then, K ⊆ FN-In(FN-Cl(K)) ∪ FN-Cl(FN-In(K)) = 0N ∪ FN-Cl(FN-In(K)) ⊆ FN-Cl(FN-In(K)). 

Therefore,  K ⊆ FN-Cl( FN-In(K)). 

Hence, K is a FNS-CS in (UN, TN1, TN2). 

(iii) Let K be a FNWb-OS and fuzzy neutrosophic nowhere dense in FN-bi-TS (UN, TN1, TN2). 

Then, FN-In(FN-Cl(K)) ∪ FN-In(FN-Cl(FN-In(K))) ⊆ K 

Now,              0N ∪ FN-In(FN-Cl(FN-In(K))) ⊆ K. 

Therefore,               FN-In(FN-Cl(FN-In(K))) ⊆ K. 

Hence, K is a FNα-CS in (UN, TN1, TN2). 

(iv) Let K be a FNWb-OS and fuzzy neutrosophic nowhere dense in FN-bi-TS (UN, TN1, TN2). 

Then, FN-In(FN-Cl(K)) ∪ FN-In(FN-Cl(FN-In(K))) ⊆ K. 

Now,              0N ∪ FN-In(FN-Cl(FN-In(K))) ⊆ K. 

Therefore,               FN-In(FN-Cl(FN-In(K))) ⊆K. 

Hence, K is a FNβ-CS in (UN, TN1, TN2). 

Theorem 3.21: If K is both a FNWb-OS and a FN-OS then, K is a FN-CS in FN-bi-TS (UN, TN1, TN2). 

Proof: Let K be both a FNWb-OS and a FN-OS in FN-bi-TS (UN, TN1, TN2). 

Then, K = FN-In(FN-Cl(K)) ∪ FN-Cl(FN-In(K)). 

Now, K = FN-In(FN-Cl(K)) ∪ FN-Cl(FN-In(K)) = FN-In(FN-Cl(K)) ∪ FN-Cl(K) = FN-Cl(K). 

Hence, K is a FN-CS in (UN, TN1, TN2). 

Theorem 3.22: Let K be a FNWb-OS in a FN-bi-TS (UN, TN1, TN2), such that FN-In(K) = 0N, then, K is a FNP-OS. 

Proof: Let K be a FNWb-OS then, K is a FNb-OS in FN-bi-TS ((UN, TN1, TN2). 

Now, K ⊆ FN-In(FN-Cl(K)) ∪ FN-Cl(FN-In(K)) ⊆ FN-In(FN-Cl(K)) ∪ 0N ⊆ FN-In(FN-Cl(K)). 

Hence, K ⊆ FN-In(FN-Cl(K)). 
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So, K is a FNP-OS in FN-bi-TS (UN, TN1, TN2). 

 

4.Conclusions 

      In this paper, we have introduced a new class of sets called fuzzy neutrosophic weakly b-closed sets and fuzzy 

neutrosophic weakly b-open sets via fuzzy nutrosophic topological spaces. Many results have been studied as 

generalization of classical fuzzy topology and intuitionistic fuzzy topology and applied in the field of fuzzy bi-

neutrosophic topology. After giving some ideas to compared the already existing new sets with the others existing 

closed sets by definitions, theorems and propositions. Some interesting properties were investigated in addition, we 

have provided some examples where such properties failed to be preserved via fuzzy neutrosophic bi-topological 

spaces.We think, our studied class of sets belongs to the important class of fuzzy neutrosophic closed sets which is 

very useful not only in the deepening of our understanding of some special features of the already well-known 

notions of fuzzy neutrosophic topology but also proves useful in neutrosophic control theory. 
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ABSTRACT.  

This paper aims to introduce and study some new neutrosophic fuzzy pairwise notions via neutrosophic fuzzy ideals. 

We, also generalize the notion of FPL-open sets. In addition to generalizing the concept of FPL-closed sets and NPL-

open function, the relationship between the above new neutrosophic Fuzzy pairwise notions and there other relevant 

classes are investigated. In Geographical information systems (GIS) there is a need to statistically model spatial 

regions with indeterminate boundary and under indeterminacy. Possible applications to GIS rules are touched upon. 

Keywords: Neutrosophic set; Neutrosophic topology; Neutrosophic ideal open set; Neutrosophic closed set; GIS 

Neutrosophic Rules; Neutrosophic Statistical Model 

Introduction 

                                                                                                                                                                                      
 Since the world is full of indeterminacy, the neutrosophic found their place into contemporary research. The 
neutrosophic set was introduced by Smarandache in [3,4,7] and  Salama et al. [5, 6, 8,10, 11, 12, 13, 14] introduced 
the neutrosophic crisp set, neutrosophic topological spaces and many applications in statistics, computer science and 
information systems. Neutrosophy has laid the foundation for a whole family of new mathematical theories 
generalizing both their classical and fuzzy counterparts, such as neutrosophic set theory, in this paper is to introduce 
and study some new neutrosophic fuzzy pairwise notion via neutrosophic fuzzy pairwise ideals. We, also generalize 
the notion of  FPL-open sets due to Abd El-Monsef, et. al [1, 2]. In addition to generalizing the concept of FPL-closed 
sets. In Geographical information systems (GIS) there is a need to statistically model spatial regions with indeterminate 
boundary and under indeterminacy. Possible applications to GIS rules are touched upon. 
 
PRELIMINARIES  
     We recollect some relevant basic preliminaries, and in particular, the work of Smarandache in [3, 4, 7], and 
Salama et al. [8-13]. 

    2. Neutrosophic Fuzzy Pairwise Set and its Neutrosophic Fuzzy Pairwise Local Function. 

Definition 2.1. Given  (X,��), iϵ{1,2} be an NFTS with neutrosophic fuzzy ideal L on X, μ, σ, uϵI�. Then <µ,σ,u>  
is said to be : 

 (i) Neutrosophic fuzzy pairwise τ∗
�-closed,i∈{1,2} may have two types 

HP
Typewriter
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Type 1: if µ*≤µ, u*≥ u, σ*≤σ . 

Type 2: if µ*≤µ, u*≥ u, σ*≥σ 

 (or PN-*closed) if <µ,σ,u>* ≤ <µ,σ,u>  

     (ii) Fuzzy neutrosophic pairwise NPL-dense – in – itself  may have two types 

Type 1: if µ*≤µ,u*≥ u, σ*≤σ . 

Type 2: if µ*≤µ,u*≥ u, σ*≥σ 

 (or PN*-dense- in – itself ) if <µ,σ,u>  ⊆<µ,σ,u> *. 

     (iii) Neutrosophic fuzzy pairwise*-perfect if <µ,σ,u> is PN*-closed and PN*- dense – in itself. 

Theorem 2.1: Given  (X,��), iϵ{1,2} be a nfbts with neutrosophic fuzzy ideal L on X , μ, σ, uϵI� then <µ,σ,u>  is  

(i) PN*- closed iff  Ncl*(<µ,σ,u>  ) =<µ,σ,u>  . 

(ii) PN*- dense – in – itself iff  Ncl*(<µ,σ,u> )= <µ,σ,u> *. 

(iii) PN*- perfect iff  Ncl*(<µ,σ,u> )= <µ,σ,u>*=<µ,σ,u> . 

Proof: Follows directly from the neutrosophic fuzzy pairwise closure operator Ncl* for a neutrosophic fuzzy pairwise 

τ∗
�(L), i ∈ {1,2} in  and Definition 2.1. 

Remark 2.1: One can deduce that  

(i) Every PN*-dense- in – itself is a neutrosophic fuzzy pairwise dense set. 

(ii) Every neutrosophic fuzzy pairwise closed (resp. neutrosophic fuzzy pairwise open) set is PN*-closed (resp. 

PN�∗
� − open, � ∈ {1,2}). 

Corollary 2.1: Given  (X,��), iϵ{1,2} be a nfbts with neutrosophic fuzzy ideal L on X , < μ, σ, u > ϵτ� then we have : 

(i) If <µ,σ,u>  is PN*-closed then <µ,σ,u>* ≤ Nint(<µ,σ,u> ) ≤ Ncl(<µ,σ,u> ). 

(ii) If <µ,σ,u>   is PN*-dense- itself then Nint(<µ,σ,u>) ≤ <µ,σ,u>*. 

(iii) If <µ,σ,u>   is PN*- perfect then Nint(<µ,σ,u>) = Ncl(<µ,σ,u>) = <µ,σ,u>*. 

Proof: Obvious. 

Theorem 2.2: Given  (X,��), iϵ{1,2} be a nfbts with neutrosophic fuzzy ideal L�on X , μ, σ, uϵI� then we have the 

following: <µ,σ,u> is neutrosophic fuzzy pairwise α - closed iff <µ,σ,u>   is PN*- closed. 

Proof: It s̓ clear. 

Corollary 2.2: For a nbts (X,��), iϵ{1,2} with neutrosophic fuzzy ideal L on X , μ, σ, uϵI�, the following holds: 

(i) If <µ,σ,u> ∈PNC(X) then <µ,σ,u> is PN*- closed. 
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(ii) If <µ,σ,u> ∈PNβC(X) then Nint (Nint(<µ,σ,u>*)) ≤ <µ,σ,u>. 

(iii) If <µ,σ,u> ∈PNSC(X) then Nint(<µ,σ,u>*) ≤ <µ,σ,u>. 

Proof: Obvious. 

3. Neutrosophic Fuzzy Pairwise L-Open and Neutrosophic Fuzzy Pairwise L- Closed Sets. 

Definition 3.1. Given  (X,��), iϵ{1,2} be a NFBTS with neutrosophic fuzzy ideal L on X , μ, σ, uϵI� and <µ,σ,u> is 

called a neutrosophic fuzzy pairwise �L -open set iff there exists <ξ, ρ, θ > ϵτ�, iϵ{1,2}, P =< p�, p�, p� > such that 

< μ, σ, u > ⊆< ξ, ρ, θ >⊆ P(< μ, σ, u >∗)(L, τ�), iϵ{1,2}. 

               We will denote the family of all neutrosophic fuzzy pairwise  NL –open (X,τ�) = μ, σ, uϵI�: < μ, σ, u > ⊆

τ� − Nint[P(< μ, σ, u >∗)(L, τ�) ]and < μ, σ, u >⊆ τ� − Nint[P(< μ, σ, u >∗)(L, τ�)], iϵ{1,2} (simplify NPLO(X)) 

when there is no chance for confusion. 

 

Theorem 3.1: Let  (X,τ�), iϵ{1,2} be a nfbts with neutrosophic fuzzy ideal L, then < μ, σ, u > ϵNPOL(X)  

iff < μ, σ, u >⊆ τ� − int�P(< μ, σ, u >∗)(L, τ�)�for iϵ{1,2}, P =< p�, p�, p� >. 

Proof: Assume that < μ, σ, u > ϵNPOL(X) then Definition 3.1.1. there exists <ξ, ρ, θ > ϵτ�  

such that < μ, σ, u >⊆ < ξ, ρ, θ >⊆ P(< μ, σ, u >∗)(L, τ�), iϵ{1,2}. But Nint�P(< μ, σ, u >∗)� ⊆ P(< μ, σ, u >∗),   

put   <ξ, ρ, θ >= Nint�P(< μ, σ, u >∗)�. Hence < μ, σ, u >⊆ Nint�P(< μ, σ, u >∗)�. 

Conversely < μ, σ, u >  ⊆  Nint(P(< μ, σ, u >∗)) ⊆ P(< μ, σ, u >∗).  

Then there exists <ξ, ρ, θ >= Nint(P(< μ, σ, u >∗))ϵτ�. Hence < μ, σ, u > in NPLO(X). 

Definition 3.2. The largest τ� − NPL − open(simply τ� − NPLO(X)) set contained in < μ, σ, u > is called a         

τ� − NPL − neutrosophic interior of < μ, σ, u >. The complement of the neutrosophic fuzzy pairwise NL-open 

subset of X is a neutrosophic fuzzy pairwise NL-closed subset of X (simply NPLC(X)). 

 We denoted by NPL-Nint(< μ, σ, u >). 

Theorem 3.2. Let (X,τ�), iϵ{1,2} be a nfbts with neutrosophic fuzzy ideal L, μ, σ, uϵI� and j is an arbitrary set then  

i- The union of neutrosophic fuzzy pairwise NL-open subsets may be neutrosophic fuzzy neutrosophic pairwise NL-

open. 

ii- If ν =< ν �, ν �, ν � > is neutrosophic fuzzy pairwise open and <µ,σ,u> may be neutrosophic fuzzy pairwise NL-

open subset of  X. Then < μ, σ, u >∩ ν may be pairwise NL-open subset. 

Proof. (i) Let {< μ, σ, u >�: Jϵj} be a family of NPLO(X). Then for each 

 Jϵj, < μ, σ, u >�⊆ τ� − Nint(p < μ, σ, u >∗
�
)  

and so Y� < μ, σ, u >�⊆ Y�τ� − Nint �p < μ, σ, u >∗
�
� ⊆ τ� − Nint(Y�p < μ, σ, u >∗

�
)∗. 



International Journal of Neutrosophic Science (IJNS)                                                 Vol.  8, No.1 ,  PP.44-49 , 2020 

 

DOI: 10.5281/zenodo.3900338 
 

 47

(ii) Assume that ν =< ν �, ν �, ν � > is neutrosophic fuzzy pairwise open and <µ,σ,u> may be neutrosophic fuzzy 

pairwise NL-open subsets of X.  

Then < μ, σ, u >∩ ν ⊆ ν ∩ �τ� − Nint�P(< μ, σ, u >∗)�� ⊆ τ� − Nint�ν ∩ P(< μ, σ, u >∗)� ⊆ 

τ� − NintP(ν ∩< μ, σ, u >)∗. 

Definition 3.3. Let (X,��), iϵ{1,2} be a nfbts with neutrosophic fuzzy ideal L on X, μ, σ, uϵI�. Then <µ,σ,u>  is said to 

be neutrosophic fuzzy. 

i- τ∗
� -  closed iff τ∗

� − �cl∗(< μ, σ, u >  ) =< μ, σ, u >. 

ii- τ∗
� − dense − in − itself if < μ, σ, u >⊆ P(< μ, σ, u >∗)(L, τ�). 

iii- τ∗
� − perfect if < μ, σ, u >  is τ∗

� −  closed and τ∗
� − dense − in itself. 

Proof. Follows directly from the neutrosophic fuzzy closure operator for �∗
�  and Definition 3.1.  

Theorem 3.3: Given  (X,��), iϵ{1,2} a nfbts with neutrosophic fuzzy ideal L on X, μ, σ, uϵI�, then the following 

holds: 

(i) If <µ,σ,u> is both neutrosophic fuzzy pairwise NL-open and τ∗
� -perfect then <µ,σ,u> may be neutrosophic 

fuzzy pairwise open. 

(ii) If <µ,σ,u> is both neutrosophic fuzzy pairwise open and τ∗
� dense – in – itself then <µ,σ,u> may be 

neutrosophic fuzzy pairwise NL-open. 

Proof. Follows from the definitions.  

Corollary 3.1. For a neutrosophic fuzzy subset <µ,σ,u> of a nfbts (X,��), iϵ{1,2} with neutrosophic fuzzy ideal 

L on X, we have: 

(i) If <µ,σ,u> is τ∗
� − closed and NPL − open then Nint(< μ, σ, u >) = Nint(P(< μ, σ, u >))∗. 

(ii) If <µ,σ,u> is τ∗
� − perfect and NPL − open then < μ, σ, u > = Nint(P(< μ, σ, u >∗)). 

 

Theorem 3.4: If (X,��), iϵ{1,2} a nfbts with neutrosophic fuzzy ideal L and μ, σ, uϵI� then  

(i) < μ, σ, u >∩ Nint(P(< μ, σ, u >∗)) may be a neutrosophic fuzzy NL-open set. 

(ii) NPL τ� − Nint(< μ, σ, u >) = 0� iff  Nint(P(< μ, σ, u >∗)) = 0�. 

Proof. (i) Since Nint�P(< μ, σ, u >∗)� = P(< μ, σ, u >∗) ∩ Nint�P(< μ, σ, u >∗)�, then  

Nint(P(< μ, σ, u >∗)) = P(< μ, σ, u >∗) ∩ Nint P(< μ, σ, u >∗) ⊆ P((< μ, σ, u >) ∩ (< μ, σ, u >∗))∗. Thus  

< μ, σ, u >∩ P(< μ, σ, u >∗) ⊆ (< μ, σ, u >∩ (< μ, σ, u >∩ Nint P�P(< μ, σ, u >∗)�
∗

⊆ Nint P(< μ, σ, u >) ∩

Nint P(P(< μ, σ, u >∗))∗  

Hence   < μ, σ, u >∩ Nint �P(< μ, σ, u >∗)� in NPLO(X). 
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(ii) Let NPLτ� − Nint(< μ, σ, u >) = 0�, then < μ, σ, u > ∩ P(< μ, σ, u >∗) = 0�, implies  

Ncl�< μ, σ, u >∩ Nint P(< μ, σ, u >∗)� = 0�  and so                          

< μ, σ, u >∩ Nint P(< μ, σ, u >∗) = 0�. Conversely assume that Nint P(< μ, σ, u >∗) = 0�, 

  then  < μ, σ, u >∩ Nint P(< μ, σ, u >∗) = 0� .  Hence NPLτ� − Nint(< μ, σ, u >) = 0�.  

Theorem 3.5: If (X,��), iϵ{1,2} a nfbts with neutrosophic fuzzy ideal L on X, μ, σ, uϵI�,  

then NPLτ� − Nint(< μ, σ, u >) =< μ, σ, u >∧ Nint P(< μ, σ, u >∗). 

Proof. The first implication follows from Theorem 3.1.1 that is 

 < μ, σ, u >∧ p < μ, σ, u >∗≤ NPL − Nint(< μ, σ, u > )                              (1)      

For the reverse inclusion, if <ξ, ρ, θ > in NPLO(X) and < ξ, ρ, θ >≤< μ, σ, u >  then P(< ξ, ρ, θ >∗) ≤

P(< μ, σ, u >∗) and hence   Nint P(< ξ, ρ, θ >∗) ≤ Nint P(< μ, σ, u >∗). This implies                                                              

<ξ, ρ, θ >=< ξ, ρ, θ >∧ Nint P(< ξ, ρ, θ >∗) ≤< μ, σ, u > ∧ P(< μ, σ, u >∗). 

Thus NPLτ� − Nint(< μ, σ, u >) ≤< μ, σ, u > ∧ P(< μ, σ, u >∗)                (2) 

From (1) and (2) we have the result. 

Definition 3.4: Given (X,��), iϵ{1,2} a nfbts with neutrosophic fuzzy ideal L and ξ, ρ, θϵI�,   < ξ, ρ, θ > is called 

neutrosophic fuzzy pairwise NL-closed set if its complement is neutrosophic fuzzy NL-open set. We will 

denote the family of neutrosophic fuzzy NL-closed sets by NPLC(X). 

Theorem 3.6: Given (X,��), iϵ{1,2} a nfbts with neutrosophic fuzzy ideal L and ξ, ρ, θϵI�,  < ξ, ρ, θ >

η is neutrosophic fuzzy  NL − closed, then P((Nint < ξ, ρ, θ >)∗) ≤< ξ, ρ, θ > . 

Proof. It̕ s clear. 

Theorem 3.7: Given (X,τ) be a nfbts with neutrosophic fuzzy ideal L on X and  ξ, ρ, θϵI� such that 

 P((Nint < ξ, ρ, θ >)∗�) = Nint P ��< ξ, ρ, θ >�∗
 ��,    

   then <  ξ, ρ, θ > in NPLC(X) iff P((Nint < ξ, ρ, θ >)∗) ≤< ξ, ρ, θ >. 

Proof. (Necessity) Follows immediately from the above theorem. (Sufficiency). 

 Let P((Nint < ξ, ρ, θ >)∗) ≤ < ξ, ρ, θ >, then    < ξ, ρ, θ >�≤ (P( Nint < ξ, ρ, θ >))∗� = Nint < ξ, ρ, θ >�∗
, from 

the hypothesis.            

    Hence < ξ, ρ, θ >� in NPLO(X). Thus < ξ, ρ, θ > in NPLC(X). 

Corollary 3.2: For a nfbts (X,��), iϵ{1,2} with neutrosophic fuzzy ideal L on X the following holds: 

(i)  The union of neutrosophic fuzzy NPL-closed set and neutrosophic fuzzy NP-closed set may be a 

neutrosophic fuzzy NPL-closed set. 
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(ii) The union of neutrosophic fuzzy  NPL-closed and neutrosophic fuzzy  NPL-closed may be neutrosophic 

fuzzy  NPL-closed. 

 
Conclusions    
The notions of the sets and functions in neutrosophic fuzzy bitopological spaces are highly developed and 

several characterizations have already been obtained. These are used extensively in many practical and 

engineering problems, the computational topology for geometric design, computer-aided geometric design, 

engineering design research, Geographic Information System (GIS) and mathematical sciences. We are in 

the process of preparing a statistical model for neutrosophic bitopological layers for geographic information 

systems. 
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Abstract
This paper presents the refinement of neutrosophic hypervector spaces and studies some of its basic properties.
Some basic definitions and important results are presented. The paper also establishes the existence of a good
linear transformation between a weak refined neutrosophic hypervector space V (I1, I2) and a weak neutro-
sophic hypervector space V (I).
Keywords: Neutrosophy, neutrosophic hypervector space, neutrosophic subhypervector space, refined neutro-
sophic hypervector space, refined neutrosophic subhypervector space , refined neutrosophic hypervector space
homomorphism.

1 Introduction and Preliminaries
The concept of algebraic hyperstructure was first introduced by Marty [25]. He presented the definition of a
hypergroup, studied its properties and applied them to study the groups of rational algebraic functions. Also,
Marty used the new approach to solve several problems of the non-commutative algebra. Since then, several
researchers have been working on this new field of modern algebra and developed it to a very large extent.
M. Krasner [26], introduced the notions of hyperring and hyperfield and used them as technical tools in the
study of the approximation of valued fields. There exist several types of hyperrings, some of which are: addi-
tive hyperring, multiplicative hyperring and general hyperrings. An important class of additive hyperrings is
Krasner hyperrings [23, 29, 34].
A class of hyperrings (R,+, .) where ′′+′′ and ′′·′′ are hyperoperations was introduced by De Salvo [24]. This
class of hyperrings has been further studied by Asokkumar [9], Asokkumar and Velrajan [10, 11, 28] and Davvaz
and Leoreanu-Fotea [23]. Mittas in [27] introduced the theory of canonical hypergroups. J. Mittas was the
first who studied them independently from their operations. Some connected hyperstructures with canonical
hypergroups were introduced and analyzed by P. Corsini [21, 22], P. Bonansinga [19, 20], and K. Serafimidis in
[32, 33]. Further contributions to the theory of hyperstructures can be found in the books of P. Corsini [21], T.
Vougiouklis , P. Corsini and V. Leoreanu [22], and Davvaz and V. Leoreanu [23]. The notion of hypervector
spaces was introduced by M. Scafati Tallini . In the definition [31] of hypervector spaces, M. Scafati Tallini
considered the field as the usual field. In [30], Sanjay Roy and T. K. Samanta generalized the notion of hyper-
vector space by considering the hyperfield and considering the multiplication structure of a vector by a scalar
as a hyperoperation like M. Scafati Tallini and they both called the hyperstructure a hypervector space. They
established basic properties of hypervector space and thereafter the notions of linear combinations, linearly
dependence, linearly independence, Hamel basis were introduced and several important properties like dele-
tion theorem, extension theorem were developed.

Neutrosophy is a new branch of philosophy that studies the origin, nature and scope of neutralities, as well
as their interactions with different ideational spectra. Neutrosophic set and neutrosophic logic were introduced
in 1995 by Smarandache as generalizations of fuzzy logic/set [43] and respectively intuitionistic fuzzy logic/set
[13]. In neutrosophic logic, each proposition has a degree of truth (T ), a degree of indeterminancy (I) and
a degree of falsity (F ), where T, I, F are standard or non-standard subsets of ]−0, 1+[ as can be seen in
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[35, 36]. A comprehensive review of neutrosophic set, neutrosophic soft set, neutrosophic topological spaces,
neutrosophic algebraic structures and new trends in neutrosophic theory can be found in [3, 14–18, 37–42].

Agboola and Davvaz introduced and studied neutrosophic hypergroups and presented some of their ele-
mentary properties in [7] and in [8], they studied and presented basic properties of canonical hypergroups and
hyperrings in a neutrosophic environment, Quotient neutrosophic canonical hypergroups and neutrosophic hy-
perrings were also presented. In [5], Agboola and Akinleye studied neutrosophic hypervector spaces and they
presented their basic properties.

In [36], Smarandache introduced the concept of refined neutrosophic logic and neutrosophic set which al-
lows for the splitting of the components < T, I, F > into the form < T1, T2, · · · , Tp; I1, I2, ·, Ir;
F1, F2, · · · , Fs >. This refinement has given rise to the extension of neutrosophic numbers a+ bI into refined
neutrosophic numbers of the form (a + b1I1 + b2I2 + · · · + bnIn) are real or complex numbers which has
led to the introduction of refined neutrosophic set. Refined neutrosophic set has been applied in the devel-
opment of refined neutrosophic algebraic structures and refined neutrosophic hyperstructures. Agboola in [4]
introduced the concept of refined neutrosophic algebraic structures and studied refined neutrosophic groups in
particular. Since then, several researchers in this field have studied this concept and a great deal of results have
been published. Recently for instance, Adeleke et al published results on refined neutrosophic rings,refined
neutrosophic subring in [1] and in [2], they presented some results on refined neutrosophic ideals and refined
neutrosophic homomorphism. The present paper is devoted to the study of refined neutrosophic hypervector
space and presents some elementary properties of this structure.
For the purposes of this paper, it will be assumed that I splits into two indeterminacies I1 [contradiction (true
(T ) and false (F ))] and I2 [ignorance (true (T ) or false (F ))]. It then follows logically that:

I1I1 = I21 = I1,
I2I2 = I22 = I2, and
I1I2 = I2I1 = I1.

Definition 1.1. Let (F,+, .) be any field. The triple (F (I),+, ·) is called a neutrosophic field generated by
F and I. (Q(I),+, ·) and (R(I),+, ·) are examples of neutrosophic fields.

Definition 1.2. 6 Let (V,+, .) be any vector space over a field K and let V (I) =< V ∪ I > be a neutrosophic
set generated by V and I. The triple (V (I),+, ·) is called a weak neutrosophic vector space over a field K. If
V (I) is a neutrosophic vector space over a neutrosophic field K(I), then V (I) is called a strong neutrosophic
vector space. The elements of V (I) are called neutrosophic vectors and the elements of K(I) are called
neutrosophic scalars.
If u = a+ bI, v = c+ dI ∈ V (I) where a, b, c and d are vectors in V and α = k +mI ∈ K(I) where k and
m are scalars in K, then :

u+ v = (a+ bI) + (c+ dI) = (a+ c) + (b+ d)I,

and
αu = (k +mI) · (a+ bI) = k · a+ (k · b+m · a+m · b)I.

Definition 1.3. 23 Let H be a non-empty set and ◦ : H × H −→ P ∗(H) be a hyperoperation. The couple
(H, ◦) is called a hypergroupoid. For any two non-empty subsets A and B of H and x ∈ H, we define

A ◦B =
⋃

a∈A,b∈B

a ◦ b, A ◦ x = A ◦ {x} and x ◦B = {x} ◦B.

Definition 1.4. 23 A hypergroupoid (H, ◦) is called a semihypergroup if for all a, b, c of H we have
(a ◦ b) ◦ c = a ◦ (b ◦ c), which means that ⋃

u∈a◦b

u ◦ c =
⋃

v∈b◦c

a ◦ v.

A hypergroupoid (H, ◦) is called a quasihypergroup if for all a ∈ H we have a ◦ H = H ◦ a = H. This
condition is also called the reproduction axiom.

Definition 1.5. 23 A hypergroupoid (H, ◦) which is both a semihypergroup and a quasi- hypergroup is called
a hypergroup.

Definition 1.6. 23 Let (H, ◦) and (H ′, ◦′) be two hypergroupoids. A map φ : H −→ H ′, is called
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1. an inclusion homomorphism if for all x, y of H, we have φ(x ◦ y) ⊆ φ(x) ◦′ φ(y);

2. a good homomorphism if for all x, y of H, we have φ(x ◦ y) = φ(x) ◦′ φ(y).

Definition 1.7. 23 Let (H1, ?1) and (H2, ?2) be any two refined hypergroupoids and let f : H1 −→ H2 be a
map. We say that :

1. f is a homomorphism if for all x, y of H1,

f(x ?1 y) ⊂ f(x) ?2 f(y);

2. f is a good homomorphism if for all x, y of H1,

f(x ?1 y) = f(x) ?2 f(y);

3. f is a strong homomorphism on the left if

f(x) ∈ f(y) ?2 f(z) =⇒ ∃ y′ ∈ H1 3 f(y) = f(y′) and x ∈ y′ ?1 z.

Similarly, we can define a homomorphism , which is strong on the right. If f is strong on the right and
on the left we say that f is a strong homomorphism.

Definition 1.8. 23 Let H be a non-empty set and let + be a hyperoperation on H. The couple (H,+) is called
a canonical hypergroup if the following conditions hold:

1. x+ y = y + x, for all x, y ∈ H,

2. x+ (y + z) = (x+ y) + z, for all x, y, z ∈ H,

3. there exist a neutral element 0 ∈ H such that x+ 0 = {x} = 0 + x, for all x ∈ H,

4. for every x ∈ H, there exist a unique element −x ∈ H such that 0 ∈ x+ (−x) ∩ (−x) + x,

5. z ∈ x+ y implies y ∈ −x+ z and x ∈ z − y, for all x, y, z ∈ H.

Definition 1.9. 23 A hyperring is a triple (R,+, ·) satisfying the following axioms:

1. (R,+) is a canonical hypergroup.

2. (R, ·) is a semihypergroup such that x · 0 = 0 · x = 0 for all x ∈ R, that is, 0 is a bilaterally absorbing
element.

3. For all x, y, z ∈ R

(a) x · (y + z) = x · y + x · z and

(b) (x+ y) · z = x · z + y · z.

That is, the hyperoperation · is distributive over the hyperoperation +.

Definition 1.10. 5 Let P (V ) be the power set of a set V , P ∗(V ) = P (V )− {∅} and let K be a field.
The quadruple (V,+, •,K) is called a hypervector space over a field K if:

1. (V,+) is an abelian group.

2. • : K × V −→ P ∗(V ) is a hyperoperation such that for all k,m ∈ K and u, v ∈ V, the following
conditions hold:

(a) (k +m) • u ⊆ (k • u) + (m • u),
(b) k • (u+ v) ⊆ (k • u) + (k • v),
(c) k • (m • u) = (km) • u, where k • (m • u) = {k • v : v ∈ m • u},
(d) (−k) • u = k • (−u),
(e) u ∈ 1 • u.
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A hypervector space is said to be strongly left distributive (resp. strongly right distributive) if equality holds in
(a) (resp. in (b)). (V,+, •,K) is called a strongly distributive hypervector space if it is both strongly left and
strongly right distributive.

Definition 1.11. 12 Let V and W be hypervector spaces over K. A mapping T : V −→W is called

1. weak linear transformation iff

T (x+ y) = T (x) + T (y) and T (a ◦ x) ∩ a ◦ T (x) 6= ∅, ∀ x, y ∈ V, a ∈ K,

2. linear transformation iff

T (x+ y) = T (x) + T (y) and T (a ◦ x) ⊆ a ◦ T (x), ∀ x, y ∈ V, a ∈ K,

3. good linear transformation iff

T (x+ y) = T (x) + T (y) and T (a ◦ x) = a ◦ T (x), ∀ y ∈ V, a ∈ K.

Definition 1.12. 7 Let (H, ?) be any hypergroup and let < H ∪ I >= {x = (a, bI) : a, b ∈ H}.
The couple N(H) = (< H ∪ I >, ?) is called a neutrosophic hypergroup generated by H and I under the
hyperoperation ?. The part a is called the non-neutrosophic part of x and the part b is called the neutrosophic
part of x.
If x = (a, bI) and y = (c, dI) are any two elements of N(H), where a, b, c, d ∈ H, then
x ? y = (a, bI) ? (c, dI) = {(u, vI)|u ∈ a ? c, v ∈ a ? d ∪ b ? c ∪ b ? d} = (a ? c, (a ? d ∪ b ? c ∪ b ? d)I).
Note that a ? c ⊆ H and (a ? d ∪ b ? c ∪ b ? d) ⊆ H.

Definition 1.13. 8 A neutrosophic hyperring is a triple (N(R),+, .) satisfying the following axioms :

1. (N(R),+) is a neutrosophic canonical hypergroup.

2. (N(R), .) is a neutrosophic semihypergroup.
For all (a, bI), (c, dI), (e, fI) ∈ N(R),

(a) (a, bI).((c, dI) + (e, fI)) = (a, bI).(c, dI) + (a, bI).(e, fI) and

(b) ((c, dI) + (e, fI)).(a, bI) = (c, dI).(a, bI) + (e, fI).(a, bI).

Definition 1.14. 6 Let (V,+, •,K) be any strongly distributive hypervector space over a field K and let
V (I) =< V ∪ I >= {u = (a, bI) : a, b ∈ V } be a set generated by V and I.
The quadruple (V (I),+, •,K) is called a weak neutrosophic strongly distributive hypervector space over a
field K.
For every u = (a, bI), v = (c, dI) ∈ V (I) and k ∈ K, then

u+ v = (a+ c, (b+ d)I) ∈ V (I),

k • u = {(x, yI) : x ∈ k • a, y ∈ k • b}.

If K is a neutrosophic field, that is, K = K(I), then the quadruple (V (I),+, •,K(I)) is called a strong neu-
trosophic strongly distributive hypervector space over a neutrosophic field K(I). For every u = (a, bI), v =
(c, dI) ∈ V (I) and α = (k,mI) ∈ K(I), we define

u+ v = (a+ c, (b+ d)I) ∈ V (I),

α • u = {(x, yI) : x ∈ k • a, y ∈ k • b ∪m • a ∪m • b}.

The zero neutrosophic vector of V (I), (0, 0I), is denoted by θ, the zero element 0 ∈ K is represented by
(0, 0I) in K(I) and 1 ∈ K is represented by (1, 0I) in K(I).

Definition 1.15. 4 If ∗ : X(I1, I2)×X(I1, I2) 7→ X(I1, I2) is a binary operation defined on X(I1, I2), then
the couple (X(I1, I2), ∗) is called a refined neutrosophic algebraic structure and it is named according to the
laws (axioms) satisfied by ∗.
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Definition 1.16. 4 Let (X(I1, I2),+, .) be any refined neutrosophic algebraic structure where ′′+′′ and ′′.′′ are
ordinary addition and multiplication respectively.
For any two elements (a, bI1, cI2), (d, eI1, fI2) ∈ X(I1, I2), we define

(a, bI1, cI2) + (d, eI1, fI2) = (a+ d, (b+ e)I1, (c+ f)I2),

(a, bI1, cI2).(d, eI1, fI2) = (ad, (ae+ bd+ be+ bf + ce)I1, (af + cd+ cf)I2).

Definition 1.17. 4 If ′′+′′ and ′′.′′ are ordinary addition and multiplication, Ik with k = 1, 2 have the following
properties:

1. Ik + Ik + · · ·+ Ik = nIk.

2. Ik + (−Ik) = 0.

3. Ik · Ik · · · · Ik = Ink = Ik for all positive integers n > 1.

4. 0 · Ik = 0.

5. I−1k is undefined and therefore does not exist.

2 Formulation of Refined Neutrosophic Hypervector Space
This section shows the formulation of refined neutrosophic hypervector space and present some of its proper-
ties.

Definition 2.1. Let (V,+, •,K) be any strongly distributive hypervector space over a field K and let

V (I1, I2) =< V ∪ (I1, I2) >= {u = (a, bI1, cI2) : a, b, c ∈ V }

be a set generated by V , I1 and I2. The quadruple (V (I1, I2),+, •,K) is called a weak refined neutrosophic
strongly distributive hypervector space over a field K.
For every element u = (a, bI1, cI2), v = (d, eI1, fI2) ∈ V (I1, I2), and k ∈ K we define

u+ v = (a+ d, (b+ e)I1, (c+ f)I2) ∈ V (I1, I2),

k • u = {(x, yI1, zI2) : x ∈ k • a, y ∈ k • b, z ∈ k • c}.

If K is a refined neutrosophic field, that is, K = K(I1, I2), then the quadruple (V (I1, I2),+, •,K(I1, I2)) is
called a strong refined neutrosophic strongly distributive hypervector space over a refined neutrosophic field
K(I1, I2).
For every element u = (a, bI1, cI2), v = (d, eI1, fI2) ∈ V (I1, I2), and α = (k,mI1, nI2) ∈ K(I1, I2), we
define

u+ v = (a, bI1, cI2) + (d, eI1, fI2) = (a+ d, (b+ e)I1, (c+ f)I2),

α • u = {(x, yI1, zI2) : (x ∈ k • a, y ∈ k • b ∪m • a ∪m • b ∪m • c ∪ n • b, z ∈ k • c ∪ n • a ∪ n • c)}.

The elements of V (I1, I2) are called refined neutrosophic vectors and the elements of K(I1, I2) are called
refined neutrosophic scalars. The zero refined neutrosophic vector of V (I1, I2), (0, 0I1, 0I2), is denoted by θ,
the zero element 0 ∈ K is represented by (0, 0I1, 0I2) in K(I1, I2) and 1 ∈ K is represented by
(1, 0I1, 0I2) ∈ K(I1, I2).

Example 2.2. 1. Let r be a fixed positive integer and let
V = Q(I1, I2)(

√
r) = {(a, b

√
rI1, c

√
rI2) : a, b, c ∈ Q, r ∈ Z+}. Then V is a weak refined

neutrosophic strongly distributive hypervector space over Q. If u = (a, b
√
rI1, c

√
rI2) and v =

(d, e
√
rI1, f

√
rI2) then u+ v = (a+ d), (b+ e)

√
rI1, (c+ f)

√
rI2 is again in V.

Also, for α ∈ Q, then

α • u = {(x, y
√
rI1, z

√
rI2) : x ∈ α • a, y ∈ α • b, z ∈ α • c} ∈ V.
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2. Let V (I1, I2) = R(I1, I2) and let K = R. For all u = (a, bI1, cI2), v = (d, eI1, fI2) ∈ V (I1, I2) and
k ∈ K, define:

u+ v = (a+ d, (b+ e)I1, (c+ f)I2)

k • u = {(x, yI1, zI2) : x ∈ k • a, y ∈ k • b, z ∈ k • c}.

Then (V (I1, I2),+, •,K) is a weak neutrosophic strongly distributive hypervector space over the field
K.

Example 2.3. 1. Let V (I1, I2) = R3(I1, I2) and let K = R(I1, I2). For all
u = ((a, bI1, cI2), (d, eI1, fI2), (g, hI1, jI2)), v = ((a′, b′I1, c

′I2), (d
′, e′I1, f

′I2), (g
′, h′I1, j

′I2)) ∈
V (I1, I2) and α = (k,mI1, nI2) ∈ K(I1, I2), define :

u+v = ((a+a′, (b+ b′)I1, (c+ c
′)I2), (d+d

′, (e+e′)I1, (f +f
′)I2), (g+g

′, (h+h′)I1, (j+ j
′)I2)),

α • u = {((x1, y1I1, z1I2), (x2, y2I1, z2I2), (x3, y3I1, z3I2)) :
x1 ∈ k • a,
y1 ∈ k • b ∪m • a ∪m • b ∪m • c ∪ n • b,
z1 ∈ k • c ∪ n • a ∪ n • c,
x2 ∈ k • d,
y2 ∈ k • e ∪m • d ∪m • e ∪m • f ∪ n • e,
z2 ∈ k • f ∪ n • d ∪ n • f
x3 ∈ k • g,
y3 ∈ k • h ∪m • g ∪m • h ∪m • j ∪ n • h,
z3 ∈ k • j ∪ n • g ∪ n • j}.

Then (V (I1, I2),+, •,K(I1, I2)) is a strong refined neutrosophic hypervector space over the refined
neutrosophic field K(I1, I2).

2. Let V (I1, I2) = R2(I1, I2) and K = R define for all x = (u, v) ∈ V (I1, I2) with u = (a, bI1, cI2),
v = (d, eI1, fI2) and α ∈ K{

• : R× R2(I1, I2) −→ P ∗(R2(I1, I2)),
α • (u, v) = α • u× R(I1, I2).

OR
{

• : R× R2(I1, I2) −→ P ∗(R2(I1, I2)),
α • (u, v) = R(I1, I2)× α • v.

Then (V (I1, I2),+, •,K) is a weak refined neutrosophic strongly distributive hypervector space.
From now on, every weak(strong) refined neutrosophic strongly distributive hypervector space will sim-
ply be called a weak(strong) refined neutrosophic hypervector space.

Lemma 2.4. Let V (I1, I2) be a weak refined neutrosophic hypervector space over a field K. Then for all
k ∈ K and u = (a, bI1, cI2) ∈ V (I1, I2), we have

1. k • θ = {θ}.

2. k • u = {θ} implies that k = θ or u = θ.

3. −u ∈ (−1) • u

Proof. 1. k • θ = k • (0 • θ) = (k.0) • θ = 0 • θ = θ

2. Let k ∈ K and u ∈ V be such that k • u = {θ}.
If k = 0, then 0 • u = θ.
If k 6= 0, then k−1 ∈ K. Therefore k • u = θ =⇒ k−1 • (k • u) = k−1 • θ
=⇒ (k−1.k) • u = θ =⇒ 1K • u = θ =⇒ u = θ.

Proposition 2.5. Every strong refined neutrosophic hypervector space is a weak refined neutrosophic hyper-
vector space.

Proof. Suppose that V (I1, I2) is a strong refined neutrosophic hypervector space over a refined neutrosophic
field K(I1, I2) say. Since K ⊆ K(I1, I2) for every field K, then we have that V (I1, I2) is also a weak refined
neutrosophic hypervector space.
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Proposition 2.6. Every weak refined neutrosophic hypervector space is a strongly distributive hypervector
space.

Proof. Suppose that V (I1, I2) is a weak refined neutrosophic hypervector space over a field K. Obviously,
(V (I1, I2),+) is an abelian group. Let u = (a, bI1, cI2), v = (d, eI1, fI2) ∈ V (I1, I2) and k,m ∈ K be
arbitrary. Then

(1) k • u+m • u = {(p, qI1, rI2) : p ∈ k • a, q ∈ k • b, r ∈ k • c}+
{(s, tI1, wI2) : s ∈ m • a, t ∈ m • b, w ∈ m • c}

= {(p+ s, (q + t)I1, (r + w)I2) : p+ s ∈ k • a+m • a, q + t ∈ k • b+m • b,
r + w ∈ k • c+m • c}.

And,
(k +m) • u = {(x, yI1, zI2) : x ∈ (k +m) • a, y ∈ (k +m) • b, z ∈ (k +m) • c}

= {(x, yI1, zI2) : x ∈ k • a+m • a, y ∈ k • b+m • b, z ∈ k • c+m • c}
= k • u+m • u.

(2) k • u+ k • v = {(p, qI1, rI2) : p ∈ k • a, q ∈ k • b, r ∈ k • c}+
{(s, tI1, wI2) : s ∈ k • d, t ∈ k • e, w ∈ k • f}

= {(p+ s, (q + t)I1, (r + w)I2) : p+ s ∈ k • a+ k • d, q + t ∈ k • b+ k • e,
r + w ∈ k • c+ k • f}.

And,
k • (u+ v) = k • (a+ d, (b+ e)I1, (c+ f)I2)

= {(x, yI1, zI2) : x ∈ k • (a+ d), y ∈ k • (b+ e), z ∈ k • (c+ f)}
= {(x, yI1, zI2) : x ∈ k • a+ k • d, y ∈ k • b+ k • e, z ∈ k • c+ k • f}
= k • u+ k • v.

(3) k • (m • u) = k • {(x, yI1, zI2) : x ∈ m • a, y ∈ m • b, z ∈ m • c}
= {(p, qI1, rI2) : p ∈ k • x, q ∈ k • y, r ∈ k • z}
= {(p, qI1, rI2) : p ∈ k • (m • a), q ∈ k • (m • b), r ∈ k • (m • c)}
= {(p, qI1, rI2) : p ∈ (km) • a, q ∈ (km) • b, r ∈ (km) • c}
= (km) • (a, bI1, cI2)
= (km) • u.

(4) (−k) • u = {(x, yI1, zI2) : x ∈ (−k) • a, y ∈ (−k) • b, z ∈ (−k) • c}
= {(x, yI1, cI2) : x ∈ k • (−a), y ∈ k • (−b), z ∈ k • (−c)}
= k • (−a,−bI1,−cI2)
= k • (−u).

(5) 1 • u = {(x, yI1, zI2) : x ∈ 1 • a, y ∈ 1 • b, z ∈ 1 • c}
= {(x, yI1, zI2) : x ∈ {a}, y ∈ {b}, z ∈ {c}}
= {(a, bI1, cI2)}.
=⇒ u ∈ 1 • u.

Accordingly, V (I1, I2) is a strongly distributive hypervector space.

Corollary 2.7. Every weak refined neutrosophic hypervector space which is strongly right distributive is
strongly left distributive .

Proof. The proof follows from the proof of Proposition 2.6 .

Proposition 2.8. Let (V1(I1, I2),+1, •1,K(I1, I2)) and (V2(I1, I2),+2, •2,K(I1, I2)) be two strong refined
neutrosophic hypervector spaces over a refined neutrosophic field K(I1, I2). Let
V1(I1, I2)× V2(I1, I2) =
{((a1, b1I1, c1I2), (a2, b2I1, c2I2)) : (a1, b1I1, c1I2) ∈ V1(I1, I2), (a2, b2I1, c2I2) ∈ V2(I1, I2)} and for all
u = ((a1, b1I1, cI2), (a2, b2I1, c2I2)), v = ((a′1, b

′
1I1, c

′
1I2), (a

′
2, b
′
2I2, c

′
2I2)) ∈ V1(I1, I2)× V2(I1, I2) and

α = (k,mI1, nI2) ∈ K(I1, I2), define:
u+ v = (((a1 + a′1), (b1 + b′1)I1, (c1 + c′1)I2), ((a2 + a′2), (b2 + b′2)I1, (c2 + c′2)I2)),
α • u = {((x, yI1, zI2), (p, qI1, rI2))}.
x ∈ k • a1,
y ∈ k • b1 ∪m • a1 ∪m • b1 ∪m • c1 ∪ n • b1,
z ∈ k • c1 ∪ n • a1 ∪ n • c1,
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p ∈ k • a2,
q ∈ k • b2 ∪m • a2 ∪m • b2 ∪m • c2 ∪ n • b2,
z ∈ k • c2 ∪ n • a2 ∪ n • c2.
Then (V1(I1, I2)× V2(I1, I2),+, •,K(I1, I2)) is a strong neutrosophic hypervector space.

Proof. Suppose that V1(I1, I2) and V2(I1, I2) are strong refined neutrosophic hypervector spaces over a refined
neutrosophic field K(I1, I2).
Let u = ((a1, b1I1, c1I2), (a2, b2I1, c2I2)), v = ((a′1, b

′
1I1, c

′
1I2), (a

′
2, b
′
2I2, c

′
2I2)) ∈ V1(I1, I2) × V2(I1, I2)

and α = (k,mI1, nI2), β = (k′,m′I1, n
′I2) ∈ K(I1, I2) be arbitrary.

1. We can easily show that (V1(I1, I2)× V2(I1, I2),+) is an abelian group.

2. Now we want to show that (α+ β) • u ⊆ α • u+ β • u.
Consider
(α+ β) • u = (k + k′, (m+m′)I1, (n+ n′)I2) • ((a1, b1I1, c1I2), (a2, b2I1, c2I2))
⊆ {((x, yI1, zI2), (p, qI1, rI2)) : x ∈ (k + k′) • a1, y ∈ (k + k′) • b1 ∪ (m+m′) • a1 ∪ (m+m′) •
b1 ∪ (m+m′) • c1 ∪ (n+ n′) • b1, z ∈ (k + k′) • c1 ∪ (n+ n′) • a1 ∪ (n+ n′) • c1,
p ∈ (k+k′)•a2, q ∈ (k+k′)• b2∪ (m+m′)•a2∪ (m+m′)• b2∪ (m+m′)• c2∪ (n+n′)• b2, z ∈
(k + k′) • c2 ∪ (n+ n′) • a2 ∪ (n+ n′) • c2}
= {((x, yI1, zI2), (p, qI1, rI2)) : x ∈ k •a1+k′ •a1, y ∈ k • b1+k′ • b1∪m•a1+m′ •a1∪m• b1+
m′ • b1 ∪m • c1 +m′ • c1 ∪ n • b1 + n′ • b1, z ∈ k • c1 + k′ • c1 ∪ n • a1 + n′ • a1 ∪ n • c1 + n′ • c1,
p ∈ k•a2+k′•a2, q ∈ k•b2+k′•b2∪m•a2+m′•a2∪m•b2+m′•b2∪m•c2+m′•c2∪n•b2+n′•b2, z ∈
k • c2 + k′ • c2 ∪ n • a2 + n′ • a2 ∪ n • c2 + n′ • c2}.
Now if we take x = s1 + s′1, y = t1 + t′1, z = w1 +w′1, p = s2 + s′2, q = t2 + t′2 and r = w1 +w′2 then
we have
{((s1+s′1, (t1+t′1)I1, (w1+w

′
1)I2), (s2+s

′
2, (t2+t

′
2)I1, (w1+w

′
1)I2)) : s1+s

′
1 ∈ k•a1+k′•a1, t1+

t′1 ∈ k • b1+k′ • b1∪m•a1+m′ •a1∪m• b1+m′ • b1∪m• c1+m′ • c1∪n• b1+n′ • b1, w1+w
′
1 ∈

k • c1 + k′ • c1 ∪ n • a1 + n′ • a1 ∪ n • c1 + n′ • c1,
s2+s

′
2 ∈ k•a2+k′•a2, t2+t′2 ∈ k•b2+k′•b2∪m•a2+m′•a2∪m•b2+m′•b2∪m•c2+m′•c2∪n•b2+

n′•b2, w2+w
′
2 ∈ k•c2+k′•c2∪n•a2+n′•a2∪n•c2+n′•c2}= {((s1, t1I1, w1I2), (s2, t2I1, w2I2)) :

s1 ∈ k•a1, t1 ∈ k•b1∪m•a1∪m•b1∪m•c1∪n•b1, w1 ∈ k•c1∪n•a1∪n•c1, s2 ∈ k•a2, t2 ∈
k•b2∪m•a2∪m•b2∪m•c2∪n•b2, w2 ∈ k•c2∪n•a2∪n•c2}+{((s′1, t′1I1, w′1I2), (s′2, t′2I1, w′2I2)) :
s′1 ∈ k′ • a1, t′1 ∈ k′ • b1 ∪m′ • a1 ∪m′ • b1 ∪m′ • c1 ∪ n′ • b1, w′1 ∈ k′ • c1 ∪ n′ • a1 ∪ n′ • c1,
s′2 ∈ k′ • a2, t′2 ∈ k′ • b2 ∪m′ • a2 ∪m′ • b2 ∪m′ • c2 ∪ n′ • b2, w′2 ∈ k′ • c2 ∪ n′ • a2 ∪ n′ • c2}
⊆ α • u+ β • u.
Then (α+ β) • u ⊆ α • u+ β • u.

3. Now we want to show that α • (u+ v) ⊆ α • u+ α • v
α • (u+ v) = (k,mI1, nI2) • ((a1 + a′1, (b1 + b′1)I1, (c1 + c′1)I2), (a2 + a′2, (b2 + b′2)I1, (c2 + c′2)I2))
⊆ {(x, yI1, zI2), (p, qI1, rI2) : x ∈ k • (a1 + a′1), y ∈ k • (b1 + b′1)∪m • (a1 + a′1)∪m • (b1 + b′1)∪
m • (c1 + c′1) ∪ n • (b1 + b′1), z ∈ k • (c1 + c′1) ∪ n • (a1 + a′1) ∪ n • (c1 + c′1),
p ∈ k • (a2 + a′2), q ∈ k • (b2 + b′2) ∪m • (a2 + a′2) ∪m • (b2 + b′2) ∪m • (c2 + c′2) ∪ n • (b2 + b′2),
r ∈ k • (c2 + c′2) ∪ n • (a2 + a′2) ∪ n • (c2 + c′2)}
= {(x, yI1, zI2), (p, qI1, rI2) : x ∈ k • a1 + k • a′1, y ∈ k • b1 + k • b′1 ∪m • a1 +m • a′1 ∪
m• b1+m• b′1∪m• c1+m• c′1∪n• b1+n• b′1, z ∈ k • c1+k • c′1∪n•a1+n•a′1∪n• c1+n• c′1,
p ∈ k•a2+k•a′2, q ∈ k•b2+k•b′2∪m•a2+m•a′2∪m•b2+m•b′2∪m•c2+m•c′2∪n•b2+n•b′2, r ∈
k • c2 + k • c′2 ∪ n • a2 + n • a′2 ∪ n • c2 + n • c′2}.
If we take x = s1 + s′1, y = t1 + t′1, z = w1 + w′1, p = s2 + s′2, q = t2 + t′2 and r = w1 + w′2 then we
have
{(s1+s′1, (t1+t′1)I1, (w1+w

′
1)I2), (s2+s

′
2, (t2+t

′
2)I1, (w2+w

′
2)I2) : s1+s

′
1 ∈ k•a1+k•a′1, t1+t′1 ∈

k • b1 + k • b′1 ∪m • a1 +m • a′1 ∪m • b1 +m • b′1 ∪m • c1 +m • c′1 ∪ n • b1 + n • b′1, w1 + w′1 ∈
k•c1+k•c′1∪n•a1+n•a′1∪n•c1+n•c′1, s2+s′2 ∈ k•a2+k•a′2, t2+t′2 ∈ k•b2+k•b′2∪m•a2+m•
a′2∪m•b2+m•b′2∪m•c2+m•c′2∪n•b2+n•b′2, w2+w

′
2 ∈ k•c2+k•c′2∪n•a2+n•a′2∪n•c2+n•c′2}

= {(s1, t1I1, w1I2), (s2, t2I1, w2I2) : s1 ∈ k • a1, t1 ∈ k • b1 ∪m • a1 ∪m • b1 ∪m • c1 ∪n • b1, w1 ∈
k•c1∪n•a1∪n•c1, s2 ∈ k•a2, t2 ∈ k•b2∪m•a2∪m•b2∪m•c2∪n•b2, w2 ∈ k•c2∪n•a2∪n•
c2} +{(s′1, t′1I1, w′1I2), (s′2, t′2I1, w′2I2) : s′1 ∈ k•a′1, t′1 ∈ k•b′1∪m•a′1∪m•b′1∪m•c′1∪n•b′1, w′2 ∈
k•c′1∪n•a′1∪n•c′1, s′2 ∈ k•a′2, t′2 ∈ k•b′2∪m•a′2∪m•b′2∪m•c′2∪n•b′2, w′2 ∈ k•c′2∪n•a′2∪n•c′2} ⊆
α • u+ α • v.
Then we have that α • (u+ v) ⊆ α • u+ α • v.
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4. α • (β •u) = α • {((x, yI1, zI2), (p, qI1, rI2)) : x ∈ k′ • a1, y ∈ k′ • b1 ∪m′ • a1 ∪m′ • b1 ∪m′ • c1 ∪
n′ • b1, z ∈ k′ • c1 ∪n′ • a1 ∪n′ • c1, p ∈ k′ • a2, q ∈ k′ • b2 ∪m′ • a2 ∪m′ • b2 ∪m′ • c2 ∪n′ • b2, r ∈
k′ • c2 ∪ n′ • a2 ∪ n′ • c2}
= {((x′, y′I1, z′I2), (p′, q′I1, r′I2)) : x′ ∈ k • x, y′ ∈ k • y ∪m • x ∪m • y ∪m • z ∪ n • y,
z′ ∈ k • z ∪ n • x ∪ n • z, p′ ∈ k • p, q′ ∈ k • q ∪m • p ∪m • q ∪m • r ∪ n • q,
z′ ∈ k • r ∪ n • p ∪ n • r}
= {((x′, y′I1, z′I2), (p′, q′I1, r′I2)) : x′ ∈ k • (k′ • a1), y′ ∈ k • (k′ • b1 ∪m′ • a1 ∪m′ • b1 ∪m′ •
c1 ∪ n′ • b1)∪m • (k′ • a1)∪m • (k′ • b1 ∪m′ • a1 ∪m′ • b1 ∪m′ • c1 ∪ n′ • b1)∪m • (k′ • c1 ∪ n′ •
a1 ∪ n′ • c1) ∪ n • (k′ • b1 ∪m′ • a1 ∪m′ • b1 ∪m′ • c1 ∪ n′ • b1),
z′ ∈ k•(k′ •c1∪n′ •a1∪n′ •c1)∪n•(k′ •a1)∪n•(k′ •c1∪n′ •a1∪n′ •c1), p′ ∈ k•(k′ •a2), q′ ∈
k • (k′ • b2 ∪m′ • a2 ∪m′ • b2 ∪m′ • c2 ∪ n′ • b2)∪m • (k′ • a2)∪m • (k′ • b2 ∪m′ • a2 ∪m′ • b2 ∪
m′ • c2 ∪n′ • b2)∪m • (k′ • c2 ∪n′ • a2 ∪n′ • c2)∪n • (k′ • b2 ∪m′ • a2 ∪m′ • b2 ∪m′ • c2 ∪n′ • b2),
z′ ∈ k • (k′ • c2 ∪ n′ • a2 ∪ n′ • c2) ∪ n • (k′ • a2) ∪ n • (k′ • c2 ∪ n′ • a2 ∪ n′ • c2)}
= {((x′, y′I1, z′I2), (p′, q′I1, r′I2)) : x′ ∈ (kk′)•a1, y′ ∈ (kk′)•b1∪(km′)•a1∪(km′)•b1∪(km′)•
c1∪ (kn′)• b1∪ (mk′)•a1∪ (mk′)• b1∪ (mm′)•a1∪ (mm′)• b1∪ (mm′)• c1∪ (mn′)• b1∪ (mk′)•
c1 ∪ (mn′) • a1 ∪ (mn′) • c1 ∪ (nk′) • b1 ∪ (nm′) • a1 ∪ (nm′) • b1 ∪ (nm′) • c1 ∪ (nn′) • b1, z′ ∈
(kk′)•c1∪(kn′)•a1∪(kn′)•c1∪(nk′)•a1∪(nk′)•c1∪(nn′)•a1∪(nn′)•c1, p′ ∈ (kk′)•a2, q′ ∈
(kk′) • b2 ∪ (km′) • a2 ∪ (km′) • b2 ∪ (km′) • c2 ∪ (kn′) • b2 ∪ (mk′) • a2 ∪ (mk′) • b2 ∪ (mm′) • a2 ∪
(mm′) • b2 ∪ (mm′) • c2 ∪ (mn′) • b2 ∪ (mk′) • c2 ∪ (mn′) • a2 ∪ (mn′) • c2 ∪ (nk′) • b2 ∪ (nm′) •
a2 ∪ (nm′) • b2 ∪ (nm′) • c2 ∪ (nn′) • b2,
z′ ∈ (kk′) • c2 ∪ (kn′) • a2 ∪ (kn′) • c2 ∪ (nk′) • a2 ∪ (nk′) • c2 ∪ (nn′) • a2 ∪ (nn′) • c2}
= ((k,mI1, nI2)(k

′,m′I1, nI2)) • ((a1, b1I1, c1I2)(a2, b2I1, c2I2))
= (αβ) • u.

5. (−α)u = {(x, yI1, zI2)(p, qI1, rI2)) : x ∈ −k •a1, y ∈ −k •b1∪−m•a1∪−m•b1∪−m•c1∪−n•
b1, z ∈ −k•c1∪−n•a1∪−n•c1, p ∈ −k•a2, q ∈ −k•b2∪−m•a2∪−m•b2∪−m•c2∪−n•b2, r ∈
−k • c2 ∪ −n • a2 ∪ −n • c2}
= {(x, yI1, zI2(p, qI1, rI2)) : x ∈ k • (−a1), y ∈ k • (−b1) ∪m • (−a1) ∪m • (−b1) ∪m • (−c1) ∪
n • (−b1), z ∈ k • (−c1) ∪ n • (−a1) ∪ n • (−c1), p ∈ k • (−a2), q ∈ k • (−b2) ∪m • (−a2) ∪m •
(−b2) ∪m • (−c2) ∪ n • (−b2), r ∈ k • (−c2) ∪ n • (−a2) ∪ n • (−c2)}
= (k,mI1, nI2)(−((a1, b1I1, c1I2)(a2, b2I1, c2I2))) = α(−u).

6. 1•u = {(x, yI1, zI2)(p, qI1, rI2)) : x ∈ 1•a1, y ∈ 1•b1, z ∈ 1•c1, p ∈ 1•a2, q ∈ 1•b2, r ∈ 1•c2}
= {(a1, b1I1, c1I2)(a2, b2I1, c2I2)) : a1 ∈ 1•a1, b1 ∈ 1•b1, c1 ∈ 1•c1, a2 ∈ 1•a2, b2 ∈ 1•b2, c2 ∈
1 • c2}, which shows that u ∈ 1 • u.
Accordingly, V1(I1, I2)× V2(I1, I2) is a strong refined neutrosophic hypervector space.

Proposition 2.9. Let (V (I1, I2),⊕, •1,K) and (H,+H , •H ,K) be a weak refined neutrosophic hypervector
spaces and a hypervector space, respectively. Let
V (I1, I2)×H = {((a, bI1, cI2), h) : (a, bI1, cI2) ∈ V1(I1, I2), h ∈ H}.
For all u = ((a, bI1, cI2), h), v = ((a′, b′I1, c

′I2), g) ∈ V (I1, I2)×H and k ∈ K, define:
u+ v = ((a⊕ a′, (b⊕ b′)I1, (c⊕ c′)I2), h+H g),
k • u = {((x, yI1, zI2), p) : x ∈ k •1 a, y ∈ k •1 b ∈ k •1 c, p ∈ k •H h}.
Then (V1(I1, I2)×H,+, •,K) is a weak neutrosophic hypervector space.

Proof. The proof follows from the same pattern as the proof of Proposition 2.8 .

Definition 2.10. Let (V (I1, I2),+, •,K(I1, I2)) be a strong refined neutrosophic hypervector space over a
refined neutrosophic fieldK(I1, I2) and letW [I1, I2] be a nonempty subset of V (I1, I2). W [I1, I2] is said to be
a subhypervector space of V (I1, I2) if (W [I1, I2],+, •,K(I1, I2)) is also a refined neutrosophic hypervector
space over the refined neutrosophic fieldK(I1, I2). It is essential thatW [I1, I2] contains a proper subset which
is a hypervector space over a field K.

Example 2.11. Let V (I1, I2) = R2(I1, I2) and K = R(I1, I2) then (R2(I1, I2),+, •,K(I1, I2)) is a strong
refined neutrosophic hypervector space over refined neutrosophic field K = R(I1, 12), where the hyperopera-
tions + and • are defined ∀ u = ((a1, b1I1, c1I1), (a2, b2I1, cI2)),
v = ((a′1, b

′
1I1, c

′
1I1), (a

′
2, b2I1, c

′I2)) ∈ V (I1, I2) by :
u+ v = ((a1 + a′1, (b1 + b′1)I1, (c1 + c′1)I2), (a2 + a′2, (b2 + b′2)I1, (c2 + c′2)I2)),
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α • u = {((x, yI1, zI2), (p, qI1, rI2)) : x ∈ k • a1, y ∈ k • b1 ∪m • a1 ∪m • b1 ∪m • c1 ∪ n • b1,
z ∈ k • c1 ∪ n • a1 ∪ n • c1, p ∈ k • a2, q ∈ k • b2 ∪m • a2 ∪m • b2 ∪m • c2 ∪ n • b2,
r ∈ k • c2 ∪ n • a2 ∪ n • c2}.
Let W (I1, I2) = K(I1, I2)× {(0, 0I1, 0I2)} ⊆ V (I1, I2).
Then W (I1, I2) is a strong refined neutrosophic subhypervector space.

Proof. Since θ = ((0, 0I1, 0I2), (0, 0I1, 0I2)) ∈W (I1, I2). Then W (I1, I2) 6= ∅.
Now let u1 = ((a1, b1I1, c2I2), (0, 0I1, 0I2)) , v1 = ((a′1, b1I1, c1I2)(0, 0I1, 0I2)) ∈ W (I1, I2), and α =
(k,mI1, nI2), β = (k′,m′I1, n

′I2) ∈ K(I1, I2) with a1, b1, c1, a′1, b
′
1, c
′
1, k,m, n, k

′,m′, n′ ∈ R.
α • u1 + β • v1 = (k,mI1, nI2) • [(a1, b1I1, c1I2), (0, 0I1, 0I2)]+

(k′,m′I1, n
′I2) • [(a′1, b1I1, c1I2)(0, 0I1, 0I2)]

⊆ {((x, yI1, zI2), (p, qI1, rI2)) : x ∈ k • a1, y ∈ k • b1 ∪m • a1 ∪m • b1∪
m • c1 ∪ n • b1, z ∈ k • c1 ∪ n • a1 ∪ n • c1, p ∈ k • 0,
q ∈ k • 0 ∪m • 0 ∪m • 0 ∪m • 0 ∪ n • 0, r ∈ k • 0 ∪ n • 0 ∪ n • 0}
+{((x′, y′I1, z′I2), (p′, q′I1, r′I2)) : x′ ∈ k′ • a′1,
y′ ∈ k′ • b′1 ∪m′ • a′1 ∪m′ • b′1 ∪m′ • c′1 ∪ n′ • b′1,
z′ ∈ k′ • c′1 ∪ n′ • a′1 ∪ n′ • c′1,
p′ ∈ k′ • 0, q′ ∈ k′ • 0 ∪m′ • 0 ∪
m′ • 0 ∪m′ • 0 ∪ n′ • 0, r′ ∈ k′ • 0 ∪ n′ • 0 ∪ n′ • 0}

= {((s, tI1, wI2), (s′, t′I1, w′I2)) : s ∈ k • a1 + k′ • a′1,
t ∈ k • b1 + k′ • b′1 ∪m • a1 +m′ • a′1 ∪m • b1 +m′ • b′1 ∪m • c1+
m′ • c′1 ∪ n • b1 + ∪n′ • b′1,
w ∈ k • c1 + k′ • c′1 ∪ n • a1 + n′ • a′1 ∪ n • c1 + ∪n′ • c′1,
s′ ∈ 0, t′ ∈ 0, w′ ∈ 0} ⊆W (I1, I2).

=⇒ α • u1 + β • v1 ⊆W (I1, I2).
Lastly, we can see from the definition of W (I1, I2) that W (I1, I2) contains a proper subset which is a

hypervector space over K.
To this end we can conclude that W (I1, I2) is a strong refined neutrosophic hypervector space.

Proposition 2.12. Let W1[I1, I2],W2[I1, I2], · · · ,Wn[I1, I2] be refined neutrosophic subhypervector spaces
of a strong refined neutrosophic hypervector space (V (I1, I2),+, •,K(I1, I2)) over a refined neutrosophic
field K(I1, I2). Then

⋂n
i=1Wi[I1, I2] is a refined neutrosophic subhypervector space of V (I1, I2).

Proof. Consider the collection of refined neutrosophic subhypervector space
{Wi(I1, I2) : i = 1, 2, · · ·n} of a strong refined neutrosophic hypervector space V (I1, I2).
Take u = (a, bI1, cI2), v = (d, eI1, fI2), α = (k, pI1, qI2) and β = (r, sI1, tI2).
Let u, v ∈

⋂n
i=1Wi(I1, I2) then u, v ∈Wi(I1, I2) for all i = 1, 2, · · ·n.

Now for all scalars α, β ∈ K(I1, I2) we have that
α • u+ β • v = (k, pI1, qI2) • (a, bI1, cI2) + (r, sI1, tI2) • (d, eI1, fI2)
⊆ {(x, yI1, zI2) : x ∈ k • a, y ∈ k • b ∪ p • a ∪ p • b ∪ p • c ∪ q • b, z ∈ k • c ∪ q • a ∪ q • c}+
{(x′, y′I1, z′I2) : x′ ∈ r • d, y′ ∈ r • e ∪ s • d ∪ s • e ∪ s • f ∪ t • e, z′ ∈ r • f ∪ t • d ∪ t • f}
= {(x+ x′, (y + y′)I1, (z + z′)I2) : x+ x′ ∈ k • a+ r • d,
y + y′ ∈ k • b+ r • e ∪ p • a+ s • d ∪ p • b+ s • e ∪ p • c+ s • f ∪ q • b+ t • e,
z + z′ ∈ k • c+ r • f ∪ q • a+ t • d ∪ q • c+ t • f} ⊆Wi(I1, I2) ∀i = 1, 2, 3 · · · , n.
=⇒ α • u+ β • v ⊆

⋂n
i=1Wi(I1, I2).

Lastly, since Wi(I1, I2) ∀ i = 1, 2, 3, · · · , n contain proper subsets Wi which are hypervector space,⋂n
i=1Wi(I1, I2) is a strong refined neutrosophic subhyperspace.

Proposition 2.13. Let W [I1, I2] be a subset of a strong refined neutrosophic hypervector space
(V (I1, I2),+, •,K(I1, I2)) over a refined neutrosophic field K(I1, I2). Then W [I1, I2] is a refined neutro-
sophic subhypervector space of V (I1, I2) if and only if for all
u = (a, bI1, cI2), v = (d, eI1, I2) ∈ V (I1, I2) and α = (k,mI1, nI2) ∈ K(I1, I2), the following conditions
hold:

1. W [I1, I2] 6= ∅,

2. u+ v ∈W [I1, I2],

3. α • u ⊆W [I1, I2],

4. W [I1, I2] contains a proper subset which is a hypervector space over K.
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Proposition 2.14. Let V (I1, I2) be a strong refined neutrosophic hypervector space over K(I1, I2) and let
U1(I1, I2), U2(I1, I2) be any strong refined neutrosophic subhypervector spaces of V (I1, I2).
Then U1(I1, I2) ∪ U2(I1, I2) is a strong refined neutrosophic subhypervector space if and only if
U1(I1, I2) ⊆ U2(I1, I2) or U1(I1, I2) ⊇ U2(I1, I2).

Proof. Let U1(I1, I2) and U2(I1, I2) be any strong refined neutrosophic subhypervector spaces of V (I1, I2).
=⇒ Now, suppose U1(I1, I2) ⊆ U2(I1, I2) or U1(I1, I2) ⊇ U2(I1, I2) then we shall show the
U1(I1, I2) ∪ U2(I1, I2) is a strong refined neutrosophic subhypervector space of V (I1, I2).
Without loss of generality, suppose that U1(I1, I2) ⊆ U2(I1, I2).
Then we have that U1(I1, I2) ∪ U2(I1, I2) = U2(I1, I2). But U2(I1, I2) is defined to be a strong refined
neutrosophic subhypervector space of V (I1, I2), so U1(I1, I2) ∪ U2(I1, I2) is a strong refined neutrosophic
subhypervector space of V (I1, I2).
⇐= We want to show that if U1(I1, I2) ∪ U2(I1, I2) is a strong refined neutrosophic subhypervector space of
V (I1, I2) then either U1(I1, I2) ⊆ U2(I1, I2) or U1(I1, I2) ⊇ U2(I1, I2).
Now suppose that U1(I1, I2) ∪ U2(I1, I2) is a strong refined neutrosophic subhypervector space of V (I1, I2)
and suppose by contradiction that U1(I1, I2) 6⊆ U2(I1, I2) or U1(I1, I2) 6⊇ U2(I1, I2).
Thus there exist elements x1 = (a1 + b1I1 + c1I2) ∈ U1(I1, I2)\U2(I1, I2) and
x2 = (a2 + b2I1 + c2I2) ∈ U2(I1, I2)\U1(I1, I2). So we have that x1, x2 ∈ U1(I1, I2) ∪ U2(I1, I2),
since U1(I1, I2) ∪ U2(I1, I2) is a strong refined neutrosophic subhypervector space, we must have that
x1 + x2 = x3 ∈ U1(I1, I2) ∪ U2(I1, I2).
Therefore x1 + x2 = x3 ∈ U1(I1, I2) or x1 + x2 = x3 ∈ U2(I1, I2)
=⇒ x2 = x3 − x1 ∈ U1(I1, I2) or x1 = x3 − x2 ∈ U2(I1, I2) which is a contradiction.
Hence U1(I1, I2) ⊆ U2(I1, I2) or U1(I1, I2) ⊇ U2(I1, I2) as required.

Remark 2.15. If W1[I1, I2] and W2[I1, I2] are refined neutrosophic subhypervector spaces of a strong re-
fined neutrosophic hypervector space V (I1, I2) over a refined neutrosophic field K(I1, I2), then generally,
W1[I1, I2]

⋃
W2[I1, I2] is not a refined neutrosophic subhypervector space of V (I1, I2) except if

W1[I1, I2] ⊆W2[I1, I2] or W2[I1, I2] ⊆W1[I1, I2].

Definition 2.16. Let W1[I1, I2] and W2[I1, I2] be two refined neutrosophic subhypervector spaces of a strong
refined neutrosophic hypervector space (V (I1, I2),+, •,K(I1, I2)) over a refined neutrosophic fieldK(I1, I2).
The sum of W1[I1, I2] and W2[I1, I2] denoted by W1[I1, I2] +W2[I1, I2] is defined by the set⋃

{w + x : w = (a, bI1, cI2) ∈W1[I1, I2], x = (d, eI1, fI2) ∈W2[I1, I2]}.

If W1[I1, I2] ∩W2[I1, I2] = {θ}, then the sum of W1[I1, I2] and W2[I1, I2] is denoted by
W1[I1, I2]⊕W2[I1, I2] and it is called the direct sum of W1[I1, I2] and W2[I1, I2].

Proposition 2.17. Let W1[I1, I2] and W2[I1, I2] be two refined neutrosophic subhypervector spaces of a
strong refined neutrosophic hypervector space (V (I1, I2),+, •,K(I1, I2)) over a refined neutrosophic field
K(I1, I2).

1. W1[I1, I2] +W2[I1, I2] is a refined neutrosophic subhypervector space of V (I1, I2).

2. W1[I1, I2] +W2[I1, I2] is the least refined neutrosophic subhypervector space of V (I1, I2) containing
W1[I1, I2] and W2[I1, I2].

Proof. 1. Since θ ∈W1[I1, I2] and θ ∈W2[I1, I2], {θ + θ} ⊆W1[I1, I2] +W2[I1, I2].
So,{θ} ⊆ W1[I1, I2] +W2[I1, I2] =⇒ θ ∈ W1[I1, I2] +W2[I1, I2], therefore W1[I1, I2] +W2[I1, I2]
is non-empty.
Let u = (a, bI1, cI2), v = (d, eI1, fI2) ∈W1[I1, I2] +W2[I1, I2] , then ∃ u1 = (a1, b1I1, c1I2),
u2 = (a2, b2I1, c2I2) ∈ W1[I1, I2] and v1 = (d1, e1I1, f1I2), v2 = (d2, e2I1, f2I2) ∈ W2[I1, I2] such
that u ∈ u1 + v1 and v ∈ u2 + v2.
Let α = (k,mI1, nI2), β = (k′,m′I1, n

′I2) ∈ K(I1, I2).
Now α • u+ β • v ⊆ α • (u1 + v1) + β • (u2 + v2)

= (k,mI1, nI2) • (a1 + d1, (b1 + e1)I1, (c1 + e1)I2)+
(k′,m′I1, n

′I2) • (a2 + d2, (b2 + e2)I1, (c2 + e2)I2)
⊆ {(x1, y1I1, z1I2) : x1 ∈ k • (a1 + d1),

y1 ∈ k • (b1 + e1) ∪m • (a1 + d1) ∪m • (b1 + e1) ∪m • (c1 + f1) ∪ n • (b1 + e1),
z1 ∈ k • (c1 + f1) ∪ n • (a1 + d1) ∪ n • (c1 + f1)}
+{(x2, y2I1, z2I2) : x2 ∈ k′ • (a2 + d2),
y2 ∈ k′ • (b2 + e2) ∪m′ • (a2 + d2) ∪m′ • (b2 + e2) ∪m′ • (c2 + f2) ∪ n′ • (b2 + e2),
z2 ∈ k′ • (c2 + f2) ∪ n′ • (a2 + d2) ∪ n′ • (c2 + f2)}
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= {(x, yI1, zI2) : x ∈ (k • a1 + k • d1 + k′ • a2 + k′ • d2),
y ∈ (k • b1 + k • e1 + k′ • b2 + k′ • e2) ∪ (m • a1 +m • d1 +m′ • a2 +m′ • d2) ∪
(m • b1 +m • e1 +m′ • b2 +m′ • e2) ∪ (m • c1 +m • f1 +m′ • c2 +m′ • f2) ∪
(n • b1 + n • e1 + n′ • b2 + n′ • e2),
z ∈ (k • c1 + k • f1 + k′ • c2 + k′ • f2) ∪ (n • a1 + n • d1 + n′ • a2 + n′ • d2) ∪
(n • c1 + n • f1 + n′ • c2 + n′ • f2)}

= {(s1, t1I1, w1I2) : s1 ∈ (k • a1 + k′ • a2),
t1 ∈ (k • b1 + k′ • b2) ∪ (m • a1 +m′ • a2) ∪ (m • b1 +m′ • b2) ∪ (m • c1 +m′ • c2) ∪
(n • b1 + n′ • b2), w1 ∈ (k • c1 + k′ • c2) ∪ (n • a1 + n′ • a2) ∪ (n • c1 + n′ • c2)}+
{(s2, t2I1, w2I2) : s2 ∈ (k • d1 + k′ • d2),
t2 ∈ (k • e1 + k′ • e2) ∪ (m • d1 +m′ • d2) ∪ (m • e1 +m′ • e2) ∪ (m • f1 +m′ • f2) ∪
(n • e1 + n′ • e2),
w2 ∈ (k • f1 + k′ • f2) ∪ (n • d1 + n′ • d2) ∪ (n • f1 + n′ • f2)}

⊆ W1[I1, I2] +W2[I1, I2].
Hence α • u+ β • v ⊆W1[I1, I2] +W2[I1, I2].
Now since W1,W2 are proper subsets of W1[I1, I2] and W2[I1, I2] respectively, with both W1 and
W2 being hypervector space. Then W1 + W2 is a hypervector space which is properly contained in
W1[I1, I2] +W2[I1, I2]. Then we can conclude that W1[I1, I2] +W2[I1, I2] is a refined neutrososphic
subhypervector space.

2. LetW [I1, I2] be refined neutrosophic subhypervector space of V [I1, I2] such thatW1[I1, I2] ⊆W [I1, I2]
and W2[I1, I2] ⊆W [I1, I2].
Let u = (a, bI1, cI2) ∈ W1[I1, I2] + W2[I1, I2], then ∃u1 = (a1, b1I1, c1I2) ∈ W1[I1, I2] and
u2 = (a2, b2I1, c2I2) ∈W2[I1, I2] such that u ∈ u1 + u2.
Since W1[I1, I2] ⊆W [I1, I2] and W2[I1, I2] ⊆W [I1, I2], then u1, u2 ∈W [I1, I2].
Again since W [I1, I2] is a refined neutrosophic subhypervector space of V [I1, I2], then we have that
u1 + u2 ⊆W [I1, I2] =⇒ u ∈W [I1, I2].
Hence W1[I1, I2] +W2[I1, I2] ⊆W [I1, I2] and the proof follows.

Remark 2.18. If V (I1, I2) is a weak refined neutrosophic strongly left distributive hypervector space over a
field K, then

1. W [I1, I2] =
⋃
{k • u : k ∈ K} forms a weak refined neutrosophic subhypervector space of V (I1, I2),

where u = (a, bI1, cI2) ∈ V (I1, I2). This refined neutrosophic subhypervector space is said to be
generated by the refined neutrosophic vector u and it is called a refined neutrosophic hyperline span by
the refined neutrosophic vector u.

2. If u = (a, bI1, cI2), v = (d, eI1, fI2) ∈ V (I1, I2), then the set W =
⋃
{α • u+ β • v, α, β ∈ K} is a

weak refined neutrosophic subhypervector space of V (I1, I2). This refined neutrosophic subhypervector
space is called refined neutrosophic hyperlinear span of the refined neutrosophic vectors u and v.

Proposition 2.19. Let V (I1, I2) be a weak refined neutrosophic strongly left distributive hypervector space
over the field K and u1, u2, · · · , un ∈ V (I1, I2), with ui = (ai, biI1, ciI2) for i = 1, 2, 3 · · ·n. Then

1. W (I1, I2) =
⋃
{α1•u1+α2•u2+ · · ·+αn•un : α1, α2, · · · , αn ∈ K} is a weak refined neutrosophic

subhypervector space of V (I1, I2).

2. W (I1, I2) is the smallest weak refined neutrosophic subhypervector space of V (I1, I2) containing
u1, u2, · · · , un.

Proof. 1. The proof follows from similar approach as 1 of Proposition 2.17 .

2. Suppose that M(I1, I2) is a weak refined neutrosophic subhypervector space of V (I1, I2) containing
u1 = (a1, b1I1, c1I2), u2 = (a2, b2I1, c2I2), · · · , un = (an, bnI1, cnI2). Let t ∈ W (I1, I2), then there
exist α1, α2, · · · , αn ∈ K such that

t ∈ α1 • (a1, b1I1, c1I2) + α2 • (a2, b2I1, c2I2) + · · ·+ αn • (an, bnI1, cnI2).

Therefore t ∈M(I1, I2) =⇒W (I1, I2) ⊆M(I1, I2).
Hence W (I1, I2) is the smallest weak refined neutrosophic subhypervector space of V (I1, I2) contain-
ing u1, u2, · · · , un.
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Proposition 2.20. Let V (I1, I2) be a strong refined neutrosophic hypervector space over a refined neutro-
sophic field K(I1, I2), and let
u1 = (a1, b1I1, c1I2), u2 = (a2, b2I1, c2I2), · · · , un = (an, bnI1, cnI2) ∈ V (I1, I2),
α1 = (k1,m1I1, t1I2), α2 = (k2,m2I1, t2I2) · · · , αn = (kn,mnI1, tnI2).
Then:

1. W (I1, I2) =
⋃
{α1•u1+α2•u2+· · ·+αn•un : α1, α2, · · · , αn ∈ K(I1, I2)} is a refined neutrosophic

subhypervector space of V (I1, I2).

2. W (I1, I2) is the smallest refined neutrosophic subhypervector space of V (I1, I2)
containing u1, u2, · · · , un.

Proof: The proof follows from similar approach as that of Proposition 2.19 .

Remark 2.21. The refined neutrosophic subhypervector space W (I1, I2) of the strong refined neutrosophic
hypervector space V (I1, I2) over a refined neutrosophic field K(I1, I2) of Proposition 2.20 is said to be gen-
erated by the refined neutrosophic vectors u1, u2, · · · , un and we write W (I1, I2) = span{u1, u2, · · · , un}.

Definition 2.22. Let (V (I1, I2),+, •,K(I1, I2)) be a strong refined neutrosophic hypervector space over a
refined neutrosophic field K(I1, I2) and let
B(I1, I2) = {u1 = (a1, b1I1, c1I2), u2 = (a2, b2I1, c2I2), · · · , un = (an, bnI1, cnI2)} be a subset of
V (I1, I2). B(I1, I2) is said to generate or span V (I1, I2) if V (I1, I2) = span(B(I1, I2)).

Example 2.23. Let V (I1, I2) = R3(I1, I2) be a strong refined neutrosophic hypervector space over a neutro-
sophic field R(I1, I2) and let B(I1, I2) = {u1 = ((1, 0I1, 0I2), (0, 0I1, 0I2), (0, 0I1, 0I2)),
u2 = ((0, 0I1, 0I2), (1, 0I1, 0I2), (0, 0I1, 0I2)), u3 = ((0, 0I1, 0I2), (0, 0I1, 0I2), (1, 0I1, 0I2))}.
Then B(I1, I2) spans V (I1, I2).

Example 2.24. Let V (I1, I2) = R2(I1, I2) be a weak refined neutrosophic hypervector space over a field R
and let B(I1, I2) = {u1 = ((1, 0I1, 0I2), (0, 0I1, 0I2)), u2 = ((0, 0I1, 0I2), (1, 0I1, 0I2)),
u3 = ((0, I1, 0I2), (0, 0I1, 0I2)), u4 = ((0, 0I1, 0I2), (0, I1, 0I2)), u5 = ((0, 0I1, I2), (0, 0I1, 0I2)),
u6 = ((0, 0I1, 0I2), (0, 0I1, I2))}. Then B(I1, I2) spans V (I1, I2).

Definition 2.25. LetW [I1, I2] andX[I1, I2] be two refined neutrosophic subhypervector spaces of a strong re-
fined neutrosophic hypervector space (V (I1, I2),+, •,K(I1, I2)) over a refined neutrosophic field K(I1, I2).
V (I1, I2) is said to be the direct sum of W [I1, I2] and X[I1, I2] written V (I1, I2) = W [I1, I2]⊕X[I1, I2] if
every element v ∈ V (I1, I2) can be written uniquely as v = w + x where w ∈W [I1, I2] and x ∈ X[I1, I2].

Proposition 2.26. Let W [I1, I2] and X[I1, I2] be two refined neutrosophic subhypervector spaces of a strong
refined neutrosophic hypervector space (V (I1, I2),+, •,K(I1, I2)) over a refined neutrosophic fieldK(I1, I2).
V (I1, I2) =W [I1, I2]⊕X[I1, I2] if and only if the following conditions hold:

1. V (I1, I2) =W [I1, I2] +X[I1, I2].

2. W [I1, I2] ∩X[I1, I2] = {θ}.

Proof. Same as in classical case.

Definition 2.27. Let (V (I1, I2),+, •,K(I1, I2)) be a strong refined neutrosophic hypervector space over a
refined neutrosophic field K(I1, I2). The refined neutrosophic vector
u = (a, bI1, cI2) ∈ V (I1, I2) is said to be a linear combination of the refined neutrosophic vectors
u1 = (a1, b1I1, c1I2), u2 = (a2, b2I1, c2I1), · · · , un = (an, bnI1, cnI2) ∈ V (I1, I2) if there exist refined
neutrosophic scalars α1 = (k1,m1I1, t1I2), α2 = (k2,m2I1, t2I2), · · · , αn = (kn,mnI1, tnI2) ∈ K(I1, I2)
such that

u ∈ α1 • u1 + α2 • u2 + · · ·+ αn • un.

Definition 2.28. Let (V (I1, I2),+, •,K(I1, I2)) be a strong refined neutrosophic hypervector space over a
refined neutrosophic field K(I1, I2) and let
B(I1, I2) = {u1 = (a1, b1I1, c1I2), u2 = (a2, b2I1, c2I2), · · · , un = (an, bnI1, cnI2)} be a subset of
V (I1, I2).

1. B(I1, I2) is called a linearly dependent set if there exist refined neutrosophic scalars
α1 = (k1,m1I1, t1I2), α2 = (k2,m2I1, t2I2), · · · , αn = (kn,mnI1, tnI2) (not all zero) such that

θ ∈ α1 • u1 + α2 • u2 + · · ·+ αn • un.
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2. B(I1, I2) is called a linearly independent set if

θ ∈ α1 • u1 + α2 • u2 + · · ·+ αn • un

implies that α1 = α2 = · · · = αn = (0, 0I1, 0I2).

Proposition 2.29. Let (V (I1, I2),+, •,K) be a weak refined neutrosophic hypervector space over a field K.
Any singleton set of non-null refined neutrosophic vector of the weak refined neutrosophic hypervector space
V (I1, I2) is linearly independent.

Proof. Suppose that θ 6= v = (a, bI1, cI2) ∈ V (I1, I2). Let θ ∈ k • v and suppose that θ 6= k ∈ K.
Then k−1 ∈ K and therefore, k−1 • θ ⊆ k−1 • (k • v) so that

θ ∈ (k−1k) • v
= 1 • v
= {(x, yI1, zI2) : x ∈ 1 • a, y ∈ 1 • b, z ∈ 1 • c}
= {(x, yI1, zI2) : x ∈ {a}, y ∈ {b}, z ∈ {c}}
= {(a, bI1, cI2)}
= {v}.

This shows that v = θ which is a contradiction. Hence, k = θ and thus, the singleton {v} is a linearly
independent set.

Proposition 2.30. Let (V (I1, I2),+, •,K) be a weak refined neutrosophic hypervector space over a field
K. Any set of refined neutrosophic vectors of the weak refined neutrosophic hypervector space V (I1, I2)
containing the null refined neutrosophic vector is always linearly dependent.

Proposition 2.31. Let (V (I1, I2),+, •,K) be a weak refined neutrosophic hypervector space over a field K
and let B(I1, I2) = {u1 = (a1, b1I1, c1I2), u2 = (a2, b2I1, c2I2), · · · , un = (an, bnI1, cnI2)} be a subset of
V (I1, I2). Then B(I1, I2) is a linearly independent set if and only if at least one element of B(I1, I2) can be
expressed as a linear combination of the remaining elements of B(I1, I2).

Proof : This can be easily established.

Proposition 2.32. Let (V (I1, I2),+, •,K) be a weak refined neutrosophic hypervector space over a field K
and let

B(I1, I2) = {u1 = (a1, b1I, c1I1), u2 = (a2, b2I1, c2I2), · · · , un = (an, bnI1, cI2)}
be a subset of V (I1, I2). Then B(I1, I2) is a linearly dependent set if and only if at least one element of
B(I1, I2) can be expressed as a linear combination of the remaining elements of B(I1, I2).

Proof : Suppose that B(I1, I2) is a linearly dependent set. Then there exist scalars k1, k2, · · · , kn not all
zero in K such that

θ ∈ k1 • u1 + k2 • u2 + · · ·+ kn • un.
Suppose that k1 6= 0, then k−11 ∈ K and therefore

k−11 • θ ⊆ k−11 • (k1 • u1 + k2 • u2 + · · ·+ kn • un)
= (k−11 k1) • u1 + (k−12 k2) • u2 + · · ·+ (k−1n kn) • un
= 1 • u1 + (k−11 k2) • u2 + · · ·+ (k−11 kn) • un

so that
θ ∈ 1 • u1 + {u}

where u = (a, bI1, cI2) ∈ (k−11 k2) • u2 + · · ·+ (k−1n kn) • un.
Thus θ ∈ {(a+a1, (b+b1)I1, (c+c1)I2)} from which we obtain u1 = (a1, b1I1, c1I2) = −u = −(a, bI1, cI2)
so that

u1 ∈ (−1) • u
⊆ (−1) • ((k−11 k2) • u2 + · · ·+ (k−1n kn) • un)
⊆ (−k−11 k2) • u2 + (−k−11 k3) • u3 + · · ·+ (−k−11 kn) • un.

This shows that u1 ∈ span{u2, u3, · · · , un}.
Conversely, suppose that u1 ∈ span{u2, u3, · · · , un} and suppose that 0 6= −1 ∈ K.
Then there exist k2, k3, · · · , kn ∈ K such that

u1 ∈ k2 • u2 + k3 • u3 + · · ·+ kn • un
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and we have
u1 + (−u1) ∈ (−1) • u1 + k2 • u2 + k3 • u3 + •+ kn • un.

From which
θ ∈ (−1) • u1 + k2 • u2 + k3 • u3 + · · ·+ kn • un.

Since −1 6= 0 ∈ K, it follows that B(I1, I2) is a linearly dependent set.

Proposition 2.33. Let (V (I1, I2),+, •,K(I1, I2)) be a strong refined neutrosophic hypervector space over
a refined neutrosophic field K(I1, I2) and let B1(I1, I2) and B2(I1, I2) be subsets of V (I1, I2) such that
B1(I1, I2) ⊆ B2(I1, I2). If B1(I1, I2) is linearly dependent, then B2(I1, I2) is linearly dependent.

Proposition 2.34. Let (V (I1, I2),+, •,K(I1, I2)) be a strong refined neutrosophic hypervector space over
a refined neutrosophic field K(I1, I2) and let B1(I1, I2) and B2(I1, I2) be subsets of V (I1, I2) such that
B1(I1, I2) ⊆ B2(I1, I2). If B1(I1, I2) is linearly independent, then B2(I1, I2) is linearly independent.

Definition 2.35. Let (V (I1, I2),+, •,K(I1, I2)) be a strong refined neutrosophic hypervector space over a
refined neutrosophic field K(I1, I2) and let B(I1, I2) = {u1 = (a1, b1I1, c1I1), u2 = (a2, b2I1, c2I2), · · · }
be a subset of V (I1, I2). B(I1, I2) is said to be a basis for V (I1, I2) if the following conditions hold:

1. B(I1, I2) is a linearly independent set

2. V (I1, I2) = span(B(I1, I2)).

If B(I1, I2) is finite and its cardinality is n, then V (I1, I2) is called an n-dimensional strong refined neu-
trosophic hypervector space and we write dims(V (I1, I2)) = n. If B(I1, I2) is not finite, then V (I1, I2) is
called an infinite-dimensional strong refined neutrosophic hypervector space.

Definition 2.36. Let (V (I1, I2),+, •,K(I1, I2)) be a weak refined neutrosophic hypervector space over a
field K and let B(I1, I2) = {u1 = (a1, b1I1, c1I1), u2 = (a2, b2I1, c2I2), · · · } be a subset of V (I1, I2).
B(I1, I2) is said to be a basis for V (I1, I2) if the following conditions hold:

1. B(I1, I2) is a linearly independent set

2. V (I1, I2) = span(B(I1, I2)).

If B(I1, I2) is finite and its cardinality is n, then V (I1, I2) is called an n-dimensional weak refined neu-
trosophic hypervector space and we write dimw(V (I1, I2)) = n. If B(I1, I2) is not finite, then V (I1, I2) is
called an infinite-dimensional weak refined neutrosophic hypervector space.

Example 2.37. In Example 2.23 B(I1, I2) is a basis for V (I1, I2) and dims(V (I1, I2)) = 3.

Example 2.38. In Example 2.24 B(I1, I2) is a basis for V (I1, I2) and dimW (V (I1, I2)) = 6.

Proposition 2.39. Let (V (I1, I2),+, •,K(I1, I2)) be a strong refined neutrosophic hypervector space over a
refined neutrosophic field K(I1, I2) and let
B(I1, I2) = {u1 = (a1, b1I1, c1I2), u2 = (a2, b2I1, c2I2), · · · , un = (an, bnI1, cnI2)} be a subset of
V (I1, I2). Then B(I1, I2) is a basis for V (I1, I2) if and only if each refined neutrosophic vector
u = (a, bI1, cI2) ∈ V (I1, I2) can be expressed uniquely as a linear combination of the elements of B(I1, I2).

Proof. Suppose that each refined neutrosophic vector u = (a, bI, cI2) ∈ V (I1, I2) can be expressed uniquely
as a linear combination of the elements of B(I1, I2). Then u ∈ span(B(I1, I2)) = V (I1, I2).
Since such a representation is unique, it follows that B(I1, I2) is a linearly independent set and since
u ∈ V (I1, I2) is arbitrary, it follows that B(I1, I2) is a basis for V (I1, I2).
Conversely, suppose that B(I1, I2) is a basis for V (I1, I2), then V (I1, I2) = span(B(I1, I2)) and B(I1, I2) is
linearly independent. Now it remains to show that u = (a, bI1, cI2) ∈ V (I1, I2) can be expressed uniquely as
a linear combination of the elements of B(I1, I2).
To this end, for α1 = (k1,m1I1, p1I2), α2 = (k2,m2I1, p2I2), · · · , αn = (kn,mnI1, pnI2),
β1 = (r1, s1I1, t1I2), β2 = (r2, s2I1, t2I2), · · · , βn = (rn, snI1, tnI2) ∈ K(I1, I2),
let us express u in two ways as follows:

u ∈ α1 • u1 + α2 • u2 + · · ·+ αn • un, (1)

u ∈ β1 • u1 + β2 • u2 + · · ·+ βn • un. (2)
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From equation(2), we have

−u ∈ (−1) • u ⊆ (−1) • (β1 • u1 + β2 • u2 + · · ·+ βn • un)
= ((−1)β1) • u1 + ((−1)β2) • u2 + · · ·+ ((−1)βn) • un
= (−β1) • u1 + (−β2) • u2 + •+ (−1βn) • un. (3).

From equations (1) and (3), we have

u+ (−u) ∈ (α1 + (−β1)) • u1 + (α2 + (−β2)) • u2 + · · ·+ (αn + (−βn)) • un

=⇒ θ ∈ (α1 − β1) • u1 + (α2 − β2) • u2 + · · ·+ (αn − βn) • un.

Since B(I1, I2) is linearly independent, it follows that

α1 − β1 = α2 − β2 = · · · = αn − βn = (0, 0I1, 0I2)

and therefore,
α1 = β1, α2 = β2, · · · , αn = βn.

This shows that u has been expressed uniquely as a linear combination of the elements of B(I1, I2). The proof
is complete.

Proposition 2.40. Let (V (I1, I2),+, •,K) be a weak refined neutrosophic hypervector space over a field K
and let
B1(I1, I2) = {u1 = (a1, b1I1, c1I2), u2 = (a2, b2I1, c2I2), · · · , un = (an, bnI1, cI2)} be a linearly indepen-
dent subset of V (I1, I2). If u ∈ V (I1, I2)\B1(I1, I2) = V (I1, I2) ∩ (B(I1, I2))

c is arbitrary, then
B2(I1, I2) = {u1 = (a1, b1I, c1I2), u2 = (a2, b2I1, c2I2), · · · , un = (an, bnI1, cnI2), u} is a linearly de-
pendent set if and only if u ∈ span((B1(I1, I2)).

Proof. Suppose that B2(I1, I2) is a linearly dependent set. Then there exist scalars k1, k2, · · · , kn, k not all
zero such that

θ ∈ k1 • u1 + k2 • u2 + · · ·+ kn • un + k • u. (4)

Suppose that k = 0, then there exist at least one of the k′is say k1 6= 0 and equation (4) becomes

θ ∈ k1 • u1 + k2 • u2 + · · ·+ kn · · ·un (5)

from which it follows that the set
B1(I1, I2) = {u1 = (a1, b1I1, c1I2), u2 = (a2, b2I1, c2I2), · · · , un = (an, bnI1, cI2)} is linearly dependent.
This contradicts the hypothesis that B1(I1, I2) is linearly independent. Hence k 6= 0 and therefore k−1 ∈ K.
From equation (4), we have

k−1 • θ ⊆ k−1 • (k1 • u1 + k2 • u2 + · · ·+ kn • un + k • u)
=⇒ θ ∈ (k−1k1) • u1 + (k−1k2) • u2 + · · ·+ (k−1kn) • un + (k−1k) • u
=⇒ θ = v + u

(
where v ∈ (k−1k1) • u1 + (k−1k2) • u2 + · · ·+ (k−1kn) • un

)
=⇒ u = −v ∈ (−1) • ((k−1k1) • u1 + (k−1k2) • u2 + · · ·+ (k−1kn) • un)
=⇒ u ∈ (−1) • [(k−1k1) • u1 + (k−1k2) • u2 + · · ·+ (k−1kn) • un]
=⇒ u ∈ (−k−1k1) • u1 + (−k−1k2) • u2 + · · ·+ (−k−1kn) • un
=⇒ u ∈ span(B1(I1, I2)).

Conversely, suppose that u ∈ span(B1(I1, I2)). Then there exist k1, k2, · · · , kn ∈ K such that

u ∈ k1 • u1 + k2 • u2 + · · ·+ kn • un
=⇒ u+ (−u) ∈ k1 • u1 + k2 • u2 + · · ·+ kn • un + (−1) • u
=⇒ θ ∈ k1 • u1 + k2 • u2 + · · ·+ kn • un + (−1) • u.

Since u /∈ B1(I1, I2) and B1(I1, I2) is linearly independent, it follows that {u1, u2, · · · , un, u} = B2(I1, I2)
is a linearly dependent set. The proof is complete.

Definition 2.41. Let W [I1, I2] be a refined neutrosophic subhypervector space of a strong refined neutro-
sophic hypervector space (V (I1, I2),+, •,K(I1, I2)) over a refined neutrosophic fieldK(I1, I2). The quotient
V (I1, I2)/W [I1, I2] is defined by the set

{[v] = v +W [I1, I2] : v ∈ V (I1, I2)}.
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Proposition 2.42. Let V (I1, I2)/W [I1, I2] = {[v] = v +W [I1, I2] : v ∈ V (I1, I2)}.
If for every [u], [v] ∈ V (I1, I2)/W [I1, I2] and α ∈ K(I1, I2) we define:

[u]⊕ [v] = (u+ v) +W [I1, I2]

and
α� [u] = [α • u] = {[x] : x ∈ α • u}.

(V (I1, I2)/W [I1, I2],⊕,�,K(I1, I2)) is a strong refined neutrosophic hypervector space over a refined neu-
trosophic field K(I1, I2) called a strong refined neutrosophic quotient hypervector space.

Proof. The proof is similar to the proof in classical case.

Proposition 2.43. Let W [I1, I2] be a refined neutrosophic subhypervector space of a strong refined neutro-
sophic hypervector space V (I1, I2) over a refined neutrosophic field K(I1, I2), let (V (I1, I2)/W [I1, 12]) be
as defined in Proposition 2.42 , then the following hold:

1. W [I1, I2] is finite dimensional and dimsW [I1, I2] ≤ dimsV (I1, I2).

2. dims(V (I1, I2)/W [I1, 12]) = dimsV (I1, I2)− dimsW [I1, I2].

Proof:

1. Let B1(I1, I2) be the basis for W [I1, I2] and let B2(I1, I2) be a basis for V (I1, I2). Since W [I1, I2] ⊆
V (I1, I2) then B1(I1, I2) is contained in B2(I1, I2). Therefore B1(I1, I2) is a linearly independent
subset of V (I1, I2). Then we have that
|B1(I1, I2)| ≤ |B2(I1, I2)|. Now, since |B1(I1, I2)| ≤ |B2(I1, I2)| and V (I1, I2) is finite dimensional
we can conclude that W (I1, I2) is finite dimensional and

dimsW (I1, I2) = |B1(I1, I2)| ≤ |B2(I1, I2)| = dimsV (I1, I2).

2. Let {u1, u2, · · · , um} be a basis of W [I1, I2]. Then this can be filled out to a basis,
{u1, u2 · · · , um, v1, v2, · · · , vn} of V (I1, I2) , wherem+n = dimsV (I1, I2) andm = dimsW [I1, I2].
Let [v1], [v2], · · · , [vn] be the images in V (I1, I2)/W [I1, I2], of v1, v2, · · · , vn.
Since any vector v ∈ V (I1, I2) is in a linear combination of u1, u2, · · · , um, v1, v2, · · · , vn, we have
that

v ∈ α1 • u1 + α2 • u2 + · · ·+ αm • um + β1 • v1 + β2 • v2 + · · ·+ βn • vn,
then
v ∈ [α1 • u1]⊕ [α2 • u2]⊕ · · · ⊕ [αm • um]⊕ [β1 • v1]⊕ [β2 • v2]⊕ · · · ⊕ [βn • vn]
⊆ [β1 • v1]⊕ [β2 • v2]⊕ · · · ⊕ [βn • vn] (since [αi • ui] ⊆ (αi • ui) +W [I1, I2] ⊆W [I1, I2])
= β1 • [v1]⊕ β2 • [v2]⊕ · · · ⊕ βn • [vn].
Thus [v1], [v2] · · · , [vn] span V (I1, I2)/W [I1, I2]. We claim that they are linearly independent, for if

θ ∈ λ1 • [v1]⊕ λ2 • [v2]⊕ · · · ⊕ λn • [vn]

then
θ ∈ λ1 • [v1]⊕ λ2 • [v2]⊕ · · · ⊕ λn • [vn]⊕W [I1, I2]

θ ⊆ λ1 • [v1]⊕ λ2 • [v2]⊕ · · · ⊕ λn • [vn]⊕ γ1 • [u1]⊕ γ2 • [u2]⊕ · · · ⊕ γm • [um]

which by the linear independence of the set {u1, u2 · · · , um, v1, v2 · · · , vn} forces
λ1 = λ2 = · · · = λn = γ1 = γ2 = · · · = γm = 0.
This shows that V (I1, I2)/W [I1, I2] has a basis of n elements, and

dims(V (I1, I2)/W [I1, I2]) = n = (n+m)−m = dimsV (I1, I2)− dimsW [I1, I2].

Proposition 2.44. Let W1(I1, I2) and W2(I1, I2) be finite dimensional weak refined neutrosophic subhy-
pervector spaces of a weak refined neutrosophic vector space V (I1, I2) over a field K. Then W1(I1, I2) +
W2(I1, I2) is a finite dimensional refined neutrosophic subhypervector space of V (I1, I2) and

dimw(W1(I1, I2)+W2(I1, I2)) = dimw(W1(I1, I2))+dimw(W2(I1, I2))−dimw(W1(I1, I2)∩W2(I1, I2)).

If V (I1, I2) =W1(I1, I2)⊕W2(I1, I2) then

dimw(W1(I1, I2) +W2(I1, I2)) = dimw(W1(I1, I2)) + dimw(W2(I1, I2)).
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Proof: We know thatW1(I1, I2)∩W2(I1, I2) is a refined neutrosophic subhypervector space of bothW1(I1, I2)
and W2(I1, I2). So W1(I1, I2)∩W2(I1, I2) is a finite dimensional refined neutrosophic subhypervector space
of V (I1, I2).
Suppose that dimw(W1(I1, I2) ∩W2(I1, I2)) = k, dimw(W1(I1, I2)) = m and
dimw(W2(I1, I2)) = n then we have that k ≤ m and k ≤ n.
Now, let {u1, u2, · · · , uk} be a basis of W1(I1, I2) ∩W2(I1, I2). Then we have that {u1, u2, · · · , uk} is a
linearly independent set of refined neutrosophic vectors in W1[I1, I2] and W2[I1, I2] with k ≤ m and k ≤ n,
then it follows that either {u1, u2, · · · , uk} is a basis of W1[I1, I2] and W2[I1, I2] or it can be extended to a
basis for W1[I1, I2] and W2[I1, I2] .
Let {u1, u2, · · · , uk, v1, v2, · · · , vm−k} be a basis forW1[I1, I2], and let {u1, u2, · · · , uk, w1, w2, · · · , wn−k}
be a basis of W1[I1, I2].
Then the refined neutrosophic subhypervector space W1[I1, I2] +W2[I1, I2] is spanned by the refined neutro-
sophic vectors {u1, u2, · · · , uk, v1, v2, · · · vm−k, w1, w2, · · · , wn−k} and these refined neutrosophic vectors
form an independent set. For suppose

θ ∈
k∑

i=1

αiui +

m∑
j=1

βjvj +

n∑
r=1

γrwr.

Then

−
n∑

r=1

γrwr ∈
k∑

i=1

αiui +

m∑
j=1

βjvj

=⇒ (−1) • (−
n∑

r=1

γrwr) ⊆
k∑

i=1

(−1) • αiui +

m∑
j=1

(−1) • βjvj

=⇒
n∑

r=1

γrwr ∈
k∑

i=1

(−αi)ui +

m∑
j=1

(−βj)vj

which shows that
∑n

r=1 γrwr belongs to W1[I1, I2]. As
∑n

r=1 γrwr also belongs to W2[I1, I2], it follows
that

n∑
r=1

γrwr =

k∑
i=1

λiui

for certain scalars λ1, λ2, · · · , λk.
Because the set {u1, u2, · · · , uk, w1, w2, · · · , wn−k} is independent, each of the scalars
γr = 0. Thus

θ ∈
k∑

i=1

αiui +

m∑
j=1

βjvj

and since {u1, u2, · · · , uk, v1, v2, · · · , vm−k} is also an independent set, each αi = 0 and each βj = 0. Thus,
{u1, u2, · · · , uk, v1, v2, · · · , vm−k, w1, w2, · · · , wn−k} is a basis for
W1[I1, I2] +W2[I1, I2].
Finally,
dimw(W1(I1, I2) +W2(I1, I2)) = k +m− k + n− k
= m+ n− k
= dimw(W1(I1, I2)) + dimw(W2(I1, I2))− dimw(W1(I1, I2) ∩W2(I1, I2)).

Definition 2.45. Let (V (I1, I2),+, •,K(I1, I2)) and W (I1, I2),+
′, •′,K(I1, I2)) be two strong refined neu-

trosophic hypervector spaces over a neutrosophic field K(I1, I2).
A mapping φ : V (I1, I2) −→ W (I1, I2) is called a strong refined neutrosophic hypervector space homomor-
phism if the following conditions hold:

1. φ is a strong hypervector space homomorphism.

2. φ(0, I1, I2) = (0, I1, I2).

If in addition φ is a bijection, we say that V (I1, I2) is isomorphic to W (I1, I2) and we write
V (I1, I2) ∼=W (I1, I2).
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Proposition 2.46. Let (V (I1, I2),+, •,K(I1, I2)) and (W (I1, I2),+, •,K(I1, I2)) be two strong refined neu-
trosophic hypervector spaces over a refined neutrosophic field K(I1, I2) and let φ : V (I1, I2) −→ W (I1, I2)
be a bijective strong refined neutrosophic hypervector space homomorphism.
If B(I1, I2) = {u1 = (a1, b1I1, c1I2), u2 = (a2, b2I1, c2I2), · · · , un = (an, bnI1, cnIn)} is a basis for
V (I1, I2), then B′(I1, I2) = φ(B(I1, I2)) = {φ(u1), φ(u2), · · · , φ(un)} is a basis for W (I1, I2).

Proof. Suppose that B(I1, I2) is a basis for V (I1, I2). Then for an arbitrary u = (a, bI1, cI2) ∈ V (I1, I2),
there exist refined neutrosophic scalars
α1 = (k1,m1I1, t1I2), α2 = (k2,m2I1, t2I2), · · · , αn = (kn,mnI1, tnI2) ∈ K(I1, I2) such that

u ∈ α1 • u1 + α2 • u2 + · · ·+ αn • un

=⇒ φ(u) ∈ φ(α1 • u1 + α2 • u2 + · · ·+ αn • un)

= α1 •′ φ(u1) +′ α2 •′ φ(u2) +′ · · ·+′ αn •′ φ(un).

Since φ is surjective, it follows that φ(u), φ(u1), φ(u2), · · · , φ(un) ∈W (I1, I2) and therefore
φ(u) ∈ span(B′(I1, I2)). To complete the proof, we must show that B′(I1, I2) is linearly independent.
To this end, suppose that

φ(θ) ∈ β1 •′ φ(u1) +′ β2 •′ φ(u2) +′ · · ·+′ βn •′ φ(un)

where β1 = (p1, q1I1, s1I2), β2 = (p2, q2I1, s2I2), · · · , βn = (pn, qnI1, snI2) ∈ K(I1, I2), then

φ(θ) ∈ φ(β1 • u1) +′ φ(β2 • u2) +′ •+′ φ(βn • un)

= φ(β1 • u1 + β2 • u2 + · · ·+ βn • un).

Since φ is injective, we must have

θ ∈ β1 • u1 + β2 • u2 + · · ·+ βn • un.

Also, since B(I1, I2) is linearly independent, we must have
β1 = β2 = · · · = βn = (0, 0I1, 0I2).
Hence B′(I1, I2) = {φ(u1), φ(u2), · · · , φ(un)} is linearly independent and therefore a basis for W (I1, I2).

Remark 2.47. Suppose we wish to transform a refined neutrosophic hypervector space into a neutrosophic
hypervector space, an interesting question to ask will be, can we find a mapping that will help us achieve this?
The answer to this is Yes.
The mapping φ : V (I1, I2) −→ V (I) defined by

φ((x, yI1, zI2)) = (x, (y + z)I) ∀ x, y, z ∈ V

will make such transformation possible. This mapping is a non-neutrosophic one. This make sense since every
refined neutrosophic hypervector space and neutrosophic hypervector spaces are hypervector spaces.

Proposition 2.48. Let (V (I1, I2),+, •) be a weak refined neutrosophic vector space over a field K and let
V (I) be a weak neutrosophic vector space over K. The mapping φ : V (I1, I2) −→ V (I) defined by

φ((x, yI1, zI2)) = (x, (y + z)I) ∀ x, y, z ∈ V

is a good linear transformation.

Proof. φ is well defined. Suppose (x, yI1, zI2) = (x′y′I1, z
′I2) then we that x = x′, y = y′ and z′ = z′. So,

φ((x, yI1, zI2)) = (x, (y + z)I) = x′ + (y′ + z′)I = φ(x′, y′I1, z
′I2).

Now, suppose (x, yI1, zI2), (x
′, y′I1, 1z

′I2) ∈ V (I1, I2) then
φ((x, yI1, zI2) + (x′, y′I1, z

′I2)) = φ((x+ x′), (y + y′)I1, (z + z′)I2)
= (x+ x′), (y + y′ + z + z′)I
= (x+ x′), ((y + z) + (y′ + z′))I
= (x+ x′), ((y + z)I + (y′ + z′)I)
= (x, (y + z)I) + (x′, (y′ + z′)I)
= φ(x, yI1, zI2) + φ(x, yI1, zI2).
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φ(k ◦ (x, yI1, zI2)) = φ{(a, bI1, cI2) : a ∈ k ◦ x, b ∈ k ◦ y, c ∈ k ◦ z}
= {φ(a, bI1, cI2) : a ∈ k ◦ x, b ∈ k ◦ y, c ∈ k ◦ z}
= {(u, vI) : u ∈ a, v ∈ b+ c}
= {(u, vI) : u ∈ k ◦ x, v ∈ k ◦ y + k ◦ z}
= {(u, vI) : u ∈ k ◦ x, v ∈ k ◦ (y + z)}
= k ◦ (x, (y + z)I)
= k ◦ φ(x, yI1, zI2).

Hence φ is a good linear transformation.

Proposition 2.49. Let Lk(V (I1, I2), V (I)) be the set of good linear transformation from a weak refined
neutrosophic vector space V (I1, I2) over a field K into a weak neutrosophic vector space V (I) over a field
K. Define addition and scalar multiplication as below;

(φ+ ψ)(x, yI1, zI2) = φ((x, yI1, zI2)) + ψ((x, yI1, zI2))

and for k ∈ K
(kφ)((x, yI1, zI2)) = kφ(x, yI1, zI2).

Then, it can be shown that (Lk(V (I1, I2), V (I)),+, ·) is a weak neutrosophic strongly distributive hypervector
space.

Definition 2.50. Let φ : V (I1, I2) −→ V (I) be a good linear transformation, then
kerφ = {(x, yI1, zI2) : φ((x, yI1, zI2)) = (0, 0I)}

= {(x, yI1, zI2) : (x, (y + z)I) = (0, 0I)}
= {(0, yI1, (−y)I2)}.

Proposition 2.51. Let φ : V (I1, I2) −→ V (I) be a good linear transformation.

1. kerφ is a subhyperspace of V (I1, I2).

2. If W [I1, I2] is a refined neutrosophic subhyperspace of V (I1, I2), then the image ofW [I1, I2], φ(W [I1, I2])
is a neutrosophic subhyperspace of V (I).

3 Conclusion
This paper studied refinement of neutrosophic hypervector space, linear dependence, independence, bases and
dimension of refined neutrosophic hypervector spaces and presented some of their basic properties. Also, the
paper established the existence of a good linear transformation between a weak refined neutrosophic hyper-
vector space V (I1, I2) and a weak neutrosophic hypervector space V (I). We hope to present and study more
properties of refined neutrosophic Hypervector spaces in our future papers.
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Abstract   

In this  paper, A new type of  separation axioms in the neutrosophic crisp Topological space named  neutrosophic 
crisp pre separation axioms is going to be defined , in which neutrosophic  crisp pre open set and  neutrosophic  
crisp point are to be depended on. Also, relations among them and the other type are going to be found.   

Keywords: Neutrosophic crisp pre separation axiom, neutrosophic crisp separation axiom, neutrosophic crisp 

point, Neutrosophic crisp semi separation axiom. 

 
1. Introduction 

In 1995, F.Samarandache generalized the fuzzy logic concept into the neutrosophic logic which presents a more 

detaied and concise description than the fuzzy logic and classical logic; then several researches emerged in this 

logic, in all branches of mathematics, especially Topology. 

In 2012 A. A Salama et al. defined the concept of the neutrosophic set. Also, in 2020 A. Al-Nafey, R. Al-Hamido 

and F. Smarandache define the neutrosophic crisp separation axioms[2]. Also, in 2020 R. K. Al-Hamido, L.A. Salha 

and T. Gharibah define neutrosophic crisp  semi separation axioms[13]. 

Recently, the neutrosophic crisp set theory may have applications in image processing [3-4]and possible applications 

to database[6]. Also, neutrosophic sets [7] have applications in the medical field [8-11], [9], [10], [11] and in the 

field of geographic information systems[5].Many researchers studied topology, and they had many contributions to 

neutrosophic toplogy as [14], [15], [16], [17] and [18] and in neutrosophic bitopology in [19], [20], [21] and [22], 

and in neutrosophic algebra in [23], [24], [25], [26] and [27]. 

In this  paper, neutrosophic crisp pre separation axioms via neutrosophic crisp pre open set and neutrosophic crisp 

point are going to be studied. 

Lastly, the definition of separation axioms is as follows  ��, � = 0,1,2 and  the relations among them.     

 

2. Preliminaries" 
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In  this paper, the symbol (χ,Ҭ) means a neutrosophic crisp topological space (N�TS), Also   

N�. OS (N�. CS) means a neutrosophic crisp open(closed) sets and neutrosophic crisp pre open set in N�TS mean a 
N�P. OS .  
Some important definitions to this paper will be shown. 
Definition 2.1. [1] 

; eshap >3, U2, U1U=< Uis an object with the  U) N�. Sbe a fixed set. A neutrosophic crisp set ( � ≠ ∅Suppos that  

��, �� ��� ��are subsets of X.  

Definition 2.5. [12].",   
Suppos that χ be a non-empty set. And  x,y,z χ, then: 
a. x��{x},∅,∅ > is called a neutrosophic crisp point (�����) in χ. 

b.  y��∅,{y},∅ > is called a neutrosophic crisp point (�����) in χ.  

c. z��∅,∅, {z} > is called a neutrosophic crisp point (�����) in χ . 

The set of all neutrosophic crisp points (��P�� , ��P��, ��P��) is denoted by NCP�.  

Definition 2.6. [12]", 
Suppos that (χ,Ҭ) be an ����. Then  χ is called: 
a. ��Ҭo-space for every two diffrant points from χ there exists neutrosophic crisp open set in χ .containing one of 

them but not  the other. 
b. ��Ҭo-space for every two diffrant points from χ there exists neutrosophic crisp open set in χ .containing one of 

them but not  the other.  
c. ��Ҭo-space for every two diffrant points from χ there exists neutrosophic crisp open set in χ .containing one of 

them but not the other. 
 
Definition 2.7. [12] 

Suppos that (χ,Ҭ) be an ����. Then  χ is called:, 
a. ��Ҭ1-space for every two diffrant points from χ are x�� , y��  there exists two neutrosophic crisp open set  Ϻ 1, 

Ϻ 2 in χ such that x�� Ϻ 1, y��   Ϻ 1 and x��   Ϻ2 , y��   Ϻ2. 

b. ��Ҭ1-space for every two diffrant points from χ are x�� , y��  there exists two neutrosophic crisp open set  Ϻ 1, 

Ϻ2 in χ such that x�� G1, y��   G1 and x��   G2 , y��   G2. 

c. ��Ҭ1-space for every two diffrant points from χ are x�� , y��  there exists two neutrosophic crisp open set  Ϻ 1, 

Ϻ2 in χ such that x��M1, y��  M1 and x��   M2 , y��    
M2. 
 

Definition 2.8. [12]", 

Suppos that (χ,Ҭ) be an ����. Then  χ is called: 
a. ��Ҭ2-space for every two diffrant points from χ are x�� , y��  there exists two neutrosophic crisp open set  Ϻ 1, 

Ϻ2 in χ such that x�� Ϻ 1, y��   Ϻ 1 and x��   Ϻ2 , y��   Ϻ2. with M1∩M2= ∅. 

b. ��Ҭ2-space for every two diffrant points from χ are x�� , y��  there exists two neutrosophic crisp open set  Ϻ 1, 

Ϻ2 in χ such that x�� M1, y��   M1 and x��   M2 , y��   M2 with M1∩M2= ∅.  

c. ��Ҭ2-space for every two diffrant points from χ are x�� , y��  there exists two neutrosophic crisp open set  Ϻ1, 

Ϻ2 in χ such that x�� Ϻ1, y��   Ϻ1 and x��   Ϻ2, y��  Ϻ2  with Ϻ1∩ Ϻ2 = ∅. 

 
Definition 2.9. [13]",", 
 Suppos that (χ,Ҭ) be an ����. Then  χ is called: 

a. N�semiҬo-space if for every x�� y��χ there exists ���.�� Ϻ in χ containing one of them but not  the other. 

b. N�semiҬo-space if ∀ x�� y��� there exists ���. �� Ϻ in χ containing one of them but not  the other.  

c. N�semiҬo-space if ∀ x�� y��χ there exists ���. �� Ϻ in χ containing one of them but not the other. 
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Definition 2.10. [13]",", ", 
Suppos that (χ,Ҭ) be an ����. Then  χ is called: 

a. ��  semiҬ1-space if for every x�� y��χ there exist ���. �� Ϻ 1, Ϻ2 in χ such that x�� Ϻ 1, y��  Ϻ 1 and 

x��   Ϻ2 , y��   Ϻ2. 

b. ��semiҬ1-space if ∀ x��   y��χ there exist ���. �� Ϻ 1, Ϻ2 in χ such that x�� G1, y��   G1 and x��   G2 , 

y��   G2       

c. ��semiҬ1-space if ∀ x��   y��χ there exist ���. �� Ϻ 1, Ϻ2 in χ such that x��M1, y��  M1 and x��   M2 , 

y��   M2  

 
Definition 2.11. [13]",", ", 
 Suppos that (χ,Ҭ) be an ����. Then  χ is called: 

a. ��semiҬ2-space if for every x�� y��χ there exists ���. �� Ϻ 1, Ϻ2 in χ such that x�� Ϻ 1, y��   Ϻ 1 and 

x��   Ϻ2 , y��   Ϻ2. with M1∩M2= ∅. 

b. ��semiҬ2-space if ∀ x��   y��χ there exists ���. �� Ϻ 1, Ϻ2 in χ such that x�� M1, y��   M1 and x��   M2 

, y��   M2 with M1∩M2= ∅.  

c. ��semiҬ2-space if ∀ x��   y��χ there exists ���. �� Ϻ1, Ϻ2 in χ such that x�� Ϻ1, y��   Ϻ1 and x��   

Ϻ2, y��   Ϻ2  with Ϻ1∩ Ϻ2 = ∅. 

3. Separation axioms via pre open sets 

This section introuduces a new type of  separation axioms in the neutrosophic crisp Topological space named  

neutrosophic crisp pre separation axioms. 

Definition 3.1. ", 
 Suppos that (χ,Ҭ) be an NcTS. Then  χ is called: 

d. N�preҬo-space if for every x�� y��χ there exists NcP.OS Ϻ in χ containing one of them but not  the other. 

e. N�preҬo-space if ∀ x�� y��� there exists NcP.OS Ϻ in χ containing one of them but not  the other.  

f. N�preҬo-space if ∀ x�� y��χ there exists NcP.OS Ϻ in χ containing one of them but not the other. 

Definition 3.2. ", 
Suppos that (χ,Ҭ) be an NcTS. Then  χ is called: 

d. ��Ҭ1-space if for every x�� y��χ there exist ���. �� Ϻ 1, Ϻ2 in χ such that x�� Ϻ 1, y��   Ϻ 1 and x��   

Ϻ2 , y��   Ϻ2. 

e. ��preҬ1-space if ∀ x��   y��χ there exist ���. �� Ϻ 1, Ϻ2 in χ such that x�� G1, y��   G1 and x��   G2 , 

y��   G2 

f. ��preҬ1-space if ∀ x��   y��χ there exist ���. �� Ϻ 1, Ϻ2 in χ such that x��M1, y��  M1 and x��   M2 , 

y��   M2  

Definition 3.3. ", 
Suppos that (χ,Ҭ) be an NcTS. Then  χ is called: 

d. ��preҬ2-space if for every x�� y��χ there exists ���. �� Ϻ 1, Ϻ2 in χ such that x�� Ϻ 1, y��   Ϻ 1 and 

x��   Ϻ2 , y��   Ϻ2. with M1∩M2= ∅. 

e. ��preҬ2-space if ∀ x��   y��χ there exists ���. �� Ϻ 1, Ϻ2 in χ such that x�� M1, y��   M1 and x��   M2 , 

y��   M2 with M1∩M2= ∅.  

f. ��preҬ2-space if ∀ x��   y��χ there exists ���. �� Ϻ1, Ϻ2 in χ such that x�� Ϻ1, y��   Ϻ1 and x��   

Ϻ2, y��   Ϻ2  with Ϻ1∩ Ϻ2 = ∅. 

Theorem 3.4. 

Suppos that (χ,Ҭ) be an NcTS, then : 
1. Every ��Ҭ0-space is ��preҬ0-space.  
2. Every ��Ҭ0-space is ��preҬ0-space.  
3. Every ��Ҭ0-space is ��preҬ0-space. 
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Proof:  
1. Suppose that (χ,Ҭ) is an ��Ҭ0-space, therefore for every two  x��   y�� , there exists an Nc.OS Ϻ in χ 

.containing one of them to which the other does not belong. So there exists an ���. �� Ϻ in χ .containing 
one of them to which the other does not belong, therefore X is ��preҬ0-space. 

2. Suppose that (χ,Ҭ) is an ��Ҭ0-space, therefore for every two  x��   y�� , there exists an Nc.OS Ϻ in χ 

.containing one of them to which the other does not belong. So there exists an ���. �� Ϻ in χ .containing 
one of them to which the other does not belong, therefore X is ��preҬ0-space. 

3. Suppose that (χ,Ҭ) is an ��Ҭ0-space, therefore for every two  x��   y�� , there exists an Nc.OS Ϻ in χ 

.containing one of them to which the other does not belong. So there exists an ���. �� Ϻ in χ .containing 
one of them to which the other does not belong, therefore X is ��preҬ0-space. 
 

Remark 3.5. ", 
The converse of theorem 3.4 is not true., as it is shown in the following examples. 
Example 3.6. 
Let χ = {�, �, �}, Ҭ = {∅� , �� , �}, � = {< { �}, ∅, ∅ >} 
���. �� = Ҭ ∪ { � = {< { �, �}, ∅, ∅ >}, � = {< { �, �}, ∅, ∅ >}}. 
Let x�� = {< { �}, ∅, ∅ >} y�� = {< { �}, ∅, ∅ >}χ there is no a Nc.OS M in χ .containing one of them but not  

the other. Therefore (χ,Ҭ)  is not Ɲ�Ҭ0-space. 

Let x�� = {< { �}, ∅, ∅ >} y�� = {< { �}, ∅, ∅ >}χ there is a NcP.OS B in χ .containing one of them but not  the 
other.  

Let xN1 = {< { �}, ∅, ∅ >} y
N1

= {< { �}, ∅, ∅ >}χ there is a NcP.OS A in χ .containing one of them but not  

the other.  

Let xN1 = {< { �}, ∅, ∅ >} y
N1
= {< { �}, ∅, ∅ >}χ there is a Nc.OS B in χ .containing one of them but not  the 

other. Therefore (χ,Ҭ) Ɲ����Ҭ0-space. 
Then (χ,Ҭ) Ɲ����Ҭ0-space, But (χ,Ҭ)  is not Ɲ�Ҭ0-space. 
Example 3.7. 
Let χ = {�, �, �}, Ҭ = {∅� , �� , � }, � = {< { �}, ∅, ∅ >} 
���. �� = Ҭ ∪ { � = {< { �, �}, ∅, ∅ >}, � = {< { �, �}, ∅, ∅ >}}. 
Let x�� = {<  ∅, { �}, ∅ >} y�� = {< ∅, { �}, ∅ >}χ there is no a Nc.OS Ϻ in χ .containing one of them but not  

the other. Therefore (χ,Ҭ)  is not Ɲ�Ҭ0-space. 

Let x�� = {<  ∅, { �}, ∅ >} y�� = {< ∅, { �}, ∅ >}χ there is a NcP.OS B in χ .containing one of them but not  

the other.  
Let x�� = {<  ∅, { �}, ∅ >} y�� = {< ∅, { �}, ∅ >}χ there is a NcP.OS A in χ .containing one of them but not  
the other.  

Let x�� = {<  ∅, { �}, ∅ >} y�� = {< ∅, { �}, ∅ >}χ there is a NcP.OS A in χ .containing one of them but not  

the other. Therefore (χ,Ҭ) Ɲ����Ҭ0-space. 
Then (χ,Ҭ) Ɲ����Ҭ0-space, But (χ,Ҭ)  is not Ɲ�Ҭ0-space. 
Example 3.8. 
Let χ = {�, �, �}, Ҭ = {∅� , �� , � }, � = {< { �}, ∅, ∅ >} 
���. �� = Ҭ ∪ { � = {< { �, �}, ∅, ∅ >}, � = {< { �, �}, ∅, ∅ >}}. 
Let x�� = {< ∅, ∅, { �} >} y�� = {< ∅, ∅, { �} >}χ there is no a Nc.OS Ϻ in χ .containing one of them but not  

the other. Therefore (χ,Ҭ)  is not Ɲ�Ҭ0-space. 
Let x�� = {< ∅, ∅, { �} >} y�� = {< ∅, ∅, { �} >}χ there is a NcP.OS B in χ .containing one of them but not  the 
other.  

Let x�� = {< ∅, ∅, { �} >} y�� = {< ∅, ∅, { �} >}χ there is a NcP.OS A in χ .containing one of them but not  the 

other.  

Let x�� = {< ∅, ∅, { �} >} y�� = {< ∅, ∅, { �} >}χ there is a Nc.OS A in χ .containing one of them but not  the 

other. Therefore (χ,Ҭ) Ɲ����Ҭ0-space. 
Then (χ,Ҭ) Ɲ����Ҭ0-space, But (χ,Ҭ)  is not Ɲ�Ҭ0-space. 
Theorem 3.9. 

Let (χ,Ҭ) be an NcTS, then : 
1. Every ��Ҭ1-space is ��preҬ1-space.  
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2. Every ��Ҭ1-space is ��preҬ1-space.  
3. Every ��Ҭ1-space is ��preҬ1-space. 

 
Proof: 

1. Suppose that (χ,Ҭ) is an ��Ҭ1-space , therefore for every two  x��   y��  , there exist an Nc.OS Ϻ 1, Ϻ2 in χ 

such that x�� Ϻ 1, y��   Ϻ 1 and x��   Ϻ2 , y��   Ϻ2. So there exists an ���. �� Ϻ 1, Ϻ2 in χ such that 

x�� Ϻ 1, y��   Ϻ 1 and x��   Ϻ2 , y��   Ϻ2. 
Therefore X is ��preҬ1-space. 

2. Suppose that (χ,Ҭ) is an ��Ҭ1-space , therefore for every two  x��   y��  , there exist an Nc.OS Ϻ 1, Ϻ2 in χ 

such that x�� Ϻ 1, y��   Ϻ 1 and x��   Ϻ2 , y��   Ϻ2. So there exists an ���. �� Ϻ 1, Ϻ2 in χ such that 

x�� Ϻ 1, y��   Ϻ 1 and x��   Ϻ2 , y��   Ϻ2. 
Therefore X is ��preҬ1-space. 

3. Suppose that (χ,Ҭ) is an ��Ҭ1-space , therefore for every two  x��   y��  , there exist an Nc.OS Ϻ 1, Ϻ2 in χ 

such that x�� Ϻ 1, y��   Ϻ 1 and x��   Ϻ2 , y��   Ϻ2. So there exists an ���. �� Ϻ 1, Ϻ2 in χ such that 

x�� Ϻ 1, y��   Ϻ 1 and x��   Ϻ2 , y��   Ϻ2. 
Therefore X is ��preҬ1-space. 

Remark 3.10. 
The converse of a theorem 3.9 is not true, as it is shown in the following example. 
Example 3.11. 
Let χ = {�, �, �}, Ҭ = {∅� , �� , �, �}, � = {< { �}, ∅, ∅ >}, � = {< { �, �}, ∅, ∅ >}. 
���. �� = Ҭ ∪ {� = {< { �}, ∅, ∅ >}, � = {< { �}, ∅, ∅ >}, � = {< { �, �}, ∅, ∅ >}, � = {< { �, �}, ∅, ∅ >} }. 
Let x�� = {< { �}, ∅, ∅ >} y�� = {< { �}, ∅, ∅ >}χ there is no ��. �� Ϻ 1, Ϻ2 in χ such that x�� Ϻ1, y��   

Ϻ1  and x��   Ϻ2 , y��   Ϻ2. Therefore (χ,Ҭ)  is not Ɲ�Ҭ1-space. 

Then (χ,Ҭ) Ɲ����Ҭ1-space, but (χ,Ҭ)  is not Ɲ�Ҭ1-space.  
Example 3.12. 
Let χ = {�, �, �}, Ҭ = {∅� , �� , �, �}, � = {< ∅, { �}, ∅ >}, � = {< ∅, { �, �}, ∅ >}. 
���. �� = Ҭ ∪ {� = {< ∅, { �}, ∅ >}, � = {< ∅, { �}, ∅ >}, � = {< ∅, { �, �}, ∅ >}, � = {< ∅, { �, �}, ∅ >} }. 
Let x�� = {< ∅, { �}, ∅ >} y�� = {< ∅, { �}, ∅ >}χ there is no ��. �� Ϻ 1, Ϻ2 in χ such that x�� Ϻ1, y��   

Ϻ1  and x��   Ϻ2 , y��   Ϻ2. Therefore (χ,Ҭ)  is not Ɲ�Ҭ1-space. 

Then (χ,Ҭ) Ɲ����Ҭ1-space, but (χ,Ҭ)  is not Ɲ�Ҭ1-space. 
Example 3.13. 
Let χ = {�, �, �}, Ҭ = {∅� , �� , �, �}, � = {< ∅, ∅, { �} >}, � = {< ∅, ∅, { �, �} >}. 
���. �� = Ҭ ∪ {� = {< ∅, ∅, { �} >}, � = {< ∅, ∅, { �} >}, � = {< ∅, ∅, { �, �} >}, � = {< ∅, ∅, { �, �} >} }. 
Let x�� = {< ∅, ∅, { �} >} y�� = {< ∅, ∅, { �} >}χ there is no ��. �� Ϻ 1, Ϻ2 in χ such that x�� Ϻ1, y��   

Ϻ1  and x��   Ϻ2 , y��   Ϻ2. Therefore (χ,Ҭ)  is not Ɲ�Ҭ1-space. 

Then (χ,Ҭ) Ɲ����Ҭ1-space, but (χ,Ҭ)  is not Ɲ�Ҭ1-space. 
Theorem 3.14. 

Let (χ,Ҭ) be an NcTS, then : 
1. Every ��Ҭ2-space is ��preҬ2-space.  
2. Every ��Ҭ2-space is ��preҬ2-space.  
3. Every ��Ҭ2-space is ��preҬ2-space. 

 
Proof: 

1. Suppose that (χ,Ҭ) is an ��Ҭ2-space , therefore for every two  x��   y��  , there exists an ��. �� Ϻ 1, Ϻ2 in 

χ such that x�� Ϻ 1, y��   Ϻ 1 and x��   Ϻ2 , y��   Ϻ2. with M1∩M2= ∅. So there exists ���. �� Ϻ 1, 

Ϻ2 in χ such that x�� Ϻ 1, y��   Ϻ 1 and x��   Ϻ2 , y��   Ϻ2. with M1∩M2= ∅. 

Therefore X is ��preҬ2-space. 
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2. Suppose that (χ,Ҭ) is an ��Ҭ2-space , therefore for every two  x��   y��  , there exists an ��. �� Ϻ 1, Ϻ2 in 

χ such that x�� Ϻ 1, y��   Ϻ 1 and x��   Ϻ2 , y��   Ϻ2. with M1∩M2= ∅. So there exists ���. �� Ϻ 1, 

Ϻ2 in χ such that x�� Ϻ 1, y��   Ϻ 1 and x��   Ϻ2 , y��   Ϻ2. with M1∩M2= ∅. 

Therefore X is ��preҬ2-space. 

3. Suppose that (χ,Ҭ) is an ��Ҭ2-space , therefore for every two  x��   y��  , there exists an ��. �� Ϻ 1, Ϻ2 in 

χ such that x�� Ϻ 1, y��   Ϻ 1 and x��   Ϻ2 , y��   Ϻ2. with M1∩M2= ∅. So there exists ���. �� Ϻ 1, 

Ϻ2 in χ such that x�� Ϻ 1, y��   Ϻ 1 and x��   Ϻ2 , y��   Ϻ2. with M1∩M2= ∅. 

Therefore X is ��preҬ2-space. 
4.  

Remark 3.15. 
The converse of the Theorem 3.14 is not true., as it is shown in the following example. 
Example 3.16. 
In example 3.11. (χ,Ҭ) Ɲ����Ҭ2-space, but (χ,Ҭ)  is not Ɲ�Ҭ2-space. 
Example 3.17. 
In example 3.12. (χ,Ҭ) Ɲ����Ҭ2-space, but (χ,Ҭ)  is not Ɲ�Ҭ2-space. 
Example 3.18. 
In example 3.13. (χ,Ҭ) Ɲ����Ҭ2-space, but (χ,Ҭ)  is not Ɲ�Ҭ2-space. 
Theorem 3.19. 

Let (χ,Ҭ) be an NcTS, then : 

1. ��preҬ2-space  ��preҬ1-space  ��preҬ0-space.  
2. ��preҬ2-space  ��preҬ1-space  ��preҬ0-space.  
3. ��preҬ2-space  ��preҬ1-space  ��preҬ0-space.  

The converse of the Theorem 3.19 is not true. 
Remark. 3.21. 
Relations among the different types of neutrosophic crisp separation axioms which were studied in this paper,  
appear in the following diagram. 
 

 
                 Ni-ST2-space                    Ni-ST1-space                Ni-STo-space. 

                                                                                               
 
                                                                                                     
 
                    Ni-T2-space                      Ni-T1-space                 Ni-To-space. 
                                                                                     
 

                                                                                                      
               
                                Ni-PT2-space                    Ni-PT1-space                 Ni-PTo-space. 

                                                                                                

 

i=0,1,2. 
 

Conclusion  

In this paper, a new type of neutrosophic. crisp separation axioms has been defined by using neutrosophic crisp pre 

open sets and certain point in the neutrosophic. crisp topological spaces. Moreover, the connections between 

neutrosophic crisp pre separation axioms and the existing neutrosophic crisp separation axioms are studied. And 

many examples are presented to clear the concepts introduced. Also, proof their basic properties. Also, investigate 

their fundamental properties and characterizations. 
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Abstract 

In a previous paper in this journal (IJNS), it is mentioned about a possible approach of “curemony” as a middle way 

in order to reconcile Eastern and Western’s paradigms of medicine [1]. Although it is known in literature that there 

are some attempts to reconcile between Eastern and Western medicine paradigms, known as “integrative medicine,” 

here a new viewpoint is submitted, i.e. Bong Han duct system (PVS), which is a proof of Meridian system, can be a 

bridge between those two medicine paradigms in neutrosophic sense. This can be considered as a Neutrosophic Logic 

way to bridge or reconcile the age-old debates over the Western and Eastern approach to medicine. It is also hoped 

that there will be further research in this direction, especially to clarify the distinction between Pasteur’s germ theory 

and Bechamp’s microzyma theory. More research is obviously recommended. Motivation of this paper: to prove that 

Neutrosophic Logic offers a reconciliation towards better dialogue between Western and Eastern medicine systems. 

Novelty aspect: it is discussed here how Bong Han Duct system offers a proven and observable way to Meridian 

system, which in turn it can be a good start to begin meaningful dialogue between Western and Eastern systems. 

Keywords: Pasteur, microzyma, Bechamp theory, meridian system, Bong Han Kim, Bong Han duct system, 

neutrosophic logic  

 

1.Introduction  

In the light of recent advancements on the use of Neutrosophic Logic in various branches of science and mathematics, 

this paper discuss possible application in medicine philosophy. See for instance [13-19]. 

This paper is inspired partly by the movie, Jewel in the Palace (Dae Jang Geum). One of these authors (VC) has a 

younger brother who likes to watch that movie. He already completed watching the entire series (more than 70 

episodes) more than three times. According to a good documentary on that movie [11]: 
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A history book courageous woman is reawakened in a hit TV dramatization. In 1392, the Joseon Dynasty 

appeared. The rulers of Joseon would lead the Korean landmass until the administration fell, to be supplanted 

by a Japanese provincial system, in 1910. All things considered, Joseon's heritage suffers: It was one of the 

world's longest-running imperial administrations. In the "Joseon-Wangjo-Sillok" - "The Annals of the Joseon 

Dynasty;" the official record of the realm - a lady named "Daejanggeum" is referenced. She lived during the 

rule of King Jungjong (1506~1544), and the archives disclose to us that she had been a low-positioning court 

woman who picked up the ruler's trust and was elevated to the most noteworthy positioned woman in the 

kitchen, and furthermore to regal doctor. In one notice in the archives, the ruler states, "I have nearly 

recuperated from the sickness of a couple of months. So I should offer honors to the individuals who put forth 

bunches of attempts to fix me. Give the imperial doctors and euinyeo (female associate) Daejanggeum 

blessings." 

 

Figure 1. Jang Geum name was recorded in the "Joseon-Wangjo-Sillok" - "The Annals of the Joseon 

Dynasty.” After Kang Min Su [11] 

 

What is more interesting to these authors, is not only the depiction of royal palace at the time, but also the use of royal 

cuisine as medication, beside the use of acupuncture methods.[11] 

Now it seems obvious for Western scholars to pause at this point and ask: “What? Acupuncture? Are you joking?”  

This short review paper is discussing that approach: whether it is possible to reconcile both Eastern and Western 

medicine paradigms from the view point of Bong Han Kim’s duct system (PVS) and its relation to Bechamp’s 

microzyma.  
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As it is brought up in [1], it is notable by most medication experts, that Western way to deal with medication depends 

on "assaulting" an infection, individually. This is called germ hypothesis: one remedy for one ailment (Pasteur). On 

the contrary side, Eastern medication is situated specifically on old knowledge of restoring the parity (harmonious 

functions) of the body, at the end of the day: to blend our body and our live with nature. In spite of the fact that those 

two methodologies in medication and social insurance have caused such a large number of contentions and false 

impressions, really it is conceivable to do an exchange between them. From Neutrosophic Logic’s point of view, a 

goal to the above clashing ideal models can be found in creating novel methodologies which acknowledge the two 

conventions in medication, or it is conceivable to call such a methodology: "curemony," for example by 

simultaneously relieving an infection and reestablishing harmony and returning concordance in one's body-mind-soul 

all in all. 

 

Now it is known that one of the objections by Western scholars about the Eastern medicine (based on meridian points) 

is the unobservability of meridian vascular/duct system. This makes meridian system neglected in almost all textbooks 

taught in Western medicine schools. Therefore, here a new viewpoint is submitted, i.e. Bong Han duct system (PVS), 

which is a proof of Meridian system, can be a bridge between those two medicine paradigms in neutrosophic sense. 

This can be considered as a Neutrosophic Logic way to bridge or reconcile the age old debates over the Western and 

Eastern approach to medicine. 

  

It would be a lot easier to merge both the eastern (ancient) and the modern western curative system in terms of 

neutrosophy.These neutrosophic intermediates will help further to boost dialogues between those Western and Eastern 

system and their useful information. This neutrosophic intermediator is actually dealing with conscious of both non-

matter and matter in terms of ancients and modern techniques. 

 

2. Introduction to Bong Han duct system 

Nonetheless, in literature it is recorded that Bong Han Kim is a Professor in Biology in Korea. Around 1950-1960 he 

found the vessel which is a "duct" to known Eastern Meridian system, which is already known in acupuncture medicine 

system. Therefore it seems like a bridge between Western and Eastern medicine paradigms. As it is  mentioned in 

previous paper [1], this paper will discuss how those paradigms can be reconciled in Neutrosophic Logic, using a 

degree of Western medicine and a degree of Eastern medicine, as the neutral part of neutrosophy. To us, Bong Han 

duct system is a good way to start a healthy and meaningful dialogue between those two paradigms in medicine. 

As Vitaly Vodanoy wrote, which can be rephrased as follows: 

“In the 1960's Bong Han Kim found and described another vascular framework. He had the option to separate 

it unmistakably from vascular blood and lymph frameworks by the utilization of an assortment of techniques, 

which were accessible to him in the mid-twentieth century. He gave nitty gritty portrayal of the framework 

and made thorough graphs and photos in his distributions. He showed that this framework is made out of 

hubs and vessels, and it was answerable for tissue recovery. In any case, he didn't reveal in subtleties his 
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techniques. Thus, his outcomes are moderately dark from the vantage purpose of contemporary researchers. 

The stains that Kim utilized had been idealized and being used for over 100 years. In this manner, the names 

of the stains coordinated to the unequivocal conventions for the use with the specific cells or particles. 

Generally, it was not typically important to portray the strategy utilized except if it is altogether strayed from 

the first technique.”[9] 

Although his method was almost forgotten until recently, it has been recovered again in the past decade. It is clear 

therefore, that Bonghan Kim’s work, who essentially (and without being aware of the work previously done by 

Bechamp) discovered that what we call the 'Meridian System' (known as the Kyungrak System in the Korean tongue) 

which exists in the body as an actual third anatomical vascular system, comprised of ducts, ductules, corpuscles, and 

a unique type of fluid, the contents of which tie directly back to Bechamp's own discoveries (work is still being done 

today on the mapping out of this anatomical system, as it is far more extensive than the old Oriental texts gave it 

credit.) See [4]. 

Remark on terminology: 

“In a matter of seconds before the primary International Symposium on Primo Vascular System, which was 

held in Jecheon, Korea during September 17–18, 2010, Dr. Kwang-Sup Soh, recommended that it is critical 

to concur upon a solitary phrasing for the Bonghan framework. It was concurred that following terms would 

be embraced: Bong-Han System (BHS) - Primo Vascular System (PVS); Bonghan Duct (BHD)- Primo 

Vessel (PV); Bonghan Corpuscle (BHC)- Primo Node (PN); Bonghan Ductule - P-Subvessel; Bonghan 

Liquor-Primo Fluid (P-liquid); Sanalp-Microcell”[9]. 

Now in the next section, it will be discussed virus research, especially at their beginning. 

Hidden the introduction of virology is a conviction that infections are monomorphism, they are fixed species, 

unchangeable; that each neurotic kind produces (typically) just a single explicit illness; that microforms never emerge 

endogenously, i.e., have supreme source with the host. Thus the worldview prompts conviction called "germ 

hypothesis" of Pasteur: for example one remedy for one disease.[6-7]  

Bechamp recorded standard as the premise of another hypothesis about "infections." Briefly, this guideline holds that 

in every single living life form are organically indestructible anatomical components, which he called microzymas. 

They are freely living sorted out matures, equipped for creating compounds and fit for advancement into increasingly 

complex microforms, for example, microbes. Bechamp's proposition is that infection is a state of one's interior 

condition (landscape); that ailment (and its indications) are "conceived of us and in us"; and that malady isn't created 

by an assault of microentities yet considers forward their endogenous cause. [8]  

 

All things considered, it is realized that Pasteur duplicated whatever he discovered Bechamp thoughts would fit in his 

own hypothesis. Consequently, Bechamp was unmistakably increasingly unique researcher contrasted with Pasteur. 
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3. A re-interpretation of diseases and virus from Bechamp’s theory 

This section begin by citing [4], which can be paraphrased as follows: 

“Through a cautious perception of the wonders of the thickening of the blood just as the procedure of 

maturation; and as a methods for all the more accurately deciphering the basic idea of these marvels; 

Bechamp straightforwardly saw that there exist a layers of subcellular, miniaturized scale natural living 

structures known as 'microzymas', a word which when interpreted signifies 'minor ages'. These structures 

were alluded to without anyone else and by other people (who came later, and mentioned a similar objective 

facts) as some type of 'atomic granulations' (more on this beneath). These microzyma are littler in size than 

some other known types of small scale natural life, and fill in as the base establishment for the development 

of every other type of such life.” 

Moreover, on a more recent setting, see Andrew Kaufmann’s report on WHO’s early  investigation of the corona 

virus, before it was declared globally as an epidemic.1 

According to Dr. Andrew Kaufman's report, a “virus” as observed is actually an exosome. That is not impossible. 

Even if you want to be more assertive. It's not just the PCR test that is inaccurate. So the so-called virus is indeed 

questionable. Because it relates to the germ theory of Pasteur, meaning each disease will need one type of medicine 

[1][2]. 

 

That's not right. Pasteur's theory draws a lot from the real expert at the time: Bechamp.[4] 

 

In essence, according to Bechamp, the source of the disease is most likely to be endogenous. Meaning from within 

the body when adjusting itself to the environment. 

 

What is interesting to ask here is what kind of the changes in the environment that triggers the emergence of 

symptoms such as excessive thirs? Actually, it is known as one of the symptoms known for electromagnetic 

radiation. Therefore, it is no surprise that there are some allegations by experts: severe radiation disturbances arise in 

Wuhan and Italy and also the USA because of they are the locations where the massive 5G network has begun to be 

installed (see also Firstenberg’s report [5]).  

But this short paper is not intended to discuss more detailed about relation between 5G and covid-19, so this problem 

will be left to others to take up this matter and investigate further. 

4. Concluding remarks 

This paper continued our previous article, where possible approach of “curemony” is discussed as a middle 

Neutrosophic way in order to reconcile Eastern and Western’s paradigms of medicine [1]. Although it is known in 

literature, that there are some attempts to reconcile between Eastern and Western medicine paradigms, known as 

                                                           
1 Dr. Andrew Kaufman’s interview on corona virus test. url: https://www.youtube.com/watch?v=f9mzdvOEjBc 
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“integrative medicine,” here it is submitted a viewpoint that Bong Han duct system (PVS) which is a proof of meridian 

system, can be a neutrosophic bridge between those two medicine paradigms. 

Here a new viewpoint is submitted, i.e. Bong Han duct system (PVS), which is a proof of Meridian system, can be a 

bridge between those two medicine paradigms in neutrosophic sense. This can be considered as a Neutrosophic Logic 

way to bridge or reconcile the age old debates over the Western and Eastern approach to medicine. 

  

It would be a lot easier to merge both the eastern (ancient) and the modern western curative system in terms of 

neutrosophy.These neutrosophic intermediates will help further to boost dialogues between those Western and Eastern 

system and their useful information. This neutrosophic intermediator is actually dealing with conscious of both non-

matter and matter in terms of ancients and modern techniques. 

 

As mentioned in our previous paper [1], it is also discussed how those paradigms can be reconciled in Neutrosophic 

Logic. To us, Bong Han duct system (PVS) is a good way to start a healthy and meaningful dialogue between those 

two paradigms in medicine. 
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Abstract 
 In this paper, a neutrosophic fuzzy data warehouse modelling approach is presented to support the neutrosophic analysis 
of the publishing house for books which allows integration of neutrosophic concept in dimensions and facts without 
affecting the core of a crisp data warehouse. Also we describe a method is presented which includes guidelines that can be 
used to convert a crisp data warehouse into a neutrosophic fuzzy domain. Finally we have presented an OLAP system that 
implements a neutrosophic multidimensional model to represent imprecision using neutrosophic concept in hierarchies and 
facts and achieving knowledge discovery from imperfect data. The use of neutrosophic structures and the definition of the 
OLAP operations (roll-up, drill-down, slice, and dice) enable the model to manage the imprecision of data and hide the 
complexity of the model and provide the user with a more understandable result. 
  

Keywords:  Fuzzy Sets, Neutrosophic Fuzzy Data Warehouse, Neutrosophic Fuzzy Cube, Neutrosophic Fuzzy OLAP 
Operation. 

 
 

1.  Introduction 

In business scenarios, where some of the data or the business attributes are neutrosophic, it may be useful to construct a 
warehouse that can support the analysis of neutrosophic data. Accurate information about an organization’s state is 
necessary in order to make strategic decisions. Information contains historical data derived from transaction data, but It 
usually include data from other sources such as relational databases, spreadsheets, mainframes, mail systems or even paper 
files Each of these data stores tends to serve a subset of the enterprise for decision making. An increasing number of 
heterogeneous information systems makes retrieving meaningful information more difficult. In order to gather, store and 
process this information, various information systems are used. The enterprise information system map shows often 
numerous, heterogeneous and complex information system constellations. Often, for operational use relational database 
systems are used and for analytical purposes a data warehouse is used.  Bill Inmon [1] is cited very often and seems to be 
the father of the term Data Warehouse. In fact, Inmon’s definition goes back to the first edition of his book “Building The 
Data Warehouse” from 1993, Wolfgang Lehner [2], a researcher in data warehousing, has recently published a profound 
and comprehensive book on data warehouse systems in German. He references Bill Inmon, but his book also contains a 
more elaborate definition of data warehouse systems, In addition to a relational database, a data warehouse environment 
includes an Extraction, Transformation, and Loading (ETL)  solution, an Online Analytical Processing (OLAP) engine, 
client analysis tools, and other applications that manage the process of gathering data and delivering it to business users. 
This analytical view on data finally enables the enterprise to have a more global sight on its business environment than 
operational systems can provide. Therefore, data warehouses are often used as systems for decision making [3]. Besides 
positive aspects of centralized processing of business information such as decision making support, difficulties occur in 
maintaining and analyzing data warehouses. The amount of data that has to be processed in a data warehouse increases 
every day and turns into challenging tasks for administration and analysis. Next to the problem of high quantity, data from 
operational systems are often incomplete, vague or uncertain. This quality issue cannot be completely eliminated in the 
pre-processing stage of the data. Consequently, a certain amount of vagueness directly impacts the analysis and decision 
making that is based on the information of a data warehouse [4]. Data warehousing and on-line analytical processing 
(OLAP) are essential elements of decision support.  "In [24-29] OLAP is computer processing that enables a user to easily 
and selectively extract and view data from different points of view. Data warehouse and OLAP tools provide an efficient 
framework for data mining. Besides, data from real world are often imperfect, either because they are uncertain, or because 
they are imprecise. To solve this problem, We have presented a structure that manages imprecision by means of 
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neutrosophic techniques [7, 8]. The use of neutrosophic set theory in systems enhances the understand ability of the 
discovered knowledge; this is the reason why we have proposed an approach to perform OLAP-based on neutrosophic 
concept. The ability to analyze large amounts of data for the extraction of valuable information presents a competitive 
advantage for any organization. . The managers need information about their business and insight into the existing data so 
as to make decision more efficiently without interrupting the daily work of an On-Line Transaction Processing (OLTP) 
system. The technologies of data warehousing, OLAP, and data classification support that ability. The data warehouse is a 
central data pool which integrates heterogeneous data sources and provides strategic information for analysis and decision 
support. The special needs of the OLAP technology was the main cause of the use of a multidimensional view of the data. 
On-Line Analytical Processing (OLAP) presents an approach to data analysis where data is consolidated and aggregated 
with respect to multiple dimensions of interest. The idea is to consolidate large amounts of data by summarizing and 
aggregating data elements for every cell of a data cube. Classification of data elements reduces an arbitrarily high number 
of data elements into an arbitrarily small set of classes, which highly reduces the granularity of data. In OLAP, classification 
is used for the consolidation of dimensional attributes." In Many complicated problems like, engineering problems, social, 
economic, computer science, medical science…etc, the data associated are not necessarily crisp, precise, and deterministic 
because of their vague nature. Most of these problems were solved by different theories. One of these theories was the 
fuzzy set theory discovered by Zadeh in  [17-20] to handle vagueness , uncertainty and imprecision ,In fuzzy logics the 
two-point set of classical truth values {0, 1} is replaced by the real unit interval [0, 1] each real value in [0, 1] is intended 
to represent a different degree of truth, ranging from 0, corresponding to false in classical logic, to 1, corresponding to 
true. . A fuzzy set A in M can be represented as an ordered set of tuples {(m , ��(m))}.  But for some applications it is not 
enough to satisfy to consider only the membership-function supported by the evident but also have to consider the non-
membership-function against by the evident Atanassov [6] introduced another type of fuzzy sets that is called Intuitionistic 
Fuzzy Set (IFS) which is more practical in real life situations. The main novelty of neutrosophic logic, as we shall see, is 
that we do not even assume that  the incompleteness or “indeterminacy degree” is always given by 1 − (t + f).  Smarandache 
and A.A.Salama [7, 8] introduced another concept of imprecise data called neutrosophic crisp sets. Neutrsophic set is a 
powerful general formal framework that has been recently proposed. Let N be a set defined as follows: N = {(T, I, F) : T, 
I, F   [0, 1]}. Where (T) the Truth degree, (F) the falsehood degree and (I) the indeterminacy degree, I  [0, 1] may 
represent not only indeterminacy but also vagueness, uncertainty, imprecision, error etc. Note also that T, I, F, called the 
neutrosophic components [9].Several researchers dealing with the concept of neutrosophic set such as M. Bhowmik and  
M.Pal in [10] and  A.A.Salama in [11-15]. For more information on the application of neutrosophic theory, the readers can 
referes to [ 30-33] . In this paper we aim to construct a neutrosophic data warehouse. The key benefit of integrating 
neutrosophic logic in data warehouse it allows analysis of data in both classical and neutrosophic manners. The use of the 
proposed approach is demonstrated through a case study of a published housing for books. Finally we have presented an 
OLAP system that implements a neutrosophic multidimensional model to represent imprecision using neutrosophic concept 
in hierarchies and facts and achieving knowledge discovery from imperfect data. 

2.  Crisp Data Warehouse Concept  

  A data warehouse [1] is a database, which is kept separate from the organization's operational database. There is no 
frequent updating done in a data warehouse, it possesses consolidated historical data, which helps the organization to 
analyze, organize, understand, and use their data to take strategic decisions. This analytical view on data finally enables 
the enterprise to have a more global sight on its business environment than operational systems can provide. Therefore, 
data warehouses are often used as systems for decision making. The term "Data Warehouse" was first coined by Bill Inmon. 
he describe the data warehouse as  “subject-oriented, integrated, non volatile, and time-variant collection of data in support 
of management’s decision support. The components of his definition in the following way: 

2.1.  Subject-Oriented: Subject-Oriented means that the main objective of data warehouse is to  facilitate decision process 
of a data company, and within any company data naturally concentrates around subject areas, so information gathering in  
warehouse is aiming for a specific subject rather than for the functions of a company. 

2.2. Integrated: Being integrated means that the data is collected within the data warehouse, that can come from different 
tables, databases or even servers, but can be combined into one unit that is relevant and logical for convenience of making 
strategic decision. 

2.3. Non-volatile: Non-volatile means the previous data is not erased when new data is added to it. A data warehouse is 
kept separate from the operational database and therefore frequent changes in operational database is not reflected in the 
data warehouse. 
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2.4. Time-variant: The content of the data warehouse grows over time, where on regular basis snapshot of current data is 
entered into the data pool. The key structure of the data warehouse always contains time. 

3.   Linguistic variables 

Linguistic variables are collect elements into similar groups where we can deal with less precisely and hence we can handle 
more complex systems. it's  is an important concept in fuzzy logic and plays a key role in its applications, especially in the 
fuzzy expert system  Linguistic variable is a variable whose values are words in a natural language , For example, “speed” 
is a linguistic variable, which can take the values as “slow”, “fast”, “very fast” and so on. Zadeh developed on top of the 
fuzzy set theory a means for mathematically representing natural language [16]. Therefore, he defined a linguistic variable 
values [17, 18, 19] . The values of the linguistic variable called linguistic terms, are projected on a universe of discourse. 
Fuzzy sets are used to define the degree of membership with which a value might belong to a linguistic term. Zadeh defines 
a linguistic variable as follows: 

3.1. Definition (Linguistic variable [20]). A linguistic variable is a quintuple (X; T(X); G;M; F) defined as follows: 

X is the name of the linguistic variable,  T(X) is the set linguistic terms of X , G represents a syntactic rule that generates 
the set of linguistic terms, M is the universe of discourse and  F is a semantic rule that defines for each linguistic term its 
meaning in the sense of a fuzzy subset on U. 

4.  Concept of Neutrosophic Fuzzy Sets 

 The main idea of Neutrosophic Sets  is to characterize each logical statement in a 3D Neutrosophic Space, where each 
dimension of the space represents respectively the truth (T), the falsehood (F), and the indeterminacy (I) of the statement. 
Neutrosophic Logic (NL) is a generalization of  Zadeh’s fuzzy logic (FL), and especially of Atanassov’s intuitionistic fuzzy 
logic (IFL), and of other logics For example, suppose there are 10 voters during a voting process In time t1, fivevote \yes", 

three vote \no" and two are undecided, using neutrosophic notation, it can be expressed as ��(0.5, 0.2, 0.3) In time t2, four 
vote \yes", two vote \no", and three are undecided, it then can be expressed as  (0.4 0.3, 0.2). the notion of neutrosophic set 
is more general and overcomes the aforementioned issues. In neutrosophic set, indeterminacy is quantified explicitly and 
truth-membership, indeterminacy- membership and falsity-membership are independent. This assumption is very important 
in many applications such as information fusion in which we try to combine the data from different sensors.  The 
neutrosophic set takes the value from real standard or non-standard subsets of ]−0,1+[. So instead of ]−0,1+[ we need to 
take the interval [0,1] for technical applications, because ]−0,1+[ will be difficult to apply in the real applications such as 
in scientific and engineering problems. For software engineering proposals the classical unit interval [0, 1] is used. For 
single valued neutrosophic logic, the sum of the components is: 
case (1)   0 ≤  t+i+f  ≤ 3 when all three components are independent; 
case (2)  0 ≤ t+i+f ≤ 2 when two components are dependent, while the third one is independent from them. 
case (3)  0 ≤ t+i+f ≤ 1 when all three components are dependent. 
 
5.  Case Study 

The case study discusses a The Publishing house for books , It currently offers a collection of books for purchase, Each 
customer is asked to rate the book when he read it, When the publishing house makes statistical survey To measure the 
performance of their business such that Publishing house for books analyzes the revenue of  the books  based on the age of 
the customers or stores or measure the performance based on rating of customers it is  found that the proportion of persons 
did not give a specific answer (undecided). Their answer is not belong to a certain class or not belonging to this category, 
This percentage has not been taken into account for it found that there is ambiguity in the data became unclear ,for example 
the book "Scientific Miracles in the Holy Quran " some of people classify this book to scientific category and some of 
people classify it to religious category and others not decided(not sure) if this book belong to scientific category or religious 
category. so they didn't give a specific answer. Now we have three answers membership, Non Membership and 
Indeterminacy. Neutrosophic Sets to solve this ambiguity in the data and taking the opinion of indeterminacy into  account 
and gave them the degree. for example: the Neutrosophic set " scientific books " might contain the following tuples:" 
scientific books " = {" Scientific Miracles in the Holy Quran " , < 0.7,0.1,0.2 >}< 0.7,0.1,0.2,> which 0.7 is represented 
the membership degree of this book to scientific books genre, 0.2 is represented the non membership degree of this book 
to scientific books genre and 0.1 is represented the  indeterminacy degree of this book to scientific books genre. so we must 
integration neutrosophic fuzzy concept to data warehouse. 
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6.  Neutrosophic Fuzzy Data Warehouse 

In order to create a neutrosophic data warehouse, a method is presented that can guide the transformation of a classical data 
warehouse into a neutrosophic data warehouse. The input to the method is a classical data warehouse and the output is a 
neutrosophic data warehouse. This approach is allows integrating neutrosophic concepts without the need for redesigning 
the core of a data warehouse. By using this neutrosophic data warehousing approach, it is possible to extract and analyze 
the data simultaneously in a classical manner and in a neutrosophic manner. 
   For example, books might be classified into different genres. In the classical data warehouse, a book always belongs or 
not belong fully to one or more genres the numbers of the interval [0, 1] where 1 implies full belonging and 0 implies no 
belonging at all. In reality, books can often be categorized into several genres while belonging or not belonging more to 
one genre than to another with different degrees. A book “can be a scientific book, a religious book, a political book, a 
social book or a literary book and so on. In this classification it belonging at the same time to one or more genre but with 
different degrees and it not belonging with different degrees, and also has indeterminacy degree. In order to truly represent 
this ambiguity in classification the neutrosophic set theory can be applied therefore, the Publishing house classifies the 
books with a neutrosophic concept.  

The following figure show convert classical data warehouse into neutrosophic data warehouse: 
 
 
 
 
 
 
 
 

 

 

 

Figure 1: convert classical data warehouse into Neutrosophic Fuzzy Data warehouse 

6.1. Basic Definitions of Neutrosophic Fuzzy Data Warehouse 
    In this section we introduce and study the following definitions of Neutrosophic Data Warehouse. 
6.1.1 Definition (Neutrosophic fuzzy data warehouse (NDW)).  
A neutrosophic fuzzy data warehouse model is a set of combination of four types of tables .these are (Dimension tables 
(D), Fact tables (F), Neutrosophic Classification Tables (NCT) and Neutrosophic Degree Tables (NDT)) and it is 
represented by NDW.  NDW = {D, F, NCT, NDT} 
6.1.2 Definition (Neutrosophic Fuzzy Table (NT) ). 
 Neutrosophic Table is the table which contain a neutrosophic target element and the table may be dimension table or Fact 
table.  
6.1.3 Definition (Neutrosophic Fuzzy Target Element (NTE)). 
Neutrosophic Target Element (NTE) is the elemet may be in  in a Fact table or a dimension table which required to be 
classified  in neutrosophic. 
6.1.4 Definition (Class Neutrosophic Fuzzy Target Element (CNTE) ).  
A class neutrosophic Target element (CNTE) for a neutrosophic Target element (NTE), it's  all possible values (linguistic 
terms) for a neutrosophic Target element.  
6.1.5 Definition (Neutrosophic Fuzzy Degree (ND) ). 
All values for neutrosophic Target element belong to a certain neutrosophic degree to a class neutrosophic which 
neutrosophic Target element belong . The degree of belonging to a value to class neutrosophic  is called neutrophic degree.  
6.1.7 Definition (Neutrosophic Classification  Table (NCT)). 

 A table that holds linguistic terms (neutrosophic classes and it consists of  two attribute  (a primary key of the table  and a 
class neutrosophic target element which can be classified neutrosophic), NCT = {PK, CNTE} 

6.1.8 Definition (Neutrosophic Fuzzy Degree Table (NDT) ).  
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A table that stores the degree of each   linguistic term is called neutrosophic degree table,it has contain four attributes: (the 
primary key of the table, the foreign key of neutrosophic table which contain neutrosophic target, the foreign key of 
neutrosophic classification table and neutrosophic degree of each linguistic terms for linguistic variable (neutrosophic 
target)). NDT= {PK, FK_NT, FK_NCT, FK_NDT} 

6.2. Neutrosophic Date Warehouse Model  

In addition to the classical analysis in a data warehouse, The Publishing house for books needs some features that are 
available using neutrosophic concepts. For integrating neutrosophic concepts into a data warehouse, one must first analyze 
which elements in the data warehouse should be classified neutrosophic. The element may be an element in the fact table 
or an element in a dimension table. An element that has to be classified neutrosophic is called the neutrosophic target 
element (NTE). The steps are the follow:  
 1)  First step: identify what should be classified to identify the neutrosophic target element. 
 2) Second step: identify the set of linguistics terms that are used for classifying the neutrosophic target element. Repeat 
this step for all neutrosophic target elements. 
 3) Third step: define a neutrosophic function for each linguistic term. Repeat this step for each linguistic term. 
 4) Forth step : create Neutrosophic classification table which holds classes of neutrosophic target element (linguistic terms) 
and it  contain two attribute one is the primary key of the table and second is the class neutrosophic target element. 
 5) Fifth step : create Neutrosophic degree table which holds neutrosophic degrees fo each linguistic term and it contain 
four attribute which the first attribute is the primary key of the table, the second attribute is the foreign key of the 
neutrosophic table, the third attribute is the foreign key of Neutrosophic classification table and the fourth attribute is the 
neutrosophic degree (ND)  attribute for the neutrosophic target element ,The values of neutrosophic degree attribute are 
calculated by neutrosophic functions ( represented by < T , I , F  > where T is the membership degree of element to a set A ,  

F is the non membership degree of element to a set A and  I  is the degree of indeterminacy element to a set A. 
6) sixth step : Relate neutrosophic table with neutrosophic classification table and neutrosophic degree table with each 
other. 
The following figure represented Neutrosophic Date Warehouse Model: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
       Figure 2: Neutrosophic fuzzy data warehouse Model 

6.2.1 Dimension Book 

The books are classified into different genres. In the classical data warehouse, a book always belongs to interval [0,1] 
where 1 is implies to belonging degree of the book fully to one or more genres and 0 is implies to not belonging degree of 
the book to one or more genres. In reality, books can often be categorized into several genres while (belonging, 
indeterminacy, not belonging) more to one genre than to another at the same time. For Example, the book "Scientific 
Miracles in the Holy Quran" can be classified scientific and Religious, but more strongly scientific (membership) ,and can 
be classified not belonging to one or more genres by different degrees (non membership) and also the book have the 
indeterminacy degree. With the classification in the classical data warehouse approach, the published house cannot classify 
the books into different genres. Therefore, the published house classifies the books with a neutrosophic concept 
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- First the book genre is defined as neutrosophic target element. 
- The second step is to identify the linguistic terms. In this case, the linguistic terms are the different genres to which the 
books belong. These genres can be extracted from the dimension category in the book dimension. 
- In the third task is to identify the neutrosophic functions for each genre has to be defined 
After identifying neutrosophic target element, linguistic terms and their neutrosophic functions, 
- forth step is to create neutrosophic classification table holds the genres as class neutrosophic element.  
- Fifth step is to create neutrosophic degree table contains neutrosophic degrees for each neutrosophic target element 
corresponding to class neutrosophic elements. 

-finally, sixth step is to relate the neutrosophic classification table, the neutrosophic degree table and the neutrosophic table 
to each other. 

The following Figure show neutrosophic concept in book dimension: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Neutrosophic Concept Book Genre 
The following figure shows result sets of apply neutrosophic concept in book dimension 
 
 

 

 

 

 

 

 

Figure 4: Result Set of Apply Neutrosophic Concept Book Genre 

6.2.2 Dimension Customers A data warehouse contains the dimension customer, each customer has the attributes name, 
address and birthday. From the attribute birthday, the age of the customer can be calculated using the function today 
birthday 

  

 

 

 
 
                                                               Figure 5: Dimension Customer 
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The published housing is interested in analyzing the revenue based on customers ages therefore, the publishing house 
classifies the customers ages with a neutrosophic concept in the following steps:  

- The first step "The neutrosophic fuzzy target element is the customer age. 

- The second step is to identify the linguistic terms for customer age. In this case, the linguistic terms for linguistic variable 
(customer age) are (old, middle, young) where old: customers more than 60 

Middle: customers between 20 and 60, Young: customers less than 20 
- The third step is to identify the neutrosophic functions for each linguistic term. 

the publishing house  defines the neutrosophic function that transform the age of customer into neutrosophic degrees by 
calculating neutrosophic function which represented by  AAA  ,,  

Where A  is the membership degree (belonging degree), A  is the indeterminacy degree and A  is the non-membership 
degree (not belonging). The membership function depends on the customer age is the following  
For example, if the  customer age is 26 years old, it is transformed to term Young young  (26) = <0.4,0.3 ,0.3> and term 
Middle Midle  (26) =  <0.6,0.2 ,0.2> and term Old N(26) =  <0, 0.1, 0.9 > 

 membership degree of  age 26 years old to Linguistic term young as fellow������(26) =  0.4 and linguistic 
term Middle��������((26) = 0.6 and  linguistic term Old ����(26)  = 0.0 
 Non membership degree of age 26 years old to linguistic term young as fellow ������(26) =  0.3 and linguistic 
term Middle �������(26) = 0.2 and linguistic term Old����(26) = 0.9 
 indeterminacy degree of age 26 years old to linguistic term young as fellow ������(��) = 0.3 

and linguistic term Middle �������(��) = 0.2 and linguistic term Old ����(��) =  0.1 
After identifying neutrosophic target element, linguistic terms and their neutrosophic functions, 
one neutrosophic classification table (NCT) which holds category of customers ages (set of linguistic terms (old , middle , 
young  ) as class neutrosophic target element. 
-Fifth step is to create neutrosophic degree table (NDT) contains neutrosophic degrees for each linguistic term 
corresponding to class neutrosophic target elements. 
- Sixth step and final task, is to relate the neutrosophic classification table, the neutrosophic degree table and the 
neutrosophic table to each other. 
The following figure gives dimension customer in neutrosophic concept 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
Figure 6: Neutrosophic Concept Customer age 

 
 
The following figure show the input data in customer dimension in classical data warehouse 
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Figure 7: Input Date in Classical Data Warehouse in Dimension Customer 

The following figure show how to construct neutrosophic analysis of dimension customer 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Result Set of Apply Neutrosophic Concept Customer Age 

6.2.3 Fact 

 

 

 
 

  
 
 
 

Figure 9: Fact Table 

Customers are asked to rate every book when they read it. The rating of the book in the fact table As the rating is always 
between 0 and 10. The published housing for books uses this customer rating to evaluate the books  into good, bad books. 
For this neutrosophic concept, the steps are the following: 

The first step "The neutrosophic target element is the rating attribute in the fact table.  

The second step is to identify the linguistic terms. In this case, the linguistic terms for customer rating  are (good , bad) 
rate . 

In the third task is to identify the neutrosophic functions for each linguistic term. 

The publishing house  defines the neutrosophic function as follows: 
For example, if a customer rate a certain book 6 from 10  transformed to term good  ����� = < 0.6 , 0.1 , 0.3 > and term 
bad ���� =  < 0.4 , 0.2 , 0.4 >  and  
Membership degree of rate (6) to Linguistic term good as fellow �����(26) = 0.6 and linguistic term bad ����(26) = 0.4 
Non membership degree of rate (6) to linguistic term good as fellow �����(6) = 0.1 and linguistic term bad  ����(6) = 0.2 
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Indeterminacy degree of rate (6) to linguistic term good as fellow �����(�) = 0.3 and linguistic term bad ����(�) = 0.4 
After identifying neutrosophic target element, linguistic terms and their neutrosophic functions, 
one neutrosophic classification table which holds the linguistic terms as class neutrosophic target element (good , bad ) is 
created then The neutrosophic degree table contains neutrosophic degrees for each neutrosophic target element 
corresponding to class neutrosophic elements. For final step, the neutrosophic classification table, the neutrosophic  degree 
table and the neutrosophic table have to be related to each other 
. The following figure show how to apply neutrosophic concept in fact table:  
 

 

 

 

 

 

 

 

  Figure 10: Neutrosophic Concept Fact Rating 
 
The following figure show input data in fact table in classical data warehouse 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
Figure 11: Input Data In Classical Data Warehouse in Fact Table 

 
The following figure shows result set of apply neutrosophic concept in Fact table: 
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Figure 12: Result Set of Apply Neutrosophic Concept in fact rating 
 
7. Olap Operations in Crisp Data Warehouse: 
Codd, E. F. defined [8] the specialized OLAP operations drill-down, roll-up, slice and dice. According Codd and the OLAP 
Council [27] the OLAP operations called classical data warehouse operations, can be described shortly as follows: 

 The Roll-up operation consolidates the values of a dimension hierarchy to a value on the next higher level. 
 The Drill-down operation is used to navigate from top to bottom in a dimension. It is the opposite operation of the 

Roll-up operation. 
 The Slice operation extracts a subset of values based on one or more dimensions using one dimension attribute to 

define the subset. 
 Dice operation extracts a subset of values based on more than one dimension using more than one dimension 

attribute to define the subset.  
Vassiliadis [12] proposed a notation of basic cube, cube and multidimensional database as follows : 
7.1 Definition  (Basic Cube):  
A basic cube [27]  is as a 3-tuple (D, L, Rb); where D = (D1,.........,Dn, M ) is a list of dimensions D and a measure M in a 
fact, L =(DL1,.........,DLn, ML ) is a list of dimension levels DL, aggregated measures ML and Rb is a set of cells x = 

{x1,.........., xn, m}, where xn ∈ dom(DLi) and m ∈ dom(ML) represents the instance values of the basic cube. 
Example 1, The example considers a data warehouse with a fact table containing the fact revenue and three dimensions 
region, Product and time. The hierarchies for the dimensions are as follows: 

  region: store → city → region 
  Product: book 
 time: day → month → year  

a basic cube may take the following form: ( < region ,Book, time, revenue >,< city, book, day, aggregated revenue >, R ) 
where D is the dimensions region, Book, time, revenue > , L is the dimension levels  < city, book, day, aggregated revenue 
> and  R : set of cells represented by Figure 2. 

 
Figure 13: Rb of Basic Cube 

7.2 Definition (Cube ):  
A cube [28] is a 4-tuple < D, L, Cb, R > where D = < D1,..,Dn, M > is a list of dimensions D and a measure M  in a fact, L 
= < DL1,..,DLn , ML > is a list of dimension levels DL and aggregated measure ML, Cb is a basic cube and R is a set of 

cells x = {x1,..., xn, m}, where xn ∈ dom(DL) and m ∈ dom(ML) represents the instance values of the cube. A cube can 
therefore be denoted as (< region, product, time, revenue >,       < city, book, month, aggregated revenue >, (< region, 
product, time, revenue >,< city, book, day, aggregated revenue > , Rb ), R ) where Rb is represented in Figure 12 and R in 
Figure 13. 



International Journal of Neutrosophic Science (IJNS)                                                                           Vol. 8, No. 2,  PP. 87-109, 2020 

DOI: 10.5281/zenodo.3902743                                                                                                                                  97 
 

 
Figure 14:  R of Cube 

 
The aim of defining a cube and a basic cube is the traceability of operations. Suppose that a data warehouse operation will 
calculate the average yearly revenue of books based on the cube with monthly revenues. It is necessary to go back to daily 
revenue, the lowest granularity, in order to give a meaningful result on yearly level. If the basic cube of the cube monthly 
revenue is not known, it is not possible to go to a lower level. No prediction can be made how the daily revenues have been 
aggregated to monthly 
revenues. Therefore, one can say that every cube representing a data collection in the data warehouse owns a basic cube 
which contain the lowest granularity of a dimension [23]. 
 
7.3 Definition (Multidimensional database): 
A multidimensional database is a couple  < D, C > where D is a set of dimensions and C is the basic cube representing the 
lowest granularity [12] . 
Every OLAP operation defined below will have the following characteristics 

 To identify the level l of the dimension d we will use d.l such as time.year 
 The dimension and dimension level are merged using a dot notation into one variable in order to simplify the 

operation. Therefore, a dimension can be specified as D = time or with including a dimension level as D = time. 
month. 

 The dot notation can be extended in order to integrate other category attributes. A full path to a dimensional 
attribute month in dimension level month of dimension time can be specified as D = time. month. month. 

The definition of a cube is adapted as follows: 
7.4 Definition  (cube (C))): 
A basic cube [13]  is a 3-tuple < D , M , R > where  D = (D1,........,Dn) is a list of dimensions, dimensions levels separated 

by a dot , M  is an aggregated measure (in a fact) and  R  is a set of data tuples x = {x   ,.............., xk, m}, where xk ∈ dom(D) 

and m ∈ dom(M) representing the instance values of the cube.the following figure represent a cube for three dimension 
year , books  , city and measure revenue: 

 

 
Figure 15: Cube 

 
Once  we have the structure of the multidimensional model, we need the operations to analyze the data in the Data Cube. 
Over this structure we have defined the normal operations of the multidimensional model such as Roll-up, Drill-down, 
Slice and  Dice . 

 
7.5 Roll up Operation in Classical Data Warehouse: 
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The roll-up operation is used to navigate a dimension upwards. Agrawal, Gupta and Sarawagi [29] defined a roll-up 
operation as a special case of their merge operation that it is executed on one dimension. For the dimension region a roll-
up operation is executed when the dimension level store is aggregated to the next higher level city, and dimension level 
day is aggregated to the next higher level month. An example would be a cube C that is a subset representing the daily 
revenues, the revenues aggregated to the lowest hierarchy level of dimension time. Cube C can then be merged into a cube 
C′  that is a data set representing the monthly revenues. 
 
7.5.1 Definition (Roll-up):  
Roll up (C,D′, fD, fm) = C′; where C is a basic cube, C′ is anew cube after applying roll up operation,  D′ is the dimension 
of higher level , fD is the dimension merge function and fm is the measure aggregation function. The domain (domD) of D 
domD(C) is a set containing the dimension instancesd,  domD′(C′) is calculated by applying the function fD on the dimension 

d of domD(C). domD′(C′) = {fD(d) = d′ |d € domD(C)}, d ∈ D, ∈d′∈€  D′. The measure mC′(d) of each instance d is calculated 
by applying the function fm to each mC(d) in regards to the aggregation function fD. 

d ={jan1, jan2,.........jan31} ∈ D, D = {d1, d2, d3, ........}, d′ = {jan} ∈ D′, D′ = {jan, feb, mar, ......} = {d′1, d′2, d′3,........} 
mC′(d) = fm({t | t = mC(d) ^ fD(d) = d′}). dom d′(C′ ) = domtime:month(C′) might be the set {January, February}, The instances 
of domtime:month(C′) are composed of instances of domd(C) = domtime:day(C) = {January 1,......, January 31, February 1,....., 
February 28},The function fD defines {January 1,......., January 31} →January and {February 1,....., February 
28}→February.  
C′ = roll up(< time.day, revenue, S >, time.month, fd, Sum Revenue) rollup the daily revenue to monthly revenue where C 
= < time.day, revenue, S >, D′ = time.month, fd = function on dimension time to transform lower level day to higher level 
month ex {January 1,......., January 31} →January and  fm = sum of revenue per month for example The revenue of January 
1 might be mC (January1) = 6000 and January 31 mC (January31) = 5000, The function fm is defined as summation  the 
revenue of January is calculated as mC′ (January) = 6000 + 5000 = 11000. 

 
7.6   Drill-down Operation in Crisp Data Warehouse: 
With a Drill-down operation, values in a dimension level will be decomposed in values of the lower dimension level. This 
operation is used to reveal more detailed levels of data in a dimension. Drill-down is the opposite operation of roll-up. To 
be able to perform a drill-down, how the category attribute instances are compound from the lower hierarchy level instances 
must be known in advance. Considering the revenue of the year 2010 cannot drilled-down to monthly revenue, if the 
revenue of every month in 2010 is not known in advance. Otherwise, one can decompose the revenue of 2010 in infinite 
ways. A roll-up operation defining the aggregation functions and the value instances of the higher hierarchy level has to be 
executed before a drill-down operation [27]. 
Hence, the drill-down operation can be considered as a binary operation and formally be defined as: 

 
7.6.1 Definition (Drill-down). 
Drill down(C′,D′′, f-1

D ,f-1
m ) =C′′; where C′′ is anew cube after applying the operation drill down , D′′ is the dimension of 

lower  ,  C′ = roll up(C,D′, fD, fm) and f-1
D, f-1

m  are the inverse function of fD respectively fm. The following figure shows 
the roll-up and drill-down operation in a cube: 

 
Figure 16:  Roll-up and Drill-down Operation in a Cube  

 



International Journal of Neutrosophic Science (IJNS)                                                                           Vol. 8, No. 2,  PP. 87-109, 2020 

DOI: 10.5281/zenodo.3902743                                                                                                                                  99 
 

7.7  Slice Operation in Crisp Data Warehouse: 
Slice is the act of picking a rectangular subset of a cube by choosing a single value for one of its dimensions. The slice 
operation cuts out a slice from a data cube in the multidimensional space  of a data warehouse.  For example, the cube C 
=(< time.year, product.book, region.city >, revenue, R) can be sliced using the value 2014 for the dimensional attribute 
year. This will extract the revenue by all books category achieved in 2014 in each city .A slice operation can formally be 
defined as: 
 
7.7.1 Definition (Slice):  

slice(C, dm) = C′; where C is a cube ,C′ is anew cube after applying the slice operation and dm ∈dom(Dm) is the element 
instance that slices the cube. For extracting the revenue of all books category in all cities in 2014, the slice operation would 
be defined as follows: slice ( C = < time.year, product.book, region.city >, revenue, S >, dm  = time.year.year =" 2014"). 
The following figure 6 shows the slice operation in a cube: 

 
Figure 17:  Slice Operation  

 
7.8  Dice Operation in Crisp Data Warehouse: 
The dice operation produces a sub cube by allowing the analyst to pick specific values of multiple dimensions. The Dice 
operation cuts out a dice from a data cube in the multidimensional space of a data warehouse.  Slicers in a dice are combined 
using the logical operations AND, OR or NOT. The dice operation can formally be defined as follows: 
 
7.8.1 Definition  (Dice). 
 Dice (C,{dm,........., dk}, {fm,........., fk-1}) =C′ ; where C is the cube, C′ is acube after applying the dice operation, 

∀n∈{m,........, k}:dn ∈ dom(Dn) are the element instances that slice the cube and ∀� ∈ m,......., k-1 : fx ∈ {AND, OR , 
NOT} are the logical operator that combine the slicers in a way that dm fm fm+1 ,......, dk-1 fk-1 dk. As an example of a dice 
operation, the cube C =( < time.year , product.book , region.city >, revenue, R ) can be diced in order to show the revenue 
of  category of books( scientific ,religious and political ) in city cairo and, dice = ( < time.year, product.book, region.city 
>, revenue,S >, < product.book = "Scientific" or " religious" or "political", regon.city = "Cairo"or"Alex">, 
{AND,AND}).The following figure 18 shows the dice operation: 
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Figure 18: Dice Operation  

8. Aggregation of Neutrosophic Fuzzy Concepts: 
Aggregating of data in a data warehouse affects the neutrosophic concepts that classify data. Data is grouped together in a 
more dense view or split to reveal a more detailed view. The grouping is defined by the aggregation function that is often 
a summation, a maximization, a minimization, a count or an average function. This aggregation function is fundamental to 
the standard data warehouse operations. In order to be able to classify aggregated data, the neutrosophic concepts have to 
be aggregated too. In the next sections, two methods for aggregation of neutrosophic concepts are discussed. The first 
method is redefines the neutrosophic concept with the aggregated data instances as the new  neutrosophic target element. 
for each dimension level, one neutrosophic degree table is created for the aggregate  neutrosophic concepts. The class 
neutrosophic target elements are reused from the base neutrosophic neutrosophic concept containing the class neutrosophic 
target elements and a neutrosophic function is specified Therefore, this method is described  not aggregating values. the 
second method is aggregates the neutrosophic degree instances of the neutrosophic concept to a more dense view. Each 
method is illustrated using an example. 

 
7.5.1 First Method  "Redefine of  Neutrosophic Fuzzy Concepts for Aggregation Data":  
A possible solution for aggregation of the neutrosophic  concept onto another dimension hierarchy level. Redefining of a 
neutrosophic concept does not take the neutrosophic degree values into consideration. The linguistic terms and the 
neutrosophic functions are applied to a new hierarchy level. The neutrosophic degrees are recalculated based on the new 
neutrosophic target element. Neutrosophic degrees from the neutrosophic concept on the lower hierarchy level are not 
taken into consideration. for example , To redefine the neutrosophic concept store surface from dimension hierarchy level 
store, the neutrosophic concept is created on the level city. The neutrosophic classification table (NCT) is taken from the 
original neutrosophic concept. Whereas, the neutrosophic degree table (NDT) has to be newly created for the new 
neutrosophic concept. This is due to that new neutrosophic functions are calculating the neutrosophic degree based on the 
new neutrosophic target elements. These newly calculated neutrosophic degree are stored in the new NDT.  
for example 2. To the dimension store a fact table is added. The fact table contains a measure revenue and the primary key 
of fact table and the foreign key relation to the store table (FK_store). A neutrosophic concept is added having revenue as 
the neutrosophic target element. Store A and B earned multiple revenues of 2500 for store A and 4500 for store B. For 
every revenue a new instance is stored in the fact table. The total revenue of a city is the sum of all revenues earned by 
stores. Each revenue has a neutrosophic  degree for each linguistic term in the neutrosophic  concept revenue 

(�high,	�middle, �low).  For the city hierarchy level the revenues are aggregated to the city Cairo and we want to 
classify revenues of level city. For do that  the neutrosophic  concept including the neutrososphic degree table must be 
defined on city level. The  neutrosophic target element for this neutrosophic concept is the city revenue and neutrosophic 
class for store  revenue is reused for city revenue 
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 Figure 19: Dimension Store and Fact Revenue with Neutrosophic Concepts  

 
the idea of reuse the neutrosophic classification table of the base concept to reduce the amount of extra tables and to limit 
the resources in the neutrosophic data   

 
 7.5.2 Second method: Aggregation of Neutrosophic Concepts 
The second method is to aggregate the neutrosophic degree of each  neutrosophic target element instance into a next higher 
hierarchy level. Each value of the next higher hierarchy level is composed of a set of value from the neutrosophic target 
element .a neutrosophic degree for each instance of the next higher hierarchy level can be considered as aggregation of the 
neutrosophic degree of the lower level. In order to illustrate the aggregation of neutrosophic  concepts, consider the 
following Example 2. A data warehouse contains a dimension store with two category: store and city. All stores are 
aggregated to the corresponding city. For all stores their area is measured and added to the dimension as dimensional 
attributes on level store. Considering Lehner [16], dimensional attributes can be aggregated on higher hierarchy levels, 
similarly as it would happen for measures. Therefore, the store area  can be aggregated to the level city. a neutrosophic 
concept with store area as  neutrosophic target element is defined. The neutrosophic concept classifies the area as big, 
medium and small. In example 1, the average store area of a city can be calculated by aggregating the area of all stores in 
a city with an average function. In order to apply the neutrosophic concept store area on the level city, the neutrosophic 
degree have to be aggregated. By the foreign key relation of stores to cities, it is known which store areas are aggregated 
to a distinct city area. the neutrosophic degree on level store can be identified that aggregate to a neutrosophic degree on 
level city. An additional aggregation function can then be defined that aggregates the neutrosophic degree of the stores to 
the neutrosophic degree of the city. In the case of store area, the arithmetic average of the neutrosophic degree of each class 
neutrosophic can be used to generate the corresponding neutrosophic degree for the cities. The dimensional attribute area 
is aggregated using an average function and therefore an aggregation of the neutrosophic concept using the arithmetic 
average . In this case, no additional tables have to be created. For example: A city Cairo contain 2 store A and B, A 

neutrosophic concept apply in store area ,the area of store A is 90 meter square with neutrosophic degree ���� =

〈0, 0.4, 0.6〉  , ������� = 〈0, 0.6, 0.4〉 , ������ = 〈1, 0, 0〉  and the area of store B is 270 meter square with 

neutrosophic degree  ����=  < 0.7 , 0.1 , 0.2 >, ������� = < 0.7 , 0.2 , 0.1 >, ������ = < 0 , 0.6 , 0.4 >, here need to 

do roll up operation from level store to a higher level city ,this is done by two steps: 
  1) the city (cairo) area is aggregated using an average function  = (90+270) /2 = 180 meter square 
2)  the neutrosophic degree for city area is aggregation of the neutrosophic concept using the arithmetic average such as: 

         ����=  < 
µ���∗��	�	µ���∗���

���
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����∗��	�	����∗���
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The following figure 8 shows that the second method for aggregation neutrosophic concept in dimension store : 

 

 
Figure20: Aggregation of a Neutrosophic Concept 

 
8. Olap Operations in Neutrosophic Data Warehouse : 
the classical data warehouse operation can be extended to support neutrosophic concept. neutrosophic concepts can be 
treated as dimensional attributes. Lehner [2] defines multidimensional objects that are capable of aggregating dimensional 
attributes and takes them into consideration as segments for slice and dice operations. it is possible to aggregate 
neutrosophic concepts and to use them as slicers for slice and dice operations. a fact can be aggregated over a dimension 
hierarchy, the neutrosophic concept with the fact as neutrosophic target can be aggregated . The neutrosophic concepts on 
facts can be considered as segmentation in slice and dice operation just as neutrosophic concepts on dimensional attributes. 
When segmenting a cube with a neutrosophic concept, the class neutrosophic degree are the delimiter of a segment. In 
order to discuss the classical operations, these characteristics of neutrosophic concepts have to be taken into consideration. 
The definition of crisp cube is adapted to integrate neutrosophic concepts. 
 
8.1 Definition ( Neutrosophic Fuzzy Cube (NC)): 
A cube in neutrosophic data warehouse  is composed of 4-tuple (D,N,M,S ); where  D = (D1, D2,........,Dn) is a list of 
dimensions, dimensions levels including the dimension attribute separated by a dot ,  N = (N1, N2,...........,Nk) is a list of  
neutrosophic concepts with neutrosophic target that are either in (facts or dimension) or class neutrosophic target element 
of neutrosophic concept separated by a dot,  M is a measure in a fact  and S  is a set of data tuples x = {x1,......xn, 

n1,..........nk ,m}, where xn ∈ dom(D), ∀nk ∈ dom(N) and m ∈ dom(M) representing the instance values of the cube. For 
example: A neutrosophic concept is added to the fact revenue as neutrosophic target element. The neutrosophic concept 
revenue contains three classes “low”, “middle” and “high” revenue and the book decomposed into several genre such as 
(scientific, political, religious,.... so on ) and the dimension city with neutrosophic target area contain three neutrosophic 
class ( Big , Medium , Small). 
A Neutrosophic Cube is a binary operation which can be involved two steps as fellow: 
1)  select Crisp Dimensions. 
2)   apply the neutrosophic concept on the neutrosophic target element. 
A neutrosophic cube can be:  (< time.month, Region.city, Product.book>,< time.month.revenue, Region.city.area, 
Product.book.genre >, revenue ,S). The neutrosophic concept revenue is propagated on dimension time on level month and 
on dimension Region on level city and on dimension Product on level book. The result set of the neutrosophic cube are 
tuples containing the aggregated revenue as follow: 
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Figure 21:  S of Neutrosophic Cube 

 
 If N contains a class neutrosophic target element, By applying the third step (class neutrosophic target element ) in the 
binary neutrosophic cube. A Neutrosophic Cube is a trinary which can be involved three  steps as fellow :  
1)  Select Crisp Dimensions. 
2)  Apply the neutrosophic concept on the neutrosophic target element. 
3) Apply the class neutrosophic target element. 
For example : (< time.month, Region.city , Product.book>,< time.month.revenue, Region.city.area.big, 
Product.book.genre.scientific >, revenue ,S )  
The following figure 10 shows the neutrosophic cube with class neutrosophic target (big city area) : 

 
Figure 22:  Neutrosophic Cube with Class Neutrosophic Target. 

 
8.2  Roll-up in Neutrosophic Data Warehouse: 
A roll-up operation can be applied to a neutrosophic cube, the roll up operation on a neutrosophic data warehouse involving 
neutrosophic concepts can be defined as: 
 
8.2.1 Definition  (Roll-up involving Neutrosophic Concept (RNC): 
RNC =  roll-up ( NC,  DH,  NH, fD, fm , fN); where NC is a Neutrosophic cube , DH  is the dimension of higher level, NH 
is the neutrosophic concept of  higher level, fD is the dimension merge function, fm is the measure aggregation function , fN 
is the method how to aggreagate neutrosophic concept on the next level and RNC is the result cube on the higher level after 
applying roll up operation. This roll-up operation is a binary operation that first aggregates the crisp fact revenue. In the 
second step, it applies the new neutrosophic concept to the data collection with the following steps: 
1)  roll-up of the crisp cube. 
2)   apply the neutrosophic concept on the new dimensional level. 
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For example: roll up (NC, < time.month >, < time.month.revenue >, revenue, S >, time.year , time.year.revenue, ftime.year, 
Revenue, fN)  = (< time.year > ,<time.year.revenue>, revenue , NS >. where DH is the dimension of higher level year = 
time.year , NH is the neutrosophic concept of higher level year = time.year.revenue, fd is the dimension merge function 
such as { Jan2015,Feb2015,.........Dec2015}→ 2015, fm  is the aggregation revenue per year  and RNS is the result set of apply 
the  roll up operation on neutrosophic cube. the following figure 11, 12 shows the roll-up operation in neutrosophic cube : 
 

 
Figure 23:  Roll-up Operation in Neutrosophic Cube 

 

 
Figure 24:  Roll-up Operation from month to year 
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 If N contains a class neutrosophic target element, the third step is apply class neutrosophic target element  to above steps 
in binary operation ,the roll up operation is a trinary operation in neutrosophic concept: 
1) roll-up of the crisp cube 
2) apply the  neutrosophic concept on the new dimensional level. 
3) select the class neutrosophic target element. 
roll up (< time.month >, < time.month.revenue >, revenue, S >, time.year, time.year.revenue.middle, ftime.year, Revenue)  = 
(< time.year > ,<time.year.revenue>, revenue , NS > 
The following figure 13 , 14 shows the roll-up operation in neutrosophic cube with neutrosophic target element (middle 
revenue): 
 

 
Figure 25: Roll-up Operation with Class Neutrosophic Target Element 

 
 

 
Figure 26:  Roll-up Operation with Class Neutrosophic Target Element 

 
The original cube contains the aggregated revenue of month in all cities ordered by the neutrosophic concept revenue. The 
cube resulting from the roll-up operation contains the aggregated revenue of year in all cities ordered by the neutrosophic 
concept revenue 
 
8.3  Drill-down in Neutrosophic Data Warehouse: 
A drill-down operation is the opposite operation of a roll-up. It is not a valid operation if the roll-up operation is not defined 
in an earlier step. Therefore, a drill-down operation in the neutrosophic data warehouse can be defined as given in § 6.3.1. 
6.3.1 Definition  (Drill-down Involving Neutrosophic Concepts (DRNC)): 
 DRNC = drill down (RNC, DL, NL, f-1

D, f-1
m, f-1

N); where RNC is ROLL UP (NC, DH, NH, fd, fm, fN), DL is the dimension 
of level lower ,NL is the neutrosophic concept of lower level, f-1

D is the inverse dimension merge function of fD, f-1
m is the 

inverse measure aggregation function of fm  and f-1
N  is the inverse of fN,  DRNC = result cube on the lower level after 

applying the drill down operation .The following figure 15 shows that the function and inverse function on dimension: 
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Figure 27.:  Function merge on Dimension 

 
The following example shows a drill-down operation with a neutrosophic cube: 
DRNC = drill down ((< time.year, region.city  > ,<time.year.revenue, region.city.area >, revenue , S >), < time.month, 
region.store > , < time.month.revenue, region.store.area > , f-1

d, f-1m );  where DL = < time.month, region.store  >, NL = 
time.month.revenue, region.store.area > , f-1

d is the inverse function from year to month and from city to store and , f-1
m  is 

the aggregate revenue per month and              RNC = rollup (< time.month,  rgion.store >, < time.month.revenue, 
region.store.area > , revenue , S >,   < time.year.revenue, Region.city.area >, fD, Revenue)= (< time.year, region.city 
> ,<time.year.revenue, region.city.area > , revenue , NS >. The following figure16 shows the drill down operation in 
neutrosophic cube: 
 

 
Figure 28: Drill-down Operation in Neutrosophic Cube 

The cube resulting from the drill down operation contains the aggregated revenue per month in all stores ordered by the 
neutrosophic concept revenue. 

 
9.4  Slice in Neutrosophic Data Warehouse: 
The classical slice operation extracts a subset of values of a neutrosophic cube depend on select one dimension.  A definition 
of a slice operation in the neutrosophic data warehouse is as follows: 
9.4.1 Definition  (Slice in Neutrosophic Concepts(SNC)): 
SNC=  slice (NC, s) where NC is neutrosophic cube and s is the element instance that slices cube NC  
A slice operation of a neutrosophic cube will always result in a neutrosophic cube. A slice operation 
on a crisp cube will also always result in a crisp cube. In order to illustrate, the following operation slices a neutrosophic 
cube according its class neutrosophic target element: 
slice(<< time.year > , < time.year.revenue >,  revenue, R >,  time.year.year = "2015" ) = << time.year,  > , < time.year.year 
> , revenue , S >.The following figure 17 show the slice operation in neutrosophic cube: 
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Figure 29:  Slice Operation in Neutrosophic Cube 

 In the resulting cube contain all revenue in city for year 2015 and  the year 2016 and others not found  
9.5 Dice Operation in Neutrosophic Data Warehouse: 
A dice operation in a neutrosophic can restrict neutrosophic concepts and dimensions. Furthermore,  
The slice operation can be extended to a dice definition by including logical operators to combine multiple slicers. 
 
 9.5.1 Definition  (Dice involving neutrosophic fuzzy concepts (DNC)): 

DNC = Dice (NC,{sm,.........., sk},{fm,............, fK-1}); where NC is a neutrosophic cubes, sm,........., sk        ∈ dom (D), 

fm,.............,fk-1 ∈ {AND, OR,NOT} are the logical operators that combine the slicers in a way that combines sm with sm+1. 
The dice operation works similarly and performs a selection on two or more dimensions. For example: 
A dice operation on a neutrosophic cube with two neutrosophic concepts is illustrated as follows: 
dice (<< time.year ,  region.city > , < time.year.revenue, region.city.area >, revenue , S >, {time.year.year  =  "2015", 
region.city.area =  "big"},{AND}) .The following figure 18 shows that the dice operation in neutrosophic cube. 

 

 
Figure 30: Dice Operation in Neutrosophic Cube 

The resulting cube shows only the revenue of the year2015” that belong to  city class "big" 
 
Conclusion 
Using a neutrosophic approach in data warehouse concepts improves information quality for the business process. this 
approach include neutrosophic concept into structure of dimensions or into fact tables of the data warehouse model, then 
we construct truth degree, falsity degree and indeterminacy degree which close to natural language. Added , We have 
presented a structure that manages imprecision by means of neutrosophic logic. Most of the methods previously 
documented give a neutrosophic set as a result. we have presented an OLAP system that implements a neutrosophic 
multidimensional model to achieve knowledge discovery from imperfect data and to enhance the system performance. 
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Abstract
This paper introduces the novel concept of Neutro-BCK-algebra. In Neutro-BCK-algebra, the outcome of
any given two elements under an underlying operation (neutro-sophication procedure) has three cases, such as:
appurtenance, non-appurtenance, or indeterminate. While for an axiom: equal, non-equal, or indeterminate.
This study investigates the Neutro-BCK-algebra and shows that Neutro-BCK-algebra are different from BCK-
algebra. The notation of Neutro-BCK-algebra generates a new concept of NeutroPoset and Neutro-Hass-
diagram for NeutroPosets. Finally, we consider an instance of applications of the Neutro-BCK-algebra.
Keywords: Neutro-BCK-algebra, NeutroPoset, Neutro-Hass diagram.

1 Introduction
Neutrosophy, as a newly-born science, is a branch of philosophy that studies the origin, nature and scope
of neutralities, as well as their interactions with different ideational spectra. It can be defined as the inci-
dence of the application of a law, an operation, an axiom, an idea, a conceptual accredited construction on
an unclear, indeterminate phenomenon, contradictory to the purpose of making it intelligible. Neutrosophic
Sets and Systems international journal (which is in Scopus and Web of Science) is a tool for publications of
advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic
statistics, neutrosophic measure, neutrosophic integral, and so on, studies that started in 1995 and their applica-
tions in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Recently,
Florentin Smarandache [2019] generalized the classical Algebraic Structures to NeutroAlgebraic Structures
NeutroAlgebras) and AntiAlgebraic Structures (AntiAlgebras) and he proved that the NeutroAlgebra is a gen-
eralization of Partial Algebra.7 He considered < A > as an item (concept, attribute, idea, proposition, theory,
etc.). Through the process of neutrosphication, he split the nonempty space and worked onto three regions
two opposite ones corresponding to < A > and < antiA >, and one corresponding to neutral (indeterminate)
< neutA > (also denoted < neutroA >) between the opposites, regions that may or may not be disjoint -
depending on the application, but they are exhaustive (their union equals the whole space). A NeutroAlgebra
is an algebra which has at least one NeutroOperation operation that is well-defined (also called inner-defined)
for some elements, indeterminate for others, and outer-defined for the others or one NeutroAxiom (axiom that
is true for some elements, indeterminate for other elements, and false for the other elements). A Partial Alge-
bra is an algebra that has at least one partial operation (well-defined for some elements, and indeterminate for
other elements), and all its axioms are classical (i.e., the axioms are true for all elements). Through a theorem
he proved that NeutroAlgebra is a generalization of Partial Algebra, and examples of NeutroAlgebras that are
not partial algebras were given. Also, the NeutroFunction and NeutroOperation were introduced.7

Regarding these points, we now introduce the concept of Neutro-BCK-algebras based on axioms of
BCK-algebras, but having a different outcome. In the system of BCK-algebras, the operation is totally
well-defined for any two given elements, but in Neutro-BCK-algebras its outcome may be well-defined, outer-
defined, or indeterminate. Any BCK-algebra is a system which considers that all its axioms are true; but we
weaken the conditions that the axioms are not necessarily totally true, but also partially false, and partially
indeterminate. So, one of our main motivation is a weak coverage of the classical axioms of BCK-algebras.
This causes new partially ordered relations on a non-empty set, such as NeutroPosets and Neutro-Hass Dia-
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grams. Indeed Neutro-Hass Diagrams of NeutroPosets contain relations between elements in the set that are
true, false, or indeterminate.

2 Preliminaries
In this section, we recall some definitions and results from,7 which are needed throughout the paper.

Let n ∈ N. Then an n-ary operation ◦ : Xn → Y is called a NeutroOperation if it has x ∈ Xn for which
◦(x) is well-defined (degree of truth (T)), x ∈ Xn for which ◦(x) is indeterminate (degree of indeterminacy
(I)), and x ∈ Xn for which ◦(x) is outer-defined (degree of falsehood (F)), where T, I, F ∈ [0, 1], with
(T, I, F ) 6= (1, 0, 0) that represents the n-ary (total, or classical) Operation, and (T, I, F ) 6= (0, 0, 1) that
represents the n-ary AntiOperation. Again, in this definition “neutro” stands for neutrosophic, which means the
existence of outer-ness, or undefined-ness, or unknown-ness, or indeterminacy in general. In this regards, for
any given set X , we classify n-ary operation on Xn by (i); (classical) Operation is an operation well-defined
for all set’s elements, (ii); NeutroOperation is an operation partially well-defined, partially indeterminate,
and partially outer-defined on the given set and (iii); AntiOperation is an operation outer-defined for all set’s
elements.

Moreover, we have (i); a (classical) Axiom defined on a non-empty set is an axiom that is totally true
(i.e. true for all set’s elements), (ii); NeutroAxiom (or neutrosophic axiom) defined on a non-empty set
is an axiom that is true for some elements (degree of true = T), indeterminate for other elements (degree of
indeterminacy = I), and false for the other elements (degree of falsehood = F), where T, I, F are in [0, 1] and
(T, I, F ) is different from (1, 0, 0) i.e., different from totally true axiom, or classical Axiom and (T, I, F ) is
different from (0, 0, 1) i.e., different from totally false axiom, or AntiAxiom. (iii); an AntiAxiom of type C
defined on a non-empty set is an axiom that is false for all set’s elements.

Based on the above definitions, there is a classification of algebras as follows. Let X be a non-empty set
and O be a family of binary operations on X . Then (A,O) is called

(i) a (classical) Algebra of type C, if O is the set of all total Operations (i.e. well-defined for all set’s
elements) and (A,O) is satisfied by (classical) Axioms of type C(true for all set’s elements).

(ii) a NeutroAlgebra (or neutro-algebraic structure) of type C, if O has at least one NeutroOperation (or
NeutroFunction), or (A,O) is satisfied by at least one NeutroAxiom of type C that is referred to the set’s
(partial-, neutro-, or total-) operations or axioms;

(iii) an AntiAlgebra (or anti-algebraic structure) of type C, if O has at least one AntiOperation or (A,O)
is satisfied by at least one AntiAxiom of type C.

3 Neutro-BCK-algebra

3.1 Concept of Neutro-BCK-algebra
In this section, we introduce several concepts suc has: Neutro-BCK-algebra, Neutro-BCK-algebra of type
5, NeutroPoset and Neutro-Hass Diagram and investigate the properties of these concepts.

Definition 3.1. 2 Let X be a non-empty set with a binary operation “ ∗ ” and a constant “0”. Then, (X, ∗, 0)
is called a BCK-algebra if it satisfies the following conditions:

(BCI-1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,

(BCI-2) (x ∗ (x ∗ y)) ∗ y = 0,

(BCI-3) x ∗ x = 0,

(BCI-4) x ∗ y = 0 and y ∗ x = 0 imply x = y,

(BCK-5) 0 ∗ x = 0.

Now, we define Neutro-BCK-algebras as follows.

Definition 3.2. Let X be a non-empty set, 0 ∈ X be a constant and “ ∗ ” be a binary operation on X . An
algebra (X, ∗, 0) of type (2, 0) is said to be a Neutro-BCK-algebra, if it satisfies at least one of the following
NeutroAxioms (while the others are classical BCK-axioms):
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(NBCI-1)
(
∃ x, y, z ∈ X such that ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0)

)
and

(
∃ x, y, z ∈ X such that ((x ∗ y) ∗ (x ∗

z)) ∗ (z ∗ y) 6= 0 or indeterminate
)
;

(NBCI-2)
(
∃ x, y ∈ X such that (x ∗ (x ∗ y)) ∗ y = 0

)
and

(
∃ x, y ∈ X such that (x ∗ (x ∗ y)) ∗ y 6= 0 or

indeterminate
)
;

(NBCI-3)
(
∃ x ∈ X such that x ∗ x = 0

)
and

(
∃ x ∈ X such that x ∗ x 6= 0 or indeterminate

)
;

(NBCI-4)
(
∃ x, y ∈ X , such that if x∗y = y∗x = 0, we have x = y

)
and

(
∃ x, y ∈ X , such that if x∗y = y∗x = 0,

we have x 6= y
)
;

(NBCK-5)
(
∃ x ∈ X such that 0 ∗ x = 0

)
and

(
∃ x ∈ X such that 0 ∗ x 6= 0 or indeterminate

)
. Each above

NeutroAxiom has a degree of equality (T ), degree of non-equality (F ), and degree of indeterminacy (I),
where (T, I, F ) /∈ (1, 0, 0), (0, 0, 1).

If (X, ∗, 0) is a NeutroAlgebra and satisfies the conditions (NBCI-1) to (NBCI-4) and (NBCK-5), then
we will call it is a Neutro-BCK-algebra of type 5 (i.e. it satisfies 5 NeutroAxioms).

Example 3.3. Let X = Z. Then
(i) (X, ∗, 0) is a Neutro-BCK-algebra, where for all x, y ∈ X , we have x ∗ y = x− y + xy.
(ii) (X, ∗, 1) is a Neutro-BCK-algebra, where for all x, y ∈ X , we have x ∗ y = xy.

(iii) (X, ∗, 1) is a Neutro-BCK-algebra, where for all x, y ∈ X , we have x ∗ y =

{
1 if x an even
xy if x an odd

.

Let X 6= ∅ be a finite set. We denoteNBCK(X) andNNBCK(X) by the set of all Neutro-BCK-algebras
and Neutro-BCK-algebras of type 5 that are constructed on X , respectively.

Theorem 3.4. Let (X, ∗, 0) be a Neutro BCK-algebra. Then

(i) If |X| = 1, then (X, ∗, 0) is a trivial BCK-algebra.

(ii) If |X| = 2, then |NBCK(X)| = 2 and |NNBCK(X)| =∞.

(iii) If |X| = 3, then there exists ∅ 6= Y ⊆ X , such that (Y, ∗′, 0) is a nontrivial or trivial BCK-algebra.

Proof. We consider only the cases (ii), (iii), because the others are immediate.
(ii) Let X = {0, x}. Then we have 2 trivial Neutro-BCK-algebras (X, ∗1), (X, ∗2) and an infinite

number of trivial Neutro-BCK-algebras of type 5 (X, ∗, 0) in Table 1, where w 6∈ X .
(iii) Let X = {0, x, y}. Now consider Y = {0, x} and define a Neutro-BCK-algebra (X, ∗′, 0) in Table

1. Clearly (Y, ∗′, 0) is a non-trivial BCK-algebra. If Y = {0}, it is a trivial BCK-algebra.

Table 1: Neutro-BCK-algebras of order 2

∗1 0 x
0 0 x
x 0 x

,
∗2 0 x
0 x 0
x x 0

,
∗ 0 x
0 x 0
x w 0

and

∗′ 0 x y
0 0 0 y
x x 0 0
y 0 y x

.

Theorem 3.5. Every BCK-algebra, can be extended to a Neutro-BCK-algebra.

Proof. Let (X, ∗, 0) be a BCK-algebra and α 6∈ X , and U be the universe of discourse that strictly includes
X ∪ α. For all x, y ∈ X ∪ {α}, define ∗α on X ∪ {α} by x ∗α y = x ∗ y where, x, y ∈ X and if α ∈ {x, y},
define x ∗α y as indeterminate or x ∗α y /∈ X ∪ α. Then (X ∪ {α}, ∗α, 0) is a Neutro-BCK-algebra.

Example 3.6. Let X = {0, 1, 2, 3, 4, 5}. Consider Table 3.
Then

(i) If a = 0, then (X, ∗1, 0) is a Neutro-BCK-algebra and if a = 1, then (X \ {3, 4, 5}, ∗1, 0) is a
BCK-algebra.

(ii) (X, ∗2, 0) is a Neutro-BCK-algebra and (X \ {4, 5}, ∗2, 0) is a BCK-algebra.
(iii) If s = t = y = z = 0, w = 3, then (X, ∗3, 0) is a Neutro-BCK-algebra and for s = t = 1, y =

2, z = 3, (X \ {5}, ∗3, 0) is a BCK-algebra. If s = t = y = z = 0, w =
√
2, then (X, ∗3, 0) is a

Neutro-BCK-algebra of type 5 where s, t ∈ {0, 1}, x ∈ {4, 5}, y ∈ {2, 0}, z ∈ {3, 0} and w ∈ {3,
√
2}.
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Table 2: Neutro-BCK-algebras and Neutro-BCK-algebra of type 5

∗1 0 1 2 3 4 5
0 0 0 0 0 2 0
1 1 0 a 2 0 3
2 2 2 0 0 2 0
3 3 0 1 2 0 5
4 0 4 0 1 4 0
5 4 0 1 0 2 3

,

∗2 0 1 2 3 4 5
0 0 0 0 0 2 0
1 1 0 0 0 0 5
2 2 1 0 0 5 0
3 3 2 1 0 0 2
4 0 1 0 4 1 2
5 5 0 4 0 0 x

and

∗3 0 1 2 3 4 5
0 0 0 0 0 0 5
1 1 0 t 0 s 0
2 2 2 0 y 0 3
3 3 1 3 0 z 0
4 4 4 4 4 0 1
5 0 2 0 2 0 w

,

Remark 3.7. In Neutro-BCK-algebra (X, ∗3, 0), which is defined as in Example 3.6, we have (1, 5) ∈≤ and
(5, 0) ∈≤, but (1, 0) 6∈≤, where (x, y) ∈≤ means x ∗3 y = 0. Thus ≤, necessarily, is not a transitive relation.
So we have the following definition of neutro-partially ordered relation on Neutro-BCK-algebra.

Definition 3.8. Let X be a non-empty set and R be a binary relation on X . Then R is called a

(i) neutro-reflexive, if ∃ x ∈ X such that (x, x) ∈ R (degree of truth T ), and ∃ x ∈ X such that (x, x) is
indeterminate (degree of indeterminacy I), and ∃ x ∈ X such that (x, x) 6∈ R (degree of falsehood F );

(ii) neutro-antisymmetric, if ∃ x, y ∈ X such that (x, y) ∈ R and (x, y) ∈ R imply that x = y (degree of
truth T ), and ∃ x, y ∈ X such that (x, y) or (y, x) are indeterminate in R (degree of indeterminacy I),
and ∃ x, y ∈ X such that (x, y) ∈ R and (y, x) ∈ R imply that x 6= y (degree of falsehood F );

(iii) neutro-transitive, if ∃ x, y, z ∈ X such that (x, y) ∈ R, (y, z) ∈ R imply that (x, z) ∈ R (degree of
truth T ),and ∃ x, y, z ∈ X such that (x, y) or (y, z) are indeterminate in R (degree of indeterminacy I),
and ∃ x, y, z ∈ X such that (x, y) ∈ R, (y, z) ∈ R, but (x, z) 6∈ R (degree of falsehood F ). In all above
neutro-axioms (T, I, F ) /∈ (1, 0, 0), (0, 0, 1).

(iv) neutro-partially ordered binary relation, if the relation satisfies at least one of the above neutro-axioms
neutro-reflexivity, neutro-antisymmetry, neutro-transitivity, while the others (if any) are among the clas-
sical axioms reflexivity, antisymmetry, transitivity.

If R is a neutro-partially ordered relation on X , we will call (X,R) by neutro-poset. We will denote, the
related diagram with to neutro-poset (X,R) by neutro-Hass diagram.

We define binary relations ” ≤1,≤2 ” on X by
(
x ≤1 y if or only if x ∗ y = 0 or x ≤1 x

)
and

(
x ≤2 y if

and only if (x ∗ y 6= 0 or indeterminate ) or x ≤2 x
)
. So we have the following theorem.

Theorem 3.9. An algebra (X, ∗, 0) is a Neutro-BCK-algebra if and only if it satisfies the following condi-
tions:

(NBCI-1′)
(
∃ x, y ∈ X such that ((x∗y)∗(x∗z)) ≤1 (z∗y)

)
and

(
∃ x, y ∈ X such that ((x∗y)∗(x∗z)) ≤2 (z∗y)

)
,

(NBCI-2′)
(
∃ x, y ∈ X such that (x ∗ (x ∗ y)) ≤1 y

)
and

(
∃ x, y ∈ X such that (x ∗ (x ∗ y)) ≤2 y

)
,

(NBCI-3′)
(
∃ x, y ∈ X such that x ≤1 x

)
and

(
∃ x, y ∈ X such that x ≤2 x

)
,

(NBCI-4′)
(
∀ x, y ∈ X , if x ≤1 y and y ≤1 x, we get x = y

)
and

(
∀ x, y ∈ X , if x ≤2 y and y ≤2 x, we get

x = y
)
,

(NBCK-5′)
(
∃ x, y ∈ X such that 0 ≤1 x

)
and

(
∃ x, y ∈ X such that 0 ≤2 x

)
.

Proof. Let (X, ∗, 0) be a Neutro-BCK-algebra. We prove only the item (NBCI-1′), other items are similar
to. Since (X, ∗, 0) be a Neutro-BCK-algebra,

(
∃ x, y ∈ X such that (x∗(x∗y))∗y = 0

)
and

(
∃ x, y ∈ X such

that (x∗ (x∗y))∗y 6= 0 or indeterminate
)
. By definition,

(
∃ x, y ∈ X such that ((x∗y)∗ (x∗ z)) ≤1 (z ∗y)

)
and

(
∃ x, y ∈ X such that ((x ∗ y) ∗ (x ∗ z)) ≤2 (z ∗ y)

)
. Conversely, let the items (NBCI-1′) to (NBCI-

4′) and (NBCK-4′). Just prove (NBCI-1) and other items are similar to. Since
(
∃ x, y ∈ X such that

((x∗y)∗ (x∗z)) ≤1 (z ∗y)
)

and
(
∃ x, y ∈ X such that ((x∗y)∗ (x∗z)) ≤2 (z ∗y)

)
, we get that

(
∃ x, y ∈ X

such that ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0)
)

and
(
∃ x, y ∈ X such that ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) 6= 0 or

indeterminate
)
.
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Let (X, ∗, 0) be a Neutro-BCK algebra. Define binary relation ≤ on X , by x ≤ y if and only x ≤1 y and
y ≤2 x. So we have the following results.

Theorem 3.10. Let (X, ∗, 0) be a Neutro-BCK algebra and x, y, z ∈ X . Then

(i) if x 6= y and x ≤ y, then y ≤ x;

(ii) ≤ is a reflexive and symmetric relation on X;

(iii) ≤ is a neutro-transitive algebra relation on X .

Proof. (i) Let x 6= y ∈ X and x ≤ y. If y ≤ x, by definition we obtain (x ∗ y = y ∗ x = 0) and
(x ∗ y = y ∗ x 6= 0) and so x = y.

(ii), (iii) It is clear by item (i) and Remark 3.7.
(iii) It is obtained by (ii).

Corollary 3.11. Let (X, ∗, 0) be a Neutro-BCK algebra. Then (X, ∗, 0,≤1), (X, ∗, 0,≤2) and (X, ∗, 0,≤)
are neutro-posets.

Let (X1, ∗1, 01) and (X2, ∗2, 02) be BCK-algebras, where X1 ∩X2 = ∅. For some x, y ∈ X, define an

operation ∗ as follows: x ∗ y =


x ∗1 y if if x, y ∈ X1 \X2

x ∗2 y if if x, y ∈ X2 \X1

01 if if x ∈ X1, y ∈ X2

02 if if x ∈ X2, y ∈ X1

, where 01 ∗ 02 = 02 and 02 ∗ 01 = 01.

Theorem 3.12. Let (X1, ∗1, 01) and (X2, ∗2, 02) be BCK-algebras, where X1∩X2 = ∅ and X = X1∪X2.
Then

(i) (X, ∗, 01) is a Neutro-BCK-algebra;

(ii) (X, ∗, 02) is a Neutro-BCK-algebra;

Proof. (i) We only prove (NBCI-4). Let x ∗ y = 01. It follows that x ∈ X1 and y ∈ X2 or x, y ∈ X1.
If x, y ∈ X1, because (X1, ∗1, 01) is a BCK-algebra, y ∗ x = 01 implies that x = y. But for x ∈ X1 and
y ∈ X2, we have y ∗ x 6= 01 so (NBCI-4) is valid in any cases. Other items are clear.

(ii) It is similar to item (i).

Example 3.13. Let X1 = {a, b} and X2 = {w, x, y, z}. Then (X1, ∗, a) and (X2, ∗, w) are BCK-algebras.
So by Theorem 3.12, (X1 ∪X1, ∗, a) and (X1 ∪X1, ∗, w) are Neutro-BCK-neutralgebras in Table 3.

Table 3: BCK-algebras and Neutro-BCK-algebra

∗ a b w x y z
a a a w a a a
b b a a a a a
w a w w w w w
x w w x w w w
y w w y x w w
z w w z x x w

.

Corollary 3.14. Let (X1, ∗1, 01) and (X2, ∗2, 02) be BCK-algebras. Then

(i) (X, ∗, 01,≤1), (X, ∗, 02,≤2) and (X, ∗, 02,≤2) are posets.

(ii) (X, ∗, 01,≤2), (X, ∗, 02,≤1) are neutro-posets.

Example 3.15. Consider the Neutro-BCK-algebra in Example 3.13. Then we have neutro-posets (X, ∗, w,≤1

), (X, ∗, a,≤2) and (X, ∗, 02,≤) in Table 4, where − means that elements are not comparable and I means
that are indeterminates.

Definition 3.16. Let (X, ∗, 0) be a Neutro-BCK-algebra, θ ∈ X and Y ⊆ X . Then
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Table 4: neutro-posets

≤1 a b w x y z
a a − a x y z
b − b w x y z
w a w w w w w
x x x w x x x
y y y w x y y
z z z w x y z

,

≤2 a b w x y z
a a b a x y z
b b b w x y z
w a w w I I I
x x x I x I I
y y y I I y I
z z z I I I z

,

≤ a b w x y z
a a a w a a a
b a b b b b b
w w b w − − −
x a b − x − −
y a b − − y −
z a b − − − z

.

(i) Y is called a Neutro-BCK-subalgebra, if (1) 0 ∈ Y , (2) for all x, y ∈ Y , we have x ∗ y ∈ Y , (3)
satisfies in conditions (NBCI-3), (NBCI-4) and (NBCK-5).

(ii) θ ∈ X is called a source element, if it is a minimum or maximum element in neutro-Hass diagram of
(X, ∗, 0).

Theorem 3.17. Let (X, ∗, 0) be a Neutro-BCK-algebra and Y ⊆ X . If Y is a Neutro-BCK-subalgebra of
X , then

(i) (Y, ∗, 0) is a Neutro-BCK-algebra.

(ii) X is a Neutro-BCK-subalgebra of X .

Proof. They are clear.

Corollary 3.18. Let (X, ∗, 0) be a Neutro-BCK-algebra and |X| = n. Then there exist m ≤ n and
x1, x2, . . . , xm ∈ X such that ({0, x1, x2, . . . , xm}, ∗, 0) is a Neutro-BCK-algebra of X .

Theorem 3.19. Let X be a non-empty set. Then there exists a binary operation “ • ” on X and 0 ∈ X such
that

(i) (X, •, x0) is a Neutro-BCK-algebra.

(ii) For all ∅ 6= Y ⊆ X , Y ∪ {x0} is a Neutro-BCK-subalgebra of X .

(iii) If X is a countable set, then in neutro-Hass diagram (X, •, x0), we have |Maximal(X)| = 1 and
Minimal(X) = |X| − 1(|X| is cardinal of X).

(iv) neutro-Hass diagram (X, •, x0) has a source element.

Proof. Let x, y ∈ X . Fixed x0 ∈ X and define x ∗ y = y.
(i) Some modulations show that (X, ∗, x0) is a Neutro-BCK-algebra.
(ii) By Theorem 3.4 and definition, it is clear.
(iii) Let X = {x0, x1, x2, x3, . . .}. Then by Corollary 3.11, (X,≤, x0) is a neutro-poset and so has a

neutro-Hass diagram as Figure 1.

x0

•

x2

•
x1

•
x3

•
x4

•
. . .

. . .

...... ...

...... ...
xn

•

...
...

......
......

...

...

...

.

Figure 1: neutro-Hass diagram (X,≤, x0) with source x0.

Theorem 3.20. Let (X,≤X) be a chain. Then

(i) there exists ∗X on X and 0 ∈ X such that (X, ∗X , 0) is a Neutro-BCK-algebra.

(ii) for all x, y ∈ X , we have x ≤ y if and only if y ≤X x.

(iii) In neutro-Hass diagram (X, •, x0), 0 is source element.
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there exists ∗X on X and 0 ∈ X such that (X, ∗X , 0) is a Neutro-BCK-algebra.

Proof. Let 0, x, y ∈ X , where 0 =Min(X).

(i) Define x ∗X y =

{
x ∨ y if x ≤X y

x ∧ y otherwise
. Some modulations show that (X, ∗X , 0) is a Neutro-BCK-

algebra.
(ii) Let x, y ∈ X . Clearly x ∗x = x, then by definition x ≤ y if and only if x ∗ y = 0 and y ∗x 6= 0 if and

only if y = 0 if and only if y ≤X x.
(iii) By item (ii), we get the neutro-Hass diagram (X,≤X , 0) in Figure 1, so 0 is source element.

Let (X1, ∗1, 01) and (X2, ∗2, 02) be two Neutro-BCK-algebras, whereX1∩X2 = ∅. Define ∗ onX1∪X2,

by x ∗ y =


x ∗1 y if x, y ∈ X1 \X2

x ∗2 y if x, y ∈ X2 \X1

y otherwise
.

Theorem 3.21. Let (X1, ∗1, 01) and (X2, ∗2, 02) be two Neutro-BCK-algebras. Then

(i) (X1 ∪X2, ∗, 01) is a Neutro-BCK-algebra.

(ii) (X1 ∪X2, ∗, 02) is a Neutro-BCK-algebra.

Proof. It is obvious.

Let (X1, ∗1, 01) and (X2, ∗2, 02) be two Neutro-BCK-algebras. Define ∗ onX1×X2, by (x, y)∗(x′, y′) =
(x ∗1 x′, y ∗2 y′), where (x, y), (x′, y′) ∈ X1 ×X2.

Theorem 3.22. Let (X1, ∗1, 01) and (X2, ∗2, 02) be two Neutro-BCK-algebras. Then (X1×X2, ∗, (01, 02))
is a Neutro-BCK-algebra.

Proof. We prove only the item (NBCI-4). Let (x, y), (x′, y′) ∈ X1 × X2. If (x, y) ∗ (x′, y′) = (x′, y′) ∗
(x, y) = (01, 02), then (x ∗1 x′, y ∗2 y′) = (01, 02) and (x′ ∗1 x, y′ ∗2 y) = (02, 01). It follows that (x, y) =
(x′, y′). In a similar way, (x, y) ∗ (x′, y′) = (x′, y′) ∗ (x, y) 6= (01, 02), we get that (x, y) = (x′, y′). Thus,
(X1 ×X2, ∗, (01, 02)) is a Neutro-BCK-algebra.

3.2 Application of Neutro-BCK-algebra
In this subsection, we describe some applications of Neutro-BCK-algebra.

In the following example, we describe some applications of Neutro-BCK-algebra. We discuss applica-
tions of Neutro-BCK-algebra for studying the competition along with algorithms. The Neutro-BCK-algebra
has many utilizations in different areas, where we connect Neutro-BCK-algebra to other sciences such as eco-
nomics, computer sciences and other engineering sciences. We present an example of application of Neutro-
BCK-algebra in COVID-19.

Example 3.23. (COVID-19) Let X = {a = China, b = Italy, c = USA, d = Spain, e = Germany, f =
Iran} be a set of top six COVID-19 affected countries. There are many relations between the countries of
the world. Suppose ∗ is one of relations on X which is described in Table 5. This relation can be economic
impact, political influence, scientific impact or other chasses. For example x ∗ y = z, means that the country
z influences the relationship ∗ from country x to country y. Clearly (X, ∗, China) is a Neutro-BCK-algebra.

Table 5: Neutro-BCK-algebra

∗ China Italy USA Spain Germany Iran
China China Iran Spain Germany Italy USA
Italy China Italy Iran Germany Spain Germany
USA China Italy USA USA Iran Iran
Spain China China China Spain USA Italy

Germany China Germany Italy Spain Germany Italy
Iran China Spain USA USA China Iran

.

And so we obtain neutro-Hass diagram as Figure 2. Applying Figure 2, we obtain that China is main source
of COVID-19 to top five affected countries and Iran, Spain, Italy are indeterminated countries in COVID-19
affection together, USA effects Spain and Germany effects Iran.
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China
•

USA •

Spain •
Italy
• Germany•

Iran
•

.

Figure 2: neutro-Hass diagram (X, ∗, China) associated to infected COVID-19 .
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Abstract
The paper focuses on the applications of neutrosophic set theory in the domain of classical algebraic structures,
especiallyR-module. This study discusses some algebraic operations of neutrosophic sets of anR-moduleM ,
induced by the operations in M and demonstrates certain properties of the neutrosophic submodules of an R-
module. The ideas of R module’s non-empty arbitrary family of neutrosophic submodules are characterized,
and related outcomes are proved. The last section of this paper also derives a necessary and sufficient condition
for a neutrosophic set of an R-module M .
Keywords: R-module, Neutrosophic Set, Neutrosophic Submodule, Support, Neutrosophic Point

1 Introduction
Traditionally the set theory deals with sets of objects, their features and framework models of axioms. Prac-
tical problems in research, science and economics cannot be solved in the current environment due to the
inadequacy of the ideas of parameterisation techniques. In 1965, Lotfi Aliaskar Zadeh [1] published a paper
describing the concept of imprecise boundaries of sets which led to the emergence of fuzzy set theory. After
the implementation of fuzzy sets by Zadeh, this basic notion has been generalized in several ways. In 1986
Atanassov [2] put forward intuitionistic fuzzy set theory as a stereotype illustration of a set in which each
component is concomitant with membership and non-membership grades. In 1995, the University of New
Mexico’s scientist and mathematics professor Florentin Smarandache [3] inspired by sport matches (winning
/ defeating / tie scores), votes (pro / counter / null or black votes), decision making (accept / reject / pending)
and control theory (yes / no / not relevant) coined a new idea and a branch of philosophy called neutroso-
phy. Neutrosophy means understanding neutral concepts and extending of tri-valued logic by non-standard
analysis [4, 5].

The main objective of the neutrosophic set is to narrow the gap between the vague, ambiguous and im-
precise real-world situations. Neutrosophic set theory gives a thorough scientific and mathematical model
knowledge in which speculative and uncertain hypothetical phenomena can be managed by hierarchal mem-
bership of the components “ truth / indeterminacy / falsehood ” [4, 6]. Among the different branches of
applied and pure mathematics, abstract algebra was one of the first few areas where research was conducted
using the concept of neutrosophic set. Some authors have studied the algebraic structure associated in pure
mathematics with uncertainty. In 1971, Azriel Rosenfeld [7] presented a seminal paper on fuzzy subgroup and
W.J. Liu [8] developed the idea of fuzzy normal subgroup and fuzzy subring. It was a significant milestone
in the area of mathematics research and fuzzy algebra. Mordeson’s and Malik’s book [9] gives an account of
all these concepts upto 1998. Negoita and Ralescu [10] launched the notion of a fuzzy module. Then fuzzy
module was further developed by Mashinchi & Zahedi [11]. The idea of a direct sum of fuzzy modules was
investigated by P. Isaac [12]. In 2011 P. Isaac, P.P.John [13] studied about the algebraic nature of intuitionistic
fuzzy submodule of a classical module.

The consolidation of the neutrosophic set hypothesis with algebraic structures is a growing trend in mathe-
matical research. One of the key developments in the neutrosophic set theory is the hybridization of the neutro-
sophic set with various potential algebraic structures such as bipolar set, soft set and hesitant fuzzy set [14–16].
W. B. Vasantha Kandasamy and Florentin Smarandache [17] initially presented basic neutrosophic algebraic
structures and their application. Vidan Cetkin [18, 19] consolidated the neutrosophic set theory and algebraic
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structures, creating neutrosophic subgroups and neutrosophic submodules. The basic features of single val-
ued neutrosophic submodules of an R-module (classical module) are studied by Cetkin and Olgun N [19, 20].
Neutrosophic algebraic structures have higher expressive power than classical crisp set-based structures. This
paper explains certain elementary properties of neutrosophic set of an R-module M and characteristics of
neutrosophic submodule of an R-module M .

Neutrosophic set generalizes a classical set, fuzzy set, interval-valued fuzzy set and intuitionistic fuzzy
set that can be used to make a mathematical model for the real problems of science and engineering. The
remaining of the paper is structured as follows. The section 2 briefs about neutrosophic set operations and
neutrosophic sub-modules of anR-moduleM . Section 3 provides some elementary properties of neutrosophic
set of an R-module M and related results. The findings and description of the related work are also briefed in
section 4. Finally section 5 presents a valid summary and future work of the proposed study.

2 Preliminaries
This section presents some of the preliminary definitions and results which are basic for a better and clear
cognizance of next chapters.

Definition 2.1. [21] Let R be a commutative ring with unity. A module M over R is an abelian group with
a law of composition written ‘+’and a scalar multiplication R ×M → M , written (r, x)  rx, that satisfy
these axioms

1. 1x = x

2. (rs)x = r(sx)

3. (r + s)x = rx+ sx

4. r(x+ y) = rx+ ry ∀ r, s ∈ R and x, y ∈M .

Definition 2.2. [21] A submodule N of an R-module M is a nonempty subset that is closed under addition
and scalar multiplication, i.e., x1 + x2 ∈ N, rx ∈ N ∀ r ∈ R, x1, x2, x ∈ N .

Definition 2.3. [22] Let A and B be submodules of an R-module M . The sum of A and B, denoted as a set
A+B = {x+ y : x ∈ A, y ∈ B}

which is also a submodule and smallest submodule which contains both A and B.

Theorem 2.1. [22] The intersection of any non empty collection of submodules of an R-module is a sub
module .

Definition 2.4. [4] A neutrosophic set P of the universal set X is defined as P = {(x, tP (x), iP (x), fP (x)) :
x ∈ X} where tP , iP , fP : X → (−0, 1+). The three components tP , iP and fP represent membership value
(Percentage of truth), indeterminacy (Percentage of indeterminacy) and non membership value (Percentage of
falsity) respectively. These components are functions of non standard unit interval (−0, 1+) .

Remark 2.1. [23,24] “If tP , iP , fP : X → [0, 1], then P is known as Single Valued Neutrosophic Set (SVNS).

Remark 2.2. This paper considers only SVNS. For simplicity SVNS will be called neutrosophic set.

Remark 2.3. UX denotes the set of all neutrosophic subsets of X or neutrosophic power set of X .

Definition 2.5. [4,25] Let P and Q be two neutrosophic sets of X. Then P is contained in Q, denoted as P ⊆ Q
if and only if P (x) 6 Q(x) ∀x ∈ X , this means that tP (x) ≤ tQ(x), iP (x) ≤ iQ(x), fP (x) ≥ fQ(x), ∀ x ∈
X

Definition 2.6. [4,26] The complement of a neutrosophic set P = {x, tP (x), iP (x), fP (x) : x ∈ X} of X is
denoted and defined as P c = {x, fP (x), 1− iP (x), tP (x) : x ∈ X}.

Definition 2.7. [4, 27] Let P,Q ∈ UX ∀ x ∈ X . Then
1. The union C of P and Q is denoted by C = P ∪ Q and defined as C(x) = P (x) ∨ Q(x) where C(x) =
{x, tC(x), iC(x), fC(x) : x ∈ X} is given by

tC(x) = tP (x) ∨ tQ(x)
iC(x) = iP (x) ∨ iQ(x)
fC(x) = fP (x) ∧ fQ(x)
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2. The intersection C of P and Q is denoted by C = P ∩ Q and is defined as C(x) = P (x) ∧ Q(x) where
C(x) = {x, tC(x), iC(x), fC(x) : x ∈ X} is given by

tC(x) = tP (x) ∧ tQ(x)
iC(x) = iP (x) ∧ iQ(x)
fC(x) = fP (x) ∨ fQ(x)

Definition 2.8. [28] Let P and Q be neutrosophic sets of an R-Module M . Then their sum P + Q is a
neutrosophic set of M , defined as follows

P +Q(x) = {x, tP+Q(x), iP+Q(x), fP+Q(x) : x ∈M} where
tP+Q(x) = ∨{tP (y) ∧ tQ(z)|x = y + z, y, z ∈M}
iP+Q(x) = ∨{iP (y) ∧ iQ(z)|x = y + z, y, z ∈M}
fP+Q(x) = ∧ fP (y) ∨ fQ(z)|x = y + z, y, z ∈M}.

Definition 2.9. [19] Let P be a neutrosophic set of anR-moduleM and r ∈ R. Define neutrosophic set rP =

{x, trP (x), irP (x), frP (x) : x ∈M} of M as follows trP (x) =

{
∨{tP (y)} if y ∈M,x = ry

0 otherwise
; irP (x) ={

∨{iP (y)} if y ∈M,x = ry

0 otherwise
and frP (x) =

{
∧{fP (y)} if y ∈M,x = ry

0 otherwise

3 Neutrosophic Set of an R-module M

In this section a few algebraic properties of neutrosophic submodules of an R-module M are demonstrated
and evaluated using three different membership grade values of neutrosophic submodules.

Definition 3.1. [19] Let M be an R module. Let P ∈ UM where UMdenotes the neutrosophic power set of
R-module M . Then a neutrosophic subset P = {x, tP (x), iP (x),
fP (x) : x ∈M} in M is called neutrosophic submodule of M if it satisfies the following;

1. tP (0) = 1, iP (0) = 1, fP (0) = 0

2. tP (x+ y) ≥ tP (x) ∧ tP (y)
iP (x+ y) ≥ iP (x) ∧ iP (y)
fP (x+ y) ≤ fP (x) ∨ fP (y), ∀x, y ∈M

3. tP (rx) ≥ tP (x), iP (rx) ≥ iP (x), fP (rx) ≤ fP (x),∀ x ∈M,∀ r ∈ R .

Remark 3.1. The set of all neutrosophic submodules of R-module M represented by U(M).

Example 3.1. [19] Consider the classical ring R = Z4 = {0, 1, 2, 3}. Since each ring is a module on itself,
take R = Z4 as a classical module. Define the single valued neutrosophic set P as follows
P = {(0, 〈1, 1, 0〉), (1, 〈0.6, 0.3, 0.6〉), (2, 〈0.8, 0.1, 0.4〉), (3, 〈0.6, 0.3, 0.6〉)}. Then the neutrosophic set P is
a neutrosophic submodule of M .

Definition 3.2. [19] Let M be an R module. Let P ∈ UM where UMdenotes the neutrosophic power set of
R-module M . Then a neutrosophic subset P = {x, tP (x), iP (x),
fP (x) : x ∈M} in M is called neutrosophic submodule of M if it satisfies the following;

1. tP (0) = 1, iP (0) = 1, fP (0) = 0

2. tP (x+ y) ≥ tP (x) ∧ tP (y)
iP (x+ y) ≥ iP (x) ∧ iP (y)
fP (x+ y) ≤ fP (x) ∨ fP (y), ∀x, y ∈M

3. tP (rx) ≥ tP (x), iP (rx) ≥ iP (x), fP (rx) ≤ fP (x),∀ x ∈M,∀ r ∈ R.

Remark 3.2. The set of all neutrosophic submodules of R-module M represented by U(M).

Theorem 3.1. [19] Let P be a neutrosophic set ofM . Then P ∈ U(M) if and only if the following properties
are satisfied ∀ x, y ∈M, r, s ∈ R
i) tP (0) = 1, iP (0) = 1, fP (0) = 0
ii) tP (rx+ sy) ≥ tP (x) ∧ tP (y); iP (rx+ sy) ≥ iP (x) ∧ iP (y);
fP (rx+ sy) ≤ fP (x) ∨ fP (y)”.
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Definition 3.3. For any neutrosophic subset P = {(x, tP (x), iP (x), fP (x)) : x ∈ X} of X , the support P ∗

of the neutrosophic set P can be defined as

P ∗ = {x ∈ X, tP (x) > 0, iP (x) > 0, fP (x) < 1}.

Proposition 3.1. Let P, Q ∈ UX . If P ⊆ Q, then P ∗ ⊆ Q∗.

Proof. Given that P ⊆ Q, then tP (x) ≤ tQ(x) : iP (x) ≤ iQ(x) : fP (x) ≥ fQ(x) ∀x ∈ X. Consider x ∈ P ∗,
then , tP (x) > 0, iP (x) > 0, fP (x) < 1. So it can conclude that

tQ(x) ≥ tP (x) > 0
iQ(x) ≥ iP (x) > 0
fQ(x) ≤ fP (x) < 1

So that x ∈ Q∗, ∴ P ∗ ⊆ Q∗. Hence proved.

Proposition 3.2. Let P = {x, tP (x), iP (x), fP (x);x ∈ M} be a neutrosophic set of M , then trP (rx) ≥
tP (x), irP (rx) ≥ iP (x) and frP (rx) ≤ fP (x).

Proof. Consider
trP (rx) = ∨{tP (y) : y ∈M, rx = ry} ≥ tP (x),∀ x ∈M

Similarly irP (rx) ≥ iP (x) . Also
frP (rx) = ∧{fP (y) : y ∈M, rx = ry} ≤ fP (x),∀ x ∈M

Hence the proof.

Proposition 3.3. If P,Q ∈ UM , then ∀x, y ∈M, r, s ∈ R

1. t(rP+sQ)(rx+ sy) ≥ tP (x) ∧ tQ(y)

2. i(rP+sQ)(rx+ sy) ≥ iP (x) ∧ iQ(y)

3. f(rP+sQ)(rx+ sy) ≤ fP (x) ∧ fQ(y)

Proof. 1. Consider

t(rP+sQ)(rx+ sy) =
∨
{trP (ϑ1) ∧ tsQ(ϑ2) : ϑ1, ϑ2 ∈M,ϑ1 + ϑ2 = rx+ sy}

≥ trP (rx) ∧ tsQ(sy)
≥ tP (x) ∧ tQ(y) ∀ x, y ∈M, r, s ∈ R.

2. Same as above.
3. Consider

f(rP+sQ)(rx+ sy) =
∧
{frP (ϑ1) ∨ fsQ(ϑ2) : ϑ1, ϑ2 ∈M,ϑ1 + ϑ2 = rx+ sy}

≤ frP (rx) ∨ fsQ(sy)
≤ fP (x) ∨ fQ(y) ∀ x, y ∈M, r, s ∈ R.

Hence the proof.

Definition 3.4. Let Pi, i ∈ J be an arbitrary non empty family of UM where Pi = {x, tPi
(x), iPi

(x), fPi
(x) :

x ∈M} for each i ∈ J . Then∑
i∈J Pi = {x, t∑

i∈J

Pi
(x), i∑

i∈J

Pi
(x), f∑

i∈J

Pi
(x) : x ∈M} where

t∑
i∈J

Pi
(x) = ∨{ ∧

i∈J
tPi(xi) : xi ∈M,

∑
i∈J xi = x} ∀x ∈M

i∑
i∈J

Pi
(x) = ∨{ ∧

i∈J
iPi(xi) : xi ∈M,

∑
i∈J xi = x} ∀x ∈M

f∑
i∈J

Pi
(x) = ∧{ ∨

i∈J
fPi

(xi) : xi ∈M,
∑
i∈J xi = x} ∀x ∈M

in
∑
i∈J

xi, at most finitely x′is are not equal to zero.

Proposition 3.4. LetPi, i ∈ J be an arbitrary non empty family ofUM , then r(
⋃
i∈J Pi) =

⋃
i∈J(rPi) for r ∈

R .
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Proof. Consider r
⋃
i∈J Pi = {x, tr⋃i∈J Pi

(x), ir
⋃

i∈J Pi
(x), fr

⋃
i∈J Pi

(x) : x ∈M, r ∈ R}
Now

tr
⋃

i∈J Pi
(x) =

{
∨{t⋃

i∈J Pi
(y) if y ∈M,x = ry

0 otherwise

=

{
∨{ ∨

i∈J
tPi

(y)} if : y ∈M,x = ry

0 otherwise

= ∨
i∈J

trPi
(x)

= t⋃
i∈J rPi

(x)

Similarly ir⋃i∈J Pi
(x) = i⋃

i∈J rPi
(x)

Now

fr
⋃

i∈J Pi
(x) =

{
∧{f⋃

i∈J Pi
(y)} if y ∈M,x = ry

1 otherwise

=

{
∧{ ∧

i∈J
fPi

(y)} if y ∈M,x = ry

1 otherwise

= ∧
i∈J

frPi
(x)

= f⋃
i∈J rPi

(x)

Hence r(
⋃
i∈J Pi) =

⋃
i∈J(rPi) for r ∈ R.

Definition 3.5. For any x ∈ X , the neutrosophic point N̂{x} is defined as N̂{x}(s) = {s, tN̂{x}
(s), iN̂{x}

(s), fN̂{x}
(s) :

s ∈ X} where

N̂{x}(s) =

{
(1, 1, 0) x = s

(0, 0, 1) x 6= s

Remark 3.3. LetX be a non empty set. The neutrosophic point N̂{0} inX is N̂{0}(x) = {x, tN̂{0}
(x), iN̂{0}

(x), fN̂{0}
(x) :

x ∈ X} where

N̂{0}(x) =

{
(1, 1, 0) x = 0

(0, 0, 1) x 6= 0

Proposition 3.5. Let N̂{0} be the neutrosophic point in X . Then rN̂{0} = N̂{0} ∀r ∈ R .

Proof. Consider rN̂{0}(x) = {x, trN̂{0}
(x), irN̂{0}

(x), frN̂{0}
(x) : x ∈M}, where ∀r ∈ R and

trN̂{0}
(x) = ∨{tN̂{0}

(y) : y ∈M,x = ry}

=

{
1 x = 0

0 x 6= 0

= tN̂{0}
(x) ∀x ∈M

Similarly it can prove that, irN̂{0}
(x) = iN̂{0}

(x)

frN̂{0}
(x) = ∧{trN̂{0}

(y) : y ∈M,x = ry}

=

{
0 x = 0

1 x 6= 0

= fN̂{0}
(x) ∀x ∈M

Hence for any r ∈ R, rN̂{0} = N̂{0}.

Theorem 3.2. Let P ∈ UX . P = N̂{0} if and only if P ∗ = {0}.

Doi :10.5281/zenodo.3903173 122



International Journal of Neutrosophic Science (IJNS) Vol. 8, No. 2, PP. 118-127, 2020

Proof. If P = N̂{0}, then P ∗ = (x ∈ X, tP (x) > 0, iP (x) > 0, fP (x) < 1) = {0}.
Conversely, if P ∗ = {0} ⇒ tP (0) > 0, iP (0) > 0, fP (x) < 1 and tP (x) = 0, iP (x) = 0 and fP (x) =
1 ∀ x 6= 0.Therefore

P (x) =

{
(1, 1, 0) x = 0

(0, 0, 1) x 6= 0
= N̂{0}

Hence the proof.

Definition 3.6. For any neutrosophic subset P = {(x, tP (x), iP (x), fP (x)) : x ∈ X} of X , the support P ∗

of the neutrosophic set P can be defined as

P ∗ = {x ∈ X, tP (x) > 0, iP (x) > 0, fP (x) < 1}.

Proposition 3.6. Let P, Q ∈ UX . If P ⊆ Q, then P ∗ ⊆ Q∗.

Proof. Given that P ⊆ Q, then tP (x) ≤ tQ(x) : iP (x) ≤ iQ(x) : fP (x) ≥ fQ(x) ∀x ∈ X. Consider x ∈ P ∗,
then , tP (x) > 0, iP (x) > 0, fP (x) < 1. So it can conclude that

tQ(x) ≥ tP (x) > 0
iQ(x) ≥ iP (x) > 0
fQ(x) ≤ fP (x) < 1

So that x ∈ Q∗, ∴ P ∗ ⊆ Q∗. Hence the proof.

Definition 3.7. Let P ∈ UX . If for all β ∈ [0, 1], the β-level sets of of P , can be denoted and defined as
Pβ = {x ∈ X : tP (x) ≥ β, iP (x) ≥ β, fP (x) ≤ β} and the strict β level sets of P can be denoted and
defined as P ∗β = {x ∈ X : tP (x) > β, iP (x) > β, fP (x) < β}.

Proposition 3.7. Let Pi, i ∈ J be an arbitrary non empty family of UX . Then for any β ∈ [0, 1], then

1.
⋂
i∈J

(Pi)β = (
⋂
i∈J

Pi)β

2.
⋃
i∈J

(Pi)β ⊆ (
⋃
i∈J

Pi)β

Proof. 1. Consider

x ∈
⋂
i∈J

(Pi)β ⇔ x ∈ (Pi)β∀i ∈ J

⇔ tPi
(x) ≥ β, iPi

(x) ≥ β, fPi
(x) ≤ β ∀ i ∈ J

⇔ ∧
i∈J

tPi
(x) ≥ β, ∧

i∈J
iPi

(x) ≥ β, ∨
i∈J

fPi
(x) ≤ β

⇔ t⋂
i∈J Pi

(x) ≥ β, i⋂
i∈J Pi

(x) ≥ β, f⋂
i∈J Pi

(x) ≤ β

⇔ x ∈ (
⋂
i∈J

Pi)β

2. Consider

x ∈
⋃
i∈J

(Pi)β ⇒ x ∈ (Pj)β for some j ∈ J

⇒ tPj
(x) ≥ β, iPj

(x) ≥ β, fPj
(x) ≤ β

⇒ ∨
i∈J

tPi
(x) ≥ β, ∨

i∈J
iPi

(x) ≥ β, ∧
i∈J

fPi
(x) ≤ β

⇒ x ∈ (
⋃
i∈J

Pi)β

Hence the proof.

4 Neutrosophic Submodule of an R-module M

This section explains the characteristics of neutrosophic submodules of an R-module and some associated
results and theorems.
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Theorem 4.1. Let P ∈ U(M). Then P ∗ is a submodule of M .

Proof. Given P ∈ U(M) and P ∗ = {x ∈M, tP (x) > 0, iP (x) > 0, fP (x) < 1}. Let x, θ ∈ P ∗. Then
tP (x) > 0, iP (x) > 0, fP (x) < 1
tP (θ) > 0, iP (θ) > 0, fP (θ) < 1

To prove that rx+ sθ ∈ P ∗ where r, s ∈ R.
i.e. to prove that tP (rx+ sθ) > 0, iP (rx+ sθ) > 0, and fP (rx+ sθ) < 1.
Now

tP (rx+ sθ) ≥ tP (rx) ∧ tP (sθ)
≥ tP (x) ∧ tP (θ) > 0.

The remaining two inequalities can be proved in the same way.
Hence P ∗ is a submodule of M .

Theorem 4.2. Let Pi, i ∈ J be an arbitrary non empty family of U(M), then
⋂
i∈J Pi ∈ U(M) .

Proof. Consider
⋂
i∈J Pi = {x, t⋂i∈J Pi

(x), i⋂
i∈J Pi

(x), f⋂
i∈J Pi

(x) : x ∈M} and t⋂
i∈J Pi

(0) = ∧
i∈J

tPi
(0) =

1; i⋂
i∈J Pi

(0) = ∧
i∈J

iPi
(0) = 1; f⋂

i∈J Pi
(0) = ∨

i∈J
fPi

(0) = 0 Now, ∀ x, y ∈M, r, s ∈ R

t⋂
i∈J Pi

(rx+ sy) = ∧
i∈J

tPi
(rx+ sy)

≥ ∧
i∈J

(tPi
(x) ∧ tPi

(y))

= [ ∧
i∈J

tPi
(x)] ∧ [ ∧

i∈J
tPi

(y)]

= t⋂
i∈J Pi

(x) ∧ t⋂
i∈J Pi

(y)

in the same way it can derive
i⋂

i∈J Pi
(rx+ sy) ≥ i⋂

i∈J Pi
(x) ∧ i⋂

i∈J Pi
(y)

f⋂
i∈J Pi

(rx+ sy) ≤ f⋂
i∈J Pi

(x) ∨ f⋂
i∈J Pi

(y)

Hence
⋂
i∈J Pi ∈ U(M)

Remark 4.1. If P,Q ∈ U(M), then P ∩Q ∈ U(M) .

Definition 4.1. Let Pi, i ∈ J be an arbitrary non empty family of UM where Pi = {x, tPi(x), iPi(x), fPi(x) :
x ∈M} for each i ∈ J . Then∑

i∈J Pi = {x, t∑
i∈J

Pi
(x), i∑

i∈J

Pi
(x), f∑

i∈J

Pi
(x) : x ∈M} where

t∑
i∈J

Pi
(x) = ∨{ ∧

i∈J
tPi

(xi) : xi ∈M,
∑
i∈J xi = x} ∀x ∈M

i∑
i∈J

Pi
(x) = ∨{ ∧

i∈J
iPi(xi) : xi ∈M,

∑
i∈J xi = x} ∀x ∈M

f∑
i∈J

Pi
(x) = ∧{ ∨

i∈J
fPi(xi) : xi ∈M,

∑
i∈J xi = x} ∀x ∈M

in
∑
i∈J

xi, at most finitely x′is are not equal to zero.

Theorem 4.3. If P,Q ∈ U(M), then P +Q ∈ U(M).

Proof. It is enough to prove that P +Q satisfies the following conditions ∀x, y ∈M, r, s ∈ R

1. tP+Q(0) = 1, iP+Q(0) = 1, fP+Q(0) = 0

2. tP+Q(rx+ sy) ≥ tP+Q(x) ∧ tP+Q(y), iP+Q(rx+ sy) ≥ iP+Q(x) ∧ iP+Q(y),
fP+Q(rx+ sy) ≤ fP+Q(x) ∨ fP+Q(y)

Since P,Q ∈ U(M), from the definition 2.8, condition 1 is obvious.
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Consider

tP+Q(x) ∧ tP+Q(y) =
∨
{tP (x1) ∧ tQ(x2) : x = x1 + x2} ∧∨
{tP (y1) ∧ tQ(y2) : y = y1 + y2}

≤
∨
{tP (rx1) ∧ tQ(rx2) : rx = rx1 + rx2} ∧∨
{tP (sy1) ∧ tQ(sy2) : sy = sy1 + sy2}

=
∨
{[tP (rx1) ∧ tP (sy1)] ∧ [tQ(rx2) ∧ tQ(sy2)]

: rx = rx1 + rx2, sy = sy1 + sy2}
≤

∨
{tP (rx1 + sy1) ∧ tQ(rx2 + sy2)

: rx+ sy = rx1 + sy1 + rx2 + sy2}
= tP+Q(rx+ sy) where rx+ sy = r(x1 + x2) + s(y1 + y2)

∀ x1, x2, y1, y2 ∈M

Similarly, iP+Q(rx+ sy) ≥ iP+Q(x) ∧ iP+Q(y); fP+Q(rx+ sy) ≤ fP+Q(x) ∨ fP+Q(y)
∴ P +Q ∈ U(M).

Corollary 4.3.1. Let Pi, i ∈ J be a family of neutrosophic submodules of an R-module M . Then
∑
i∈J

Pi ∈

U(M).

Corollary 4.3.2. Let P,Q ∈ U(M), then
1. (P +Q)∗ = P ∗ +Q∗

2. (P ∩Q)∗ = P ∗ ∩Q∗

Theorem 4.4. Let P ∈ UM . Then P ∈ U(M)⇔ P hold the following

1. N̂{0} ⊆ P

2. rP ⊆ P ∀r ∈ R

3. P + P ⊆ P

Proof. Consider P ∈ U(M)

1. Consider N̂{0}(x) = {x, tN̂{0}
(x), iN̂{0}

(x), fN̂{0}
(x) : x ∈M} where

N̂{0}(x) =

{
(1, 1, 0) x = 0

(0, 0, 1) x 6= 0

Then obviously, tN̂{0}
(x) ≤ tP (x), iN̂{0}

(x) ≤ iP (x) and fN̂{0}
(x) ≥ fP (x) ∀ x ∈M

Hence N̂{0} ⊆ P .

2. Consider rP = {x, trP (x), irP (x), frP (x) : x ∈M} where

trP (x) =

{
∨{tP (y)} if y ∈M,x = ry

0 otherwise

≤ tP (x) ∀x ∈M [tP (x) = tP (ry) ≥ tP (y)]

Similarly irP (x) ≤ iP (x), frP (x) ≥ fP (x),∀x ∈M.
Hence rP ⊆ P.

3. Comsider x ∈M, r ∈ R

tP+P (x) = ∨{tP y ∧ tP (z) : y, z ∈M,x = y + z}
≤ tP (x) ∀x ∈M [tA(x) = tA(y + z) ≥ tA(y) ∧ tA(z)]

Similarly, iP+P (x) ≤ iP (x) and fP+P (x) ≥ fP (x)
Therefore P + P ⊆ P.
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Conversely, assume P ∈ UM satisfies the given three conditions and to show that P ∈ U(M).
From the condition 1,
N̂{0} ⊆ P ⇒ tN̂{0}

(x) ≤ tP (x), iN̂{0}
(x) ≤ iP (x) a.nd fN̂{0}

(x) ≥ fP (x) ∀ x ∈M
⇒ tP (0) = 1, iP (0) = 1 and fP (0) = 0.
Now for x, y ∈M ,
From condition 3, P + P ⊆ P

tP (x+ y) ≥ tP+P (x+ y)

= ∨{tP (z1) ∧ tP (z2) : z1, z2 ∈M,x+ y = z1 + z2}
≥ tP (x) ∧ tP (y)

Similarly, iP (x+ y) ≥ iP (x) ∧ iP (y), fP (x+ y) ≤ fP (x) ∨ fP (y) ∀ x, y ∈M .
Also from condition 2, ∀ r ∈ R, x ∈M ,

tP (rx) ≥ trP (rx)

=

{
∨{tP (y)} if y = rx, rx = ry

0 otherwise

≥ tP (x)

Similarly, iP (rx) ≥ iP (x) and fP (rx) ≤ fP (x).
Therefore it can conclude, P ∈ U(M).

Corollary 4.4.1. Let P ∈ UM , then P ∈ U(M)⇔ P hold the following

1. N̂{0} ⊆ P

2. rP + sP ⊆ P, ∀r, s ∈ R

5 Conclusion
Neutrosophic submodule is one of the generalizations of the algebraic structure “module” that supplements
the classic structure by assigning three diverse level graded features of each module component. This paper
presented numerous operations of neutrosophic sets of an R-module M , instigated by the operation addition
in M and an action of a ring R on M . The scope and intent of this study are to generalize algebraic structures
and to create algebraic neutrosophic structures and find their application. The present study leads to explore
the concept of injective and projective neutrosophic submodules of an R-module, semi-simple neutrosophic
submodule of an R-module and a quasi neutrosophic submodule of an R-module.
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