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Aim and Scope 
International Journal of Neutrosophic Science (IJNS) is a peer-review journal publishing high quality 

experimental and theoretical research in all areas of Neutrosophic and its Applications. IJNS is 

published quarterly. IJNS is devoted to the publication of peer-reviewed original research papers lying in 

the domain of neutrosophic sets and systems. Papers submitted for possible publication may concern with 

foundations, neutrosophic logic and mathematical structures in the neutrosophic setting. Besides providing 

emphasis on topics like artificial intelligence, pattern recognition, image processing, robotics, decision 

making, data analysis, data mining, applications of neutrosophic mathematical theories contributing to 

economics, finance, management, industries,  electronics, and communications are promoted. Variants of 

neutrosophic sets including refined neutrosophic set (RNS). Articles evolving algorithms making 

computational work handy are welcome. 

Topics of Interest 
IJNS promotes research and reflects the most recent advances of neutrosophic Sciences in diverse 

disciplines, with emphasis on the following aspects, but certainly not limited to: 

฀  Neutrosophic sets                                              ฀  Neutrosophic algebra 

฀  Neutrosophic topolog                                        ฀  Neutrosophic graphs 

฀  Neutrosophic probabilities                                ฀  Neutrosophic tools for decision making 

฀  Neutrosophic theory for machine learning       ฀  Neutrosophic statistics 

฀  Neutrosophic numerical measures                    ฀  Classical neutrosophic numbers 

฀  A neutrosophic hypothesis                                ฀  The neutrosophic level of significance 

฀  The neutrosophic confidence interval               ฀  The neutrosophic central limit theorem 

฀  Neutrosophic theory in bioinformatics  

฀and medical analytics                                            ฀  Neutrosophic tools for big data analytics 

฀  Neutrosophic tools for deep learning                  ฀  Neutrosophic tools for data visualization 

฀  Quadripartitioned single-valued  

฀neutrosophic sets                                                   ฀  Refined single-valued neutrosophic sets 

฀ Applications of neutrosophic logic in image processing  

฀  Neutrosophic logic for feature learning, classification, regression, and clustering 
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฀  Neutrosophic knowledge retrieval of medical images 

฀  Neutrosophic set theory for large-scale image and multimedia processing 

฀  Neutrosophic set theory for brain-machine interfaces and medical signal analysis 

฀ Applications of neutrosophic theory in large-scale healthcare data  

฀  Neutrosophic set-based multimodal sensor data 

฀  Neutrosophic set-based array processing and analysis 

฀ Wireless sensor networks Neutrosophic set-based Crowd-sourcing 

฀  Neutrosophic set-based heterogeneous data mining  

฀  Neutrosophic in Virtual Reality 

฀  Neutrosophic and Plithogenic theories in Humanities and Social Sciences 

฀  Neutrosophic and Plithogenic theories in decision making 

฀  Neutrosophic in Astronomy and Space Sciences 
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Abstract  

Plithogenic sets introduced by Smarandache (2018) have disclosed new research vistas and this paper introduces 
the novel concept of plithogenic cognitive maps (PCM) and its applications in decision making. The new approach 
of defining instantaneous state neutrosophic vector with the confinement of indeterminacy to (0,1] is proposed to 
quantify the degree of indeterminacy. The resultant vector is obtained by applying instantaneous state vector 
through the connection matrix together with plithogenic operators comprising the contradiction degrees. The 
connection matrix is represented as fuzzy matrix and neutrosophic matrix and the resultant vector is determined by 
applying plithogenic fuzzy operators and plithogenic neutrosophic operators respectively. The obtained results are 
highly feasible in making the decision as it incorporates the contradiction degree of the conceptual nodes with 
respect to the dominant node. This research work will certainly pave the way for developing new approaches in 
decision making using PCM. 

Keywords: Plithogenic set, cognitive maps, plithogenic cognitive maps, confinement of indeterminacy, 
plithogenic fuzzy operators, plithogenic neutrosophic operators. 

 

1.Introduction  

Robert Axelrod [1] developed cognitive maps, a decision making tool primarily used in handling the 

system of making decisions related to political and social frameworks. A cognitive map is a directed graph with 

nodes and edges representing the concept variables or factors, and it’s causal relationships respectively. The 

intensity of the relationship between two concepts say Ci and Cj is represented by edge weights eij, where eij∈  {-

1,0,1}. The value 1 represents the positive influence of Ci over Cj; 0 represents no influence and -1 represents 

negative influence. The causal relationship between the nodes is represented as a connection matrix. Cognitive maps 

have a wide range of applications in diverse fields. Nakamura et al [2] used cognitive maps in decision support 

systems; Chaib-draa [3] developed multi agent system model using cognitive maps; Klein et al [4] developed 

Received: March 27, 2020         Accepted: July 05, 2020
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cognitive maps in decision makers and other broad spectrum of its applications in student modeling whilst 

knowledge management are discussed by Alejandro Pena [5]. One of the limitations of cognitive maps is modeling 

decision making in uncertain environment. The concept of fuzzy sets introduced by Zadeh [6] was integrated with 

cognitive maps by Kosko [7]. Fuzzy cognitive maps (FCM) introduced by Kosko [7], he handled the aspects of 

uncertainty and impreciseness. In FCM, the edge weights eij ∈ [-1,1] and the connection matrix has fuzzy values. 

The comprehensive nature of FCM has several applications such as but not limited to the pattern recognition see 

Papakostas et al [8],in the medicine see Abdollah et al [9], in large manufacturing system see Chrysostomos et al 

[10], in the field of decision making on farming scenarios see Asmaa Mourhir et al [11]. Atannsov [12] introduced 

intuitionistic fuzzy sets that deal with membership, non-membership and hesitancy values. Elpiniki 

Papageorgiou[13] extended FCM to Intuitionistic FCM models to apply in medical diagnosis and this gained 

momentum in the domain of FCM. IFCM are the extension of  FCM models , that are highly applied in diverse 

fields. The connection matrix of  iFCM models has intuitionistic values. Hajek et al [14-15] extended iFCM models 

into interval –valued IFCM for stock index forecasting and supplier selection. 

Smarandache [16] introduced neutrosophic sets that deal with truth, indeterminacy and falsity membership 

functions. Neutrosophic sets are applied in various domain of  the natural science. Mohamed Bisher Zeina [17] 

applied neutrosophic parameters in Erlang Service Queuing Model and developed neutrosophic event-based queuing 

model. Malath [18]studied the integration of neutrosophic thick function. Salma [19] developed online analytical 

processing operations via neutrosophic systems. Neutrosophy is also extended to explore new algebraic structures 

and concepts. Agboola [20] proposed the introduction of neutrogroups and neutrorings, Riad et al [21] constructed 

neutrosophic crisp semi separation axioms in neutrosophic crisp topological spaces. Necati Olgun [22] discussed 

refined neutrosophic R-module, Ibrahim [23] explored the concepts of n Refined Neutrosophic Vector Spaces. 

Mohammad Hamidi [24] discussed Neutro – BCK-algebra. Neutrosophic research is gaining momentum and it has 

wide spectrum of applications in decision making. Abdel-Baset [25] developed a novel neutrosophic approach in 

green supplier selection and a novel decision making approach was developed to diagnose heart diseases using 

neutrosophic sets. Interval – valued neutrosophic sets are also used in decision making. Neutrosophic cognitive 

maps (NCM) introduced by Vasantha Kandasamy [26] has incorporated the concept of indeterminacy into edge 

weights. NCMs are also applied to diverse decision making scenarios by many social researchers. NCMs are widely 

applied to analyze the causal relationship between the concepts of decision making problems. Nivetha et al [27] 

developed decagonal linguistic neutrosophic FCM to analyze the risk factors of lifestyle diseases. Nivetha et al [28] 

made a case study on the problems faced by entrepreneurs using NCM. 

      In NCM models, the influence of one factor over another is represented by either -1,0,1,I, where I represents 

indeterminacy. Let us consider a decision making problem comprising of five factors and the respective 5×5 

connection matrix has the values {-1,0,1,I}.  The initial state vector X, [X= (10000)] has first of the factors in ON 

position and other factors in off position. X is passed into connection matrix and the resulting vector Z , [ Z = 

(a1,a2,a3,a4,a5)] is updated using threshold operation by replacing ai by 1 if ai ≥ g and ai by 0 if ai < g, (g is an 

integer) and ai by I, if ai is not an integer. The process is repeated until two updated resultant vectors obtained are 
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same, which is called as the fixed point or limit cycle. The process ends when the fixed point is obtained. In this 

NCM procedure suppose the fixed point is ( 1 0 1 1 I), the inference is the first factor has positive influence on third 

and fourth factors, no impact on second factor and the fifth factor is indeterminant to it. The existence of 

indeterminacy in the connection matrix and the fixed point does not give us the complete picture of the decision 

making, but if indeterminacy is quantified then the decision making will be feasible. To make so, the approach of 

indeterminacy confinement is introduced in this research work. As the connection matrix is based on expert’s 

opinion, the indeterminacy can also be confined to (0,1] based on the expert’s opinion. Also in the instantaneous 

vector any of the factors are in ON position or combination of factors are in ON position say, X = (1 0 1 01) to see 

the combined effect of the factors. In this article  the factors are kept in indeterminate position and it is confined to 

give a numerical value. This is a new kind of approach in neutrosophic cognitive maps and the NCMs of this kind 

can be labeled as novel neutrosophic cognitive maps (NNCM).  

The NCM and NNCM can also be extended to plithogenic cognitive maps (PCM). Plithogenic sets 

introduced by Smarandache [29] are the generalization of crisp sets, fuzzy sets, intuitionistic fuzzy sets and 

neutrosophic sets. The membership values are mainly used to quantify the qualitative aspects. This principle of 

quantification of qualitative aspects is used as the underlying principle in the construction of plithogenic sets. The 

degree of appurtenance and the contradiction degree are the two distinctive aspects of plithogenic sets. The concept 

of plithogeny is extended to plithogenic hypersoft sets by Smarandache [30]. Plithogenic sets are widely used in 

decision making. Shazia Rana et al [31] extended plithogenic fuzzy hypersoft set to plithogenic fuzzy whole 

hypersoft set and developed plithogenic ranking model. Nivetha and Smarandache [32] developed concentric 

plithogenic hypergraphs. Smarandache [33] developed plithogenic n super hypergraph and a novel decision making 

approach is proposed by Smarandache and Nivetha [34]. Abdel - Baset [35] framed a hybrid plithogenic decision-

making approach with quality function deployment for selecting supply chain sustainability. The compatibility of 

the plithogenic sets motivated us to incorporate the concept of plithogeny to coginitve maps. 

This research work proposes the approach of integrating plithogeny to cognitive maps to develop PCM 

models as the extension of NNCM, NCM, IFCM and FCM. The PCM model follows the underlying methodology of 

FCM but it incorporates contradiction degree to the factors of the decision making problem. If any of the factors is 

in ON position, then it becomes the dominant factor and the contradiction degree of the dominant factor with respect 

to other factors is considered. The instantaneous vector is passed into connection matric and the resultant vector is 

obtained by applying plithogenic operators. The resultant vector is updated by using the conventional threshold 

function. PCM models are classified as cognitive maps if the connection matrix is crisp; fuzzy cognitive maps if the 

connection matrix has fuzzy values; intuitionistic fuzzy cognitive maps if the connection matrix has intuitionistic 

values and neutrosophic cognitive maps if the connection matrix has neutrosophic values. Thus the proposed PCM 

models are the generalization of the earlier forms of FCM models. The incorporation of the contradiction degrees 

will certainly give us new insights in decision making. 
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 The paper is organized as follows: section 2 presents the outlook of PCM; section 3 consists of the 

methodology of PCM; section 4 comprises of application of PCM in decision making; section 5 discusses the results 

and concludes the work. 

 

2. Plithogenic Cognitive Maps  

A plithogenic cognitive map is a directed graph consisting of nodes and edges representing the concepts and its 

causal relationship respectively . The contradiction degree of the nodes with respect to the dominant node is 

determining the fixed point. 

 

 Let P1, P2,..Pn denotes n nodes of PCM. The directed edge from Pi to Pj represents the association between 

the two nodes and the edge weights illustrate the intensity of the association between the nodes. If the edge weight 

eij ∈ {-1,0,1} then it is plithogenic crisp cognitive maps; if eij ∈ [-1,1] then it is plithogenic fuzzy cognitive maps; if 

eij ∈  ρ([0,1]2) then it is plithogenic intuitionistic cognitive maps , if eij ∈  ρ([0,1]3) then it is plithogenic neutrosophic 

cognitive maps. Plithogenic connection matrix or adjacency matrix P(E) = (eij ) represents the relation between the 

nodes. An instantaneous state vector in PCM of the form A = (a1, a2,..an) represents the ON-OFF-indeterminate 

position of the node at an instant of time. If ai = 1 refer to (ON state); ai = 0 refer to (OFF state) and ai = I means 

(Indeterminate state).  In PCM, the indeterminate state I is confined to a value belonging to (0,1], which is the 

extension of NCM. 

 

Let P1,P2,P3 be three nodes of PCM. Let P1 be in ON position and P2, P3 be in off state, then the node P1 

is considered to be dominant. The contradiction degrees of other nodes with respect to dominant node are 

P1 P2 P3 

0 1/3 2/3 

 

The contradiction degree represents the extent of distinctiveness between the two concepts .The value 1/3 and 2/3 is 

assigned to P2 or P3 based on the perception of decision makers who have choosen the factors of PCM. 

 The instantaneous vector X = (1 0 0) is passed into P(E) and the vector which is obtained by applying 

plithogenic operators is Y. The assumed threshold operation is applied to Y and the resultant vector G is obtained. 

The recurrence of passing the resultant vector G to P(E) if results in repetition of resultant vectors then the limit 

cycle of the PCM is obtained and the resultant vector is called as fixed point. 

 

3. Methodology of Plithogenic Cognitive Maps 

This section presents the algorithm of obtaining the limit cycle of PCM. 

 

Step 1: The factors P1, P2,..Pn or the concepts of the decision making problem are decided based on the  

            expert’s opinion. 
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Step 2: The plithogenic connection matrix P(E) of dimension n (the number of concepts)  is obtained from the causal    

             relationship between the concepts. 

Step 3: The edge weight eij may belong to {1,0,1}, [-1,1], ρ([0,1]2), ρ([0,1]3). The nature of the edge weights 

determines the type of plithogenic cognitive maps. 

 

Step 4: To determine the effect of one concept say P1, is kept in ON position and the  

            contradiction degree with respect to other concepts are determined.  

Step 5: The instantaneous state vector  X = (1 0 0 0 0 …0) is passed into connection matrix and by applying the  

plithogenic operators, a resultant vector is obtained, and updated by applying the threshold operation by 

assigning 1 to the values (ai) greater than k, 0 to the values (ai) lesser than k, where k - a is a suitable 

positive integer. In this proposed approach the on position of the concepts is threshold with 1 and the 

indeterminate position of the concepts will be confined with the value C. The value 0 is assigned to the 

values lesser than 1 and the value 1 is assigned to the values greater than 1. 

The plithogenic operators are defined as  

b]Fc.[ab]F[ac).(1bpa  , where c represents contradiction degree, ba F is the tnorm 

defined by ab and ba F is the tconorm defined by a + b  - ab 

 The plithogenic new neutrosophic operators are defined as 

   33222211 ,)()(
2
1, bababababa ppppp  , 

where � = ���,��,��		and	� = (��,��,��), ].[][).1( bpacbpacbpa   

Step 6 : The updated vector is passed into P(E) and the process is repeated until the fixed point is arrived. The fixed 

point is the limit cycle of PCM.  

 

4. Application of Plithogenic Cognitive Maps in Decision Making 

 This section presents the application of plithogenic cognitive maps in decision making. Let us consider a 

decision making environment where the expert’s opinion is constructed  to promote the farming sectors to a 

progressive phase with their suggestive strategies. The following proposed strategies of the experts are taken as the 

nodes of the PCM. 

P1 Encouraging the reverse migration by helping the socially mobilized groups with credit  

     flow. 

P2 Supporting vulnerable farming areas with community driven approach 

P3 Promoting Farmer’s Productive Organizations as transformative agents 

P4 Perpetuating gender equalities to create new opportunities for women 

P5 Effective use of modern ICT to connect farmers with extension, market and continuous learning 
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The causal association between the concepts is represented as linguistic variables and it is quantified by  triangular 

fuzzy numbers and the kind of PCM is plithogenic fuzzy cognitive map which is used to determine the fixed point of 

the dynamical system. 

The plithogenic fuzzy connection matrix with linguistic variables is presented as below 

 

 P1 P2 P3 P4 P5 

P1 0 M M L L 

P2 L 0 H M L 

P3 H H 0 M H 

P4 M M L 0 M 

P5 H H VH M 0 

The linguistic variables are quantified by using triangular fuzzy numbers as in Table 4.1 

Table 4.1 Quantification of Linguistic variable 
Linguistic Variable Triangle Fuzzy Number Crisp value 

Very Low (0,0.1,0.2) 0.1 

Low (0.2,0.3,0.4) 0.3 

Medium (0.4,0.5,0.6) 0.5 

High (0.6,0.7,0.8) 0.7 

Very High (0.8,0.9,1) 0.9 

 

The modified plithogenic fuzzy connection matrix P(E) is  

 P1 P2 P3 P4 P5 

P1 0 0.5 0.5 0.3 0.3 

P2 0.3 0 0.7 0.5 0.3 

P3 0.7 0.7 0 0.5 0.7 

P4 0.5 0.5 0.3 0 0.5 

P5 0.7 0.7 0.9 0.5 0 

 

The graphical representation of the causal association between the concepts are represented in Fig.4.1 
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Fig.4.1 Graphical representation of the causal relationship 

Case (i) Conventional FCM [7] 

Let us consider the conventional approach of FCM without the incorporation of contradiction degree. Let X = ( 1 0 0 

0 0) 

X* P(E) =  ( 0  0.5  0.5  0.3  0.3) → (	1	0.5		0.5		0.3		0.3) 	= �1							 
X1 * P(E) =  (1.65   2   2.14   1.6   1.25) →  (1 1 1 1 1)  = X2 

X2* P(E) = (2.2  2.4  2.4  1.8  1.8) → ((1 1 1 1 1)  = X3 

X2 = X3 ------------------------------ (1) 

Case (ii) Plithogenic Fuzzy FCM with ON/OFF state of vectors 

Let us consider the concept P1 to be in ON position and other factors in off position. The contradiction 

degrees of the dominant node with respect to other nodes are 

P1 P2 P3 P4 P5 

0 1/5 2/5 3/5 4/5 

 

Let us consider the instantaneous state vector as X = (1 0 0 0 0) 

X *p P(E) =  Y , where Y = ( a b c d e) 

 

a = Max [1  p 0 , 0  p 0.3 , 0  p 0.7, 0  p 0.5, 0  p 0.7] 

b = Max [1  p 0.5 , 0  p 0 , 0  p 0.7, 0  p 0.5, 0  p 0.7] 

c = Max [1  p 0.5 , 0  p 0.7 , 0  p 0, 0  p 0.3, 0  p 0.9] 

d= Max [1  p 0.3 , 0  p 0.5 , 0  p 0.5, 0  p 0, 0  p 0.5] 

e= Max [1  p 0.3 , 0  p 0.3 , 0  p 0.7, 0  p 0.5, 0  p 0] 

 

X*p P(E) = ( 0 0.6 0.7 0.72 0.94) → ( 1 0.6 0.7 0.72 0.94) = X1 

X1 *p P(E) = (0.602  0.6732  0.8588  0.73  0.86) → (1 0.67 0.86 0.73 0.86) = X2 
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X2 *p P(E) = (0.602  0.6732  0.8588  0.73  0.8868) → (1 0.67  0.86  0.73  0.89) = X3 

X3 *p P(E) = (0.623  0.6918  0.8762  0.745  0.8868) → (1 0.69 0.88  0.75  0.89) = X4 

X4 *p P(E)  = (0.623   0.6918  0.8762  0.745  0.8944) →  (1 0.69 0.88 0.75 0.89) = X5 

 

X4 = X5 ----------------------- (2) 

Case (iii) Plithogenic Fuzzy FCM with ON/OFF and confined indeterminate IC state of vectors 

Let us consider the concept P1 to be in ON position, P2 be in indeterminate state and other factors in off 

position. The indeterminate state of the vector here reflects the impact on the concept P2.The contradiction degrees 

of the dominant node with respect to other nodes are considered as the same. 

Let us consider the instantaneous state vector as X = (1 IC 0 0 0), C = 0.25, the value of indeterminacy is 0.25. i.e X 

= (1 0.25 0 0 0) 

X *p P(E) = ( 0.075  0.6  0.7  0.72  0.86) → ( 1 0.25 0.7 0.72 0.86) = X1 

X1*p P(E) = (0.602  0.6732  0.8588  0.73  0.86)	→  (1 0.25 0.86  0.73  0.86) = X2 

X2*p P(E) = (0.602  0.673  0.859  0.73  0.887) → (1 0.25  0.86  0.73  0.89) = X3 

X3*p P(E) = (0.623  0.6918  0.8762  0.745  0.8868) → (1 0.25 0.88 0.75 0.89) = X4 

X4 *p P(E) = (0.623 0.6918  0.8762  0.745  0.8944) → (1 0.25 0.88 0.75  0.89) = X5 

X4 = X5 ----------------------- (3) 

Let X = (1 IC 0 0 0), C = 0.5, the value of indeterminacy is 0.5. i.e X = (1 0.5 0 0 0) 

The fixed point is (1 0.25 0.88 0.75 0.89) ------------ (4) 

Let X = (1 IC 0 0 0), C = 0.75, the value of indeterminacy is 0.5. i.e X = (1 0.5 0 0 0) 

The fixed point is (1 0.75 0.88 0.75 0.89) ------------ (5) 

Let X = (1 IC 0 0 0), C = 0.95, the value of indeterminacy is 0.5. i.e X = (1 0.5 0 0 0) 

The fixed point is (1 0.75 0.86 0.78 0.86) ------------ (6) 

Eq. (1) states that the concept P1 has influence on the other concepts, but Eq. (2) states the extent of influence of the 

concept P1 on other concepts which is the added advantage of using contradiction degree. The confined 

indeterminate state for various values of c results in different fixed points. The confinement of indeterminacy to the 

values C= 0.25, 0.5,0.75 have same impact on other factors and also it produce the same effect as P2 concept in OFF 

state, but as the value of indeterminacy is enhanced , slight variation in the impact are found in Eq. (6). This shows 

that the OFF state and the indeterminate state of concept P2, when the concept P1 being in ON position produce no 

much difference. 

Case (iv). Plithogenic Neutrosophic FCM with new neutrosophic state. 

The new neutrosophic instantaneous state vector is of the form ((TP1, IP1, FP1), 0, 0, 0, 0), where the truth 

(TP1), indeterminacy (IP1) and falsity (FP1) of the concept P1 to be in ON position is expressed. This representation of 

the ON position of the vector is highly a pragmatic representation. If IP1 and FP1 are zero then the concept P1 is 

highly certain to be in ON position. The indeterminate and off state of the concept P1 can be expressed by keeping 

the values of IP1 and FP1 to 1 and keeping the other respective set of value to be zero. 
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The new neutrosophic state vector (XN) when the On state of the concept P1 is considered.((1,0,0) (0,1,1) 

(0,1,1) (0,1,1) (0,1,1)).The plithogenic neutrosophic matrix PN(E) is  

 

 P1 P2 P3 P4 P5 

P1 (0,1,1) (0.6,0.3,0.4) (0.6,0.3,0.4) (0.3,0.4,0.7) (0.3,0.4,0.7) 

P2 (0.3,0.4,0.7) (0,1,1) (0.7,0.2,0.2) (0.6,0.3,0.4) (0.3,0.4,0.7) 

P3 (0.7,0.2,0.2) (0.7,0.2,0.2) (0,1,1) (0.6,0.3,0.4) (0.7,0.2,0.2) 

P4 (0.6,0.3,0.4) (0.6,0.3,0.4) (0.3,0.4,0.7) (0,1,1) (0.6,0.3,0.4) 

P5 (0.7,0.2,0.2) (0.7,0.2,0.2) (0.9,0.1,0.1) (0.6,0.3,0.4) (0,1,1) 

 

  

The plithogenic representation of the causal relationship between the concepts is presented in Fig.4.2. The positive 

sign indicates the positive impacts of the concepts, and it is represented as neutrosophic values in PN(E). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.2 Representation of Plithogenic association between the concepts 

 

The plithogenic operators are used to obtain the resultant vector. 

 

Let XN = ((1,0,0), (0,1,1), (0,1,1), (0,1,1), (0,1,1)) 

XN*p PN (E) = ((0, 0 ,0) (0.68,0.19,0),(0.76,0.18,0) (0.72,0.26,0) (0.86,0.23,0))	 →  ((1, 0 ,0) (0.68,0.19,0),(0.76,0.18,0) (0.72,0.26,0) (0.86,0.23,0)) = XN1 
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XN1*p PN (E) = ((0.602, 0.118,0) (0.68,0.1288,0.1088) (0.76,0.1396,0.1632) (0.84,0.1504,0.1632) (0.92 0.16 

0.1088)) → ((1, 0 ,0) (0.68,0.1288,0.1088) (0.76,0.1396,0.1632) (0.84,0.1504,0.1632) (0.92 0.16 0.1088)) = XN2 

XN2*p PN (E) = ((0.644 0.15952 0) (0.7104 0.162592 0.1088) (0.7768, 0.165664 0.1632) (0.8432  0.168736 0.1632) 

(0.92  0.171808 0.1088)) →((1, 0 ,0) (0.7104 0.162592 0.1088) (0.7768, 0.165664 0.1632) (0.8432  0.168736 

0.1632) (0.92  0.171808 0.1088)) = XN3 

XN3*p PN (E) = ((0.644 0.1607008  0) (0.7104  0.16448128  0.113664) (0.7768  0.16826176  0.113664 ) (0.7768  

0.16826176  0.170496) (0.8432   0.17204224  0.170496)  (0.92  0.17582272  0.113664)) → ((1, 0 ,0) (0.710  0.164  

0.114) (0.777  0.168 0.114) (0.777 0.168 0.170) (0.843  0.172 0.170) (0.92 0.176 0.114)) = XN4 

By repeating in the same fashion,  

XN5 = ((1, 0 ,0) (0.71, 0.167,0.114) (0.777, 0.171, 0.17) (0.843, 0.174, 0.17) (0.91 ,0.178, 0.114) 

XN6 = ((1, 0 ,0) (0.71, 0.167,0.114) (0.777, 0.171 ,0.17) (0.843, 0.174, 0.17) (0.91, 0.178 ,0.114) 

 XN5 = XN6 

Thus the neutrosophic impact of the concept P1 on other factors is determined. The various kinds of plithogenic 

cognitive maps are discussed in different cases and in each case, the impact of the concept P1 over the other 

concepts is determined. In section 4 various cases are discussed and the differences between cognitive maps (CM), 

fuzzy cognitive maps (FCM), intuitionistic cognitive maps(IFCM) , neutrosophic cognitive maps(NCM) and 

plithogenic cognitive maps (PCM) based on edge weights (eij) are presented in Table 4.2. 

                                       Table 4.2. Differences beteween CM, FCM, IFCM,NCM and PCM 

Cognitive Maps  eij ∈ {-1,0,1} with no contradiction degree 

between the concepts 

Fuzzy cognitive maps eij ∈ [-1,1] with no contradiction degree between 

the concepts 

Intuitionistic cognitive maps eij =  ( μ, ν)where μ, the membership value and ν , 

the non-membership value with no contradiction 

degree between the concepts 

Neutrosophic Cognitive Maps eij ∈ {-1,0,1, I} with no contradiction degree 

between the concepts 

Plithogenic Cognitive Maps eij ∈ {-1,0,1} or eij ∈ [-1,1] or eij ∈  ρ([0,1]2) or eij ∈  

ρ([0,1]3) with contradiction degree between the 

concepts 

 

5. Conclusion 

  

This research work proposes the concept of plithogenic cognitive maps and new neutrosophic maps. The 

integration of contradiction degree with the plithogenic operators is applied to determine the resultant vector. 

Several kinds of plithogenic cognitive maps are discussed in this article and it is validated with applications in 

decision making. The proposed plithogenic cognitive maps can be applied in decision making scenario. The state of 
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indeterminacy of the concept is quantified by various confinement values which will certainly assist in making 

optimal decisions. Plithogenic cognitive maps can be also developed to various representations based on the 

characterisation of the decision making environment. PCM decision making models can be extended to interval-

valued plithogenic cognitive maps and also it can be integrated to multi criteria decision making. The association 

between the concepts of decision making can be represented in terms of plithogenic hypersoft set. Plithogenic 

hypergraph can also be integrated with plithogenic cognitive maps to formulate novel and feasible decision making 

models.  
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Abstract

The concept of refined neutrosophic vector spaces was introduced by Ibrahim et al. in [20] and the present

paper is the continuation of the work. In the present paper, further studies on neutrosophic vector spaces are

presented. Specifically, linear dependence, independence, bases and dimensions of refined neutrosophic vector

spaces are studied with several results and examples presented. Also, refined neutrosophic homomorphisms of

refined neutrosophic vector spaces are studied and existence of linear maps between weak refined neutrosophic

vector spaces and weak neutrosophic vector spaces are established.

Keywords: Neutrosophy, neutrosophic vector space, refined neutrosophic vector space, refined neutrosophic

vector space homomorphism.

1 Introduction and Preliminaries

Neutrosophy is a new branch of philosophy introduced by Florentin Smarandache in 1995. Neutrosophic

logic/set introduced by Smarandache in [28] is an extension of fuzzy logic/set introduced by Zadeh [38] and

intuitionistic fuzzy logic/set introduced by Atanassov [13]. In neutrosophic logic/set, each proposition is char-

acterized by the degree of truth in the set (T ), degree if indeterminacy in the set (I) and the degree of falsehood

in the set (F ) where (T, I, F ) are not necessarily intervals, but may be any real sub-unitary subsets: discrete

or continuous; single-element, finite, or (countable or uncountable) infinite; union or intersection of various

subsets; etc. Neutrosophic logic/set has many applications in mathematics, computer science, engineering,

technology, decision making, medical diagnosis, social sciences and many other fields. For full details, the

reader should see [19, 23–27], [14–18], [31]-[33], [35]-[37].

Smarandache recently introduced the concept of refined neutrosophic logic/set in [29] where it was shown

that the neutrosophic components (T, I, F ) can be split into refined neutrosophic components of the form

< T1, T2, · · · , Tp; I1, I2, ·, Ir;F1, F2, · · · , Fs > with applications in physics and other sciences and mathe-

matics. In [30], Smarandache presented (T, I, F ) structures and this motivated Agboola to introduce the con-

cept of refined neutrosophic algebraic structures in8 where he studied refined neutrosophic groups. Since the

introduction of refined neutrosophic algebraic structures, many researchers have further studied the concepts

and several results have been published as can be found in [1–7, 9–11, 21].

The concept of a neutrosophic vector space V (I) generated by a vector space V and indeterminacy factor

I was introduced by Vasantha Kandasamy and Florentin Smarandache in [31]. Since then, several researchers

have studied the concept and a great deal of literature have been published. Recently, Agboola and Akinleye

in [12] studied classical vector spaces in a neutrosophic environment and they showed that every neutrosophic

vector space over a neutrosophic field (resp. field) is a vector space. In [34], Vasantha Kandasamy, et al.

introduced for the first time the concept of neutrosophic quadruple vector spaces over the classical fields R,C
and Zp and they presented several interesting results. Further studies on neutrosophic quadruple vector spaces

were carried out in [22] by Ibrahim et al. where several results and examples were presented. The notion

of refined neutrosophic vector spaces and their properties was introduces by Ibrahim et al. in [20]. They

studied Weak(strong) refined neutrosophic vector spaces and subspaces, and also, they studied strong refined
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neutrosophic quotient vector spaces. Several interesting results and examples were presented. It was shown

that every weak (strong) refined neutrosophic vector space is a vector space and it was equally shown that every

strong refined neutrosophic vector space is a weak refined neutrosophic vector space. In the present paper

however, further studies on refined neutrosophic vector spaces are presented. Specifically, linear dependence,

independence, bases and dimensions of refined neutrosophic vector spaces are studied and several results

and examples are presented. Refined neutrosophic homomorphisms of refined vector spaces are studied and

existence of linear maps between weak refined neutrosophic vector spaces V (I1, I2) and weak neutrosophic

vector spaces V (I) are established.

For the purposes of this paper, it will be assumed that I splits into two indeterminacies I1 [contradiction

(true (T ) and false (F ))] and I2 [ignorance (true (T ) or false (F ))]. It then follows logically that:

I1I1 = I21 = I1,
I2I2 = I22 = I2, and

I1I2 = I2I1 = I1.

Definition 1.1. 8 If ∗ : X(I1, I2) × X(I1, I2) 7→ X(I1, I2) is a binary operation defined on X(I1, I2), then

the couple (X(I1, I2), ∗) is called a refined neutrosophic algebraic structure and it is named according to the

laws (axioms) satisfied by ∗.

Definition 1.2. 8 Let (X(I1, I2),+, .) be any refined neutrosophic algebraic structure where + and . are ordi-

nary addition and multiplication respectively.

For any two elements (a, bI1, cI2), (d, eI1, fI2) ∈ X(I1, I2), we define

(a, bI1, cI2) + (d, eI1, fI2) = (a+ d, (b+ e)I1, (c+ f)I2),

(a, bI1, cI2).(d, eI1, fI2) = (ad, (ae+ bd+ be+ bf + ce)I1, (af + cd+ cf)I2).

Definition 1.3. 8 If ′′+′′ and ′′·′′ are ordinary addition and multiplication, Ik with k = 1, 2 have the following

properties:

1. Ik + Ik + · · ·+ Ik = nIk.

2. Ik + (−Ik) = 0.

3. Ik · Ik · · · · Ik = Ink = Ik for all positive integers n > 1.

4. 0 · Ik = 0.

5. I−1

k is undefined and therefore does not exist.

Definition 1.4. 8 Let (G, ∗) be any group. The couple (G(I1, I2), ∗) is called a refined neutrosophic group

generated by G, I1 and I2. (G(I1, I2), ∗) is said to be commutative if for all x, y ∈ G(I1, I2), we have

x ∗ y = y ∗ x. Otherwise, we call (G(I1, I2), ∗) a non -commutative refined neutrosophic group.

Definition 1.5. 8 If (X(I1, I2), ∗) and (Y (I1, I2), ∗
′) are two refined neutrosophic algebraic structures, the

mapping

φ : (X(I1, I2), ∗) −→ (Y (I1, I2), ∗
′)

is called a neutrosophic homomorphism if the following conditions hold:

1. φ((a, bI1, cI2) ∗ (d, eI1, fI2)) = φ((a, bI1, cI2)) ∗
′ φ((d, eI1, fI2)).

2. φ(Ik) = Ik for all (a, bI1, cI2), (d, eI1, fI2) ∈ X(I1, I2) and k = 1, 2.

Example 1.6. 8 Let

Z2(I1, I2) = {(0, 0, 0), (1, 0, 0), (0, I1, 0), (0, 0, I2), (0, I1, I2), (1, I1, 0), (1, 0, I2), (1, I1, I2)}.

Then (Z2(I1, I2),+) is a commutative refined neutrosophic group of integers modulo 2.

Generally for a positive integer n ≥ 2, (Zn(I1, I2),+) is a finite commutative refined neutrosophic group of

integers modulo n.

Example 1.7. 8 Let (G(I1, I2), ∗) and and (H(I1, I2), ∗
′) be two refined neutrosophic groups.

Let φ : G(I1, I2)×H(I1, I2) → G(I1, I2) be a mapping defined by φ(x, y) = x and let

ψ : G(I1, I2) × H(I1, I2) → H(I1, I2) be a mapping defined by ψ(x, y) = y. Then φ and ψ are refined

neutrosophic group homomorphisms.
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Definition 1.8. 4 Let (R,+, .) be any ring. The abstract system (R(I1, I2),+, .) is called a refined neutro-

sophic ring generated by R, I1, I2. (R(I1, I2),+, .) is called a commutative refined neutrosophic ring if

for all x, y ∈ R(I1, I2), we have xy = yx. If there exists an element e = (1, 0, 0) ∈ R(I1, I2) such that

ex = xe = x for all x ∈ R(I1, I2), then we say that (R(I1, I2),+, .) is a refined neutrosophic ring with unity.

Definition 1.9. 4 Let (R(I1, I2),+, .) be a refined neutrosophic ring and let n ∈ Z+.

(i) If nx = 0 for all x ∈ R(I1, I2), we call (R(I1, I2),+, .) a refined neutrosophic ring of characteristic n
and n is called the characteristic of (R(I1, I2),+, .).

(ii) (R(I1, I2),+, .) is call a refined neutrosophic ring of characteristic zero if for all x ∈ R(I1, I2), nx = 0
is possible only if n = 0.

Example 1.10. 4

(i) Z(I1, I2),Q(I1, I2),R(I1, I2),C(I1, I2) are commutative refined neutrosophic rings with unity of char-

acteristics zero.

(ii) Let Z2(I1, I2) = {(0, 0, 0), (1, 0, 0), (0, I1, 0), (0, 0, I2), (0, I1, I2), (1, I1, 0), (1, 0, I2), (1, I1, I2)}.

Then (Z2(I1, I2),+, .) is a commutative refined neutrosophic ring of integers modulo 2 of charac-

teristic 2. Generally for a positive integer n ≥ 2, (Zn(I1, I2),+, .) is a finite commutative refined

neutrosophic ring of integers modulo n of characteristic n.

Example 1.11. 4 Let MR

n×n(I1, I2) =





























a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...

an1 an2 · · · ann











: aij ∈ R(I1, I2)



















be a refined neutrosophic set of all n × n matrix. Then (MR

n×n(I1, I2),+, .) is a non-commutative refined

neutrosophic ring under matrix multiplication.

Theorem 1.12. 4 Let (R(I1, I2),+, .) be any refined neutrosophic ring. Then (R(I1, I2),+, .) is a ring.

2 Linear dependence, independence, bases and dimensions of a refined

neutrosophic vector space

Definition 2.1. Let (V,+, .) be any vector space over a field K. Let V (I1, I2) =< V ∪ (I1, I2) > be a refined

neutrosophic set generated by V , I1 and I2. We call the triple (V (I1, I2),+, .) a weak refined neutrosophic

vector space over a field K, if V (I1, I2) is a refined neutrosophic vector space over a refined neutrosophic field

K(I1, I2), then V (I1, I2) is called a strong refined neutrosophic vector space.

The elements of V (I1I2) are called refined neutrosophic vectors and the elements of K(I1, I2) are called

refined neutrosophic scalars.

If u = a + bI1 + cI2, v = d + eI1 + fI2 ∈ V (I1, I2) where a, b, c, d, e and f are vectors in V and

α = k +mI1 + nI2 ∈ K(I1, I2) where k,m and n are scalars in K, we define:

u+ v = (a+ bI1 + cI2) + (d+ eI1 + fI2) = (a+ d) + (b+ e)I1 + (c+ f)I2,

and

αu = (k +mI1 + nI2).(a+ bI1 + cI2) = k.a+ (k.b+m.a+m.b+m.c+ n.b)I1 + (k.c+ n.a+ n.c)I2.

Definition 2.2. Let V (I1, I2) be a strong refined neutrosophic vector space over a refined neutrosophic field

K(I1, I2) and let v1, v2, ·, vn ∈ V (I1, I2).

1. An element v ∈ V (I1, I2) is said to be a linear combination of the v′is if

v = α1v1 + α2v2 + · · ·+ αnvn,where αi ∈ K(I1, I2).
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2. v′is are said to be linearly independent if

α1v1 + α2v2 + · · ·+ αnvn = 0

implies that α1 = α2 = · · · = αn = 0.
In this case, the set {v1, v2, · · · , vn} is called a linearly independent set.

3. v′is are said to be linearly dependent if

α1v1 + α2v2 + · · ·+ αnvn = 0

implies that not all αi are equal to zero.

In this case, the set {v1, v2, · · · , vn} is called a linearly dependent set.

Definition 2.3. Let V (I1, I2) be a weak refined neutrosophic vector space over a field K and let

v1, v2, · · · , vn ∈ V (I1, I2).

1. An element v ∈ V (I1, I2) is said to be a linear combination of the v′is if

v = k1v1 + k2v2 + · · ·+ knvn,where ki ∈ K.

2. v′is are said to be linearly independent if

k1v1 + k2v2 + · · ·+ knvn = 0

implies that k1 = k2 = · · · = kn = 0.
In this case, the set {v1, v2, · · · , vn}. is called a linearly independent set.

3. v′is are said to be linearly dependent if

k1v1 + k2v2 + · · ·+ knvn = 0.

implies that not all ki are equal to zero.

In this case, the set {v1, v2, · · · , vn} is called a linearly dependent set.

Example 2.4. Let V (I1, I2) = R(I1, I2) be a weak refined neutrosophic vector space over a field K = R.
An element v = 8 + 19I1 + 18I2 ∈ V (I1, I2) is a linear combination of the elements v1 = 2 + 5I1 + 4I2,
v2 = 1 + 2I1 + 3I2 ∈ V (I1, I2), since 8 + 19I1 + 18I2 = 3(2 + 5I1 + 4I2) + 2(1 + 2I1 + 3I2).

Example 2.5. Let V (I1, I2) = R(I1, I2) be a weak refined neutrosophic vector space over a field K = R.
An element v = 3 + 15I1 + 7I2 ∈ V (I1, I2) is a linear combination of the elements v1 = 2 + 5I1 + 3I2,
v2 = 1 + I1 + I2 ∈ V (I1, I2), since 3 + 15I1 + 7I2 = 4(2 + 5I1 + 3I2)− 5(1 + I1 + I2).

Example 2.6. Let V (I1, I2) = R(I1, I2) be a strong refined neutrosophic vector space over a refined neutro-

sophic field K(I1, I2) = R(I1, I2). An element v = 8 + 19I1 + 18I2 ∈ V (I1, I2) is a linear combination of

the elements v1 = 1 + 2I1 + 3I2, v2 = 2 + 5I1 + 4I2 ∈ V (I1, I2), since

8 + 19I1 + 18I2 = (2 + 5I1 + 6I2)(1 + 2I1 + 3I2) + (3− 2I1 − 4I2)(2 + 5I1 + 4I2)
= (2 + 8I1 + 3I2)(1 + 2I1 + 3I2) + (3− 4I1 − 2I2)(2 + 5I1 + 4I2)
= (4 + 11I1 − 2I2)(1 + 2I1 + 3I2) + (2− 6I1 + I2)(2 + 5I1 + 4I2)
= (4 + 8I1 + I2)(1 + 2I1 + 3I2) + (2− 4I1 − I2)(2 + 5I1 + 4I2).

Here (2 + 5I1 + 6I2), (3− 2I1 − 4I2), (2 + 8I1 + 3I2), (3− 4I1 − 2I2), (4 + 11I1 − 2I2),
(2− 6I1 + I2), (4 + 8I1 + I2), (2− 4I1 − I2) ∈ K(I1, I2).

This example shows that the element v = 8+19I1+18I2 can be infinitely expressed as a linear combination

of the elements v1 = 1+ 2I1 +3I2, v2 = 2+ 5I1 +4I2 ∈ V (I1, I2). This observation is recorded in the next

proposition.

Proposition 2.7. Let V (I1, I2) be a strong refined neutrosophic vector space over a neutrosophic fieldK(I1, I2)
and let v1, v2, · · · , vn ∈ V (I1, I2). An element v ∈ V (I1, I2) can be infinitely expressed as a linear combina-

tion of the vis.
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Proof: Suppose that v = α1v1 + α2v2 + · · · + αnvn where v = a + bI1 + cI2, v1 = a1 + b1I1 + c1I2,
v2 = a2+b2I1+cI2, · · · , vn = an+bnI1+cIn and α1 = k1+m1I1+tI2, α2 = k2+m2I1+tI2, · · · , αn =
kn +mnI1 + tI2 ∈ K(I1, I2).
Then

a + bI1 + cI2 = (k1 +m1I1 + t1I2)(a1 + b1I1 + c1I2) + (k2 +m2I1 + t2I2)(a2 + b2I1 + c2I2) + · · · +
(kn +mnI1 + tnI2)(an + bnI1 + cnI2)
from which we obtain

a1k1 + a2k2 + · · ·+ ankn = a,
b1k1+ a1m1+ b1m1+ c1m1+ b1t1+ b2k2+ a2m2+ b2m2+ c2m2+ b2t2+ · · ·+ bnkn+ anmn+ bnmn+
cnmn + bntn = b,
c1k1 + a1t1 + c1t1 + c2k2 + a2t2 + c2t2 + · · ·+ cnkn + antn + cntn = c.

This is a linear system in unknowns ki,mi, ti i = 1, 2, · · · , n.
Since the system is consistent and have infinitely many solutions, it follows that the vis can be infinitely

combined to produce v.

But if V (I1, I2) and K(I1, I2) are finite the vis will be finitely combined to produce v.

Proposition 2.8. Let V (I1, I2) be a strong refined neutrosophic vector space over a refined neutrosophic field

K(I1, I2) and let U [I1, I2] and W [I1, I2] be subsets of V [I1, I2] such that U [I1, I2] ⊆ W [I1, I2]. If U [I1, I2]
is linearly dependent, then W [I1, I2] is linearly dependent.

Proposition 2.9. Let V (I1, I2) be a strong refined neutrosophic vector space over a refined neutrosophic field

K(I1, I2) and let U [I1, I2] and W [I1, I2] be subsets of V [I1, I2] such that U [I1, I2] ⊆W [I1, I2]. If W [I1, I2]
is linearly independent, then U [I1, I2] is linearly independent.

Proof : LetW [I1, I2] = {v1 = (a1+b1I1+c1I2), v2 = (a2+b2I1+c2I2), · · · , vn = (an+bnI1+cnI2)},

be a linearly independent set. Let, if possible,

U [I1, I2] = {v1 = (a1 + b1I1 + c1I2), v2 = (a2 + b2I1 + c2I2), · · · , vz = (az + bzI1 + czI2)}, z < n, be a

linearly dependent subset of {v1 = (a1+b1I1+c1I2), v2 = (a2+b2I1+c2I2), · · · , vn = (an+bnI1+cnI2)}.

Then there exist some scalars (k1 +m1I1 + t1I2), (k2 +m2I1 + t2I2), · · · (kz +mzI1 + tzI2) ∈ K(I1, I2),
not all zero, such that

(k1 +m1I1 + t1I2)(a1 + b1I1 + c1I2) + (k2 +m2I1 + t2I2)(a2 + b2I1 + c2I2) + · · ·+
(kz +mzI1 + tzI2)(az + bzI1 + czI2) = 0.

=⇒ (k1 +m1I1 + t1I2)(a1 + b1I1 + c1I2) + (k2 +m2I1 + t2I2)(a2 + b2I1 + c2I2) + · · ·+
(kz +mzI1 + tzI2)(az + bzI1 + czI2) + (0z+1 + 0z+1I1 + 0z+1I2)(az+1 + bz+1I1 + cz+1I2) +
(0z+2 + 0z+2I1 + 0z+2I2)(az+2 + bz+2I1 + cz+2I2) + · · ·+ (0n + 0nI1 + 0nI2)(an + bnI1 + cnI2) = 0.

The scalars (k1,m1I1, t1I2), (k2,m2I1, t2I2), · · · , (kz,mzI1, tzI2), (0z+1 + 0z+1I1 + 0z+1I2),
(0z+2 + 0z+2I1 + 0z+2I2), · · · , (0n + 0nI1 + 0nI2) are not all zero.

Thus, the vectors v1 = (a1+ b1I1+ c1I2), v2 = (a2+ b2I1+ c2I2), · · · , vn = (an+ bnI1+ cnI2) are linearly

dependent. This contradiction the assumption that the vectors

v1 = (a1 + b1I1 + c1I2), v2 = (a2 + b2I1 + c2I2), · · · , vn = (an + bnI1 + cnI2) are linearly independent.

Hence, the set {v1 = (a1+ b1I1+ c1I2), v2 = (a2+ b2I1+ c2I2), · · · , vz = (an+ bzI1+ czI2)} is a linearly

independent set.

Proposition 2.10. Let V (I1, I2) be a weak refined neutrosophic vector space over a field K. The set

W (I1, I2) = {v1, v2, · · · vn} ⊆ V (I1, I2) is linearly dependent, if and only if at least one vector vi is a linear

combination of the other vectors .

Proof : The proof is similar to the proof in classical case.

Proposition 2.11. Let V (I1, I2) be a strong refined neutrosophic vector space over a neutrosophic field

K(I1, I2) and let v1 = k1 + k1I1 + k1I2, v2 = k2 + k2I1 + k2I2, · · · , vn = kn + knI1 + knI2 be ele-

ments of V (I1, I2) where 0 6= ki ∈ K. Then {v1, v2, · · · , vn} is a linearly dependent set.

Proof :

Let α1 = p1 + q1I1 + r1I2, α2 = p2 + q2I1 + r2I2, · · · , αn = pn + qnI1 + rnI2 be elements of K(I1, I2).
Then α1v1 + α2v2 + · · ·+ αnvn = 0 which implies that

(p1+q1I1+r1I2)(k1+k1I1+k2I2)+(p2+q2I1+r2I2)(k2+k2I1+k2I2)+ · · ·+(pn+qnI1+rnI2)(kn+
knI1 + knI2) = 0
from which we obtain

k1p1 + k2p2 + · · ·+ knpn = 0.
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This is a homogeneous linear system in unknowns pi, i = 1, 2, · · · , n.
This system has infinitely many nontrivial solutions. Hence αis are not all zero and therefore, {v1, v2, · · · , vn}
is a linearly dependent set.

Note 1. If in Proposition 2.11 we consider a single vector v ∈ V (I1, I2), the statement still hold.

For instance, let 0 6= v = a+ bI1 − aI2 ∈ V (I1, I2) and 0 6= β = pI1 − pI2 ∈ K(I1, I2), we have

β · v = (a+ bI1 − aI2) · (pI1 − pI2) = apI1 + bpI1 − bpI1 − apI1 − apI2 + apI2 = 0.

Definition 2.12. Let V (I1, I2) be weak(strong) refined neutrosophic vector space. If {v1, v2, · · · , vn} is any

set of refined neutrosophic vectors in V (I1, I2), the set of all linear combinations of these refined neutrosophic

vectors is called their span, and is denoted by

span{v1, v2, · · · , vn}.

If it happens that V (I1, I2) = span{v1, v2 · · · , vn}, then these vectors are called a spanning set for V (I1, I2).

Proposition 2.13. Let U(I1, I2) = span{v1, v2, · · · , vn} be in a strong refined neutrosophic vector space

V (I1, I2) over a refined neutrosophic field K(I1, I2) then

1. U(I1, I2) is a strong refined neutrosophic subspace of V (I1, I2) containing v1, v2, · · · , vn.

2. U(I1, I2) is the smallest subspace containing v1, v2, · · · , vn in the sense that any strong refined neu-

trosophic subspace of V (I1, I2) that contains each of these refined neutrosophic vectors, must contain

U(I1, I2).

Proof. 1. (a) U(I1, I2) 6= ∅, since we can find 0 = 0 + 0I1 + 0I2 ∈ K(I1, I2) such that

0 = 0v1 + · · ·+ 0vn belongs to U(I1, I2).

(b) Let v, u ∈ U(I1, I2) where u = s1v1 + s2v2 + · · ·+ snvn and v = t1v1 + t2v2 + · · ·+ tnvn
and α = p+ p1I1 + p2I2 ∈ K(I1, I2) then

u+ v = (s1 + t1)v1 + (s2 + t2)v2 + · · ·+ (sn + tn)vn,

αu = (αs1)v1 + (αs2)v2 + · · ·+ (αsn)vn.

So both u+ v and αu lie in U(I1, I2).
Finally, since U ⊆ U(I), where U is a vector space we conclude that U(I1, I2) is a refined

neutrosophic subspace.

2. Let W (I1, I2) be a refined neutrosophic subspace of V (I1, I2) that contains each of v1, v2, · · · , vn.
Since W (I1, I2) is closed under scalar multiplication, each of α1v1, α2v2, · · · , αnvn lies in W (I1, I2)
for any choice of

α1 = p1 + q1I1 + r1I2, α2 = p2 + q2I1 + r2I2, · · · , αn = pn + qnI1 + rnI2 ∈ K(I1, I2).

But then αv1 + α2v2 + · · ·+ αnvn lies in W (I1, I2) since W (I1, I2) is closed under addition.

This means that W (I1, I2) contains every member of U(I1, I2), which proves (2).

Example 2.14. Let Pn(I1, I2) be a strong refined neutrosophic vector space over a refined neutrosophic field

K(I1, I2). Then Pn(I1, I2) = span{1, x, x2, · · · , xn}.

We need only show that each neutrosophic polynomial p(x) in Pn(I1, I2) is a linear combination of

1, x, · · · , xn. But this is clear because p(x) has the form p(x) = a0 + a1x+ a2x
2 + · · ·+ anx

2.
With a0, a1, · · · , an ∈ K(I1, I2).

Example 2.15. Let R3(I1, I2) be a strong refined neutrosophic vector space over a refined neutrosophic field

K(I1, I2). Then R3(I1, I2) = span{(1 + I1 + I2), (1 + I1 + 0I2), (0 + I1 + I2)}.

Write v1 = (1 + I1 + I2), v2 = (1 + I1 + 0I2), v3 = (0 + I1 + I2), and U(I1, I2) = span{v1, v2, v3}.
Obviously U(I1, I2) is contained in R3(I1, I2).
We have R3(I1, I2) = span{(1 + 0I1 + 0I2), (0 + I1 + 0I2), (0 + 0I1 + I2)}.
So to prove that R3(I1, I2) is contained in U(I1, I2), it is enough by Proposition 2.13 to show that each of
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(1 + 0I1 + 0I2), (0 + I1 + 0I2), (0 + 0I1 + I2) lies in span{v1, v2, v3}. But they can be given explicitly as

linear combinations of v1, v2, and v3:

(1 + 0I1 + 0I2) = (1 + I1 + I2)− (0 + I1 + I2) = v1 − v3,

(0 + 0I1 + I2) = (1 + I1 + I2)− (1 + I1 + 0I2) = v1 − v2

and then, using the first of these, we have

(0 + I1 + 0I2) = (1 + I1 + 0I2)− (1 + 0I1 + 0I2) = v2 − (v1 − v3) = v2 − v2 + v3.

Proposition 2.16. Let x = a + bI1 + cI2 and y = d + eI1 + fI2 be two refined neutrosophic vectors in a

strong refined neutrosophic vector space V (I1, I2) over refined neutrosophic field K(I1, I2).
Then span {x, y} = span{x+ y, x− y}, i.e.,

span{a+ bI1 + cI2, d+ eI1 + fI2} = span{a+ d+ (b+ e)I1 + (c+ f)I2, a− d+ (b− e)I1 + (c− f)I2}.

Proof. We have

span{a+d+(b+e)I1+(c+f)I2, a−d+(b−e)I1+(c−f)I2} ⊆ span{a+bI1+cI2, d+eI1+fI2} because

both a+d+(b+ e)I1+(c+f)I2 and a−d+(b− e)I1+(c−f)I2 lie in span{a+ bI1+ cI2, d+ eI1+fI2}.

On the other hand,

a+ bI1 + cI2 =
1

2
[a+ d+ (b+ e)I1 + (c+ f)I2] +

1

2
[a− d+ (b− e)I1 + (c− f)I2]

d+ eI1 + fI2 =
1

2
[a+ d+ (b+ e)I1 + (c+ f)I2]−

1

2
[a− d+ (b− e)I1 + (c− f)I2],

so

span{a+ bI1 + cI2, d+ eI1 + fI2} ⊆ span{a+ d+ (b+ e)I1 + (c+ f)I2, a− d+ (b− e)I1 + (c− f)I2}
by Proposition 2.13 . Hence the prove.

Proposition 2.17. Let U(I1, I2) and W (I1, I2) be strong refined neutrosophic subspaces of as strong refined

neutrosophic vector space V (I1, I2) over a refined neutrosophic field K(I1, I2). Then

1. U(I1, I2) ⊆W (I1, I2) =⇒ span(U(I1, I2)) ⊆ span(W (I1, I2)).

2. span(span(U(I1, I2))) = span(U(I1, I2)).

3. span(U(I1, I2) ∪W (I1, I2)) = span(U(I1, I2)) + span(W (I1, I2)).

Proof. The proof of 1, 2 and 3 are the same as in classical case.

Definition 2.18. Let V (I1, I2) be a strong refined neutrosophic vector space over a refined neutrosophic

field K(I1, I2). A linearly independent subset B[I1, I2] = {v1, v2, · · · , vn} of V (I1, I2) is called a basis

for V (I1, I2) if B[I1, I2] spans V (I1, I2).

Proposition 2.19. Let V (I1, I2) be a strong refined neutrosophic vector space over a refined neutrosophic

field K(I1, I2). The bases of V (I1, I2) are the same as the bases of V over a field K.

Proof:

Suppose that B = {v1, v2, · · · , vn} is an arbitrary basis for V over the fieldK. Let v = a+bI1+cI2 be an arbi-

trary element of V (I1, I2) and let α1 = k1+m1I1+t1I2, α2 = k2+m2I1+t2I2 · · · , αn = kn+mnI1+tnI2
be elements of K(I1, I2). Then from α1v1 + α2v2 + · · ·+ αnvn = 0,
we obtain

k1v1 + k2v2 + · · ·+ knvn = 0,

m1v1 +m2v2 + · · ·+mnvn = 0,

t1v1 + t2v2 + · · ·+ tnvn = 0.

Since vis are linearly independent, we have ki = 0, mj = 0 and tz = 0 where i, j, z = 1, 2, · · · , n.
Hence, αi = 0, i = 1, 2, · · · , n. This shows that B is also a linearly independent set in V (I1, I2).
To show that B spans V (I1, I2), let v = a+ bI1 + cI2 = α1v1 + α2v2 + · · ·+ αnvn.
Then we have

a = k1v1 + k2v2 + · · ·+ knvn,
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b = m1v1 +m2v2 + · · ·+mnvn,

c = t1v1 + t2v2 + · · ·+ tnvn = 0.

Since a, b, c ∈ V, it follows that v = a + bI1 + cI2 can be written uniquely as a linear combination of vis.
Hence, B is a basis for V (I1, I2). Since B is arbitrary, the required result follows;

Proposition 2.20. Let V (I1, I2) be a strong refined neutrosophic vector space over a refined neutrosophic

field K(I1, I2) which is spanned by a finite set of neutrosophic vectors v1, v2, · · · , vm. Then any independent

set of refined neutrosophic vectors in V (I1, I2) is finite and contains no more than m elements.

Proof: Let v = a+ bI1 + cI2, u = d+ eI1 + fI2.
To prove this it suffices to show that every refined neutrosophic subset S(I1, I2) of V (I1, I2) which contains

more than m refined neutrosophic vectors is linearly dependent.

Let S(I1, I2) be such a set. In S(I1, I2) there are distinct refined neutrosophic vectors u1, u2, · · · , un where

n > m.
Since v1, v2, · · · , vm span V (I1, I2), there exist scalars Cij with C = r + sI1 + tI2 ∈ K(I1, I2) such that

uj =

m
∑

i=1

Cijvi =

m
∑

i=1

(rijai + (rijbi + sijai + sijbi + sijci + tijbi)I1 + (rijci + tijai + tijci)I2) .

For any n scalars x1, x2, · · · , xn with x = p+ qI1 + zI2 ∈ K(I1, I2) we have

x1u1 + x2u2 + · · ·+ xnun =
∑n

j=1
xjuj

=
∑n

j=1
(pj + qjI1 + zjI2)uj

=
∑n

j=1
(pj + qjI1 + zjI2)

∑m

i=1
Cijvi

=
∑n

j=1
(pj + qjI1 + zjI2)

∑m

i=1
(rijai + (rijbi + sijai + sijbi + sijci+

tijbi)I1 + (rijci + tijai + tijci)I2)
=

∑n

j=1

∑m

i=1
(pj + qjI1 + zjI2)(rijai + (rijbi + sijai + sijbi + sijci + tijbi)I1+

(rijci + tijai + tijci)I2)
=

∑n

j=1

∑m

i=1
(pjrijai + (pjrijbi + pjsijai + pjsijbi + pjsijci + pjtijbi + qjrijai + qjrijbi+

qjsijai + qjsijbi + qjsijci + qjtijbi + qjrijci + qjtijai + qjtijci + zjrijbi + zjsijai + zjsijbi
+zjsijci + zjtijbi)I1 + (pjrijci + pjtijai + pjtijci + zjrijai + zjrijci + zjtijai + zjtijci)I2)

=
∑n

j=1

∑m

i=1
((pj + qjI1 + zjI2)(rij + sijI1 + tijI2)(ai + bI1 + bI2))

=
∑n

j=1

∑m

i=1
((pj + qjI1 + zjI2)(rij + sijI1 + tijI2))(ai + bI1 + bI2)

=
∑n

j=1

∑m

i=1
(Cijxj)vi

=
∑m

i=1
(
∑n

j=1
Cijxj)vi.

Since n > m, there exist scalars x1, x2, · · · , xn not all 0 such that

n
∑

j=1

Cijxj = 0 1 ≤ i ≤ m.

Hence x1u1 + x2u2 + · · ·+ xnun = 0. This shows that S(I1, I2) is a linearly dependent set.

Definition 2.21. Let V (I1, I2) be a strong refined neutrosophic vector space over a neutrosophic fieldK(I1, I2).
The number of elements in the basis for V (I1, I2) is called the dimension of V (I1, I2) and it is denoted by

dims(V (I1, I2)). If the number of elements in the basis for V (I1, I2) is finite, V (I1, I2) is called a finite

dimensional strong refined neutrosophic vector space. Otherwise, V (I1, I2) is called an infinite dimensional

strong refined neutrosophic vector space.

Definition 2.22. Let V (I1, I2) be a weak refined neutrosophic vector space over a field K. The number of

elements in the basis for V (I1, I2) is called the dimension of V (I1, I2) and it is denoted by dimw(V (I1, I2)). If
the number of elements in the basis for V (I1, I2) is finite, V (I1, I2) is called a finite dimensional weak refined

neutrosophic vector space. Otherwise, V (I1, I2) is called an infinite dimensional weak refined neutrosophic

vector space.

Example 2.23. The strong refined neutrosophic vector space of Example 2.14 is finite dimensional

and dims(V (I1, I2)) = n+ 1.

Proposition 2.24. Let V (I1, I2) be a finite dimensional strong refined neutrosophic vector space over a refined

neutrosophic field K(I1, I2). Then every basis of V (I1, I2) has the same number of elements.

Proof. The proof is similar to the proof in classical case.
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Proposition 2.25. Let V (I1, I2) be a finite dimensional weak (strong) refined neutrosophic vector space over

a field K (resp. over a refined neutrosophic field K(I1, I2)). If dims(V (I1, I2)) = n, then

dimw(V (I1, I2)) = 2n.

This can be easily seen in the examples given below.

Example 2.26. Let V (I1, 12) = Rn(I1, I2) be a strong refined neutrosophic vector space over a refined

neutrosophic field R(I1, 12).
The set B = {v1 = (1, 0, 0, · · · , 0), v2 = (0, 1, 0, · · · , 0), · · · , vn = (0, 0, 0, · · · , 1)} is a basis for V (I1, I2).

Example 2.27. Let V (I1, I2) = Rn(I1, I2) be a weak refined neutrosophic vector space over R. The set

B = {v1 = (1, 0, 0, · · · , 0), v2 = (0, 1, 0, · · · , 0), · · · , vk = (0, 0, 0, · · · , 1),
vk+1 = (I1 + I2, 0, 0, · · · , 0), vk+2 = (0, I1 + I2, 0, · · · , 0), · · · , vn = (0, 0, 0, · · · , I1 + I2)} is a basis for

V (I1, I2).

Note 2. The bases of the strong refined neutrosophic vector space of Example 2.26 is contained in the bases

of the weak refined neutrosophic vector space of Example 2.27. This observation is recorded in the next

proposition.

Proposition 2.28. Let V (I1, I2) be a strong refined neutrosophic vector space over a refined neutrosophic

field K(I1, I2). Then the bases of V (I1, I2) over K(I1, I2) are contained in the bases of the weak refined

neutrosophic vector space V (I1, I2) over a field K.

Proof. The proof follows from Examples 2.26 and 2.27 .

Proposition 2.29. Let W (I1, I2) be a strong refined neutrosophic subspace of a finite dimensional strong

refined neutrosophic vector space V (I1, I2) over a neutrosophic field K(I1, I2). Then W (I1, I2) is finite di-

mensional and dims(W (I1, I2)) ≤ dims(V (I1, I2)). If dims(W (I1, I2)) = dims(V (I1, I2)), then

W (I1, I2) = V (I1, I2).

Proof. IfW (I1, I2) = {}, dimsW (I1, I2) = 0 . So assumeW (I1, I2) 6= {}, and choose u1 6= 0 inW (I1, I2).
IfW (I1, I2) = span{u1}, then dimsW (I1, I2) = 1. IfW (I1, I2) 6= span{u1}, choose u2 inW (I1, I2) outside

span{u1}. Then {u1, u2}, is linearly independent.

If W (I1, I2) = span {u1, u2}, then dimsW (I1, I2) = 2. If not, repeat the process to find u3 in W (I1, I2)
such that {u1, u2, u3} is linearly independent. Continue in this way. The process must terminate because the

refined neutrosophic space V (I1, I2) (having dimension n) cannot contain more than n independent vectors.

Hence W (I1, I2) has a basis of at most n refined neutrosophic vectors.

Secondly, Let dimsW (I1, I2) = dimsV (I1, I2) = m. Then any basis {u1, · · · , um} of W (I1, I2) is an

independent set of m refined neutrosophic vectors in V (I1, I2) and so is a basis of V (I1, I2).
In particular, {u1, · · · , um} spans V (I1, I2) so, because it also spans W (I1, I2),
V (I1, I2) = span{u1, · · · , um} =W (I1, I2).

Proposition 2.30. Let U(I1, I2) and W (I1, I2) be finite dimensional strong refined neutrosophic subspaces

of a strong refined neutrosophic vector space V (I1, I2) over a refined neutrosophic field K(I1, I2). Then

U(I1, I2) +W (I1, I2) is a finite dimensional strong refined neutrosophic subspace of V (I1, I2) and

dims(U(I1, I2) +W (I1, I2)) = dims(U(I1, I2)) + dims(W (I1, I2))− dims(U(I1, I2) ∩W (I1, I2)).

If V (I1, I2) = U(I1, I2)⊕W (I1, I2) then

dims(U(I1, I2) +W (I1, I2)) = dims(U(I1, I2)) + dims(W (I1, I2)).

Definition 2.31. Let V (I1, I2) and W (I1, I2) be strong refined neutrosophic vector spaces over a refined

neutrosophic field K(I1, I2) and let φ : V (I1, I2) −→ W (I1, I2) be a mapping of V (I1, I2) into W (I1, I2).
φ is called a refined neutrosophic vector space homomorphism if the following conditions hold:

1. φ is a vector space homomorphism.

2. φ(Ik) = Ik for k = 1, 2.

If φ is a bijective refined neutrosophic vector space homomorphism, then φ is called a refined neutrosophic

vector space isomorphism and we write V (I1, I2) ∼=W (I1, I2).
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Definition 2.32. Let V (I1, I2) and W (I1, I2) be strong refined neutrosophic vector spaces over a refined

neutrosophic field K(I1, I2) and let φ : V (I1, I2) −→ W (I1, I2) be a refined neutrosophic vector space

homomorphism.

1. The kernel of φ denoted by Kerφ is defined by the set {v ∈ V (I1, I2) : φ(v) = 0}.

2. The image of φ denoted by Imφ is defined by the set

{w ∈W (I1, I2) : φ(v) = w for some v ∈ V (I1, I2))}.

Example 2.33. Let V (I1, I2) be a strong refined neutrosophic vector space over a refined neutrosophic field

K(I1, I2)

1. The mapping φ : V (I1, I1) −→ V (I1, I1) defined by φ(v) = v for all

v = a+ bI1 + cI2 ∈ V (I1, I2) is a refined neutrosophic vector space homomorphism and Kerφ = {0}.

2. The mapping φ : V (I1, I1) −→ V (I1, I1) defined by φ(v) = 0 for all v = a+ bI1 + cI2 ∈ V (I1, I2) is

not a refined neutrosophic vector space homomorphism. Since for Ik ∈ V (I1, I2), φ(Ik) 6= 0.

Proposition 2.34. Let V (I1, I2) and W (I1, I2) be strong refined neutrosophic vector spaces over a neutro-

sophic field K(I1, I2) and let φ : V (I1, I2) −→ W (I1, I2) be a refined neutrosophic vector space homomor-

phism. Then

1. Kerφ is not a strong refined neutrosophic subspace of V (I1, I2) but a subspace of V (I1, I2).

2. Imφ is a strong refined neutrosophic subspace of W (I1, I2).

Proof. That Kerφ is a subspace of V (I1, I2), and Imφ is a strong refined neutrosophic subspace of W (I1, I2)
follows easily .

Now, to show that Kerφ is not a strong refined neutrosophic subspace of V (I1, I2), we note that for

Ik ∈ V (I1, I2) we have that φ(Ik) = Ik 6= 0, this implies that Ik /∈ kerφ.
Hence, kerφ is not a strong refined neutrosophic subspace.

Proposition 2.35. Let V (I1, I2) and W (I1, I2) be strong refined neutrosophic vector spaces over a refined

neutrosophic field K(I1, I2) and let φ : V (I1, I2) −→ W (I1, I2) be a refined neutrosophic vector space

homomorphism. If B = {v1, v2, · · · , vn} is a basis for V (I1, I2), then φ(B) = {φ(v1), φ(v2), · · · , φ(vn)} is

a basis for W (I1, I2).

Proof. Since B = {v1, v2, · · · , vn} is a basis for V (I1, I2), it spans V (I1, I2), so for every

v ∈ V (I1, I2), there exist αi ∈ K(I1, I2), with i = 1, 2, 3, · · ·n such that v = α1v1 + α2v2 + · · ·+ αnvn.
φ(v) = φ(α1v1 + α2v2 + · · ·+ αnvn)

= φ(α1v1) + φ(α2v2) + · · ·+ φ(αnvn)
= α1φ(v1) + α2φ(v2) + · · ·+ αnφ(vn).
Thus φ(v) = α1φ(v1) + α2φ(v2) + · · ·+ αnφ(vn).

Then for every v ∈ V (I1, I2), its image φ(v) ∈ W (I1, I2) can be written as a linear combination of

{φ(v1), φ(v2), · · ·φ(vn)}. Hence {φ(v1), φ(v2), · · ·φ(vn)} spans W (I1, I2).
Now if α1φ(v1) + α2φ(v2) + · · ·+ αnφ(vn) = 0 then φ(α1v1 + α2v2 + · · ·+ αnvn) = 0.
But then each αi = 0 by the independence of the vi so {φ(v1), φ(v2), · · ·φ(vn)} is linearly independent.

To this end we can conclude that φ(B) = {φ(v1), φ(v2), · · ·φ(vn)} is a basis for W (I1, I2).

Proposition 2.36. Let W (I1, I2) be a strong refined neutrosophic subspace of a strong refined neutrosophic

vector space V (I1, I2) over a neutrosophic field K(I1, I2). Let φ : V (I1, I2) −→ V (I1, I2)/W (I1, I2) be a

mapping defined by φ(v) = v +W (I1, I2) for all v ∈ V (I1, I2). Then φ is not a neutrosophic vector space

homomorphism.

Proof. It is easily seen, since for k = 1, 2, φ(Ik) = Ik +W (I1, I2) =W (I1, I2) 6= Ik.

Remark 2.37. One of the natural questions would be if V (I1, I2) and W (I1, I2) are strong (weak) re-

fined neutrosophic vector spaces over a refined neutrosophic field K(I1, I2)(respectively(K)). Suppose

Hom(V (I1, I2),W (I1, I2)) is the collection of all refined neutrosophic vector space homomorphisms from

V (I1, I2) into W (I1, I2), then by defining + and scalar multiplication on Hom(V (I1, I2),W (I1, I2)) can we

obtain a refined neutrosophic vector? The answer to this is given in the next proposition .
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Proposition 2.38. Let V (II , I2) and W (I1, I2) be any two strong refined neutrosophic vector spaces over the

refined neutrosophic field K(I1, I2). Let Hom(V (I1, I2),W (I1, I2)) be the collection of all refined neutro-

sophic vector space homomorphisms from V (I1, I2) into W (I1, I2), then the triple

(Hom(V (I1, I2),W (I1, I2)),+, ·) is not a refined neutrosophic vector space over K(I1, I2).

Proof. φ, ψ ∈ Hom(V (I1, I2),W (I1, I2)) then (φ + ψ) and (ψφ) ∈ Hom(V (I1, I2),W (I1, I2)), since

(φ + ψ)(Ik) = φ(Ik) + ψ(Ik) = Ik + Ik = 2Ik 6= Ik and (αφ)(Ik) = αφ(Ik) = αφ(Ik) 6= Ik for all

α ∈ K(I1, I2) and k = 1, 2.

Definition 2.39. Let U(I1, I2), V (I1, I2) and W (I1, I2) be strong refined neutrosophic vector spaces over a

refined neutrosophic field K(I1, I2) and let φ : U(I1, I2) −→ V (I1, I2), ψ : V (I1, I2) −→ W (I1, I2) be

refined neutrosophic vector space homomorphisms.

The composition ψφ : U(I1, I2) −→W (I1, I2) is defined by ψφ(u) = ψ(φ(u)) for all u ∈ U(I1, I2).

Proposition 2.40. Let U(I1, I2), V (I1, I2) and W (I1, I2) be strong refined neutrosophic vector spaces over

a refined neutrosophic field K(I1, I2) and let φ : U(I1, I2) −→ V (I1, I2), ψ : V (I1, I2) −→ W (I1, I2) be

refined neutrosophic vector space homomorphisms. Then the composition ψφ : U(I1, I2) −→ W (I1, I2) is a

refined neutrosophic vector space homomorphism.

Proof: That ψφ is a vector space homomorphism is clear. Then for u = Ik ∈ U(I1, I2), we have

ψφ(Ik) = ψ(φ(Ik)) = φ(Ik) = Ik with k = 1, 2.

Hence ψφ is a neutrosophic vector space homomorphism.

Let V (I1, I2) be a strong refined neutrosophic vector space over a refined neutrosophic field K(I1, I2) and

let β : V (I1, I2) −→ V (I1, I2) be a refined neutrosophic vector space homomorphism. If B = {v1, v2 · · · , vn}
is a basis for V (I1, I2), then each β(vi) ∈ V (I1, I2) and thus for βij ∈ K(I1, I2), we can write

β(v1) = β11v1+ β12v2+ · · ·+ β1nvn
β(v2) = β21v1+ β22v2+ · · ·+ β2nvn
... =

...
... · · ·

...

β(vn) = βn1v1+ βn2v2+ · · ·+ βnnvn.

Let

[β]B =











β11 β21 · · · βn1
β12 β22 · · · βn2
...

...
...

...

β1n β2n · · · βnm











.

[β]B is called the matrix representation of β relative to the basis B.

Proposition 2.41. Let V (I1, I2) be a strong refined neutrosophic vector space over a refined neutrosophic

field K(I1, I2) and let β : V (I1, I2) −→ V (I1, I2) be a refined neutrosophic vector space homomorphism. If

B is a basis for V (I1, I2) and v is any element of V (I1, I2), then

[β]B[v]B = [β(v)]B.

We give an example to help establish this proposition.

Example 2.42. Let V (I1, I2) = R3(I1, I2) be a strong refined neutrosophic vector space over a refined

neutrosophic field K(I1, I2) = R(I1, I2) and

let v = (2 + 3I1 + I2, 4 + 3I1 − I2, 2 + 4I1 + 4I2) ∈ V (I1, I2). If β : V (I1, I2) −→ V (I1, I2) is a refined

neutrosophic vector space homomorphism defined by β(v) = v for all v ∈ V (I1, I2), then relative to the basis

B = {v1 = (1, 1, 0), v2 = (1, 0, 1), v3 = (0, 1, 1)} for V (I1, I2), the matrix of β is obtained as

[β]B =





1 + 0I1 + 0I2 1 + 0I1 + 0I2 0 + 0I1 + 0I2
1 + 0I1 + 0I2 0 + 0I1 + 0I2 1 + 0I1 + 0I2
0 + 0I1 + 0I2 1 + 0I1 + 0I2 1 + 0I1 + 0I2



 .
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For v = (2 + 3I1 + I2, 4 + 3I1 − I2, 2 + 4I1 + 4I2) ∈ V (I1, I2) , we have

β(v) = v = (2 + I1 − 2I2)v1 + (2I1 + 3I2)v2 + (2 + 2I2 + I2)v3
So that

[v]B =





2 + I1 − 2I2
2I1 + 3I2
2 + 2I1 + I2



 = [β(v)]B

and we have

[β]B[v]B = [β(v)]B.

Example 2.43. Let V (I1, I2) = R2(I1, I2) be a weak refined neutrosophic vector space over a field K = R
and let v = (1− 3I1 + 2I2, 3 + I1 − 4I2) ∈ V (I1, I2).
If β : V (I1, I2) −→ V (I1, I2) is a refined neutrosophic vector space homomorphism defined by β(v) = v for

all v ∈ V (I1, I2), then relative to the basis

B = {v1 = (1, 0), v2 = (0, 1), v3 = (I1, 0), v4 = (0, I1), v5 = (I2, 0), v6 = (0, I2)} for V (I1, I2), the matrix

of β is obtained as

[β]B =

















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

















.

For v = (1− 3I1 + 2I2, 3 + I1 − 4I2) ∈ V (I1, I2), we have

β(v) = v = v1 + 3v2 − 3v3 + v4 + 2v5 − 4v6.

Therefore,

[v]B =

















1
3
−3
1
2
−4

















= [β(v)]B

and thus

[β]B[v]B = [β(v)]B.

One interesting question to ask will be, can we find a mapping that will transform a refined neutrosophic

vector space into a neutrosophic vector space? The answer to this is positive. Since every refined neutrosophic

vector space and every neutrosophic vector space are vector spaces, then by relaxing the second axiom in

Definition 2.31, the mapping φ becomes a classical vector space homomorphism which can be use for such

transformation.

Proposition 2.44. Let V (I1, I2) be a weak refined neutrosophic vector space over a field K and let V (I) be

a weak neutrosophic vector space over K. Let φ : V (I1, I2) −→ V (I) be a mapping defined by

φ((x+ yI1 + zI2)) = (x+ (y + z)I) ∀(x+ yI1 + zI2) ∈ V (I1, I2) with x, y, z ∈ V.

Then φ is a linear map.

Proof. 1. φ is well defined. Suppose x1 + y1I1 + z1I2 = x2 + y2I1 + z2I2 then we that

x1 = x2, y1 = y2 and z1 = z2. So,

φ((x1 + y1I1 + z1I2)) = (x1 + (y1 + z1)I) = x2 + (y2 + z2)I = φ(x2 + y2I1 + z2I2).

2. For additivity, suppose (x1 + y1I1 + z1I2), (x2 + y2I1 + z2I2) ∈ V (I1, I2) then

φ((x1 + y1I1 + z1I2) + (x2 + y2I1 + z2I2)) = φ((x1 + x2) + (y − 1 + y2)I1 + (z1 + z2)I2)
= (x1 + x2) + (y1 + y2 + z1 + z2)I
= (x1 + x2) + ((y1 + z1) + (y2 + z2))I
= (x1 + x2) + ((y1 + z1)I + (y2 + z2)I)
= (x1 + (y1 + z1)I) + (x2 + (y2 + z2)I)
= φ(x1 + y1I1 + z1I2) + φ(x2 + y2I1 + z2I2).
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3. For homogeneity, let (x+ yI1 + zI2) ∈ V (I1, I2) and k ∈ K, then

φ(k(x1 + y1I1 + z1I2)) = φ(kx1 + ky1I1 + kz1I2)
= kx1 + (ky1 + kz1)I
= kx1 + k(y1 + z1)I
= k(x1 + (y1 + z1)I) = kφ((x1 + y1I1 + z1I2)).

Hence φ is a linear map.

Note 3. The kernel of this linear map is given by

kerφ = {(x+ yI1 + zI2) : φ((x+ yI1 + zI2)) = (0 + 0I)}
= {(x+ yI1 + zI2) : (x+ (y + z)I) = (0 + 0I)}
= {(0 + yI1 + (−y)I2)}.

1. It can be shown that kerφ is a linear subspace of V (I1, I2).

2. It can also be shown that (kerφ,+) ∼= (V (I1, I2),+).

Proposition 2.45. Let Lk(V (I1, I2), V (I)) be the set of linear maps from a weak refined neutrosophic vector

space V (I1, I2) over a field K into a weak neutrosophic vector space V (I) over a field K. Define addition

and scalar multiplication as below;

(φ+ ψ)(x+ yI1 + zI2) = φ((x+ yI1 + zI2)) + ψ((x+ yI1 + zI2))

and for k ∈ K
(kφ)((x+ yI1 + zI2)) = kφ(x+ yI1 + zI2).

Then, it can be shown that (Lk(V (I1, I2), V (I)),+, ·) is a weak neutrosophic vector space.

Proposition 2.46. Let φ ∈ Lk(V (I1, I2), V (I)) and dimV (I1, I2), dimV (I) <∞.

1. If dimV (I1, I2) > dimV (I), then, no linear map of V (I1, I2) to V (I) is one to one.

2. If dimV (I1, I2) < dimV (I), then, no linear map of V (I1, I2) to V (I) is onto.

Proof. 1. Suppose there exist a function φ ∈ Lk(V (I1, I2), V (I)) which is one to one . Then

dimV (I1, I2) = dimkerφ+ dimImφ.

Thus, dimV (I1, I2) = dimImφ = dimV (I) (dimkerφ = 0, since φ is one to one).

This gives a contradiction. Hence there exist no such function.

2. Suppose there exist a function φ ∈ Lk(V (I1, I2), V (I)) which is onto . Then Imφ = V (I). Thus,

dimV (I1, I2) = dimkerφ+ dimImφ

and also

dimV (I1, I2) ≥ dimV (I).

Thus

dimV (I) > dimV (I1, I2) ≥ dimV (I).

This is not possible. Hence there exist no such function.

3 Conclusion

This paper studied linear dependence, independence, bases and dimensions of refined neutrosophic vector

spaces and presented some of their basic properties. Also, the paper studied refined neutrosophic vector

space homomorphisms and established the existence of linear maps between weak refined neutrosophic vector

spaces V (I1, I2) and weak neutrosophic vector spaces V (I). We hope to present more properties of refined

neutrosophic vector spaces in our future papers.
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Abstract: In this paper, it is intended to study the concept of bipolar Neutrosophic soft set (����). It is aimed to 
defined bipolar Neutrosophic soft set. Definitions and operations have been presented the BNSS. Then we present an 
aggregation BNSS operator and decision making algorithm depend on the BNSS. Number-based examples discussed 
to show (ability to be done) and efficiency of the advanced method. 
 
Keywords: Bipolar Soft Sets, Neutrosophic Sets, Aggregation Operators, Soft Sets, Car Selection  

1. Introduction 

The uncommon theory of fuzzy set Zadeh [1] was presented as the addition of a crisp set by expanding the truthfulness 
value set to [0,1].In fuzzy set theory, if the association membership of an element is μ(�) then the non-association 
membership 1 − μ(�) and so it fixed Intuitionistic fuzzy set presented by Atanassov in 1986 [2] and form an addition 
of fuzzy set by expanding the truth value to the lattice [0,1] × [0,1]. In daily life, problems, engineering, medical 
diagnosis, in the economy, and social science in many areas have to do with facts that have in its uncertainties. This 
problem may not be positively demonstrated by the existing methodologies in Greek and Latin math. There are 
approximately well- known methodological theories for discuss with vagueness such as FSS [3], IFSS [2], rough set 
[4], etc. To try to deal with a problem which is pointed out in [5]. To grip with these complications, Molodtsov coined 
the concept of a SS  as a new methodical implement for studying with hesitancies.  

BSS and basic operations defined by Shabir and Naz [6] in 2013.Lee [7], the idea of bipolar FS as a simplification of 
a FS. A bipolar fuzzy set (BFS) is an addition of fuzzy sets whose association degree range is  [1,-1]. In a BFS , the 
association degree of a component means that the components are immaterial to the correspondent property, the 
association degree [0, 1] of a component shows that the elements somewhat fulfils the property and the association 
degree [-1, 0] of an element shows that the elements somewhat fulfil the implied counter property.   

Neutrosophic sets suggested by Smarandache [8] (1998,1999,2002,2005,2006,2010) which is a extension of fuzzy set 
and the IFS is a great instrument to deal with incomplete information which happen in the real world Neutrosophic 
sets are categorized. Neutrosophic set proposed by Smarandache in by truthfulness (T), Indeterminacy (I), and 
falseness (F). This concept is very significant in many applications areas since indeterminacy is computed explicitly 
and truthfulness, Indeterminacy, and falseness are independent.  
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Wang et al [9] coined  the idea of single-valued neutrosophic sets. The SVNS can express the truthness, degree, 
indeterminate and stable information. All the reason described by the SVNS is very suitable for human approach due 
to the deficiencies of knowledge that human accept.   

Then Deli et al [10] advanced multi-criteria bipolar %&	 and study their applications in DM. Ali et al [11] suggested 
the concept of cubic set with applications in specimen identification. Broumi	et al [12,13], proposed BSVNS, graph 
theory and its shortest path problem.  

Molodtsov in [14] has some possible applications of soft set theory. Furthermore, Maji in [4] presented some results 
as an application of neutrosophic SS in DM. Also, some writer planning the ideas of neutrosophic SS. Soft set to deal 
undeserving in a parameterized way. The soft set is a mathematical arrangement which has the capability of an 
independent state of parameterizations lack, conditions of fuzzy set, rough set, expectations, etc. Also, some writers 
studied the theory of neutrosophic soft set in [10, 15, 16, 4, and 17]. Jafar et al [20-24] worked on decision making 
using soft sets , fuzzy soft sets, intuitionistic soft sets and NS. Saqlain at el [28-30] worked a lot in Neutrosophic 
environment which help us a lot.Jafar et al [31] discussed a new technology in agriculture using Neutrosophic sot sets. 

 This article is committed to suggested bipolar neutrosophic sets which are a mixture of a SS and BNSS. Initially, then 
we launch the BNSS and discuss some fundamentals things with instructive examples. Moreover, we defined some 
algebraic functions of the BNSS such as the complement, union, intersection, etc. Then, we defined aggregation 
bipolar neutrosophic sets operators are bipolar neutrosophic soft set residents decision-making algorithms based on 
bipolar %&&  . Furthermore, we offer the DM method for DM difficulties including the bipolar neutrosophic SS and 
present a sample associated with this technique. 

Motivation and Objectives 

 Motivation behind this paper is to present decision making issues in some different notions. Generally every 
one is discussing decision Making issues only with one direction we extened the work of Deli et al [10] and discussed 
the concept of NSS in bipolar environment. We discussed Agrigation operator and then use it to the selection of best 
car in market. 

2. Prelimanaries 

2.1 Definition-1: [8]  

If 2 is a universal set. Neutrosophic sets (%&)	3 in 2 is categorized by truthfulness	43 , an indetermination ℐ3 and a 
falseness	ℱ3. Standard or non- standard elements are	43 , ℐ3 , ℱ3 of  ]07, 18[	 is defined as: 3 = {< 	℘̀, >43(	℘̀), ℐ3(	℘̀), ℱ3(	℘̀)? >: 	℘̀	ℰ	2		, 43(	℘̀), ℐ3(	℘̀), ℱ3(	℘̀) 	 ∈ 	]07, 18[	}.	 
So that there is no confinement to the sum of   43(	℘̀), ℐ3(	℘̀)	EFG	ℱ3(	℘̀), so	07 ≤ 43(	℘̀) + ℐ3(	℘̀) + ℱ3(	℘̀) ≤38. 

2.2 Definition-2: [9] 

 If K is a universal set. A single-valued neutrosophic sets   (&L%&)	ℬ, that is applicable in engineering and scientific 
field, in K is categorized by a truthfulness	4ℬ, an indetermination ℐℬ and a falseness	ℱℬ. Standard elements are 4ℬ(	℘̀), ℐℬ(	℘̀), ℱℬ(	℘̀) of [0, 1] is defined as: ℬ = N< 	℘̀, >4ℬ(	℘̀), ℐℬ(	℘̀), ℱℬ(	℘̀)? >: 	℘̀ 	 ∈ 	K, 4ℬ(	℘̀), ℐℬ(	℘̀), ℱℬ(	℘̀) 	 ∈ [0,1]O. 
2.3 Definition-3: [14]  

If 2 be a universal set, P be a constraint that expresses the elements of 2,	QR ⊆ P. A function TQR  is known as soft set ℱQR w.r.t the universal set 2 and represented by: TQR : P → V(2) s.t TQR(	℘̀) = Ø if 	℘̀ ∈ P − QR             
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Everywhere TQR  is known as an approximation functionℱ	QR . Also, soft set is categorized by the family of the subset of 
the set	2, and consequently, it can be inscribed a set of well-ordered pairs. ℱQR = X>	℘̀, TQR(	℘̀)? ∶ 	 	℘̀ ∈ P, TQR(	℘̀) = Ø	Z[		℘̀ ∈ P − QR\ ] 
 

 

2.4 Definition-4: [15]  

If 2 is a universal set,%(2) be a group of all Neutrosophic sets on 2,	P be constraint that express the components of 2.Then a Neutrosophic soft set   %	above 2 is clear by set-valued function represented by: T% :	P ⟶ 	%(2) 
The set T%(	℘̀) is the set of 	℘̀ elements of(%&&) that may be arbitrary few of them have empty and non-empty 
intersection. % = {	(℘\ , N< 2, 4T%(	℘̀)(և), ℐT%(	℘̀)(	և), ℱT%(	℘̀)(	և) >: 	℘̀ ∈ 2O: 	℘ ∈̀ P)}	Everywhere	 	 	 4T%(	℘̀)(	և), ℐT%(	℘̀)(	և), ℱT%(	℘̀)(	և) ∈ [0,1]	
2.5 Definition-5: [15]  If	%_ `̇and	%b ċ	be	two	(%&&)	over	universal	set2,	correspondingly.	i. %_ `̇	 is	 	 known	 as	 neutrosophic	 soft	 subset	 of	 	%b ċ	 is	 QR ⊆ 	dR	 and	 4T%ė̇(	℘̀)f (	և) ≤ 4T%ġ(	℘̀)f (	և),		ℐT%ė̇(	℘̀)f (	և) ≤ ℐT%ġ(	℘̀)f (	և),	ℱT%ė̇(	℘̀)f (	և) ≥ ℱT%ġ(	℘̀)f (	և),		∀	℘̀ ∈ QR ,		և ∈ 2.		ii. 	%_`	̇ 	And		%b ċ	are	equal	if			%_ `̇ ⊆ 	%b ċ	and%_ ċ ⊆ 	%b `̇.		
2.6 Definition-6:	[15]		If	%_ `̇and	%b ċ	be	two	(%&&).	Now,	1) %`̇ℂ	is	said	to	be	a	complement	of	%&&	is	defined	by: %`̇ℂ = Xk	℘̀, X< l, ℱT%ė(	℘̀)f (	և), 1 − ℐT%ė(	℘̀)f (	և), 4T%ė(	℘̀)f (	և) >: 	℘̀ ∈ և] : 	℘̀ ∈ Pm] 2) The	union	of	%_ `̇and	%b ċ	can	be	defined	as	%_ ṅ=%_ `̇⨃	%b ċ	and	written	as:	%_ ṅ = Xk	℘̀, X< l, 4T%ṗ(	℘̀)f (	և), ℐT%ṗ(	℘̀)f (	և), ℱT%ṗ(	℘̀)f (	և) >: 	℘̀ ∈ և] : 	℘̀ ∈ Pm] Everywhere		

4T%ṗ(	℘̀)f (	և) = qE� r4T%ė̇(	℘̀)f (	և), 4T%ġ(	℘̀)f (	և)s	
ℐT%ṗ(	℘̀)f (	և) = qZF rℐT%ė̇(	℘̀)f (	և), ℐT%ġ(	℘̀)f (	և)s	
ℱT%ṗ(	℘̀)f (	և) = qZF rℱT%ė̇(	℘̀)f (	և), ℱT%ġ(	℘̀)f (	և)s	
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3) The	intersection	of	%_ `̇and	%b ċ	can	be	defined	as	%_ ṫ=%_ `̇⋂̈	%b ċ	and	written	as:	%_ṫ = Xk	℘̀, X< և, 4T%ẇ(	℘̀)f (	և), ℐT%ẇ(	℘̀)f (	և), ℱT%ẇ(	℘̀)f (	և) >: 	℘̀ ∈ և] : 	℘̀ ∈ Pm] Everywhere	
4T%ẇ(	℘̀)f (	և) = qZF r4T%ė̇(	℘̀)f (	և), 4T%ġ(	℘̀)f (	և)s	
ℐT%ẇ(	℘̀)f (	և) = qE� rℐT%ė̇(	℘̀)f (	և), ℐT%ġ(	℘̀)f (	և)s	
ℱT%ẇ(	℘̀)f (	և) = qE� rℱT%ė̇(	℘̀)f (	և), ℱT%ġ(	℘̀)f (	և)s	

2.7 Definition-7:	[7]		If	2	is	a	universal	set.	Ω	be	Bipolar	FS	in	2	.	It	can	be	describe	as:	Ω = N>	և, 48(	և), 47(	և)?:	և ∈ 2O	Everywhere	48 ⟶ [0,1]	and	47 ⟶ [−1,0].The	positive	truthfulness	48(	և)	 	correspondent	to	bipolar	fuzzy	set	and	negative	truthfulness	47(	և)	of	a	component	և ∈ 2	to	about	implied	counter-property	correspondent	toΩ.	
2.8 Definition-8: [13]		If	2	be	a	universal	set.P	be	a	constraint	that	express	the	element	of	2.	A	bipolar	fuzzy	soft	set	⊛	in	2.	It	can	be	written	as:	 	 	 ⊛= N>�,̈ 	N>	և, 48(	և), 47(	և)?:		և ∈ 2O?:	�̈ ∈ PO	Everywhere	 	48 ⟶ [0,1]	and	47 ⟶ [−1,0].The	positive	truthfulness48(	և),	correspondent	to	bipolar	fuzzy	set	 ⊛	 and	 negative	 truthfulness	 47(	և)	 of	 a	 component	և ∈ 2	 	 to	 about	 implied	 counter-property	correspondent	to	⊛.	
2.9 Definition-9:	[10]		If	2	is	a	universal	set.	A	Bipolar	neutrosophic	set	in	2.	It	is	denoted	by	�� .It	can	be	written	as: �� = N>	և, 48(	և), ℐ8(	և), ℱ8(	և), 47(	և), ℐ7(	և), ℱ7(	և)?:	և ∈ 2O	Everywhere	48, ℐ8, ℱ8 ⟶ [, 1]	and47, ℐ7, ℱ7 ⟶ [−1,0].	The	positive	degrees	truthfulness,	indeterminacy	and	falseness	 are	 denoted	 by	 48(	և), ℐ8(	և), ℱ8(	և)	 correspondent	 to	 bipolar	 %&		 ��	and	 negative	 degrees	truthfulness,	 indeterminacy	and	 falseness	are	denoted	by	47(	և), ℐ7(	և), ℱ7(	և)	of	a	component	 	 	և ∈ 	2	 	 to	about	implied	counter-	property	correspondent	to		bipolar	neutrosophic	set	��.	
3. Bipolar Neutrosophic Soft Sets In	this	segment,	we	propose	the	concept	of	%&&	and	its	operations.	
3.1 Definition-10 

 If	2	is	a	universal	set.	P	be	a	constraint	that	expresses	the	element	of	2.	A	bipolar	neutrosophic	soft	set	�	in	2.It	can	be	describe		as:	� = N>�̈, N>	և, 48(	և), ℐ8(	և), ℱ8(	և), 47(	և), ℐ7(	և), ℱ7(	և)?:	և ∈ 2O?:	�̈ ∈ PO	
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Everywhere	48, ℐ8, ℱ8 ⟶ [, 1]	and	47, ℐ7, ℱ7 ⟶ [−1, ].	The	positive	degrees	truthfulness,	indeterminacy	and	falseness	 are	 denoted	 by	 48(	և), ℐ8(	և), ℱ8(	և)	 corresponding	 to	 bipolar	%&&	�			 	and	 negative	 degrees	truthfulness,	 indeterminacy,	 and	 falseness	 are	 denoted	 by	47(	և), ℐ7(	և), ℱ7(	և)	 of	 a	 component	և ∈ 2		 	 to	about	implied	counter-	property	correspondent	to	bipolar	%&&	�	.	
Example-1: If	2		=	{	և`, 	ևc, 	ևn},	P	=	{�̈`, �̈c}.After	that	bipolar	%&&	�`EFG	�c	above	2	is	given	as,	respectively;	�` = {(�̈`	, {(	և`, .6	, .9	, .2	, −.6, −.8, −.4), (	ևc	, .7	, .9	, .8	, −.6, −.8,−.3), (	ևn	, .7	, .8	, .2	, −.6	, −.9	, −.9))},		(�̈c	, {(	և`	, .9	, .6	, .7	, −.6	, −.8	, −.4), (	ևc	, .5	, .4	, .8	, −.6	, −.8	, −.3), 	(ևn	, .8	, .6	, .2	, −.5	, −.8	, −.7))}	And	�c = {(�̈`	, {(	և`, .3	, .8	, .6, −.7, −.8,−.3), (	ևc	, .4	, .6	, .8	, −.2, −.8,−.3), (	ևn	, .7	, .3	, .6	, −.6	, −.5	, −.1))},		(�c̈	, {(	և`	, .2	, .6	, .7	, −.1	, −.8	, −.3), 	ևc	, .3	, .9	, .8	, −.6	, −.4	, −.6), 	ևn	, .8	, .5	, .2	, −.5	, −.8	, −.1))}	
3.2 Definition-11  An empty	bipolar	Neutrosophic	soft	set	�∅	with	respect	to	universal	set	2.	it	can	be	written	as:	�∅ = N>�,̈ N(	և	,0	,0	, 1, −1,0	, )?:		և ∈ 2O?:	�̈ ∈ P}	
3.3 Definition-12	An absolute	bipolar	Neutrosophic	soft	set	��	with	respect	to	universal	set	2.	it	can	be	written	as:	�� = N>�,̈ N(	և	, 1, 1,0	, 0, −1,−1)?:		և ∈ 2O?:	�̈ ∈ P}	
Example-2:	If 2 = {	և`, 	ևc, 	ևn}	, P = {�̈`, �̈c}	

1. Empty	bipolar	NSS	�∅	in	2	is	given	as: �∅ = {(�̈`	, {(	և`, 0,0	, 1, −1,0	, ), (	ևc	, 0,0	, 1, −1,0	,0	), (	ևn	, 0,0	, 1, −1,0	,0	))},	(�c̈	, {(	և`	,0,0	, 1, −1,0	,0	),(	ևc	,0,0	, 1, −1, 0,0	),(	ևn	,0, 0, 1, −1, 0,0	))}	
2. Absolute	bipolar	NSS			��	in	2	is	given	as: �� = {(�̈`	, {(	և`, 1, 1,0	,0	, −1,−1), (	ևc	, 1, 1, 0, 0, −1,−1), (		ևn	, 1, 1, 0,0	, −1,−1))},	(�c̈	, {(	և`	, 1, 1,0	,0	, −1,−1),(	ևc	, 1, 1,0	, 0, −1,−1),(	ևn	, 1, 1, 0,0	, −1,−1	))}	

3.4 Definition-13 If	�� = Xk�̈, Xk	և	, 4�8(	և), ℐ�8(	և), ℱ�8(	և), 4�7(	և), ℐ�7(	և), ℱ�7(	և)m :		և ∈ 2]m : �̈ ∈ P]	for	� = 1,2, …… , F	be	two	bipolar	NSS	with	respect	to	universal	set.	Then,	�`	is	a	bipolar	neutrosophic	soft	subset		�c	and	It	is	represented	by	�` ⊆ �c,		if	4̀8(	և) ≲ 4c8(	և), ℐ̀8(	և) ≳ ℐc8(	և), ℱ8̀(	և) ≳ ℱc8(	և), 4̀7(	և) ≳ 4c7(	և), ℐ̀7(	և) ≲ℐc7(	և), ℱ 7̀(	և) ≲ ℱc7(	և)	for	all	(�̈, և) ∈ P × 2.	
Example-3: If		2 = {	և`	, 	ևc	}			, P = {�̈`	, �̈c	}.	If �` = {(�̈`	, {(		և`	, .8, .7, .2, −.4,−.8, −	.3), (		ևc, .7, .6, .7, −.4, −.8,−.3)}),		(�̈c	, {(	և`	, .6, .7, .5, −.4,−.6, −.3),(	ևc, .3, .8, .4, −.4, −.7,−.2)})	
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And				�c = {(�̈`	, {(	և`	, .9, .3, .2, −.6, −.7, −.3), (	ևc	, .9, .2, .4, −.8,−.6, −.1)}),	(�̈c, {(	և`	, .8, .7, .5, −.4,−.6, −.3), 	ևc	, .5, .8, .4, −.9,−.7, −.1)})	Then,	we	have	�� ⊆ ��.	
3.5 Definition-14	If	�� = Xk�̈, Xk	և	, 4�8(	և), ℐ�8(	և), ℱ�8(	և), 4�7(	և), ℐ�7(	և), ℱ�7(	և)m :		և ∈ 2]m : �̈ ∈ P]	for	� = 1,2, …… , F	stand	two	bipolar	NSS	with	respect	to	universal	set.	Then,	�`	is	bipolar	Neutrosophic	soft	equal	to	�c,	is	denoted	by	�` = �c,		if	4̀8(	և) = 4c8(	և), ℐ̀8(	և) = ℐc8(	և), ℱ8̀(	և) = ℱc8(	և), 4̀7(	և) = 4c7(	և), ℐ̀7(	և) = ℐc7(	և), ℱ 7̀(	և) =ℱc7(	և)	for	all	(�̈, և) ∈ P × 2.	
3.6 Definition-15 

 If	�	is	a	bipolar	NSS	with	respect	to	universal	set	2.	then,	�K	be	a	complement	of	a	bipolar	%&&.	It	can	be	written	as;	�K = N>�	,̈ N>	և, ℱ8(	և)	, 1 − ℐ8(	և)	, 48(	և)	, ℱ7(	և)	, −1 − ℐ7(	և)	, 47(	և)?:		և ∈ 2O? ∶ 	 �̈ ∈ P	O	
Example-4:  consider	the	example	1	�K = {(�̈`	, {(	և`	, .2	, .1, .6, −.4, −.2, −.6), (	ևc		, .8, .1, .7, −.3,−.2, −.6), (	ևn	, .2, .2, .7, −.9, −.1,−.6)}),	(�̈c	, {(		և`	, .7, .4, .9, −.4,−.2, −.6), (	ևc	, .8, .6, .5, −.3,−.2, −.6), (	ևn	, .2, .4, .8, −.7, −.2,−.5))}	
3.7 Definition-16 If	�� = Xk�̈, Xk	և	, 4�8(	և), ℐ�8(	և), ℱ�8(	և), 4�7(	և), ℐ�7(	և), ℱ�7(	և)m :		և ∈ 2]m : �̈ ∈ P]	for	� = 1,2, …… , F	be	two	bipolar	NSS	above	2.	After	that	�`	and	�c	are	union	also	denoted	by	�`⨃	�c.	It	can	be	written	as;	�`⨃�c = N>�	,̈ N>	և, ����N4�8(	և)O, ����Nℐ�8(	և)O, ����Nℱ�8(	և)O	, ����N4�7(	և)O, ����Nℐ�7(	և)O, ����Nℱ�7(	և)O?∶ 		և ∈ 2O? ∶ 	 � ∈̈ P	, EFG	� = 1,2, … , FO	
Example-5: consider	the	example	1	�`⨃�c = {(�̈`	, {(	և`	, .6	, .8, .2, −.7,−.8, −.3), (	ևc		, .7, .6, .8, −.6,−.8, −.3), (	ևn	, .7, .3, .2, −.6,−.5, −.1)}),	(�̈c	, {(		և`	, .9, .6, .7, −.6,−.8, −.3), (	ևc	, .5, .4, .8, −.6,−.4, −.3), (	ևn	, .8, .5, .2, −.5, −.8,−.1))}	
 3.8 Definition-17  If	�� = Xk�̈, Xk	և	, 4�8(	և), ℐ�8(	և), ℱ�8(	և), 4�7(	և), ℐ�7(	և), ℱ�7(	և)m :		և ∈ 2]m : �̈ ∈ P]	for	� = 1,2, …… , F	stand	�	Bipolar	NSS	above	2.	After	that	��	are	the	union	of	�	bipolar	NSS	is	denoted	by	⨃��`�	 ��,	can	be	written	as;	⨃��`�	 �� = N>�	,̈ N>	և, ����N4�8(	և)O, ����Nℐ�8(	և)O, ����Nℱ�8(	և)O	, ����N4�7(	և)O, ����Nℐ�7(	և)O, ����Nℱ�7(	և)O?∶ 		և ∈ 2O? ∶ 	 � ∈̈ P	, EFG	� = 1,2, … , FO	
3.9 Definition-18 If	�� = Xk�̈, Xk	և	, 4�8(	և), ℐ�8(	և), ℱ�8(	և), 4�7(	և), ℐ�7(	և), ℱ�7(	և)m :		և ∈ 2]m : �̈ ∈ P]	for	� = 1,2, …… , F	be	two	bipolar	NSS	above	2.	After	that	�`	and	�c	are	union	also	denoted	by	�`⋂̇	�c.	It	can	be	written	as;	
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�`⋂̇	�c = N>�	,̈ N>	և, ����N4�8(	և)O, ����Nℐ�8(	և)O, ����Nℱ�8(	և)O	, ����N4�7(	և)O, ����Nℐ�7(	և)O, ����Nℱ�7(	և)O?∶ 		և ∈ 2O? ∶ 	 � ∈̈ P	, EFG	� = 1,2, … , FO	
Example-6: consider	the	example	1		�`⋂̇	�c = {(�̈`	, {(	և`	, .3	, .9, .6, −.6,−.8, −.4), (	ևc		, .4, .9, .8, −.2, −.8,−.3), (	ևn	, .7, .8, .6, −.6, −.9,−.9)}),	(�̈c	, {(		և`	, .2, .6, .7, −.1,−.8, −.4), (	ևc	, .3, .9, .8, −.6,−.4, −.6), (	ևn	, .8, .6, .2, −.5, −.8,−.7))}	
3.10 Definition-19 

 If	�� = Xk�̈, Xk	և	, 4�8(	և), ℐ�8(	և), ℱ�8(	և), 4�7(	և), ℐ�7(	և), ℱ�7(	և)m :		և ∈ 2]m : �̈ ∈ P]	for	� = 1,2, …… , F	be	�	bipolar	NSS	above	2.	After	that	��	are	the	intersection	of	�	bipolar	NSS	is	denoted	by	⋂��`�̇ �� ,	can	be	written	as;	⋂��`�̇ ��= ��̈, 	�>	և, ����N4�8(	և)O,����Nℐ�8(	և)O, ����Nℱ�8(	և)O	, ����N4�7(	և)O, ����Nℐ�7(	և)O, ����Nℱ�7(	և)O?	:		և ∈ 2� ∈̈ P	, EFG	� = 1,2, … , F ��	
4. Methodology 

AGGREGATION BIPOLAR NEUTROSOPHIC SOFT OPERATOR	The	following	portion	presents	an	aggregation	bipolar	soft	operator	for	implementing	in	bipolar	%&&	further-more	demonstration	of	an	algorithm	developed	based	on	bipolar	%&&	is	given	by	arithmetical	example	to	apply	the	appropriate	usage	and	applicability	of	proposition.	
      Definition  If	� = N>�̈, N>	և, 48(	և)	, ℐ8(	և)	, ℱ8(	և)	, 47(	և)	, ℐ7(	և)	, ℱ7(	և)? ∶ 		և ∈ 2O? ∶ 	 � ∈̈ PO =XN>	և, 4�̈8(	և)	, ℐ�̈8(	և)	, ℱ�̈8(	և)	, 4�̈7(	և)	, ℐ�̈7(	և)	, ℱ�̈7(	և)?:		և ∈ 2O ∶ 	 � ∈̈ P]	be	a	bipolar	NSS	above	2.	After	that,	the	aggregation	bipolar	NSS	operator	is	denoted	by	����,	can	be	written	as;	���� = {��(	և) 	և	⁄ :		և ∈ 2}	

��(	և) = 12|P × 2|¡ (|1 − ℐ�̈8(	և)(4�̈8(	և) − ℱ�̈8(	և)) + ℐ�̈7(	և)�∈P̈ >4�̈7(	և) − ℱ�̈7(	և)?|)	Everywhere	|P × 2|	is	the	cardinality	of	P × 2.	
5. Algorithm 

1. Make	the	bipolar	NSS	on	2. 
2. Calculate	the	aggregation	bipolar	NS	operator. 
3. Find	an	alternative	set	on2. 
Example-7: Bipolar	condition	 is	a	serious	psychological	disease	especially	 if	not	 treated	early	 that	can	exceed	 to	 dangerous	 performance,	 challenging	 careers	 etc.	 A	 bipolar	 mood	 chard	 representing	 the	condition	of	patient’s	every	month.	Bipolar	teenagers	and	their	families	will	greatly	advantage	from	mood	plotting	and	can	suppose	initial	finding	the	signs	and	purpose	of	proper	cures	by	their	doctors.	We	make	mood	plan	according	to	algorithm.	Let	2 = {	և`, 	ևc, 	ևn, 	ևt}	present	the	set	of	day	in	which	data	has	been	maintain	 and	P = {�̈` = severe	depression, "�̈c = EF�Z£¤¥,�̈n = q£GZ¦E¤Z§F"}	 be	 set	 of	 parameters.	Now	we	apply	a	set	of	rules	as	follows	
1- Decision making  of bipolar NS � above another set ¨ as: 



International Journal of Neutrosophic Science (IJNS)                                                    Vol. 9, No. 1,  PP. 37-46, 2020 

 
  

DOI: 10.5281/zenodo.3957384 
 

 44

�= {(�̈`, {(		և`, .3, .5, .6, −.8,−.9, −.8)(	ևc, .4, .2, .9, −.7,−.3, −.1), (	ևn, .7, .8, .3, −.9,−.6, −.2), (	ևt, .2, .9, .1, −.6,−.9, −.8))},	{(�̈c, {(	և`, .9, .6, .8, −.2, −.7, −.9), (	ևc, .6, .2, .9, −.7,−.1, −.4), (	ևn, .1, .7, .4, −.3, −.6, −.9), (	ևt, .6, .9, .3, −.1,−.3, −.7))},	{(�̈n, {(	և`, .7, .1, .3, −.9, −.2, −.8), (	ևc, .8, .6, .9, −.1,−.5, −.8), (	ևn, .1, .5, .9, −.6, −.9, −.7), (	ևt, .8, .4, .7, −.3,−.5, −.1))}	
2-  find the decision making of aggregation bipolar NS operator �©ªª of �	�
: 

 ���� = {. 1075 	և`⁄ , . 1283 	ևc⁄ 	 , . 1358 	ևn⁄ 	, . 0891 	ևt⁄ }	
3- Choose the maximum degree of 	և« is . �«¬­ from �©ªª amongst the other.   

Example-8:	 Let	  2 = {	E`, Ec, 	En, E	t, E®}	 present	 the	 set	 of	AC	 inverters	 and	P = {�̈`, �̈c, �̈n, �̈t}	 be	 the	 set	 of	constraints	in	which"	�̈` = ¦§q¯EF¥", "	�̈c = [lF¦¤Z§F°	", "			�̈ n = ¦ℎ£E¯", "	�̈t = ²³	¦E¯E¦Z¤¥".	Now	we	apply	a	set	of	rules	as	follows:	
1. Decision making  of bipolar NS � above another set ¨ as: � = {(�̈`, {(	E`, .2, .3, .7, −.5,−.8, −.6)(Ec, .6, .8, .9, −.3,−.9,−.7), (En, .5, .4, .8, −.6, −.8,−.3),	(Et, .3, .9, .6, −.6,−.8, −.4), (E®, .2, .5, .6, −.8,−.5, −.7))}, {(�̈c, {(E`, .3, .7, .5, −.9, −.1,−.9), (Ec, .5, .9, .8, −.6,−.8, −.1),	(En, .8, .6, .2, −.5,−.8, −.7), (Et, .9, .6, .7, −.6, −.7,−.9), (E®, .8, .5, .2, −.5, −.8,−.8))},	�̈n, {(E`, .3, .5, .8, −.9,−.7, −.1), (Ec, .6, .3, .1, −.8,−.9, −.9), (En, .9, .9, .5, −.3,−.2, −.1),	(Et, .3, .1, .7, −.2, −.7,−.3), (E®, .4, .6, .8, −.1, −.9, −.7))}{(�̈t, {(E`, .9, .8, .3, −.1, −.2,−.7)	(Ec, .3, .7, .8, −.3,−.5, −.4)(En, .5, .1, .3, −.7,−.4,−.3)(Et, .6, .9, .7, −.9, −.8,−.4)(E®, .9, .5, .2, −.1, −.1,−.6))}	
2. find the decision making of aggregation bipolar NS operator �©ªª of �	�
: ���� = {. 1105 E	`⁄ , . 11525 E	c⁄ 	 , . 0915 E	n⁄ 	, . 114 E	t⁄ , . 07525 E	®⁄ }	
3. Choose the maximum degree of ´�  is . ��¬�¬ from �©ªª amongst the other.   

Example-9:	 Let	 2 = {	¦`, ¦c, 	¦n}	 present	 the	 set	 of	 auto	 car	 and	P = {"�̈` = ¦ℎ£E¯", "�̈c = [£E¤lµ£°", "�̈n =q£¤E¶¶Z¦	¦§¶§lµ", }	be	a	set	of	constraints.	Now	we	set	of	rules	as	follows:	
1. Decision making  of bipolar NS � above another set ¨ as: � = {(�̈`, {(	¦`, .1, .3, .5, −.4,−.2, −.5)(¦c, .3, .1, .6, −.3, −.5,−.6), (¦n, .2, .4, .5, −.3, −.1, −.2)},	{(�̈c, {(¦`, .6, .1, .3, −.2,−.1, −.4), (¦c, .7, .3, .1, −.2, −.3,−.5), (¦n, .1, .5, .4, −.3, −.2,−.1)},	{(�̈n, {(¦`, .5, .2, .1, −.7,−.1, −.3), (¦c, .3, .4, .1, −.5, −.2,−.1), (¦n, .4, .1, .6, −.3, −.2,−.5)}	
2. Find the decision making of aggregation bipolar NS operator �©ªª of�	�
: ���� = ���� = {. 1672 ¦	`⁄ , . 145 ¦	c⁄ 	, . 1833 ¦	n⁄ } 
3. Choose the maximum degree of ·«  is . �­«« from �©ªª amongst the other. 

 
 

6. Conclusion 

 In this paper, we discussed about the concept of bipolar neutrosophic soft sets and redefined some features of that 
particular concepts. Then we have employed bipolar neutrosophic soft sets in auto car selection with the help of 
aggregation operators. So we reached at the decision that what type of car is selected on what characteristics.   
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Abstract  

Neutrosophic along with its environment development over the past decades. Neutrosophic environment is apply to various 
applications in logic,statstics,albebra, neural networks and several other fields. Neutrosophic sets has been presented to handle the 
indeterminacy in real-world decision-making problem. Real world problems have some kind of uncertainty in nature and one of 
the influential problem in environment. Neutrosophic environment results are apply  to  a new dimension in traffic control. 
Neutrosophic is the vital role on traffic flow control . It is deal with  membership , non membership  and also indeterminacy of the 
data as well.  The advantage of the neutrosophic environment is to  find the optimized result of the system choosing the best 
alternative.In this paper, traffic flow control is analyzed under neutrosophic environment using  MATLAB.  

Keywords: Traffic flow ,Neutrosophic environment, Neutrosophic network 
 

1.Introduction  

   If the number of vehicles are increased and having lower phase of highways then there will be a traffic 
congestion problem.  The general factors for traffic problems are density of the vehicles, human behavior, traffic light 
system and social behavior.  The complex and changing traffic situations cannot be dealt by conventional traffic 
control methodologies or control systems. Analyzed the Parametric and nonparametric traffic volume forecasting[1]. 
Deals with Spectral and cross-spectral analysis of urban traffic flows [2]. To introduced the traffic forecast using 
simulations of large scale networks[3]. Analyzed the  multivariate state space approach for urban traffic flow modeling 
and prediction[4].Introduced Interval neutrosophic Sets and Logic[5].Introduced A unifying field in logic. 
Neutrosophy: Neutrosophic probability, set, logic[6]. Analyzed A Bayesian Network Approach to Traffic Flow 
Forecasting[7]. Introduced a novel Fuzzy Neural Approach to Road Traffic Analysis and Prediction[8]. Introduced 
the Type-2 fuzzy logic approach for short term traffic forecasting[9]. Analyzed the Ensemble learning approach for 
freeway short-term traffic flow prediction[10]. Introduced the Fuzzy Neural Network model Applied in the Traffic 
Flow Prediction[11]. Introduced an Aggregation Approach to Short-Term Traffic Flow Prediction[12].Predicting 
traffic flow, speed, length of the queue and travel time are necessary for the transportation management applications 
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[13]. Predicting and modeling traffic flow has drawn attention from literature as it is very important for formatting 
intelligent transportation system theoretically and practically. The area of transportation studies has attracted interest 
among the researchers [14]. Fuzzy logic is a powerful tool to used in unncertainties in measurements and information 
used to calculate the parameters; here the membership value for a particular traffic state is not a crisp value Any 
number of intersections and lanes can be handled using fuzzy and interval fuzzy logic in traffic control management. 
Generally there are two types of signal control available, namely, fixed time control (the traffic conditions are fixed) 
and adaptive time control (the traffic conditions may be refined over a period of time control [15-16]. Introduced an 
intelligent Traffic Light Control System for Isolated Intersection Using Fuzzy Logic[17]. The complex and changing 
traffic situations cannot be dealt by conventional traffic control methodologies or control systems 

If the number of vehicles are increased and having lower phase of highways then there will be a traffic congestion 
problem.  The general factors for traffic problems are density of the vehicles, human behavior, traffic light system and 
social behavior.  The complex and changing traffic situations cannot be dealt by conventional traffic control 
methodologies or control systems. 

  
As the flow of traffic varies from hour to hour in morning and evening. Especially during office timing the traffic 

flow will be high in general. The one of the advantage of fuzzy logic is, there is a possibility of computing with words 
[18]. 

 .  
Neutrosophic logic was proposed by Smarandache can express determinate as well as indeterminate of the 

information by neutrosophic numbers.  Solving traffic flow problem is a difficult one for certain parameters as the 
real-time situations are uncertain in nature and can be solved easily by considering neutrosophic logic [19]. Introduced 
a Traffic signal control using fuzzy logic[20]. Deal with Interval neutrosophic multiple attribute decision-making 
method with credibility information[21]. An Improved score function for ranking neutrosophic Sets and Its 
Application to decsion making process  Fuzzy and neutrosophic logic are playing a vital role in dealing with 
uncertainties. Introduced the traffic control management in triangular interval type-2 fuzzy and interval neutrosophic 
environments [26-34]. Introducted the traffic control management using Gauss Jordan method under neutrosophic 
Environment[35]. 

 

2. Definition    

Neutrosophic number  
    Neutrosophic linear equations and solving method for traffic flow control under neutrosophic number (z=a +bI) 

environment. A system consists of linear equations (LEs) can be solved . By finding an augmented matrix form the 
given system, one can find the inverse of the matrix  and using MATLAB. 

3. Applications 

At Analyze of traffic flow   
  
         The roads are considering as Road1, Road2, Road3 and Road4. FIGURE 1 shows the traffic flow on the four 

roads. Here z is a neutrosophic variable, and 1y , 2y and 3y  are the unknown variables. In this junctions falsity 
considered as zero. Where I is the indeterminacy of the traffic flow.     
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Road 1    Road 2 

  

     700                500 

        Road 3                                  1y                                           1800  ,y2                                                                                         
                             

   

1300 

                      1500                               z    900   

                 Road 4                                         

     Y3     800 

                   600 

 

FIGURE 1. The traffic flows of four roads 

The traffic in the junction as follows: 

    2000=y+z 

    2300=y1+y2 

    1700=y2+y3 

    2100=y3+z 

Rewrite the equation as, 

y1 = 2000-z 

y1+y2 = 2300 

    y2+2y3 = 3800-z 

  

Based on, z = 500+I, the system can also be described by the following three NLEs: 

Then, the neutrosophic equations are:  

1 =1500-Iy  

    y1+y2 = 2300 
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    y2+2y3 = 3300-I 

Thus, the neutrosophic matrices are: 

1 0 0
1 1 0
0 1 2

A
 
   
   , 

1

2

3

y
Y y

y

 
   
    

 � = �1500 − �23003300 − �� 
For the system consists of NLEs, apply the  MATLAB software, shown in the following program and the solution of 
the system is : 

 For the system consists of NLEs, apply the MATLAB software, shown in the following program 

clc 

syms I; 

a=[1 0 0;1 1 0;0 1 2] 

b=[1500-I;2300;3300-I] 

[v,j]=jordan(a) 

j=inv (v)*a*v 

y=a\b 

Output of the program are as follows:  

a=[1 0 0;1 1 0;0 1 2] 

 b=[1500-I;2300;3300-I] 

 [v,j]=jordan(a) 

y=a\b 

� = �1500 − �� + 8001250 − �� 
The values of Y are NNs.  

In some of the real-time situations, when I ∈[0, 100] is the possible range, the solution of the system is: 

�������� = �[1400,1500][800,900][1150,1250]�   
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Corresponding to the possible traffic flow z = [200,250] 

Thus the ranges of the three traffic flows are �� = [1400,1500]�� = [800,900]�� = [1150,1250] 
In table 1 represent the various range of indeterminacy. 

 

TABLE 1. Traffic flo ws according to various ranges of Indeterminacy  

I  z  1y  2y  3y  
0I   200  1500  800 1250  

 100,200I    300,400   1300,1400  
[900,1000]  1050,1150  

 200,300I    400,500   1200,1300  
[1000,1100]  950,1050  

 300, 400I    500,600   1100,1200  
[1100,1200]  850,950  

 400,500I    600,700   1000,1100  
[1200,1300]  750,850  

 

 

In table 2 shows that the advantages and disadvantage in fuzzy and Neutrosophic traffic 
control management. 

Table :2 Comparison of Traffic Control Management using Crisp , Fuzzy and  
Neutrosophic  

Traffic Control 
Management 

Advantages Limitations 

Crisp   Traffic density for all  fixed time 
period. 
 
 

 It is not possible to act in varing traffic 
density. 

 Not able to solve quickly in uncertainty 
behaviour  

Fuzzy   Traffic density in different time can be 
consider.  

 Intelligent 
 Act the best security 

 Not able to use in stability. 
 Not able to use flexibility. 
 Not able to use in on line planning. 

Neutrosophic   Deals not only uncertainty but also 
indeterminacy due to unpredictable 
environmental disturbances  

 Not able to calculate the error. 

 

 

4. CONCLUSION 
    Traffic control management is an essential task which insure the safty of the people . In this paper, fundamental 
concepts of traffic control have been reviewed. Triangular and Trapezoidal Fuzzy numbers are widely used in many 
of the real world problems as it deals with the problems which having less number of membership values with covering 
the linguistic parameters of the system effectively.  Traffic flow management has been analyzed with respect to various 
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ranges of indeterminacy under neutrosophic environment using  MATLAB program Also compared the traffic control 
management for crisp sets,fuzzy and neutrosophic.   
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Abstract  

The idea for this paper is based on the use of a computer-connected microscope associated with Deep Learning, 
using Convolutional Neural Network (CNN). CNN is a mathematical type of Deep Learning used to recognize 
and diagnose images.  After that, we photograph blood samples, as well as samples, were taken from the mouth 
and nose, as well as it is possible to photograph the throat from the inside of a large number of injured and 
uninfected people as well as suspected of infection and provide a large number of references for this program for 
each type of those different samples. It is possible to perform this process in few minutes, save time and money, 
make analyzes for the largest possible number of people, and provide results in an accurate and documented 
manner, which is through the Neutrosophic time series. The basis and analysis of dealing with all data, whether 
specific or not, that can be taken by time series values, then we present the linear model for the neutrosophic time 
series, and we test the significance of its coefficient based on patients distribution. Finally, from the above, we 
can provide a patient neutrosophic time series according to the linear model through which we can accurately 
predict the program will give degrees of verification and degrees of the uncertainty of the data. 
 
Keywords: COVID-19, Corona Virus, Neutrosophic Systems, Neutrosophic Domain, Deep Learning, 
Convolutional Neural Network 
Background: Coronavirus disease has widely spread all over the world since the beginning of 2020. It is desirable 
to develop automatic and accurate detection of COVID-19 using chest CT. 

  
1. Introduction  

Medical workers deal with a vast amount of information, which has arisen from the womb of laboratory tests 
and clinical and physiological observations. As doctors began a shift in clinical practice from an accidental 
analysis to relying on the accuracy of their observation to analyzing different evidence and structured algorithms, 
relying on groups of constantly updated to improve the ability to diagnose a disease or predict patient outcomes. 
From this standpoint, that study, which relies on the use of artificial intelligence and Neutrosophic data to identify 
people with this virus in degrees of certainty, uncertainty, impartiality, and to exploit this in the medical aspect to 
provide the greatest amount of time and money. Coronavirus, also known as COVID-19, which is among the 
viruses is a large series of viruses that cause many diseases ranging from the common cold and acute respiratory 
diseases, and the disease was first discovered in 2012 [10], who are infected with children and the elderly, the 
cause of their immunodeficiency and those who have heart diseases are more vulnerable to this virus. This virus 
has invaded many countries in the world now, caused a recession in the world economy, left many deaths, and 
injured. Neutrosophic is a new view of modeling, designed to effectively deal with underlying doubts in the real 
world, as it came to replace binary logic that recognized right and wrong by introducing a third neutral case which 
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could be interpreted as non-specific or uncertain. Founded by Florentin Smarandache in 1999  [2,3], as a 
generalization of fuzzy logic . As an extension of this, A. A. Salama introduced the neutrosophic crisp sets Theory 
as a generalization of crisp sets [1] and developed, inserted and formulated new concepts in the fields of 
mathematics, statistics, computer science and information systems [4-9]. Neutrosophic has grown significantly in 
recent years through its application in measurement, sets and graphs and in many scientific and practical fields. 
 
2.  Scientific Experiment: 

The first step of the experiment is defining the pre-dataset of images of the available samples about 
people who are infected with the Coronavirus, to make image references for comparison with modern intraoral 
pictures. There is four sections of data set are used, as follows: 

 The first section is images of blood samples. 
 The second section is images of saliva samples. 
 The third section is images of nose samples. 
 The fourth section is images of nose samples. 
The system needs a microscope imaging connected to a computer as well as a photographic camera connected 

to the same device and a computer device that uses CNN to match and identify similarities of images with the pre-
dataset of images that were previously placed on the program, by enlarging the modern images that are pulled 
from the microscope and the camera. The pre-dataset of images is the reference to diagnose each section separately 
so that the system gives an expectation to each section through analyzing and processing data and images as well 
as determining the probability of a person being injured or not, as well as the risk of injury. 

 

The following experiment package:  

 

 

 

 

 

Fig.1. Experiment Tools 

 

Below are the stages and mechanism for implementing the idea and requirements: 

1- Stages: 
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Fig.2. Implementation stages (1, 2, 3 and 4) 
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In the last step of the system, the principles of neutrosophic computing useful to system implementation for a 
large plethora of applications. 

 

 

 

 

Fig.3. Neutrosophic Information Systems 

The  following figure represents the Neutrosophic COVID-19 image classifier Architecture 

 

Figure 4. Neutrosophic COVID-19 image classifier Architecture [11] 

The algorithm for the proposed system is given below which presented in Figure 4:  

1. Convert each image in the database from the spatial domain to the neutrosophic 
domain.  

2. Create a database containing various COVID-19.  
3. Extract the Texture feature of COVID-19 in the database.  
4. Construct a combined feature vector for T, I, F and Stored in another database called 

Featured Database.  
5. Find the distance between feature vectors of query COVID-19 and that of featured 

databases.  
6. Sort the distance and Retrieve the N-top most similar. 

 

The RNN structure replaces the traditional neuron by two neurons (lower neuron, upper neuron) to 
represent lower and upper approximations of each attribute in the CTG data set, its structure formed 
from 4 layers input, 2 hidden and output layers. The hidden layers have rough neurons, which overlap 
and exchange information between each other, While the input and output layers consist of traditional 
neurons 
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The following figure gives an example of a patient's neutrosophic time series 

 

Fig.5. Patient  neutrosophic time series 

 Recommendations: 
The implementation steps require: 

1) Providing modern computers inside the isolation hospitals equipped with a program for matching 
pictures, processing data, and issuing expectations and recommendations. 

2) Provide a special microscope for imaging samples connected to a computer, as well as a high-quality 
camera connected to the computer as well. 

3) Place blood samples, as well as samples, were taken from the mouth and nose, on the microscope, take 
pictures and place them on the aforementioned program. 

4) Take pictures of patients' mouths from the inside (the beginning of the throat) and put them on the 
program. 

5) Use all images for samples and mouth and put them as references for the system and divide the pictures 
into patterns and each reference pattern is different. 

6) Determine the different virus patterns from the pictures and put all the data related to that pattern of 
symptoms, health status, and development in the case. 

7) Take samples from the persons suspected of being infected, as well as those in contact with patients, and 
provide them with the program. 

8) The start of applying this system in hospitals to identify the injured and the savings of time, effort and 
money. 

 

Conclusion and Future Works 

The idea for this study is based on the use of a computer-connected microscope associated with Deep Learning, 
using Convolutional Neural Network. The basis and analysis of dealing with all data, whether specific or not, that 
can be taken by time series values, then we present the linear model for the neutrosophic time series, and we test 
the significance of its coefficient based on patients distribution. Finally, from the above, we can provide a patient 
neutrosophic time series according to the linear model through which we can accurately predict the program will 
give degrees of verification and degrees of the uncertainty of the data. Furthermore, the proposed framework can 
also be extended towards other important domains of healthcare such as diabetes, cancer, and hepatitis, which can 
provide efficient services to corresponding patients. 
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Abstract

A single valued neutrosophic set (SVNS) is a useful tool to portray uncertainty in multi attribute decision-

making. In this article, we develop hybrid averaging and hybrid geometric aggregation operator using sine

trigonometric function to handle uncertainty in single valued neutrosophic information, which are, sine trigonometric-

single valued neutrosophic hybrid weighted averaging (ST-SVNHWA) operator and , sine trigonometric-single

valued neutrosophic hybrid weighted geometric (ST-SVNHWG) operator. We investigate properties, namely,

idempotancy, monotonicity and boundedness for the proposed operators. Moreover, we give an algorithm

to solve multi-criteria decision-making issues which involve SVN information with ST-SVNHWA and ST-

SVNHWG operators. Finally, an illustrative example of agricultural land selection is provided to verify the

effectiveness. Sensitivity and comparative analyses are also implemented to assess the stability and validity of

our method.

Keywords:

Single valued neutrosophic set, Sine trigonometric single valued neutrosophic information,Agriculture land

selection,Decision Support.

1 Introduction

Multi-criteria decision-making (MCDM) is performing a vital role in different areas, including social, physical,

medical and environmental sciences. MCDM methods use not only to evaluate an appropriate object but also

to rank the objects in a given problem. To solve different uncertain problems for decision-making, Atanassov13

presented the concept of intuitionistic fuzzy set (IFS) to include both membership and non membership parts,

an extension of fuzzy set47 in which simply membership part is characterized. After that, various hybrid

models of fuzzy sets (FSs) have been presented and investigated such as, Pythagorean fuzzy sets (PyFSs),46

Picture fuzzy sets (PFSs),17 Spherical fuzzy sets (SFSs)1, 2 and single-valued neutrosophic set (SVNS).38, 40

Aggregation operators (AOs) perform an important role in order to combine data into a single form and

solve MCDM problems. Aggregation implies the invention of a numeral of things to a cluster or a bunch

of objects that have come or been taken together. In the past few years, aggregation operators based on FSs

and its various hybrid compositions have made very much attention and become attractive because they can

quickly execute functional areas of diverse regions. For example, Yager45 introduced weighted aggregation

operators (AOs). Khan et al.,23 presented the probabilistic hesitant based DM technique. Xu41 proposed

some new AOs under IFSs. Khan et al.,25 established the novel decision making (DM) methodology under

generalized intuitionistic fuzzy soft information. Khan et al.,24 established the Dombi AOs under PyFSs.

Ashraf et al.,5 proposed the fuzzy decision support modelling for internet finance soft power evaluation based

on sine trigonometric Pythagorean fuzzy information. Batool et al., established the entropy based DM method

under probabilistic Pythagorean hesitant fuzzy information. Sajjad et al.,39 established the TOPSIS approach

under PyFSs. Ashraf et al.,6 presented the AOs based on algebraic norm under PFSs. Khan et al.,26 presented

the AOs based on Einstein norm under PFSs. Ashraf et al.,7 introduced the DM method under picture cubic

fuzzy sets (PCFSs). Qiyas et al.,34, 35 established the AOs based on the Dombi and algebraic norm using

Doi :10.5281/zenodo.3958076 60
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linguistic picture fuzzy information respectively. Rafiq et al.,37 proposed the cosine trigonometric function

based similarity measure under SFSs. Zang et al.,48 proposed the DM approach using TOPSIS under spherical

fuzzy rough set. Ashraf et al.,8 introduced the norm representation under SFSs. Ashraf et al.,9 presented the

AOs using Dombi norm under SFSs. Jin et al.,20 introduced the AOs for hybrid structure of linguistic and SFSs.

Ashraf et al.,10 presented the AOs for SFSs using the symmetric sum technique and discussed their application

in DM. Jin et al.,21 established the logarithmic function based AOs under SFSs. Ashraf et al.,11 presented

the DM technique using distance measures under SFSs. Barukab et al.,14 introduced the entropy measure

based extended TOPSIS under SFSs. Ashraf et al.,12 established the AOs using logarithmic function under

SVNSs. Ye42 established the correlation coefficient based DM approach under SVNSs. Liu et al.,28 proposed

the Dombi norm based DM methodology under linguistic SVNSs. Liu et al.,29 established the muirhead mean

based power AOs under SVNSs. Liu et al.,30, 31 presented the Heronian mean based power AOs using linguistic

SVNSs and cubic neutrosophic information respectively. Ji et al.,22 presented the Bonferroni mean AOs using

Frank norm under SVNSs. Ye43 introduced the list of novel AOs using exponential function under SVNSs and

discussed their application to tackle the uncertainty in decision making problems.

Since single valued neutrosophic model is more general than the fuzzy sets, IFS, PyFS, PFS and SFSs due

to the wider range of applicability over different complex problems. The SVN sets can explain uncertainties

concurrently more precisely than the other existing methods, like fuzzy set and existing structures.16, 27, 36

The motivation of developed AOs is summarized as below.

(1) A very difficult MCDM problem is the estimation of the supreme option in a single valued neutrosophic

environment due to the involvement of several imprecise factors. Assessment of information in different

MCDM techniques is simply depicted through fuzzy and their existing structures which may not consider all

the data in a real-world problem.

(2) As a general theory, single valued neutrosophic numbers describes efficient execution in the assessment

process about uncertain, imprecise and vague information. Thus, single valued neutrosophic theory provide an

excellent approach for the assessment of objects under multinary data.

(3) In view of the fact that sine trigonometric hybrid AOs are simple but provide a pioneering tool for

solving MCDM problems when combine with other powerful mathematical tools, this article aims to develop

sine trigonometric hybrid AOs in a single valued neutrosophic environment to handle complex problems.

(4) A single valued neutrosophic model is different from the mathematical tools like fuzzy sets and their

extensions. Because the fuzzy set and their extensions can only handle one dimensional data, two dimensional

data and three dimensional data, respectively, which may prompt a loss in data. Nevertheless, in many daily

life problems, we handle the situations having higher dimension to sort out all the attributes.

(5) The sine trigonometric hybrid AOs employed in the construction of SVN sine trigonometric hybrid

AOs are more suitable than all other aggregation approaches to tackle the MCDM situations as developed AOs

have ability to consider all the information within the aggregation procedure.

(6) sine trigonometric AOs make the optimal outcomes more accurate and definite when utilized in prac-

tical MCDM problems under single valued neutrosophic environment. However, the proposed single valued

neutrosophic operators handle the drawbacks of AOs present in the literature.

Therefore, some single valued neutrosophic sine trigonometric hybrid AOs are developed to choose the

best option in different decision-making situations. The developed operators has some advantages over other

approaches which are given as below:

(1) Our proposed methods explain the problems more accurately which involve multiple attributes because

they consider single valued neutrosophic numbers.

(2) The developed AOs are more precise and efficient with single attribute.

(3) To solve practical problems by using sine trigonometric hybrid AOs with single valued neutrosophic

numbers is very significant.

The rest of this article is structured as follows: Section 2 recalls some fundamental definitions and op-

erations of the SVNSs. Section 3 presents novel sine hybrid aggregation operators. Section 4 develops a

methodology of these AOs to MCDM problems under single valued nuetrosophic environment. Section 5

discusses a application of the selection of best agricultural land. Section 6 provides comparative analysis

of developed approaches with different aggregating methodologies. Section 7 discusses the conclusions and

future directions.

2 Preliminaries

In this section some essential notions of PFS, SFS, and SVNS are examined.
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Definition 2.1. 17A PFS U in fixed universe set ג is defined as

U = {〈♭, ρ̃℘ (♭) ,k℘ (♭) , ñ℘ (♭)〉 |♭ ∈ {ג ,

where the positive, neutral and negative membership grades, ρ̃℘ : ג → Θ, k℘ : ג → Θ and ñ℘ : ג → Θ,
respectively and also, Θ = [0, 1] is the unit interval. Furthermore, 0 ≤ ρ̃℘ (♭) + k℘ (♭) + ñ℘ (♭) ≤ 1, for each

♭ ∈ .ג

Definition 2.2. 1, 2A SFS U in fixed universe set ג is defined as

U = {〈♭, ρ̃℘ (♭) ,k℘ (♭) , ñ℘ (♭)〉 |♭ ∈ {ג ,

where the positive, neutral and negative membership grades, ρ̃℘ : ג → Θ, k℘ : ג → Θ and ñ℘ : ג → Θ,
respectively and also, Θ = [0, 1] is the unit interval. Furthermore, 0 ≤ ρ̃2℘ (♭) + k2

℘ (♭) + ñ2
℘ (♭) ≤ 1, for each

♭ ∈ .ג

Definition 2.3. 38 A neutrosophic set U in a fixed universe set ג is defined as

U = {〈♭, ρ̃℘ (♭) ,k℘ (♭) , ñ℘ (♭)〉 |♭ ∈ {ג ,

where the positive, neutral and negative membership grades, ρ̃℘ : ג → ]0−, 1+[ , k℘ : ג → ]0−, 1+[ and

ñ℘ : ג → ]0−, 1+[ , respectively. Furthermore, 0− ≤ ρ̃℘ (♭) + k℘ (♭) + ñ℘ (♭) ≤ 3+, for each ♭ ∈ .ג

Definition 2.4. 40 A SVNS U in a fixed universe set ג is defined as

U = {〈♭, ρ̃℘ (♭) ,k℘ (♭) , ñ℘ (♭)〉 |♭ ∈ {ג ,

where the positive, neutral and negative membership grades, ρ̃℘ : ג → Θ, k℘ : ג → Θ and ñ℘ : ג → Θ,
respectively and also, Θ = [0, 1] is the unit interval. Furthermore, 0 ≤ ρ̃℘ (♭) + k℘ (♭) + ñ℘ (♭) ≤ 3, for each

♭ ∈ .ג

In simplification, throughout the whole work, the triplet U = {ρ̃℘,k℘, ñ℘} called single valued neutro-

sophic number (SVNN) and their collection denoted by SV NN .(ג)
Here we highlight the some basic operations for SVNNs,4044 &50 as follows:

Definition 2.5. 50 Let U1 = {ρ̃℘1 ,k℘1 , ñ℘1} and U2 = {ρ̃℘2 ,k℘2 , ñ℘2} ∈ SV NN (ג) . than,

(1) U1 ⊆ U2 if and only if ρ̃℘1 ≤ ρ̃℘2 ,k℘1 ≥ k℘2 and ñ℘1 ≥ ñ℘2 for each ♭ ∈ .ג
(2) U1 = U2 if and only if U1 ⊆ U2 and U2 ⊆ U1.
(2) U1 ∩ U2 = {min (ρ̃℘1

, ρ̃℘2
) ,max (k℘1

,k℘2
) ,max (ñ℘1

, ñ℘2
)} ,

(3) U1 ∪ U2 = {max (ρ̃℘1
, ρ̃℘2

) ,min (k℘1
,k℘2

) ,min (ñ℘1
, ñ℘2

)} ,
(4) Uc1 = {ñ℘1 ,k℘1 , ρ̃℘1} .

Definition 2.6. 40, 44 Let U1 = {ρ̃℘1 ,k℘1 , ñ℘1} and U2 = {ρ̃℘2 ,k℘2 , ñ℘2} ∈ SV NN (ג) with a > 0 . than,

(1) U1 ⊗ U2 = {ρ̃℘1
ρ̃℘2

,k℘1
+ k℘2

− k℘1
· k℘2

, ñ℘1
+ ñ℘2

− ñ℘1
· ñ℘2

} ;
(2) U1 ⊕ U2 = {ρ̃℘1

+ ρ̃℘2
− ρ̃℘1

ρ̃℘2
,k℘1

k℘2
, ñ℘1

ñ℘2
} ;

(3) (U1)
a
=
{
(ρ̃℘1

)
a
, 1− (1− k℘1

)
a
, 1− (1− ñ℘1

)
a
}
;

(4) a · U1 =
{
1− (1− ρ̃℘1

)
a
, (k℘1

)
a
, (ñ℘1

)
a
}
.

Definition 2.7. 4 Let U~ = {ρ̃℘~
,k℘~

, ñ℘~
} ∈ SV NN (ג) (~ = 1, 2, 3, ..., n). Then, the Algebraic averaging

aggregation operator for SV NN (ג) is denoted by SV NWA and defined as follows:

SV NWA (U1,U2,U3, ...,Un) =

n∑

~=1

a~U~,

=
{
1−Πn~=1(1− ρ̃℘~

)a~ ,Πn~=1(k℘~
)a~ ,Πn~=1(ñ℘~

)a~

}

where the weights of U~ represented by a~ (~ = 1, 2, ..., n) having a~ ≥ 0 and
∑n

~=1 a~ = 1.

Definition 2.8. 4 Let U~ = {ρ̃℘~
,k℘~

, ñ℘~
} ∈ SV NN (ג) (~ = 1, 2, 3, ..., n). Then, the Algebraic geometric

aggregation operator for SV NN (ג) is denoted by SV NWG and defined as follows:

SFWG (U1,U2,U3, ...,Un) =
n∏

~=1

(U~)
a~ ,

=
{
Πn~=1(ρ̃℘~

)a~ , 1−Πn~=1(1− k℘~
)a~ , 1−Πn~=1(1− ñ℘~

)a~

}

where a~ (~ = 1, 2, ..., n) represents the weights of U~ (~ = 1, 2, 3, ..., n) with a~ ≥ 0 and
∑n

~=1 a~ = 1.
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Ashraf et al.,4 introduced the sine trigonometric operational laws for single valued neutrosophic environ-

ments.

Definition 2.9. 4 Let U = {ρ̃℘,k℘, ñ℘} ∈ SV NN (ג) . If

sin (U) =

{(
,ג sin

(
π
2 ρ̃℘ (ג)

)
, 1− sin

(
π
2 1− k℘ (ג)

)
,

1− sin
(
π
2 1− ñ℘ (ג)

)
)
|♭ ∈ ג

}

then, sin (U) is said to be sine trigonometric operator and their value known to be sine trigonometric SVNN

(ST-SVNN).

Definition 2.10. 4 Let sin (U1) =








sin
(
π
2 ρ̃℘1

)
,

1− sin
(
π
2 1− k℘1

)
,

1− sin
(
π
2 1− ñ℘1

)






 and sin (U2) =








sin
(
π
2 ρ̃℘2

)
,

1− sin
(
π
2 1− k℘2

)
,

1− sin
(
π
2 1− ñ℘2

)








be two ST-SVNNs. The basic operations for SVNNs are as follows

(1) sin (U1)⊕ sin (U2) =




1−
(
1− sin

(
π
2 ρ̃℘1

)) (
1− sin

(
π
2 ρ̃℘2

))
,(

1− sin
(
π
2 1− k℘1

)) (
1− sin

(
π
2 1− k℘2

))
,(

1− sin
(
π
2 1− ñ℘1

)) (
1− sin

(
π
2 1− ñ℘2

))


 ,

(2) ψ · sin (U1) =

(
1−

(
1− sin

(
π
2 ρ̃℘1

))ψ
,
(
1− sin

(
π
2 1− k℘1

))ψ
,(

1− sin
(
π
2 1− ñ℘1

))ψ

)
,

(3) sin (U1)⊗ sin (U2) =




sin
(
π
2 ρ̃℘1

)
sin
(
π
2 ρ̃℘2

)
,

1−
(
sin
(
π
2 1− k℘1

)) (
sin
(
π
2 1− k℘2

))
,

1−
(
sin
(
π
2 1− ñ℘1

)) (
sin
(
π
2 1− ñ℘2

))


 ,

(4) (sin (U1))
ψ
=

( (
sin
(
π
2 ρ̃℘1

))ψ
, 1−

(
sin
(
π
2 1− k℘1

))ψ
,

1−
(
sin
(
π
2 1− ñ℘1

))ψ

)
.

Definition 2.11. Let U = {ρ̃℘,k℘, ñ℘} ∈ SV NN (ג) . Then, the score and accuracy of U is denoted and

defined as

(1) šč (U) = ρ̃℘ − k℘ − ñ℘, and

(2) ãč (U) = ρ̃℘ + k℘ + ñ℘.

Definition 2.12. Let U1 = {ρ̃℘1
,k℘1

, ñ℘1
} and U2 = {ρ̃℘2

,k℘2
, ñ℘2

} ∈ SV NN (ג) . Then,

(1) If šč(U1) < šč(U2) then U1 < U2,
(2) If šč(U1) > šč(U2) then U1 > U2,
(3) If šč(U1) = šč(U2) then

(a) ãč(U1) < ãč(U2) then U1 < U2,
(b) ãč(U1) > ãč(U2) then U1 > U2,
(c) ãč(U1) = ãč(U2) then U1 = U2.

3 Novel Sine Trigonometric Hybrid AOs for SVNNs

This section propose the novel sine trigonometric hybrid AOs under SVN information.

Definition 3.1. Let U~ = {ρ̃℘~
(♭) ,k℘~

(♭) , ñ℘~
(♭)} ∈ SV NN (ג) (~ ∈ N). The sine trigonometric hybrid

weighted averaging AO for SV NN (ג) is represented by ST − SV NHWA and discribed as follows:

ST − SV NHWA (U1,U2, ...,Un) = σ1 sin
(
U ′

υ(1)

)
⊕ σ2 sin

(
U ′

υ(2)

)
⊕ ...⊕ σn sin

(
U ′υ(n)

)

=

n∑

~=1

σ~ sin
(
U ′

υ(~)

)
,

where the weights of U~ is represented by a~ (~ = 1, 2, ..., n) having a~ ≥ 0 and
∑n

~=1 a~ = 1 and gth

biggest weighted value is U ′

υ(~)

(
U ′

υ(~) = na~Uυ(~)|~ = 1, 2, ..., n
)

consequently by total order (υ (1) , υ (2) , υ (3) , ..., υ (n)).

Also the associated weight vector σ = σ~ (~ = 1, 2, ..., n) with σ~ ≥ 0 and
∑n

~=1 σ~ = 1.

Theorem 3.2. Let U~ = {ρ̃℘~
(♭) ,k℘~

(♭) , ñ℘~
(♭)} ∈ SV NN (ג) (~ ∈ N) and the weights of U~ represented

by (a1,a2, ...,an)
T

subject to
n∑

~=1

a~ = 1. The ST − SV NHWA AO is defined by a mapping Gn −→ G
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with associated weight vector σ~ (~ = 1, 2, ..., n) having σ~ ≥ 0 and
∑n

~=1 σ~ = 1:

ST − SV NHWA (U1,U2, ...,Un) =

n∑

~=1

σ~ sin
(
U ′

υ(~)

)

=




1−
n∏

~=1

(
1− sin

(
π
2 ρ̃

′

℘υ(~)

))σ~

,

n∏
~=1

(
1− sin

(
π
2 1− k′

℘υ(~)

))σ~

,

n∏
~=1

(
1− sin

(
π
2 1− ñ′

℘υ(~)

))σ~




(1)

Proof. By using mathematical induction on n we prove Theorem 3.2. Then the mathematical induction steps

below were implemented.

Step-1: For n = 2, we obtained

ST − SV NHWA (U1,U2) = σ1 sin
(
U ′

υ(1)

)
⊕ σ2 sin

(
U ′

υ(2)

)
.

Since by the Definition 2.9, sin (U1) and sin (U2) are SVNNs and hence σ1 sin
(
U ′

υ(1)

)
⊕ σ2 sin

(
U ′

υ(2)

)

is also SVNN. Further, for U1 and U2, we have

ST − SV NHWA (U1,U2)

= σ1 sin
(
U ′

υ(1)

)
⊕ σ2 sin

(
U ′

υ(2)

)

=




1−
(
1− sin

(
π
2 ρ̃

′

℘υ(1)

))σ1

,
(
1− sin

(
π
2 1− k′

℘υ(1)

))σ1

,
(
1− sin

(
π
2 1− ñ′℘υ(1)

))σ1


⊕




1−
(
1− sin

(
π
2 ρ̃

′

℘υ(2)

))σ2

,
(
1− sin

(
π
2 1− k′

℘υ(2)

))σ2

,
(
1− sin

(
π
2 1− ñ′

℘υ(2)

))σ2




=




1−
2∏

~=1

(
1− sin

(
π
2 ρ̃

′

℘υ(~)

))σ~

,

2∏
~=1

(
1− sin

(
π
2 1− k′

℘υ(~)

))σ~

,

2∏
~=1

(
1− sin

(
π
2 1− ñ′

℘υ(~)

))σ~




Step-2: Suppose that Equation 1 is holds for n = κ, we have

ST − SV NWA (U1,U2, ...Uκ) =




1−
κ∏

~=1

(
1− sin

(
π
2 ρ̃

′

℘υ(~)

))σ~

,

κ∏
~=1

(
1− sin

(
π
2 1− k′

℘υ(~)

))σ~

,

κ∏
~=1

(
1− sin

(
π
2 1− ñ′

℘υ(~)

))σ~



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Step-3: Now we have to prove that Equation 1 is holds for n = κ+ 1.

ST − SV NHWA (U1,U2, ...Uκ+1)

=

κ∑

~=1

σ~ sin
(
U ′

υ(~)

)
⊕ σκ+1 sin

(
U ′

υ(κ+1)

)

=




1−
κ∏

~=1

(
1− sin

(
π
2 ρ̃

′

℘υ(~)

))σ~

,

κ∏
~=1

(
1− sin

(
π
2 1− k′

℘υ(~)

))σ~

,

κ∏
~=1

(
1− sin

(
π
2 1− ñ′

℘υ(~)

))σ~




⊕




1−
(
1− sin

(
π
2 ρ̃

′

℘υ(κ+1)

))σκ+1

,
(
1− sin

(
π
2 1− k′

℘υ(κ+1)

))σκ+1

,
(
1− sin

(
π
2 1− ñ′

℘υ(κ+1)

))σκ+1




=




1−
κ+1∏
~=1

(
1− sin

(
π
2 ρ̃

′

℘υ(~)

))σ~

,

κ+1∏
~=1

(
1− sin

(
π
2 1− k′

℘υ(~)

))σ~

,

κ+1∏
~=1

(
1− sin

(
π
2 1− ñ′

℘υ(~)

))σ~




that is, when n = z + 1, Equation 1 also holds.

Hence, Equation 1 holds for any n. The proof is completed.

Next, we give some properties that are apparently carried by the proposed ST-SVNHWA aggregation

operator.

(1) Let U~ = {ρ̃℘~
,k℘~

, ñ℘~
} ∈ SV NN (ג) (~ = 1, 2, 3, ..., n) such that U~ = U . Then

ST − SV NHWA (U1,U2, ...,Un) = sin (U) .

(2) Let U~ = {ρ̃℘~
,k℘~

, ñ℘~
} ,U−

~
= {min (ρ̃℘~

) ,max (k℘~
) ,max (ñ℘~

)} and U+
~

= {max (ρ̃℘~
) ,min (k℘~

) ,min (ñ℘~
)}

∈ SV NN (ג) (~ = 1, 2, 3, ..., n) . Then,

sin
(
U−

~

)
≤ ST − SV NHWA (U1,U2, ...,Un) ≤ sin

(
U+
~

)
.

(3) Let U~ = {ρ̃℘~
,k℘~

, ñ℘~
} ,U∗

~
=
{
ρ̃∗℘~

,k∗

℘~
, ñ∗

℘~

}
∈ SV NN (ג) (~ = 1, 2, 3, ..., n) . If ρ̃℘~

≤ ρ̃∗℘~
,k℘~

≤
k∗

℘~
and ñ℘~

≤ ñ∗℘~
, then

ST − SV NHWA (U1,U2, ...,Un) ≤ ST − SV NHWA (U∗

1 ,U
∗

2 , ...,U
∗

n) .

Definition 3.3. Let U~ = {ρ̃℘~
(♭) ,k℘~

(♭) , ñ℘~
(♭)} ∈ SV NN (ג) (~ ∈ N). The sine trigonometric hybrid

weighted geometric AO for SV NN (ג) is represented by ST − SV NHWG and discribed as follows:

ST − SV NHWG (U1,U2, ...,Un) =
(
sin
(
U ′

υ(1)

))σ1

⊗
(
sin
(
U ′

υ(2)

))σ2

⊗ ...⊗
(
sin
(
U ′

υ(n)

))σn

=
n∏

~=1

(
sin
(
U ′

υ(~)

))σ~

where the weights of U~ is represented by a~ (~ = 1, 2, ..., n) having a~ ≥ 0 and
∑n

~=1 a~ = 1 and gth

biggest weighted value is U ′

υ(~)

(
U ′

υ(~) = na~Uυ(~)|~ = 1, 2, ..., n
)

consequently by total order (υ (1) , υ (2) , υ (3) , ..., υ (n)).

Also the associated weight vector σ = σ~ (~ = 1, 2, ..., n) with σ~ ≥ 0 and
∑n

~=1 σ~ = 1.

Theorem 3.4. Let U~ = {ρ̃℘~
(♭) ,k℘~

(♭) , ñ℘~
(♭)} ∈ SV NN (ג) (~ ∈ N) and the weights of U~ represented

by (a1,a2, ...,an)
T

subject to
n∑

~=1

a~ = 1. The ST − SV NHWG AO is defined by a mapping Gn −→ G

with associated weight vector σ~ (~ = 1, 2, ..., n) having σ~ ≥ 0 and
∑n

~=1 σ~ = 1:

ST − SV NHWG (U1,U2, ...,Un) =

n∏

~=1

(
sin
(
U ′

υ(~)

))σ~

=




n∏
~=1

(
sin
(
π
2 ρ̃

′

℘υ(~)

))σ~

,

1−
n∏

~=1

(
sin
(
π
2 1− k′

℘υ(~)

))σ~

,

1−
n∏

~=1

(
sin
(
π
2 1− ñ′

℘υ(~)

))σ~




(2)
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Proof. By using mathematical induction on n we prove Theorem 3.4. Then the mathematical induction steps

below were implemented.

Step-1: For n = 2, we get

ST − SV NHWG (U1,U2) =
(
sin
(
U ′

υ(1)

))σ1

⊗
(
sin
(
U ′

υ(2)

))σ2

.

Since by the Definition 2.9, sin (U1) and sin (U2) are SFNs and hence
(
sin
(
U ′

υ(1)

))σ1

⊗
(
sin
(
U ′

υ(2)

))σ2

is also SVNN. Further, for U1 and U2, we have

ST − SV NHWG (U1,U2)

=
(
sin
(
U ′

υ(1)

))σ1

⊗
(
sin
(
U ′

υ(2)

))σ2

=




(
sin
(
π
2 ρ̃

′

℘υ(1)

))σ1

,

1−
(
sin
(
π
2 1− k′

℘υ(1)

))σ1

,

1−
(
sin
(
π
2 1− ñ′℘υ(1)

))σ1


⊗




(
sin
(
π
2 ρ̃

′

℘υ(1)

))σ1

,

1−
(
sin
(
π
2 1− k′

℘υ(1)

))σ1

,

1−
(
sin
(
π
2 1− ñ′

℘υ(1)

))σ1




=




2∏
~=1

(
sin
(
π
2 ρ̃

′

℘υ(~)

))σ~

,

1−
2∏

~=1

(
sin
(
π
2 1− k′

℘υ(~)

))σ~

,

1−
2∏

~=1

(
sin
(
π
2 1− ñ′

℘υ(~)

))σ~




Step-2: Suppose that Equation 2 is holds for n = κ, we have

ST − SV NHWG (U1,U2, ...Uκ) =




κ∏
~=1

(
sin
(
π
2 ρ̃

′

℘υ(~)

))σ~

,

1−
κ∏

~=1

(
sin
(
π
2 1− k′

℘υ(~)

))σ~

,

1−
κ∏

~=1

(
sin
(
π
2 1− ñ′

℘υ(~)

))σ~




Step-3: Now we have to prove that Equation 2 is holds for n = κ+ 1.

ST − SV NHWG (U1,U2, ...Uκ+1)

=

κ∏

~=1

(
sin
(
U ′

υ(~)

))σ~

⊗
(
sin
(
U ′

υ(κ+1)

))σκ+1

=




κ∏
~=1

(
sin
(
π
2 ρ̃

′

℘υ(~)

))σ~

,

1−
κ∏

~=1

(
sin
(
π
2 1− k′

℘υ(~)

))σ~

,

1−
κ∏

~=1

(
sin
(
π
2 1− ñ′

℘υ(~)

))σ~




⊗




(
sin
(
π
2 ρ̃

′

℘υ(κ+1)

))σκ+1

,

1−
(
sin
(
π
2 1− k′

℘υ(κ+1)

))σκ+1

,

1−
(
sin
(
π
2 1− ñ′

℘υ(κ+1)

))σκ+1




=




κ+1∏
~=1

(
sin
(
π
2 ρ̃

′

℘υ(~)

))σ~

,

1−
κ+1∏
~=1

(
sin
(
π
2 1− k′

℘υ(~)

))σ~

,

1−
κ+1∏
~=1

(
sin
(
π
2 1− ñ′

℘υ(~)

))σ~




that is, when n = z + 1, Equation 2 also holds.

Hence, Equation 2 holds for any n. The proof is completed.

Next, we give some properties that are apparently carried by the proposed ST-SVNHWG aggregation

operator.

(1) Let U~ = {ρ̃℘~
,k℘~

, ñ℘~
} ∈ SV NN (ג) (~ = 1, 2, 3, ..., n) such that U~ = U . Then

ST − SV NHWG (U1,U2, ...,Un) = sin (U) .
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(2) Let U~ = {ρ̃℘~
,k℘~

, ñ℘~
} ,U−

~
= {min (ρ̃℘~

) ,max (k℘~
) ,max (ñ℘~

)} and U+
~

= {max (ρ̃℘~
) ,min (k℘~

) ,min (ñ℘~
)}

∈ SV NN (ג) (~ = 1, 2, 3, ..., n) . Then,

sin
(
U−

~

)
≤ ST − SV NHWG (U1,U2, ...,Un) ≤ sin

(
U+
~

)
.

(3) Let U~ = {ρ̃℘~
,k℘~

, ñ℘~
} ,U∗

~
=
{
ρ̃∗℘~

,k∗

℘~
, ñ∗

℘~

}
∈ SV NN (ג) (~ = 1, 2, 3, ..., n) . If ρ̃℘~

≤ ρ̃∗℘~
,k℘~

≤
k∗

℘~
and ñ℘~

≤ ñ∗℘~
, then

ST − SV NHWG (U1,U2, ...,Un) ≤ ST − SV NHWG (U∗

1 ,U
∗

2 , ...,U
∗

n) .

4 Decision Making Algorithm

This section describes a decision-making algorithm to address the uncertainty of decision-making problems

(DMPs) in the SVN environment, supported by an illustrative example. The following notions are utilized

to tackle the MCDM situations having SVN information. Suppose that ,1ג} ,2ג ..., {kג is a universal set and

{r1, r2, r3, ..., rn} is the universe of attributes. Assume a = {a1,a2, ...,an} is a weigh-vector with a~ ∈ [0, 1]

such that
n∑

~=1

a~ = 1. Consider D(k) =
(
U

(k)
ij

)

k×n
is a single valued nuetrosophic decision-matrix, which

represents the membership values evaluated by the experts.

We construct an algorithmic method to handle MCDM problems by proposed aggregation operators. The

algorithm includes steps below:

Step-1 Summarize the values of each alternative in term of decision matrixD(k) =
(
U

(k)
ij

)

n×m
with SVNNs.

Step-2 Construct the normalized decision matrix P = (pij) from D = (Uij) , where pij is calculated as

pij =





(ρ̃ij ,kij , ñij) If criteria are benefit type

(ñij ,kij , ρ̃ij) If criteria are cost type

(3)

Step-3 If the attribute weights are known as a prior then utilize them. Otherwise, we compute them by utilizing

the concept of the entropy measure. For it, the information entropy of criteria tj is computed as

Enj =

1 + 1
n

n∑
i=1

(
ρ̃℘ij

log
(
ρ̃℘ij

)
+ k℘ij

log
(
k℘ij

)
+ ñ℘ij

log
(
ñ℘ij

))

m∑
j=1

(
1 + 1

n

n∑
i=1

ρ̃℘ij
log
(
ρ̃℘ij

)
+ k℘ij

log
(
k℘ij

)
+ ñ℘ij

log
(
ñ℘ij

))

Step-4 Using proposed aggregation operators defined in Theorem 3.2 & 3.4 and attributes weight vector, the

aggregated single valued neutrosophic numbers of the each alternative {U1,U2,U3, ...,Un} are obtained.

Step-6 Evaluate the scores values šč (U~) using the Definition 2.11 of collective spherical fuzzy numbers

U~ (~ = 1, 2, ..., n) and rank using the Definition 2.12 according the maximum score values.

Step-6 Select the optimal alternative according the maximum score value or accuracy degree.

5 Application Decision Making Algorithm

In this segment, the numerical implementation of agricultural land selection is used to demonstrate the MCDM

methodology developed.

5.1 Practical case study

Agriculture is an important component of the Economic System of Pakistan. This area directly supports the

population of the country and accounts for 26% of gross domestic product (GDP). The major agricultural

crops are sugarcane, wheat , rice, cotton, vegetables and fruit. A businessman wants to invest in the agriculture

sector and to look for appropriate land. The options in his brain are Y1,Y2,Y3,Y4 and Y5. He consults to an

expert to get his suggestion about the alternatives based on the following desired parameters:
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(1) Location (r1) ,
(2) Climate (r2) ,
(3) Fertility (r3) ,
(4) Price (r4) and

(5) Water Availability (r5) .

The expert was asked to use SVN data in this assessment and weights of the attributes are (0.15, 0.28, 0.20, 0.22, 0.15)
T

.

The expert’s findings are summarized in Table-1:

D1 =
Y1

Y2

Y3

Y4

Y5

Table-2.: Expert Information

r1 r2 r3 r4 r5


(0.5, 0.3, 0.4) (0.3, 0.2, 0.5) (0.2, 0.2, 0.6) (0.4, 0.2, 0.3) (0.3, 0.3, 0.4)
(0.7, 0.1, 0.3) (0.3, 0.2, 0.7) (0.6, 0.3, 0.2) (0.2, 0.4, 0.6) (0.7, 0.1, 0.2)
(0.5, 0.3, 0.4) (0.4, 0.2, 0.6) (0.6, 0.1, 0.2) (0.3, 0.1, 0.5) (0.6, 0.4, 0.3)
(0.7, 0.3, 0.2) (0.2, 0.2, 0.7) (0.4, 0.5, 0.2) (0.2, 0.2, 0.5) (0.4, 0.5, 0.4)
(0.4, 0.1, 0.3) (0.2, 0.1, 0.5) (0.4, 0.1, 0.5) (0.6, 0.3, 0.4) (0.3, 0.2, 0.4)




Step-2 The r1, r3 & r5 are benefits type and r2 & r4 are cost type criteria. According to defined formula 3,

the normalized decision matrix is summarized in Table-2:

P =
Y1

Y2

Y3

Y4

Y5

Table-2.: Normalized Information

r1 r2 r3 r4 r5


(0.5, 0.3, 0.4) (0.5, 0.2, 0.3) (0.2, 0.2, 0.6) (0.3, 0.2, 0.4) (0.3, 0.3, 0.4)
(0.7, 0.1, 0.3) (0.7, 0.2, 0.3) (0.6, 0.3, 0.2) (0.6, 0.4, 0.2) (0.7, 0.1, 0.2)
(0.5, 0.3, 0.4) (0.6, 0.2, 0.4) (0.6, 0.1, 0.2) (0.5, 0.1, 0.3) (0.6, 0.4, 0.3)
(0.7, 0.3, 0.2) (0.7, 0.2, 0.2) (0.4, 0.5, 0.2) (0.5, 0.2, 0.2) (0.4, 0.5, 0.4)
(0.4, 0.1, 0.3) (0.5, 0.1, 0.2) (0.4, 0.1, 0.5) (0.4, 0.3, 0.6) (0.3, 0.2, 0.4)




Step-3 The Expert provides the following parameters weights

κ = {κ1 = 0.15, κ2 = 0.28, κ3 = 0.20, κ4 = 0.22, κ5 = 0.15}

Step-4 In this step, we used proposed AOp namely, ST-SVHWA and ST-SVHWG to aggregate the single

valued neutrosophic information as follows:

Firstly, we find out the weighted matrix shown in Table-3:

Table-3.:
(
na~Uυ(~)|~ = 1, 2, ..., n

)



(0.60, 0.09, 0.14) (0.8, 0.004, 0.01) (0.30, 0.02, 0.17) (0.48, 0.01, 0.06) (0.36, 0.09, 0.14)
(0.81, 0.01, 0.09) (0.9, 0.004, 0.01) (0.80, 0.04, 0.02) (0.83, 0.06, 0.01) (0.81, 0.01, 0.05)
(0.60, 0.09, 0.14) (0.9, 0.004, 0.02) (0.8, 0.004, 0.02) (0.7, 0.002, 0.03) (0.71, 0.14, 0.09)
(0.81, 0.09, 0.05) (0.9, 0.004, 0.004) (0.58, 0.12, 0.02) (0.74, 0.01, 0.01) (0.48, 0.20, 0.14)
(0.48, 0.01, 0.09) (0.8, 0.005, 0.04) (0.5, 0.004, 0.12) (0.62, 0.03, 0.14) (0.36, 0.05, 0.14)




Table-4.: Corresponding Score Values


(0.3557) (0.8037) (0.1144) (0.4113) (0.1187)
(0.6943) (0.9380) (0.7444) (0.7634) (0.7384)
(0.3557) (0.8687) (0.7840) (0.7052) (0.4650)
(0.6601) (0.9467) (0.4454) (0.7140) (0.1296)
(0.3696) (0.8160) (0.4603) (0.4433) (0.1628)



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Now, according to the score values, the
(
U ′

υ(~) : ~ = 1, 2, ..., n
)

values are shows as follows:

Table-5.:
(
U ′

υ(~) : ~ = 1, 2, ..., n
)

U ′

υ(11) = U12 = (0.5, 0.2, 0.3) U ′

υ(12) = U14 = (0.3, 0.2, 0.4) U ′

υ(13) = U11 = (0.5, 0.3, 0.4)

U ′

υ(14) = U15 = (0.3, 0.3, 0.4) U ′

υ(15) = U13 = (0.2, 0.2, 0.6)

U ′

υ(21) = U22 = (0.7, 0.2, 0.3) U ′

υ(22) = U24 = (0.6, 0.4, 0.2) U ′

υ(23) = U23 = (0.6, 0.3, 0.2)

U ′

υ(24) = U25 = (0.7, 0.1, 0.2) U ′

υ(25) = U21 = (0.7, 0.1, 0.3)

U ′

υ(31) = U32 = (0.6, 0.2, 0.4) U ′

υ(32) = U33 = (0.6, 0.1, 0.2) U ′

υ(33) = U34 = (0.5, 0.1, 0.3)

U ′

υ(34) = U35 = (0.6, 0.4, 0.3) U ′

υ(35) = U31 = (0.5, 0.3, 0.4)

U ′

υ(41) = U42 = (0.7, 0.2, 0.2) U ′

υ(42) = U44 = (0.5, 0.2, 0.2) U ′

υ(43) = U41 = (0.7, 0.3, 0.2)

U ′

υ(44) = U43 = (0.4, 0.5, 0.2) U ′

υ(45) = U45 = (0.4, 0.5, 0.2)

U ′

υ(51) = U52 = (0.5, 0.1, 0.2) U ′

υ(52) = U53 = (0.4, 0.1, 0.5) U ′

υ(53) = U54 = (0.4, 0.3, 0.6)

U ′

υ(54) = U51 = (0.4, 0.1, 0.3) U ′

υ(55) = U55 = (0.3, 0.2, 0.4)

Aggregated information of the alternatives are calculated in Table-6 as follows:

Table-6.: Aggregated Information

ST − SV NHWA ST − SV NHWG

Y1 (0.54515, 0.02797, 0.08164) (0.50042, 0.03039, 0.08899)
Y2 (0.85733, 0.02063, 0.02539) (0.85066, 0.03635, 0.02741)
Y3 (0.77818, 0.01567, 0.04227) (0.77177, 0.02991, 0.04829)
Y4 (0.76483, 0.04584, 0.02450) (0.71602, 0.06397, 0.02901)
Y5 (0.59151, 0.00952, 0.07508) (0.58134, 0.01529, 0.09549)

Step-6 Score value of the aggregated alternatives are calculated in Table-7:

Table-7.: Score Values

šč (Y1) šč (Y2) šč (Y3) šč (Y4) šč (Y5)

ST − SV NHWA 0.43553 0.81130 0.72023 0.69448 0.50690

ST − SV NHWG 0.38103 0.78688 0.69357 0.62302 0.47055

Step-7 Ranking of the alternatives are shown in Table-8:

Table-8.: Ranking

Score Ranking Best Alternative

ST − SV NHWA šč (Y2) > šč (Y3) > šč (Y4) > šč (Y5) > šč (Y1) Y2

ST − SV NHWG šč (Y2) > šč (Y3) > šč (Y4) > šč (Y5) > šč (Y1) Y2

From this above computational process, we can conclude that the alternative Y2 is the best among the

others and hence it is highly recommendable to select for the required task/plan.

5.2 Comparison Study

In the section, we include some appropriate examples to demonstrate the feasibility and efficacy of the estab-

lished decision-making approach and make a comparison with existing studies. Here, we presented the dif-

ferent existing aggregated information of the SVNNs namely, SVNWA,33 SVNOWA,33 NWA,44 SVNFWA,18

SVNHWA,32 L-SVNWA,19 L-SVNOWA,19 ST-SVNWA4 and ST-SVNWG4 in Table-9, 10 and 11:

Table-9: Aggregated Information

SVNWA33 SVNOWA33 NWA44 SVNFWA18

Y1 (0.37, 0.22, 0.40) (0.38, 0.24, 0.40) (0.37, 0.23, 0.42) (0.37, 0.22, 0.40)
Y2 (0.66, 0.20, 0.23) (0.66, 0.18, 0.24) (0.66, 0.24, 0.24) (0.66, 0.20, 0.23)
Y3 (0.56, 0.17, 0.31) (0.55, 0.18, 0.31) (0.56, 0.21, 0.32) (0.56, 0.17, 0.31)
Y4 (0.57, 0.29, 0.22) (0.57, 0.31, 0.22) (0.57, 0.33, 0.23) (0.56, 0.29, 0.22)
Y5 (0.41, 0.14, 0.36) (0.39, 0.13, 0.36) (0.41, 0.16, 0.41) (0.41, 0.14, 0.36)
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Table-10: Aggregated Information

SVNHWA32 γ = 2 SVNHWA32 γ = 3 L-SVNWA19 L-SVNOWA19

Y1 (0.37, 0.22, 0.40) (0.36, 0.22, 0.40) (0.31, 0.17, 0.35) (0.32, 0.19, 0.36)
Y2 (0.66, 0.20, 0.23) (0.66, 0.20, 0.23) (0.64, 0.19, 0.23) (0.65, 0.17, 0.23)
Y3 (0.56, 0.17, 0.31) (0.56, 0.18, 0.31) (0.49, 0.17, 0.33) (0.48, 0.18, 0.33)
Y4 (0.56, 0.29, 0.22) (0.56, 0.30, 0.22) (0.55, 0.27, 0.19) (0.55, 0.29, 0.19)
Y5 (0.41, 0.14, 0.36) (0.41, 0.14, 0.37) (0.28, 0.12, 0.37) (0.24, 0.12, 0.38)

Table-11: Aggregated Information

ST-SVNWA4 ST-SVNWA4

Y1 (0.56, 0.02, 0.07) (0.50, 0.02, 0.08)
Y2 (0.86, 0.02, 0.02) (0.85, 0.03, 0.03)
Y3 (0.77, 0.01, 0.04) (0.76, 0.02, 0.05)
Y4 (0.78, 0.04, 0.02) (0.73, 0.06, 0.02)
Y5 (0.60, 0.009, 0.06) (0.59, 0.01, 0.08)

Also, their corresponding ranking are calculated in Table-12:

Table-12: Ranking

Existing Operators Ranking Best Alternative

NWA43 Y2 > Y3 > Y4 > Y5 > Y1 Y2

SVNWA33 Y2 > Y3 > Y4 > Y5 > Y1 Y2

SVNOWA33 Y2 > Y3 > Y4 > Y5 > Y1 Y2

SVNWG33 Y2 > Y3 > Y4 > Y5 > Y1 Y2

SVNOWG33 Y2 > Y3 > Y4 > Y5 > Y1 Y2

SVNFWA18 Y2 > Y3 > Y4 > Y5 > Y1 Y2

SVNHWA32 γ = 2 Y2 > Y3 > Y4 > Y5 > Y1 Y2

SVNHWA32 γ = 3 Y2 > Y3 > Y4 > Y5 > Y1 Y2

NWG43 Y2 > Y3 > Y4 > Y5 > Y1 Y2

SVNFWG18 Y2 > Y3 > Y4 > Y5 > Y1 Y2

SVNHWG32 γ = 2 Y2 > Y3 > Y4 > Y5 > Y1 Y2

SVNHWG32 γ = 3 Y2 > Y3 > Y4 > Y5 > Y1 Y2

SNWEA44 Y2 > Y3 > Y5 > Y4 > Y1 Y2

L-SVNWA19 Y2 > Y4 > Y3 > Y5 > Y1 Y2

L-SVNOWA19 Y2 > Y4 > Y3 > Y5 > Y1 Y2

L-SVNWG19 Y2 > Y4 > Y3 > Y1 > Y5 Y2

L-SVNOWG19 Y2 > Y3 > Y4 > Y5 > Y1 Y2

L-SVNWA4 Y2 > Y4 > Y3 > Y5 > Y1 Y2

L-SVNWG4 Y2 > Y3 > Y4 > Y5 > Y1 Y2

L-SVNOWA4 Y2 > Y4 > Y3 > Y5 > Y1 Y2

L-SVNOWG4 Y2 > Y3 > Y4 > Y5 > Y1 Y2

Table-9.: Overall ranking of the alternatives

Proposed Operators Ranking Best Alternative

L-SVNHWA Y2 > Y3 > Y4 > Y5 > Y1 Y2

L-SVNHWG Y2 > Y3 > Y4 > Y5 > Y1 Y2

It is evident that the above conversation confirms the effectiveness and applicability of the proposed

decision-making methodology based on new sine trigonometric aggregation operators under SVN environ-

ments.

6 Conclusion

Due to the existence of multiple attributes/criteria in many real-world problems, classical MCDM methods are

not useful to tackle complicated decision-making situations. To overcome the difficulties of existing models,

we have combined SVNSs with sine trigonometric AOs.
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In this article, we have discussed MCDM issues based on single valued neutrosophic information. Mo-

tivated by sine trigonometric function based operational laws, we have proposed different AOs, namely, ST-

SVNHWA and ST-SVNHWG aggregation operators. We have investigated different features of these oper-

ators. We have employed these AOs to enlarged the applicability scope of MCDM. We have given real-life

application for the selection of best agricultural land for best investment. At the end, we have provided a com-

parison of developed AOs with existing aggregation techniques in the literatures and authenticate the proposed

strategy by effectiveness comparison study. In the future, we are extending our work in interval valued single

valued neutrosophic environment.
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Abstract  

The aim of this paper is to define and study for the first time AH-substructures in n-refined neutrosophic vector 
spaces such as weak/strong AH-subspaces, and weak/strong AH-linear transformations between two n-refined 
neutrosophic vector spaces. Also, this paper introduces some elementary properties of these concepts.  
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1. Introduction 
Neutrosophy as a new kind of logic, concerns with nature, origin, and scope of neutralities became a rich material in 
algebra.  Many algebraic structures have been defined and handled such as neutrosophic rings, neutrosophic 
modules, and neutrosophic vector spaces. See [8,9,10,11,12,14]. More generalizations came to light such as refined 
neutrosophic rings, n-refined neutrosophic rings, and n-refined neutrosophic vector spaces. See [3,5,6,7,15,16]. 

AH-substructures were defined for the first time in neutrosophic rings [1]. Then they were defined in n-refined 
neutrosophic rings, and  neutrosophic vector spaces in [2,4]. AH-structures consist of similar objects, each object 
has the same structure. For example in a neutrosophic vector space �(�) = � + ��, AH-subspace is a non empty 
subset with form � = � + 	�, where �,	 are two classical subspaces in V. Also, AHS-linear transformations were 
defined by similar aspect [4]. AH-substructures illustrate a bridge between neutrosophic structures and classical 
algebraic structures and help us to use classical methods in neutrosophical studies. 

This article defines some AH-substructures in n-refined neutrosophic vector spaces. Concepts such as AH-
subspaces, and AH-linear transformations. Also, it presents some interesting properties and theorems concerning 
these concepts. 

2. Preliminaries 

Definition 2.1: [15] 

Let (R, +, ) be a ring and ��; 1 ≤ � ≤ � be n indeterminacies. We define ��(I)={�� + ��� + ⋯+ ����	; 	�� ∈ �} to 
be n-refined neutrosophic ring. 

Definition 2.2: [15] 
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(a) Let ��(I) be an n-refined neutrosophic ring and P = ∑ ��������  = {	�� + ��� + ⋯+ ����:	�� ∈ ��}, where ��  is a 
subset of R, we define P to be an AH-subring if ��  is a subring of R for all � . AHS-subring is defined by the 
condition �� = ��  for all �	,  . 
(b) P is an AH-ideal if	��  are two sided ideals of R for all �, the AHS-ideal is defined by the condition �� = ��  for all �	,  . 
Definition 2.3 :[8] 

Let ( V, +, .) be a vector space over the field K then (V(I),+,.) is called a weak neutrosophic vector space over the 
field K, and it is called a strong neutrosophic vector space if it is a vector space over the neutrosophic field K(I). 

Definition 2.4 : [8] 

Let V(I) be a strong neutrosophic vector space over the neutrosophic field K(I) and W(I) be a non empty set of V(I), 
then W(I) is called a strong neutrosophic subspace if W(I) is itself a strong neutrosophic vector space. 

Definition 2.5: [14] 

Let (K, +, .) be a field, we say that !�(�) = ! + !�� + ⋯+ !�� = {�� + ���� + ⋯+ ����; �� ∈ !} is an n-refined 
neutrosophic field. 

It is clear that !�(�) is an n-refined neutrosophic ring but not a field in classical meaning. 

Definition 2.6 : [14] 

Let (V, +, .) be a vector space over the field K. Then we say that ��(�) = � + ��� + ⋯+ ��� = {$� + $��� + ⋯ +$���; 	$� ∈ �} is a weak n-refined neutrosophic vector space over the field K. Elements of  ��(�) are called n-refined 
neutrosophic vectors, elements of K are called scalars. 

If we take scalars from the n-refined neutrosophic field !�(�), we say that  ��(�) is a strong n-refined neutrosophic 
vector space over the n-refined neutrosophic field !�(�). Elements of !�(�) are called n-refined neutrosophic 
scalars. 

Definition 2.7: [14] 

Let ��(�) be a weak n-refined neutrosophic vector space over the field K, a nonempty subset %�(�) is called a weak 
n-refined neutrosophic subspace of ��(�) if %�(�) is a subspace of		��(�) itself. 

Definition 2.8: [14] 

Let ��(�) be a strong n-refined neutrosophic vector space over the n-refined neutrosophic field	!�(�), a nonempty 
subset %�(�) is called a strong n-refined neutrosophic subspace of ��(�)	if %�(�) is a submodule of	��(�) itself. 

Definition 2.9: [4] 

Let V(I) = V+VI be a strong/weak neutrosophic vector space, the set & = � + '� = {$ + (�; $ ∈ �, ( ∈ '},where	P	and	Q	are	subspaces	of	� is called an AH-subspace of V(I). 

If � = ' then S is called an AHS-subspace of V(I). 

Definition 2.10: [4] 
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(a) Let V and W be two vector spaces, 9:: � → % be a linear transformation. The AHS-linear transformation can be 
defined as follows: 9: �(�) → %(�); 9(� + <�) = 9:(�) + 9:(<)�.  

(b) If &	 = 	� + '� is an AH-subspace of V(I), 9(&) = 9:(�) + 9:(')�.  

3. Main discussion 

Definition 3.1: 

Let (V,+,.) be a vector space over a field K, ��(�) be the corresponding weak n-refined neutrosophic vector space 
over K. Consider the set {��; 0 ≤ � ≤ �}, where �� is a subspace of V. We say:  ��(�) = �� + ���� + ⋯+ ���� = {>� + >��� + ⋯+ >���; 	>� ∈ ��} is a weak n-refined AH-subspace of the 
weak n-refined vector space ��(�). 

We say that ��(�) is a weak n-refined AH-subspace if �� = ��	?@A	�BB	�,  . 
Definition 3.2: 

Let (V, +, .) be a vector space over a field K, ��(�) be the corresponding strong n-refined neutrosophic vector space 
over the n-refined neutrosophic field !�(�). Consider the set {��; 0 ≤ � ≤ �}, where ��  is a subspace of V. We say:  ��(�) = �� + ���� + ⋯+ ���� = {>� + >��� + ⋯+ >���; 	>� ∈ ��} is a strong n-refined AH-subspace of the 
strong n-refined vector space ��(�). 

We say that ��(�) is a strong n-refined AH-subspace if �� = ��	?@A	�BB	�,  . 
Theorem 3.3: 

Let (V, +, .) be a vector space over a field K, ��(�) be the corresponding weak n-refined neutrosophic vector space 
over K, ��(�) = �� + ���� + ⋯ + ���� be a weak n-refined AH-subspace. Then 

(a) ��(�) is a vector subspace of  ��(�). 

(b) If C�  is a bases of ��, C = ⋃ C�������  is a bases of ��(�). 

(c) dimG��(�)H = ∑ dim	(��)���� . 

Proof: 

(a) Let $ = ∑ �������� , ( = ∑ <���; 	<� , �� ∈ ������  be two arbitrary elements in ��(�), A be an arbitrary element in K, 
we have: $ + ( = ∑ (�� + <�)������ ∈ ��(�), since �� + <� ∈ �� because ��  is a subspace of V. A. $ = ∑ A���� ∈ ��(�)���� , since A�� ∈ �� because �� is a subspace of V. Thus ��(�) is a vector subspace of ��(�). 

(b) Suppose that C� = J$�(�), … , $LM(�)N, C� = J$�(�), … , $LO(�)N, …… , C� = {$�(�), … , $LP(�)}, let $ = ∑ ��������  be an 

arbitrary element of ��(�), since C�  is a basis of �� for all i. We can write: 
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�� = ∑ Q�(�)LR��� $�(�); 	Q� ∈ !, so $ = ∑ Q�(�)LM��� $�(�) + ∑ Q�(�)LO��� $�(�)�� + ⋯+ ∑ Q�(�)LP��� $�(�)�� . This implies that X is a 
generating set of ��(�). 

Now we prove that X is linearly independent. For our purpose we assume ∑ Q�(�)LM��� $�(�) + ∑ Q�(�)LO��� $�(�)�� + ⋯+ ∑ Q�(�)LP��� $�(�)�� = 0, by definition of n-refined vector space we find ∑ Q�(�)LR��� $�(�) for all i, hence Q�(�) = 0 for all i,j, since each C�  is linearly independent itself. Thus our proof is 
complete. 

(c) It holds directly from (b). 

Example 3.4: 

Let � = �S be a vector space over the field R, �S(�) = �SS(�) = {(��, <�) + (��, <�)�� + (�S, <S)�S; 	�� , <� ∈ �} be 
the corresponding weak 2-refined neutrosophic vector space over the field R, we have: 

(a) � =< (1,0) >= {(>, 0);> ∈ �}, 	 =< (0,1) >= {(0, �); � ∈ �} are two subspaces of  � = �S. 

(b) � = � + 	�� + ��S = {(>, 0) + (0, �)�� + (V, 0)�S; >, �, V ∈ �} is a weak AH-subspace of �S(�). 

(c) The set C = {(1,0), (0,1)��, (1,0)�S} is a bases of T, dim(�) = dim(�) + dim(	) + dim(�) = 3. 

(d) X = 	 + 	�� + 	�S = {(0, �) + (0, <)�� + (0, Y)�S; �, <, Y ∈ �} is a weak AHS-subspace. 

Theorem 3.5: 

Let V be a vector space with dim(�) = � + 1. Then V is isomorphic to a weak AHS-subspace of the corresponding 
weak n-refined neutrosophic vector space. 

Proof: 

Let M be any one dimensional subspace of V, � = � + ��� + ⋯+ ��� is a weak AHS-subspace of the weak n-
refined neutrosophic vector space ��(�). As a result of Theorem 3.3 , we find dim(�) = � + 1 = dim	(�), thus V is 
isomorphic to T. 

Example 3.6: 

Let � = �Z be a vector space over the field R, �Z(�) = {� + <�� + Y�S + [�Z; �, <, Y, [ ∈ �} is the corresponding 
weak 3-refined neutrosophic vector space, � =< (1,0,0) > is a subspace of V. � = � + ��� + ��S = {(�, 0,0) + (<, 0,0)�� + (Y, 0,0)�S; �, <, Y ∈ �} is a weak AHS-subspace of �Z(�) with dim(�) = 3, this implies � ≅ �. 

Theorem 3.7: 

Let (V, +, .) be a vector space over a field K, ��(�) be the corresponding strong n-refined neutrosophic vector space 
over the n-refined neutrosophic field !�(�), ��(�) = � + ��� + ⋯ + ��� be a strong n-refined AHS-subspace. 
Then: 

(a) ��(�) is a submodule of  ��(�). 
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(b) If ] is a bases of �, C = ⋃ ]������  is a bases of ��(�). 
(c) dimG��(�)H = ∑ dim	(�)���� = �. dim	(�). 

Proof: 

(a) Let $ = ∑ �������� , ( = ∑ <���; 	<� , �� ∈ ������  be two arbitrary elements in ��(�), A = ∑ A�������  be an arbitrary 
element in !�(�), we have: $ + ( = ∑ (�� + <�)������ ∈ ��(�), since �� + <� ∈ �� because ��  is a subspace of V. A. $ = ∑ A������� ∈ ��(�)��,��� , since A��� ∈ � because M is a subspace of V. Thus ��(�) is a vector subspace of ��(�). 

(b),(c) They are similar to that of Theorem 3.5 . 

Remark 3.8: 

If ��(�) is a strong n-refined neutrosophic vector space over the n-refined neutrosophic field !�(�), and  ��(�) = �� + ���� + ⋯+ ���� is a strong n-refined AH-subspace, then it is not supposed to be a submodule. 

We clarify it by the following example. 

Example 3.9: 

Let � = �S be a vector space over R, �S(�) = �SS(�) = {(�, <) + (Y, [)�� + (^, ?)�S; �, <, Y, [, ^, ? ∈ �} be the 
corresponding strong 2-refined neutrosophic vector space over the neutrosophic field �S(�). � =< 0,1 >,	 =< (1,0) > are two subspaces of V, � = � + 	�� + 	�S is a strong AH-subspace of �S(�). $ = (0,1) + (2,0)�� + (1,0)�S ∈ �, A = 1 + 1. �� + 1. �S ∈ �S(�), A. $ = 1. (0,1) + 1. (0,1)�� + 1. (0,1)�S + 1. (2,0)���� + 1. (2,0)�� + 1. (1,0)���S+1. (0,1)�S + 1. (2,0)���S +1. (2,0)�S�S = (0,1) + [(0,1) + (2,0) + (1,0) + (2,0)]�� + [(0,1) + (0,1) + (2,0)]�S= (0,1) + (5,1)�� + (2,2)�S , A. $ does not belong to T, thus T is not a submodule. 

Definition 3.10: 

Let ��(�) be a weak/strong n-refined neutrosophic vector space, ��(�) = �� + ���� + ⋯+ ����, %�(�) = %� + %��� + ⋯+ %��� be two weak/strong AH-subspaces of ��(�), we define: 

(a) ��(�) ∩ %�(�) = (�� ∩ %�) + (�� ∩ %�)�� + ⋯+ (�� ∩ %�)��. 

(b) ��(�) + %�(�) = (�� + %�) + (�� + %�)�� + ⋯+ (�� + %�)��. 

Theorem 3.11: 

Let ��(�) be a weak n-refined neutrosophic vector space, ��(�) = �� + ���� + ⋯+ ����, %�(�) = %� + %��� + ⋯+ %��� be two weak AH-subspaces of ��(�). Then: 
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��(�) ∩ %�(�),��(�) + %�(�) are two weak AH-subspaces of ��(�). 

Proof: 

Since �� ∩ %� , �� + %�  are subspaces of V for all i, we obtain the proof. 

Theorem 3.12: 

Let ��(�) be a strong n-refined neutrosophic vector space, ��(�) = �� + ���� + ⋯ + ����, %�(�) = %� + %��� + ⋯+ %��� be two strong AH-subspaces of ��(�). Then: 

(a) ��(�) ∩ %�(�) is a strong AH-subspaces of ��(�). 

(b) ��(�) + %�(�) is not supposed to be a strong AH-subspace of ��(�). 

Proof: 

The proof is similar to that of Theorem 3.11 . 

Definition 3.13: 

Let V,W be two vector spaces over the field K, ?�: � → %; 0 ≤ � ≤ � + 1 be � + 1 linear transformations,  ��(�),%�(�) be the corresponding weak n-refined neutrosophic vector spaces over the field K respectively. We say: 

(a) ?: ��(�) → %�(�); ?(∑ ����) = ?�(��) + ?�(��)�� + ⋯+ ?�(��)�� = ∑ ?�(��)����������  is a weak AH-linear 
transformation. 

(b) If ?� = ?�	?@A	�BB	�,  , we call ? a weak AHS-linear transformation. 

Example 3.14: 

(a) Let � = �Z,% = �S be two vector spaces over the field R, �S(�) = �SZ(�) = {	($�, (�d�) + ($�, (�, d�)�� +($S, (S , dS)�S; 	$� , (� , d� ∈ �}, %S(�) = {($�, (�) + ($�, (�)�� + ($S, (S)�S; 	$� , (� ∈ �} be the corresponding weak 2-refined neutrosophic vector 
spaces. We have e: � → %;e(�, <, Y) = (<, Y), ℎ: � → %; ℎ(�, <, Y) = (2�, 0) V: � → %; V(�, <, Y) = (2<, 3Y) are three linear transformations.  

(b) ?: �S(�) → %S(�); ?(> + ��� + g�S) = e(>) + ℎ(�)�� + V(g)�S; >, �, g ∈ � is a weak AH-linear 
transformation. 

(c) We clarify ? as follows: $ = (1,2,2) + (1,0,1)�� + (3,−1,0)�S ∈ �S(�), ?($) = e(1,2,2) + [ℎ(1,0,1)]�� + [V(3, −1,0)]�S = (2,2) + (2,0)�� + (−2,0)�S. 

(d) �: �S(�) → %S(�); �(> + ��� + g�S) = e(>) + e(�)�� + e(g)�S; >, �, g ∈ � is a weak AHS-linear 
transformation. 

Definition 3.15: 
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Let V,W be two vector spaces over the field K, ?�: � → %; 0 ≤ � ≤ � + 1 be � + 1 linear transformations,  ��(�),%�(�) be the corresponding strong n-refined neutrosophic vector spaces over the n-refined neutrosophic field !�(�) respectively. We say: 

(a) ?: ��(�) → %�(�); ?(∑ ����) = ?�(��) + ?�(��)�� + ⋯+ ?�(��)�� = ∑ ?�(��)����������  is a strong AH-linear 
transformation. 

(b) If ?� = ?�	?@A	�BB	�,  , we call ? a strong AHS-linear transformation. 

Example 3.16: 

(a) Let � = �Z,% = �S be two vector spaces over the field R, �S(�) = �SZ(�) = {($�, (�d�) + ($�, (�, d�)�� +($S, (S , dS)�S; 	$� , (� , d� ∈ �}, %S(�) = {($�, (�) + ($�, (�)�� + ($S, (S)�S; 	$� , (� ∈ �} be the corresponding strong 2-refined neutrosophic vector 
spaces over the 2-refined neutrosophic field �S(�). We have e: � → %;e(�, <, Y) = (<, Y), ℎ: � → %; ℎ(�, <, Y) =(2�, 0), V: � → %; V(�, <, Y) = (2<, 3Y) are three linear transformations.  

(b) ?: �S(�) → %S(�); ?(> + ��� + g�S) = e(>) + ℎ(�)�� + V(g)�S; >, �, g ∈ � is a strong AH-linear 
transformation. 

(c) We clarify ? as follows: $ = (1,2,2) + (1,0,1)�� + (3,−1,0)�S ∈ �S(�), ?($) = e(1,2,2) + [ℎ(1,0,1)]�� + [V(3, −1,0)]�S = (2,2) + (2,0)�� + (−2,0)�S. 

(d) �: �S(�) → %S(�); �(> + ��� + g�S) = e(>) + e(�)�� + e(g)�S; >, �, g ∈ � is a strong AHS-linear 
transformation. 

Definition 3.17: 

Let ��(�),%�(�) be two weak/strong n-refined neutrosophic vector spaces, ?: ��(�) → %�(�); ?(∑ ����) = ?�(��) + ?�(��)�� + ⋯ + ?�(��)�� = ∑ ?�(��)����������  be a weak/strong AH-linear 
transformation. We define: 

(a) ij − !^A(?) = !^A(?�) + !^A(?�)�� + ⋯+ !^A(?�)��. 

(b) ij − �>(?) = �>(?�) + �>(?�)�� + ⋯+ �>(?�)��. 
Theorem 3.18: 

Let ��(�),%�(�) be two weak n-refined neutrosophic vector spaces, ?: ��(�) → %�(�); ?(∑ ����) = ?�(��) + ?�(��)�� + ⋯ + ?�(��)�� = ∑ ?�(��)����������  be a weak AH-linear 
transformation. Then: 

(a)	ij − !^A(?) is a weak AH-subspace of ��(�). 

(b) ij − �>(?) is a weak AH-subspace of %�(�). 
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(c) If ��(�) = �� + ���� + ⋯ + ���� is a weak AH-subspace of ��(�), ?(��(�)) is a weak AH-subspace of %�(�). 

Proof: 

(a) Since !^A(?�) is a subspace of V, we find that 

 ij − !^A(?) = !^A(?�) + !^A(?�)�� + ⋯+ !^A(?�)�� is a weak AH-subspace of ��(�). 

(b) Since �>(?�) is a subspace of W, we find that ij − �>(?) = �>(?�) + �>(?�)�� + ⋯+ �>(?�)�� is a weak 
AH-subspace of %�(�). 

(c) It is known that ?�(��) is a subspace of W, hence 

 ?G��(�)H = ?�(��) + ?�(��)�� + ⋯+ ?�(��)�� is a weak AH-subspace of %�(�). 

Theorem 3.19: 

Let ��(�),%�(�) be two strong n-refined neutrosophic vector spaces over the n-refined neutrosophic field !�(�), ?: ��(�) → %�(�); ?(∑ ����) = ?�(��) + ?�(��)�� + ⋯ + ?�(��)�� = ∑ ?�(��)����������  be a strong AH-linear 
transformation. Then: 

(a)	ij − !^A(?) is a strong AH-subspace of ��(�). 

(b) ij − �>(?) is a strong AH-subspace of %�(�). 

(c) If ��(�) = �� + ���� + ⋯ + ���� is a strong AH-subspace of ��(�), ?(��(�)) is a strong AH-subspace of %�(�). 

Proof: 

The proof is similar to that of Theorem 3.18 . 

Example 3.20: 

Let �S(�),%S(�) be the two weak 2-refined neutrosophic vector spaces defined in Example 3.16 . 

(a) � =< (1,0,0) >,	 =< (0,1,0) >, 9 =< (0,0,1) > are three subspaces of V, � = � + 	�� + 9�S = {(�, 0,0) + (0, <, 0)�� + (0,0, Y)�S; �, <, Y ∈ �} is a weak AH-subspace of �S(�). 

Consider ?: �S(�) → %S(�) the weak AH-linear transformation defined in Example 3.16  . 

(b) ij − !^A(?) = !^A(e) + !^A(ℎ)�� + !^A(V)�S = {(�, 0,0) + (0, <, Y)�� + ([, 0,0)�S; �, <, Y, [ ∈ �. 

(c) ij − �>(?) = �>(e) + �>(ℎ)�� + �>(V)�S = �S+< (1,0) > �� + �S�S. 

(d) ?(�) = e(�) + ℎ(	)�� + V(9)�S =< (0,0) > +< (0,0) > ��+< (0,1)�S = {(0,0) + (0,0). �� + (0, �)�S; � ∈ �}, which is a weak AH-subspace of %S(�). 

Theorem 3.21: 
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Let ��(�),%�(�) be two weak n-refined neutrosophic vector spaces over the field K, ?: ��(�) → %�(�); ?(∑ ����) = ?�(��) + ?�(��)�� + ⋯ + ?�(��)�� = ∑ ?�(��)����������  be a weak AH-linear 
transformation. Then: ?($ + () = ?($) + ?((), ?(A. $) = A. ?($) for all $, ( ∈ ��(�), A ∈ !. 

Proof: 

Let $ = ∑ �������� , ( = ∑ <�������  be two arbitrary elements in ��(�), A ∈ ! be any element in the field K, we have: ?($ + () = ?(∑ (�� + <�)������ ) = ∑ ?�(�� + <�)������ = ∑ ?�(��)������ + ∑ ?�(<�)������ = ?($) + ?((). ?(A. $) = ?(∑ A�������� ) = ∑ ?�(A��)������ = A. ∑ ?�(��)�� = A. ?($)���� .  

Theorem 3.22: 

Let ��(�),%�(�) be two strong n-refined neutrosophic vector spaces over the n-refined neutrosophic field  !�(�), ?: ��(�) → %�(�); ?(∑ ����) = ?�(��) + ?�(��)�� + ⋯ + ?�(��)�� = ∑ ?�(��)����������  be a strong AH-linear 
transformation. Then: ?($ + () = ?($) + ?((), ?(A. $) = A. ?($) for all $, ( ∈ ��(�), A ∈ !�(�). 

Proof: 

Let $ = ∑ �������� , ( = ∑ <�������  be two arbitrary elements in ��(�), A = ∑ A������� ∈ !�(�) be any element in the n-
refined neutrosophic field !�(�), we have: ?($ + () = ?(∑ (�� + <�)������ ) = ∑ ?�(�� + <�)������ = ∑ ?�(��)������ + ∑ ?�(<�)������ = ?($) + ?((). 

For the proof of the second proposition we use induction on n. If n=0, the theorem is true clearly. 

Suppose that it is true for n-1, we must prove it for n. ?(A. $) = ?G∑ A�������,��� ��H = ?(∑ A������k��,��� �� + (∑ A������� )����), we can write 

 ∑ A������k��,��� �� = >� + >��� + ⋯+ >�k���k�, (∑ A������� )���� = A����� + AS���S + ⋯+ (A��� + A���)��, A. $ = ∑ A������k��,��� �� + (∑ A������� )���� = m� + (m� + r�al)I� + (mS + rSal)IS + ⋯+ (A��� + A���)��, ?(A. $) = ?�(>�) + ?�(>� + A���)�� + ?S(>S + AS��)�S + ⋯?�(A��� + A���)��= ?�(>�) + [?�(>�) + A�?�(��)]�� + ⋯+ [A�?�(��) + A�?�(��)]�� = A. ?($). 

Theorem 3.23: 

Let ��(�),%�(�), n�(�) be three weak n-refined neutrosophic vector spaces over the field K, ?:%�(�) → n�(�); ?(∑ ����) = ?�(��) + ?�(��)�� + ⋯+ ?�(��)�� = ∑ ?�(��)���������� , e: ��(�) → %�(�); e(∑ ����) = e�(��) + e�(��)�� + ⋯+ e�(��)�� = ∑ e�(��)���������� , 
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 be two weak AH-linear transformations. Then: 

(a) ?@e = ∑ (?�@e�)���� . 

(b) ?@e is a weak AH-linear transformation between ��(�), n�(�). 

Proof: 

(a) Let $ = ∑ �������� ∈ ��(�), ?@e($) = ?(∑ e�(��)������ ) = ?(e�(��) + e�(��)�� + ⋯+ e�(��)��)= ?�Ge�(��)H + ?�Ge�(��)H�� + ⋯+ ?�Ge�(��)H�� = ∑ (?�@e�)���� (��)��. 
(b) Since ?�@e�  is a linear transformation for all i, then we get the proof. 

Theorem 3.24: 

Let ��(�),%�(�), n�(�) be three strong n-refined neutrosophic vector spaces over the n-refined neutrosophic field K, ?:%�(�) → n�(�); ?(∑ ����) = ?�(��) + ?�(��)�� + ⋯+ ?�(��)�� = ∑ ?�(��)���������� , e: ��(�) → %�(�); e(∑ ����) = e�(��) + e�(��)�� + ⋯+ e�(��)�� = ∑ e�(��)���������� , 

 be two strong AH-linear transformations. Then: 

(a) ?@e = ∑ (?�@e�)���� . 

(b) ?@e is a strong AH-linear transformation between ��(�), n�(�). 

Proof: 

The proof is similar to that of Theorem 3.23. 

Example 3.25: 

(a) Let � = �Z be a vector spaces over the field R, �S(�) = �SZ(�) = {($�, (�d�) + ($�, (�, d�)�� +($S, (S , dS)�S; 	$� , (� , d� ∈ �}, 
be the corresponding weak 2-refined neutrosophic vector space. We have e: � → �; e(�, <, Y) = (2<, 2Y, 0), ℎ: � → �; ℎ(�, <, Y) = (2�, Y, Y), V: � → �; V(�, <, Y) = (2<, 3Y, �) are three linear transformations.  

(b) ?: �S(�) → �S(�); ?(> + ��� + g�S) = e(>) + ℎ(�)�� + V(g)�S; >, �, g ∈ � is a weak AH-linear 
transformation,	 : �S(�) → �S(�);  (> + ��� + g�S) = e(>) + e(�)�� + ℎ(g)�S; >, �, g ∈ � is a weak AH-linear 
transformation. 

(c) ?@ (> + ��� + g�S) = e@e(>) + ℎ@e(�)�� + V@ℎ(g)�S. 

(d) Put > = (2,1,0), � = (−1,0,0), g = (3,2,2), we compute ?@  as follows: ?@ (> + ��� + g�S) = e@e[(2,1,0)] + ℎ@e[(−1,0,0)]�� + V@ℎ[(3,2,2)]�S= e(2,0,0) + ℎ(0,0,0)�� + V(6,2,2)�S = (0,0,0) + (0,0,0)�� + (4,6,6)�S.  
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5. Conclusion 

In this paper we have defined and studied weak/strong AH-subspaces and weak/strong AH-linear transformations in 
n-refined neutrosophic vector spaces. Also, we have presented some elementary properties and theorems about these 
concepts. 
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Abstract

This paper presents the refinement of neutrosophic hypergroup and studies some of its properties. Several

interesting results and examples are presented. The existence of a good homomorphism between a refined

neutrosophic hypergroup H(I1, I2) and a neutrosophic hypergroup H(I) is established.

Keywords: Neutrosophy, neutrosophic hypegroup, neutrosophic subhypergroup, refined neutrosophic hyper-

group, refined neutrosophic subhypergroup.

1 Introduction and Preliminaries

Neutrosophy is a new branch of philosophy that studies the origin, nature and scope of neutralities, as well as

their interactions with different ideational spectra. Neutrosophic set and neutrosophic logic were introduced

in 1995 by Smarandache as generalizations of fuzzy set [21] and respectively intuitionistic fuzzy logic [10]. In

neutrosophic logic, each proposition has a degree of truth (T ), a degree of indeterminancy (I) and a degree of

falsity (F ), where T, I, F are standard or non-standard subsets of ]−0, 1+[, for more detailed information, the

reader should see [15, 17]. In 2013, Florentin Smarandache in [16] introduced refined neutrosophic components

of the form < T1, T2, · · · , Tp; I1, I2, ·, Ir;F1, F2, · · · , Fs >. The birth of refinement of the neutrosophic

components < T, I, F > has led to the extension of neutrosophic numbers a + bI into refined neutrosophic

numbers of the form (a+b1I1+b2I2+ · · ·+bnIn) where a, b1, b2, · · · , bn are real or complex numbers. Using

these refined neutrosophic numbers, the concept of refined neutrosophic set was introduced and this paved

way for the development of refined neutrosophic algebraic structures. Agboola in [4] introduced the concept

of refined neutrosophic structure and he studied refined neutrosophic groups in particular and presented their

fundamental properties. Since then, several researchers in this field have studied this concept and a great deal

of results have been published. In [1], Adeleke et al. presented results on refined neutrosophic rings, refined

neutrosophic subrings and in [2], they presented results on refined neutrosophic ideals and refined neutrosophic

homomorphisms. A comprehensive review of neutrosophy, neutrosophic triplet set and neutrosophic algebraic

structures can be found in [12, 18–20].

In [13], Marty, introduced the concept of hypergroups by considering the quotient of a group by its sub-

group. And this was the birth of an interesting new branch of Mathematics known as “Algebraic hyper-

structures” which is considered as a generalization of classical algebraic structures. In the classical algebraic

structure, the composition of two elements is an element whereas in algebraic hyperstructure, the composi-

tion of two elements is a non-empty set. Since then, many different kinds of hyperstructures (hyperrings,

hypermodules, hypervector spaces,· · · ) have been introduced and studied. Also, many theories of algebraic

hyperstructures have been propounded as well as their applications to various areas of sciences and technol-

ogy. For comprehensive details on hyperstructures, the reader should see [11, 14]. The concept of neutrosophic

hypergroup and their properties was introduced by Agboola and Davvaz in [7]. More connections between

algebraic hyperstructures and neutrosophic set can be found in many recent publications, see [3, 5, 6, 8, 9].

The present paper is concerned with the development of connections between algebraic hyperstructures and

neutrosphic algebraic structures and again concerned with studying the refinement of neutrosophic hyper-

groups in particular and present some of their basic properties.
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For the purposes of this paper, it will be assumed that I splits into two indeterminacies I1 [contradiction

(true (T ) and false (F ))] and I2 [ignorance (true (T ) or false (F ))]. It then follows logically that:

I1I1 = I21 = I1,
I2I2 = I22 = I2, and

I1I2 = I2I1 = I1.

Definition 1.1. 4 If ∗ : X(I1, I2) × X(I1, I2) 7→ X(I1, I2) is a binary operation defined on X(I1, I2), then

the couple (X(I1, I2), ∗) is called a refined neutrosophic algebraic structure and it is named according to the

laws (axioms) satisfied by ∗.

Definition 1.2. 4 Let (X(I1, I2),+, ·) be any refined neutrosophic algebraic structure where + and . are ordi-

nary addition and multiplication respectively.

For any two elements (a, bI1, cI2), (d, eI1, fI2) ∈ X(I1, I2), we define

(a, bI1, cI2) + (d, eI1, fI2) = (a+ d, (b+ e)I1, (c+ f)I2),

(a, bI1, cI2) · (d, eI1, fI2) = (ad, (ae+ bd+ be+ bf + ce)I1, (af + cd+ cf)I2).

Definition 1.3. 4 If ′′+′′ and ′′.′′ are ordinary addition and multiplication, Ik with k = 1, 2 have the following

properties:

1. Ik + Ik + · · ·+ Ik = nIk.

2. Ik + (−Ik) = 0.

3. Ik · Ik · · · · Ik = Ink = Ik for all positive integers n > 1.

4. 0 · Ik = 0.

5. I−1
k is undefined and therefore does not exist.

Definition 1.4. 4 Let (G, ∗) be any group. The couple (G(I1, I2), ∗) is called a refined neutrosophic group

generated by G, I1 and I2. (G(I1, I2), ∗) is said to be commutative if for all x, y ∈ G(I1, I2), we have

x ∗ y = y ∗ x. Otherwise, we call (G(I1, I2), ∗) a non -commutative refined neutrosophic group.

Definition 1.5. 4 If (X(I1, I2), ∗) and (Y (I1, I2), ∗
′) are two refined neutrosophic algebraic structures, the

mapping

φ : (X(I1, I2), ∗) −→ (Y (I1, I2), ∗
′)

is called a neutrosophic homomorphism if the following conditions hold:

1. φ((a, bI1, cI2) ∗ (d, eI1, fI2)) = φ((a, bI1, cI2)) ∗
′ φ((d, eI1, fI2)).

2. φ(Ik) = Ik for all (a, bI1, cI2), (d, eI1, fI2) ∈ X(I1, I2) and k = 1, 2.

Example 1.6. 4 Let

Z2(I1, I2) = {(0, 0, 0), (1, 0, 0), (0, I1, 0), (0, 0, I2), (0, I1, I2), (1, I1, 0), (1, 0, I2), (1, I1, I2)}.

Then (Z2(I1, I2),+) is a commutative refined neutrosophic group of integers modulo 2.

Generally for a positive integer n ≥ 2, (Zn(I1, I2),+) is a finite commutative refined neutrosophic group of

integers modulo n.

Example 1.7. 4 Let (G(I1, I2), ∗) and and (H(I1, I2), ∗
′) be two refined neutrosophic groups.

Let φ : G(I1, I2)×H(I1, I2) → G(I1, I2) be a mapping defined by φ(x, y) = x and let

ψ : G(I1, I2) × H(I1, I2) → H(I1, I2) be a mapping defined by ψ(x, y) = y. Then φ and ψ are refined

neutrosophic group homomorphisms.

Definition 1.8. 11 Let H be a non-empty set and ◦ : H × H −→ P ∗(H) be a hyperoperation. The couple

(H, ◦) is called a hypergroupoid. For any two non-empty subsets A and B of H and x ∈ H, we define

A ◦B =
⋃

a∈A,b∈B

a ◦ b, A ◦ x = A ◦ {x} and x ◦B = {x} ◦B.

Doi :10.5281/zenodo.3958093 87



International Journal of Neutrosophic Science (IJNS) Vol.9 , No.2 , PP.86-99 , 2020

Definition 1.9. 11 A hypergroupoid (H, ◦) is called a semihypergroup if for all a, b, c of H we have

(a ◦ b) ◦ c = a ◦ (b ◦ c), which means that

⋃

u∈a◦b

u ◦ c =
⋃

v∈b◦c

a ◦ v.

A hypergroupoid (H, ◦) is called a quasihypergroup if for all a of H we have a ◦ H = H ◦ a = H. This

condition is also called the reproduction axiom.

Definition 1.10. 11 A hypergroupoid (H, ◦) which is both a semihypergroup and a quasi- hypergroup is called

a hypergroup.

Definition 1.11. 11 Let (H, ◦) and (H ′, ◦′) be two hypergroupoids. A map φ : H −→ H ′, is called

1. an inclusion homomorphism if for all x, y of H, we have φ(x ◦ y) ⊆ φ(x) ◦′ φ(y);

2. a good homomorphism if for all x, y of H, we have φ(x ◦ y) = φ(x) ◦′ φ(y).

Definition 1.12. 11 Let H be a non-empty set and let + be a hyperoperation on H. The couple (H,+) is called

a canonical hypergroup if the following conditions hold:

1. x+ y = y + x, for all x, y ∈ H,

2. x+ (y + z) = (x+ y) + z, for all x, y, z ∈ H,

3. there exists a neutral element 0 ∈ H such that x+ 0 = {x} = 0 + x, for all x ∈ H,

4. for every x ∈ H, there exists a unique element −x ∈ H such that 0 ∈ x+ (−x) ∩ (−x) + x,

5. z ∈ x+ y implies y ∈ −x+ z and x ∈ z − y, for all x, y, z ∈ H.

Definition 1.13. 7 Let (H, ⋆) be any hypergroup and let < H ∪ I >= {x = (a, bI) : a, b ∈ H}.
The couple N(H) = (< H ∪ I >, ⋆) is called a neutrosophic hypergroup generated by H and I under the

hyperoperation ⋆. The part a is called the non-neutrosophic part of x and the part b is called the neutrosophic

part of x. If x = (a, bI) and y = (c, dI) are any two elements of N(H), where a, b, c, d ∈ H, we define

x ⋆ y = (a, bI) ⋆ (c, dI) = {(u, vI)|u ∈ a ⋆ c, v ∈ a ⋆ d ∪ b ⋆ c ∪ b ⋆ d} = (a ⋆ c, (a ⋆ d ∪ b ⋆ c ∪ b ⋆ d)I).

Note that a ⋆ c ⊆ H and (a ⋆ d ∪ b ⋆ c ∪ b ⋆ d) ⊆ H.

2 Formulation of Refined Neutrosophic Hypergroup

Definition 2.1. Let (H, ⋆) be any hypergroup and let < H ∪ (I1, I2) >= {x = (a, bI1, cI2) : a, b, c ∈ H}.
The couple (H(I1, I2), ⋆), is called a refined neutrosophic hypergroup generated by H, I1 and I2 under the

hyperoperation ⋆. The part a is called the non-neutrosophic part of x and the part b and c are called the neutro-

sophic parts of x.

If x = (a, bI1, cI2) and y = (d, eI1, fI2) are any two elements of H(I1, I2), where a, b, c, d ∈ H, we

define

x ⋆ y = (a, bI1, cI2) ⋆ (d, eI1, fI2)
= {(u, vI1, wI2) : u ∈ a ⋆ d, v ∈ a ⋆ e ∪ b ⋆ d ∪ b ⋆ e ∪ b ⋆ f ∪ c ⋆ e, w ∈ a ⋆ f ∪ c ⋆ d ∪ c ⋆ f}
= (a ⋆ d, (a ⋆ e ∪ b ⋆ d ∪ b ⋆ e ∪ b ⋆ f ∪ c ⋆ e)I1, (a ⋆ f ∪ c ⋆ d ∪ c ⋆ f)I2).

Note that a ⋆ d ⊆ H, (a ⋆ e ∪ b ⋆ d ∪ b ⋆ e ∪ b ⋆ f ∪ c ⋆ e) ⊆ H and (a ⋆ f ∪ c ⋆ d ∪ c ⋆ f) ⊆ H.

Note 1. If the operation on H(I1, I2) is hyperaddition (+′) then for all x = (a, bI1, cI2) and

y = (d, eI1, fI2) elements of H(I1, I2), with a, b, c, d ∈ H, we define

x+′ y = (a, bI1, cI2) +
′ (d, eI1, fI2) = (a+ d, (b+ e)I1, (c+ f)I2).

Here the addition on the right is the hyperaddition in H.

Proposition 2.2. Let (H,+) be a hypergroupoid, then, the refined neutrosophic hypergroup (H(I1, I2),+
′)

is a hypergroup with identity element θ = (0, 0I1, 0I2) iff (H,+) is a hypergroup with identity element 0.
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Proof. Suppose (H,+) is a hypergroup and x = (a, bI1, cI2), y = (d, eI1, fI2), z = (g, hI1, kI2) ∈ H(I1, I2).
Then we show that (H(I1, I2),+

′) is a hypergroup.

First, we shall show that (H(I1, I2),+
′) is a semihypergroup.

x+′ (y +′ z) = (a, bI1, cI2) +
′ ((d, eI1, fI2) +

′ (g, hI1, kI2)
= (a, bI1, cI2) +

′ ((d+ g, (e+ h)I1, (f + k)I2))
= (a+ (d+ g), (b+ (e+ h))I1, (c+ (f + k))I2)
= ((a+ d) + g, ((b+ e) + h)I1, ((c+ f) + k)I2)
= (a+ d, (b+ e)I1, (c+ f)I2) +

′ (g, hI1, kI2)
= ((a, bI1, cI2) +

′ (d.eI1, fI2)) +
′ (g, hI1, kI2)

= (x+′ y) +′ z.
Secondly, we shall show that (H(I1, I2),+

′) is a quasihypergroup.

That is , we want to show that x+′ H(I1, I2) = H(I1, I2) +
′ x = H(I1, I2).

x+′ H(I1, I2) = (a, bI1, cI2) +
′ {(d, eI1, fI2) : (d, eI1, fI2) ∈ H(I1, I2)}

= (a+ d, (b+ e)I1, (c+ f)I2)
⊆ H(I1, I2).
=⇒ x+′ H(I1, I2) ⊆ H(I1, I2).

Now we show that H(I1, I2) ⊆ x+′ H(I1, I2), let z = (g, hI1, kI2) ∈ H(I1, I2) with g, h, k ∈ H.
There exist a1, a2, a3 ∈ H such that g ∈ a1 +H,h ∈ a2 +H and k ∈ a3 +H, since H is a hypergroup.

Hence (g, hI1, kI2) ∈ (a1, a2I1, a3I2) +H, which implies that H(I1, I2) ⊆ x+′ H(I1, I2).
Accordingly, H(I1, I2) = x+′ H(I1, I2). Similarly, we can show that H(I1, I2) = H(I1, I2) +

′ x.
∴ We can conclude that (H(I1, I2),+

′) is a hypergroup.

Conversely, suppose (H(I1, I2),+
′) is a hypergroup and x = (a, bI1, cI2), y = (d, eI1, fI2),

z = (g, hI1, kI2) ∈ H(I1, I2), with a, d, g, b = c = e = f = h = k = 0 ∈ H.
Then we show that (H,+) is a hypergroup.

Since H(I1, I2) is a hypergroup, x+′ (y +′ z) = (x+′ y) +′ z.

But
x+′ (y +′ z) = (a, 0I1, 0I2) +

′ ((d, 0I1, 0I2) +
′ (g, 0I1, 0I2))

= (a, 0I1, 0I2) +
′ ((d+ g), (0 + 0)I1, (0 + 0)I2)

= (a+ (d+ g), 0I1, 0I2)
= a+ (d+ g)) and

(x+′ y) +′ z = ((a, 0I1, 0I2) +
′ (d, 0I1, 0I2)) +

′ (g, 0I1, 0I2)
= ((a+ d, (0 + 0)I1, (0 + 0)I2) +

′ ((d, 0I1, 0I2)
= ((a+ d) + g, 0I1, 0I2) = (a+ d) + g.

∴ x+′ (y +′ z) = (x+′ y) +′ z =⇒ a+ (d+ g) = (a+ d) + g.
Thus (H,+) is a semihypergroup.

Since H(I1, I2) is a quasihypergroup, for x = (a, bI1, cI2) ∈ H(I1, I2) with a, b = c = 0 ∈ H
we have that x+′ H(I1, I2) = H(I1, I2) +

′ x = H(I1, I2).
But
x+′ H(I1, I2) = (a, 0I1, 0I2) +

′ H(I1, I2)
= (a, 0I1, 0I2) +

′ {(h, 0I1, 0I2) : h ∈ H}
= {(a+ h, 0I1, 0I2) : h ∈ H}
= {a+ h : h ∈ H} = a+H and

H(I1, I2) +
′ x = H(I1, I2) +

′ (a, 0I1, 0I2)
= {(h, 0I1, 0I2) : h ∈ H}+′ (a, 0I1, 0I2)
= {(h+ a, 0I1, 0I2) : h ∈ H}
= {h+ a : h ∈ H} = H + a.

∴ x+′ H(I1, I2) = H(I1, I2) +
′ x =⇒ a+H = H + a.

Since a ∈ H, a+H = H and H + a = H which implies that a+H = H + a = H.
Hence, we can conclude that (H,+) is a hypergroup.

Proposition 2.3. Every refined neutrosophic hypergroup is a semihypergroup.

Proof. Let (H(I1, I2), ⋆) be any refined neutrosophic hypergroup and let x = (a, bI1, cI2),
y = (d, eI1, fI2), z = (g, hI1, kI2) be arbitrary elements of H(I1, I2), where a, b, c, d, e, f, g, h, k ∈ H.
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Then,

x ⋆ y = (a, bI1, cI2) ⋆ (d, eI1, fI2)
= {(u, vI1, wI2) : u ∈ a ⋆ d, v ∈ a ⋆ e ∪ b ⋆ d ∪ b ⋆ e ∪ b ⋆ f ∪ c ⋆ e, w ∈ a ⋆ f ∪ c ⋆ d ∪ c ⋆ f}
= (a ⋆ d, (a ⋆ e ∪ b ⋆ d ∪ b ⋆ e ∪ b ⋆ f ∪ c ⋆ e)I1, (a ⋆ f ∪ c ⋆ d ∪ c ⋆ f)I2).
⊆ H(I1, I2).

Hence, (H(I1, I2), ⋆) is a hypergroupoid.

Next
x ⋆ (y ⋆ z) = (a, bI1, cI2) ⋆ ((d, eI1, fI2) ⋆ (g, hI1, kI2))

= (a, bI1, cI2) ⋆ ((d ⋆ g, (d ⋆ h ∪ e ⋆ g ∪ e ⋆ h ∪ e ⋆ k ∪ f ⋆ h)I1,
(d ⋆ k ∪ f ⋆ g ∪ f ⋆ k)I2)

= a ⋆ (d ⋆ g), (a ⋆ (d ⋆ h) ∪ a ⋆ (e ⋆ g) ∪ a ⋆ (e ⋆ h) ∪ a ⋆ (e ⋆ k) ∪ a ⋆ (f ⋆ h)
∪b ⋆ (d ⋆ g) ∪ b ⋆ (d ⋆ h) ∪ b ⋆ (e ⋆ g) ∪ b ⋆ (e ⋆ h) ∪ b ⋆ (e ⋆ k)
∪b ⋆ (f ⋆ h) ∪ b ⋆ (d ⋆ k) ∪ b ⋆ (f ⋆ g) ∪ b ⋆ (f ⋆ k) ∪ c ⋆ (d ⋆ h) ∪ c ⋆ (e ⋆ g)
∪c ⋆ (e ⋆ h) ∪ c ⋆ (e ⋆ k) ∪ c ⋆ (f ⋆ h))I1,
(a ⋆ (d ⋆ k) ∪ a ⋆ (f ⋆ g) ∪ a ⋆ (f ⋆ k) ∪ c ⋆ (d ⋆ g) ∪ c ⋆ (d ⋆ k) ∪ c ⋆ (f ⋆ g)
∪c ⋆ (f ⋆ k))I2)

= (a ⋆ d) ⋆ g, ((a ⋆ d) ⋆ h ∪ (a ⋆ e) ⋆ g ∪ (a ⋆ e) ⋆ h ∪ (a ⋆ e) ⋆ k ∪ (a ⋆ f) ⋆ h
∪(b ⋆ d) ⋆ g ∪ (b ⋆ d) ⋆ h ∪ (b ⋆ e) ⋆ g ∪ (b ⋆ e) ⋆ h ∪ (b ⋆ e) ⋆ k ∪ (b ⋆ f) ⋆ h
∪(b ⋆ d) ⋆ k ∪ (b ⋆ f) ⋆ g ∪ (b ⋆ f) ⋆ k ∪ (c ⋆ d) ⋆ h ∪ (c ⋆ e) ⋆ g ∪ (c ⋆ e) ⋆ h
∪(c ⋆ e) ⋆ k ∪ (c ⋆ f) ⋆ h)I1,
((a ⋆ d) ⋆ k ∪ (a ⋆ f) ⋆ g ∪ (a ⋆ f) ⋆ k ∪ (c ⋆ d) ⋆ g ∪ (c ⋆ d) ⋆ k ∪ (c ⋆ f) ⋆ g
∪(c ⋆ f) ⋆ k)I2)

= ((a, bI1, cI2) ⋆ (d, eI1, fI2)) ⋆ (g, hI1, kI2)
= (x ⋆ y) ⋆ z.

Accordingly, (H(I1, I2), ⋆) is a semihypergroup.

Proposition 2.4. A refined neutrosophic hypergroup is not always a quasihypergroup.

Proof. To see this, consider a refined neutrosophic hypergroup, say (H(I1, I2), ⋆), where

(0, 0I1, 0I2) /∈ H(I1, I2) . Then for x = (a, bI1, cI2) ∈ H(I1, I2) we have that

x ⋆ H(I1, I2) = (a, bI1, cI2) ⋆ H(I1, I2)
= (a, bI1, cI2) ⋆ {(h1, h2I1, h3I2) : h1, h2, h3 ∈ H}
= {a ⋆ h1, (a ⋆ h2 ∪ b ⋆ h1 ∪ b ⋆ h2 ∪ b ⋆ h3 ∪ c ⋆ h2)I1, (a ⋆ h3 ∪ c ⋆ h1 ∪ c ⋆ h3)I2}
= {(u, vI1, wI2) : u ∈ a ⋆ h1, v ∈ (a ⋆ h2 ∪ b ⋆ h1 ∪ b ⋆ h2 ∪ b ⋆ h3 ∪ c ⋆ h2),

w ∈ (a ⋆ h3 ∪ c ⋆ h1 ∪ c ⋆ h3)}
⊂ H(I1, I2).

H(I1, I2) ⋆ x = H(I1, I2) ⋆ (a, bI1, cI2)
= {(h1, h2I1, h3I2) : h1, h2, h3 ∈ H} ⋆ (a, bI1, cI2)
= {h1 ⋆ a, (h1 ⋆ b ∪ h2 ⋆ a ∪ h2 ⋆ b ∪ h2 ⋆ c ∪ h3 ⋆ b)I1, (h1 ⋆ c ∪ h3 ⋆ a ∪ h3 ⋆ c)I2}
= {(u, vI1, wI2) : u ∈ h1 ⋆ a, , v ∈ (h1 ⋆ b ∪ h2 ⋆ a ∪ h2 ⋆ b ∪ h2 ⋆ c ∪ h3 ⋆ b),

w ∈ (h1 ⋆ c ∪ h3 ⋆ a ∪ h3 ⋆ c)}
⊂ H(I1, I2).

We can see that x ⋆ H(I1, I2) = H(I1, I2) ⋆ x 6= H(I1, I2). This implies that reproduction axioms fails to

hold in this case.

We note that the reproduction axioms fails to hold in some refined neutrosophic hypergroup, hence there

exist some neutrosophic hypergroups that are not hypergroup. This observation is recorded in the next propo-

sition.

Proposition 2.5. Let (H(I1, I2), ⋆) be a refined neutrosophic hypergroup, then

1. (H(I1, I2), ⋆) in general is not a hypergroup ;

2. (H(I1, I2), ⋆) always contain a hypergroup.

Proof. 1. From Proposition 2.4 above, we can see that the reproduction axiom is not always satisfied. Then

the proof follows.
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2. It follows from the definition of a neutrosophic hypergroup.

Example 2.6. Let H = {a, b} be a set with the hyperoperation defined as follows

a ⋆ a = a, a ⋆ b = b ⋆ a = b and b ⋆ b = {a, b}.

Let

H(I1, I2) = {a, b, α1 = (a, aI1, aI2), α2 = (a, aI1, bI2), α3 = (a, bI1, aI2), α4 = (a, bI1, bI2), β1 =
(b, bI1, bI2), β2 = (b, bI1, aI2), β3 = (b, aI1, bI2), β4 = (b, aI1, aI2)} be a refined neutrosophic set and let ⋆′

be a hyperoperation on H(I1, I2) defined in the table below.

Take α = {α1 = (a, aI1, aI2), α2 = (a, aI1, bI2), α3 = (a, bI1, aI2), α4 = (a, bI1, bI2)} and

β = {β1 = (b, bI1, bI2), β2 = (b, bI1, aI2), β3 = (b, aI1, bI2), β4 = (b, aI1, aI2)}.

Table 1: Cayley table for the binary operation ” ⋆′ ”

⋆′ a b α1 α2 α3 α4 β1 β2 β3 β4

a a b α1 α2 α3 α4 β1 β2 β3 β4

b b

{

a

b

}

β1

{

β1

β2

} {

β1

β3

}

β

{

α

β

}















α2

α4

β1

β3





























α3

α4

β1

β2















{

α4

β1

}

α1 α1 β1 α1 α

{

α1

α3

}

α β1 β

{

β1

β3

}

β

α2 α2

{

β1

β2

}

α α α α β β β β

α3 α3

{

β1

β3

} {

α1

α3

}

α

{

α1

α3

}

α

{

β1

β3

}

β

{

β1

β3

}

β

α4 α4 β α α α α β β β β

β1 β1

{

α

β

}

β1 β

{

β1

β3

}

β

{

α

β

} {

α

β

} {

α

β

} {

α

β

}

β2 β2















α2

α4

β1

β3















β β β β

{

α

β

} {

α

β

} {

α

β

} {

α

β

}

β3 β3















α3

α4

β1

β2















{

β1

β3

}

β

{

β1

β3

}

β

{

α

β

} {

α

β

} {

α

β

} {

α

β

}

β4 β4

{

α4

β1

}

β β β β

{

α

β

} {

α

β

} {

α

β

} {

α

β

}

It is clear from the table that (H(I1, I2), ⋆) is a refined neutrosophic hypergroup since it contains a proper

subset {a, b} which is a hypergroup under ⋆.

Example 2.7. Let H = {a, b, c} and define ” ⋆ ” on H as follows

Table 2: Cayley table for the binary operation ” ⋆ ”

⋆ a b c

a a b c

b b {a, b} {b, c}
c c {b, c} {a, b, c}

Let H(I1, I2) = {a, b, c, α1 = (a, aI1, aI2), α2 = (a, aI1, bI2), α3 = (a, aI1, cI2), α4 = (a, bI1, aI2), α5 =
(a, cI1, aI2), α6 = (a, bI1, cI2), α7 = (a, cI1, bI2), α8 = (a, bI1, bI2), α9 = (a, cI1, cI2), β1 = (b, bI1, bI2), β2 =
(b, bI1, aI2), β3 = (b, bI1, cI2), β4 = (b, aI1, bI2), β5 = (b, cI1, bI2), β6 = (b, aI1, cI2), β7 = (b, cI1, aI2), β8 =
(b, aI1, aI2), β9 = (b, cI1, cI2), τ1 = (c, cI1, cI2), τ2 = (c, cI1, aI2), τ3 = (c, cI1, bI2), τ4 = (c, aI1, cI2), τ5 =
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(c, bI1, cI2), τ6 = (c, aI1, bI2), τ7 = (c, bI1, aI2), τ8 = (c, aI1, aI2), τ9 = (c, bI1, bI2)} be a refined neutro-

sophic set and let ⋆′ be a hyperoperation onH(I1, I2), then using the definition of ⋆ in Table 2 , (H(I1, I2), ⋆
′)

is a refined neutrosophic hypergroup.

Example 2.8. Let H(I1, I2) = {e, a, b, c, (I1, I2), (aI1, aI2), (bI1, bI2), (cI1, cI2)} be a refined neutrosophic

semi group where a2 = b2 = c2 = e, ab = ba = c and ac = ca = b and let P (I1, I2) = {e, a, (aI1, aI2)} be

a refined neutrosophic subset of H(I1, I2).Then for all x, y ∈ H(I1, I2) define

xoy = xP (I1, I2)y.

Then (H(I1, I2)), ◦) is a refined neutrosophic hypergroup.

Example 2.9. Let V (I1, I2) be a weak refined neutrosophic vector space over a field K. Then for all

x = (a, bI1, cI2), y = (d, eI1, fI2) ∈ V (I1, I2) define

x ◦ y = {k • (x+ y) : k ∈ K}
= {k • (a+ d), k • (b+ e)I1, k ∈ •(c+ f)I2 : k ∈ K}
= {k • a+ k • d, (k • b+ k • e)I1, (k • c+ k • f)I2 : k ∈ K}.

Then (V (I1, I2), ◦) is a hypergroup.

To see this we proceed as follows :

Firstly we show that (V (I1, I2), ◦) is a hypergroupoid.

So, for x = (a, bI1, cI2), y = (d, eI1, fI2) ∈ (V (I1, I2), ◦) and k ∈ Kwe have that

x ◦ y = {k • (x+ y) : k ∈ K} = {k • (a+ d), k • (b+ e)I1, k • (c+ f)I2 : k ∈ K}

= {(u, vI1, wI2) : u ∈ k • (a+ d), v ∈ k • (b+ e), w ∈ k • (c+ f)} ∈ V (I1, I2).

Next we show (V (I1, I2), ◦) is a semi-hypergroup, i.e., ◦ is associative.

Let x = (a, bI1, cI2), y = (d, eI1, fI2) and z = (g, hI1, jI2) ∈ V (I1, I2) then we want to show that

x ◦ (y ◦ z) = (x ◦ y) ◦ z.
Consider x ◦ (y ◦ z) = (a, bI1, cI2) ◦ ((d, eI1, fI2)o(g, hI1, jI2))
= (a, bI1, cI2) ◦ {(u, vI1, wI2) : u ∈ k • (d+ g), v ∈ k • (e+ h), w ∈ k • (f + j)}
= {(p, qI1, rI2) : p ∈ k • (a+ u), q ∈ k • (b+ v), r ∈ k • (c+ w)}
= {(p, qI1, rI2) : p ∈ k • (a+ k • (d+ g)), q ∈ k • (b+ k • (e+ h)), r ∈ k • (c+ k • (f + j))}
= {(p, qI1, rI2) : p ∈ k • (a+ (d+ g)), q ∈ k • (b+ (e+ h)), r ∈ k • (c+ (f + j))}
= {(p, qI1, rI2) : p ∈ k • ((a+ d) + g), q ∈ k • ((b+ e) + h), r ∈ k • ((c+ f) + j)}
= {(p, qI1, rI2) : p ∈ k • (k • (a+ d) + g), q ∈ k • (k • (b+ e) + h), r ∈ k • (k • (c+ f) + j)}
= {(p′, q′I1, r

′I2) : p
′ ∈ k • (a+ d), q′ ∈ k • (b+ e), r′ ∈ k • (c+ f)} ◦ (g, hI1, jI2)

= ((a, bI1, cI2) ◦ (d, eI1, fI2)) ◦ (g, hI1, jI2)
= (x ◦ y) ◦ z.
Next, we show that ◦ satisfies the reproduction axiom.

Let x = (a, bI1, cI2) ∈ V (I1, I2) with a, b, c ∈ V then

(a, bI1, cI2) ◦ V (I1, I2) = {(a, bI1, cI2) ◦ (v1, v2I1, v3I2) : v1, v2, v3 ∈ V }
= {(p, qI1, rI2) : p ∈ k • (a+ v1), q ∈ k • (b+ v2)I1, k • (c+ v3)I3}
= {(p, qI1, rI2) : p ∈ k • (v1 + a), q ∈ k • (v2 + b)I1, k • (v3 + c)I3}
= {(v1, v2I1, v3I2) ◦ (a, bI1, cI2) : v1, v2, v3 ∈ V } = V (I1, I2) ◦ (a, bI1, cI2) = V (I1, I2).
Therefore V (I1, I2) ◦ (a, bI1, cI2) = (a, bI1, cI2) ◦ V (I1, I2) = V (I1, I2).

Example 2.10. Let V (I1, I2) be a strong refined neutrosophic vector space over a refined neutrosophic field

K(I1, I2). For all x = (a, bI1, cI2), y = (d, eI1, fI2) ∈ V (I1, I2) and k = (p, qI1, rI2) ∈ K(I1, I2) define

x ◦ y = {(p, qI1, rI2) • (a+ d, (b+ e)I1, (c+ f)I2)}
= {(u, vI1, wI2) :

u ∈ p • (a+ d),
v ∈ p • (b+ e) ∪ q • (a+ d) ∪ q • (b+ e) ∪ q • (c+ f) ∪ r • (b+ e),
w ∈ p • (c+ f) ∪ r • (a+ d) ∪ r • (c+ f)}.

Then V (I1, I2, o) is refined neutrosophic hypergroup.

Proposition 2.11. Let (H(I1, I2), ⋆1) and (K(I1, I2), ⋆2) be any two refined neutrosophic hypergroups. Then,

(H(I1, I2)×K(I1, I2), ⋆) is a refined neutrosophic hypergroup, where

(x1, x2) ⋆ (y1, y2) = {(x, y) : x ∈ x1 ⋆1 y1, y ∈ x2 ⋆2 y2, ∀(x1, x2), (y1, y2) ∈ H(I1, I2)×K(I1, I2)}.
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Proof. Let (x1, x2), (y1, y2) ∈ H(I1, I2)×K(I1, I2), where x = (a, bI1, cI2) and y = (d, eI1, fI2) then

(x1, x2) ⋆ (y1, y2) = ((a1, b1I1, c1I2), (a2, b2I1, c2I2)) ⋆ ((d1, e1I1, f1I2), (d2, e2I1, f1I2))
= {((k1,m1I1, t1I2), (k2,m2I1, t2I2)) :

(k1,m1I1, t1I2) ∈ (a1, b1I1, c1I2) ⋆ (d1, e1I1, f1I2),
(k2,m2I1, t2I2) ∈ (a2, b2I1, c2I2) ⋆ (d2, e2I1, f2I2)}

= {k1 ∈ a1 ⋆ d1,m1 ∈ a1 ⋆ e1 ∪ b1 ⋆ d1 ∪ b1 ⋆ e1 ∪ b1 ⋆ f1 ∪ c1 ⋆ e1,
t1 ∈ a1 ⋆ f1 ∪ c1 ⋆ d1 ∪ c1 ⋆ f1,
k2 ∈ a2 ⋆ d2,m2 ∈ a2 ⋆ e2 ∪ b2 ⋆ d2 ∪ b2 ⋆ e2 ∪ b2 ⋆ f2 ∪ c2 ⋆ e2,
t2 ∈ a2 ⋆ f2 ∪ c2 ⋆ d2 ∪ c2 ⋆ f2}

= {((a1 ⋆ d1, (a1 ⋆ e1 ∪ b1 ⋆ d1 ∪ b1 ⋆ e1 ∪ b1 ⋆ f1 ∪ c1 ⋆ e1)I1
(a1 ⋆ f1 ∪ c1 ⋆ d1 ∪ c1 ⋆ f1)I2),
(a2 ⋆ d2, (a2 ⋆ e2 ∪ b2 ⋆ d2 ∪ b2 ⋆ e2 ∪ b2 ⋆ f2 ∪ c2 ⋆ e2)I2,
(a2 ⋆ f2 ∪ c2 ⋆ d2 ∪ c2 ⋆ f2)I2)} ⊆ H(I1, I2)×K(I1, I2).

Then (H(I1, I2))×K(I1, I2), ⋆) is a refine neutrosophic hypergroupoid.

Let, (x1, x2), (y1, y2), (z1, z2) ∈ H(I1, I2)×K(I1, I2), where x = (a, bI1, cI2), y = (d, eI1, fI2) and

z = (g, hI1jI2) then

((x1, x2) ⋆ (y1, y2)) ⋆ (z1, z2) = (((a1, b1I1, c1I2), (a2, b2I1, c2I2)) ⋆ ((d1, e1I1, f1I2), (d2, e2I1, f2I2)))
⋆ ((g1, h1I1, j1I1), (g2, h2I1, j2I2))
= {((k1,m1I1, t1I2), (k2,m2I1, t2I2)) : k1 ∈ a1 ⋆ d1,m1 ∈ a1 ⋆ e1 ∪ b1 ⋆ d1 ∪ b1 ⋆ e1 ∪ b1 ⋆ f1 ∪ c1 ⋆ e1,
t1 ∈ a1 ⋆ f1 ∪ c1 ⋆ d1 ∪ c1 ⋆ f1, k2 ∈ a2 ⋆ d2,m2 ∈ a2 ⋆ e2 ∪ b2 ⋆ d2 ∪ b2 ⋆ e2 ∪ b2 ⋆ f2 ∪ c2 ⋆ e2,
t2 ∈ a2 ⋆ f2 ∪ c2 ⋆ d2 ∪ c2 ⋆ f2} ⋆ ((g1, h1I1, j1I1), (g2, h2I1, j2I2))
= ((k1,m1I1, t1I2), (k2,m2I1, t2I2)) ⋆ ((g1, h1I1, j1I1), (g2, h2I1, j2I2))
= {((p1, q1I1, r1I2), (p2, q2I1, r2I2)) : p1 ∈ k1 ⋆ g1, q1 ∈ k1 ⋆ h1 ∪m1 ⋆ g1 ∪m1 ⋆ h1 ∪m1 ⋆ j1 ∪ t1 ⋆ h1,
r1 ∈ k1 ⋆ j1 ∪ t1 ⋆ g1 ∪ t1 ⋆ j1, p2 ∈ k2 ⋆ g2, q2 ∈ k2 ⋆ h2 ∪m2 ⋆ g2 ∪m2 ⋆ h2 ∪m2 ⋆ j2 ∪ t2 ⋆ h2,
r2 ∈ k2 ⋆ j2 ∪ t2 ⋆ g2 ∪ t2 ⋆ j2}
= {((p1, q1I1, r1I2), (p2, q2I1, r2I2)) : p1 ∈ (a1 ⋆ d1) ⋆ g1,
q1 ∈ (a1 ⋆ d1) ⋆ h1 ∪ (a1 ⋆ e1) ⋆ g1 ∪ (b1 ⋆ d1) ⋆ g1 ∪ (b1 ⋆ e1) ⋆ g1 ∪ (b1 ⋆ f1) ⋆ g1 ∪ (c1 ⋆ e1) ⋆ g1 ∪ (a1 ⋆
e1) ⋆ h1 ∪ (b1 ⋆ d1) ⋆ h1 ∪ (b1 ⋆ e1) ⋆ h1 ∪ (b1 ⋆ f1) ⋆ h1 ∪ (c1 ⋆ e1) ⋆ h1 ∪ (a1 ⋆ e1) ⋆ j1
∪ (b1 ⋆ d1) ⋆ j1 ∪ (b1 ⋆ e1) ⋆ j1 ∪ (b1 ⋆ f1) ⋆ j1 ∪ (c1 ⋆ e1) ⋆ j1 ∪ (a1 ⋆ f1) ⋆ h1 ∪ (c1 ⋆ d1) ⋆ h1 ∪ (c1 ⋆ f1) ⋆ h1,
r1 ∈ (a1 ⋆d1)⋆ j1∪ (a1 ⋆ f1)⋆ g1∪ (c1 ⋆d1)⋆ g1∪ (c1 ⋆ f1)⋆ g1∪ (a1 ⋆ f1)⋆ j1∪ (c1 ⋆d1)⋆ j1∪ (c1 ⋆ f1)⋆ j1
p2 ∈ (a2 ⋆ d2) ⋆ g2,
q2 ∈ (a2 ⋆ d2) ⋆ h2 ∪ (a2 ⋆ e2) ⋆ g2 ∪ (b2 ⋆ d2) ⋆ g2 ∪ (b2 ⋆ e2) ⋆ g2 ∪ (b2 ⋆ f2) ⋆ g2 ∪ (c2 ⋆ e2) ⋆ g2 ∪ (a2 ⋆
e2) ⋆ h2 ∪ (b2 ⋆ d2) ⋆ h2 ∪ (b2 ⋆ e2) ⋆ h2 ∪ (b2 ⋆ f2) ⋆ h2 ∪ (c2 ⋆ e2) ⋆ h2 ∪ (a2 ⋆ e2) ⋆ j2 ∪ (b2 ⋆ d2) ⋆ j2 ∪
(b2 ⋆ e2) ⋆ j2 ∪ (b2 ⋆ f2) ⋆ j2 ∪ (c2 ⋆ e2) ⋆ j2∪, (a2 ⋆ f2) ⋆ h2 ∪ (c2 ⋆ d2) ⋆ h2 ∪ (c2 ⋆ f2) ⋆ h2,
r2 ∈ (a2 ⋆d2)⋆j2∪ (a2 ⋆f2)⋆g2∪ (c2 ⋆d2)⋆g2∪ (c2 ⋆f2)⋆g2∪ (a2 ⋆f2)⋆j2∪ (c2 ⋆d2)⋆j2∪ (c2 ⋆f2)⋆j2}
= {((p1, q1I1, r1I2), (p2, q2I1, r2I2)) : p1 ∈ a1 ⋆ (d1 ⋆ g1),
q1 ∈ a1 ⋆ (d1 ⋆ h1)∪ a1 ⋆ (e1 ⋆ g1)∪ b1 ⋆ d1(⋆g1)∪ b1 ⋆ (e1 ⋆ g1)∪ b1 ⋆ (f1 ⋆ g1)∪ c1 ⋆ (e1 ⋆ g1)∪ a1 ⋆ (e1 ⋆
h1) ∪ b1 ⋆ (d1 ⋆ h1) ∪ b1 ⋆ (e1 ⋆ h1) ∪ b1 ⋆ (f1 ⋆ h1) ∪ c1 ⋆ (e1 ⋆ h1) ∪ a1 ⋆ (e1 ⋆ j1)
∪ b1 ⋆ (d1 ⋆ j1)∪ b1 ⋆ (e1 ⋆ j1)∪ b1 ⋆ (f1 ⋆ j1)∪ c1 ⋆ (e1 ⋆ j1)∪ a1 ⋆ (f1 ⋆ h1)∪ c1 ⋆ (d1 ⋆ h1)∪ c1 ⋆ (f1 ⋆ h1),
r1 ∈ a1 ⋆ (d1 ⋆ j1)∪a1 ⋆ (f1 ⋆ g1)∪ c1 ⋆ (d1 ⋆ g1)∪ c1 ⋆ (f1 ⋆ g1)∪a1 ⋆ (f1 ⋆ j1)∪ c1 ⋆ (d1 ⋆ j1)∪ c1 ⋆ (f1 ⋆ j1)
p2 ∈ a2 ⋆ (d2 ⋆ g2),
q2 ∈ a2 ⋆ (d2 ⋆ h2) ∪ a2 ⋆ (e2 ⋆ g2) ∪ b2 ⋆ (d2 ⋆ g2) ∪ b2 ⋆ (e2 ⋆ g2) ∪ b2 ⋆ (f2 ⋆ g2) ∪ c2 ⋆ (e2 ⋆ g2) ∪ a2 ⋆
(e2 ⋆ h2) ∪ b2 ⋆ (d2 ⋆ h2) ∪ b2 ⋆ (e2 ⋆ h2) ∪ b2 ⋆ (f2 ⋆ h2) ∪ c2 ⋆ (e2 ⋆ h2) ∪ a2 ⋆ (e2 ⋆ j2) ∪ b2 ⋆ (d2 ⋆ j2) ∪
b2 ⋆ (e2 ⋆ j2) ∪ b2 ⋆ (f2 ⋆ j2) ∪ c2 ⋆ (e2 ⋆ j2)∪, a2 ⋆ (f2 ⋆ h2) ∪ c2 ⋆ (d2 ⋆ h2) ∪ c2 ⋆ (f2 ⋆ h2),
r2 ∈ a2 ⋆ (d2 ⋆j2)∪a2 ⋆ (f2 ⋆g2)∪ c2 ⋆ (d2 ⋆g2)∪ c2 ⋆ (f2 ⋆g2)∪a2 ⋆ (f2 ⋆j2)∪ c2 ⋆ (d2 ⋆j2)∪ c2 ⋆ (f2 ⋆j2)}
= ((a1, b1I1, c1I2), (a2, b2I1, c2I2)) ⋆ {((u1, v1I1, w1I2), (u2, v2I1, w2I2)) :
u1 ∈ d1 ⋆ g1, v1 ∈ d1 ⋆ h1 ∪ e1 ⋆ g1 ∪ e1 ⋆ h1 ∪ e1 ⋆ j1 ∪ f1 ⋆ h1, w1 ∈ d1 ⋆ j1 ∪ f1 ⋆ g1 ∪ f1 ⋆ j1,
u2 ∈ d2 ⋆ g2, v2 ∈ d2 ⋆ h2 ∪ e2 ⋆ g2 ∪ e2 ⋆ h2 ∪ e2 ⋆ j2 ∪ f2 ⋆ h2, w2 ∈ d2 ⋆ j2 ∪ f2 ⋆ g2 ∪ f2 ⋆ j2}
= ((a1, b1I1, c1I2), (a2, b2I1, c2I2)) ⋆ (((d1, e1I1, f1I2), (d2, e2I1f2I2)) ⋆ ((g1, h1I1, j1I2), (g2, h2I1j2I2)))
= (x1, x2) ⋆ ((y1, y2) ⋆ (z1, z2)).
Hence, (H(I1, I2)×K(I1, I2), ⋆) is a refined neutrosophic semi-hypergroup.

Lastly, let (x1, x2) ∈ H(I1, I2)×K(I1, I2) then

((a1, b1I1, c1I2), (a2, b2I1, c2I2)) ⋆ (H(I1, I2)×K(I1, I2))
= {((a1, b1I1, c1I2), (a2, b2I1, c2I2)) ⋆ ((d1, e1I1, e2I2), (d2, e2I1, f2I2)) : (d1, e1I1, e2I2) ∈ H(I1, I2),
(d2, e2I1, f2I2) ∈ K(I1, I2)}
= {(a1 ⋆ d1, (a1 ⋆ e1 ∪ b1 ⋆ d1 ∪ b1 ⋆ e1 ∪ b1 ⋆ f1 ∪ c1 ⋆ e1)I1, (a1 ⋆ f1 ∪ c1 ⋆ d1 ∪ c1 ⋆ f1)I2,
(a2 ⋆ d2, (a2 ⋆ e2 ∪ b2 ⋆ d2 ∪ b2 ⋆ e2 ∪ b2 ⋆ f2 ∪ c2 ⋆ e2)I1(a2 ⋆ f2 ∪ c2 ⋆ d2 ∪ c2 ⋆ f2)I2}
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= (a1, b1I1, c1I2) ⋆ H(I1, I2), (a2, b2I1, c2I2) ⋆ K(I1, I2)
= H(I1, I2)⋆(a1, b1I1, c1I2),K(I1, I2)⋆(a2, b2I1, c2I2) sinceH(I1, I2) and K(I1, I2) are hypergroups.

= H(I1, I2)×K(I1, I2).
Hence (H(I1, I2))×K(I1, I2), ⋆) is a refined neutrosophic quasi hypergroup.

Then we can conclude that (H(I1, I2))×K(I1, I2), ⋆) is a refined neutrososphic hypergroup.

Proposition 2.12. Let (H(I1, I2), ⋆) be a refined neutrosophic hypergroup and let (K, o) be a hypergroup.

Then, (H(I1, I2)×K, ⋆′) is a refined neutrosophic hypergroup, where

(h1, k1) ⋆
′ (h2, k2) = {(h, k) : h ∈ h1 ⋆

′ h2, k ∈ k1 ◦ k2, ∀(h1, k1), (h2, k2) ∈ N(H)×K}.

Proof : It follows from similar approach to the proof of Proposition 2.11 .

Proposition 2.13. Let (H(I1, I2), ⋆) be a refined neutrosophic hypergroup, then for all elements of H(I1, I2)
no two elements combine to give empty set.

Proof. Let (a, bI1, cI2), (x, yI1, zI2) ∈ H(I1, I2). Suppose (a, bI1, I2) ⋆ (x, yI1, zI2) = ∅.
Then since H(I1, I2) is a neutrosophic hypergroup, by reproduction axiom we have

H(I1, I2) = (a, bI1, cI2) ⋆ H(I1, I2)
= (a, bI1, cI2) ⋆ ((x, yI1, I2) ⋆ H(I1, I2))
= ((a, bI1, cI2) ⋆ (x, yI1, I2)) ⋆ H(I1, I2)
= ∅ ⋆ H(I1, I2)
= ∅.

This is absurd, hence there exist no two elements of H(I1, I2) that combine to give empty set.

Definition 2.14. Let H(I1, I2) be a refined neutrosophic hypergroup and let K[I1, I2] be a proper subset of

H(I1, I2). Then K[I1, I2] is said to be a refined neutrosophic semi-subhypergroup of H(I1, I2) if

x ⋆ y ⊆ K[I1, I2] for all x, y ∈ K[I1, I2] .

Definition 2.15. Let H(I1, I2) be a refined neutrosophic hypergroup and let K[I1, I2] be a proper subset of

H(I1, I2). Then

1. K[I1, I2] is said to be a refined neutrosophic subhypergroup of H(I1, I2) if K[I1, I2] is a refined neu-

trosophic hypergroup, that is, K[I1, I2] must contain a proper subset which is a hypergroup.

2. K[I1, I2] is said to be a refined pseudo neutrosophic subhypergroup ofH(I1, I2) ifK[I1, I2] is a refined

neutrosophic hypergroup which contains no proper subset which is a hypergroup.

Note 2. A refined neutrosophic hypergroup is a much more complicated structure than the structure of a

refined neutrosophic group. In a refined neutrosophic group, the intersection of any two refined neutrosophic

subgroups is a refined neutrosophic subgroup, this is not usually so in the case of a refined neutrosophic

hypergroups, since the reproductive axioms fails to hold in this case. This has led to the consideration of

different kinds of refined neutrosophic subhypergroups, which are ; Closed, Ultraclosed and Conjugable.

Proposition 2.16. Let M(I1, I2) and N(I1, I2) be any refined neutrosophic subhypergroups of a refined neu-

trososphic hypergroup H(I1, I2), then M(I1, I2) ∩N(I1, I2) is a refined neutrosophic semi-subhypergroup.

Proof. M(I1, I2)∩N(I1, I2) 6= ∅, sinceM(I1, I2) andN(I1, I2) are non-empty subhypergroups ofH(I1, I2).
Now, let x = (a1, b1I1, c1I2), y = (a2, b2I1, c2I2) ∈M(I1, I2) ∩N(I1, I2).
Then (a1, b1I1, c1I2), (a2, b2I1, c2I2) ∈ M(I1, I2) and (a1, b1I1, c1I2), (a2, b2I1, c2I2) ∈ N(I1, I2). Since,

M(I1, I2) and N(I1, I2) are refined neutrosophic subhypergroup, we have that

(a1, b1I1, c1I2) ⋆ (a2, b2I1, c2I2) ⊆M(I1, I2) and

(a1, b1I1, c1I2)⋆(a2, b2I1, c2I2) ⊆ N(I1, I2) =⇒ (a1, b1I1, c1I2)⋆(a2, b2I1, c2I2) ⊆M(I1, I2)∩N(I1, I2).
Hence, M(I1, I2) ∩N(I1, I2) is a refined neutrosophic semi-subhypergroup.

Proposition 2.17. Let M(I1, I2) and N(I1, I2) be any refined neutrosophic semi-subhypergroups of a refined

neutrososphic commutative hypergroup H(I1, I2), then the set

M(I1, I2)N(I1, I2) = {xy : x ∈M(I1, I2), y ∈ N(I1, I2)}

is a refined neutrosophic semi-subhypergroup of H(I1, I2).

Doi :10.5281/zenodo.3958093 94



International Journal of Neutrosophic Science (IJNS) Vol.9 , No.2 , PP.86-99 , 2020

Definition 2.18. Let K(I1, I2) be a refined neutrosophic subhypergroup of a refined neutrosophic hypergroup

(H(I1, I2), ⋆). Then,

1. K(I1, I2) is said to be closed on the left (right) if for all k1, k2 ∈ K(I1, I2), x ∈ H(I1, I2) we have

k2 ∈ x ⋆ k1(k2 ∈ k1 ⋆ x) implies that x ∈ K(I1, I2);

2. K(I1, I2) is said to be ultraclosed on the left (right) if for all x ∈ H(I1, I2) we have

x ⋆ K(I1, I2) ∩ x ⋆ (H(I1, I2)\K(I1, I2)) = ∅ (K(I1, I2) ⋆ x ∩ (H(I1, I2)\K(I1, I2)) ⋆ x = ∅);

3. K(I1, I2) is said to be left (right) conjugable if K(I1, I2) is left (right) closed and if for all

x ∈ H(I1, I2), there exists h ∈ H(I1, I2) such that x ⋆ h ⊆ K(I1, I2) (h ⋆ x ⊆ K(I1, I2));

4. K(I1, I2) is said to be (closed, ultraclosed, conjugable) if it is left and right (closed, ultraclosed, conju-

gable).

Proposition 2.19. Let K[I1, I2] be a refined neutrosophic subhypergroup of H(I1, I2), A[I1, I2] ⊆ K[I1, I2]
and B[I1, I2] ⊆ H(I1, I2), then

1. A[I1, I2](B[I1, I2] ∩K[I1, I2]) ⊆ A[I1, I2]B[I1, I2] ∩K[I1, I2] and

2. (B[I1, I2] ∩K[I1, I2])A[I1, I2] ⊆ B[I1, I2]A[I1, I2] ∩K[I1, I2].

Proof. The proof is similar to the proof in classical case.

Proposition 2.20. 1. If K[I1, I2] is a left closed refined neutrososphic subhypergroup in H[I1, I2],
A[I1, I2] ⊆ K[I1, I2] and B[I1, I2] ⊆ H[I1, I2], then

(B[I1, I2] ∩K[I1, I2])/A[I1, I2] = (B[I1, I2]/A[I1, I2]) ∩K[I1, I2].

2. IfK[I1, I2] is a right closed subhypergroup inH[I1, I2], A[I1, I2] ⊆ K[I1, I2] andB[I1, I2] ⊆ H[I1, I2],
then (B[I1, I2] ∩K[I1, I2])\A[I1, I2] = B[I1, I2]\A[I1, I2] ∩K[I1, I2].

Proof. The proof is similar to the proof in classical case.

Proposition 2.21. Let K[I1, I2],M [I1, I2] be two refined neutrosophic subhypergroups of a refined neutro-

sophic hypergroup H[I1, I2] and suppose that K[I1, I2] is left (or right) closed in H[I1, I2].
Then K[I1, I2] ∩M [I1, I2] is left (or right) closed in M [I1, I2].

Proof. The proof is similar to the proof in classical case.

Proposition 2.22. Let (H(I1, I2)), ⋆) be a refined neutrosophic hypergroup and let ρ be an equivalence rela-

tion on H(I1, I2).

1. If ρ is regular, then H(I1, I2)/ρ is a refined neutrosophic hypergroup.

2. If ρ is strongly regular, then H(I1, I2)/ρ is a refined neutrosophic group.

The proposition will be proved with the example provided below.

Example 2.23. If (G(I1, I2),+) is a refined neutrosophic abelian hypergroup, ρ is an equivalence relation in

G(I1, I2), which has classes x̄ = {x,−x}, then for all x̄, ȳ of G(I1, I2)/ρ, we define

x̄oȳ = {x+ y, x− y}.

Then (G(I1, I2)/ρ, o) is a refined neutrosophic hypergroup.

Proof. Let x̄, ȳ ∈ G(I1, I2)/ρ, where x̄ = (a, bI1, cI2), and ȳ = (d, eI1, fI2) then

x̄oȳ = (a, bI1, cI2)o(d, eI1, fI2) = {(a+ d, (b+ e)I1, (c+ f)I2), (a− d, (b− e)I1, (c− f)I2)}
= {x+ y, x− y} ∈ G(I1, I2)/ρ.
Then (G(I1, I2)/ρ, o) is a refined neutrosophic hypergroupoid.

Next we show that o satisfies the associative law. Let x̄, ȳ, z̄ ∈ G(I1, I2)/ρ, where x̄ = (a, bI1, cI2),
ȳ = (d, eI1, fI2) and z̄ = (g, hI1, jI2) then

x̄o(ȳoz̄) = (a, bI1, cI2)o
(

(d, eI1, fI2)o(g, hI1, jI2)
)

= (a, bI1, cI2)o
{

(d+ g, (e+ h)I1, (f + j)I2), (d− g, (e− h)I1, (f − j)I2)
}

=
{

(a, bI1, cI2)o(d+ g, (e+ h)I1, (f + j)I2), (a, bI1, cI2)o(d− g, (e− h)I1, (f − j)I2)
}

Doi :10.5281/zenodo.3958093 95



International Journal of Neutrosophic Science (IJNS) Vol.9 , No.2 , PP.86-99 , 2020

=
{

{(a+ (d+ g), (b+ (e+ h))I1, (c+ (f + j))I2), (a− (d+ g), (b− (e+ h))I1, (c− (f + j))I2)},

{(a+ (d− g), (b+ (e− h))I1, (c+ (f − j))I2), (a− (d− g), (b− (e− h))I1, (c− (f − j))I2)}
}

=
⋃

{

(a+ (d+ g), (b+ (e+ h))I1, (c+ (f + j))I2), (a− (d+ g), (b− (e+ h))I1, (c− (f + j))I2),

(a+ (d− g), (b+ (e− h))I1, (c+ (f − j))I2), (a− (d− g), (b− (e− h))I1, (c− (f − j))I2)
}

=
⋃

{

(a+ (d+ g), (b+ (e+ h))I1, (c+ (f + j))I2), (a+ (d− g), (b+ (e− h))I1, (c+ (f − j))I2),

(a− (d− g), (b− (e− h))I1, (c− (f − j))I2), (a− (d+ g), (b− (e+ h))I1, (c− (f + j))I2)
}

=
⋃

{

((a+ d) + g, ((b+ e) + h)I1, ((c+ f) + j)I2), ((a+ d)− g, ((b+ e)− h)I1, ((c+ f)− j)I2)

((a− d) + g, ((b− e) + h)I1, ((c− f) + j)I2) , ((a− d)− g, ((b− e)− h)I1, ((c− f)− j)I2)
}

=
{

((a+ d), (b+ e)I1, (c+ f)I2)o(g, hI1, jI2), ((a− d), (b− e)I1, (c− f)I2)o(g, hI1, jI2)
}

=
{

((a+ d), (b+ e)I1, (c+ f)I2), ((a− d), (b− e)I1, (c− f)I2)
}

o(g, hI1, jI2)

=
(

(a, bI1, cI2)o(d, eI1, fI2)
)

o(g, hI1, jI2)

= (x̄oȳ)oz̄.
Now we show that o satisfies the reproduction axiom. Let x̄ ∈ G(I1, I2)/ρ then

(a, bI1, cI2)oG(I1, I2)/ρ = {(a, bI1, cI2)o{(d, eI1, fI2) : (d, eI1, fI2) ∈ G(I1, I2)}
= {(a, bI1, cI2)o(d, eI1, fI2) : (a, bI1, cI2), (d, eI1, fI2) ∈ G(I1, I2)}
= {((a+ d), (b+ e)I1, (c+ f)I2), ((a− d), (b− e)I1, (c− f)I2)}
= {((a+ d), (b+ e)I1, (c+ f)I2),−((a+ d), (b+ e)I1, (c+ f)I2),
((a− d), (b− e)I1, (c− f)I2),−((a− d), (b− e)I1, (c− f)I2)}
= {((d+ a), (e+ b)I1, (f + e)I2),−((d+ a), (e+ b)I1, (f + e)I2),
− ((d− a), (e− b)I1, (f − c)I2), ((d− a), (e− b)I1, (f − c)I2)}
= {((d+ a), (e+ b)I1, (f + e)I2),−((d+ a), (e+ b)I1, (f + e)I2),
((d− a), (e− b)I1, (f − c)I2),−((d− a), (e− b)I1, (f − c)I2)}
= {((d+ a), (e+ b)I1, (f + e)I2), ((d− a), (e− b)I1, (f − c)I2)}
= {(d, eI1, fI2)o(a, bI1, cI2)}
= {(d, eI1, fI2)o(a, bI1, cI2) : (d, eI1, fI2) ∈ G(I1, I2)}
= G(I1, I2)/ρ o (a, bI1, cI2)
= G(I1, I2)/ρ.
Hence we say that (G(I1, I2)/ρ, o) is a refined neutrosophic hypergroup.

Definition 2.24. Let (H1(I1, I2), ⋆1) and (H2(I1, I2)), ⋆2) be any two refined neutrosophic hypergroups and

let f : H1(I1, I2) −→ H2)(I1, I2) be a map. Then

1. f is called a refined neutrosophic homomorphism if:

(a) for all x, y of H1(I1, I2), f(x ⋆1 y) ⊆ f(x) ⋆2 f(y),

(b) f(Ik) = Ik for k = 1, 2.

2. f is called a good refined neutrosophic homomorphism if:

(a) for all x, y of H1(I1, I2), f(x ⋆1 y) = f(x) ⋆2 f(y),

(b) f(Ik) = Ik for k = 1, 2.

3. f is called a refined neutrosophic isomorphism if f is a refined neutrosophic homomorphism and f−1 is

also a refined neutrosophic homomorphism.

4. f is called a 2-refined neutrosophic homomorphism if for all x, y of H1(I1, I2),
f−1(f(x) ⋆2 f(y)) = f−1(f(x ⋆1 y)).

5. f is called an almost strong refined neutrosophic homomorphism if for all x, y of H1(I1, I2),
f−1(f(x) ⋆2 f(y)) = f−1(f(x)) ⋆1 f

−1(f(y)).

Proposition 2.25. Let (H(I1, I2)), ⋆) be a refined neutrosophic hypergroup and let ρ be a regular equivalence

relation on H(I1, I2). Then, the map φ : H(I1, I2) −→ H(I1, I2)/ρ defined by

φ(x) = x̄ is not a refined neutrosophic homomorphism (good refined neutrosophic homomorphism).
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Proof. It is clear since I ∈ H(I1, I2) but φ(Ik) 6= Ik.

Note 3. Suppose we wish to establish any relationship between the refined neutrosophic hypergroups and

the parent neutrosophic hypergroups, or any other neutrosophic hypergroup. Then, our task will be to find a

mapping φ say, such that

φ : H(I1, I2) −→ H(I).

For all (x, yI1, zI2) ∈ H(I1, I2) define φ by

φ((x, yI1, zI2)) = (x, (y + z)I). (1)

In what follows we present some of the basic properties of such mapping.

Proposition 2.26. Let (H(I1, I2),+
′) be a refined neutrosophic hypergroup and let (H(I),+) be a neutro-

sophic hypergroup. The mapping φ defined in 1 above is a good homomorphism.

Proof. φ is well defined. Suppose (x, yI1, zI2) = (x′y′I1, z
′I2) then we that x = x′, y = y′ and z′ = z′. So,

φ((x, yI1, zI2)) = (x, (y + z)I) = x′ + (y′ + z′)I = φ(x′, y′I1, z
′I2).

Now, suppose (x, yI1, zI2), (x
′, y′I1, 1z

′I2) ∈ H(I1, I2) then

φ((x, yI1, zI2) +
′ (x′, y′I1, z

′I2)) = φ((x+ x′), (y + y′)I1, (z + z′)I2)
= (x+ x′), (y + y′ + z + z′)I
= (x+ x′), ((y + z) + (y′ + z′))I
= (x+ x′), ((y + z)I + (y′ + z′)I)
= (x, (y + z)I) + (x′, (y′ + z′)I)
= φ(x, yI1, zI2) + φ(x, yI1, zI2).

Hence φ is a good homomorphism.

Definition 2.27. Let (H(I1, I2),+
′) be a refined neutrosophic hypergroup with identity element (0, 0I1, 0I2)

and (H(I1, I2),+) be a neutrosophic hypergroup with identity element (0, 0I). Let φ : H(I1, I2) −→ H(I)
be a good homomorphism, then

kerφ = {(x, yI1, zI2) : φ((x, yI1, zI2)) = (0, 0I)}
= {(x, yI1, zI2) : (x, (y + z)I) = (0, 0I)}
= {(0, yI1, (−y)I2)}.

Proposition 2.28. Let φ : H(I1, I2) −→ H(I) be a good homomorphism.

1. kerφ is a semi-subhypergroup of H(I1, I2).

2. Imφ is a subhypergroup of H(I).

Proof. 1. Let (a, bI1, cI2), (x, yI1, zI2) ∈ ker φ, then

φ((a, bI1, cI2) +
′ (x, yI1, zI2)) = φ((a, bI1, cI2)) + φ((x, yI1, zI2))

= (0, 0I) + (0, 0I)
= (0, 0I)
=⇒ (a, bI1, cI1) +

′ (x, yI1, zI2) ⊆ kerφ.
Hence, kerφ is a semi-subhypergroup.

2. Let (a, bI1, cI2) ∈ H(I1, I2), then

φ((a, bI1, cI2)) + φ(H(I1, I2)) =
⋃

(x,yI1,zI2)∈H(I1,I2)
φ((a, bI1, cI2) +

′ (x, yI1, zI2))

= φ((a, bI1, cI2) +
′ H(I1, I2))

= φ(H(I1, I2)).

Following similar approach we can show that φ(H(I1, I2)) + φ((a, bI1, cI2)) = φ(H(I1, I2)).
Thus, Imφ is a subhypergroup of H(I).
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3 Conclusion

In this paper, we have studied the refinement of neutrosophic hyperstructures. In particular, we have studied

refined neutrosophic hypergroups and presented several results and examples. Also, we have established the

existence of a good homomorphism between a refined neutrosophic hypergroup H(I1, I2) and a neutrosophic

hypergroupH(I). We hope to present and study more advance properties of refined neutrosophic Hypergroups

in our future papers.
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Abstract  

Neutrosophy began as a branch of philosophy that considered neutrality in addition to the positive and negative. It 

consists of the addition consideration of a neutral state to complement the binary approach of true or false. Its creator 

quickly extended it to the field of mathematics and it was gradually applied to all fields of science. Here, we present 

a reverse approach that highlights the importance of neutrality in all fields of study and application, citing some 

revealing examples. Furthermore, we explain that this importance of neutrality is intrinsic to all sciences because it is 

based on natural foundations. Indeed, neutrality is a forming part first of all of the human conception of things, of our 

way of thinking, of cognition in general but also of living things, matter and even particles. In addition to these most 

real-world physical concrete aspects, neutrality is inherent to mathematics, to logic first of all, but also to probabilities 

and statistics where neutrality which simply results from a large number of objects, the universe. Thus neutrosophy is 

well adapted to the majority of applied problems because its modeling is inspired by reality and that it allows, in 

particular, to deal with the component of uncertainty and indeterminacy that the real world comprises intrinsically. 

 

Keywords: Neutrosophy, three-state , neutral state , undetermined , incertitude , natural basis. 

 

1-Introduction  
 

 We will first point out that neutrosophy [1]  rests on several bases that are natural: these bases result directly from the 

temporal aspect of the real world. Then, in the second part, we will describe some examples of situations that are 

intrinsically three-state, and which are therefore areas where the neutrosophic approach is essential. 

Neutrosophy is a modeling based on three states and not just two as in classical logic. In addition to the true and false 

states, which define the classical logic known as Aristotelian [2] or Cartesian (according to Descartes, [3]), 

neutrosophy introduces a third state: the neutral state (we will see below that it also represents indetermination). This 

neutral state gives its name to neutrosophy; it extends the dialectic [4] of the the positive and negative  by also 
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considering neutrality. Neutrosophy is originally a branch of philosophy [5], which was introduced into the various 

fields of science, especially mathematics with first logic, then sets, [6] probabilities, and statistics [7,13-14], etc. 

2.These natural bases derive from the temporality of the real world 

Neutrosophy is closely related to reality, the material world, because it is only a reflective representation of reality in 

its many natural bases, and this is due to the temporal aspect of the world (the most fundamental one). Thus temporality 

introduces the possibility of change in addition to the constancy that characterizes timelessness. If change is possible, 

if it can exist, then constancy can also exist. Absence of change  (no-change) is often observable at a certain scale and 

in a certain time interval. In a temporal view of the world, neutrality is this aspect of constancy, of non-change. In that 

case of constancy, the change is then neutral, there is no change, neither in one direction nor in the opposite. Therefore, 

neither positive nor negative, it is the neutral state. In neutrosophy this third state can also be seen as indeterminacy, 

it then also serves to model phenomena that are not perfectly determined or known. 

We will come back to this aspect of indeterminacy linked to neutrality, which results from temporality. Before doing 

so, we wish to mention the other fundamental bases that imply neutrality, and therefore the need to consider this 

concept. In physical reality, any instantaneous situation is characterized by a set of real values that measure it 

quantitatively: they are not discrete states, although quantum mechanics has discovered this, but in a first 

approximation and in a more macroscopic way, continuous values, continuously variable, without discontinuous 

jumps. In this simplified paradigm, which is that of the usual sciences, the instantaneous value of a descriptive 

parameter is expressed as a real number. This value can be changing or approximately stable during a time interval. 

Although everything is constantly changing, at least infinitely, we can consider as a first approximation that there are 

sometimes more or less long moments of stability. 

Mathematically it is customary to model according to the simplest approach by a polynomial representation and from 

this representation has derived differential and integral mathematics (8). From a temporal signal represented by a 

polynomial, one can calculate its variation: this is the derivative, i.e. the difference (and therefore the change) it 

presents in a time interval. Dually, from a derivative we can reconstitute the signal, it is the integration. When the 

derivative is approximately zero then the signal is approximately constant. The neutral derivative implies the absence 

of variation of the temporal signal. Accessorily a positive derivative represents an increase of the signal and a negative 

derivative corresponds to a decrease. 

This mathematical basis comes from a physical basis: the notion of  the trajectory (in mechanics, 9). Considering a 

particle, its velocity is the (first) derivative of its temporal position, and so on, its acceleration is its second derivative, 

and the curvature of the trajectory is linked to it. In the absence of an external force causing an acceleration of the 

particle, its speed is unchanged (in value and direction), and its trajectory is reduced to its simplest expression: a 

straight, rectilinear trajectory. This is a physical reality that corresponds to a neutrosophic vision: positive, zero, or 

negative tangent force corresponding to acceleration, neutrality, deceleration, and also a perpendicular force producing 

a positive curbature, a straight line, a negative curvature of the trajectory. 
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Above all, neutrosophy is a model adapted to human thought (more qualitative than quantitative), which most crudely 

way will perceive the parameters a situation either as constant, changing in one direction (increasing, positive), or 

changing in the other direction (decreasing, negative). 

Finally, in simple arithmetic, we consider integers. In this discontinuous case the situation can also change or not. For 

example, to a collection of 5 objects we can add 1, and then we have 6, or on the contrary remove 1 and there are 4 

left, or finally be neutral, not acting so that the number does not change (the Brownian motion of the thermal agitation 

of the molecules gave rise to the theoretical development of Markov chain [12], where the simplest case consists 

precisely in a variation at each step of -1, 0 or +1, see reference [10]). 

In connection with the simple model inspired by human perception of the evolution of a three-state situation, a three-

state control can be defined: increment, hold constant or decrement. For example, it was the control lever of the first 

elevators that either turned on the motor in one direction or the other, or stopped it. This type of control can be found 

in many devices because it is so intuitive and efficient, like the joysticks in video games. Although only two push-

buttons are needed to perform this function, in a human interface design  a three-state toggle lever is often preferred 

as it is more in line with the human three-state apprehension. 

3-Transition to situations characterized by 3 states 

The real world includes a large number of situations that are characterized by 3 states, and  these are therefore 

advantageously modeled by neutrosophy because of its design around the positive, neutral and negative states. 

The bases that we have seen in the previous section are derived from the temporal essence of the physical world, 

therefore they are characterized by its change but also by the possibility of constancy at some scale of observation and 

for some duration. 

Another fundamental aspect of the physical world is its plurality, at least apparent, it is made up of several objects, 

together with linked by forces of interaction. This number of objects is large, so a statistical approach can be envisaged. 

The states of objects, especially those that are similar or close, are often governed by statistical distribution laws, such 

as the so-called precisely normal (or Gauss') law. In an interpretation of a world seen from a statistical perspective one 

can then classify the objects in the  first approximation among 3 main categories: those whose situation is characterized 

by a value close to the statistical mean of all these objects, those below the mean and those above the mean. Thus the 

statistical modeling at its coarsest level is consistent with the simplified human perception of the three states: similar 

to the average, less and more than the average. 

In this way, the physical world as seen through human eyes at the most immediate level is organized into three 

categories: (in vincinity of the)  average, above average, and below average. This basic perception can be applied to 

any observation. Typically in sociology, one of the basic criteria of (socio-professional) classification is to consider 3 

levels of wealth: the middle, upper and lower classes. 
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4-Situations characterized by 3 states 

Now we can give some examples of situations intrinsically characterized by 3 states, some of which stem from, or are 

similar to, this elementary statistical vision. 

4.1. Perception : temperature 

As an example of human-related perception and thus also of this simplistic and qualitative assessment of a reference 

value, we would like to start with temperature. Human beings generally consider several  different situations 

concerning their body temperature: room (ambient) temperature, food temperature, and water temperature for bathing. 

These cases come from whether we consider it to be a pleasant temperature or not, and if not, whether the temperature 

is too hot or too cold. The first case that corresponds to our comfort zone is perceived as neutral. For example, our 

body temperature is 37°C, and we find the room temperature pleasant when it is between 19 and 22 degrees. 

The appreciation of the temperature can vary according to the circumstances, for example the ideal temperature while 

standing still (21 degrees Celsius) is not the same as for physical activity (18°C), nor is the ideal temperature for a 

cool drink (8°C) or on the contrary for warming up (50°C), but with more difference. The pleasant, or neutral zone is 

generally relatively narrow compared to the zones that appear to us to be either too little or too much (before reaching 

the pain zones). This remark can be made in many situations that we will present as intrinsically three-state, which 

probably led to the oversimplified two-state representation which then gradually imposed itself as the only one that 

can be thought of, for example day or night, while there is also twilight which can be quite long (if we are located far 

from the equator).  

4.2.Chemistry: acidity 

Also related to life and the conditions it imposes, inorganic chemistry we have the measurement of the pH (hydrogen 

potential, hydrogen ion concentration) of a solution and its representation in 3 classes, neutral, acidic and basic. Here 

this is due to the primordial role of water in life, and pH 0, therefore neutral, is defined as that of water. 

4.3.Linearization at the working point 

Many phenomena in the real world are non-linear, however for simplification we wish to use a linear approximation 

to make approximate calculations easily. For example, a transistor working with small signals will have its transfer 

characteristic approximated by a straight line tangent (to the response characteristic curve) at the bias point (operating 

point).  

For slightly larger signals, three linearly approximated zones are then considered: a zone around the operating point 

with a certain range, a zone below the range and another zone above it. 

4.4. Neurons 

Another example of a non-linear situation is the neuron of the nervous system or its artificial equivalent, as used in 

computer science for artificial intelligence, which exhibits strong non-linearity due to its saturation characteristic. 
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This characteristic stems from its learning function which proceeds by reinforcement, and symmetrically inhibition 

(in case of good results, respectively bad results). We will then use a modeling by three zones: lower (negative 

saturation), central or neutral (transmission), and upper (positive saturation). Reinforcement as a learning method 

consists in treating the difference between what the neuron produces as an output value from its inputs and what it 

should do in this situation. If the difference is small, then the neuron has already learned well and only a small 

adaptation is required, this is the central, linear, and relatively neutral zone. On the other hand if the difference is large 

either in the right, or in the opposite, directions then the retroaction proper to the reinforcement should be stronger in 

positive or negative, but easily saturated, i.e. be almost the same in all cases, whether the error is medium or large. 

Here saturation consists of  limiting the correction in case of large deviations in order to progress towards the result 

in small steps for a large number of successful successive examples, so as not to give too much importance to a single 

example, to obtain  generalized learning of the examples treated. 

4.5.Human Conceptions of the World 

The real world often consists of 3 categories, or the human being perceives it for a particular area as consisting of 

objects of three main types. 

For example, our capacity for consciousness implies a conception of temporality. We distinguish between the present 

in which we are and act, the future which is die to come and that we wish to influence by our present actions, and the 

past which we no longer have control over but that is valuable as information, reusable knowledge to determine our 

actions. Here the present is only a small thing in the infinite time of both past and future, however it is considered as 

a specific category. A binary vision of only the existence of a past and the arrival of a future would deprive us of any 

awareness of a possibility of action on the world. 

Our world is made up of physical objects and living beings. Some of these with which we consciously relate are the 

result of sexual reproduction and so are we. Thus we have a conception of gender that is in three states: neutral for the 

inanimate, and male and female for the living. Note that the French language gives very little importance to the neutral 

gender compared to English and German, perhaps as a result of a more anthropomorphic conception of the world. 

Finally, conditioning all our cognition, and therefore our way of thinking, we attach to people, living beings, objects 

and even abstract concepts an affective coloration, and this in a typical three-state way: we appreciate, like love, 

something or on the contrary we consider it negatively or for less known things we are relatively indifferent to it. 

Concerning a large part of things, we affect them, often unconscious, which can be of varying degrees of intensity and 

which influences all our thoughts about them. As a result, our cognition is weighted by  the effects of the  three-state 

type. Moreover, it would seem that the very mechanism of reflection is three-state, particularly in the rationality used 

to decide on a choice and to seek solutions, which is done step by step. Either a partial solution is seen as positive or 

negative and then tends to end the reflection, or it is rather neutral and then allows the reflection to continue. 

An emblematic case of choice is that of voting where, for a subject as well as for a candidate, one will have in addition 

to the rational aspects a positive, negative or neutral attraction, and also one will vote accordingly respectively either 

yes, no or blank (for example by abstention) if rational considerations are not clearly not preponderant. 
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A concrete application is the technique of sentiment analysis, which is used in political science and also in finance to 

determine the positive, negative or neutral content of e.g. speeches of politicians or financial news for investors in a 

computerized way. 

When a person has to make a decision, often in addition to accepting or rejecting what is proposed he may also decide 

to postpone his decision, to prefer to wait, which corresponds to a third state, in a certain neutral way (and expressing 

his uncertainty). 

Another area where human conceptions are naturally in three states is that of evaluation, one can also speak of 

appreciation, and which therefore relates to effects and feelings, and even, as a result, to accounting. For example, the 

budget consumed by a project or the time allotted to carry it out can be: exceeded, within acceptable limits, or the 

forecasts were too pessimistic. A project can be judged as qualitatively good, satisfactory, or bad. Similarly, an 

objective may be exceeded, achieved, or not achieved. The result of a learning outcome is considered according to the 

first approach in a classical way, but according to the second in an approach by objectives. 

      For example, the cost of a project may be within the forecasts, or it may exceed or fall short of the forecasts. In a 

not-for-profit association one will try to balance income and expenditure, whereas in a commercial company one will 

aim at  a profit, fearing the deficit, the alarm of which is the appearance of relatively balanced accounts. 

4.6.Chemistry: phase change 

In each discipline many examples can be found, here is another in chemistry.  During the phenomenon of phase change, 

as between solid and liquid, matter does not only have two states, the original and the final one, but also a transition 

state (viscous matter infusion). 

4.7. Physics: electrical charges 

Any particle in quantum physics has an electric charge or not, and this charge can be positive or negative. This 

produces 3 states for the electric charge characteristic of particles: positive, neutral, negative. 

Similarly molecules also have a charge that is likewise either positive, neutral or negative. If they are charged then 

they are called ions, subdivided into positively charged cations and negatively charged anions. 

4.8 Neutral or indetermination 

In the introduction, we explained that neutrosophy is characterized by the addition of a third state to allow a better 

(comprehensive and qualitative) representation of reality. This additional state is generally considered as a neutral 

state. It can also be given other meanings, leading to other fields of application. This state is often considered to 

represent uncertain information. Then neutrosophy will be used to treat in a better way real-world situations where 

uncertainty exists and is not negligible. For example, several simultaneous measurements of the same quantity 

generally produce different values when the sensors are sensitive. Or different measurement procedures with different 

accuracies have to be combined, which implies considering the uncertainty (here the measurement uncertainty). Many 

phenomena are inherently uncertain, especially at the atomic level, because they are governed by probabilistic laws. 
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For example, the radioactivity of a radioactive isotope decreases with time at the macroscopic level according to an 

exponential law characterized by a halving in a constant period, called the half-life. However, each atom during a time 

interval decays or not, independently of the others and only in a probable manner. All atoms are taken together, 

however, follow the macroscopic statistical law of exponential decay, 

Already with logical information, such a problem arises. When a large number of facts have been manipulated for 

different questions, for example in an expert system, some facts will be irrelevant for certain questions and therefore 

have to be considered neutraly. This corresponds to the neutrosophic logic mentioned at the beginning, which is more 

flexible in dealing with large numbers of facts than a classical logic that knows only true or false. Thus, composition 

with a non-relevant or neutral value will not change the value of a fact, whereas composition in classical logic can 

only be done with true or false, which in either case will not consider the other information. Typically, a 

counterexample is enough to cancel a law in classical logic, but it can be a bad counterexample, not very relevant, not 

very frequent, obtained by oversimplification in true or false. Or a counterexample that is impressive but misleading. 

Such binary logic is easier to handle for humans: it is black or white, and for computers; but it often goes too fast. The 

brain manipulates preferences very well, so why not consider them more. In any case, the best of reasons will remain 

ours: we ultimately think about what we desire to think. 

Let's end this section with another example, taken from meteorology, which brings out the concepts of uncertainty and 

neutral zone: a prognosis of future weather conditions may be that the weather will be uncertain and not just good or 

bad. In a simplified forecast, for example, the air pressure will be considered to be either rising, stable or falling. 

Figure 1 of the weather station shows that the same indication, depending on the context, can mean the opposite: it 

says that in summer a rising temperature indicates an improvement in the weather, while it also says that in winter a 

rising temperature indicates a deterioration in the weather. If the indications of the three types of sensors agree then 

the forecast is more plausible. 
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Figure 1 : Weather station 

For information at the time of the photo it was almost the beginning of summer, and there was a big storm half an hour 

later, which lasted only three minutes. It would have been good to have taken a second photograph a few minutes apart 

to be able to determine the changes in the measurements, because according to the written indications it is the upward 

or downward variation that is indicative and not the current value. It is not explicitly stated that if, for example, the 

pressure is stable, then this information is neutral, non-relevant. Thus it appears that in this example we are considering 

3 cases: rising, stable, falling. 

4.9. Communications: bipolar coding 

This may seem paradoxical that bipolar coding is actually in three states. On a simple electrical wire, such as the 

telegraph wire, a message can be sent using Morse code: with a switch, a current can be sent or not (in fact by imposing 

a voltage, coming for example from a battery, connected to earth on the other pole). It is a unipolar coding: voltage or 

nothing. You can also flip the battery, thus inverting its poles, so you have the opposite voltage, negative if it was 

positive before. So instead of transmitting two states 0 and 1, we can now transmit three: -1, 0 and +1, using the two 

poles of the battery, one after the other. By working at the same speed it is now possible to transmit more information, 

so this coding with two polarities voltage is more efficient. The receiver can be made with a device consisting of a 

magnetized needle that  deflects when a current passes through the wire wound in a coil (forming an electromagnet), 

and it deflects in the opposite direction when the current is reversed. A spring is used to return the needle to its rest 
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(neutral) position when there is no current. A cable is usually limited or defined by its insulation, so it can also work 

as a bipolar cable. 

5. Conclusion 
 
We have given some examples of situations where it is usual to consider three states in very different fields. These 

situations appear to us first of all because of the habit of naturally having three states, and therefore neutrosophy is 

well suited to model them. 

By considering these cases, which are numerous, become perceptible some rather deep reasons that make us consider 

these situations as intrinsically of three-state type. The most apparent reason is subjective, we see such a situation 

according to our intellectual perception as having three states. It is in a way a privileged way for humans to see the 

world and to conceive a representation of it. 

Then similarities between these situations show that more profoundly they are of a three-state nature, following the 

more general way of functioning, by increasing degrees of universality and decreasing degrees of evidence: first of 

cognition, then of living beings and finally of the physical world with its temporal aspect in particular. According to 

the first approach, a reflection is a progression of stages ending in success or failure. Each stage is colored by our 

preferences in positive, negative or neutral. If it is neutral, then we must evaluate other stages, otherwise our 

preferences will lead us to a conclusion. Our motivation for satisfying needs or for pleasure implies that some things 

are irrelevant, unimportant, some positive and some negative. The physical world is also governed by laws of attraction 

and repulsion, as with the electric charges of ions, atoms and particles: positive, neutral, or negative. 

Finally, we find the three great universal categories of perception or representation: increase, relative stability, 

decrease that derive from the existence of  time, intrinsically made of the present but which produces the past and 

consumes the future, inexorably. This time allows variation and also relative constancy over a certain time. More 

abstractly, any phenomenon, any collection, has an average value, and any situation or element can be approximately 

in the average, above or below it. Everything is thus essentially of a three-state type and not binary, a too limited mode 

of representation, considering only that something exists or not: static whereas everything is dynamic, a too over- 

simplifying view and therefore a misleading one. 
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Abstract  

The objective of this paper is to define and study the concepts of strong AH-submodule, and AH-homomorphism in 
a refined neutrosophic module. Also, this work describes the algebraic structure of all AH-endomorphisms defined 
over a refined neutrosophic module. 

Keywords: Refined neutrosophic module, Strong AH-submodule, AH-homomorphism 

1. Introduction 
A neutrosophic set is a powerful general formal framework which generalizes the concept of the classic set, fuzzy 

set [13], interval valued fuzzy set [12], intuitionistic fuzzy set [9] etc. A neutrosophic set A defined on a universe 

U .  , ,x x T I F A  with ,    T I and F being the real standard or non-standard subsets of 0 ,1 .    T is 

the degree of truth membership function in the set A, I  is the indeterminacy-membership function in the set A and 

F is the falsity-membership function in the set A . Agboola introduced the concept of refined neutrosophic 

algebraic structures and studied refined neutrosophic groups in particular [6]. Adeleke et al. in [7,8] studied refined 

neutrosophic rings and refined neutrosophic subrings and presented their fundamental properties. Recently, Hatip et 

al. studied refined neutrosophic modules and refined neutrosophic homomorphisms modules and presented their 

basic properties [10,11].  Abobala et al. in [1,2] studied some special substructures of refined neutrosophic rings. 

Also in [3], Abobala et al. studied classical homomorphisms between refined neutrosophic rings and neutrosophic 

rings and presented their basic properties. Abobala and Alhamido studied AH-substructures in neutrosophic modules 

and AH-subspaces in neutrosophic vector spaces [4,5].  

The present paper is devoted to the study of AH-strong refined neutrosophic modules. Also, the strong AH-
homomorphism modules will be established. 
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2. Preliminaries 

In this section, we present the basic definitions that are useful in this research. 

Definition 2.1: [10] Let  , ,.M   be any R-module over aneutrosophic ring   ,R I  The triple   , ,M I     is 

called a strong neutrosophic R-module over a neutrosophic ring   ,R I generated by    M and I . 

Definition 2.2: [6] Let   1 2, , ,I IX   be any refined neutrosophic algebraic structure where + and   are 

ordinary addition and multiplication respectively. 1 2   I and I are the split components of the indeterminacy factor 

I that is 1 2I I I    with , R or C   . Also, 1 2   I and I are taken to have the properties 
2 2

1 1 2 2,I I I I   and 1 2 2 1 1I I I I I   .  

For any two elements, we define  

 

 

 

Definition 2.3: [10] Let  , ,.M   be any R-module over a refined neutrosophic ring  1 2, ,R I I  The triple 

  1 2, , ,M I I     is called a strong refined neutrosophic R-module over a refined neutrosophic ring  1 2, ,R I I
generated by 1 2,    .M I and I  

Definition 2.4: Let  M I  be a strongneutrosophicR-module, the set  : ,S P QI x yI x P y Q       

where P   and Q  are submodules of M is called an AH-submodule of  M I  and If P Q  then S is called 

an AHS-submodule of  M I . 

3. Main discussion 

Definition 3.1: 

Let �(��, ��) be a strong refined neutrosophic module over the refined neutrosophic ring �(��, ��), P, Q, S be three 
submodules of M. The set N = (	, 
��, ���) = {(�, ���, ���); � ∈ 	, � ∈ 
, � ∈ �} is called a strong AH-submodule 
of the strong refined neutrosophic module �(��, ��). 
If P = Q = S, we call N a strong AHS-submodule. 

Theorem 3.2: 

Let �(��, ��) be a strong refined neutrosophic module over the refined neutrosophic ring �(��, ��), 
N = (	, 	��, 	��) be a strong AHS-submodule. Then N is a submodule by classical meaning. 

        

   
 

 

1 2 1 2 1 2

1
1 2 1 2

2

1) , , , , , ,

, ,
2) , , , ,

x y a bI cI d eI fI a d b e I c f I

ad ae bd be bf ce I
x y a bI cI d eI fI

af cd cf I

      

    
        
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Proof: 

The proof is similar to that of theorem 3.4 in [13]. 

An AH-submodule is not supposed to be a submodule of �(��, ��) in general. See the following example. 

Example 3.3: 

Let � = �� be a module over the ring of integers Z, the corresponding refined neutrosophic module is �(��, ��) = {(�, ���, ���); �, �, � ∈ �} over the refined neutrosophic ring �(��, ��), we have 	 = {0,3}, 
 = {0,2,4} 
as two submodules of M. � = (	, 
��, 	��) is a strong AH-submodule of �(��, ��), � = (2,3��, 0) ∈ �, � = (1, ��, ��) ∈ �(��, ��) �. � = (2, [2 + 3 + 3 + 3 + 0]��, [2 + 0 + 0]��) = (2,5��, 2��), which is not in N, thus N is not a submodule. 

Theorem 3.4: Let  1 2,M I I be a strong refinedneutrosophic R-module over a refined neutrosophic ring 

 1 2,R I I and let  n nN


 be a family of a strong AH-submoduleof  1 2,M I I . Then   n n
N


 is a strong 

AH-submodule of  1 2,M I I .  

Proof: Clearly  n nN


  , n   let we have      1 2 1 2, , , ,, n na bI cI d eI fIx Ny


   for 

, , , , ,a b c d e f  belong to , , , , ,P Q S T V K  respectively where , , , , ,P Q S T V K  are asubmodules of M and 

let be    1 2 1 2, , ,p qI rI R I I   . Then  , n nx y x N





  . Since, for 

 , n nn x y N





    and  n nx N





  Hence  n nN


 is a strong AH-submoduleof 

 1 2,M I I .  

Remark 3.5: Let  1 2,M I I be a strong refinedneutrosophic R-module over a refinedneutrosophic ring 

 1 2,R I I and let 1N  and 2N be two distinct strong AH-submoduleof  1 2,M I I . Generally, 1 2N N is not a 

strongAH-submoduleof  1 2,M I I .  

However, if 1 2N N or 1 2N N  then 1 2N N is a AH-submoduleof  1 2,M I I . 

Definition 3.6: 

Let �,# be two modules over the ring R, �(��, ��)	�%&	#(��, ��) be the corresponding strong refined neutrosophic 

modules over the refined neutrosophic ring �(��, ��). Let ', (, ℎ:� → # be three homomorphisms, then 



International Journal of Neutrosophic Science (IJNS)                                                Vol. 9, No. 2,  PP. 110-116, 2020 

 
 

DOI: 10.5281/zenodo.3960802   
 

 113

[', (, ℎ]:�(��, ��) → #(��, I�); [', (, ℎ](�, ���, ���) = ('(�), ((�)��, ℎ(�)��) is called a strong AH-homomorphism. 

If ' = ( = ℎ, we get the strong AHS-homomorphism. 

 

Definition 3.7: 

Let �(��, ��),#(��, ��) be two strong refined neutrosophic modules over the refined neutrosophic ring �(��, ��), [', (, ℎ]:�(��, ��) → #(��, I�) be a strong AH-homomorphism, we define 

(a) -. − 01�[', (, ℎ] = (01�('), 01�(()��, 01�(ℎ)��) = {(�, ���, ���); � ∈ 01�('), � ∈ 01�((), � ∈ 01�(ℎ)}. 
(b) -. − �2[', (, ℎ] = (�2('), �2(()��, �2(ℎ)��). 
Theorem 3.8: 

Let �(��, ��),#(��, ��) be two strong refined neutrosophic modules over the refined neutrosophic ring �(��, ��), [', (, ℎ]:�(��, ��) → #(��, I�) be a strong AH-homomorphism. 

(a) If N = (	, 
��, ���) is a strong AH-submodule of �(��, ��), then [', (, ℎ](�) is a strong AH-submodule of #(��, ��). 
(b) [', (, ℎ] is a classical module homomorphism. 

(c) -. − 01�[', (, ℎ] is a strong AH-submodule of �(��, ��). 
(d) -. − �2[', (, ℎ] is a strong AH-submodule of #(��, ��). 
Proof: 

(a) Since '(	), ((
), ℎ(�) are submodules of N, we find that [', (, ℎ](�) = ('(	), ((
)��, ℎ(�)��) is a strong AH-
submodule of #(��, ��). 
(b) Let 2 = (�, 3��, 4��), % = (�, ���, ���) be two arbitrary elements in �(��, ��), � = (5, 6��, 7��) be any element in �(��, ��), 2 + % = (� + �, [3 + �]��, [4 + �]��), �.2 = (5�, [�6 + 35 + 36 + 37 + 46]��, [�7 + 45 + 47]��), [', (, ℎ](2 + %) = ('(� + �), (([3 + �])��, ℎ([4 + �])��)=('(�), ((3)��, ℎ(4)��) + ('(�), ((�)��, ℎ(�)��) =[', (, ℎ](2) + [', (, ℎ](%). [', (, ℎ](�.2) = ('(5�), (([�6 + 35 + 36 + 37 + 46])��, ℎ([�7 + 45 + 47])��)= (5, 6��, 7��). ('(�), ((3)��, ℎ(4)��) = �. [', (, ℎ](2). Thus [', (, ℎ] is a classical homomorphism. 

(c) Since	01�('),01�((), 01�(ℎ) are submodules of M, then -. −01�[', (, ℎ] = (01�('), 01�(()��, 01�(ℎ)��) 
as a strong AH-submodule of 	�(��, ��). 
(d) Since �2('), �2((), �2(ℎ) are submodules of W, we get -. − �2[', (, ℎ] = (�2('), �2(()��, �2(ℎ)��) as a 
strong AH-submodule of  #(��, ��). 
Example 3.9: 
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(a) Let � = ��,# = � be two modules over the ring R, ':� → #;'(�, 3) = 2�, (:� → #;((�, 3) = 33, ℎ:� → #; ℎ(�, 3) = � + 3 are three homomorphisms. 

(b) [', (, ℎ]:�(��, ��) → #(��, ��); [', (, ℎ]8(�, 3), (4, 5)��, (9,2)��: = ('(�, 3), ((4, 5)��, ℎ(9,2)��)= (2�, 35��, [9 + 2]��) is a strong AH-homomorphism, where �, 3, 4, 5, 9,2 ∈ �. 

(c) 	 = {(0, �); � ∈ �}, 
 = {(�, 0); � ∈ �} are two submodules of M, � = (	, 	��, 
��) = {((0, �), (0, 3)��, (4, 0)��; �, 3, 4 ∈ �} is a strong AH-submodule of �(��, ��). 
(d) '(	) = {0}, ((	) = {33; 3 ∈ �} = �, ℎ(
) = {4; 4 ∈ �} = �, [', (, ℎ](�) = ('(	), ((	)��, ℎ(
)��) = (0, ���, ���) = {(0, ���, 3��); �, 3 ∈ �} is a strong AH-submodule of #(��, ��). 
(e) 01�(') = {(0, �); � ∈ �}, 01�(() = {(�, 0); � ∈ �}, 01�(ℎ) = {(3, −3); 3 ∈ �}, -. − 01�[', (, ℎ] = (ker(') , 01�(()��, 01�(ℎ)��) = {(0, �), (3, 0)��, (4, −4)��); �, 3, 4 ∈ �}. 
Remark 3.10: 

We denote to the set of all strong AH-homomorphisms from a strong refined neutrosophic module �(��, ��) to itself  
by -. − >�?(�(��, ��)). 
Definition 3.11: 

Let �(��, ��) be a strong refined neutrosophic module over the refined neutrosophic ring �(��, ��), -. − >�?(�(��, ��)) be the set of all strong AH-endomorphisms, we define operations on -. − >�?(�(��, ��)) 
as follows: 

Let '@ , (@; A ∈ {0,1,2} be any homomorphisms from M to itself, we define 

Addition: ['B, '�, '�] + [(B, (�, (�] = ['B + (B, '� + (�, '� + (�]. 
Multiplication by a scalar, if  � = (�B, ����, ����) is any element in �(��, ��), then � = (�B, ����, ����). ['B, '�, '�]= [�B'B, (�B'� + ��'B + ��'� + ��'� + ��'�), (�B'� + ��'� + ��'B)]	. 
Multiplication: ['B, '�, '�]C[(B, (�, (�] = ['BC(B, 'BC(� + '�C(B + '�C(� + '�C(� + '�C(�, 'BC(� + '�C(B + '�C(�]. 
Theorem 3.12: 

 (-. − >�?8�(��, ��):, +, C) is a refined neutrosophic ring. 

Proof: 
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Since D = {':� → �; '	is	a	homomorphism} is a ring with respect to addition and multiplication, then D(��, ��) is 
a refined neutrosophic ring as a result of the definition of neutrosophic rings. It is easy to see that D(��, ��) = -. −>�?(�(��, ��), thus we get the desired proof. 

Theorem 3.13: 

(-. − >�?8�(��, ��):, +, . ) is a refined neutrosophic module. 

Proof: 

Since D = {':� → �; '	is	a	homomorphism} is a module with respect to addition and multiplication by a scalar 
taken from the ring R, we regard that D(��, ��) = -. − >�?(�(��, ��) is a strong refined neutrosophic module over 
the refined neutrosophic ring �(��, ��) as a simple result from the definition of strong neutrosophic modules. 

4. Conclusion 

In this research, we have defined the AH- Strong refined neutrosophic modules, and established the definition of 
AH-homomorphisms in refined neutrosophic modules. We have proved some theories related to these issues and 
given some clarifying examples.  

5. Future Research Directions  
As a future work, this article can be extended to include semi AH-homomorphism in modules as well as the 
definition of semi refiend homomorphism in general. 
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