Image and Inverse Image of Neutrosophic Cubic Sets in UP-Algebras under UP-Homomorphisms

Metawee Songsaeng, Aiyared Iampan

Department of Mathematics, School of Science, University of Phayao, Phayao 56000, Thailand
metawee.faith@gmail.com, aiyared.ia@up.ac.th

Aiyared Iampan is the corresponding author.

Abstract

The concept of a neutrosophic cubic set in a UP-algebra was introduced by Songsaeng and Iampan [Neutrosophic cubic set theory applied to UP-algebras, 2019]. In this paper, we define the image and inverse image of a neutrosophic cubic set in a non-empty set under any function and study the image and inverse image of a neutrosophic cubic UP-subalgebra (resp., neutrosophic cubic near UP-filter, neutrosophic cubic UP-filter, neutrosophic cubic UP-ideal, neutrosophic cubic strong UP-ideal) of a UP-algebra under some UP-homomorphisms.

Keywords: UP-algebra, UP-homomorphism, neutrosophic cubic UP-subalgebra, neutrosophic cubic near UP-filter, neutrosophic cubic UP-filter, neutrosophic cubic UP-ideal, neutrosophic cubic strong UP-ideal

1 Introduction

From literature review, we will study the image and inverse image of neutrosophic cubic UP-subalgebras (resp., neutrosophic cubic near UP-filters, neutrosophic cubic UP-filters, neutrosophic cubic UP-ideals, neutrosophic cubic strong UP-ideals) under some UP-homomorphisms.

Doi :10.5281/zenodo.3746022

Received: January 30, 2020 Revised: March 24, 2020 Accepted: April 15, 2020
2 Basic concepts and preliminary notes on a UP-algebra

Before the study, we will review the definition of a UP-algebra.

Definition 2.1. An algebra $X = (X, \circ, 0)$ of type $(2, 0)$ is said to be a UP-algebra, where X is a non-empty set, \circ is a binary operation on X, and 0 is a fixed element of X if it holds the followings:

(UP-1) (for all $x, y, z \in X$), $(y \circ z) \circ ((x \circ y) \circ (x \circ z)) = 0$,

(UP-2) (for all $x \in X$), $(0 \circ x = x)$,

(UP-3) (for all $x \in X$), $(x \circ 0 = 0)$, and

(UP-4) (for all $x, y \in X$), $(x \circ y = 0, y \circ x = 0 \Rightarrow x = y)$.

From we already know that the concept of a UP-algebra is a generalization of a KU-algebra (see).

Example 2.2. Let Y be a universal set and let $\Omega \in \mathcal{P}(Y)$, where $\mathcal{P}(Y)$ means the power set of Y. Let $\mathcal{P}_\Omega(Y) = \{ A \in \mathcal{P}(Y) \mid \Omega \subseteq A \}$. Define a binary operation \circ on $\mathcal{P}_\Omega(Y)$ by putting $A \circ B = B \cap (A^C \cup \Omega)$ for all $A, B \in \mathcal{P}_\Omega(Y)$, where A^C means the complement of a subset A. Then $(\mathcal{P}_\Omega(Y), \circ, \Omega)$ is a UP-algebra. Let $\mathcal{P}^\Omega(Y) = \{ A \in \mathcal{P}(Y) \mid A \subseteq \Omega \}$. Define a binary operation \bullet on $\mathcal{P}^\Omega(Y)$ by putting $A \bullet B = B \cup (A^C \cap \Omega)$ for all $A, B \in \mathcal{P}^\Omega(Y)$. Then $(\mathcal{P}^\Omega(Y), \bullet, \Omega)$ is a UP-algebra. In particular, $(\mathcal{P}(Y), \circ, \emptyset)$ and $(\mathcal{P}(Y), \bullet, X)$ are UP-algebras.

Example 2.3. Let \mathbb{N}_0 be the set of all natural numbers with zero. Define two binary operations \cdot and $*$ on \mathbb{N}_0 by

$$(\text{for all } m, n \in \mathbb{N}_0) \begin{cases} m \cdot n = \begin{cases} n & \text{if } m < n, \\
0 & \text{otherwise} \end{cases} \\
0 = \begin{cases} n & \text{if } m > n \text{ or } m = 0, \\
0 & \text{otherwise} \end{cases} \end{cases}$$

and

$$(\text{for all } m, n \in \mathbb{N}_0) \begin{cases} m \ast n = \begin{cases} n & \text{if } m > n \text{ or } m = 0, \\
0 & \text{otherwise} \end{cases} \end{cases}.$$ Then $(\mathbb{N}_0, \cdot, 0)$ and $(\mathbb{N}_0, *, 0)$ are UP-algebras.

For more examples of a UP-algebra, see.

In a UP-algebra $X = (X, \circ, 0)$, the followings are valid (see).

$$\begin{align*}
(\text{for all } x \in X)(x \circ x = 0), \quad & (2.1) \\
(\text{for all } x, y, z \in X)(x \circ y = 0, y \circ z = 0 \Rightarrow x \circ z = 0), \quad & (2.2) \\
(\text{for all } x, y, z \in X)(x \circ y = 0 \Rightarrow (z \circ x) \circ (z \circ y) = 0), \quad & (2.3) \\
(\text{for all } x, y, z \in X)(x \circ y = 0 \Rightarrow (y \circ z) \circ (x \circ z) = 0), \quad & (2.4) \\
(\text{for all } x \in X)(x \circ (y \circ x) = 0), \quad & (2.5) \\
(\text{for all } x, y \in X)(x \circ (y \circ x) = 0), \quad & (2.6) \\
(\text{for all } a, x, y, z \in X)((x \circ (y \circ z)) \circ (x \circ ((a \circ y) \circ (a \circ z))) = 0), \quad & (2.7) \\
(\text{for all } a, x, y, z \in X)((a \circ x) \circ ((a \circ y) \circ z) \circ (x \circ (y \circ z) = 0), \quad & (2.8) \\
(\text{for all } a, x, y, z \in X)((x \circ y) \circ z) \circ (y \circ z) = 0), \quad & (2.9) \\
(\text{for all } a, x, y, z \in X)((x \circ y) \circ z) \circ (x \circ (y \circ z) = 0), \quad & (2.10) \\
(\text{for all } a, x, y, z \in X)((x \circ y) \circ z) \circ (x \circ (y \circ z) = 0), \quad & (2.11) \\
(\text{for all } a, x, y, z \in X)((x \circ y) \circ z) \circ (x \circ (y \circ z) = 0), \quad & (2.12) \\
(\text{for all } a, x, y, z \in X)((x \circ y) \circ z) \circ (x \circ (y \circ z) = 0). \quad & (2.13)
\end{align*}$$

From the binary relation \leq on a UP-algebra $X = (X, \circ, 0)$ is defined as follows:

$$(\text{for all } x, y \in X)(x \leq y \Leftrightarrow x \circ y = 0).$$

In a UP-algebra, 5 types of special subsets are defined as follows.
Definition 2.4. A non-empty subset A of a UP-algebra $X = (X, \circ, 0)$ is said to be
(1) a **UP-subalgebra** of X if (for all $x, y \in A)(x \circ y \in A)$.
(2) a **near UP-filter** of X if
 (i) the constant 0 of X is in A, and
 (ii) (for all $x, y \in X)(y \in A \Rightarrow x \circ y \in A)$.
(3) a **UP-filter** of X if
 (i) the constant 0 of X is in A, and
 (ii) (for all $x, y, z \in X)(x \circ (y \circ z) \in A, y \in A \Rightarrow x \circ z \in A)$.
(4) a **UP-ideal** of X if
 (i) the constant 0 of X is in A, and
 (ii) (for all $x, y, z \in X)((z \circ y) \circ (z \circ x) \in A, y \in A \Rightarrow x \in A)$.

Guntasov et al.9 and Lampa2 proved that the concept of a UP-subalgebra is a generalization of a near UP-filter, a near UP-filter is a generalization of a UP-filter, a UP-filter is a generalization of a UP-ideal, and a UP-ideal is a generalization of a strong UP-ideal. Moreover, they proved that the only strong UP-ideal of a UP-algebra X is X.

Definition 2.5. Let $(X, \circ, 0_X)$ and $(Y, \bullet, 0_Y)$ be two UP-algebras. A function f from X to Y is said to be a **UP-homomorphism** if
\[(\forall x, y \in X)(f(x \circ y) = f(x) \bullet f(y)).\]
A UP-homomorphism $f : X \rightarrow Y$ is said to be a **UP-epimorphism** if f is surjective, a **UP-monomorphism** if f is injective, and a UP-epimorphism if f is bijective.

Theorem 2.6. Let X and Y be two UP-algebras with fixed elements of 0_X and 0_Y, respectively, and let $f : X \rightarrow Y$ be a UP-homomorphism. Then the followings hold:
(1) $f(0_X) = 0_Y$, and
(2) (for all $x_1, x_2 \in X)(x_1 \leq x_2 \Rightarrow f(x_1) \leq f(x_2))$.

In 1965, the concept of a fuzzy set in a non-empty set was introduced by Zadeh10 with the following definition.

Definition 2.7. A **fuzzy set** (briefly, FS) in a non-empty set X (or a fuzzy subset of X) is defined to be a function $\lambda : X \rightarrow [0, 1]$, where $[0, 1]$ is the unit segment of the real line. Denote by $[0, 1]^X$ the collection of all FSs in X. Define a binary relation \leq on $[0, 1]^X$ as follows:
\[(\forall \lambda, \mu \in [0, 1]^X)(\lambda \leq \mu \Leftrightarrow (\forall x \in X)(\lambda(x) \leq \mu(x))).\] (2.14)

Definition 2.8. Let λ be a FS in a non-empty set X. The **complement** of λ, denoted by λ^c, is defined by
\[(\forall x \in X)(\lambda^c(x) = 1 - \lambda(x)).\] (2.15)

Definition 2.9. Let $\{\lambda_j \mid j \in J\}$ be a family of FSs in a non-empty set X. We define the **join** and the **meet** of $\{\lambda_j \mid j \in J\}$, denoted by $\vee_{j \in J}\lambda_j$ and $\wedge_{j \in J}\lambda_j$, respectively, as follows:
\[(\forall x \in X)((\vee_{j \in J}\lambda_j)(x) = \sup_{j \in J}\{\lambda_j(x)\}),\] (2.16)
\[(\forall x \in X)((\wedge_{j \in J}\lambda_j)(x) = \inf_{j \in J}\{\lambda_j(x)\}).\] (2.17)
In particular, if λ and μ be FSs in X, we have the join and meet of λ and μ as follows:
\[(\forall x \in X)((\lambda \vee \mu)(x) = \max\{\lambda(x), \mu(x)\}),\] (2.18)
\[(\forall x \in X)((\lambda \wedge \mu)(x) = \min\{\lambda(x), \mu(x)\}),\] (2.19)
respectively.
An interval number we mean a close subinterval \(\hat{a} = [a^-, a^+] \) of \([0, 1]\), where \(0 \leq a^- \leq a^+ \leq 1 \). The interval number \(\tilde{a} = [a^-, a^+] \) with \(a^- = a^+ \) is denoted by \(a \). Denote by \(\text{int}[0, 1] \) the set of all interval numbers.

Definition 2.10. Let \(\{\hat{a}_j \mid j \in J\} \) be a family of interval numbers. We define the refined infimum and the refined supremum of \(\{\hat{a}_j \mid j \in J\} \), denoted by \(\text{rinf}_{j \in J}\hat{a}_j \) and \(\text{rsup}_{j \in J}\hat{a}_j \), respectively, as follows:

\[
\text{rinf}_{j \in J}\hat{a}_j = \left\{ \inf_{j \in J}\{a^-_j\}, \inf_{j \in J}\{a^+_j\}\right\},
\]

\[
\text{rsup}_{j \in J}\hat{a}_j = \left\{ \sup_{j \in J}\{a^-_j\}, \sup_{j \in J}\{a^+_j\}\right\}.
\]

In particular, if \(\hat{a}_1, \hat{a}_2 \in \text{int}[0, 1] \), we define the refined minimum and the refined maximum of \(\hat{a}_1 \) and \(\hat{a}_2 \), denoted by \(\text{rmin}\{\hat{a}_1, \hat{a}_2\} \) and \(\text{rmax}\{\hat{a}_1, \hat{a}_2\} \), respectively, as follows:

\[
\text{rmin}\{\hat{a}_1, \hat{a}_2\} = [\text{min}\{a_1^-, a_2^-\}, \text{min}\{a_1^+, a_2^+\}],
\]

\[
\text{rmax}\{\hat{a}_1, \hat{a}_2\} = [\text{max}\{a_1^-, a_2^-\}, \text{max}\{a_1^+, a_2^+\}].
\]

Definition 2.11. Let \(\hat{a}_1, \hat{a}_2 \in \text{int}[0, 1] \). We define the symbols “\(\preceq \)” , “\(\succeq \)” , “\(\preccurlyeq \)” in case of \(\hat{a}_1 \) and \(\hat{a}_2 \) as follows:

\[
\hat{a}_1 \preceq \hat{a}_2 \Leftrightarrow a^-_1 \geq a^-_2 \text{ and } a^+_1 \geq a^+_2,
\]

and similarly we may have \(\hat{a}_1 \preceq \hat{a}_2 \) and \(\hat{a}_1 \succeq \hat{a}_2 \). To say \(\hat{a}_1 \succeq \hat{a}_2 \) (resp., \(\hat{a}_1 \preceq \hat{a}_2 \)) we mean \(\hat{a}_1 \succeq \hat{a}_2 \) and \(\hat{a}_1 \preceq \hat{a}_2 \) (resp., \(\hat{a}_1 \succeq \hat{a}_2 \) and \(\hat{a}_1 \preceq \hat{a}_2 \)).

Definition 2.12. Let \(\hat{a} \in \text{int}[0, 1] \). The complement of \(\hat{a} \), denoted by \(\hat{a}^C \), is defined by the interval number

\[
\hat{a}^C = [1 - a^+, 1 - a^-].
\]

In the int[0, 1], the followings are valid (see (2.25)):

\[
\text{for all } \hat{a} \in \text{int}[0, 1] (\hat{a} \succeq \tilde{a}),
\]

\[
\text{for all } \hat{a} \in \text{int}[0, 1] ((\hat{a}^C)^C = \tilde{a}),
\]

\[
\text{for all } \hat{a} \in \text{int}[0, 1] (\text{rmax}\{\hat{a}, \tilde{a}\} = \tilde{a} \text{ and } \text{rmin}\{\hat{a}, \tilde{a}\} = \hat{a}),
\]

\[
\text{for all } \hat{a}_1, \hat{a}_2 \in \text{int}[0, 1] (\text{rmax}\{\hat{a}_1, \hat{a}_2\} = \text{max}\{\hat{a}_1, \hat{a}_2\} \text{ and } \text{rmin}\{\hat{a}_1, \hat{a}_2\} = \text{min}\{\hat{a}_1, \hat{a}_2\}),
\]

\[
\text{for all } \hat{a}_1, \hat{a}_2 \in \text{int}[0, 1] (\text{rmax}\{\hat{a}_1, \hat{a}_2\} \preceq \tilde{a}_1 \text{ and } \tilde{a}_2 \preceq \text{rmin}\{\hat{a}_1, \hat{a}_2\}),
\]

\[
\text{for all } \hat{a}_1, \hat{a}_2 \in \text{int}[0, 1] (\text{rmax}\{\hat{a}_1, \hat{a}_2\} \preceq \text{rmax}\{\tilde{a}_1, \tilde{a}_2\}),
\]

\[
\text{for all } \hat{a}_1, \hat{a}_2, \hat{a}_3, \hat{a}_4 \in \text{int}[0, 1] (\hat{a}_1 \preceq \hat{a}_2 \text{ and } \hat{a}_3 \preceq \hat{a}_4 \Rightarrow \text{rmin}\{\hat{a}_1, \hat{a}_2\} \preceq \text{rmin}\{\hat{a}_3, \hat{a}_4\}),
\]

\[
\text{for all } \hat{a}_1, \hat{a}_2, \hat{a}_3 \in \text{int}[0, 1] (\hat{a}_1 \preceq \hat{a}_2 \preceq \hat{a}_3 \Rightarrow \text{rmin}\{\hat{a}_1, \hat{a}_2\} \preceq \text{rmin}\{\hat{a}_1, \hat{a}_3\}),
\]

\[
\text{for all } \hat{a}_1, \hat{a}_2, \hat{a}_3 \in \text{int}[0, 1] (\hat{a}_1 \preceq \hat{a}_2 \preceq \hat{a}_3 \Rightarrow \text{rmin}\{\hat{a}_1, \hat{a}_2\} \preceq \text{rmin}\{\hat{a}_1, \hat{a}_3\}),
\]

\[
\text{for all } \hat{a}_1, \hat{a}_2, \hat{a}_3 \in \text{int}[0, 1] (\hat{a}_1 \preceq \hat{a}_2 \preceq \hat{a}_3 \Rightarrow \text{rmin}\{\hat{a}_1, \hat{a}_2\} \preceq \text{rmin}\{\hat{a}_1, \hat{a}_3\}),
\]

In 1975, the concept of an interval-valued fuzzy set in a non-empty set was first introduced by Zadeh with the following definition.

Definition 2.13. An interval-valued fuzzy set (briefly, IVFS) in a non-empty set \(X \) is an arbitrary function \(A : X \to \text{int}[0, 1] \). Let \(IVFS(X) \) stands for the set of all IVFS in \(X \). For every \(A \in IVFS(X) \) and \(x \in X \), \(A(x) = [A^-(x), A^+(x)] \) is said to be the degree of membership of an element \(x \) to \(A \), where \(A^- \), \(A^+ \) are FSs in \(X \) which are called a lower fuzzy set and an upper fuzzy set in \(X \), respectively. For simplicity, we denote \(A = [A^-, A^+] \).
Definition 2.14. Let A and B be IVFSs in a non-empty set X. We define the symbols \subseteq, \supseteq, $=$ in case of A and B as follows:

$$A \subseteq B \iff \forall x \in X (A(x) \leq B(x)),$$

and similarly we may have $A \supseteq B$ and $A = B$.

Definition 2.15. Let A be an IVFS in a non-empty set X. The complement of A, denoted by A^C, is defined as follows: $A^C(x) = A(x)^C$ for all $x \in X$, that is,

$$(\forall x \in X)(A^C(x) = [1 - A^+(x), 1 - A^-(x)]).$$

We note that $A^{C-}(x) = 1 - A^+(x)$ and $A^{C+}(x) = 1 - A^-(x)$ for all $x \in X$.

Definition 2.16. Let $\{A_j \mid j \in J\}$ be a family of IVFSs in a non-empty set X. We define the intersection and the union of $\{A_j \mid j \in J\}$, denoted by $\cap_{j \in J}A_j$ and $\cup_{j \in J}A_j$, respectively, as follows:

$$\forall x \in X, (\cap_{j \in J}A_j)^-(x) = \inf_{j \in J} A_j^-(x)),$$

and

$$\forall x \in X, (\cup_{j \in J}A_j)^-(x) = \sup_{j \in J} A_j^-(x)),$$

Similarly,

$$\forall x \in X, (\cap_{j \in J}A_j)^+(x) = \inf_{j \in J} A_j^+(x)),$$

and

$$\forall x \in X, (\cup_{j \in J}A_j)^+(x) = \sup_{j \in J} A_j^+(x)),$$

In particular, if A_1 and A_2 are IVFSs in X, we have the intersection and the union of A_1 and A_2 as follows:

$$\forall x \in X, ((A_1 \cap A_2)(x) = \min\{A_1(x), A_2(x))\},$$

and

$$\forall x \in X, ((A_1 \cup A_2)(x) = \max\{A_1(x), A_2(x))\}.$$}

In 1999, the concept of a neutrosophic set in a non-empty set was introduced by Smarandache with the following definition.

Definition 2.17. A neutrosophic set (briefly, NS) in a non-empty set X is a structure of the form:

$$\Lambda = \{(x, \lambda_T(x), \lambda_I(x), \lambda_F(x)) \mid x \in X\},$$

where $\lambda_T : X \rightarrow [0, 1]$ is a truth membership function, $\lambda_I : X \rightarrow [0, 1]$ is an indeterminate membership function, and $\lambda_F : X \rightarrow [0, 1]$ is a false membership function. For our convenience, we will denote a NS as $\Lambda = (X, \lambda_T, \lambda_I, \lambda_F) = (X, \lambda_{T,I,F}) = \{(x, \lambda_T(x), \lambda_I(x), \lambda_F(x)) \mid x \in X\}$.

Definition 2.18. Let Λ be a NS in a non-empty set X. The NS $\Lambda^{C} = (X, \Lambda_T^C, \Lambda_I^C, \Lambda_F^C)$ in X is said to be the complement of Λ in X.

In 2005, the concept of an interval neutrosophic set in a non-empty set was introduced by Wang et al. with the following definition.

Definition 2.19. An interval-valued neutrosophic set (briefly, IVNS) in a non-empty set X is a structure of the form:

$$A := \{(x, A_T(x), A_I(x), A_F(x)) \mid x \in X\},$$

where A_T, A_I and A_F are IVFSs in X, which are called an interval truth membership function, an interval indeterminacy membership function and an interval falsity membership function, respectively. For our convenience, we will denote a IVNS as $A = (X, A_T, A_I, A_F) = (X, A_{T,I,F}) = \{(x, A_T(x), A_I(x), A_F(x)) \mid x \in X\}$.

Definition 2.20. Let $A = (X, A_T, A_I, A_F)$ be an IVNS in a non-empty set X. The IVNS $A^C = (X, A_T^C, A_I^C, A_F^C)$ in X is said to be the complement of A in X.

Doi: 10.5281/zenodo.3746022
In 2012, the concept of a cubic set in a non-empty set was introduced by Jun et al.\cite{2} with the following definition.

Definition 2.21. A cubic set (briefly, CS) in a non-empty set X is a structure of the form:

$$C = \{(x, A(x), \lambda(x)) \mid x \in X\},$$

where A is an IVFS in X and λ is a FS in X. For our convenience, we will denote a CS as $C = (X, A, \lambda) = \{(x, A(x), \lambda(x)) \mid x \in X\}$.

In 2017, Jun et al.\cite{3} introduced the concept of a neutrosophic cubic set with the following definition.

Definition 2.22. A neutrosophic cubic set (briefly, NCS) in a non-empty set X is a pair $\mathcal{C} = (A, \Lambda)$, where $A = (X, A_T, A_I, A_F)$ is an IVNS and $\Lambda = (X, \lambda_T, \lambda_I, \lambda_F)$ is a neutrosophic set in X. For simplicity, we denote $\mathcal{C} = (A, \Lambda)$.

A NCS $\mathcal{C} = (A, \Lambda)$ in a non-empty set X is said to be constant if $A_T, A_I, A_F, \lambda_T, \lambda_I, \lambda_F$ are constant functions. The complement of a NCS $\mathcal{C} = (A, \Lambda)$ is defined to be the NCS $\mathcal{C}^C = (A^C, \Lambda^C)$.

In 2020, the concepts of a neutrosophic cubic UP-subalgebra, a neutrosophic cubic near UP-filter, a neutrosophic cubic UP-ideal, and a neutrosophic cubic strong UP-ideal of a UP-algebra were introduced by Songsaeng and Iampan\cite{4} with the following definition.

Definition 2.23. A NCS $\mathcal{C} = (A, \Lambda)$ in a UP-algebra $X = (X, \circ, 0)$ is said to be

1. a neutrosophic cubic UP-subalgebra of X if

 \begin{align}
 &\text{(for all } x, y \in X) & A_T(x \circ y) \geq \min\{A_T(x), A_T(y)\} \\
 & & A_I(x \circ y) \leq \max\{A_I(x), A_I(y)\} \\
 & & A_F(x \circ y) \geq \min\{A_F(x), A_F(y)\} \tag{2.53}
 \end{align}

2. a neutrosophic cubic near UP-filter of X if

 \begin{align}
 &\text{(for all } x \in X) & A_T(0) \geq A_T(x) \\
 & & A_I(0) \leq A_I(x) \\
 & & A_F(0) \geq A_F(x) \tag{2.55}
 \end{align}

 \begin{align}
 &\text{(for all } x \in X) & \lambda_T(0) \leq \lambda_T(x) \\
 & & \lambda_I(0) \geq \lambda_I(x) \\
 & & \lambda_F(0) \leq \lambda_F(x) \tag{2.56}
 \end{align}

 \begin{align}
 &\text{(for all } x, y \in X) & A_T(x \circ y) \geq A_T(y) \\
 & & A_I(x \circ y) \leq A_I(y) \\
 & & A_F(x \circ y) \geq A_F(y) \tag{2.57}
 \end{align}

 \begin{align}
 &\text{(for all } x, y \in X) & \lambda_T(x \circ y) \leq \lambda_T(y) \\
 & & \lambda_I(x \circ y) \geq \lambda_I(y) \\
 & & \lambda_F(x \circ y) \leq \lambda_F(y) \tag{2.58}
 \end{align}

3. a neutrosophic cubic UP-filter of X if it holds the followings: (2.55), (2.56), and

 \begin{align}
 &\text{(for all } x, y \in X) & A_T(y) \geq \min\{A_T(x \circ y), A_T(x)\} \\
 & & A_I(y) \leq \max\{A_I(x \circ y), A_I(x)\} \\
 & & A_F(y) \geq \min\{A_F(x \circ y), A_F(x)\} \tag{2.59}
 \end{align}

 \begin{align}
 &\text{(for all } x, y \in X) & \lambda_T(y) \leq \max\{\lambda_T(x \circ y), \lambda_T(x)\} \\
 & & \lambda_I(y) \geq \min\{\lambda_I(x \circ y), \lambda_I(x)\} \\
 & & \lambda_F(y) \leq \max\{\lambda_F(x \circ y), \lambda_F(x)\} \tag{2.60}
 \end{align}
(4) a neutrosophic cubic UP-ideal of \(X \) if it holds the followings: \((2.55), (2.56)\), and
\[
\begin{align*}
\text{(for all } x, y, z \in X) & \quad \begin{cases}
A_T(x \circ z) \geq \min \{A_T((z \circ y) \circ (z \circ x)), A_T(y)\} \\
A_T(x \circ z) \leq \max \{A_T((z \circ y) \circ (z \circ x)), A_T(y)\} \\
A_P(x \circ z) \geq \min \{A_P((z \circ y) \circ (z \circ x)), A_P(y)\} \\
A_P(x \circ z) \leq \max \{A_P((z \circ y) \circ (z \circ x)), A_P(y)\}
\end{cases}, \\
\lambda_T(x \circ z) \leq \max \{\lambda_T((z \circ y) \circ (z \circ x)), \lambda_T(y)\} \\
\lambda_T(x \circ z) \geq \min \{\lambda_T((z \circ y) \circ (z \circ x)), \lambda_T(y)\} \\
\lambda_P(x \circ z) \leq \max \{\lambda_P((z \circ y) \circ (z \circ x)), \lambda_P(y)\}
\end{align*}
\]
(2.61)

(5) a neutrosophic cubic strong UP-ideal of \(X \) if it holds the followings: \((2.55), (2.56)\), and
\[
\begin{align*}
\text{(for all } x, y, z \in X) & \quad \begin{cases}
A_T(x) \geq \min \{A_T((z \circ y) \circ (z \circ x)), A_T(y)\} \\
A_T(x) \leq \max \{A_T((z \circ y) \circ (z \circ x)), A_T(y)\} \\
A_P(x) \geq \min \{A_P((z \circ y) \circ (z \circ x)), A_P(y)\} \\
A_P(x) \leq \max \{A_P((z \circ y) \circ (z \circ x)), A_P(y)\}
\end{cases}, \\
\lambda_T(x) \leq \max \{\lambda_T((z \circ y) \circ (z \circ x)), \lambda_T(y)\} \\
\lambda_T(x) \geq \min \{\lambda_T((z \circ y) \circ (z \circ x)), \lambda_T(y)\} \\
\lambda_P(x) \leq \max \{\lambda_P((z \circ y) \circ (z \circ x)), \lambda_P(y)\}
\end{align*}
\]
(2.64)

Songsaeng and Iampan\(^{[10]}\) proved that the concept of a neutrosophic cubic UP-subalgebra is a generalization of a neutrosophic cubic near UP-filter, a neutrosophic cubic near UP-filter is a generalization of a neutrosophic cubic UP-algebra, and a neutrosophic cubic UP-ideal is a generalization of a neutrosophic cubic strong UP-ideal. Moreover, they proved that a neutrosophic cubic strong UP-ideal and a constant NCS coincide.

3 Homomorphic properties of a NCSs in a UP-algebra

In this section, the image and inverse image of a NCS are defined and some results are studied.

Definition 3.1. Let \(f \) be a function from a non-empty set \(X \) into a non-empty set \(Y \) and \(\mathcal{A} = (A_{T,I,F}, \lambda_{T,I,F}) \) be a NCS in \(X \). Then the image of \(\mathcal{A} \) under \(f \) is defined as a NCS \(f(\mathcal{A}) = (f(A)_{T,I,F}, f(\lambda)_{T,I,F}) \) in \(Y \), where
\[
\begin{align*}
&f(A)_T(y) = \begin{cases}
\text{rsup}_{x \in f^{-1}(y)} \{A_T(x)\} & \text{if } f^{-1}(y) \text{ is non-empty,} \\
[0, 0] & \text{otherwise,}
\end{cases} \\
&f(A)_I(y) = \begin{cases}
\text{rinf}_{x \in f^{-1}(y)} \{A_I(x)\} & \text{if } f^{-1}(y) \text{ is non-empty,} \\
[1, 1] & \text{otherwise,}
\end{cases} \\
&f(A)_F(y) = \begin{cases}
\text{rsup}_{x \in f^{-1}(y)} \{A_F(x)\} & \text{if } f^{-1}(y) \text{ is non-empty,} \\
[0, 0] & \text{otherwise,}
\end{cases} \\
&f(\lambda)_T(y) = \begin{cases}
\text{inf}_{x \in f^{-1}(y)} \{\lambda_T(x)\} & \text{if } f^{-1}(y) \text{ is non-empty,} \\
1 & \text{otherwise,}
\end{cases} \\
&f(\lambda)_I(y) = \begin{cases}
\text{sup}_{x \in f^{-1}(y)} \{\lambda_I(x)\} & \text{if } f^{-1}(y) \text{ is non-empty,} \\
0 & \text{otherwise,}
\end{cases} \\
&f(\lambda)_F(y) = \begin{cases}
\text{inf}_{x \in f^{-1}(y)} \{\lambda_F(x)\} & \text{if } f^{-1}(y) \text{ is non-empty,} \\
1 & \text{otherwise.}
\end{cases}
\end{align*}
\]

Example 3.2. Let \(X = \{0_X, 1_X, 2_X\} \) be a UP-algebra with a fixed element \(0_X \) and a binary operation \(\circ \) defined by the following Cayley table:
\[
\begin{array}{c|ccc}
\circ & 0_X & 1_X & 2_X \\
\hline
0_X & 0_X & 1_X & 2_X \\
1_X & 0_X & 1_X & 2_X \\
2_X & 0_X & 0_X & 1_X \\
\end{array}
\]
and let $Y = \{0_Y, 1_Y, 2_Y\}$ be a UP-algebra with a fixed element 0_Y and a binary operation \bullet defined by the following Cayley table:

<table>
<thead>
<tr>
<th></th>
<th>0_Y</th>
<th>1_Y</th>
<th>2_Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0_Y</td>
<td>0_Y</td>
<td>1_Y</td>
<td>2_Y</td>
</tr>
<tr>
<td>1_Y</td>
<td>0_Y</td>
<td>0_Y</td>
<td>2_Y</td>
</tr>
<tr>
<td>2_Y</td>
<td>0_Y</td>
<td>0_Y</td>
<td>0_Y</td>
</tr>
</tbody>
</table>

We define a function $f : X \to Y$ as follows:

$$f(0_X) = 0_Y, f(1_X) = 1_Y, \text{ and } f(2_X) = 1_Y.$$

We define a NCS $\mathcal{A} = (A_{T,I,F}, \lambda_{T,I,F})$ in X with the tabular representation as follows:

<table>
<thead>
<tr>
<th>X</th>
<th>$\Lambda(x)$</th>
<th>$\lambda(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0_X</td>
<td>$[[0.4, 0.7], [0.5, 0.7], [0.2, 0.4]]$</td>
<td>$(0.1, 0.3, 0.4)$</td>
</tr>
<tr>
<td>1_X</td>
<td>$[[0.1, 0.2], [0.1, 0.5], [0.4, 0.5]]$</td>
<td>$(0.3, 0.8, 0.4)$</td>
</tr>
<tr>
<td>2_X</td>
<td>$[[0.8, 0.9], [0.7, 0.8], [0.1, 0.6]]$</td>
<td>$(0.1, 0.5, 0.7)$</td>
</tr>
</tbody>
</table>

Then $f(\mathcal{A}) = (f(A)_{T,I,F}, f(\lambda)_{T,I,F})$ in Y with the tabular representation as follows:

<table>
<thead>
<tr>
<th>Y</th>
<th>$\Lambda(x)$</th>
<th>$\lambda(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0_Y</td>
<td>$[[0.4, 0.7], [0.5, 0.7], [0.2, 0.4]]$</td>
<td>$(0.1, 0.3, 0.4)$</td>
</tr>
<tr>
<td>1_Y</td>
<td>$[[0.8, 0.9], [0.1, 0.5], [0.4, 0.6]]$</td>
<td>$(0.1, 0.8, 0.4)$</td>
</tr>
<tr>
<td>2_Y</td>
<td>$[[0.0, 1.1], [0.0]]$</td>
<td>$(0, 1)$</td>
</tr>
</tbody>
</table>

Hence, $f(\mathcal{A}) = (f(A)_{T,I,F}, f(\lambda)_{T,I,F})$ is a NCS in Y.

Definition 3.3. Let f be a function from a non-empty set X into a non-empty set Y and $\mathcal{A} = (A_{T,I,F}, \lambda_{T,I,F})$ be a NCS in Y. Then the inverse image of \mathcal{A} is defined as a NCS $f^{-1}(\mathcal{A}) = (f^{-1}(A)_{T,I,F}, f^{-1}(\lambda)_{T,I,F})$ in X, where

$(\text{for all } x \in X)(f^{-1}(A)_{T,I,F}(x) = A_{T,I,F}(f(x))),$

$(\text{for all } x \in X)(f^{-1}(\lambda)_{T,I,F}(x) = \lambda_{T,I,F}(f(x))).$

Example 3.4. In Example 3.2 we have $(X, o, 0_X)$ and $(Y, \bullet, 0_Y)$ are two UP-algebras. We define a function $f : X \to Y$ as follows:

$$f(0_X) = 0_Y, f(1_X) = 1_Y, \text{ and } f(2_X) = 1_Y.$$

We define a NCS $\mathcal{A} = (A_{T,I,F}, \lambda_{T,I,F})$ in Y with the tabular representation as follows:

<table>
<thead>
<tr>
<th>Y</th>
<th>$\Lambda(x)$</th>
<th>$\lambda(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0_Y</td>
<td>$[[0.3, 0.7], [0.3, 0.5], [0.1, 0.4]]$</td>
<td>$(0.5, 0.4, 0.7)$</td>
</tr>
<tr>
<td>1_Y</td>
<td>$[[0.6, 0.7], [0.1, 0.3], [0.4, 0.5]]$</td>
<td>$(0.2, 0.7, 0.8)$</td>
</tr>
<tr>
<td>2_Y</td>
<td>$[[0.5, 0.9], [0.3, 0.5], [0.5, 0.8]]$</td>
<td>$(0.3, 0.5, 0.4)$</td>
</tr>
</tbody>
</table>

Then $f^{-1}(\mathcal{A}) = (f^{-1}(A)_{T,I,F}, f^{-1}(\lambda)_{T,I,F})$ in X with the tabular representation as follows:

<table>
<thead>
<tr>
<th>X</th>
<th>$\Lambda(x)$</th>
<th>$\lambda(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0_X</td>
<td>$[[0.3, 0.7], [0.3, 0.5], [0.1, 0.4]]$</td>
<td>$(0.5, 0.4, 0.7)$</td>
</tr>
<tr>
<td>1_X</td>
<td>$[[0.6, 0.7], [0.1, 0.3], [0.4, 0.5]]$</td>
<td>$(0.2, 0.7, 0.8)$</td>
</tr>
<tr>
<td>2_X</td>
<td>$[[0.6, 0.7], [0.1, 0.3], [0.4, 0.5]]$</td>
<td>$(0.2, 0.7, 0.8)$</td>
</tr>
</tbody>
</table>

Hence, $f^{-1}(\mathcal{A}) = (f^{-1}(A)_{T,I,F}, f^{-1}(\lambda)_{T,I,F})$ is a NCS in X.

Definition 3.5. A NCS $\mathcal{A} = (A_{T,I,F}, \lambda_{T,I,F})$ in X is said to be order preserving if

$$(\text{for all } x, y \in X) \left(x \leq y \Rightarrow \begin{cases} A_T(x) \leq A_T(y), A_I(x) \geq A_I(y), A_F(x) \leq A_F(y), \\ \lambda_T(x) \geq \lambda_T(y), \lambda_I(x) \leq \lambda_I(y), \lambda_F(x) \geq \lambda_F(y) \end{cases} \right).$$

Lemma 3.6. Every neutrosophic cubic UP-filter (resp., neutrosophic cubic UP-ideal, neutrosophic cubic strong UP-ideal) of X is order preserving.
Proof. Assume that $\mathcal{A} = (A_{T, I, F}, \lambda_{T, I, F})$ is a neutrosophic cubic UP-filter of X. Let $x, y \in X$ be such that $x \leq y$ in X. Then $x \circ y = 0$. Thus $$A_T(y) \geq \min\{A_T(x \circ y), A_T(x)\} = \min\{A_T(0), A_T(x)\} = A_T(x), \quad (2.59), (2.55), (2.36)$$ $$A_I(y) \leq \max\{A_I(x \circ y), A_I(x)\} = \max\{A_I(0), A_I(x)\} = A_I(x), \quad (2.59), (2.55), (2.37)$$ $$A_F(y) \geq \min\{A_F(x \circ y), A_F(x)\} = \min\{A_F(0), A_F(x)\} = A_F(x), \quad (2.59), (2.55), (2.36)$$ $$\lambda_T(y) \leq \max\{\lambda_T(x \circ y), \lambda_T(x)\} = \max\{\lambda_T(0), \lambda_T(x)\} = \lambda_T(x), \quad (2.60), (2.56)$$ $$\lambda_I(y) \geq \min\{\lambda_I(x \circ y), \lambda_I(x)\} = \min\{\lambda_I(0), \lambda_I(x)\} = \lambda_I(x), \quad (2.60), (2.56)$$ $$\lambda_F(y) \leq \max\{\lambda_F(x \circ y), \lambda_F(x)\} = \max\{\lambda_F(0), \lambda_F(x)\} = \lambda_F(x). \quad (2.60), (2.56)$$

Hence, \mathcal{A} is order preserving.

Theorem 3.7. Let $(X, \circ, 0_X)$ and $(Y, \bullet, 0_Y)$ be two UP-algebras, $f : X \rightarrow Y$ be a UP-homomorphism, and $\mathcal{A} = (A_{T, I, F}, \lambda_{T, I, F})$ be a NCS in Y. Then the followings hold:

1. If \mathcal{A} is a neutrosophic cubic UP-subalgebra of Y, then the inverse image $f^{-1}(\mathcal{A})$ of \mathcal{A} under f is a neutrosophic cubic UP-subalgebra of X.

2. If \mathcal{A} is a neutrosophic cubic near UP-filter of Y which is order preserving, then the inverse image $f^{-1}(\mathcal{A})$ of \mathcal{A} under f is a neutrosophic cubic near UP-filter of X.

3. If \mathcal{A} is a neutrosophic cubic UP-filter of Y, then the inverse image $f^{-1}(\mathcal{A})$ of \mathcal{A} under f is a neutrosophic cubic UP-filter of X.

4. If \mathcal{A} is a neutrosophic cubic UP-ideal of Y, then the inverse image $f^{-1}(\mathcal{A})$ of \mathcal{A} under f is a neutrosophic cubic UP-ideal of X.

5. If \mathcal{A} is a neutrosophic cubic strong UP-ideal of Y, then the inverse image $f^{-1}(\mathcal{A})$ of \mathcal{A} under f is a neutrosophic cubic strong UP-ideal of X.

Proof. (1) Assume that \mathcal{A} is a neutrosophic cubic UP-subalgebra of Y. Then for all $x, y \in X$,

$$f^{-1}(A_T)(x \circ y) = A_T(f(x \circ y)) \quad (3.1)$$
$$= A_T(f(x) \bullet f(y)) \quad (3.1)$$
$$\geq \min\{A_T(f(x)), A_T(f(y))\} \quad (2.53)$$
$$= \min\{f^{-1}(A_T)(x), f^{-1}(A_T)(y)\}, \quad (3.1)$$

$$f^{-1}(A_I)(x \circ y) = A_I(f(x \circ y)) \quad (3.1)$$
$$= A_I(f(x) \bullet f(y)) \quad (3.1)$$
$$\leq \max\{A_I(f(x)), A_I(f(y))\} \quad (2.53)$$
$$= \max\{f^{-1}(A_I)(x), f^{-1}(A_I)(y)\}, \quad (3.1)$$

$$f^{-1}(A_F)(x \circ y) = A_F(f(x \circ y)) \quad (3.1)$$
$$= A_F(f(x) \bullet f(y)) \quad (3.1)$$
$$\geq \min\{A_F(f(x)), A_F(f(y))\} \quad (2.53)$$
$$= \min\{f^{-1}(A_F)(x), f^{-1}(A_F)(y)\}, \quad (3.1)$$

$$f^{-1}(\lambda_T)(x \circ y) = \lambda_T(f(x \circ y)) \quad (3.2)$$
$$= \lambda_T(f(x) \bullet f(y)) \quad (3.2)$$
$$\leq \max\{\lambda_T(f(x)), \lambda_T(f(y))\} \quad (2.54)$$
$$= \max\{f^{-1}(\lambda_T)(x), f^{-1}(\lambda_T)(y)\}, \quad (3.2)$$

$$f^{-1}(\lambda_I)(x \circ y) = \lambda_I(f(x \circ y)) \quad (3.2)$$
$$= \lambda_I(f(x) \bullet f(y)) \quad (3.2)$$
$$\geq \min\{\lambda_I(f(x)), \lambda_I(f(y))\} \quad (2.54)$$
$$= \min\{f^{-1}(\lambda_I)(x), f^{-1}(\lambda_I)(y)\}, \quad (3.2)$$

Doi :10.5281/zenodo.3746022
\[f^{-1}(\lambda)_F(x \circ y) = \lambda_F(f(x \circ y)) \]
\[= \lambda_F(f(x) \cdot f(y)) \]
\[\leq \max\{\lambda_F(f(x)), \lambda_F(f(y))\} \]
\[= \max\{f^{-1}(\lambda)_F(x), f^{-1}(\lambda)_F(y)\}. \]
(3.2)

Hence, \(f^{-1}(\mathcal{A}) \) is a neutrosophic cubic UP-subalgebra of \(X \).

(2) Assume that \(\mathcal{A} \) is a neutrosophic cubic near UP-filter of \(Y \) which is order preserving. By Theorem 2.6 and (UP-3), we have for all \(x \in X \),

\[f^{-1}(A)_T(0X) = A_T(f(0X)) \geq A_T(f(x)) = f^{-1}(A)_T(x), \]
\[f^{-1}(A)_1(0X) = A_1(f(0X)) \leq A_1(f(x)) = f^{-1}(A)_1(x), \]
\[f^{-1}(\lambda)_T(0X) = \lambda_T(f(0X)) \leq \lambda_T(f(x)) = f^{-1}(\lambda)_T(x), \]
\[f^{-1}(\lambda)_1(0X) = \lambda_1(f(0X)) \geq \lambda_1(f(x)) = f^{-1}(\lambda)_1(x), \]
\[f^{-1}(\lambda)_F(0X) = \lambda_F(f(0X)) \leq \lambda_F(f(x)) = f^{-1}(\lambda)_F(x). \]
(2.57, 2.58)

Let \(x, y \in X \). Then

\[f^{-1}(A)_T(x \circ y) = A_T(f(x \circ y)) = A_T(f(x) \bullet f(y)) \geq A_T(f(y)) = f^{-1}(A)_T(y), \]
\[f^{-1}(A)_1(x \circ y) = A_1(f(x \circ y)) = A_1(f(x) \bullet f(y)) \leq A_1(f(y)) = f^{-1}(A)_1(y), \]
\[f^{-1}(\lambda)_T(x \circ y) = \lambda_T(f(x \circ y)) = \lambda_T(f(x) \bullet f(y)) \leq \lambda_T(f(y)) = f^{-1}(\lambda)_T(y), \]
\[f^{-1}(\lambda)_1(x \circ y) = \lambda_1(f(x \circ y)) = \lambda_1(f(x) \bullet f(y)) \geq \lambda_1(f(y)) = f^{-1}(\lambda)_1(y), \]
\[f^{-1}(\lambda)_F(x \circ y) = \lambda_F(f(x \circ y)) = \lambda_F(f(x) \bullet f(y)) \leq \lambda_F(f(y)) = f^{-1}(\lambda)_F(y). \]
(2.58, 2.59)

Hence, \(f^{-1}(\mathcal{A}) \) is a neutrosophic cubic near UP-filter of \(X \).

(3) Assume that \(\mathcal{A} \) is a neutrosophic cubic UP-filter of \(Y \). Then \(\mathcal{A} \) is a neutrosophic cubic near UP-filter of \(Y \). By Lemma 3.6 and the proof of (2) we have \(f^{-1}(\mathcal{A}) \) satisfies the assertions (2.55) and (2.56). Let \(x, y \in X \). Then

\[f^{-1}(A)_T(y) = A_T(f(y)) \]
\[\geq \min\{A_T(f(x) \bullet f(y)), A_T(f(x))\} \]
\[= \min\{A_T(f(x \circ y)), A_T(f(x))\} \]
\[= \min\{f^{-1}(A)_T(x \circ y), f^{-1}(A)_T(x)\}, \]
(3.1)

\[f^{-1}(A)_1(y) = A_1(f(y)) \]
\[\leq \max\{A_1(f(x) \bullet f(y)), A_1(f(x))\} \]
\[= \max\{A_1(f(x \circ y)), A_1(f(x))\} \]
\[= \max\{f^{-1}(A)_1(x \circ y), f^{-1}(A)_1(x)\}, \]
(3.1)

\[f^{-1}(\lambda)_T(y) = \lambda_T(f(y)) \]
\[\leq \max\{\lambda_T(f(x) \bullet f(y)), \lambda_T(f(x))\} \]
\[= \max\{\lambda_T(f(x \circ y)), \lambda_T(f(x))\} \]
\[= \max\{f^{-1}(\lambda)_T(x \circ y), f^{-1}(\lambda)_T(x)\}, \]
(3.2)

\[f^{-1}(\lambda)_1(y) = \lambda_1(f(y)) \]
\[\geq \min\{\lambda_1(f(x) \bullet f(y)), \lambda_1(f(x))\} \]
\[= \min\{\lambda_1(f(x \circ y)), \lambda_1(f(x))\} \]
\[= \min\{f^{-1}(\lambda)_1(x \circ y), f^{-1}(\lambda)_1(x)\}. \]
(3.2)
\[f^{-1}(\lambda)_{F}(y) = \lambda_{F}(f(y)) \]
\[\leq \max\{\lambda_{F}(f(x) \cdot f(y)), \lambda_{F}(f(x))\} \]
\[= \max\{\lambda_{F}(f(x \circ y)), \lambda_{F}(f(x))\} \]
\[= \max\{f^{-1}(\lambda)_{F}(x \circ y), f^{-1}(\lambda)_{F}(x)\}. \]

Hence, \(f^{-1}(\mathcal{A}) \) is a neutrosophic cubic UP-filter of \(X \).

(4) Assume that \(\mathcal{A} \) is a neutrosophic cubic UP-ideal of \(Y \). Then \(\mathcal{A} \) is a neutrosophic cubic UP-filter of \(Y \).

By the proof of (3) we have \(f^{-1}(\mathcal{A}) \) satisfies the assertions (2.55) and (2.56). Let \(x, y, z \in X \). Then

\[f^{-1}(A)_{T}(x \circ z) = A_{T}(f(x \circ z)) \]
\[= A_{T}(f(x) \cdot f(z)) \]
\[\geq \min\{A_{T}(f(x) \cdot (f(y) \cdot f(z))), A_{T}(f(y))\} \]
\[= \min\{A_{T}(f(x) \cdot (f(y \circ z))), A_{T}(f(y))\} \]
\[= \min\{f^{-1}(A)_{T}(x \circ (y \circ z)), f^{-1}(A)_{T}(y)\}, \]

(3.1)

\[f^{-1}(A)_{I}(x \circ z) = A_{I}(f(x \circ z)) \]
\[= A_{I}(f(x) \cdot f(z)) \]
\[\geq \min\{A_{I}(f(x) \cdot (f(y) \cdot f(z))), A_{I}(f(y))\} \]
\[= \min\{A_{I}(f(x) \cdot (f(y \circ z))), A_{I}(f(y))\} \]
\[= \min\{f^{-1}(A)_{I}(x \circ (y \circ z)), f^{-1}(A)_{I}(y)\}, \]

(3.1)

\[f^{-1}(A)_{F}(x \circ z) = A_{F}(f(x \circ z)) \]
\[= A_{F}(f(x) \cdot f(z)) \]
\[\geq \min\{A_{F}(f(x) \cdot (f(y) \cdot f(z))), A_{F}(f(y))\} \]
\[= \min\{A_{F}(f(x) \cdot (f(y \circ z))), A_{F}(f(y))\} \]
\[= \min\{f^{-1}(A)_{F}(x \circ (y \circ z)), f^{-1}(A)_{F}(y)\}, \]

(3.1)

\[f^{-1}(\lambda)_{T}(x \circ z) = \lambda_{T}(f(x \circ z)) \]
\[= \lambda_{T}(f(x) \cdot f(z)) \]
\[\leq \max\{\lambda_{T}(f(x) \cdot (f(y) \cdot f(z))), \lambda_{T}(f(y))\} \]
\[= \max\{\lambda_{T}(f(x) \cdot (f(y \circ z))), \lambda_{T}(f(y))\} \]
\[= \max\{f^{-1}(\lambda)_{T}(x \circ (y \circ z)), f^{-1}(\lambda)_{T}(y)\}, \]

(3.2)

\[f^{-1}(\lambda)_{I}(x \circ z) = \lambda_{I}(f(x \circ z)) \]
\[= \lambda_{I}(f(x) \cdot f(z)) \]
\[\geq \min\{\lambda_{I}(f(x) \cdot (f(y) \cdot f(z))), \lambda_{I}(f(y))\} \]
\[= \min\{\lambda_{I}(f(x) \cdot (f(y \circ z))), \lambda_{I}(f(y))\} \]
\[= \min\{f^{-1}(\lambda)_{I}(x \circ (y \circ z)), f^{-1}(\lambda)_{I}(y)\}, \]

(3.2)

\[f^{-1}(\lambda)_{F}(x \circ z) = \lambda_{F}(f(x \circ z)) \]
\[= \lambda_{F}(f(x) \cdot f(z)) \]
\[\leq \max\{\lambda_{F}(f(x) \cdot (f(y) \cdot f(z))), \lambda_{F}(f(y))\} \]
\[= \max\{\lambda_{F}(f(x) \cdot (f(y \circ z))), \lambda_{F}(f(y))\} \]
\[= \max\{f^{-1}(\lambda)_{F}(x \circ (y \circ z)), f^{-1}(\lambda)_{F}(y)\}. \]

(3.2)

Hence, \(f^{-1}(\mathcal{A}) \) is a neutrosophic cubic UP-ideal of \(X \).
Let

\[f^{-1}(A)_T(x) = A_T(f(x)) \]

\[\geq \min\{A_T(f(z) \bullet f(y)) \bullet (f(z) \bullet f(x)), A_f(f(y))\} \]

\[= \min\{A_T(f(z \circ y) \bullet f(z \circ x)), A_T(f(y))\} \]

\[= \min\{f^{-1}(A)_T((z \circ y) \circ (z \circ x)), f^{-1}(A)_T(y)\}, \]

\[f^{-1}(A)_f(x) = A_f(f(x)) \]

\[\geq \min\{A_f(f(z) \bullet f(y)) \bullet (f(z) \bullet f(x)), A_f(f(y))\} \]

\[= \min\{A_f(f(z \circ y) \bullet f(z \circ x)), A_f(f(y))\} \]

\[= \min\{f^{-1}(A)_f((z \circ y) \circ (z \circ x)), f^{-1}(A)_f(y)\}, \]

\[f^{-1}(A)_F(x) = A_F(f(x)) \]

\[\geq \min\{A_F(f(z) \bullet f(y)) \bullet (f(z) \bullet f(x)), A_F(f(y))\} \]

\[= \min\{A_F(f(z \circ y) \bullet f(z \circ x)), A_F(f(y))\} \]

\[= \min\{f^{-1}(A)_F((z \circ y) \circ (z \circ x)), f^{-1}(A)_F(y)\}, \]

\[f^{-1}(\lambda)_T(x) = \lambda_T(f(x)) \]

\[\leq \min\{\lambda_T(f(z) \bullet f(y)) \bullet (f(z) \bullet f(x)), \lambda_T(f(y))\} \]

\[= \min\{\lambda_T(f(z \circ y) \bullet f(z \circ x)), \lambda_T(f(y))\} \]

\[= \min\{f^{-1}(\lambda)_T((z \circ y) \circ (z \circ x)), f^{-1}(\lambda)_T(y)\}, \]

\[f^{-1}(\lambda)_f(x) = \lambda_f(f(x)) \]

\[\leq \min\{\lambda_f(f(z) \bullet f(y)) \bullet (f(z) \bullet f(x)), \lambda_f(f(y))\} \]

\[= \min\{\lambda_f(f(z \circ y) \bullet f(z \circ x)), \lambda_f(f(y))\} \]

\[= \min\{f^{-1}(\lambda)_f((z \circ y) \circ (z \circ x)), f^{-1}(\lambda)_f(y)\}, \]

\[f^{-1}(\lambda)_F(x) = \lambda_F(f(x)) \]

\[\leq \min\{\lambda_F(f(z) \bullet f(y)) \bullet (f(z) \bullet f(x)), \lambda_F(f(y))\} \]

\[= \min\{\lambda_F(f(z \circ y) \bullet f(z \circ x)), \lambda_F(f(y))\} \]

\[= \min\{f^{-1}(\lambda)_F((z \circ y) \circ (z \circ x)), f^{-1}(\lambda)_F(y)\}. \]

Hence, \(f^{-1}(\mathcal{A}) \) is a neutrosophic cubic strong UP-ideal of \(Y \).

Definition 3.8. A NCS \(\mathcal{A} = (A_{T,I,F}, \lambda_{T,I,F}) \) in \(X \) has NCS-property if for any non-empty subset \(A \) of \(X \), there exist elements \(\alpha_{T,I,F}, \beta_{T,I,F} \in A \) (instead of \(\alpha_T, \alpha_I, \alpha_F, \beta_T, \beta_I, \beta_F \in A \)) such that

\[A_T(\alpha_T) = \text{rsup}_{s \in A} A_T(s), A_I(\alpha_I) = \text{rinf}_{s \in A} A_I(s), A_F(\alpha_F) = \text{rsup}_{s \in A} A_F(s), \]

\[\lambda_T(\beta_T) = \text{inf}_{s \in A} \lambda_T(s), \lambda_I(\beta_I) = \text{sup}_{s \in A} \lambda_I(s), \lambda_F(\beta_F) = \text{inf}_{s \in A} \lambda_F(s). \]

Definition 3.9. Let \(X \) and \(Y \) be any two non-empty sets and let \(f : X \to Y \) be any function. A NCS \(\mathcal{A} = (A_{T,I,F}, \lambda_{T,I,F}) \) in \(X \) is said to be \(f \)-invariant if

\[(\text{for all } x, y \in X) f(x) = f(y) \Rightarrow A_{T,I,F}(x) = A_{T,I,F}(y), \lambda_{T,I,F}(x) = \lambda_{T,I,F}(y). \]

Lemma 3.10. Let \((X, \circ, 0_X) \) and \((Y, \bullet, 0_Y) \) be two UP-algebras and let \(f : X \to Y \) be a UP-epimorphism. Let \(\mathcal{A} = (A_{T,I,F}, \lambda_{T,I,F}) \) be an \(f \)-invariant NCS in \(X \) with NCS-property. For any \(x, y \in Y \), there exist
elements $\alpha_{T,I,F}, \gamma_{T,I,F}, \beta_{T,I,F}, \phi_{T,I,F} \in f^{-1}(y)$ such that

$$f(A)_T(x) = A_T(\alpha_T), f(A)_I(x) = A_I(\alpha_I), f(A)_F(x) = A_F(\alpha_F),$$

$$f(\lambda)_T(x) = \lambda_T(\gamma_T), f(\lambda)_I(x) = \lambda_I(\gamma_I), f(\lambda)_F(x) = \lambda_F(\gamma_F),$$

$$f(A)_T(y) = A_T(\beta_T), f(A)_I(y) = A_I(\beta_I), f(A)_F(y) = A_F(\beta_F),$$

$$f(\lambda)_T(y) = \lambda_T(\phi_T), f(\lambda)_I(y) = \lambda_I(\phi_I), f(\lambda)_F(y) = \lambda_F(\phi_F),$$

$$f(A)_T(x \circ y) = A_T(\alpha_T \circ \beta_T), f(A)_I(x \circ y) = A_I(\alpha_I \circ \beta_I), f(A)_F(x \circ y) = A_F(\alpha_F \circ \beta_F),$$

$$f(\lambda)_T(x \circ y) = \lambda_T(\gamma_T \circ \gamma_T), f(\lambda)_I(x \circ y) = \lambda_I(\gamma_I \circ \phi_I), f(\lambda)_F(x \circ y) = \lambda_F(\gamma_F \circ \phi_F).$$

Proof. Let $x, y \in Y$. Since f is surjective, we have $f^{-1}(x), f^{-1}(y)$, and $f^{-1}(x \circ y)$ are non-empty subsets of X. Since \mathcal{A} has NCS-property, there exist elements $\alpha_{T,I,F}, \gamma_{T,I,F}, \beta_{T,I,F}, \phi_{T,I,F} \in f^{-1}(y)$, and $a_{T,I,F}, b_{T,I,F} \in f^{-1}(x \circ y)$ such that

$$f(A)_T(x) = \text{rsup}_{s \in f^{-1}(x)} \{A_T(s)\} = A_T(\alpha_T),$$

$$f(A)_I(x) = \text{rinf}_{s \in f^{-1}(x)} \{A_I(s)\} = A_I(\alpha_I),$$

$$f(A)_F(x) = \text{rsup}_{s \in f^{-1}(x)} \{A_F(s)\} = A_F(\alpha_F),$$

$$f(\lambda)_T(x) = \text{inf}_{s \in f^{-1}(x)} \{\lambda_T(s)\} = \lambda_T(\gamma_T),$$

$$f(\lambda)_I(x) = \text{inf}_{s \in f^{-1}(x)} \{\lambda_I(s)\} = \lambda_I(\gamma_I),$$

$$f(\lambda)_F(x) = \text{inf}_{s \in f^{-1}(x)} \{\lambda_F(s)\} = \lambda_F(\gamma_F),$$

$$f(A)_T(y) = \text{rsup}_{s \in f^{-1}(y)} \{A_T(s)\} = A_T(\beta_T),$$

$$f(A)_I(y) = \text{rinf}_{s \in f^{-1}(y)} \{A_I(s)\} = A_I(\beta_I),$$

$$f(A)_F(y) = \text{rsup}_{s \in f^{-1}(y)} \{A_F(s)\} = A_F(\beta_F),$$

$$f(\lambda)_T(y) = \text{inf}_{s \in f^{-1}(y)} \{\lambda_T(s)\} = \lambda_T(\phi_T),$$

$$f(\lambda)_I(y) = \text{inf}_{s \in f^{-1}(y)} \{\lambda_I(s)\} = \lambda_I(\phi_I),$$

$$f(\lambda)_F(y) = \text{inf}_{s \in f^{-1}(y)} \{\lambda_F(s)\} = \lambda_F(\phi_F),$$

and

$$f(A)_T(x \circ y) = \text{rsup}_{s \in f^{-1}(x \circ y)} \{A_T(s)\} = A_T(\alpha_T),$$

$$f(A)_I(x \circ y) = \text{rinf}_{s \in f^{-1}(x \circ y)} \{A_I(s)\} = A_I(\alpha_I),$$

$$f(A)_F(x \circ y) = \text{rsup}_{s \in f^{-1}(x \circ y)} \{A_F(s)\} = A_F(\alpha_F),$$

$$f(\lambda)_T(x \circ y) = \text{inf}_{s \in f^{-1}(x \circ y)} \{\lambda_T(s)\} = \lambda_T(\gamma_T),$$

$$f(\lambda)_I(x \circ y) = \text{inf}_{s \in f^{-1}(x \circ y)} \{\lambda_I(s)\} = \lambda_I(\gamma_I),$$

$$f(\lambda)_F(x \circ y) = \text{inf}_{s \in f^{-1}(x \circ y)} \{\lambda_F(s)\} = \lambda_F(\gamma_F).$$

Since

$$f(\alpha_T) = x \circ y = f(\alpha_T) \circ f(\beta_T) = f(\alpha_T \circ \beta_T),$$

$$f(\alpha_I) = x \circ y = f(\alpha_I) \circ f(\beta_I) = f(\alpha_I \circ \beta_I),$$

$$f(\alpha_F) = x \circ y = f(\alpha_F) \circ f(\beta_F) = f(\alpha_F \circ \beta_F),$$

$$f(\beta_T) = x \circ y = f(\gamma_T) \circ f(\phi_T) = f(\gamma_T \circ \phi_T),$$

$$f(\beta_I) = x \circ y = f(\gamma_I) \circ f(\phi_I) = f(\gamma_I \circ \phi_I),$$

$$f(\beta_F) = x \circ y = f(\gamma_F) \circ f(\phi_F) = f(\gamma_F \circ \phi_F),$$

and \mathcal{A} is f-invariant, it follows that

$$f(A)_T(x \circ y) = A_T(\alpha_T) = A_T(\alpha_T \circ \beta_T),$$

$$f(A)_I(x \circ y) = A_I(\alpha_I) = A_I(\alpha_I \circ \beta_I),$$

$$f(A)_F(x \circ y) = A_F(\alpha_F) = A_F(\alpha_F \circ \beta_F),$$

$$f(\lambda)_T(x \circ y) = \lambda_T(\beta_T) = \lambda_T(\gamma_T \circ \phi_T),$$

$$f(\lambda)_I(x \circ y) = \lambda_I(\beta_I) = \lambda_I(\gamma_I \circ \phi_I),$$

$$f(\lambda)_F(x \circ y) = \lambda_F(\beta_F) = \lambda_F(\gamma_F \circ \phi_F).$$

The proof is completed. □

Doi:10.5281/zenodo.3746022
Theorem 3.11. Let \((X, \circ, 0_X)\) and \((Y, \bullet, 0_Y)\) be two UP-algebras, \(f: X \to Y\) be a UP-epimorphism, and \(\mathcal{A} = (A_{T, I, F}, \lambda_{T, I, F})\) be a NCS in \(X\). Then the followings hold:

1. If \(\mathcal{A}\) is an \(f\)-invariant neutrosophic cubic UP-subalgebra of \(X\) with NCS-property, then the image \(f(\mathcal{A})\) of \(\mathcal{A}\) under \(f\) is a neutrosophic cubic UP-subalgebra of \(Y\).

2. If \(\mathcal{A}\) is an \(f\)-invariant neutrosophic cubic near UP-filter of \(X\) with NCS-property, then the image \(f(\mathcal{A})\) of \(\mathcal{A}\) under \(f\) is a neutrosophic cubic near UP-filter of \(Y\).

3. If \(\mathcal{A}\) is an \(f\)-invariant neutrosophic cubic UP-filter of \(X\) with NCS-property, then the image \(f(\mathcal{A})\) of \(\mathcal{A}\) under \(f\) is a neutrosophic cubic UP-filter of \(Y\).

4. If \(\mathcal{A}\) is an \(f\)-invariant neutrosophic cubic UP-ideal of \(X\) with NCS-property, then the image \(f(\mathcal{A})\) of \(\mathcal{A}\) under \(f\) is a neutrosophic cubic UP-ideal of \(Y\).

5. If \(\mathcal{A}\) is an \(f\)-invariant neutrosophic cubic strong UP-ideal of \(X\) with NCS-property, then the image \(f(\mathcal{A})\) of \(\mathcal{A}\) under \(f\) is a neutrosophic cubic strong UP-ideal of \(Y\).

Proof. (1) Assume that \(\mathcal{A} = (A_{T, I, F}, \lambda_{T, I, F})\) is an \(f\)-invariant neutrosophic cubic UP-subalgebra of \(X\) with NCS-property. Let \(x, y \in Y\). Since \(f\) is surjective, we have \(f^{-1}(x), f^{-1}(y), \) and \(f^{-1}(x \bullet y)\) are non-empty. By Lemma 3.10, there exist elements \(\alpha_{T, I, F}, \gamma_{T, I, F} \in f^{-1}(x)\) and \(\beta_{T, I, F}, \phi_{T, I, F} \in f^{-1}(y)\) such that

\[
\begin{align*}
f(A_T(x \bullet y)) &= A_T(\alpha_T \circ \beta_T) \succeq \min\{A_T(\alpha_T), A_T(\beta_T)\} = \min\{f(A_T(x)), f(A_T(y))\}, \\
f(A_I(x \bullet y)) &= A_I(\alpha_I \circ \beta_I) \preceq \max\{A_I(\alpha_I), A_I(\beta_I)\} = \max\{f(A_I(x)), f(A_I(y))\}, \\
f(A_F(x \bullet y)) &= A_F(\alpha_F \circ \beta_F) \succeq \min\{A_F(\alpha_F), A_F(\beta_F)\} = \min\{f(A_F(x)), f(A_F(y))\}, \\
f(\lambda_T(x \bullet y)) &= \lambda_T(\gamma_T \circ \phi_T) \preceq \max\{\lambda_T(\gamma_T), \lambda_T(\phi_T)\} = \max\{f(\lambda_T(x)), f(\lambda_T(y))\}, \\
f(\lambda_I(x \bullet y)) &= \lambda_I(\gamma_I \circ \phi_I) \preceq \max\{\alpha_I, \phi_I\} = \min\{f(\lambda_I(x)), f(\lambda_I(y))\}, \\
f(\lambda_F(x \bullet y)) &= \lambda_F(\gamma_F \circ \phi_F) \preceq \max\{\lambda_F(\gamma_F), \lambda_F(\phi_F)\} = \max\{f(\lambda_F(x)), f(\lambda_F(y))\}.
\end{align*}
\]

Hence, \(f(\mathcal{A})\) is a neutrosophic cubic UP-subalgebra of \(Y\).

(2) Assume that \(\mathcal{A} = (A_{T, I, F}, \lambda_{T, I, F})\) is an \(f\)-invariant neutrosophic cubic near UP-filter of \(X\) with NCS-property. By Theorem 2.6, we have \(0_X \in f^{-1}(0_Y)\) and so \(f^{-1}(0_Y)\) is non-empty. Thus

\[
\begin{align*}
f(A_T(0_Y)) &= \max_{s \in f^{-1}(0_Y)}\{A_T(s)\} \geq A_T(0_X), \\
f(A_I(0_Y)) &= \max_{s \in f^{-1}(0_Y)}\{A_I(s)\} \geq A_I(0_X), \\
f(A_F(0_Y)) &= \max_{s \in f^{-1}(0_Y)}\{A_F(s)\} \geq A_F(0_X), \\
f(\lambda_T(0_Y)) &= \max_{s \in f^{-1}(0_Y)}\{\lambda_T(s)\} \geq \lambda_T(0_X), \\
f(\lambda_I(0_Y)) &= \max_{s \in f^{-1}(0_Y)}\{\lambda_I(s)\} \geq \lambda_I(0_X), \\
f(\lambda_F(0_Y)) &= \max_{s \in f^{-1}(0_Y)}\{\lambda_F(s)\} \geq \lambda_F(0_X).
\end{align*}
\]

Let \(y \in Y\). Since \(f\) is surjective, we have \(f^{-1}(y)\) is non-empty. By (2.55) and (2.56), we have \(A_T(0_X) \geq A_T(s), A_I(0_X) \geq A_I(s), A_F(0_X) \geq A_F(s), \lambda_T(0_X) \geq \lambda_T(s), \lambda_I(0_X) \geq \lambda_I(s), \lambda_F(0_X) \geq \lambda_F(s)\) for all \(s \in f^{-1}(y)\). Then \(A_T(0_X)\) is an upper bound of \(\{A_T(s)\}_{s \in f^{-1}(y)}\), \(A_I(0_X)\) is a lower bound of \(\{A_I(s)\}_{s \in f^{-1}(y)}\), \(A_F(0_X)\) is an upper bound of \(\{A_F(s)\}_{s \in f^{-1}(y)}\), \(\lambda_T(0_X)\) is a lower bound of \(\{\lambda_T(s)\}_{s \in f^{-1}(y)}\), \(\lambda_I(0_X)\) is an
upper bound of \(\{ \lambda_I(s) \}_{s \in f^{-1}(y)} \) and \(\lambda_F(0_X) \) is a lower bound of \(\{ \lambda_F(s) \}_{s \in f^{-1}(y)} \). By (3.5), we have
\[
\begin{align*}
 f(A)\mathcal{T}(0_Y) &\geq A_T(0_X) \geq \sup_{s \in f^{-1}(y)}\{A_T(s)\} = f(A)\mathcal{T}(y), \\
 f(A)\mathcal{T}(0_Y) &\leq A_T(0_X) \geq \inf_{s \in f^{-1}(y)}\{A_T(s)\} = f(A)\mathcal{T}(y), \\
 f(A)\mathcal{T}(0_Y) &\geq A_T(0_X) \geq \sup_{s \in f^{-1}(y)}\{A_T(s)\} = f(A)\mathcal{T}(y), \\
 f(A)\mathcal{T}(0_Y) &\leq A_T(0_X) \leq \inf_{s \in f^{-1}(y)}\{A_T(s)\} = f(A)\mathcal{T}(y).
\end{align*}
\]
Let \(x, y \in Y \). By Lemma 3.10, there exist elements \(\alpha_{T,I,F}, \gamma_{T,I,F} \in f^{-1}(x) \) and \(\beta_{T,I,F}, \phi_{T,I,F} \in f^{-1}(y) \) such that
\[
\begin{align*}
 f(A)\mathcal{T}(x) &= A_T(\alpha_T), f(A)\mathcal{I}(x) = A_I(\alpha_I), f(A)\mathcal{F}(x) = A_F(\alpha_F), \\
 f(\lambda)_T(x) &= \lambda_T(\gamma_T), f(\lambda)_I(x) = \lambda_I(\gamma_I), f(\lambda)_F(x) = \lambda_F(\gamma_F), \\
 f(A)\mathcal{T}(y) &= A_T(\beta_T), f(A)\mathcal{I}(y) = A_I(\beta_I), f(A)\mathcal{F}(y) = A_F(\beta_F), \\
 f(\lambda)_T(y) &= \lambda_T(\phi_T), f(\lambda)_I(y) = \lambda_I(\phi_I), f(\lambda)_F(y) = \lambda_F(\phi_F).
\end{align*}
\]
Then
\[
\begin{align*}
 f(A)\mathcal{T}(x \cdot y) &= A_T(\alpha_T \circ \beta_T), f(A)\mathcal{I}(x \cdot y) = A_I(\alpha_I \circ \beta_I), f(A)\mathcal{F}(x \cdot y) = A_F(\alpha_F \circ \beta_F), \\
 f(\lambda)_T(x \cdot y) &= \lambda_T(\gamma_T \circ \phi_T), f(\lambda)_I(x \cdot y) = \lambda_I(\gamma_I \circ \phi_I), f(\lambda)_F(x \cdot y) = \lambda_F(\gamma_F \circ \phi_F).
\end{align*}
\]
Hence, \(f(\mathcal{A}) \) is a neutrosophic cubic UP-filter of \(Y \).

(3) Assume that \(\mathcal{A} = (A_{T,I,F}, \lambda_{T,I,F}) \) is an \(f \)-invariant neutrosophic cubic UP-filter of \(X \) with NCS-property. Then \(\mathcal{A} \) is a neutrosophic cubic near UP-filter of \(X \). By the proof of (2), we have \(f(\mathcal{A}) \) satisfies the assertions (2.55) and (2.56). Let \(x, y \in Y \). By Lemma 3.10, there exist elements \(\alpha_{T,I,F}, \gamma_{T,I,F} \in f^{-1}(x) \) and \(\beta_{T,I,F}, \phi_{T,I,F} \in f^{-1}(y) \) such that
\[
\begin{align*}
 f(A)\mathcal{T}(x) &= A_T(\alpha_T), f(A)\mathcal{I}(x) = A_I(\alpha_I), f(A)\mathcal{F}(x) = A_F(\alpha_F), \\
 f(\lambda)_T(x) &= \lambda_T(\gamma_T), f(\lambda)_I(x) = \lambda_I(\gamma_I), f(\lambda)_F(x) = \lambda_F(\gamma_F), \\
 f(A)\mathcal{T}(y) &= A_T(\beta_T), f(A)\mathcal{I}(y) = A_I(\beta_I), f(A)\mathcal{F}(y) = A_F(\beta_F), \\
 f(\lambda)_T(y) &= \lambda_T(\phi_T), f(\lambda)_I(y) = \lambda_I(\phi_I), f(\lambda)_F(y) = \lambda_F(\phi_F).
\end{align*}
\]
Then
\[
\begin{align*}
 f(A)\mathcal{T}(x \cdot y) &= A_T(\alpha_T \circ \beta_T), f(A)\mathcal{I}(x \cdot y) = A_I(\alpha_I \circ \beta_I), f(A)\mathcal{F}(x \cdot y) = A_F(\alpha_F \circ \beta_F), \\
 f(\lambda)_T(x \cdot y) &= \lambda_T(\gamma_T \circ \phi_T), f(\lambda)_I(x \cdot y) = \lambda_I(\gamma_I \circ \phi_I), f(\lambda)_F(x \cdot y) = \lambda_F(\gamma_F \circ \phi_F).
\end{align*}
\]
Hence, \(f(\mathcal{A}) \) is a neutrosophic cubic UP-filter of \(Y \).

(4) Assume that \(\mathcal{A} = (A_{T,I,F}, \lambda_{T,I,F}) \) is an \(f \)-invariant neutrosophic cubic UP-ideal of \(X \) with NCS-property. Then \(\mathcal{A} \) is a neutrosophic cubic UP-filter of \(X \). By the proof of (3), we have \(f(\mathcal{A}) \) satisfies the
assertions (2.55) and (2.56). Let $x, y, z \in Y$. By Lemma 3.10 there exist elements $\alpha_{T,I,F}, \gamma_{T,I,F} \in f^{-1}(x)$, $\beta_{T,I,F}, \phi_{T,I,F} \in f^{-1}(y)$ and $\psi_{T,I,F}, \omega_{T,I,F} \in f^{-1}(z)$ such that
\[
\begin{align*}
 f(A)_T(y) &= A_T(\beta_T), f(A)_I(y) = A_I(\beta_I), f(A)_F(y) = A_F(\beta_F), \\
 f(\lambda)_T(y) &= \lambda_T(\phi_T), f(\lambda)_I(y) = \lambda_I(\phi_I), f(\lambda)_F(y) = \lambda_F(\phi_F), \\
 f(A)_T(x \cdot z) &= A_T(\alpha_T \circ \psi_T), f(A)_I(x \cdot z) = A_I(\alpha_I \circ \psi_I), f(A)_F(x \cdot z) = A_F(\alpha_F \circ \psi_F), \\
 f(\lambda)_T(x \cdot z) &= \lambda_T(\gamma_T \circ \omega_T), f(\lambda)_I(x \cdot z) = \lambda_I(\gamma_I \circ \omega_I), f(\lambda)_F(x \cdot z) = \lambda_F(\gamma_F \circ \omega_F), \\
 f(A)_T(x \cdot (y \cdot z)) &= A_T(\alpha_T \circ (\beta_T \circ \psi_T)), \\
 f(A)_I(x \cdot (y \cdot z)) &= A_I(\alpha_I \circ (\beta_I \circ \psi_I)), \\
 f(A)_F(x \cdot (y \cdot z)) &= A_F(\alpha_F \circ (\beta_F \circ \psi_F)), \\
 f(\lambda)_T(x \cdot (y \cdot z)) &= \lambda_T(\gamma_T \circ (\phi_T \circ \omega_T)), \\
 f(\lambda)_I(x \cdot (y \cdot z)) &= \lambda_I(\gamma_I \circ (\phi_I \circ \omega_I)), \\
 f(\lambda)_F(x \cdot (y \cdot z)) &= \lambda_F(\gamma_F \circ (\phi_F \circ \omega_F)).
\end{align*}
\]

Then
\[
\begin{align*}
 f(A)_T(x \cdot z) &= A_T(\alpha_T \circ \psi_T) \\
 &= \min \{ f(A)_T(x \cdot (y \cdot z)), f(A)_T(y) \} \\
 &\geq \min \{ f(A)_T(x \cdot (y \cdot z)), f(A)_T(y) \} \\
 &= \min \{ f(A)_T(x \cdot (y \cdot z)), f(A)_T(y) \} \\
 f(A)_I(x \cdot z) &= A_I(\alpha_I \circ \psi_I) \\
 &\geq \min \{ f(A)_I(x \cdot (y \cdot z)), f(A)_I(y) \} \\
 &= \min \{ f(A)_I(x \cdot (y \cdot z)), f(A)_I(y) \} \\
 f(A)_F(x \cdot z) &= A_F(\alpha_F \circ \psi_F) \\
 &\geq \min \{ f(A)_F(x \cdot (y \cdot z)), f(A)_F(y) \} \\
 &= \min \{ f(A)_F(x \cdot (y \cdot z)), f(A)_F(y) \} \\
 f(\lambda)_T(x \cdot z) &= \lambda_T(\gamma_T \circ \omega_T) \\
 &\leq \max \{ \lambda_T(\gamma_T \circ (\phi_T \circ \omega_T)), \lambda_T(\phi_T) \} \\
 &= \max \{ \lambda_T(\gamma_T \circ (\phi_T \circ \omega_T)), \lambda_T(\phi_T) \} \\
 f(\lambda)_I(x \cdot z) &= \lambda_I(\gamma_I \circ \omega_I) \\
 &\geq \min \{ \lambda_I(\gamma_I \circ (\phi_I \circ \omega_I)), \lambda_I(\phi_I) \} \\
 &= \min \{ \lambda_I(\gamma_I \circ (\phi_I \circ \omega_I)), \lambda_I(\phi_I) \} \\
 f(\lambda)_F(x \cdot z) &= \lambda_F(\gamma_F \circ \omega_F) \\
 &\leq \max \{ \lambda_F(\gamma_F \circ (\phi_F \circ \omega_F)), \lambda_F(\phi_F) \} \\
 &= \max \{ \lambda_F(\gamma_F \circ (\phi_F \circ \omega_F)), \lambda_F(\phi_F) \} \\
 &= \max \{ \lambda_F(\gamma_F \circ (\phi_F \circ \omega_F)), \lambda_F(\phi_F) \}.
\end{align*}
\]

Hence, $f(\mathcal{A})$ is a neutrosophic cubic UP-ideal of Y.

(5) Assume that $\mathcal{A} = (A_{T,I,F}, \gamma_{T,I,F})$ is an f-invariant neutrosophic cubic strong UP-ideal of X with NCS-property. Then \mathcal{A} is a neutrosophic cubic UP-ideal of X. By the proof of [4], we have $f(\mathcal{A})$ satisfies the assertions (2.55) and (2.56). Let $x, y, z \in Y$. By Lemma 3.10 there exist elements $\alpha_{T,I,F}, \gamma_{T,I,F} \in f^{-1}(x)$, $\beta_{T,I,F}, \phi_{T,I,F} \in f^{-1}(y)$ and $\psi_{T,I,F}, \omega_{T,I,F} \in f^{-1}(z)$ such that
\[
\begin{align*}
 f(A)_T(x) &= A_T(\alpha_T), f(A)_I(x) = A_I(\alpha_I), f(A)_F(x) = A_F(\alpha_F), \\
 f(\lambda)_T(x) &= \lambda_T(\gamma_T), f(\lambda)_I(x) = \lambda_I(\gamma_I), f(\lambda)_F(x) = \lambda_F(\gamma_F), \\
 f(A)_T(y) &= A_T(\beta_T), f(A)_I(y) = A_I(\beta_I), f(A)_F(y) = A_F(\beta_F), \\
 f(\lambda)_T(y) &= \lambda_T(\phi_T), f(\lambda)_I(y) = \lambda_I(\phi_I), f(\lambda)_F(y) = \lambda_F(\phi_F), \\
 f(A)_T((z \cdot x) \cdot (z \cdot x)) &= A_T((\psi_T \circ \phi_T) \circ (\psi_T \circ \alpha_T)), \\
 f(A)_I((z \cdot x) \cdot (z \cdot x)) &= A_I((\psi_I \circ \phi_I) \circ (\psi_I \circ \alpha_I)), \\
 f(A)_F((z \cdot x) \cdot (z \cdot x)) &= A_F((\psi_F \circ \phi_F) \circ (\psi_F \circ \alpha_F)), \\
 f(\lambda)_T((z \cdot x) \cdot (z \cdot x)) &= \lambda_T((\omega_T \circ \phi_T) \circ (\omega_T \circ \gamma_T)), \\
 f(\lambda)_I((z \cdot x) \cdot (z \cdot x)) &= \lambda_I((\omega_I \circ \phi_I) \circ (\omega_I \circ \gamma_I)), \\
 f(\lambda)_F((z \cdot x) \cdot (z \cdot x)) &= \lambda_F((\omega_F \circ \phi_F) \circ (\omega_F \circ \gamma_F)).
\end{align*}
\]
Then

\[
f(A)_T(x) = A_T(\alpha_T) \geq \min \{ A_T((\psi_T \circ \beta_T) \circ (\psi_T \circ \alpha_T)), A_T(\beta_T) \} \quad (2.63)
\]

\[
f(A)_I(x) = A_I(\alpha_I) \leq \max \{ A_I((\psi_I \circ \beta_I) \circ (\psi_I \circ \alpha_I)), A_I(\beta_I) \} \quad (2.63)
\]

\[
f(A)_F(x) = A_F(\alpha_F) \geq \min \{ A_F((\psi_F \circ \beta_F) \circ (\psi_F \circ \alpha_F)), A_F(\beta_F) \} \quad (2.63)
\]

\[
f(\lambda)_T(x) = \lambda_T(\gamma_T) \leq \max \{ \lambda_T((\omega_T \circ \phi_T) \circ (\omega_T \circ \gamma_T)), \lambda_T(\phi_T) \} \quad (2.64)
\]

\[
f(\lambda)_I(x) = \lambda_I(\gamma_I) \geq \min \{ \lambda_I((\omega_I \circ \phi_I) \circ (\omega_I \circ \gamma_I)), \lambda_I(\phi_I) \} \quad (2.64)
\]

\[
f(\lambda)_F(x) = \lambda_F(\gamma_F) \leq \max \{ \lambda_F((\omega_F \circ \phi_F) \circ (\omega_F \circ \gamma_F)), \lambda_F(\phi_F) \} \quad (2.64)
\]

Hence, \(f(\mathcal{A}) \) is a neutrosophic cubic strong UP-ideal of \(Y \). \(\square \)

4 Conclusions and future work

In this paper, we have studied the image and inverse image of a neutrosophic cubic UP-subalgebra (resp., neutrosophic cubic near UP-filter, neutrosophic cubic UP-filter, neutrosophic cubic UP-ideal, neutrosophic cubic strong UP-ideal) of a UP-algebra under some UP-homomorphisms. The results of the study, in the case of inverse image, we noticed that only a neutrosophic cubic near UP-filter required order preserving condition. In the case of image, we noticed that all concepts of NCSs required \(f \)-invariant and NCS-property assertions and UP-epimorphism.

In our future study, we will apply this concept/results to other types of NCSs in a UP-algebra. Also, we will study the P-intersection, P-union, R-intersection, R-union of neutrosophic cubic UP-subalgebras, neutrosophic cubic near UP-filters, neutrosophic cubic UP-filters, neutrosophic cubic UP-ideals, and neutrosophic cubic strong UP-ideals of a UP-algebra.

Acknowledgments: This work was supported by the Unit of Excellence, University of Phayao, Thailand.

Conflicts of Interest: The authors declare no conflict of interest.

References

Doi:10.5281/zenodo.3746022

