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Abstract – Airborne radar tracking in moving ground 

vehicle scenarios is impacted by sensor, target, and 

environmental dynamics. Moving targets can be assessed 

with 1-D High Range Resolution (HRR) Radar profiles 

with sufficient signal-to-noise (SNR) present which 

contain enough feature information to discern one target 

from another to help maintain track or to identify the 

vehicle.  Typical radar clutter suppression algorithms 

developed for processing moving ground target data not 

only remove the surrounding clutter but also a portion of 

the target signature. Enhanced clutter suppression can be 

achieved using a multi-channel signal subspace (MSS) 

algorithm which preserves target features. In this paper, 

we (1) exploit extra information from enhanced clutter 

suppression for automatic target recognition (ATR), (2) 

present a gain comparison using displaced phase center 

antenna (DPCA) and MSS clutter suppressed HRR data; 

and (3) develop a confusion-matrix identity result for 

simultaneous tracking and identification (STID). The 

results show that more channels for MSS increase ID over 

DCPA, result in a slightly noisier clutter suppressed 

image, and preserve more target features after clutter 

cancellation 

Keywords:  radar, clutter suppression, clutter cancelation, 

space-time adaptive processing (STAP), Displaced Phase 

Center Antenna (DPCA), multi-channel signal subspace 

(MSS), automatic target recognition (ATR), High Range 

Resolution (HRR), moving target identification. 

1 Introduction 

    Many surveillance systems incorporate High Range 

Resolution (HRR) radar and synthetic aperture radar 

(SAR) modes to be able to capture moving and stationary 

targets. Feature-, signature-, and categorical-aided tracking 

and automatic target recognition (ATR) applications 

benefit from HRR radar processing.  Successful 

simultaneous tracking and identification (STID) [1, 2] 

applications exploit feature information to determine the 

target type and dynamics. 

  To maximize a search area, airborne systems operate at 

standoff ranges to detect targets and initiate tracks. [3, 4]  

Tracking systems then transition into a track maintenance 

mode after target acquisition; however, closely spaced 

targets such as at road intersections require feature analysis 

to identify the targets.  HRR radar affords dynamic 

processing analysis for vehicle tracking and signal features 

(range, angle, aspect, and peak amplitudes) for target 

detection and identification. 

Pattern recognition algorithms applied to ATR problems 

are typically trained on a group of desired objects in a 

library to gain a statistical representation of each objects’ 

features.  One dimensional (1-D) HRR classifiers exploit 

the location and peak amplitude information contained in 

the HRR signatures [5, 6].  The algorithm then aligns input 

signatures to the library templates or models [7] and 

determines the best correlation value for the aligned 

features.  Algorithms often apply a threshold to the best 

score to reject questionable objects before making 

identification or class label decisions. 

A number of papers have been published that evaluate  

1-D HRR ATR solutions [8, 9, 10, 11, 12].  Classifiers 

have been developed for correlation [13], Bayes and 

Dempster Shafer information fusion approaches [14], 

entropy and Information theory analysis [15], and Neuro-

Fuzzy methods [16].  The classifier results have been used 

for tracking [17] and multi-look HRR identification [18].  

Other approaches include eigen-value template matching 

[19], Eigen-extended maximum average correlation 

(EEMACH) filters [20] and likelihood methods accounting 

for Rician, amplitude, specular, and diffuse, Cisoid 

scattering [21].   

Although the ATR process seems straight forward, 

misidentification or rejection of an input object as a viable 

target occurs because of conditions such as the target being 

obscured from the sensor, targets adjacent to another 

object, and target transitions from moving to stationary and 

back to a moving state in a traffic scenario, that 

unexpectedly alters the features used in the identification 

process.  The importance and impact of extended operating 

conditions (EOCs) is critical to ATR performance [22].  

The quality of the information used in joint tracking, 

classification, and identification (ID) [23, 24, 25] can be 

determined through Bayes, Dempster-Shafer, or DSmT 

analysis methods [26]. 

  HRR ATR algorithm performance is impacted by the 

quality of the features available in the 1-D HRR profiles.    

Missing target features in training data will alter the library 

templates formed resulting in poorer identification 

performance.  The presence of EOCs will degrade 1-D test 

signatures and the corresponding classifier performance.  

Since the signature data used by ATR algorithms is not 

always pristine, information fusion methods have been 
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developed such as multi-look ATR to enhance ID 

performance from HRR radar data.  Improved HRR 

processing prior to 1-D HRR profile formation should 

improve the target features available or reveal more target 

features, resulting in higher quality 1-D signatures, and 

improved ATR performance. 

This paper reviews HRR data processing in Section 2; 

discussing the implementation of a standard two-channel 

DPCA clutter cancellation method, presenting an improved 

multi-channel signal subspace (MSS) clutter suppression 

algorithm, and comparing the resulting clutter canceled 

target chips.  In Section 3 a single-look decision level  

identification method is presented along with performance 

metrics.  Section 4 discusses conclusions and future work.   

2 HRR Data Processing 

Focused 1-D HRR profiles of moving targets may be 

generated with enhanced target-to-clutter ratios.  One such 

procedure first chips the moving target from the motion 

compensated video phase history data and aligns the target 

chips for clutter suppression and focusing.  This results in 

a two dimensional range-Doppler chip that is masked using 

binary morphology to determine the mean clutter level, 

target length, and target edges in the chip. The range-

Doppler chip is then cropped about the Doppler extent of 

the target mask before computing the mean of all sub-

aperture images. The maximum scatters from each range 

bin are kept to form the 1-D HRR profile. 

Stationary targets from SAR imagery may also be 

formed into 1-D HRR profiles using a similar process.  For 

targets in SAR imagery, constant-false alarm rate (CFAR) 

detection is performed first, followed by target mask 

formation using binary morphology. The formation 

process crops around the target mask and computes the 

mean of all sub-aperture images, keeping the maximum 

scatters from each range bin to form the stationary HRR 

profile.  Shown in Figure 1 is the general profile formation 

process flow.   
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Figure 1.  1-D HRR Profile formation Process. 

Recent research [6] has shown that HRR profiles formed 

from SAR imagery of stationary targets have comparable 

features to profiles of the same moving target at 

corresponding collection geometries as shown in Figure 2. 
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Figure 2. Comparison of moving/stationary 1-D HRR profiles. 

2.1 General Clutter Suppression 

Clutter suppression of airborne radar data for moving 

ground targets is a key step in the target detection and 

identification processing chain.  The goal is to enhance the 

target signature while reducing the energy of the 

competing ground clutter surrounding the moving target.  

Typically, clutter suppression techniques have the 

unintentional side effect of reducing some of the target 

energy while suppressing the ground clutter.  Although the 

target-to-clutter ratio may improve greatly, a reduction in 

the target features is inevitable which impacts target 

tracking and identification performance further down the 

processing chain. The processing of airborne multi-channel 

radar data to cancel the clutter near moving ground targets 

can be accomplished through a variety of techniques such 

as Doppler filtering, by space-time adaptive processing 

(STAP), or displaced phase center antenna (DPCA) 

processing. [27] 

Doppler filtering is a technique used with adaptive 

radars which sense the Doppler distribution of clutter and 

adjust the radar parameters in an attempt to maximize the 

signal-to-clutter ratio.  Clutter suppression is accomplished 

by obtaining a separate coherent output from each channel 

of an antenna array and applying a unique complex weight 

to each channel.  Then the weighted channels are added 

coherently to cancel the clutter energy. [27, 28, 29] 

A two dimensional filtering technique known as STAP 

processing [29, 30, 31, 32] uses the Doppler frequency, 

sensor platform velocity, and direction of arrival 

information to achieve clutter cancellation. Adaptive filter 

weights are determined for the temporal and spatial 

domains after sampling a coherent train of pulses.  These 

weights then form a two dimensional space-time clutter 

filter that can be applied to the data to eliminate ground 

clutter.  STAP processing is robust to errors and can 

simultaneously suppress clutter returns and jamming 

signals.[33, 34, 35] 

In DPCA processing the radar motion is compensated 

for to reduce the Doppler spread of ground clutter induced 

by the sensor platform. [36, 37, 38]  A multi-channel 

airborne radar configuration often has a pair of antennas 

positioned so that as the platform travels in time, the 
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position of the trailing antenna will occupy approximately 

the same position of the lead antenna at some delta in time.  

Essentially, for a given time interval, one antenna position 

is fixed. Clutter suppression is accomplished by 

subtracting the received signal from the trailing antenna at 

the delta time from the received signal of the lead antenna 

at the initial time of the processing interval. [39, 40, 41]   

Both STAP and DPCA are capable of cancelling main 

beam and side lobe clutter for multi-channel airborne 

radars with two or more antenna phase centers. [33] In this 

paper, a DPCA two-channel algorithm implementation was 

chosen for comparison to the multi-channel signal 

subspace algorithm. 

A three channel antenna configuration is shown in 

Figure 3 where antenna number 1 is the lead channel for 

the collected data used in this paper.  The concept of 

DPCA processing is illustrated in Figure 3 for a three 

channel antenna array configuration.  The position of the 

antennas are shown at the initial time, ti, and with platform 

motion the antenna positions at some time interval, ti + ∆∆∆∆t 

where ∆∆∆∆t is the change in time, are shown.  Through 

DPCA processing two antenna positions will appear to be 

at the same physical location for the array depicted in 

Figure 3.  Therefore, clutter cancellation is possible where 

channel 2 at  ti and channel 3 at  ti + ∆∆∆∆t line up and where 

channel 1 at ti and channel 2 at  ti + ∆∆∆∆t are aligned.   

 

Figure 3.  Three-Channel Antenna Configuration. 

  The radar data processed for this paper was collected at 

X-Band with the aircraft traveling in a linear flight path 

north of the scene center collecting in spotlight mode at a 

depression angle of  8.97 degrees and at a weighted              
. 

 

Figure 4.  SAR Image of Collection Site. 

resolution of approximately 12 inches.  As illustrated in 

the SAR image of Figure 4, the center of the collection 

site was a rectangular grassy area with roads along the 

western, eastern, and southern boarders of the target area.  

Wooded areas surround the grassy rectangle along the 

northern, eastern, and southern portions of the scene.  In 

the scenario, civilian vehicles are traveling along the roads 

in all directions.  The image chips used in the processing 

discussion are of the test vehicle moving south along the 

western road.  

  The two channel DPCA processing approach is explained 

in Subsection 2.2. Subsection 2.3 explains the 

multichannel signal subspace algorithm and the clutter 

suppression results of the target chip presented in 

Subsection 2.4. 

2.2 DPCA Technique 

In Subsection 2.1 the idea behind DPCA processing was 

introduced.  The DPCA algorithm used in this work was 

developed for measured data from a radar array of two 

antennas oriented along the sensor platform path of travel.  

In general, the data from the trailing antenna is aligned to 

the lead channel, where the phases are adjusted so that the 

aligned channels appear to be at the same location in 

space, and finally the channels are subtracted to suppress 

the stationary clutter.  Figure 5 illustrates the processing 

steps and data flow of the DPCA technique.   

 

 

Figure 5. Two-Channel DPCA Processing Flow. 

  The DCPA algorithm is provided motion compensated 

phase history data for both the lead (Channel 1) and 

trailing (Channel 2) channels.  Channel 2, the trailing 

channel data, contains extra pulses to address minor offset 

delays between the channels.  Alignment of the range and 

pulse offset is conducted to roughly get channel 2 to 

approximate channel 1.  Then the antenna patterns are 

estimated for each channel and an antenna pattern 

correction is applied to channel 2 so that the channels are 

similar.  A phase correction is determined in the Doppler 

compressed domain to account for differences in the 

frequency direction not already corrected by coarse 

channel alignment and to address small phase variations 

between the channels caused by any minor hardware 

differences in the collection system.  The phase correction 

factor is applied to the data of channel 2.  Further phase 

adjustments are determined in the range-Doppler domain 

and applied to channel 2 to account for any shift in the 

fast-time samples.  A series of additional phase corrections 

are applied to channel 2 by the DPCA algorithm to 
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improve the fine alignment of channel 2 to channel 1 in an 

effort to maximize the target-to-clutter ratio.  These 

additional corrections require that any target like objects in 

the data be avoided so that the target energy is not 

included in phase correction estimates as was done in the 

determination of the previous correction factors.  This 

results in a correction for time varying phase differences 

between both channels being applied to channel 2.  Next, a 

fast-time magnitude and phase correction is applied in the 

Doppler compressed domain to the data of channel 2.  

Then a smoothing technique is applied to the data resulting 

in a trailing channel that has been equalized to the lead 

channel.  This completes the alignment process of channel 

2 to channel 1.  Now that channel 2 appears to be the same 

as channel 1 the subtraction of the channels result in the 

cancellation of stationary clutter in the scene.  The baseline 

clutter suppressed data is represented by Eq. 1 below.   

 f d (k, n)  =   f 1 (k, n)  −  f 2 (k, n) (1) 

where f 1 is channel 1, f 2 is the equalized phase history 

data of  channel 2 to that of channel 1, k is the fast-time 

index, n is the pulse number, and f d is the clutter cancelled 

result. 

The DPCA adaptive clutter cancellation method 

presented will be applied to the data used in this work to 

ultimately produce the DPCA 1-D HRR profiles.  In an 

effort to improve the 1-D HRR profiles and preserve more 

target features, a multi-channel signal subspace technique 

is developed in Subsection 2.3.   

2.3 Multi-channel Signal Subspace Technique 

The exploitation of the additional information of a third 

channel in the phased array radar yields more precise 

clutter estimation and results in better suppression of 

unwanted clutter returns.  By using the information of all 

three channels, more of the target features are preserved in 

the clutter canceled image. [42] Increasing available target 

features should translate into better target identification 

performance further down the data processing chain.  This 

section will briefly explain the background, the theory 

behind two channel clutter suppression, and extend this 

technique to three channel clutter cancellation.   

2.3.1 Signal Subspace Background 

The multichannel signal subspace (MSS) technique is 

based on 2-D adaptive filtering principles.  The process 

has been applied to a wide variety of data processing 

problems in the literature [43] such as SAR change 

detection, [44] image fusion of radar surveillance data, 

[45,46] medical imaging, and video processing. [47, 48]  

Most of the work with signal subspace processing has 

focused on data pairs either separated spatially (e.g. two 

channel phased array radar data) or separated temporally 

(e.g. such as electro-optical images collected at different 

times) as discussed in the literature by Soumekh and 

others. [43, 46, 49] 

The development of a true multi-channel, greater than 2, 

signal subspace algorithm for use with a multi-channel 

radar system consisting of a planar antenna array of 22 

receiver channels seemed likely.[50] However, the 

received power at each channel was too weak to form an 

image of sufficient quality for further processing.  This 

issue was resolved by splitting the data from the 22 

channels into a pair of 11 receiver channel groups that 

were summed to improve the signal to noise level.[46]  

Once the planar antenna array is represented by two 

receive channels, the signal subspace processing technique 

is applied to clutter cancel the data.  In the next section, 

the process for two channel clutter suppression will be 

explained. 

2.3.2 Dual Channel Signal Subspace Technique 

The dual channel radar system discussed in this section 

will have a pair of antennas in a phased array similar to 

what is illustrated in Figure 3, but without the third channel 

being present.  Channel 1 will be the lead channel and 

channel 2 will be the trailing channel.  In keeping with the 

convention found in the literature, let f 1 (x, y) represent the 

range-Doppler image formed from the motion-

compensated data from channel 1 over a coherent 

processing interval (CPI) of 128 ms.  Then f 2 (x, y) will be 

the range-Doppler image formed from the motion-

compensated data from channel 2 after a slow-time 

alignment with channel 1.  Since the channel 2 range-

Doppler image is a linear combination of channel 1 and 

any shifted versions, f 2 (x, y), can then be modeled by Eq. 

2.[43, 47, 48] 

 

 f 2 (x, y)  =  f 1 (x, y) ⊗ h(x, y)  +  f e (x, y) (2) 

where f e (x, y) represents the target motion in the range-

Doppler image and h(x, y) is the impulse response 

representing the relative shift in each range-Doppler image 

due to differences in the two receive channels of the sensor 

system. 

Gain and phase ambiguities caused by known and 

unknown factors, such as differences between the antenna 

patterns or antenna vibration, in the two receive channels 

may dominate the moving target signature in the imagery.  

These differences are treated as an error signal in the 

collected data.  The DPCA approach reduces the error 

signal to a set of pre-determined functions that are 

estimated and accounted for deterministically.  The MSS 

technique applied to a dual antenna sensor system views 

the error estimation process as completely stochastic. 

Signal subspace theory estimates h(x, y) from f 1 (x, y) 

and f 2 (x, y) resulting in the error function, h
^
(x, y). [43, 45, 

47]  This is accomplished by minimizing the squared error 

between f 2 (x, y) and its estimated version given by  
 

 f
^
 2 (x, y)  =  h

^
(x, y) ⊗ f 1 (x, y)  (3) 
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where f
^
 2 (x, y) is determined by projecting f 2 (x, y) on to a 

set of orthogonal basis functions defined by f 1 (x, y).[43]  

The orthogonal basis functions can be computed using any 

one of accepted decomposition/orthogonalization 

techniques such as singular value decomposition, QR 

orthogonalization, and the Gram-Schmidt procedure to 

name a few.  QR orthogonalization was used in the MSS 

implementation that generated the results of this paper 

where in practice h
^
(x, y) ⊗ f 1 (x, y) is estimated instead of 

h
^
(x, y).  In general, the spatially-invariant difference over 

the entire image is represented by Eq. 4 below.[43, 48] 
 

 f
^
 d (x, y)  =  f 2 (x, y)  −  f

^
 2 (x, y)  (4) 

 

To suppress unwanted clutter in radar data, the error 

function is estimated on overlapping odd-sized blocks over 

the entire image to account for the spatially varying nature 

of the phase in the imagery.  The entire range-Doppler 

image is divided into rectangular blocks containing an odd 

number of pixels and processed to estimate the error 

function.  The blocks of image pixels were moved so that 

some portion of the rectangular patch overlapped a 

previously processed block until the entire subdivided 

image had been processed.  This results in a clutter 

cancelled image given by Eq. 5 [45] for a two channel 

phased array radar system. 

( ) ( ) ( )[ ] ( )∑
=

−=
L

l

iiliiiiiid yxIyxfyxfyxf
1

22 ,,ˆ,,ˆ  (5) 

L is the number of overlapping blocks processed, i is the 

odd number of pixels per block, and Il is an identity matrix.  

The MSS implementation in this paper used square patches 

in the processing represented by (x i, y i), but in general a 

rectangular block represented by (x i, y i) could be used for 

an i by j dimensioned block.  The next section discusses 

the extension of this technique to data collected with a 

three channel phased array radar. 

2.3.3 Three Channel Signal Subspace Technique 

The two channel signal subspace method explained in 

Subsection 2.3.2 is extended for use with all three channels 

of the phased array radar depicted in Figure 3.  Once 

again, the lead channel will be channel 1 and the trailing 

channels will be 2 and 3.  The Multi-channel Signal 

Subspace (MSS) extension to three channels will first 

project the range-Doppler image formed from the aligned 

motion compensated data of channel 2, f 2 (x, y), on to the 

basis functions defined by the range-Doppler image 

formed from the motion compensated data of channel 1,     

f 1 (x, y), and determine the spatially varying difference, 

f
^
 d2 (x i, y i) given by Eq. 5.  The resulting range-Doppler 

difference image of channels 1 and 2 is treated as a new 

independent channel, f 4 (x, y), as shown in equation 6 

below.   

 

 f 4 (x, y) = f
^
 d2 (x, y)  =  f 2 (x, y)  −  f

^
 2 (x, y)  (6) 

 

Then the range-Doppler image formed by the aligned 

motion compensated data of channel 3, f 3 (x, y), is 

projected on to the basis functions defined by the range-

Doppler image formed from the motion compensated data 

of channel 2, f 2 (x, y).  The spatially varying difference, 

f
^
 d3 (x i, y i) from (5) is then determined.  The resulting 

range-Doppler difference image of channels 2 and 3 in 

equation 7 is treated as a second new independent channel, 

f 5 (x, y), at a slightly different look angle. 

 

f 5 (x, y) = f
^
 d3 (x, y)  =  f 3 (x, y)  −  f

^
 3 (x, y)  (7) 

 

Now the second new independent channel, f 5 (x, y), is 

projected on to the orthogonal basis functions of  the first 

new independent channel, f 4 (x, y), represented by Eq. 8.   

 

f
^
 5 (x, y)  =  f 4 (x, y)  ⊗ h

^
 45 (x, y)  (8) 

 

Eq. 9 represents the three channel spatially-invariant 

difference image.  The block processing represented by 

Eq. 5 was applied to account for the spatially varying 

nature of the range-Doppler images.  

 

f
^
 d (x, y)  =  f 5 (x, y)  −  f

^
 5 (x, y)  (9) 

 

Since each of the new independent channels is 

essentially a clutter canceled range-Doppler image, this 

technique represents the fusion of two dual channel clutter 

suppressed range-Doppler images.  The resulting clutter 

suppressed range-Doppler image should contain more 

target features  from the slightly different viewing antenna 

geometries  in the array.  The MSS method improves target 

features without enhancing any residual clutter in the new 

input images.  Examples of this processing are presented in 

the section that follows. 

2.4 Clutter Suppression Results 

The clutter suppressed range-Doppler chips presented in 

this section were generated from the same part of the 

collected data discussed in Subsection 2.1.  The moving 

target, a sedan, is slowing down while heading south, away 

from the radars’ location.  All of the range-Doppler chips 

presented in this section have a dynamic range of 50 dB 

with Doppler increasing from the left of the image to right 

and range increasing from the bottom of the image to the 

top.  The DPCA algorithm result is presented first, then the 

2 channel MSS processed chips, and finally the 3 channel 

clutter suppressed result.  The signal-to-noise level for all 

of the clutter suppressed range-Doppler chips is computed 

for algorithm performance comparison. 

The implementation of the DPCA algorithm required the 

first channel to be the lead channel and limited the amount 
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of shifting that may occur to align the two channels.  

Therefore, only channels 1 and 2 could be processed to 

yield a clutter cancelled range-Doppler image.  The result 

is shown in Figure 6.  As stated earlier, the dynamic range 

is constant for all the results present in this section.  

However, adjusting the dynamic range of the DPCA range-

Doppler chip would help better define the target. 

 

Figure 6. DPCA clutter suppression technique. 

Although the DPCA method could only produce clutter 

cancelled chips from two of the three channels available, 

the multi-channel signal subspace (MSS) technique 

utilized all three channels in the processing. Figure 7 is 

the clutter suppressed range-Doppler image produced from 

channels 1 and 2.   In comparing Figure 7 to Figure 6, the 

MSS approach does a better job of clutter cancellation 

than the baseline technique using the same data channels. 

 
 

Figure 7.  MSS Two channel clutter suppression 

technique: channels 1 & 2. 

  In Figure 8 the clutter cancelled result of the MSS 

algorithm using channels 2 and 3 is presented.  The 

relative reduction of clutter is similar to that of Figure 7.  

Close examination of Figures 7 and 8 reveal scattering 

from different locations of the target as well as more 

features in the range-Doppler imagery.  This is caused in 

part by minor variations in the collection geometry due to 

the spacing of the antennas in the phased array radar.  

 

 

Figure 8. MSS Two channel clutter suppression technique: 

channels 2 & 3. 

Found in Figure 9 is the clutter suppressed range-

Doppler chip produced by the enhanced MSS algorithm 

using all three channels of motion compensated data.  A 

minor reduction in the level of clutter cancellation can be 

seen when comparing the results of Figure 9 to that of 

Figures 7 and 8.  However, careful examination of the 

range-Doppler image in Figure 9 shows more target 

features are present.  The three channel clutter suppressed 

image has a signal to noise level comparable to that of the 

MSS 2 channel clutter cancelled results and is an 

improvement over the baseline technique. 

 

 

Figure 9. MSS Three channel clutter suppression 

technique. 

Finally, a signal-to-clutter ratio was determine for the 

chips presented in this section to help gage the relative 

performance levels of the various techniques.  This ratio 

was determined by finding the largest pixel value in the 

image which is the brightest point on the target and 

dividing it by the average clutter in a one pixel wide frame 

around the entire range-Doppler chip.  A comparison of 

the signal to clutter levels for the range-Doppler images 

formed from the three techniques discussed in this paper 

can be found in Table 1. 
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DPCA processing 33.20 dB 

MSS: 2 channel signal subspace: ch. 1 & 2 42.81 dB 

MSS: 2 channel signal subspace: ch. 2 & 3 42.99 dB 

MSS: 3 channel signal subspace 42.57 dB 

Table 1. DPCA vs. MSS Target to Clutter Ratio 

Comparison. 

The MSS performance scales based on the comparable 

target to clutter ratios for both the two channel and three 

channel processing, with the three channel MSS method 

resulting in a slightly noisier clutter suppressed image, but 

with the added benefit of more target features being 

preserved after clutter cancellation.  The results of this 

section indicate that the MSS technique for traditional two 

channel clutter cancellation and for multi-channel clutter 

suppression performs much better than the DPCA method. 

 

3 Identification Performance 

Single-look confusion matrices were produced for 1-D 

HRR profiles formed from DPCA and MSS clutter 

canceled target chips for a scenario where ten ground 

vehicles were traveling along the roads shown in Figure 4.  

Obscuration from nearby vegetation along the streets 

impacted identification performance depending on 

collection geometry.  The results of these experiments are 

presented in the subsections that follow. 

3.1 DPCA Single-Look Performance 

Five vehicles were selected for the library and the 

remaining five vehicles were used as confusers.  The 

DPCA single-look identification results are shown in 

Figure 10 with a mean target recognition rate of 65%. The 

distribution of the confuser vehicles is spread across the 

not-in-library row of confusion matrix indicating no strong 

bias toward a library object.  .  

 

Figure 10. DPCA Single-Look Performance.  

3.2 MSS Single-look Performance 

The 3 channel MSS single-look 1-D HRR ATR 

performance is presented in Figure 11 with an improved 

mean recognition rate of 73.6% relative to the DPCA 

results. Once again the distribution of the confuser vehicles 

is spread across the not-in-library row for the MSS 

confusion matrix indicating no strong bias toward a library 

object. The off diagonal target confusion is somewhat 

reduced relative to the DPCA processed data in Figure 10. 

 

Figure 11. 3 Channel MSS Single-Look Performance. 

4 Discussion & Conclusions 

The capability to collect and process three channels of 

radar data from a system configured with three phased 

array antennas oriented in the along-track dimension has 

been demonstrated. The application of traditionally 

accepted two channel clutter suppression techniques has 

been extended to true multi-channel data. The 

Multichannel Signal Subspace (MSS) technique for two 

channels of data was demonstrated to be a superior clutter 

suppression technique to that of the DPCA method.  The 

MSS methodology was extended to exploit the additional 

information provided by the third channel of the phased 

array interrogating the scene.   

The MSS technique applied to three channels of data 

suppressed the clutter very well while preserving the 

features of the moving target.  The signal-to-noise level of 

the three channel MSS technique is approximately that of 

the two channel MSS results. The availability of more 

target features in the range-Doppler image while 

maintaining a good clutter suppression level makes the 

MSS approach beneficial to ATR applications. A 

significant ATR performance improvement is achieved 

with clutter suppressed data using the MSS algorithm 

relative to ATR performance with DPCA suppressed data. 

A major factor not addressed in this paper, however; is 

that the processing time for the MSS algorithm is quite 

significant, especially when compared to the DPCA 

method.  The processing times will need to be drastically 

reduced for the MSS algorithm to be practical in a data 

processing or operation environment.  A potential solution 

is the parallelization of the time consuming block 

processing steps.  This remains an area of future study. 

Next steps include multi-look decision-level and feature-

level fusion using the MSS technique for simultaneous 

tracking and identification. 
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