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Abstract - Electronic Support Measures consist of passive 

receivers which can identify emitters which, in turn, can 

be related to platforms that belong to 3 classes: Friend, 

Neutral, or Hostile. Decision makers prefer results 

presented in STANAG 1241 allegiance form, which adds 

2 new classes: Assumed Friend, and Suspect. Dezert-

Smarandache (DSm) theory is particularly suited to this 

problem, since it allows for intersections between the 

original 3 classes. However, as we know, the DSm hybrid 

combination rule is highly complex to execute and 

requires high amounts of resources. We have applied and 

studied a Matlab implementation of Tessem's k-l-x, 

Lowrance’s Summarization and Simard’s approximation 

techniques in the DSm theory for the fusion of ESM 

reports. Results are presented showing that we can 

improve on the time of execution while maintaining or 

getting better rates of good decisions in some cases.   

Keywords: Dezert-Smarandache Theory, ESM, 
approximations, Belief functions. 

1 Introduction 

In terms of classification, the Dezert-Smarandache theory 
(DSmT) can become quite useful, especially for the direct 
resolution of classification for cases of hierarchical classes 
structures. For instance, we have the case of the allegiance 
classification structure suggested by STANAG 1241 where 
a structure of five classes (3 main classes and 2 derived 
classes) is required. The DSmT is able to output to any of 
those classes without modifications to its fusion process. 

However, this example is still a simple one and both DSmT 
theories, with or without approximation, can solve it quite 
easily, which wouldn’t be the case for classification 
problems of higher dimension. By dimension we mean the 
cardinal of the frame of discernment. In fact, the DSmT can 
become highly complex and computationally prohibitive as 
soon as we reach a dimension of 6. That is a classification 
of a problem having six main classes and up to, in the worst 
case scenario, a total of 7,828,353 possible derived classes. 

Various avenues of research have been tried to avoid or 
address this complexity problem [10, 13, 18]. However, 
even just counting the number of possible classes is still an 

active problem in mathematics known as the Dedekind 
problem, or the problem of counting antichains [9, 18].   

In this paper, we study the use of an approximation 
technique to restrain the staggering amount of data that the 
DSmT can generate in its fusion process. More specifically 
we have chosen Tessem’s klx approximation technique [4], 
Lowrance’s Summarization [19], Simard’s and al technique 
[3, 7, 8] and used them into the DSmT with the DSm hybrid 
combination rule (DSmH). We have also experimented with 
the fusion process while using the approximation technique 
and compared it to the case without an approximation 
technique to analyze how it affects the quality of the 
decision process. More specifically, we will compare the 
good decision rate in the two cases, with and without the 
use of approximation.  

1.1 Realistic Case Study 

Electronic Support Measures (ESM) consist of passive 
receivers which can identify emitters coming from a small 
bearing angle, which, in turn, can be related to platforms 
that belong to 3 classes: either Friend (F), Neutral (N), or 
Hostile (H). Decision makers prefer results presented in 
STANAG 1241 allegiance form, which adds 2 classes: 
Assumed Friend (AF), and Suspect (S).  

The DSm theory is particularly suited to this problem, since 
it allows for intersections between the original 3 classes of 
allegiance. In this way an intersection of Friend and Neutral 
can lead to an Assumed Friend, and an intersection of 
Hostile and Neutral can lead to a Suspect. This structure of 
allegiances will be referred to as STANAG allegiance [11].  

Figure 1 displays a visual representation of a possible 
interpretation of STANAG allegiance in DSmT. We can see 
that even though the input consists only of three classes, we 
are able to give an output into five classes. For example, 
here we have the class ‘Suspect’, which could be the result 
obtained after fusing ‘Hostile’ with ‘Neutral’. We also have 
the class ‘Assumed Friend’, which could be the result 
obtained after fusing ‘Friend’ with ‘Neutral’. Note that this 
case example has the intersection F∩H = Ø, the null set, 
which is a constraint in DSm, leading to the use of its 
hybrid rule. This case example would be relevant for peace-
keeping missions where Hostile and Friendly forces aren’t 
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likely to be close one to another. We will be working on 
that case, with F∩H = Ø. 

Figure 1. Venn diagram for the STANAG allegiances. 

2 Dezert-Smarandache Theory 

The DSm theory uses the language of masses assigned to 
each declaration from a sensor (in our case, the ESM 
sensor).  In DSm theory, all unions and intersections are 
allowed for a declaration.  For our case of cardinality 3, Θ = 
{θ1, θ 2, θ 3}, with | Θ |  = 3, DΘ is still of manageable size,
namely has a cardinality of 19 [10]. In DSm theory, a 
constraint like the one that was imposed by Figure 1, 
namely that F∩H ≡ θ 1∩ θ 3 = Ø is treated by the DSm 
hybrid combination rule (DSmH) below: 

 m(A) = φ(A) [ S1(A) + S2(A) + S3(A) ]  (1) 

The reader is referred to a series of books [10, 13, 17] on 
DSm theory for lengthy descriptions of the meaning of this 

formula (note that the function φ is not to be confused with 
the empty set). A three-step approach was proposed in [12], 
which is used here. The incoming sensor reports are either: 
Friend (F= θ 1), Neutral (N= θ 3) or Hostile (H= θ 3), Figure 
1 has the interpretation of the five classes:  

Friend = {θ 1 – θ1∩θ2}  (2) 

Hostile = {θ 3 – θ3∩θ2}  (3) 

Assumed Friend = {θ1∩θ2}  (4) 

Suspect = {θ2∩θ3}  (5) 

Neutral = {θ 2 – θ1∩θ2 – θ3∩θ2}  (6) 

As in [15], we call STANAG-probability the pignistic 
probability assigned to the five classes shown by equations 
(2) to (6). We use the general pignistic transform, as shown 
by [10] or equation (7), to obtain the probability values of 
the sets used in those equations.    

(7) 

Where CM(A), is the DSm cardinal of a set A. It accounts 
for the total number of partitions. Each of these partitions 
possesses a numeric weight equal to one. That weight, 
identical for each part makes them all equal. The DSm 
cardinal is used in the generalized pignistic transformation 
equation to redistribute the masse of a set A among all its 
partitions B such that B is included or equal to A. 

3 Approximation technique 

3.1 K-l-x approximation 

The k-l-x approximation technique developed by Tessem 
[4] is designed to approximate Basic Probability 
Assignment (BPA) or mass function in Dempster-Shafer 
Theory (DST). Since DSm theory works directly with 
BPAs, applying the k-l-x approximation technique to the 
DSmH is quite straightforward and can be done without any 
changes.  

This algorithm for approximation of BPAs involves three 
parameters: k the minimum number of focal elements to be 
kept, l the maximum number of focal elements to be kept 
and x the maximum threshold on the sum of the lost 
masses. It can be summarized as follows: 

1. Select the k focal elements with highest masses;

2. While the sum of their masses is less than 1-x,
and while their number is less than l, add the next 
focal element with highest mass. 

3.2 Simard’s and al. approximation 

This truncation scheme [3, 7, 8] has had many minor 
variations over time. Similarly to k-l-x approximation, it 
was conceived to approximate BPA or mass function in 
DST. And as in k-l-x, we were able to transfered it to the 
DSm framework. Variants exist but all focus on 
preferentially keeping fused propositions with the smallest 
lengths (lowest cardinality) after passing 2 thresholding 
steps.  The rule therefore involves 3 parameters: BPAmax, 
BPAmin and Nmax. It retains fused propositions according 
to the following rules: 

1. All fused propositions with BPA > BPAmax are kept
(thresholding step 1)

2. All fused propositions with BPA < BPAmin are
discarded (thresholding step 2)
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3. If the number of retained propositions in step 1 is
smaller than Nmax, retain by decreasing BPA,
propositions of length 1, then if the number of
retained propositions is smaller than Nmax,, retain
by decreasing BPA, propositions of length 2, and
so on for 3…

4. If the number of retained propositions is still
smaller than Nmax, retain propositions by
decreasing BPA regardless of length.

3.3 Lowrance’s approximation 

Similar to the k-l-x procedure, the summarization method 
[19] (inspired by the summarization operation described in 
Bauer’s research [5]) leaves the best-valued focal elements 
of the mass function under consideration unchanged. The 
numerical values of the remaining focal elements are 
accumulated and assigned to the set-theoretic union of the 

corresponding subsets of Θ. Here again, the technique was 
conceived to approximate BPA or mass function in DST, 
and we were able to transfer it to the DSm framework. 

3.4 Implementation of approximations 

The information coming from the sensor is a simple belief 
function giving a mass to an allegiance and the remaining 
mass to ignorance. The combination itself combines two 
belief functions, one is the information from the sensor at 
time t, the other contains past information within 
combination result from time t-1. The fusion process is 
realized dynamically. Since the information to combine 
from the sensor is a simple belief function the 
approximation is applied on the result of the combination. 

4 A typical simulation scenario 

The pre-requisites that a typical scenario must address are: 
(1) to be able to adequately represent the known ground 
truth, (2) to contain sufficient countermeasures (or miss-
associations) to be realistic and to test the robustness of the 
theories, (3) to only provide partial knowledge about the 
ESM sensor declaration, which therefore contains 
uncertainty, (4) to be able to show stability under 
countermeasures, yet (5) to be able to switch allegiance 
when the ground truth does so. 

The following scenario parameters have therefore been 
chosen accordingly: (1) ground truth is FRIEND for the 
first 50 iterations of the scenario and HOSTILE for the last 
50, (2) the number of correct associations is 80%, 
corresponding to countermeasures appearing 20% of the 
time, in a randomly selected sequence, (3) the ESM 
declaration has a mass (confidence value in Bayesian terms) 
of 0.8, with the rest of the mass being assigned to the 
ignorance (the full set of elements, namely Θ). 

This scenario will be the one addressed in the next section, 
while a Monte-Carlo study is described in the subsequent 

sections. Each Monte-Carlo run corresponds to a different 
realization using the above scenario parameters, but with a 
different random seed. The chosen scenario is depicted in 
Figure 2. 

Figure 2. Chosen scenario. 

Roughly 80% of the time the ESM declares the correct 
allegiance according to ground truth, and the remaining 
20% is roughly equally split between the other two 
allegiances. Note that these percentages of occurrences are 
from a statistical point of view only, so that in the long run 
a large amount of randomly generated scenarios would 
amount to these ratios. There is an allegiance switch at the 
50th time index, and the selected randomly selected seed in 
the above generated scenario generates a rather unusual 
sequence of 4 false Friend declarations starting at time 
index 82 (when actually Hostile is the ground truth). 

4.1 Results for the simulated scenario 

Before presenting the results, it should be noted that the 
original form of the DSmH tends to accumulates masses to 
intersections as is the case for any rule based on 
conjunction [14]. An ad hoc solution exists [3, 7, 8], and 
consists in renormalizing after each fusion step by giving a 
value to the complete ignorance which can never be below 
a certain factor (chosen here to be 0.04 as research in [14] 
shows that this value is appropriate for this case while being 
high enough to avoid the accumulation but still low enough 
not to interfere with the combination’s performances). That 
solution was originally developed to the well-known 
problem of DST combination, which tends to be overly 
optimistic, which in turn prevents it to react quickly to 
changes of allegiances. For more on the behavior of the 
DSmH on similar cases the reader is referred to [14, 15, 
16], as we are focused on exploring the effect of 
approximations on DSm here.  

Since the whole idea behind using DSm was to present the 
results to the decision maker in the STANAG allegiance 
format, the result of Figure 3 would be used. For the DSmH 
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[10], it was suggested to use the Generalized Pignistic 
Probability, which is based on the pignistic transformation 
[6, 10], in order to make a decision on a singleton belonging 
to the input ESM-allegiance.  

Figure 3. DSmH result for the chosen scenario. 

The decision maker would clearly be informed that miss-
associations have occurred, since Assumed Friend 
dominates for the first 50 time indices and Suspect for the 
latter 50. The Friend declarations starting at time index 82 
cause confusion, as it should. The change in allegiance at 
time index 50 is detected quickly.  What is even more 
important is that F and AF are clearly preferred for the first 
50 time indexes and S and H for the last 50, as they should. 

Figure 4. Approximated DSmH result for the same scenario 
with k-l-x = (5, 6, 0.2) 

We can gather from Figure 4 and Figure 5 that the DSmH 
and the approximated DSmH have very similar behaviors. 
In fact, one has to look at the figures very closely to 
perceive the differences. We can see that in the first half of 
the approximated version, the assumed friend allegiance is 
slightly favored to the friend allegiance. Near the end of the 

scenario the hostile allegiance is favored to the suspect 
allegiance. However, in both cases, even if the smallness of 
the change could possibly affect our decision, the 
STANAG-probability still seems to stay within the same 
type of allegiance in the sense that a friend and a target of 
assumed friend allegiance would both inspire a friendly 
response on our part. The same can be said for a target of 
suspect or hostile allegiance that would both inspire a 
hostile or defensive response on our part. In short, we can 
easily proceed with the approximation and still be able to 
make the same decision the same way.  

Figure 5. Approximated DSmH result for the same scenario 
with k-l-x = (3, 6, 0.2) 

4.2 Effects of varying the k-l-x parameters 

We’ve realized the scenario for various values of k-l-x for k 

 [3, 10], l  [6, 12] and x  [0.2, 0.4]. For the cases where 
we had k=8, no changes in l and x had impact, and 
compared to the DSmH, we’ve only noticed a very small 
variation at the start and end of the simulated scenario. For 
the cases where we had k=6, no changes in l and x had 
impact and compared to DSmH, there was only very little 
variation in value throughout the scenario. The same is true 
for the cases with k=5, with the Figure 4 showing the 
results for that case. The amplitude of the variation between 
DSmH and the approximated version continues to increase 
as the k value diminishes.  

We finally begin to notice small changes with x=0.2 as 
opposed to 0.3 or 0.4 when we reach k=4. However, the 
impact of having x at 0.2 is small and contained at the start 
of the scenario, where it gives more weight to the suspect 
class at the expense of the hostile class. For the cases with 
k=3, the impact of the change on x going to 0.2 was more 
significant and lasted throughout most of the scenario’s 

duration. Also, while for cases of k  [4, 8] the behavior of 
the curves were all very similar one to another, when we 
reach k=3, we observe a partial loss of smoothness, hence a 
more reactive behavior toward countermeasures and 
allegiance change. Figure 5 shows the case of the simulated 
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scenario for an approximated DSmH with klx = (3, 6, 0.2). 
Note that in all our experimentations for our chosen 
scenario the l parameter never had any visible impact. 

5 Monte-Carlo Simulations with k-l-x 

approximation 

Although a special case such as the one described in the 
previous section offers valuable insight, one might question 
if the conclusions from that one scenario pass the test of 
multiple Monte-Carlo scenarios. This question is answered 
in this section.  

In order to expend the parameter space, we have realized 
the simulations of the current section to 80 and 90% for the 
ESM certainty, and with an ESM confidence at 80% and an 
ignorance threshold at 0.04 as before. The number of 
Monte-Carlo runs was set to 100. The randomly generated 
ESM stream of reports used for both the DSmH and the 
approximated DSmH are all the same so that we can freely 
compare the effects of the use of the approximation, and the 
impact of the variation of its parameters. 

As for the choice of a the graphical display to highlight  the 
results of our simulations, we went with the rate of good 
decisions, where a good decision is as we have mentioned 
earlier, when we conclude to be friendly toward a friendly 
behaving target, when the ground truth is of class friend. A 
friendly-behaving target is a target that is concluded to be a 
friend or an assumed friend. We also have a good decision 
when we conclude to be hostile toward a hostile behaving 
target, when the ground truth is of class hostile. A hostile-
behaving target is a target that is concluded to be a hostile 
or a suspect. A decision is made by taking the set of 
maximum STANAG-probability.  

5.1 Effects of varying the k-l-x parameters 

Simulations were done on a computer with a Phenom II 955 
processor with 8 GB of memory. We should keep in mind 
that it is the relative time of execution which is important 
here. For figures 7 to 11, the simulations had a value of 
80% for the ESM certainty and the value of the x parameter 
was maintained at 0.2 since changing it had no impact on 
good decision rate. 

Figure 7 and Figure 8 show us the effect of the 
approximation from the good decision rate point of view 
when compared with the DSmH case from Figure 6. Like 
for the typical simulated scenario from previous section, l 
had no visible impact, and x had a limited impact only as 
the k parameter went below 4. As for the k parameter, it 
started having an impact when we reached 6, where the 
impact was on only three iterations. As the k parameter 
reaches 5, a very slight positive impact throughout the 
whole simulation can be seen. As for k=4 and k=3, we have 
a slight deterioration of the good decision rate but it is still 
very small and rather insignificant considering the gain in 

time execution as Figure 10 shows us. For the cases with an 
ESM confidence at 90%, all the approximated results, have 
no significant impact on the good decision rate, except with 
klx = (3, 8, 0.2) where we had minimal impact.  

Figure 6. DSmH result after 100 Monte-Carlo runs. 

Figure 7. Approximated DSmH result with k-l-x = (5, 8, 
0.2) for the same Monte-Carlo simulation. 

Figure 8. Approximated DSmH result with k-l-x=(3,8,0.2) 
for the same Monte-Carlo simulation. 
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We have the time of execution versus k and l parameters 
from the klx approximation technique on Figure 9 and 
Figure 10. Specifically, Figure 9 has the curve of the time 
of execution of the combination and approximation process 
only. The x-y plane, valued at 325.97 seconds on Figure 9 
indicates the time from which the approximation process 
provides a higher gain in time than the time it consumes. It 
is the time of execution of the DSmH without 
approximation.  

We can see that the k parameter has to reach 5 before we 
start seeing an improvement. Before that value, the 
approximation takes more time to execute than it helps us 
gain. We can achieve a 30% improvement on time of 
execution when we reach k = 3. The parameter l has no 
impact on time. The absence of impact of the l parameter is 
suspected to be caused by the fact that this simulated 
scenario case uses simple support functions as inputs. 

Figure 9. Execution time for the combination and 
approximation processes. 

Figure 10. Execution time for the whole simulation. 

In Figure 10, we have the curve of the time of execution for 
the whole simulation which, on top of the combination and 
approximation processes, includes the generalized pignistic 
transformation (GPT) which is used in the decision process. 
Above 95% of the extra time of execution, when compared 
to figure 10, is composed of the GPT.  

In Figure 10, the x-y plane, representing the time of 
execution of the simulation without approximation, is 
valued at 1767.6 seconds. We can see that we can have a 
50% reduction in time of execution when we reach k=3 and 
that l has no impact. As we compare Figure 9 and Figure 
10, we see that the GPT is the step that benefits the most 
from the approximation process.  

6 Monte-Carlo simulations using various 

approximation rules 

In order to expend the analysis furthermore, we have 
realized the simulations of the current section with Monte-
Carlo runs set to 1000. Also, we’ve expended the analysis 
to Simard’s summarization, and Simard’s truncation 
techniques with the same stream of reports to fuse. Hence, 
both the DSmH and the approximated DSmH will have the 
same dataset so that we can freely compare the effects of 
the use of the approximation, and the impact of the 
variation of its parameters. 

Figure 11, which shows results using Lowrance’s 
approximation technique lets us see the inability of the 
technique to get better good decision rates than the non 
approximated combination. The following figures shows 
that k-l-x, and Simard's Truncation are both able to get, 
depending on the chosen parameters, better results of good 
decision rates, than the scenario without approximation. 

Figure 11. DSmH using Lowrance’s apx. (3/5/8/10). 
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Figure 12. DSmH using k-l-x apx. (3/5/8/10–8–0.2). 

Figure 13. DSmH using Simard’s apx. (0.5-0.04-3/5/8/10). 

Figure 14. DSmH using Simard’s apx. (0.7–0.04–3/5/8/10). 

Figure 15. DSmH using Simard’s apx. (0.7–0.1–3/5/8/10). 

About the mean time of execution of the combination and 
approximation step for realistic scenario, we have found 
that for a parameter 'K' below, or equal, to 5, we were able 
to execute faster than without approximation. And when 
looking at previous figures, we see that, too low (K~3), the 
approximation isn't as good as without approximation, and 
that at a value of 5, we were always at higher good decision 
rates than the case without approximation.  

So not only we have found a case executing faster than 
without approximation, but we've also found ourselves a 
case where it performs better in terms of good decision rate. 
That is for approximation techniques different from 
Lowrance's, and limited, until proven differently, to this 
case, and for DSmH. 

Figure 16. Combination and approximation execution times 
in seconds per Monte-Carlo run. 
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7 Conclusions 

The previous sections display the behavior for different 
cases of klx approximation on the same simulated ESM 
data (see Figure 6, Figure 7, and Figure 8). It also shows the 
time of execution of each of those simulations. From those 
results we can conclude that we can successfully attain the 
same good decision rate with DSmH as with an 
approximated DSmH for the chosen scenario, while 
achieving lower times of execution including the time to 
approximate when we reach a certain level of 
approximation. Those results are confirmed by the 
experimentation done on another simulated dataset lasting 
for 1000 Monte-Carlo runs. (see Figure 12) 

We’ve also explored the behavior of Lowrance’s 
summarization approximation and Simard’s truncation 
methods while using the same dataset also on a thousand 
Monte-Carlo runs. From what we can see on Figure 11, the 
summarization is able, with the careful choice of its 
parameter, to reach good decision rate of the combination 
rule without approximation, however, it seems to be rarely 
able to do better and can do much worst. Simard’s 
truncation method (see Figure 13, Figure 14 and Figure 15) 
on the other hand is able to get around 5% better good 
decision rates, depending on the choice of the 
approximation parameters. It can also get the same rates or 
a little less than the combination rule without 
approximation.  

When considering results of time of execution as shown on 
Figure 16 we gather that, while being able to execute faster 
than the combination rule without approximation, we can 
get better decision rates. The ‘K’ parameter value of 
approximation of each rule, when at 3 or 5, gave us highest 
decision rates for Simard’s truncation method or k-l-x 
approximation technique. Note that some times, parameter 
K had to be set at 3, other times at 5, depending on chosen 
technique and the other parameters, to reach highest 
decision rate.  

Future work considered includes the exploration of the use 
of Bauer’s D1 approximation [5] in DSmT. Even if it adds 
to the number of operations and in the complexity of the 
system, it would be interesting to see if the gain acquired by 
approximating is sufficient to counter the increase in 
complexity. We are also interested to see if it is able to give 
even better good decision rates than the other methods of 
approximation. 
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