
Improved Fusion Machine Based on T-norm Operators for Robot Perception

Xinde Li, Member, IEEE and Xianzhong Dai
Key Laboratory of Measurement and Control of CSE

(School of Automation, Southeast University),
Ministry of Education, Nanjing, China, 210096

xindeli@seu.edu.cn

Jean Dezert
The French Aerospace Lab.
29 Avenue de la Division

Leclerc 92320 Châtillon, France.
jean.dezert@onera.fr

Abstract

Map reconstruction for autonomous mobile robots nav-
igation needs to deal with uncertainties, imprecisions and
even imperfections due to the limited sensors quality and
knowledge acquisition. An improved fusion machine is pro-
posed by replacing the classical conjunctive operator with
T-norm operator in Dezert-Smarandache Theory (DSmT)
framework for building grid map using noisy sonar mea-
surements. An experiment using a Pioneer II mobile robot
with 16 sonar detectors onboard is done in a small indoor
environment, and a 2D Map is built online with our self-
developing software platform. A quantitative comparison
of the results of our new method for map reconstruction
with respect to the classical fusion machine is proposed. We
show how the new approach developed in this work outper-
forms the classical one.

Keywords: DSmT; Fuzzy sets theory; Information fu-
sion; Robot perception.

1. Introduction

Since few years, there is a growing number of interests
for intelligent mobile robots in several different fields of ap-
plications. For example, robot rovers have been developed
(and are still under development and improvment) for plan-
etary and space exploration, autonomous submersibles for
submarines prospecting and surveying, mobile robots for
automation purposes or for operation in hazardous mining
environments, nuclear facilities and eliminating-explosion
spot, and so on. All these applications require powerful and
flexible perception systems, where the robot needs to per-
ceive and even interacts coherently within its surrounding
world using its onboard sensors. Therefore, map building
in unknown environments is one of the principal issues in
the field of intelligent mobile robot aside the robot com-
mand and control. However, information acquired in map
building presents characteristics of uncertainty, imprecision

and even high conflict, especially when building grid map
using sonar sensors.

There exists already several methods for grid-map build-
ing based on different theories, such as the Probability The-
ory [3], the Fuzzy Sets Theory [7], DST (Dempster-Shafer
Theory) [13], the Gray System Theory [15] and DSmT [4].
All these aforementioned methods have their own draw-
backs and limitations for practical uses specially in real
large and crowded environments. In this paper, we propose
a new one based on a Fuzzy extension of the Improved Fu-
sion Machine (denoted FIFM) using T-norm operators in-
troduced in [14].

This paper is organized as follows: in section 2, FIFM
is presented which the ESMS (Evidence Supporting Mea-
sure of Similarity) information filter and the fuzzy exten-
sion of the PCR5 (Proportional Conflict Redistribution rule
no. 5) fusion rule [10]. In section 3, an experiment in a
small indoor environment with a Pioneer II mobile robot is
performed to show the advantage of our approach compared
from the classical one by a quantitative analysis. Conclud-
ing remarks are then given in section 4.

2 Fuzzy-extended Improved Fusion Machine

2.1 General principle of FIFM

The general principle of the FIFM we propose consists
in considering s sources of evidences (i.e. the inputs) which
are managed in the following way:

• at first, one selects a number n ≤ s of consistent
sources among the s sources through the ESMS in-
formation filter, i.e. only the sources being in a low
conflict are selected for their combination,

• then, for each cell of the grid, one combines the se-
lected sources at each measurement time-step by a
given fusion rule (here the fuzzy extension of PCR5
rule) in order to get a generalized basic belief assign-
ment (gbba) over a propositional space generated by
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elements of a frame of discernment Θ defined by

Θ = {θ1 = cell empty, θ2 = cell occupied}.

• finally, from the result of the fusion obtained for each
cell of the grid, one estimates the level of occupancy
(or emptiness) of each cell of the grid in order to build
online the grid-map to perceive and reconstruct the un-
known environment with its obstacles.

In this work, we use the fuzzy T-norm operator combined
with the efficient PCR5 fusion rule developed in DSmT
framework. As soon as the combination of uncertain in-
formation is concerned, there exists a given amount of de-
gree of conflict between sources, say K, which needs to be
managed efficiently by the fusion rule. The fusion machine
includes the fusion rule itself but also some preprocessing
tasks, like selection of consistent sources, etc.

The way the conflict (total or partial) is managed is
the key of the fusion and does really make the difference
between the fusion machines. The fusion can be per-
formed globally/optimally by combining the sources in one
derivation step altogether, or sequentially (one source after
another as in Fig.1). The sequential fusion processing (well
adapted for temporal fusion) is more natural and simple
than the global fusion in our application, but in general it
remains only suboptimal if the fusion rule chosen is not
associative, which is the case for most of fusion rules, but
Dempster’s rule.

In this paper, the sequential fusion based on the fuzzy
extension of PCR5 rule [12] has been chosen because this
rule has shown good performances in all works where it has
already been tested so far [4] and because the sequential
fusion is much more simple to implement and to test. In the
next section, we present the fuzzy extension of PCR5 rule
and the implementation of the FIFM.

Figure 1. sequential FIFM

2.2 Fuzzy extension of DSmT rules

Smarandache, Dezert and Tchamova did propose a fuzzy
extension of DSmT fusion rules with T-norms [10, 14].
Since there are many functions which satisfy the four con-
ditions of a T-norm, we just focus our works on the most
common ones given in [8] and listed below:

1) The Algebraic Product T-norm:
Tn−Algebraic(x, y) = x · y.

2) The Bounded Product T-norm:
Tn−Bounded(x, y) = max{0, x + y − 1}.

3) The Einstein Product T-norm:
Tn−Einstein(x, y) = xy

1+(1−a)(1−b) .

4) The Classical Fuzzy Product T-norm:
Tn−Min(x, y) = min(x, y).

1. Fuzzy extension of DSm classic rule (DSmC) [9]

It is defined ∀A ∈ GΘ \ {∅} as follows:

mfuzzDSmC(A) = Γ{
∑

X,Y ∈GΘ

X∩Y =A

Tn(m1(X)m2(Y ))}

(1)
where Γ{·} is the renormalization function, Tn(·)
is a T-norm operator aforementioned i.e. Algebraic
Product, Bounded Product, Einstein Product, Classical
Fuzzy Product. GΘ is the generic notation for the set
on which the belief masses are defined (the power-set,
hyper-power set or the super-power set) [11].

2. Fuzzy extension of PCR5 rule [11]

It is defined by mfuzzPCR5(∅) = 0 and for all X ∈
GΘ \ {∅} by :

mfuzzPCR5(X) = Γ{m12(X)+
∑

Y ∈GΘ\{X}
X∩Y =∅

[
Tn(Tn(m1(X),m1(X)),m2(Y ))

m1(X) + m2(Y )
+

Tn(Tn(m2(X),m2(X)),m1(Y ))
m2(X) + m1(Y )

]} (2)

where m12(·) is the fuzzy extension of the conjunctive
rule, i.e. m12(·) =

∑
X,Y ∈GΘ

X1∩X2

Tn(m1(X1)m2(X2))

In DSmT, all propositions of GΘ are expressed in their
canonical form, i.e. the disjunctive normal form which is a
disjunction of conjunctions and is unique in Boolean alge-
bra and simplest.
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2.3 Implementation of the FIFM

The main steps of the algorithm for FIFM are:

1) Initialization: the number of sources of evidence s is
set to zero and the number of evidence sources in the
filter window is n = 0.

2) Include1 a source of evidence Ŝs and then test if the
number of sources s is less than 2. If s ≥ 2, then go to
next step, otherwise include/take into account another
source of evidence Ŝ2.

3) Based on the barycenter of gbba’s of the front n ≤ 10
evidence sources, the degree of similarity of the souce
n is computed according to the ESMS formula given in
[5], and compared with a prior tuned threshold. If it is
larger than the threshold, then one tests the next sensor
(n = n + 1). Otherwise, we keep this new source of
evidence Ŝs+1 for the fusion.

4) If n = 1, the current source, say S, is not involved in
the fusion. If n = 2, the fusion applies between S and
Ŝ2 with the fuzzy DSmC rule (1). Then we use the
fuzzy PCR5 rule (2) to redistribute the partial conflicts
only to the sets involved in them. We commit the same
index S to the combined source. If 2 < n ≤ 10, after
the current evidence source Ŝs accepted by the filter is
combined with the last combined results S, a new ev-
idence source is obtained and reassigned to S. When-
ever n ≤ 10, go back to step 2). Otherwise, if the cur-
rent evidence source Ŝs under test is accepted by the
ESMS filter, Ŝi is assigned to Ŝi−1, i ∈ [2, · · · , 10],
and Ŝs is assigned to Ŝ10. Then, Ŝ10 is combined with
the last source S, the combined result is reassigned to
S2, and then, go back to step 2).

5) Stop test: if the robot receives new sonar’s data then
introduce a new source of evidence Ŝs+1, otherwise
stop and exit.

3. Experiment

The experiment is performed with a Pioneer II mobile
robot carrying 16 sonar detectors and a laser range finder in
our (indoor) laboratory environment. The size of the envi-
ronment is 4550mm×3750mm and the grid map method is
adopted. The environment is divided into 91×75 rectangu-
lar cells having the same size. The robot starts to move from
the location (1 m, 0.6 m), which faces towards 0 degree. We
take the corner of left bottom as the global coordinate origin
of the map. Some objects/obstacles in the rectangular grid
map are shown in Fig. 2.

1Shafer’s model is assumed for the frame Θ and gbba’s are given.
2In this work, we use also an ESMS filter window in a sliding mode.

Figure 2. Experimental scene.

All the steps of the FIFM for self-localization and grid
map building have been implemented in our intelligent per-
ception and fusion system developed as a specific Toolbox
under C++ 6.0 and OpenGL. When the robot moves in the
environment, the server-end collects a lot of information
(i.e. the location of robot, sensors measurements, velocity,
etc) from the mobile robot and its sensors onboard. Through
the protocol of TCP/IP, the client-end can get any informa-
tion from the server-end and then fuse them. Since our envi-
ronment is small, the robot moves on a short distance during
a rather small period of time. Therefore, one only considers
the self-localization method based on δ-NFAM method [6]
with the search from θ − δθ to θ + δθ (δθ = 5o in our ex-
periment). To reduce the computation burden, the restricted
spreading arithmetic has been used.

The main steps of this procedure are:

1) Initialize the parameters of the robot (location, veloc-
ity, etc.).

2) Obtain the 16 sonar measurements, and the robot’s lo-
cation from odometer when the robot is moving in the
environment. The robot’s pose is calibrated with a self-
localization method. The period of the clock is 100 ms.

3) Compute the gbba’s of the fan-form area detected by
each sonar sensor [6].

4) Apply the FIFM to choose a basic consistent evidence
source according to the formula [5]. Then combine
the consistent sources of evidence with fuzzy DSmC
rule (1) (as an intermediary set) and then use the fuzzy
PCR5 rule (2) (see section 2.2).

5) Compute the total belief of cell occupancy Bel(θ2) of
some grids according to [9], after saving them into the
map matrix, and go to next step.
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6) Update the map of the environment. More scans we
take, more accurate the final map reconstructed is. If
during this process, the robot stops to receive measure-
ments, then one stops the fusion and exit, otherwise,
one goes back to step 2).

Figure 3. Map building with FIFM based on
Algebraic Product operator.

Figure 4. Map building with FIFM based on
Bounded Product operator.

Figure 5. Map building with FIFM based on
Einstein Product operator.

For a fair quantitative comparison of the different mea-
sured results, we picked up the inner and outer borders of
maps in order to compare them with the real environment

Figure 6. Map building with FIFM based on
Classical Fuzzy Product operator.

Figure 7. Map building with FIFM based on
Classical Product operator.

depicted in the Figure 2. Because the borders are both
incomplete and discrete, it is very difficult to pick up the
borders outline directly, so we have considered the Mathe-
matical Morphology approach [2]. Then the Shape Context
method [1] was adopted to compare the difference between
the picked-up outline and the real one by setting different
resolutions (i×j) and radius length rs, where the Hausdorff
distance is computed between the pixels. The compared re-
sults of the outlines with the real one are shown in the Table
1, where the outlines (inner and outer border) are measured
by different T-norm operators. Due to space limitation con-
straint, we omit here some details of this procedure.

Alg Bou Ein Min Cla
O 0.0356 0.0293 0.0358 0.0202 0.0313
I 0.0634 0.0478 0.0512 0.0243 0.0691
N 4 3 1 2 5
GS 4 2 3 1 5

Table 1. Quantitative comparison from the
different T-norms.

where the following notation has been used: O → OuterA,
I → InnerA, N → Noises, GS → GeneralSequence.
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From the analysis of the Table 1 and in our experi-
ment, we see that the classical fuzzy product operator (Min)
has the minimum Hausdorff distance. The Classical (Cla)
and Algebraic Product operators (Alg) perform worst. The
noises (pixels) with different maps between outer and inner
outlines picked have also been computed and listed in the
Table 1. We see also that Einstein Product operator (Ein)
provides the least number of pixel noises, while the Clas-
sical Product operator (Cla) performs as the worst method
with respect to the robustness to noises. The global order re-
sulting from the quantitative analysis of performances based
both on Hausdorff distance and noises is:

Min � Bou � Ein � Alg � Cla.

where, Min has the best performance, and Cla has the worst
one.

In summary, the classical fuzzy product operator (Min)
performs the best among all the T-norms operators and the
classical one tested in this work.

4. Conclusions

In this paper, one has applied successfully a fuzzy exten-
sion of IFM based on T-norm operators for mobile robot’s
map-building in an unknown environment with the help of
a self-localization approach based on the δ-NFAM method.
Based on a belief model for sonar grid map, an experiment
has been conducted with a Pioneer II mobile robot mov-
ing in our small laboratory environment. For this study, we
have also developed a human-computer interface of mobile
robot for exploring unknown environments, for path plan-
ning and navigation. A quantitative comparative analysis
of the results shows clearly the advantage of this approach
with respect to the classical ones.
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