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Abstract: With respect to the interval neutrosophic multi-attribute decision-making (MADM) 

problems, the MADM method based on some interval neutrosophic aggregation operators is developed. 

Firstly, the induced generalized interval neutrosophic hybrid arithmetic averaging (IGINHAA) operator 

and the induced generalized interval neutrosophic hybrid geometric mean (IGINHGM) operator are 

proposed, which can weight all the input arguments and their ordered positions. Further, regarding the 

situation where the input elements are interdependent, the induced generalized interval neutrosophic 

Shapley hybrid arithmetic averaging (IGINSHAA) operator and the induced generalized interval 

neutrosophic Shapley hybrid geometric mean (IGINSHGM) operator are proposed, which are 

extensions of IGINHAA and IGINHGM operators, respectively, and some properties of these given 

operators are investigated. Furthermore, the interval neutrosophic cross entropy, which is an extension 

of single valued neutrosophic cross entropy, is defined, and the models based on the interval 

neutrosophic cross entropy and generalized Shapley function are respectively constructed to determine 

the optimal fuzzy measures on the attribute set and on the ordered set. Finally, an approach to interval 

neutrosophic MADM with interactive conditions and incomplete known weight information is 

proposed based on these given operators, and a practical example is shown to verify the practicality and 

feasibility of the new approach. 

Keywords: multi-attribute decision making; interval neutrosophic set; aggregation operator; cross 

entropy; generalized Shapley function. 

1. Introduction

Since Neutrosophic set (NS), which is a generalization of fuzzy set [43], vague set [10], intuitionistic

fuzzy set [1], tautological set [25] and so on, was introduced by Smarandache [25], it has been applied 

in many different areas, such as medical diagnosis [41-42], imaging processing [22], pattern recognition 

[19], and decision making problems [8,17-18]. It should be noted that the words “neutrosophy” and 

“neutrosophic” were introduced by Smarandache [25]. Etymologically, “neutro-sophy” (noun) means 

knowledge of neutral thought while “neutrosophic” (adjective), means having the nature of, or having 

the characteristic of Neutrosophy. Because NS consists of three completely independent parts, which are 

truth-membership degree, indeterminacy-membership degree and falsity-membership degree, it is very 

suitable to capture the incomplete, indeterminate and inconsistent information. Now NS has attracted 

more and more attentions [2,6,21,28,37,44]. Wang et al. [31] defined the single valued neutrosophic set 

(SVNS), as a subclass of the NS. Majumdar et al. [14] introduced normalized Hamming distance and 

normalized Euclidian distance between two SVNSs, and further gave the similarity between two SVNSs 

and the entropy of a SVNS. Ye [40] defined the single valued neutrosophic weighted cross entropy and 

applied it to the MADM problem. Pătraşcu [20] gave 
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two types of neutrosophic entropy as extensions of Kaufman's formula and Kosko's formula, 

respectively. Biswas et al. [3] developed a modified GRA method for the single valued neutrosophic 

MADM problems with completely unknown weight information, and entropy of the SVNS is used to 

obtain the weight information. Biswas et al. [4] developed an extended TOPSIS method for the 

neutrosophic MADM problems. In fact, in some complex decision environment, it is insufficient to 

express the truth-membership degree, indeterminacy-membership degree and falsity membership 

degree by crisp values. Wang et al. [30] utilized interval numbers to denote these three parts, and 

defined the interval neutrosophic set (INS) as an instance of NS. Chi and Liu [7] developed an 

extended TOPSIS method to solve MADM problems with interval neutrosophic information, and the 

maximization deviation method is used to determine the attribute weights. 

  The neutrosophic aggregation operators are an important tool to process the neutrosophic MADM 

problems. Ye [36] proposed the single valued neutrosophic weighted geometric averaging (SVNWGA) 

operator and applied it to solve single valued neutrosophic decision-making problems. Liu et al. [13] 

proposed the single valued neutrosophic normalized weighted Bonferroni mean (SVNNWBM) 

operator which has the reducibility, idempotency and commutativity, and utilized it to handle the 

MADM problems with correlated attributes. Zhang et al. [46] defined the operational rules and 

comparison rules of INSs, and proposed two interval neutrosophic aggregation operators, including 

interval neutrosophic number weighted averaging aggregation (INNWAA) operator and interval 

neutrosophic number weighted geometric aggregation (INNWGA) operator to handle the interval 

neutrosophic MADM problems. Ye [39] proposed an approach to the MADM problems based on 

interval neutrosophic number ordered weighted averaging (INNOWA) operator and the interval 

neutrosophic number ordered weighted geometric (INNOWG) operator. There are some differences 

between aforementioned interval neutrosophic aggregation operations. INNWAA and INNWGA 

operators only weight the input arguments themselves, but ignore their ordered positions. INNOWAA 

and INNOWGA operators only take into account the ordered positions of the interval neutrosophic 

arguments, but not consider the arguments themselves. In addition, these above interval neutrosophic 

number aggregation operators cannot reflect the correlations among the given arguments. 

In the INNOWAA and INNOWGA operators, we can see that the reordering process depends on 

the values of the interval neutrosophic arguments and these two operators could not consider the 

importance of the aggregated arguments. However, in some real applications, this reordering may not 

meet our interests. Sometimes, the decision makers may want to order the arguments based on some 

other associated variables instead of the aggregated arguments. To overcome these shortcomings, the 

induced generalized interval neutrosophic hybrid arithmetic averaging (IGINHAA) operator and the 

induced generalized interval neutrosophic hybrid geometric mean (IGINHGM) operator are proposed 

in this paper. In addition, the aforementioned interval neutrosophic number operators only consider the 

addition of the importance of individual input arguments. However, in real decision making, the 

arguments (i.e., attributes) are often not independent. To address these situations, the induced 

generalized interval neutrosophic Shapley hybrid arithmetic averaging (IGINSHAA) operator and 

induced generalized interval neutrosophic Shapley hybrid geometric mean (IGINSHGM) operator are 

proposed in this paper. These two operators cannot only consider the importance of input arguments 

and their ordered positions, but also overall take into account the correlations among them and their 

ordered positions. Furthermore, due to time pressure, lacks of knowledge or data, and the expert’s 

limited expertise, the weight information in the MADM problems is usually incompletely known or 

completely unknown. Models based on the cross entropy of the INNs are constructed to determine the 
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attribute weight information. As a very important goal, a method of interval neutrosophic MADM with 

interactive criteria and incompletely known weight information is developed. 

   The remainder of this paper is constructed as follows. In Sect. 2, some basics in regard to INS are 

introduced, and the cross entropy of INSs is defined. In Sect. 3, we propose IGINHAA and IGINHGM 

operators and investigate their several proprieties. In Sect. 4, we review some basic concepts, such as 

the fuzzy measure and generalized Shapley function, and propose IGINSHAA and IGINSHGM 

operators. In Sect. 5, the models based on cross entropy of INSs are constructed to obtain the attribute 

weight information, and a method for the neutrosophic MADM is developed. In Sect. 6, a practical 

example is shown to verify the effectiveness of the developed method. In Sect. 7, the conclusions are 

summarized. 

2. Preliminaries

2.1. Interval neutrosophic set (INS) 

Definition 1 [46]. Suppose X  is a universe of discourse, with a generic element in X represented by 

x . An INS Â in X  is expressed by 
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  For convenience, we call      )ˆ(),ˆ(,)ˆ(),ˆ(,)ˆ(),ˆ()ˆ(),ˆ(),ˆ(ˆ aFaFaIaIaTaTaFaIaTa ULULUL an 

interval neutrosophic number (INN). 

Let )ˆ(),ˆ(),ˆ(ˆ aFaIaTa  and )ˆ(),ˆ(),ˆ(ˆ bFbIbTb  be any two INNs, the operational laws of them 

are shown as follows [46]. 
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Definition 2 [30]. Suppose      )ˆ(),ˆ(,)ˆ(),ˆ(,)ˆ(),ˆ()ˆ(),ˆ(),ˆ(ˆ aFaFaIaIaTaTaFaIaTa ULULUL is 

an INN, the complement of â  is defined as follows. 
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Definition 3 [5]. Let )ˆ(),ˆ(),ˆ(ˆ aFaIaTa  and )ˆ(),ˆ(),ˆ(ˆ bFbIbTb  be any two INNs, then the 

Euclidean distance between â  and b̂  is defined as follows.
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Definition 4 [46]. Suppose ))ˆ(),ˆ(),ˆ((ˆ aFaIaTa  is an INN, and then 

    )]ˆ(1)ˆ(1)ˆ(),ˆ(1)ˆ(1)ˆ([)ˆ( aFaIaTaFaIaTaS LLUUUL   

    ]})ˆ()ˆ(),ˆ()ˆ({max,})ˆ()ˆ(),ˆ()ˆ({[min)ˆ(A aFaTaFaTaFaTaFaTa UULLUULL    

    )]ˆ(),ˆ([)ˆ(C aTaTa UL

where )ˆ(),ˆ( aAaS and )ˆ(aC  represent the score function, accuracy function and certainty function of 

INN â , respectively. 

  For an INN â , the bigger the truth-membership )ˆ(aT  degree is, the smaller the 

indeterminacy-membership )ˆ(aI  degree and the falsity-membership )ˆ(aF  degree are, and the 

greater the INN is. As for the accuracy function, the bigger difference between truth-membership )ˆ(aT  

and falsity-membership )ˆ(aF  is, the surer the statement is. For the certainty function, the bigger 

thetruth-membership )ˆ(aT is, the greater the corresponding INN is. 

  Based on the score function, accuracy function and certainty function of INNs, the comparison rules 

of INNs are shown as follows. 

Definition 5 [46]. Let â  and b̂  be any two INNs, the comparison rules are provided as follows.

1) if
2

1
)ˆ()ˆ(  bSaS , then ba ˆˆ   .
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)ˆ()ˆ(  bAaA and 

2

1
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4) if
2

1
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2

1
)ˆ()ˆ(  bAaA and 

2

1
)ˆ()ˆ(  bCaC , then ba ˆˆ  .

2.2. The cross entropy of INS 

  Before introducing the cross entropy and discrimination information measures between two INNs, 

we firstly review the notions of cross entropy and discrimination information measures between two 

fuzzy sets. 

Definition 6 [23]. Let ))(),...,(),(( 21 nxAxAxAA   and ))(),...,(),(( 21 nxBxBxBB   be two fuzzy sets 

in the universe of discourse },...,,{ 21 nxxxX  . The cross entropy between A  and B  is shown as 

follows. 
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  However, the cross entropy ),( BAH  is not symmetric in regard to its elements; a symmetric 

discrimination information measure is introduced by Shang et al. [23], and sown as follows.   
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  According to the cross entropy and discrimination information measures between two fuzzy sets, the 

cross entropy and discrimination information measures between two interval neutrosophic sets are 

defined as follows. 
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  for any Xxi  . In addition, we can 

easily prove that )ˆ,ˆ()ˆ,ˆ( BAEBAE cc  , where cÂ and cB̂ are the complement of INSs Â and B̂ , 

respectively. 

)ˆ,ˆ( BAE denotes the degree of discrimination of Â form B̂ , which can also be named a 

discrimination for INSs. Since )ˆ,ˆ( BAE  is not symmetric, a modified symmetric discrimination

information measures for INSs is defined as follows. 

)ˆ,ˆ()ˆ,ˆ()ˆ,ˆ( ABEBAEBAD  (10) 
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  The smaller )ˆ,ˆ( BAD is, the smaller the difference between Â and B̂ is. 

3. Induced generalized interval neutrosophic hybrid aggregation operators based

on the additive measures 

  In this section, we will propose the IGINHAA and IGINHGM operators, which can weight the 

interval neutrosophic arguments and their ordered positions by the induced variables.  

3.1. IGHAA operator 

The induced generalized hybrid averaging (IGHA) operator [16] is a generalization of induced 

ordered weighted averaging (IOWA) operator [35] and the hybrid weighted averaging (HWA) operator 

[34]. The HWA operator weights both the input arguments and their ordered positions. However, the 

HWA operator has not the boundedness, idempotency. Further, Lin et al. [12] proposed a new hybrid 

weighted arithmetical averaging (HWAA) operator with the boundedness and idempotency. 
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where ( )ja is the j th largest value of ),...,2,1( niai  , and T
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  Moreover, Merigo proposed the induced generalized hybrid averaging (IGHA) operator [16], which 

is a generalization of HWA operator by utilizing generalized means [9] and order inducing variables. 

However, the IGHA operator has not the properties, such as boundedness and idempotency. Based on 

HWAA operator, Meng et al. [15] proposed an induced generalized hybrid arithmetical averaging 

(IGHAA) operator which has the boundedness and idempotency. 
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3.2. IGINHAA operator 

  The IGHAA operator fails to aggregate interval neutrosophic information, in this section; we will 

extend it to INNs, and propose the IGINHAA operator. 
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































































































































































































































































































1

n

1j

(j )

U

1

n

1j

(j )

L

1

n

1j

(j )

U

1

n

1j

(j )

L

1

n

1j

(j )

U

1

n

1j

(j )

L

2211

1

)(

)(

1

)(

)(

1

)(

)(

1

)(

)(

1

)(

)(

1

)(

)(
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,)))â((T-(1-1,)))â((T-(1-1
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Proof. 

Firstly, we prove Eq. (14) holds. 
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Next, we prove Eq. (14) is an INN. It is easy to prove the following inequalities. 
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Thus, it is an INN. 

Remark 1. If 1 , then the IGINHAA operator reduces to the induced interval neutrosophic hybrid 

arithmetic averaging (IINHAA) operator. 
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w j  , then we get the interval neutrosophic number weighted 

averaging aggregation (INNWAA) operator [46]. 

Remark 2. If 2 , then the IGINHAA operator reduces to the induced interval neutrosophic hybrid 

quadratic averaging (IINHQA) operator.  
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  From these remarks, we can know that IGINHAA operator is the generalized form of IINHAA, 

INNWAA and IINHQA operators. 

  Based on the operational laws of INNs, we shall prove that the IGINHAA operator has the following 

properties. 

Theorem 2 (Idempotency). Suppose ),...,2,1()(),(),(ˆ niaFaIaTaai  , then we have 

aauauauIGINHAA nn
ˆ)ˆ,,...,ˆ,,ˆ,( 2211  . 
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then, 

    aauauauI G I N H A Aa nn
ˆ)ˆ,, . . . ,ˆ,,ˆ,(ˆ

2211 . 

Limited to the space, the proofs of the properties of IGINHAA operator are omitted in here. 

3.3. IGINHGM operator 

In terms of the IGINHAA operator and geometric mean, we define an IGINHGM operator. 

Definition 11. Suppose   is the set of all INNs, ),...,2,1()ˆ(),ˆ(),ˆ(ˆ niaFaIaTa iiii  is a 

collection of INNs, ),...,2,1( niui   is a set of order-inducing variables, and   is a parameter 

with ),0(  . An IGINHGM operator of dimension n  is a mapping IGINHGM: n  on the

set of second components of 2-tuple arguments  nn auauau ˆ,,...ˆ,,ˆ, 2211 . Such that, 
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where ）ja
(

ˆ is the 
iâ  value of the IGINHGM pair  ii au ˆ, having the j th largest value of 

i , 
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n ),...,,( 21   is the weight vector of ),...,2,1(ˆ niai   such that ]1,0[j  and 1
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  However, if there is a tie between  ii au ˆ,  and  jj au ˆ,  regarding order-inducing variables 

such that ji uu  , in this case, we replace second components of 2-tuple arguments  ii au ˆ, and 

 jj au ˆ,  by their generalized geometric mean ))ˆ()ˆ((
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2
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ii aa 
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 . If k  items are tied, we replace 

these by k  replicas of their generalized geometric mean. 

Theorem 6. With the operations of INNs, IGINHGM operator (17) can be transformed into the 

following form. 
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Whose aggregated valued is also an INN. 

  Similar to the proof of the Theorem 1, it is easy to get the result. 

Remark 3. If 1 , then the IGINHGM operator reduces to the induced interval neutrosophic hybrid 

geometric mean (IINHGM) operator. 
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  Furthermore, if ),...,2,1(
1

nj
n

w j  , then we get the interval neutrosophic number weighted 

geometric aggregation (INNWGA) operator [46]. 

Remark 4. If 2 , then the IGINHGM operator reduces to the induced interval neutrosophic hybrid 

quadratic geometric (IINHQG) operator. 
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 (20) 

  From these remarks, we can know that IGINHGM operator is the generalized form of IINHGM, 

INNWGA and IINHQG operators.  

  Similar to the proofs of the properties of IGINHAA operator, we can prove that the IGINHGM 

operator also has idempotency, commutativity, monotonicity and boundedness. It is omitted here. 

4. The induced generalized interval neutrosophic hybrid aggregation operators

based on the Shapley function 

  Although the IGINHAA and IGINHGM operators can weight the interval neutrosophic arguments 

and their ordered positions, they are under the implicit assumption that the aggregated interval 

neutrosophic arguments are independent. However, in some situations, especially in some decision 

making, the input elements maybe exist some correlations, these two operators cannot process this 

condition. To address this situation, we shall propose two new aggregation interval neutrosohphic 

operators, named IGINSHAA and IGINSHGM operators, which not only weight the interval 

neutrosophic arguments and their ordered positions, but also consider the interactions among them and 

among their ordered positions.  
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4.1. Fuzzy measures and the generalized Shapley function 

Definition 12 [27]. A fuzzy measure on a finite set n}{1,2,...,N   is a set function ]1,0[)(: NP . It 

satisfies the following conditions: 

  (1) Boundary: 1)N(,0)(    , 

  (2) Monotonicity: if )(, NPGF   and GF  , then )()( GF   , 

where )(NP  is the power set of N . 

  In MADM problems, )(F  can be regarded as the importance the of the attribute set F . 

  The generalized Shapley function was provided by Shapley [24], which is shown as follows. 

Niffi
n

ffn
N

iNF

i 


 


))()((
!

!)!1(
),(

\

  (21) 

where   is a fuzzy measure on },...,2,1{ nN  , n  and f  represent the cardinalities of N  and 

F , respectively. From the generalized Shapley function, we know that it is an expectation value of the 

overall interaction between the element Ni  and every combination in iN \ . From the Eq. (21) and 

the Definition 12, it is easy to know that Nii N )},({   is a weight vector, because 0),( Ni   for 

any element Ni , and 1),(
1




n

i

i N . It should be noted that if there are no interactions between 

elements, then the Shapley values are equal to their own importance. 

4.2. IGINSHAA operator  

Definition 13. Suppose   is the set of all INNs, ),...,2,1()ˆ(),ˆ(),ˆ(ˆ niaFaIaTa iiii  is a 

collection of INNs, ),...,2,1( niui  is a set of order-inducing variables, and   is a parameter 

with ),0(  . An IGINSHAA operator of dimension n  is a mapping IGINSHAA: n  on the 

set of second components of 2-tuple arguments  nn auauau ˆ,,...ˆ,,ˆ, 2211 . Such that, 
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where ）ja
(

ˆ is the 
iâ  value of the IGINSHAA pair  ii au ˆ, having the j th largest value of iu , 

),( Nj  is the Shapley value in regard to the associated fuzzy measure   on },...,2,1{ nN   for 

j th ordered positions, and ),()( Aj  is the Shapley value in regard to the fuzzy measure   on 

}ˆ,...,ˆ,ˆ{ 21 naaaA   for ),...,2,1(ˆ
(

nja
j

） . 

  However, if there is a tie between  ii au ˆ, and  jj au ˆ, with respect to order-inducing 

variables such that ji uu  , in this case, we replace second components of 2-tuple arguments 

 ii au ˆ, and  jj au ˆ, by their generalized mean 


1

)2/)ˆˆ(( ji aa  . If k  items are tied, we 

replace these by k  replicas of their generalized mean. 
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Theorem 7. With the operations of INNs, IGINSHAA operator (22) can be transformed into the 

following form. 
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(23) 

Whose aggregated valued is also an INN. 

  Similar to the proof of the Theorem 1, it is easy to get the result. 

Remark 5. If the fuzzy measures   and   are both additive, then the IGINSHAA operator 

degenerates to the IGINHAA operator. 

Remark 6. If 1 , then the IGINSHAA operator reduces to the induced interval neutrosophic 

Shapley hybrid arithmetic averaging (IINSHAA) operator. 
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Remark 7. If 2 , then the IGINSHAA operator reduces to the induced interval neutrosophic 

Shapley hybrid quadratic averaging (IINSHQA) operator. 
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  Similar to the proofs of the properties of IGINHAA operator, we can see that the IGINSHAA 

operator has properties, such as idempotency, commutativity, monotonicity and boundedness. 

4.3. IGINSHGM operator  

Definition 14. Suppose   is the set of all INNs, ),...,2,1()ˆ(),ˆ(),ˆ(ˆ niaFaIaTa iiii  is a 

collection of INNs, ),...,2,1( niui  is a set of order-inducing variables, and   is a parameter 

with ),0(  . An IGINSHGM operator of dimension n  is a mapping IGINSHGM: n  on the 

set of second components of 2-tuple arguments  nn auauau ˆ,,...ˆ,,ˆ, 2211 . Such that, 
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where ）ja(
ˆ  is the iâ  value of the IGINSHGM pair  ii au ˆ, having the j th largest value of iu , 

),( Nj   is the Shapley value in regard to the associated fuzzy measure   on },...,2,1{ nN   for 

j th ordered positions, and ),()( Aj   is the Shapley value in regard to the fuzzy measure   on 

}ˆ,...,ˆ,ˆ{ 21 naaaA  for ),...,2,1(ˆ
( nja j ） . 

  However, if there is a tie between  ii au ˆ, and  jj au ˆ, with respect to order-inducing 

variables such that ji uu  , in this case, we replace second components of 2-tuple arguments  ii au ˆ,

and  jj au ˆ,  by their generalized geometric mean ))ˆ()ˆ((
1

2

1

2

1

ii aa 


 . If k  items are tied, we 

replace these by k  replicas of their generalized geometric mean. 

Theorem 8. With the operations of INNs, IGINSHGM operator (26) can be transformed into the 

following form. 
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Whose aggregated valued is also an INN. 

  Similar to the proof of the Theorem 1, it is easy to get the result. 

Remark 8. If   and   are both additive, then the IGINSHGM operator degenerates to the 

IGINHGM operator. 

Remark 9. If 1 , then the IGINSHGM operator reduces to the induced interval neutrosophic 

Shapley hybrid geometric mean (IINSHGM) operator. 
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Remark 10. If 2 , then the IGINSHGM operator degenerates to the induced interval neutrosophic 

Shapley hybrid quadratic geometric (IINSHQG) operator. 
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  From the above analysis, we can know that IGINSHGM operator is the generalized form of 

IGINHGM, IINSHGM and IINSHQG operators. 

  Similar to the IGINSHAA operator, we can prove that the IGINSHGM operator has idempotency, 

commutativity, monotonicity and boundedness. It is omitted here. 

5. An approach to MADM under interval neutrosophic environment

  For a MADM problem with interval neutrosophic information, in which the criteria are interactive, 

suppose },...,,{ 21 mAAAA   is a set of m  candidate alternatives, },...,,{ 21 nCCCC   is a set of 

n attributes. Assume 
nmijr  ][R is a decision matrix, where ],,[ ij

U
ij

L

ji TTr  ],,[ ij
U

ij
L II

]),[ ij
U

ij
L FF ;...,,2,1( mi  ),...,2,1 nj   is the attribute value expressed by the interval neutrosophic 

information for alternative 
i

A  with respect to attribute 
j

C , satisfying ],1,0[],[ ij
U

ij
L TT  

]1,0[],[],1,0[],[  ij
U

ij
L

ij
U

ij
L FFII , and 30  ij

U
ij

U
ij

U FIT . 

5.1. The models based on cross entropy for obtaining the optimal fuzzy measures 

  Due to time pressure, lack of knowledge, the expert’s limited expertise about the complex problems, 

the attribute weights are usually incompletely known [33]. Because the cross entropy is a very 

important method to obtain the weight vector [32,38,45], the models based on the cross entropy are 

respectively established to obtain the optimal fuzzy measures on the attribute set and on the ordered set. 

  Here, the Shapley values can overall reflects the correlations between criteria, and it is regarded as 

the criteria weights.  

  Firstly, we use the approach proposed by Zhang et al. [45] to obtain the optimal fuzzy measure   

on the attribute set C . Suppose ),...,,( 21

  nrrrR and ),...,,( 21

  nrrrR  represent the positive 

and negative ideal alternatives, respectively, where 

     

     ij
U

mi
ij

U

mi
ij

U

mi
ij

L

mi
ij

U

mi
ij

L

mi
j

ij
U

mi
ij

U

mi
ij

U

mi
ij

L

mi
ij

U

mi
ij

L

mi
j

FFIITTr

FFIITTr













111111

111111

max,max,max,max,min,min

min,min,min,min,max,max
(30) 

  We can get the performance of alternative iA  with respect to attribute jC  as follows. 








ijij

ij

ij
DD

D
D (31) 
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where 


ijD and 


ijD are the degrees of discriminations of 
iA  from positive ideal solution 



j
r  and 

form negative ideal solution 


jr with respect to attribute 
j

C , respectively. 

  If the criteria weights are incompletely known, according to the model established by Zhang et al. 

[45], we can construct the following model to obtain the optimal fuzzy measure   on the attribute 

C . 

















 





njWcC

FGCFGFG

C

ts

C
DD

D

j

j

j

m

i

n

j

c

ijij

ij

,...,2,1,)(

,,)()(

1)(,0)(

..

),(max
1 1









(32) 

where ),( C
jc  is the Shapley value of the attribute jC  with respect to the fuzzy measure  , 

),...,2,1( njWc j   is the known weight information. If the criteria weights are completely unknown 

),...,2,1()( njWcc
jj   in the above model should be omitted. 

  Then, we consider how to get the optimal fuzzy measure   on the ordered set },...,2,1{ nN  . if the 

weight information about ordered positions is partly known, the following model can be constructed to 

obtain the optimal fuzzy measure   on the ordered set N . 

















 





njWj

FGNFGFG

N

ts

N
DD

D

j

m

i

n

j

j

jiji

ji

,...,2,1,)(

,,)()(

1)(,0)(

..

),(max
1 1 )()(

)(









(33) 

where ),( Nj  is the Shapley value of the j th position with respect to the fuzzy measure  , and 

(.)  is a permutation on }N  for each mi ,...,2,1  such that 




 )()(

)(

jiji

ji

DD

D
is the j th largest value 

of 





ijij

ij

DD

D
. It should be noted that If the weight information for the ordered positions is completely 

unknown ),...,2,1()( njWj j   in the above model should be omitted. 

5.2. The decision procedure 

  According to above models and induced generalized interval neutrosophic Shapley hybrid operators, 

we propose a procedure to handle MADM problems in which the attribute values are in the form of 

INNs and the weight information for attributes and ordered positions are incompletely known. The 
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steps are given as follows. 

Step 1: Evaluate the alternatives with respect to the criteria to construct the interval neutrosophic 

matrix 
nmijr  ][R . 

Step 2: Utilize Eq. (31) to calculate performance of alternative ),...,2,1( miAi  with respect to 

attribute ),...,2,1( njC j  . 

Step 3: Utilize model (32) to obtain the optimal fuzzy measure   on the attribute C , and calculate 

their Shapley values. 

Step 4: Utilize model (33) to obtain the optimal fuzzy measure   on the ordered set N , and 

calculate their Shapley values. 

Step 5: Utilize IGINSHAA operator or IGINSHGM operator to determine comprehensive interval 

neutrosophic value 
ir

~  of each alternative ),,...,2,1( miAi  .  

Step 6: Utilize Definition 5 to construct the possibility matrix of the score function value. 

Step 7: Rank all the alternatives 
n

aaa ,...,,
21

by comparison rules of interval neutrosophic numbers, 

and select the best alternative(s). 

Step 8: End. 

6. An illustrative example

Let us consider the MADM problems with respect to a manufacturing company to evaluate the

global suppliers based on the core competencies of suppliers (adapted from Ref. [29]). Suppose there 

are four suppliers whose core competencies are evaluated by the following four attributes 

},,,{
4321

CCCCC  : the level of technology innovation )(
1

C ; the control ability of flow )(
2

C ; the 

ability of management )(
3

C ; and the level of service )(
4

C . The evaluated value of supplier 

)4,3,2,1( iAi with respect to )4,3,2,1( jC j can be expressed by interval neutrosophic 

number ],,[ ij
U

ij
L

ji
TTr  ]),[],,[ ij

U
ij

L
ij

U
ij

L FFII ;,...,2,1( mi  ),...,2,1 nj  . The interval 

neutrosophic matrix 
nmij

rR


 ][ is listed in Table 1. Assume that the importance of attributes is 

respectively given as ]025,2.0[],25.0,15.0[],4.0,3.0[ 121    and 4 [0.25,0.3].   Furthermore, 

the importance of the ordered positions is respectively defined by ],3.0,2.0[],2.0,1.0[ 21  ww  

]4.0,3.0[3 w  and 4 [0.2,0.3]w  . 

Table 1  interval neutrosophic decision matrix 

1C  2C  3C  4C  

1A  
]5.0,2.0[],3.0,2.0[],5.0,3.0[[ ]5.0,3.0[],3.0,1.0[],5.0,3.0[ ]3.0,1.0[],2.0,1.0[],6.0,5.0[ ]3.0,2.0[],4.0,2.0[],5.0,3.0[

2A  
]4.0,3.0[],2.0,1.0[],5.0,4.0[ ]5.0,3.0[],2.0,1.0[],4.0,2.0[ ]2.0,1.0[],2.0,1.0[],7.0,6.0[ ]4.0,2.0[],4.0,3.0[],5.0,4.0[

3A
 

]3.0,2.0[],2.0,1.0[],5.0,3.0[ ]5.0,3.0[],2.0,1.0[],5.0,3.0[ ]3.0,2.0[],4.0,2.0[],6.0,4.0[ ]3.0,1.0[],2.0,1.0[],7.0,6.0[

4A  
]3.0,2.0[],3.0,2.0[],6.0,4.0[ ]5.0,3.0[],3.0,2.0[],4.0,2.0[ ]3.0,2.0[],2.0,1.0[],7.0,5.0[ ]3.0,1.0[],2.0,1.0[],7.0,5.0[

6.1. The evaluation steps by IGINSHAA operator 

Step 1: Utilize Eq. (31) to calculate performance of alternative 
i

A  with respect to attribute 
j

C . We 
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can get 




























9759.06994.00000.06951.0

0000.10000.00000.18043.0

0230.00000.15886.05922.0

0567.07244.07709.00659.0

ijij

ij

DD

D
 

Step 2: Utilize model (32) to obtain the optimal fuzzy measures on the attribute set C , the 

programming model is shown as follows. 





















[0.25,0.3])(,[0.2,0.25])(],[0.15,0.25)([0.3,0.4],)(

},,,{,)()(

0)(1),,,(

2.24908)),(-),(0.04752(-

)),(-),(0.01385()),(-),(0.00312()),,(-)(0.06448(-

)),,(-)(0.05824()),,(-)(0.03679()),,(-)(-0.03055(max

4321

4321

4321

3241

423143213214

421343124321

cccc

FGccccGFFG

cccc

cccc

cccccccccccc

cccccccccccc













Solving this above model by Lingo software, we can get 

1),,,(),,(),,(),(,2.0),(),()()()(

,3.0),,(),,(),(),(),()(

432143232,1324342432

4314214131211





ccccccccccccccccccc

ccccccccccccc





By Eq. (21), we can obtain the following attribute Shapley values 

0625.0),(,4208.0),(,4208.0),(,0958.0),(
4321

 CCCC cccc 

Step 3: Utilize model (33) to obtain the optimal fuzzy measure   on the ordered set },...,2,1{ nN  , 

the programming model is shown as follows. 





















[0.2,0.3])4([0.3,0.4],)3([0.2,0.3],)2([0.1,0.2],)1(

}4,3,2,1{,)()(

0)(1)4,3,2,1(

2.24908))3,2(-)4,1(0.11194(-

))4,2(-)3,1(0.23375())4,3(-)2,1(0.37744())3,2,1(-)4(0.72313(-

))4,2,1(-)3(0.03175(-))4,3,1(-)2(0.25563())4,3,2(-)1(0.49925(max













FGFGGG

c

Solving this above model by Lingo software, we can obtain 

.1)4,3,2,1()3,2,1()4,2,1()2,1(

,3.0)4,3,2()43,1()4,3()4,2()3,2()3,1()3()2(

,2.0)4,1()4()1(













，  

By Eq. (21), we get the following position Shapley values 

0500.0),(,1000.0),(,4500.0),(,4000.0),( 4321  NNNN 

Step 4: Utilize the IGINSHAA operator to get the comprehensive interval neutrosophic value 
ir

~ of 

each alternative ),,...,2,1( miA
i
 . (suppose 1 ) , we can get 









]3135.0,1929.0[],2104.0,1091.0[],6780.0,4757.0[~
]3742.0,1766.0[],2133.0,1066.0[],6073.0,4583.0[~
]2633.0,1452.0[],2017.0,1013.0[],6315.0,5179.0[~
]3834.0,1687.0[],2444.0,1024.0[],5539.0,4106.0[~

4

3

2

1

r

r

r

r

Step 5: Utilize Definition 5 to construct the possibility matrix of the score function value, we can get. 
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

















5.05757.04273.06419.0

4243.05.03454.05679.0

5727.06546.05.07237.0

3581.04321.02763.05.0

Step 6: Get the order of the alternatives, we have. 

1342
aaaa 

Thus, the best alternative is
2

a . 

6.2. The evaluation steps by IGINSHGM operator 

Step 1-Step 3: See the above Step 1- Step 3. 

Step 4: Utilize the IGINSHGM operator to get comprehensive interval neutrosophic value 
ir

~ of each 

alternative ),,...,2,1( miAi  . (suppose 1 ), we can get 









]3199.0,1996.0[],2132.0,1132.0[],6631.0,4581.0[~
]3948.0,2054.0[],2210.0,1098.0[],5882.0,4158.0[~
]2968.0,1732.0[],2028.0,1027.0[],6011.0,4658.0[~
]4045.0,2004.0[],2515.0,1036.0[],5488.0,3895.0[~

4

3

2

1

r

r

r

r

Step 5: Utilize Definition 5 to construct the possibility matrix of the score function value, we can get. 



















5.06127.04898.06585.0

3873.05.03687.05480.0

5102.06313.05.06789.0

3415.04520.03202.05.0

Step 6: Get the order of the alternatives, we have. 

1342 aaaa 

Thus, the best alternative is 
2

a . 

6.3 Analysis the influence of the parameter   

  In order to demonstrate the influence of the parameter   on decision making results, we use the 

different values   in IGINSHAA operator and IGINSHGM operator to rank the alternatives. The 

ranking results are listed in Table 2. 

  As we can see from Table 2, the ranking results of the alternatives are different for the different 

values   in IGINSHAA and IGINSHGM operators. But the best alternative from the different values 

 is the same in IGINSHAA operator. Thus, the individual or organization can properly select the

favorable alternative in terms of his interest and the actual needs. In general, we can get 1 . 

Table 2  Ordering of the alternatives by utilizing the 

different   in IGINSHAA and IGINSHGM operators 

  Ranking by IGINSHAA operator Ranking by IGINSHGM operator 

2
1

1342
aaaa  1324 aaaa 

1  1342
aaaa 

1342
aaaa 

2 1342
aaaa 

1342
aaaa 

5  
1342

aaaa  3124 aaaa 
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10 1432 aaaa  3124 aaaa 

6.4. Comparison with the exiting methods 

  In order to demonstrate the practicality and effectiveness of the developed method in this paper, we 

can compare the proposed method with the existing method proposed by Zhang et al. [47]. The steps 

are shown as follows. 

Step 1: Utilize the maximization deviation method to determine the attribute weights, the model is 

established as follows. 











[0.25,0.3])(,[0.2,0.25])(],[0.15,0.25)([0.3,0.4],)(

1)()()()(

)(5471.1)(1132.1)(7587.0)(0699.1max

4321

4321

4321

cwcwcwcw

cwcwcwcw

cwcwcwcw

Solving this above model by Lingo software, we obtain 

3.0)(,25.0)(,15.0)(,3.0)( 4321  cwcwcwcw  

Step 2: Identify the positive ideal solution and negative ideal solution, we get 

           

            
           

            4.0,2.0,4.0,3.0,5.0,3.0,3.0,2.0,4.0,2.0,6.0,4.0

,5.0,3.0,3.0,2.0,4.0,2.0,5.0,3.0,3.0,2.0,5.0,3.0ˆ

3.0,1.0,2.0,1.0,7.0,6.0,2.0,1.0,2.0,1.0,7.0,6.0

,5.0,3.0,2.0,1.0,5.0,3.0,3.0,2.0,2.0,1.0,6.0,4.0ˆ









r

r

Step 3: Determine the distance between each alternative and the positive ideal and negative ideal 

solutions, respectively, we get 

   1114.0,1034.0,0808.0,0672.00595.0,0527.0,0818.0,1118.0   DD

Step 4: Determine the closeness coefficient of each alternative to the ideal solution, we get 

6518.0,6625.0,4967.0,3753.0 4321  CCCCCCCC

Step 5: According to the relative closeness coefficient
iCC  )4,3,2,1( i , get the order of the 

alternatives,  

1243 aaaa 

So, the best alternative is the
3a . 

  From above analysis, we can see that the ranking results by the proposed methods in this paper are 

different to that obtained by the existing method. The reason may be that the existing method could not 

weight the input arguments’ positions and capture their interrelationship, which may result in the 

unreasonable ranking results. However, the method proposed in this paper can effectively handle the 

interval neutrosophic MADM problems in which attribute and ordered position weights are 

incompletely known, and attributes exist correlative. So, we think the method developed in this paper is 

more suitable to handle this application example. 

7. Conclusion

This paper developed an approach to interval neutrosophic MADM with interactive conditions and

incomplete weight information. To get the comprehensive values, two types of interval neutrosophic 

hybrid aggregation operators are introduced. One is based on additive measures which could consider 

the importance of the aggregated interval neutrosophic arguments and their ordered positions, the other 

utilizes the Shapley function in regard to fuzzy measures which considers the importance of the 
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aggregated interval neutrosophic arguments and their ordered positions but also captures their 

interrelationship. To get the weight information, the programming models based on cross entropy are 

established. 

  It should be mentioned that the fuzzy measures can well process the situations where the input 

arguments are correlative, but they are determined by ascertaining 22 n  parameters for n  criteria. 

To reduce the complexity of calculating the fuzzy measures on the given set, it shall be significant to 

research some special kinds of fuzzy measures, such as  -fuzzy measures, k -additive measure 

and p -symmetry measures. 

Acknowledgment 

This paper is supported by the National Natural Science Foundation of China (Nos. 71471172 and 

71271124), the Special Funds of Taishan Scholars Project of Shandong Province, National Soft Science 

Project of China (2014GXQ4D192), the Humanities and Social Sciences Research Project of Ministry 

of Education of China (No. 13YJC630104), Shandong Provincial Social Science Planning Project (No. 

15BGLJ06). The authors also would like to express appreciation to the anonymous reviewers and 

Editors for their very helpful comments that improved the paper. 

References 

[1] Atanassov, K.T., Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1) (1986) 87-96.  

[2] Bausys, R., Zavadskas, E.K., Kaklauskas, A., Application of Neutrosophic Set to Multicriteria 

Decision Making by COPRAS, Economic Computation and Economic Cybernetics Studies and 

Research 49 (2) (2015) 9l-105. 

[3] Biswas, P., Pramanik, S., Bibhas, C.G., Entropy Based Grey Relational Analysis Method for 

Multi-Attribute Decision Making under Single Valued Neutrosophic Assessments, Neutrosophic 

Sets and Systems 2 (2014) 102-110. 

[4] Biswas, P., Pramanik, S., Bibhas, C.G., TOPSIS method for multi-attribute group decision-making 

under single-valued neutrosophic environment, Neural Computing and Applications (2015), 

Springer London, DOI:10.1007/s00521-015-1891-2. 

[5] Broumi, S., Smarandache, F., New distance and similarity measures of interval neutrosophic sets, 

Information Fusion, on 2014 17th International Conference (2014) 1-7. 

[6] Chakraborty, S., Zavadskas, E.K., Antucheviciene, J., Applications of WASPAS Method as a 

Multi-Criteria Decision-Making Tool, Economic Computation and Economic Cybemetics Studies 

and Research 49 (l) (2015) 5-22. 

[7] Chi, P.P., Liu, P.D., An extended TOPSIS method for the multiple attribute decision making 

problems based on interval neutrosophic set, Neutrosophic Sets and Systems 1 (2013) 63-70. 

[8] Deli, I., Broumi, S., Ali, M., Neutrosophic Soft Multi-Set Theory and Its Decision Making, 

Neutrosophic Sets and Systems 5 (2014) 65-76. 

[9] Dyckhoff, H., Pedrycz, W., Generalized means as model of compensative connectives, Fuzzy Sets 

and Systems, 14 (2) (1984) 143-154. 

[10] Gau, W.L., Buehrer, D.J., Vague sets, IEEE Transactions on Systems, Man, and Cybernetics, Part 

B: Cybernetics 23 (1993) 610-614. 

[11] Lin, J., Divergence measures based on Shannon entropy, IEEE transactions on information theory 

37 (1) (1991) 145-151. 

http://link.springer.com/journal/521
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Broumi,%20S..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Smarandache,%20F..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6900113
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6900113


22 

[12] Lin, J., Jiang, Y., Some hybrid weighted averaging operators and their application to decision 

making, Information Fusion 16 (2014) 18-28. 

[13] Liu, P.D., Wang, Y.M., Multiple attribute decision making method based on single-valued 

neutrosophic normalized weighted Bonferroni mean, Neural Computing and Applications, 25 (7-8) 

(2014) 2001-2010. 

[14] Majumdar, P., Samanta, S.K., On similarity and entropy of neutrosophic sets, Journal of Intelligent 

and Fuzzy Systems 26 (3) (2014) 13 pages. 

[15] Meng, F.Y., Tan, C.Q., Zhang, Q., The induced generalized interval-valued intuitionistic fuzzy 

hybrid Shapley averaging operator and its application in decision making, Knowledge-Based 

Systems 42 (2013) 9-19. 

[16] Merigo, J.M., Casanovas, M., The induced generalized hybrid averaging operator and its 

application in financial decision making, International Journal of Business, Economics, Finance 

and Management Sciences 2 (2009) 95-101. 

[17] Mondal, K., Pramanik, S., Neutrosophic Decision Making Model of School Choice, Neutrosophic 

Sets and Systems 7 (2015) 62-68. 

[18] Mondal K., Pramanik, S., Rough Neutrosophic Multi-Attribute Decision-Making Based on Rough 

Accuracy Score Function, Neutrosophic Sets and Systems 8 (2015) 14-21. 

[19] Mukherjee, A., Sarkar, S., A new method of measuring similarity between two neutrosophic soft 

sets and its application in pattern recognition problems, Neutrosophic Sets and Systems 8 (2015) 

63-68. 

[20] Pătraşcu, V., The Neutrosophic Entropy and its Five Components, Neutrosophic Sets and Systems 

7 (2015) 40-46. 

[21] Peng, J.J., Wang, J.E., Zhang, H.Y., Chen, X.H., An outranking approach for multi-criteria 

decision-making problems with simplified neutrosophic sets, Applied Soft Computing 25 (2014) 

336-346.

[22] Salama, A.A., Smarandache, F., Eisa, M., Introduction to Image Processing via Neutrosophic 

Techniques, Neutrosophic Sets and Systems 5 (2014) 59-64. 

[23] Shang, X.G., Jiang, W.S., A note on fuzzy information measures, Pattern Recognition Letters 18 (5) 

(1997) 425-432.  

[24] Shapley, L.S., A Value for n-person Game, Princeton University Press, Princeton, 1953. 

[25] Smarandache, F., Neutrosophy. Neutrosophic Probability, Set, and Logic, American Research 

Press, Rehoboth, 1998. 

[26]Smarandache, F., n-Valued Refined Neutrosophic Logic and Its Applications in Physics, Progress 

in Physics 4 (2013) 143-146.  

[27] Sugeno, M., Theory of fuzzy integral and its application, Doctorial Dissertation, Tokyo Institute of 

Technology (1974). 

[28] Sun, H.X., Yang, H.X., Wu, J.Z., and Ouyang, Y., Interval neutrosophic numbers Choquet integral 

operator for multi-criteria decision making, Journal of Intelligent & Fuzzy Systems, 28 (6) (2015) 

2443-2455. 

[29] Tan, C.Q., Wu, D.S.D., Ma, B.J., Group decision making with linguistic preference relations with 

application to supplier selection,Expert Systems with Applications 38 (12) (2011) 14382-14389. 

[30] Wang, H., Smarandache, F., Zhang, Y.Q., Sunderraman, R., Interval Neutrosophic Sets and Logic: 

Theory and Applications in Computing, Hexis, Phoenix, Ariz, USA, 2005. 

[31] Wang, H., Smarandache, F., Zhang, Y.Q., Sunderraman, R., Single valued neutrosophic sets, 

http://link.springer.com/journal/521
http://content.iospress.com/journals/journal-of-intelligent-and-fuzzy-systems
http://content.iospress.com/journals/journal-of-intelligent-and-fuzzy-systems
http://www.sciencedirect.com/science/journal/01678655
http://www.sciencedirect.com/science/article/pii/S0957417411005525
http://www.sciencedirect.com/science/article/pii/S0957417411005525
http://www.sciencedirect.com/science/journal/09574174
http://www.sciencedirect.com/science/journal/09574174/38/12


23 

Multispace and Multistructure 4 (2010) 410-413. 

[32] Xia, M.M., Xu, Z.S., Entropy/cross entropy-based group decision making under intuitionistic 

fuzzy environment, Inf Fusion 13 (2012) 31-47. 

[33] Xu, Z.S., A method for multiple attribute decision making with incomplete weight information in 

linguistic setting, Knowledge-Based Systems 20 (8) (2007 ) 719-725. 

[34] Xu, Z.S., Da, Q.L., An overview of operators for aggregating information, International Journal of 

Intelligent Systems 18 (2003) 953-969. 

[35] Yager, R.R., Filev, D.P., Induced ordered weighted averaging operators, IEEE Transactions on 

Systems, Man Cybernetics 29 (2) (1999) 141-150. 

[36] Ye, J., A multicriteria decision-making method using aggregation operators for simplified 

neutrosophic sets, Journal of Intelligent and Fuzzy Systems 26 (2014) 2459-2466. 

[37] Ye, J., An extended TOPSIS method for multiple attribute group decision making based on single 

valued neutrosophic linguistic numbers, Journal of Intelligent & Fuzzy Systems 23 (1) (2015) 

247-255.

[38] Ye, J., Fuzzy cross entropy of interval-valued intuitionistic fuzzy sets and its optimal decision 

making method based on the weights of alternatives, Expert Systems Applications 38 (2011) 

6179-6183. 

[39] Ye, J., Multiple attribute decision-making method based on the possibility degree ranking method 

and ordered weighted aggregation operators of interval neutrosophic numbers, Journal of 

Intelligent and Fuzzy Systems 28 (2015) 1307-1317. 

[40] Ye, J., Single valued neutrosophic cross-entropy for multicriteria decision making problems, 

Applied Mathematical Modelling 38 (2014) 1170-1175. 

[41] Ye, S., Fu, J., Ye., J, Medical Diagnosis Using Distance-Based Similarity Measures of Single 

Valued Neutrosophic Multisets, Neutrosophic Sets and Systems 7 (2015) 47-52. 

[42] Ye, S., Ye, J., Dice Similarity Measure between Single Valued Neutrosophic Multisets and Its 

Application in Medical Diagnosis, Neutrosophic Sets and Systems 6 (2014) 49-54. 

[43] Zadeh, L.A., Fuzzy sets, Information and Control 8(3) (1965) 338-353. 

[44] Zavadskas, E.K., Bauiys, R.B., Lazauskas, M., Rosen, M.A., Sustainable Assessment of 

Alternative Sites for the Construction of a Waste Incineration plant by Applying WASPAS Method 

with Single-Valued Neutrosophic Set, Sustainability 7 (12) (2015) 15923-15936. 

[45] Zhang, H.M., Yu, L.Y., MADM method based on cross entropy and extended TOPSIS with 

interval-valued intuitionistic fuzzy sets, Knowledge-Based Systems 30 (2012) 115-120. 

[46] Zhang, H.Y., Wang, J.Q., Chen, X.H., Interval Neutrosophic Sets and Their Application in 

Multicriteria Decision Making Problems, The Scientific World Journal 2014 (2014) 1-15, DOI: 

10.1155/2014-943645953. 

I

n

t

r

o

d

u

c

t

i

o

n

t

o

[47] Zhang, Z.M., Wu, C., A novel method for single-valued neutrosophic multi-criteria decision 

making with incomplete weight information, Neutrosophic Sets and Systems 4 (2014) 35-49. 

http://www.sciencedirect.com/science/article/pii/S0950705106001754
http://www.sciencedirect.com/science/journal/09507051
http://www.sciencedirect.com/science/journal/09507051/20/8

