Fusion of Masses Defined on Infinite Countable Frames of Discernment

Florentin Smarandache
University of New Mexico, Gallup, USA
Arnaud Martin
ENSIETA, Brest, France

Abstract.

In this paper we introduce for the first time the fusion of information on infinite discrete frames of discernment and we give general results of the fusion of two such masses using the Dempster's rule and the PCR5 rule for Bayesian and non-Bayesian cases.

Introduction.

Let $\theta=\left\{x_{1}, x_{2}, \ldots, x_{i}, \ldots x_{\infty}\right\}$ be an infinite countable frame of discernment, with $x_{i} \cap x_{j}=\Phi$ for $i \neq j$, and $m_{1}(\cdot), m_{2}(\cdot)$ two masses, defined as follows:

$$
m_{1}\left(x_{i}\right)=a_{i} \in[0,1] \text { and } m_{2}\left(x_{i}\right)=b_{i} \in[0,1] \text { for all } i \in\{1,2, \ldots, i, \ldots \infty\},
$$

such that

$$
\sum_{i=1}^{\infty} m_{1}\left(x_{i}\right)=1 \text { and } \sum_{i=1}^{\infty} m_{2}\left(x_{i}\right)=1
$$

therefore $m_{1}(\cdot)$ and $m_{2}(\cdot)$ are normalized.

Bayesian masses.

1. Let's fusion $m_{1}(\cdot)$ and $m_{2}(\cdot)$, two Bayesian masses:

	x_{1}	x_{2}	\ldots	x_{i}	\ldots	x_{j}	\ldots	x_{∞}	$\Phi($ conflicting mass)
m_{1}	a_{1}	a_{2}	\ldots	a_{i}	\ldots	a_{j}	\ldots.		
m_{2}	b_{1}	b_{2}	\ldots	b_{i}	\ldots	b_{j}	\ldots.		
$m_{12} a_{1} b_{1}$	$a_{2} b_{2}$	\ldots	$a_{i} b_{i}$	\ldots	$a_{j} b_{j}$	\ldots.	$1-\sum_{i=1}^{\infty} a_{i} b_{i}$		

where $m_{12}(\cdot)$ represents the conjunctive rule fusion of $m_{1}(\cdot)$ and $m_{2}(\cdot)$.
a) If we use Dempster's rule to normalize $m_{12}(\cdot)$, we need to divide each $m_{12}\left(x_{i}\right)$ by the sum of masses of all non-null elements, and we get:

$$
m_{12 D S}\left(x_{i}\right)=\frac{a_{i} b_{i}}{\sum_{i=1}^{\infty} a_{i} b_{i}},
$$

for all i.
b) Using $P C R_{5}$ the redistribution of the conflicting mass $a_{i} b_{j}+b_{i} a_{j}$ between x_{i} and x_{j} (for all $j \neq i$) is done in the following way:

$$
\frac{\alpha_{i}}{a_{i}}=\frac{\alpha_{j}}{b_{j}}=\frac{a_{i} b_{j}}{a_{i}+b_{j}} \text {, whence } \alpha_{i}=\frac{a_{i}^{2} b_{j}}{a_{i}+b_{j}}
$$

and

$$
\frac{\beta_{i}}{b_{i}}=\frac{\beta_{j}}{a_{j}}=\frac{b_{i} a_{j}}{b_{i}+a_{j}} \text {, whence } \beta_{i}=\frac{b_{i}^{2} a_{j}}{b_{i}+a_{j}} \text {. }
$$

Therefore

$$
m_{12 P C R_{5}}\left(x_{i}\right)=a_{i} b_{i}+\sum_{\substack{j=1 \\ j \neq i}}^{\infty}\left(\frac{a_{i}^{2} b_{j}}{a_{i}+b_{j}}+\frac{a_{j} b_{i}^{2}}{a_{j}+b_{i}}\right),
$$

for all i.

Non-Bayesian masses.

2. Let's consider two non-Bayesian masses $m_{3}(\cdot)$ and $m_{4}(\cdot)$:

where $m_{3}\left(x_{i}\right)=c_{i} \in[0,1]$ for all i, and $m_{3}(\theta)=C \in[0,1]$,
and $\quad m_{4}\left(x_{i}\right)=d_{i} \in[0,1]$ for all i, and $m_{4}(\theta)=D \in[0,1]$,
such that $m_{3}(\cdot)$ and $m_{4}(\cdot)$ are normalized:

$$
\begin{aligned}
& C+\sum_{i=1}^{\infty} c_{i}=1 \text { and } D+\sum_{i=1}^{\infty} d_{i}=1 \\
& m_{34}\left(x_{i}\right)=c_{i} d_{i}+c_{i} D+C d_{i} \quad \text { for all } i \in\{1,2, \ldots, \infty\}, \text { and } m_{34}(\theta)=C \cdot D, \text { where } m_{34}(\cdot)
\end{aligned}
$$

represents the conjunctive combination rule.
a) If we use the Dempster's rule to normalize, we get:

$$
m_{34 D S}\left(x_{i}\right)=\frac{c_{i} d_{i}+c_{i} D+C d_{i}}{C D+\sum_{i=1}^{\infty}\left(c_{i} d_{i}+c_{i} D+C d_{i}\right)}
$$

for all i,
and

$$
m_{34 D S}(\theta)=\frac{C D}{C D+\sum_{i=1}^{\infty}\left(c_{i} d_{i}+c_{i} D+C d_{i}\right)} .
$$

b) If we use $P C R_{5}$, we similarly transfer the conflicting mass as in the previous 1.b) case, and we get:

$$
m_{34 P C R_{5}}\left(x_{i}\right)=c_{i} d_{i}+c_{i} D+C d_{i i}+\sum_{\substack{j=1 \\ j \neq i}}^{\infty}\left(\frac{c_{i}^{2} d_{j}}{c_{i}+d_{j}}+\frac{c_{j} d_{i}^{2}}{c_{j}+d_{i}}\right)
$$

for all i, and $\quad m_{34 P C R_{5}}(\theta)=C \cdot D$

Numerical Examples.

We consider infinite positive geometrical series whose ratio $0<r<1$ as masses for the sets $x_{1}, x_{2}, \ldots, x_{\infty}$, so the series are congruent:

If $P_{1}, P_{2}, \ldots, P_{n} \ldots$ is an infinite positive geometrical series whose ratio $0<r<1$, then

$$
\sum_{i=1}^{\infty} P_{i}=\frac{P_{1}}{1-r}
$$

Example 1 (Bayesian).

Let $m_{1}\left(x_{i}\right)=\frac{1}{2^{i}}$ for all $i \in\{1,2, \ldots ., \infty\}$.

$$
\sum_{i=1}^{\infty} m_{1}\left(x_{i}\right)=\sum_{i=1}^{\infty} \frac{1}{2^{i}}=\frac{\frac{1}{2}}{1-\frac{1}{2}}=1
$$

since the ratio of this infinite positive geometric series is $\frac{1}{2}$.
And $m_{2}\left(x_{i}\right)=\frac{2}{3^{i}}$ for all $i \in\{1,2, \ldots, \infty\}$

$$
\sum_{i=1}^{\infty} m_{2}\left(x_{i}\right)=\sum_{i=1}^{\infty} \frac{2}{3^{i}}=\frac{\frac{2}{3}}{1-\frac{1}{3}}=1
$$

since the ratio of this infinite positive geometric series is $\frac{1}{3}$.

	x_{1}	x_{2}	\cdots	x_{i}	\ldots	x_{j}	\ldots	x_{∞}	Φ
m_{1}	$\frac{1}{2}$	$\frac{1}{2^{2}}$	\cdots	$\frac{1}{2^{i}}$	\cdots	$\frac{1}{2^{j}}$	$\cdots \cdots \cdots$		
m_{2}	$\frac{2}{3}$	$\frac{2}{3^{2}}$	\cdots	$\frac{2}{3^{i}}$	\cdots	$\frac{2}{3^{j}}$	$\cdots \cdots \cdots$		
m_{12}	$\frac{2}{6}$	$\frac{2}{6^{2}}$	\cdots	$\frac{2}{6^{i}}$	\cdots	$\frac{2}{6^{j}}$	$\ldots \ldots \ldots$	$1-\sum_{i=1}^{\infty} \frac{2}{6^{i}}=1-\frac{\frac{2}{6}}{1-\frac{1}{6}}=\frac{3}{5}$	

$m_{12}(\cdot)$ is the conjunctive rule.
a) Normalizing with the Dempster's we get:

$$
m_{12 D S}\left(x_{i}\right)=\frac{\frac{2}{6^{i}}}{\sum_{i=1}^{\infty} \frac{2}{6^{i}}}=\frac{\frac{2}{6^{i}}}{\frac{\frac{2}{6}}{1-\frac{1}{6}}}=\frac{2}{6^{i}} \cdot \frac{5}{2}=\frac{5}{6^{i}}
$$

for all i.
b) Normalizing with $P C R_{5}$ we get:

Example 2 (non-Bayesian).

Let $m_{3}\left(x_{i}\right)=\frac{1}{3^{i}}$ for all $i \in\{1,2, \ldots ., \infty\}$, and $m_{3}(\theta)=\frac{1}{2}$.

$$
m_{3}(\theta)+\sum_{i=1}^{\infty} m_{3}\left(x_{i}\right)=\frac{1}{2}+\sum_{i=1}^{\infty} \frac{1}{3^{i}}=\frac{1}{2}+\frac{\frac{1}{3}}{1-\frac{1}{3}}=1,
$$

so $m_{3}(\cdot)$ is normalized.
And $m_{4}\left(x_{i}\right)=\frac{1}{4^{i}}$ for all i, and $m_{4}(\theta)=\frac{2}{3}$.

$$
m_{4}(\theta)+\sum_{i=1}^{\infty} m_{4}\left(x_{i}\right)=\frac{2}{3}+\sum_{i=1}^{\infty} \frac{1}{4^{i}}=\frac{2}{3}+\frac{\frac{1}{4}}{1-\frac{1}{4}}=1,
$$

so $m_{4}(\cdot)$ is normalized.

a) Normalizing with Dempster's rule we get:

$$
m_{34 D S}\left(x_{i}\right)=\frac{33}{25}\left(\frac{1}{12^{i}}+\frac{2}{3^{i+1}}+\frac{1}{2 \cdot 4^{i}}\right)
$$

for all i,
and

$$
m_{34 D S}(\theta)=\frac{33}{25} \cdot \frac{1}{6}=\frac{33}{150} .
$$

b) Normalizing with $P C R_{5}$ we get

$$
m_{34 P C R_{5}}\left(x_{i}\right)=\frac{1}{12^{i}}+\frac{2}{3^{i+1}}+\frac{1}{2 \cdot 4^{i}}+\sum_{\substack{j=1 \\ j \neq i}}^{\infty}\left(\frac{\frac{1}{3^{2 i}} \cdot \frac{1}{4^{j}}}{\frac{1}{3^{i}}+\frac{1}{4^{j}}}+\frac{\frac{1}{3^{j}} \cdot \frac{1}{4^{2 i}}}{\frac{1}{3^{j}}+\frac{1}{4^{i}}}\right)
$$

for all i,
and

$$
m_{34 P C R_{5}}(\theta)=\frac{1}{6} .
$$

References:

1-3. F. Smarandache, J. Dezert, Advances and Applications of DSmT for Information Fusion, Vols. 1-3, AR Press, 2004, 2006, and respectively 2009.

