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Abstract: From a real case application based on snow-avalanche
risk management, an integrated framework mixing evidential reason-
ing and multi-criteria decision analysis (ER-MCDA) is proposed.
This methodology considers a simplified decision sorting problem
based on qualitative and quantitative criteria on which more or less
reliable sources provide uncertain and imprecise evaluations. The
Analytical Hierarchy Process (AHP) is used both to model the prob-
lem in a conceptual way and to elicit preferences between key criteria.
Fuzzy Sets and Possibilities theories are used to transform quanti-
tative and qualitative criteria into a common frame for Dempster-
Shafer Theory (DST) and Dezert-Smarandache Theory (DSmT). It
is shown that DSmT offers an interesting framework to take incom-
plete information into account and we use it for decision-making.
Evidential reasoning allows merging different uncertain and incom-
plete pieces of information to identify the sensitivity of an avalanche
prone area and to determine an avalanche hazard map. This ap-
proach emphasizes some implementation guidelines based on a Uni-
fied Modeling Language (UML) of the problem. We point out also
some important issues of information fusion such as basic belief as-
signment elicitation, conflict identification, fusion rules choice and
results validation.

565



566 Chapter 23: Information fusion for natural hazards in mountains

23.1 Introduction

23.1.1 Natural hazards in mountains

How and why expertise is needed in the risk management process?

Natural hazards in mountains such as snow avalanches or floods threaten hu-
man or material stakes with sometimes dramatic consequences including damages for
people and material assets (see Fig. 23.1).

Figure 23.1: Examples of natural hazards in mountains.

The effects of physical phenomenon on existing stakes such buildings, persons,
infrastructures are cross-analyzed with their temporal occurrence. In a classical
way, risk can be considered as a combination of Hazard level and Vulnerability (see
Fig. 23.2):
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• Hazard level represents the physical effects of a natural phenomenon de-
scribed through its intensity and frequency. This produces a hazard level factor
mixing frequency and intensity. For a snow avalanche, the effects can be snow
deposition, impacts of avalanche and/or blocks, trees carried by the flow, etc.
For debris flows, the effects can be the static and/or dynamic pressure due to
the height of fluid, the impacts of blocks, etc. The more intense and frequent
is the phenomenon, the higher will be the hazard level. A same hazard level
can be due either to a very frequent phenomenon with low-medium intensity
or to a rare event with high intensity (potential effects);

• Vulnerability represents the consequences due to the direct physical or indi-
rect effects of the phenomenon on people, material assets, organization. These
consequences correspond to losses or damages which are first described in a
physical way and then valuated according to their economic value for material
assets and evaluate a risk level.

Figure 23.2: Risk is a combination of hazard and vulnerability.

Risk management can be also viewed as a decision process : in a given situation,
several strategies do exist to reduce the level of risk [Tacnet and Richard 2008].
Prioritization and choice have always to be done by the decision-makers (ministries,
local authorities, private companies or technical staff involved in risk management).
The risk management process can be considered as a combination of decisions related
both to the temporal steps of the physical process and to the functional steps of
the risk management framework in itself. Therefore, decision support systems are
helpful to propose synthesis of the different criteria involved in the decision. To a
certain extent, the decision process when it dysfunctions can also induce disasters
[Weichselgartner and Bertens 2000].
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23.1.2 Experts are expected to manage and integrate the
overall uncertainty

In a natural hazard context, the practical implementation of these principles will con-
cern approaches going from physical phenomenon description (the risk analysis) to
risk evaluation and management. Risk analysis begins with the hazard assessment. It
requires first to identify the phenomena and the physical processes such as triggering,
propagation and deposition. These processes correspond to the successive temporal
steps of phenomena. This begins with a qualitative description of the different phe-
nomenon that have already occurred or that may occur in the risk basin. For each
step, different characteristics related to the possible effects are analyzed by the ex-
perts. For avalanche risk analysis, experts collect and choose parameters that are used
to define the intensity and characteristics of the reference phenomena: the expertise
process can be seen as a serial of decisions related to the different parameters (see
Fig. 23.3). In a second step, frequency of the phenomena is evaluated. Data sources
are historical information, pictures, hydrological chronicles, topographic information.
Risk analysis consists afterwards in the estimation of consequences on exposed people
and assets.

All over this expertise process, uncertainty arises both from expert basic knowl-
edge of the different phenomena, the intermediate tools such as models, the expert
evaluations for data collection and finally from the decision step. In most of cases,
choosing limits on continuous physical values does not make much sense: if a natural
slope is supposed to highly contribute to the sensitivity level of an exposed site and
if its inclination is over 30%, what should we think of a 28% slope? Reasoning on
classes with artificial thresholds does not correspond to the reality. In the natural
hazards risk management context, there is a great need for tools and methodologies
that allow considering both uncertain and imprecise information. Specific needs and
developments about uncertainty in natural hazards risk management processes con-
cern floods [Apel et al. 2004, Van Der Most and Wehrung 2005], rock-falls in relation
with spatial data accuracy [Dorren and Heuvelink 2004], debris-flows [Lin et al., 2004]
or snow-avalanches [Barbolini and Savi 2001].
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This justifies the development of general framework to consider decision and un-
certainty.

Figure 23.3: Expertise required during the hazard analysis step.

The problem complexity requires using different approaches to analyze the risk
situation: descriptive and qualitative approaches are used as well as numerical mod-
eling. In many cases, they must be considered as complementary [Ancey 2006]. In-
volving experts whose backgrounds, methods are different is as useful as necessary to
capture all the complexity of the studied phenomena [Lacroix 2006]. Natural hazards
expertise consists in a complex framework involving several decision levels based on
incomplete and uncertain information (see Fig. 23.4). Expertise is required to fill
the gap between the needs and the available knowledge. This lack of knowledge can
exist at different stages of the risk management process and can be due to incom-
plete historical information describing the extension area [Tacnet et al. 2006], lack of
scientific knowledge, unknown phenomenon scenarios but also to insufficient means
(time,money) for risk analysis and evaluation, etc.
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Figure 23.4: The uncertainty comes from the different steps of the expertise.

Expertise is therefore the result of multiple thematic evaluations based on more
or less reliable and conflicting sources. All the different steps of the expertise are
based on uncertainties that will influence the final result. At the end, the whole
expertise process appears as a sequential process ranging from primary and more or
less uncertain data to the processed data (or decision) is quite difficult to trace in a
detailed way. It is therefore possible to settle decision on very uncertain hypothesis
without being really able to know it precisely (see Fig. 23.5). Even when advanced
tools such as numerical modeling are used for hazard and risk assessment, the experts
always never consider the results directly as decisions but always interpret to provide
an operational result [Tacnet et al. 2005a]. This reality corresponds to the difference
between decision-aid and decision-making [Roy 1990].

23.1.3 A more realistic description of the expertise process

Expertise is expected to help for decision-making in poor available knowledge condi-
tions but appears as a very paradoxical and difficult exercise. Uncertainty and im-
precision do exist on their main steps because of lack of data and knowledge without
being clearly elicited. Final results often come from various sources whose reliabil-
ity and mutual conflict are not easily traced all along the technical decision process.
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Figure 23.5: From primary data to processed data in the expertise process.

Uncertainty does not affect equally all the decision parameters which are themselves
known to be more or less important.

Three main questions can therefore be pointed out:

• Can we find theoretical frameworks that would help decision-making and would
be able to represent in a more realistic way the available knowledge level, the
reliability of sources and the uncertainty of their evaluations?

• How far can we be confident in the expertise results? How can we make a link
between a decision and the way it was obtained: what is the global confidence
in the result? do all the sources agree with this result (in particular when
results come from contradicting positions and criteria)?

• Assuming that we are able to describe and evaluate the uncertainty sources,
how can we make a decision that would be considered?

This chapter proposes an alternative methodology to the classical risk evaluation
method used in the natural hazards mountains management. It is based on a combi-
nation of a multi-criteria hierarchical method and Evidence Theory based approaches.
We present a mixed framework involving both information fusion and multi-criteria
decision analysis (MCDA) in the context of natural hazards in mountains. In the next
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sections, we focus on the different ways to introduce evidential reasoning in a multi-
criteria decision analysis model. In Section 23.2, we briefly remind of formal theories
to manage uncertainty insisting on the advantages of the DST and DSmT. We also
present multi-criteria methods and the way they can use or consider uncertainty in
the DST context. Section 23.3 focuses on methodology used to mix multi-criteria
approach and information fusion. Section 23.4 deals with two applications. The first
one is a simplified version of a global framework to analyze the exposure level of a
snow-avalanche prone area. The second one relates to the risk zoning methodology
and focuses on specific points related to spatial applications. Section 23.5 is a general
discussion and section 23.6 is the conclusion.

23.2 Backgrounds on MCDA and evidential reasoning

Managing uncertainty requires being able to analyze its sources, to evaluate it and
to propagate it through the evaluation process. This section briefly presents existing
approaches for decision based either on multi-criteria decision analysis (MCDA) and
evidential reasoning (ER).

23.2.1 Multi-criteria decision analysis

23.2.1.1 MCDA methods

MCDA is usually used in cases where optimization is not efficient.

In the decision theory, the first theory developed in Economics [Von Neumann
and Morgenstern 1967], the concept of decision under risk corresponds to situations
where objective probabilities of events can be calculated. in that context, the decision
relies on the maximum of expected utility. Due to the complexity of real-life problems
and the limited rationality of human decision, the concept of utility and optimum
for decision have been criticized [Scharlig 1985, Roy 1989, Climaco 2004] leading to
the development of alternative methods for decision-making known as multi-criteria
methods. Decisions support systems based on multi-criteria paradigm try to reach
a compromise through various aggregation methods. Several methods are available
to produce an evaluation of solutions or alternatives but none of the numerous exist-
ing multi-criteria decision aid methods can be considered as a perfect and universal
method that would be appropriate for any decision problem. A comparative analy-
sis has been handled by [Guitouni and Martel 1998] to propose some guidelines for
choosing the ad-hoc method. Another review is proposed by [Linkov et al. 2006] in
the context of environmental comparative risk assessment.
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Multi-criteria decision analysis mainly focuses on reaching a compromise between
those sources. Most of existing methods have been initially developed to consider
only one decision maker [Jabeur and Martel 2005]. Others approaches related to
group-decision making consider the case of several decision-makers. In such cases,
compromises are searched between at the valuation level.

A complete review of all the MCDA methods would be difficult. Two main
classes of methods can be distinguished: those whose final evaluation is the result of
a complete aggregation process as Analytic Hierarchy Process (AHP), Multi Attribute
Utility Theory (M.A.U.T.) and those based on an incomplete aggregation process or
outranking methods such as ELECTRE or PROMETHEE . The first category of
methods is widely used in Anglo-Saxon community which is sometimes described
as the ”MCDA 1 American school” (MCDA). The second class corresponds to the
so-called ”MCDA European school”. The complete aggregation methods have been
criticized notably because they do not consider un-comparability and preferences
un-transitivity. [Guitouni and Martel 1998] proposes some guidelines to choose a
MCDA framework between all the existing methods. We only cite here elements of
comparison between three advanced MCDA methods [Linkov et al. 2006, Guitouni
and Martel 1998]:

• MAUT or MAVT: The Multi-Attribute Utility Theory (MAUT) [Keeney
and Raiffa 1976] or Multi-Attribute Value Theory (MAVT) is certainly the
MCDA method which looks like the classical decision theory in a closer way.
MAUT relies on the hypothesis that decision-maker is rational (he prefers more
an higher utility level than a lower one), that he has perfect knowledge and
that he is consistent in his judgments. For each attribute, the decision maker
must be able to propose a utility function (using as example indirect methods
such as UTA);

• AHP: The Analytic Hierarchy Process (AHP) [Saaty 1980] is a single synthe-
sizing criterion approach. It uses pairwise comparisons with a semantic and
ratio scale to assess the decision maker preferences. The axiomatic foundations
suppose that there must be outer and inner independence between the different
hierarchical levels.

• ELECTRE: This outranking synthesizing method [Roy 1968] is based on the
principle that one alternative may have a degree of dominance over another.
Dominance occurs when one option performs better than another on at least
one criterion and not worse than the other on all criteria. These methods accept
and manage potential un-comparability between different criteria through as
an example, the principle of discordance in ELECTRE methods.

1multi-criteria decision analysis
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Three main problematics are identified to describe the MCDA methods which are
presented in Fig. 23.6 below.

Figure 23.6: Main problematics addressed by MCDA methods [Scharlig 1985].

The main steps of a multi-criteria analysis can be summarized as follows:

1. decision purpose identification;

2. criteria identification;

3. preferences between criteria;

4. evaluation;

5. sensitivity analysis with regard to weights, thresholds, . . .

MCDA: an useful tool to aid decision and elicit the natural hazard expert
reasoning process.

From a conceptual point of view, Risk evaluation is based on a combination of
hazard and vulnerability. In most cases, this combination appears more as an expert
choice than a real deterministic process based on a precise quantification. This is
due both to the uncertainty attached to the two parts of the global risk equation. In
Risk Prevention Plans, expert choices are often the main sources for risk zoning. A
so-called risk equation is supposed to be used but in fact its terms are not evaluated
on the same scale. Some recent progress does exist with the use of deterministic
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modeling in connection with protection works. A risk level can be calculated and
optimized using Bayesian probabilistic framework. The risk level is optimized on the
basis of a utility economic function.

23.2.1.2 The original Analytic Hierarchy Process (AHP)

The Analytic Hierarchy Process (AHP) method is world-wide used in almost all ap-
plications related with decision-making [Vaidya and Kumar 2006]. AHP is a special
case of complete aggregation method and can be considered as an approximation of
multi-attribute preference models [Dyer 2005]. Its principle is to arrange the fac-
tors considered as important for a decision in a hierarchic structure descending from
an overall goal to criteria, sub-criteria and finally alternatives in successive levels
(see Fig. 23.7). It is therefore based on three basic principles: decomposition of the
problem, comparative judgments and hierarchic composition or synthesis of priorities.

At each level, a preference matrix is built up with pairwise comparison between
the criteria of each level [Saaty 1982, Saaty 1990]. Through the AHP pairwise com-
parison process, weights and priorities are derived from a set of judgments that can be
expressed either verbally, numerically or graphically [Forman and Selly 2002]2 . It can
be considered as a kind of conjunctive consensus between different criteria evaluation.
The original AHP method uses an additive preference aggregation.

Figure 23.7: A multi-criteria hierarchical structure is broken down into unitary
hierarchic components.

2p.45
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The final evaluation index is the result of a sum of products of weights from the
tree root to the leaves (see Fig. 23.8). At the leave level, the evaluation expert has
to choose in an exclusive way between several classes.

To implement the AHP method, two different strategies can be used to provide
valuations of alternatives on which we want to make a decision. The original AHP
process consists in comparing the solutions from one to each other in a so-called
”Criterion-alternative approach”. This implies to make pairwise comparisons between
all the solutions or alternatives in order to obtain preferences levels between these
alternatives. A methodology based on a relative verbal scale is provided to calibrate
the numeric scale for measurement of quantitative as well as qualitative performances
(see Fig. 23.9). When dealing with great amount of data, this becomes quickly quite
difficult. The preferences are here the result of a comparative approach of solutions
according to criteria. It is impossible to calculate an index or a rating value for a
unique solution.

Figure 23.8: Principle of the Analytic Hierarchy Process (AHP).
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Figure 23.9: Saaty’s verbal scale for pairwise comparison.

A second approach so-called ”Criterion-index (or estimator)-alternative” can be
imagined (see Fig. 23.10). Instead of comparing all the alternatives, the decision ana-
lyst proposes classes for each criterion. To a certain extent, theses classes correspond
to an increasing or decreasing level of satisfaction of a given criterion. These classes
code some kind of ordinal levels corresponding to a low, medium or strong contri-
bution (or satisfaction) to (or of) the criterion. For example, the criterion human
vulnerability exposed to natural hazards can be assessed according to three classes
based on a number of existing and exposed buildings. This approach prevents from
the well-known ”Rank reversal” problem of the AHP method [Wang and Elhag 2006]:
introducing twice the same alternative modify its relative rank compared to all the
others unchanged alternatives. In that way, the AHP method, despite the known
issues of complete aggregation methods, fits quite well to decision ranking problems
where the alternatives are not all known.

Figure 23.10: Criterion-Alternative and Criterion-Estimator-Solution ap-
proaches.
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23.2.1.3 Uncertainty and MCDA methods

Uncertainty and imprecision in multi-criteria decision models has been early consid-
ered [Roy 1989]. Different kinds of uncertainty can be considered: on the one hand
the internal uncertainty is linked to the structure of the model and the judgmental
inputs required by the model, on the other hand the external uncertainty refers to
lack of knowledge about the consequences about a particular choice. Forma modeling
of uncertainties is necessary when risk and uncertainties are as critical as the issue of
conflicting management goals [Stewart 2005].

Several different techniques have been used to manage uncertainty in the MCDA
process. Fuzzy approaches have been introduced either in the analytic hierarchy
process (AHP) context [Salo and Hamalainen 1995, Salo 1996], in the multi at-
tribute value theory (MAVT or MAUT) preferences ratios based methods [Salo and
Haimailaiinen 2001]. Interval judgments are introduced as a an easy way to handle
imprecise information [Mustajoki et al. 2005].

Fuzzy sets theory is used to consider, according to [Fenton and Wang 2006], risk
and confidence of a decision maker in a multi-criteria decision making problem. Fuzzy
number are then used to valuate the performance index (weights) of the criteria (”risk
attitude” depending on the decision attitude of the decision maker ranging from an
optimistic to pessimistic) and to valuate the alternatives denoted as a ”confidence”
level. Fuzzy approaches have been introduced into the AHP to valuate the alterna-
tives [Kuo et al. 2006, Pan 2008, Dweiri 1999]. This method can be (has already
been) criticized [Linkov et al. 2006]3 notably on the basis of the aggregation is-
sues and its ability to deal with uncertainty [Forman 1993]. [Saaty and Vargas 1987]
has studied the way to consider uncertainty in the AHP process but considers that
such an approach of fuzzifying the numerical judgments used in AHP has no interest
since the numerical values used for pairwise comparisons already correspond to some
fuzzy evaluation by the decision-maker [Saaty and Tran 2007]. Taking perturbations
or catastrophes into account in the decision process was an earlier issue recognized
by [Saaty 1990]4. He suggested to always including a criterion that would gather all
what is unknown and represent a cluster of unforeseen threats in the decision model.
He also considers that the AHP is able to manage uncertainty through its ability to
elicit the subjective probabilities [Ozdemir and Saaty 2006].

More recently, the question of decision under risk has been addressed by Matos
in [Matos 2007]. He suggests a two-step decision method. The first step consists in
the evaluation of the alternatives according to their uncertainty level using differ-
ent theories such as classical probabilities, fuzzy sets theory. The second step uses
multi-criteria methods to interpret the result. He advocates that the ”transformation
of a decision problem under uncertainty into a deterministic multi-criteria problem
provides more meaningful information to the Decision maker”.

3p. 1076
4p.23, §10
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The integration of multiple criteria decision analysis and scenario planning is
presented as a future way of development. Scenario planning is a ”technique for
facilitating the process of identifying uncertain and uncontrollable factors that may
impact the consequence of decision in a strategic management context”. Integration
of external uncertainties in a mixed approach using MCDA and scenario planning is
still a research challenge [Stewart 2005]. On this basis, the methodology proposed in
the following sections tries to follow the main previous guidelines and principles:

• to evaluate the uncertainty about input evaluation (using the different theories
for uncertainty and imprecision) and inject those results into a decision-aid
method;

• to propose a scenario-based approach that would remain understandable for
decision-makers. This scenario planning approach fits perfectly to the con-
text of natural hazards where knowledge and objective probabilities are often
lacking.

23.2.2 Evidential reasoning (ER)

Several theoretical frameworks exist to handle uncertainty in human rea-
soning and decision processes.

Three main theories are mainly used to handle uncertain and incomplete informa-
tion in a decision process: probabilities, possibilities and evidence theories. Classical
probabilities are the traditional tool for situations of incomplete information. Most
of time, the decision processes used for risk evaluation supposes that objective pro-
babilities are available for each component of the risk. This principle is considered
as imperfect since probabilities and data used for numerical modeling often result
from expert assessments. Moreover, these expert opinions in an uncertain context
are known to be influenced by cognitive biases leading to different types of risk aver-
sion [Ellsberg 1961]. For environmental or sustainable development related problems,
other decision models are required: they should consider, from one hand, the risk eval-
uation step and from the other hand, the decision process itself [Magne and Vasseur
2006]5.

Probabilities are criticized especially when they are known to be highly subjec-
tive. Recent developments have studied the use of probability-possibility to improve
decision making under uncertainty in the classical decision theory framework [Gaj-
dos et al. 2008]. Subjective approaches of probability have been recently proposed
according to Bayesian approaches (probability on probability law parameters). This
Bayesian framework can take this subjectivity into account in a rigorous and ax-
iomatically based framework. Soundappan et al. [Soundappan et al. 2004] states
that Bayesian framework and evidential reasoning can be used to model uncertainty

5Chapter 12, p.397
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and safety of a model when the available evidence consists of intervals bounding
the values of input variables. Bayesian approach has recently been applied to snow
avalanches context using large available data bases about avalanches extension to
optimize the size of a passive avalanche defense structure [Eckert et al. 2008, Eckert
et al. 2008a]. The decision application is based on (mostly economic) optimization
principle. This ”optimum” resulting from a complex calculation process is proposed
as a unique result to the decision maker.

When data are not available, when experts judgments are essential part of the
expertise process or to capture the reasoning hypotheses, this powerful probabilis-
tic framework is not fully adapted. Alternative methods may be useful to complete
this approach. Though probabilities remain the traditional tool and powerful tool
for uncertainty management (as long as data are certain and available), others the-
ories for uncertainty fit quite well to the context of expertise for natural hazards in
mountains. Fuzzy Sets, Possibilities and Belief Functions theories can be used in
the natural hazards management context to consider information at its effective level
including uncertainty, imprecision, heterogeneity and reliability of sources. Never-
theless, evidential reasoning which has already been widely used in domains such as
classification, cartography, expert systems, decision-making, . . ., as reviewed by [Sentz
and Ferson 2002], has quite few applications in the natural hazards context [Binaghi
et al. 1998].

Our methodology explores a way to introduce evidential reasoning and its more
recent developments such as DSmT theory in decision processes related to natural
hazards management. Main goals are to make decision but also to trace the reasoning
process used by the experts to build their judgments in the complex and uncertain
context of natural hazards in mountains. The following section presents some no-
tions about evidential reasoning. Basic principles of the belief function theory, and
specifically Dempster-Shafer (DST) and Dezert-Smarandache (DSmT) theories are
widely and extensively described in the others chapters of this volume, and will not
be described again. We will only focus on some interesting features and specifici-
ties of these theories in relations with our application context. Secondly, the fusion
rules still work even in a high level of conflict between sources. The DSmT theoretical
framework appears as quite versatile but in fact it is quite difficult to find applications
based on a non-exhaustive frame of discernment.
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What is fusion?

Information fusion consists of merging or exploiting conjointly, several sour-ces of
information so as to answer questions of interest and make proper decisions [Dubois
and Prade 2004]. The following definition was proposed: ”Fusion consists in con-
joining or merging information that stems from several sources and exploited that
conjoined or merged information in various tasks such as answering questions, mak-
ing decisions, numerical estimation, . . . ” from European working group FUSION
cited in [Bloch et al. 2001].

In practice, fusion is operated through fusion rules that allow aggregating the more
or less uncertain information issued from the different sources. The DST framework
is based on exhaustive and exclusive hypotheses while DSmT framework does not
require such constraints (e.g. in Fig. 23.33). In comparison with other theories,
DST and DSmT offer a wide and powerful range of fusion methods to aggregate the
different basic belief assignments (bba). An exhaustive review of the fusion rules has
been proposed by [Sentz and Ferson 2002]. Their analysis also provide a valuable
summary of the elements under consideration in a combination problem in DST
context (see Fig. 23.11).

Figure 23.11: Elements under consideration for the fusion with DST.

For [Haenni 2002], there is no need for alternative fusion rules to classical Demp-
ster’s fusion rule, refining the model is sufficient. Such argumentation doesn’t hold
because the refinement becomes very hard to do when the cardinality of the frame
of discernment and the number on non-empty intersections increases (the model’s
complexity increases), and the elements of the refined space can have no physical
sense/meaning/existence at all and finally they cannot truly be considered as useful
finer exclusive information granules. Moreover, several authors such as [Smarandache
and Dezert 2006b] and [Martin and Osswald 2006] show that alternative fusion rules
perform better than the classical Dempster’s fusion rule in high conflict situation. For
this reason, we will compare in our applications the classical normalized Dempster
fusion rule with proportional conflict redistribution rule such as PCR6 rule. To illus-
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trate the conflict level, we will also use in our application Smets’ rule which transfers
conflict on the empty set. From a general point of view, the fusion process depends
on a great number of elements (see Fig. 23.11). A fusion approach used in a decision
context implies four steps: modeling (often considered as the most difficult step), pa-
rameters estimation (depending on the model), combination and decision [Martin and
Osswald 2006]. In the following section, we briefly analyze the existing approaches
that use both MCDA and evidential reasoning.

23.2.3 Mixing MCDA and evidential reasoning

Trying to mix multi-criteria decision analysis (MCDA) and evidential reasoning (ER)
quickly leads the question of the difference between aggregation of preferences and
information fusion and therefore to the validity of an analogy between aggregation of
preferences and data fusion. Data fusion is considered as a way to extract the truth
between a set of hypothesis evaluated by different sources. Those two problems are
considered as different: aggregation problem consists in deriving a global preference
profile corresponding to a consensus between the preference profiles induced by the
various sources [Dubois and Prade 2004]6 . Fusion and aggregation should be consid-
ered as mainly different problems [Dubois and Prade 2006] while some applications
do not make such a difference between the two application domains [Dubois et al.
2001]. Despite of these analysis, many authors have already introduced evidential
reasoning (fusion) in MCDA frameworks (based on aggregation of preferences).

23.2.3.1 Existing approaches

Evidential reasoning and multi-criteria decision analysis have already been used in a
common framework. In these approaches, data fusion is mainly applied either to the
criteria considered as sources of a fusion process. Our analysis briefly focuses here
on four main points: How do these models consider the complexity and the implicit
hierarchy between criteria? How does the analyst extract the basic belief assignment
elicitation? How is considered the difference between the importance and the uncer-
tainty level linked to each criterion? Which fusion rules are used? Do they consider
conflict? ER has been already combined with multiple attribute decision analysis
(MADA) problems of both qualitative and quantitative nature [Yang 2001, Yang and
Xu 2002, Yang et al. 2006]. Basic belief assignments (bba’s) are derived directly from
utility functions. A specific process, based on Dempster’s rule of combination is used
to mix criteria without specific consideration of conflict between sources (criteria).
This methodology is applied to environmental problems [Wang et al. 2006].

Using Belief function theory and multi-criteria decision analysis requires evalu-
ating all the criteria on the basis of the same frame of discernment. Including DST

6§5.2
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or DSmT in a multi-criteria approach requires adopting a common frame of discern-
ment. Total aggregation methods such as MAUT 7 or AHP8 gather in a unique index
the result of the evaluation of alternative. For the partial aggregation methods, such
as outranking methods, un-comparability and intransitivity of preferences are basic
paradigms: alternatives are compared to each other without aggregating all the cri-
teria into one and only value. If we consider total aggregation methods, the attempt
to mix multi-criteria approaches and evidence theory using a unique common frame
of discernment for all the criteria does not sound initially so illegitimate.

Such an approach has been proposed by [Beynon et al. 2000] in a mixed framework
called DS-AHP. His decision problem consists in choosing the best alternative between
a complete set of alternatives according several criteria. Belief function theory is
used essentially to reduce the high number of pairwise comparisons required when the
number of alternatives increase. DS-AHP was first proposed as a way to compare sets
of alternatives instead of unique alternatives [Beynon et al. 2000]. Preferences of each
criterion are calculated according the classical pairwise comparison method. For each
criterion, basic belief assignments are calculated on singletons or sets of alternatives
on the basis of the perceived amount of favorable information in comparison with a
total ignorance (i.e. the whole set of alternatives). The basic belief assignment (bba)
on each evaluation grade or alternative is assessed through an indirect analysis of
the ”favorability” of knowledge. Each criterion is always compared to the whole set
of hypothesis using a very specific pairwise comparison matrix. Some issues can be
identified in its process:

• The mass elicitation mixes to different kinds of concepts: in the Belief function
Theory, putting bba on a group of alternatives does not mean that all the
included alternatives have the same level of information. On the contrary, it
implies that knowledge is shared between all the groups without being able to
put some more precise probability (of satisfying the criterion) on each of them.
Reasoning on sets in the Evidential reasoning framework is not a faster way to
put masses on singletons;

• As this principle mixes preferences and uncertainty in a unique bba, classical
preference weights are then applied to reduce this bba without assigning any
additional bba;

• Despite of the presumed ability to consider high number of alternatives, exposed
examples only deal with rather small numbers of alternatives. With a high
number of alternatives, reasoning with sets do not facilitate the decision since
assigning basic belief assignments on sets mean that we are not able to share
the knowledge between all the elements included inside. Taking a decision
resulting from a fusion process is not that easy to interpret;

7Multi Attribute Utility Theory
8Analytic Hierarchy Process
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• Decision rules used only use minimum or maximum of credibility and plausi-
bility. In fact, the decision is possible only if some focal elements exist;

• Because of the use of the (grouped) pairwise comparison matrix, mass elicita-
tion is sensitive to the number of levels in the evaluation scale [Beynon 2002]:
a residual mass is always put on the total ignorance even whatever the choices
of the decision analyst;

• Only a basic one level hierarchic model is considered. Criteria are considered
as the only sources to be fused while several experts may proceed to evaluation;

• The fusion process is only based on the classical Dempster’s rule known as a
failure cause when the level of conflict increases.

This approach is presented as extended by [Hua et al. 2008] for the case where in-
formation is incomplete. However, we can consider here that Beynon’ s approach had
only not emphasized this intrinsic ability of the belief function theory. Another ex-
tension of this method was proposed to consider a multi-expert environment [Beynon
2005].

23.2.3.2 Requirements for an ER-MCDA methodology

If the belief function theory appears as a powerful framework to consider both un-
certainty and imprecision, one of its main drawback consists of choosing bba’s to
be used in the fusion process, especially when information only comes from expert
judgments. Many different methods have been proposed to elicit those bba [Bryson
et al. 1994, Wong and Lingras 1994]. Using a common scale in order to describe
a reasoning process can consist of some kinds of correspondence tables between a
common numerical or ordinal scale and evaluation made by the experts as used as an
example to evaluate the damage level of dams: each failure piece of evidence is rated
in a numerical scale corresponding to an increasing level of gravity [Curt 2008]. This
difficulty does exist in our framework: at least, our proposition introduces a way to
fully describe the decision process (from its design to the evaluation steps) in a less
ambiguous and more complete manner.

Face to the problematic of expertise of natural hazards in mountains, our goal is a
methodology that would allow to make decision such as determining the most danger-
ous areas, the best prevention strategy, . . . according to the following requirements:
on the one hand, the decision framework should allow and trace a multi-expert anal-
ysis of the criteria importances, on the other hand, the model should allow to gather
the more or less uncertain, imprecise evaluations provided by more or less reliable
different sources (data sensors, data-sets, expert judgments). Many combinations re-
lated to the nature and quality of information can be observed. A secondary criterion
can be assessed in a very precise and certain way by a fully reliable source. On the
contrary, an important criterion can be evaluated precisely, in a certain way by a not
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reliable source. Our model aims to support decision in an uncertain context where
several sources provide information about the problem. Its initial main purposes are
not only to provide a help for decision but also to consider the way the decision is
reached considering the reliability of sources and the uncertainty of information. The
system must be able to model a complex hierarchical decision framework (some crite-
ria are more important than others), different kinds of criteria (either qualitative or
quantitative criteria). This versatile system (see Fig. 23.12) should therefore consider
importance, uncertainty, imprecision and reliability in a multi-sources environment.

Figure 23.12: Principle of a versatile ER-MCDA.

We will use one of the most simple multi-criteria decision analyses (MCDA)
method denoted as AHP recognized as a powerful and easy framework to help decision
and reduce complexity in real-case decision situations. Our goal is to help decision
but also to trace reasoning process. Evidential reasoning through Dempster-Shafer
and Dezert-Smarandache theories is used to consider uncertainty and imprecision.
The global methodology is presented in section 23.3 and a simplified application case
in section 23.4.

23.3 ER-MCDA methodology

This section describes the global ER-MCDA framework and its two main parts: the
multi-criteria model and the evaluation and fusion step. The proposed global method-
ology mixes those theories with an evidential reasoning (ER) process, known as a more
general, versatile and integrating framework. These approaches are used in a multi-
criteria decision framework. Many solutions do exist and we discuss in following
sections some issues related to class level belonging, fusion order, etc.
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What and how should we fuse?

Several alternatives or actions are evaluated according to different criteria through
a preference relation. In addition to this, the evidential reasoning theories and their
associated fusion rules are used to evaluate and propagate an uncertainty level in the
decision process. This methodology considers both experts and criteria used in the
hierarchic approach as sources in the fusion process. Different strategies to aggregate
or fuse information are analyzed according to fusion rules, fusion order.

The methodology can be summarized as following:

• Identification and prioritization of criteria in a hierarchic MCDA framework;

• Definition of the frame of discernment considering either exclusive hypotheses
(Dempster-Shafer model) or non exclusive hypotheses (DSmT framework).

In our problem, both quantitative (mainly related to physical data) and quali-
tative criteria are used in the model. Quantitative criteria are evaluated with some
imprecision (corresponding to intervals values) and uncertainty (corresponding to a
confidence level linked to these evaluations). The number of sources can also be dif-
ferent from one source to another. In that way, this model offers a versatile framework
where several criteria are valuated by several sources whose reliability and kinds of
valuation (precise or imprecise way) may also change.

23.3.1 Possibility and Evidence Theory: why and what for?

In our context, expert evaluations often deal with continuous factors such as slope,
surface, etc. These quantitative values are then linked to class levels according to
a common qualitative scale enabling the fusion and/or aggregation process. A nu-
merical value becomes correspond to a linguistic such as high sensitive, sensitive, low
sensitive. This means that, for a given alternative (avalanche site), a numerical value
would respectively, accordingly to their relative importance in the whole process,
induce a global evaluation at the levels high sensitive, sensitive and low sensitive.
Change of sensitivity level correspond to a fuzzy relation: let us suppose that the
expert evaluation is 6% and that the two different classes of slopes are between 5%
and 10% (low sensitive) and between 10% and 15% (sensitive). From a strict point
of view, a 6% value belongs to the class sensitive but everybody has got the feeling
that it is not so far from the low sensitive level. This relative belonging strength must
be valuated. Expert evaluations can also result from an imprecise evaluation. An
expert may be unable to fix a unique value for a slope inclination. In many cases,
the only result that expert can provide is an interval with some confidence values: as
an example, the expert would be able to say that the slope inclination is between 4%
and 7%. For those reasons, it appears that the mixed use of fuzzy set and possibilities
theories is useful to take into account the real knowledge that the expert is able to
put inside the decision process.
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23.3.2 AHP and ER within uncertain and complex context

23.3.2.1 Description of AHP-ER framework

The global framework is based on a combination of multi-criteria decision analysis
(MCDA) techniques and evidential reasoning (ER) through the use of the theory of
belief functions which is implemented in a classical way through DST framework and
also in the new DSmT framework. The global framework considers both importance,
uncertainty and imprecision in criteria assessment. Uncertainty and imprecision are
considered through Belief Functions, Fuzzy Sets [Zadeh 1978] and Possibility the-
ories [Dubois et al. 2000]. Importance is assessed according to the multi-criteria
framework and especially through the classical pairwise comparison matrix using
Saaty’s scale. As recommended in literature [Saaty and Tran 2007], we do not intro-
duce some additional fuzziness on the comparison rates in this matrix. Such attempts
to mix different approaches related to uncertainty management already exist. As an
example Omnari et al. [Omrani et al. 2007] have proposed a model for transportation
strategies evaluation.

Figure 23.13: The six steps of ER-MCDA framework.
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This framework implies the following steps (see Fig. 23.13):

• Hierarchical model implementation with the experts of the domain (criteria
elicitation, qualitative and quantitative criteria identification);

• Choice of decision model (criteria-solution) or (criteria-estimator-solution);

• Choice of the common decision frame of discernment (criteria-solution frame-
work implies that the frame consists of solutions while criteria-estimator-solution
implies that the frame consists of a common scale for every criterion;

• Mapping process to transform the evaluations of the basic level criteria (han-
dled according the hierarchical decision framework) into a common frame of
discernment allowing a fusion process;

• Choice of fusion strategy (fusion of the different experts choices at the criterion
level or at the evaluation stage);

• Choice of decision rule.

The fuzzy mapping for qualitative and quantitative criteria.

The second step of the ER-MCDA framework (see Fig. 23.13) consists of setting
up, for each criterion cj , a fuzzy mapping process that enables to transform uncertain
evaluation of the criteria into bba’s according to the common frame of discernment.
This mapping process proposes a correspondence between the evaluation of the crite-
ria and the elements of common frame of discernment used for the fusion process and
the decision. A mapping model is a set of fuzzy numbers (see Fig. 23.14) or fuzzy
intervals (see Fig. 23.15).

Since the evaluation of criteria can be uncertain and imprecise, the fuzzy inter-
vals used for this mapping process may differ from one source to another. Therefore,
nbModels mapping models mapModelx,cj (for x = 1 to nbModels) can exist de-
pending from one hand on the experts involved in the model building and from the
other hand on the theory used to represent the decision (DST or DSmT mapping).
Two different mapping rules are used depending from one hand on the qualitative
or quantitative nature of the criteria and on the other hand from the nature of the
evaluation (numerical or membership assessment). For quantitative criteria, the map-
ping process transforms a possibility distribution, derived from necessity inputs, into
bba’s. For a given quantitative criterion cj , each source s provide nbInts numerical
evaluation intervals described by a minimum, a maximum and a necessity value. This
necessity value represents the minimum confidence of the source in the proposition
”the value of the criterion cj belongs to the interval”. For qualitative criterion, the
fuzzy number are defined according to credibility values defined on each class.
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Figure 23.14: Fuzzy number L−R.

Figure 23.15: Fuzzy interval L−R.

Figure 23.16: Possibility and necessity distributions.
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Valuations of the criteria: from possibility to bba.

In [Dubois and Prade 2006]9 , the authors describe relations between Possibility
theory and Belief function theory. Given a bba m defined on a finite set S, the
possibility distribution π resulting from m is defined by π(s) = P l({s}) (singletons
plausibility). For different consonant focal elements Ei such as E1 ⊂ E2 ⊂ . . . En,
with Ei = {s1, . . . , si}, the possibility measure Π and the necessity measure N cor-
respond to plausibility and credibility functions (see Fig. 23.16).

Example [Baudrit et al. 2005a, Baudrit et al. 2005b, Baudrit et al. 2007]: An expert
provides n evaluation intervals of a quantitative criterion and assigns a confidence
level λi to each of them. Ei corresponds to the ith interval chosen by the expert
(considered as a source) with i ∈ {1, 2, . . . , n}. λi is the confidence degree associated
to the interval Ei with λi = N(Ei) (see Fig. 23.17).

∀x ∈ R, π(x) = min
i∈{1,2,...,n}

(max(1− λi), XEi(x))) (23.1)

with

XEi(x) =

(

1 if x ∈ Ei

0 if x $ Ei

(23.2)

Figure 23.17: From expert necessity values to bba: numerical example.

9vol. 1, p. 140.
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23.3.3 Step 1: Problem modeling

Risk management process is a complex framework in itself. Faced to any decision
problem, the decision analyst always begins with a modeling phase which is an es-
sential part and a main difficulty of the methodology. In our context, the modeling
both concerns and cumulates known difficulties related both to the multi-criteria ap-
proach [Roy 1985] and to the evidential reasoning process [Martin and Osswald 2006].
To a certain extent, one of the more natural and intuitive way to cope with the com-
plexity of the problem is very often to break its components down into several smaller
ones. This approach is used in the hierarchical analysis proposed in AHP [Saaty 1982]
but also in reliability and safety models through failure trees [Wang et al. 1996] or
any systemic-like models. In [Forman and Selly 2002], Forman considers that hi-
erarchical analysis is equivalent to the well-known cause tree or Ishikawa diagram.
As a standard language, the Unified Modeling Language (UML) [Rumbaugh et al.
1999, Fowler 2000] is used to model the problem. This language is widely used in
Computer Sciences and Information systems design to elicit the initial requirements,
to represent the data model. In comparison with any other graphical flowcharts or
diagrams, it represents a normalized framework that can be understood in the same
way by all of its possible users: every graphical software is able to provide flow-charts
diagrams that are not always interpreted in the same way. In our context, building
conceptual models is one of the first and essential step to describe to consider the
different types of sources, including both experts, databases or criteria evaluation
involved in the fusion process. This approach allows building a link with calculation
tools such as PCR5, PCR6 or DSmH routines.

The modeling step concerns on the one hand the decision problem description
(through a hierarchical decision structure) and, on the other hand, the fusion prob-
lem modeling.

In a criterion-estimator-solution framework, the decision consists of choosing an
evaluation grade for a given alternative. The common Decision Frame of discern-
ment used in our ER-MCDA framework consists of a set of evaluation grades denoted
ΘDecision = {HD1, HD2, . . . , HDk, . . . , HDGD} with k ∈ {1, 2, . . . , GD}. The deci-
sion is broken down into qualitative and/or quantitative criteria (see Fig. 23.18 and
Fig. 23.19).

Figure 23.18: ER-MCDA framework - UML modeling - Main packages.
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Figure 23.19: Principle of the AHP based ER-MCDA framework.

23.3.3.1 The multi-criteria analytical hierarchical model

The real problem is first analyzed through the hierarchical decision framework used
a conceptual support for criteria and preferences identification. Criteria are ranked
and weighted according to their importance in the decision process. The basic level
criteria are assessed according either quantitative (numerical) evaluation grades. The
criterion Human vulnerability, as an example of quantitative criterion, is assessed
through the number of winter occupants. This number can be a single integer or an
interval with a minimum and a maximum value such as [1, 5]. The Living places/in-
frastructures, as an example of qualitative classes, is assessed through a membership
level for each class.

Unitary Hierarchic Component.

The Hierarchic Structure is composed of Unitary Hierarchic Components such as
described in Fig. 23.7

SubCj = SubC[r1,r2,...,rl] = {C[r1,r2,...,rl,1], C[r1,r2,...,rl,2], . . . ,

C[r1,r2,...,rl,k], . . . , C[r1,r2,...,rn]} (23.3)

For a given medium level criterion Cj or for the general attribute of the hierarchic
structure , SubCj is the set of its ML sub-criteria.
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Criterion Identification Vector (CIV).

A practical and simple codification is used to identify any criterion in the hierar-
chical structure and to implement the software application. For the criterion number
j, at the level l of the hierarchy, the Criterion Identification Vector denoted as CIVj

is defined as CIVj = [r1, r2, . . . , rk, . . . , rl−1, rl]
| {z }

l terms

where CIVj(l) = rl is the lth term of

CIVj.

By definition, the general attribute of the hierarchic structure is the first criterion
of any Criterion Identification Vector : ∀j ∈ {1, 2, . . . , M}, CIV1 = [1]. It is also called
the root of the hierarchic structure. CIVj(k) is the kth term of CIV . CIVj(k) = rk

means that the rank of the given criterion is rk relatively to its parent-criterion in
the unitary hierarchic component whose root criterion is the criterion denoted as
CIV = [r1, r2, . . . , rl−1] which has l − 1 terms.

Example: Let’s consider a criterion defined by its identification vector CIV = [1, 3, 2, 2].
Its vector length is 4. This criterion is the 2nd sub-criterion of the criterion whose CIV
is [1, 2, 3]. The criterion cj is described by CIVj . ML(CIVj) = ML([(r1, . . . , rk, . . . , rl]
is the number of sub-criteria of the criterion described by its identification vector
CIVj. The sub-criteria of cj are referenced by Criterion Identification Vector such
as [(r1, r2, . . . , rk, . . . , rl, rl+1] with rl+1 ∈ {1, 2, . . . , ML(CIVj)} (see Fig. 23.20).
For any criterion, ML is a function of a vector whose length ranges from 1 to
D (maximal depth of the hierarchic structure) defined by ML : Cj −→ N and
CIVj −→ ML(CIVj).

Figure 23.20: Criterion and sub-criteria codification in the hierarchical struc-
ture.
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An UML class diagram using a composite pattern diagram [Gamma et al. 1995] can
represent this hierarchical structure as described in (see Fig. 23.21).

Figure 23.21: ER-MCDA framework - UML Class diagram - Decision hierar-
chical structure.

Evaluation of the basic level criteria.

For each basic level criterion (or attribute), S sources provide an evaluation of
the criterion based on a common evaluation scale H = {H1, H2, . . . , HG} with G
corresponding to the number of levels of the scale. H is the frame of discernment on
which the evaluation is done.

23.3.3.2 A sample decision model

We introduce here a simplified model to illustrate the coupled use of fusion process
and MCDA approaches. This model is derived from a real decision-aid model that
calculates the sensitivity level of a natural site exposed to avalanches.
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A common frame of discernment is required for decision.

Any fusion problem requires defining a common frame of discernment. Its def-
inition is closely linked to the nature of decision such as choosing a sensitivity or
exposure level for a site in a natural hazards prone area, choosing the more impor-
tant areas to protect, choosing the level of confidence for an expertise. The fusion
process will provide basic belief assignments on each or combination of the elements
of the frame of discernment. We can obviously question ourselves about the interest
of using the DSmT framework (allowing non-empty intersections) instead of the clas-
sical DST framework based on exhaustive and exclusive hypotheses.

Two frames of discernment Θ are considered in this work:

• in the DST framework (see Fig. 23.22), the frame Θ is composed of 4 exclusive
elements defined by HD1 = ’No sensitivity’, HD2 = ’Low sensitivity’, HD3 =
’Medium sensitivity’ and HD4 = ’High sensitivity’;

Figure 23.22: Modeling the common evaluation grades in a DST framework.
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• in the DSmT framework (see Fig. 23.23), the frame Θ is composed of 3
elements defined by HD1 = ’No sensitivity’, HD2 = ’Low sensitivity’ and
HD3 = ’High sensitivity’;

Figure 23.23: Modeling the common evaluation grades in a DSmT framework:
simplified version.

23.3.4 Step 2: Mapping quantitative criterion into a
common frame

This section describes the transformation of the evaluations provided by the different
sources on quantitative criteria into the common frame of discernment.

23.3.4.1 Mapping quantitative criteria

For a given quantitative criterion cj , the mapping process mapModelx transforms a
quantitative evaluation into bba defined in the common frame of discernment (see
Fig. 23.24):

(

mapModel(x,cj) : [0, 1] → [0, 1]

mapModel(x,cj)(I(s,intj)) = {ms,I(s,intj )
(HD1), . . . , ms,I(s,intj )

(HDGD)}
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Figure 23.24: Mapping from quantitative criterion assessment to the common
frame of discernment.

For a quantitative criterion cj , the evaluation by a source s (an expert) can be
either a single value (e.g. x1) or numerical intervals. Different consonant intervals,
corresponding to different levels of confidence can be proposed by the source. The
evaluation of the source s is therefore a possibility distribution whom we are able to
extract intervals denoted I(s,intj) and corresponding basic belief assignments denoted
ms(I(s,intj)) [Dubois and Prade 2006]. For each interval I(s,intj), the fuzzy mapping

function of the xth mapping model, for the criterion cj distributes ms(I(s,intj)) on the
elements of the common frame of discernment ΘDecision = {HD1, HD2, . . . , HDk, . . . ,
HDGD} on which the global decision is taken. The distribution of ms(I(s,intj)) on
HDk (k ∈ {1, 2, . . . , GD}) is proportional to the intersection of the following areas
(see Fig. 23.25):

• a rectangle whose width is equal to the length of the interval ms(I(s,intj)) and
height is equal to 1;

• intersection of the previous rectangle with the areas of fuzzy intervals defined
in the mapping model mapModelx,cj , denoted AmapModelx,cj

(HDk).

The evaluation source is described through:

• its confidence, resulting from its own assessment and valuated by a necessity
value attached to each interval;

• its reliability, resulting from an external assessment, and valuated through a
discounting factor.
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Different cases are considered depending on the nature and number of evaluations
provided by one source for a given criterion (numerical intervals or single discrete
values).

23.3.4.2 Case of one source with one evaluation

• Case of one totally reliable source with one imprecise evaluation This
case corresponds to a source s which evaluates the quantitative criterion with
a unique interval (nbInts = 1) whose necessity value equals to 1. The bba
of the interval (ms(Is,1) = 1) is transferred to the elements of the common
frame of discernment (see Fig. 23.25). The interval I(s,1) = [xInf(s,1)

, xSup(s,1)
]

corresponds to a total area of

AI(s,1)
= length(I(s,1)) = xSup(s,1)

− xInf(s,1)
.

AI(s,1)
represents the total membership area of the interval with AI(s,1)

=
AI(s,1)

(HDk−1) + AI(s,1)
(HDk).The bba transferred on HDk−1 is

ms,I(s,1)
(HDk−1) =

AI(s,1)
(HDk−1)

AI(s,1)

·ms(I(s,1)).

The bba transferred on HDk is

ms,I(s,1)
(HDk) =

AI(s,1)
(HDk)

AI(s,1)

· ms(I(s,1)).

Figure 23.25: Quantitative criterion mapping: One totally reliable source with
imprecise evaluation.
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• Case of one partially reliable source with imprecise evaluation

The source s is assumed partially reliable. A discounting factor is applied to
the bba corresponding to the evaluated intervals (see Fig. 23.26).

Figure 23.26: Quantitative criterion mapping: One partially reliable source
with imprecise evaluation.

• Case of a partially reliable source with precise evaluation

The source s provides a single discrete evaluation x1 of the quantitative criterion
cj . m(x1) is derived from the fuzzy mapping intervals by the intersection of a
vertical line with these fuzzy intervals (see Fig. 23.27). The reliability of the
source is taken into account by a discounting factor αs ∈ [0, 1].

23.3.4.3 Case of one source with two evaluation intervals

Based on the necessity-possibility functions inputs, one transfers the initial bba to a
bba related to the common frame of discernment chosen for decision. This transfer
uses the proportion of intersected areas of the whole area of the interval with each
fuzzy L− R interval of the mapping model (see Fig. 23.28).

We consider here a source s that provides two evaluation intervals (nbInts = 2).
The first evaluation of the source s is interval I(s,1) = [xInf(s,1)

, xSup(s,1)
]. The

membership area (see Fig. 23.29) of this interval equals to

AI(s,1)
= AI(s,1)

= AI(s,1)
(HDk−1) + AI(s,1)

(HDk).

The bba’s transferred respectively on HDk−1 and on HDk are: ms,I(s,1)
(HDk−1) =

(AI(s,1)
(HDk−1)/AI(s,1)

) · ms(I(s,1)) and ms,I(s,1)
(HDk) = (AI(s,1)

(HDk)/AI(s,1)
) ·

ms(I(s,1)).
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Figure 23.27: Quantitative criterion mapping: One partially reliable source
with precise evaluation.

Figure 23.28: Quantitative criterion mapping: Two imprecise evaluations -
Principle of area mapping calculation.

The second evaluation of the source s is I(s,2) = [xInf(s,2)
, xSup(s,2)

]. The mem-
bership area (see Fig. 23.30) of the interval equals to

AI(s,2)
= AI(s,2)

= AI(s,2)
(HDk−1) + AI(s,2)

(HDk) + AI(s,2)
(HDk+1).

The bba’s transferred on HDk−1, on HDk and on HDk+1 are respectively given
by:

ms,I(s,2)
(HDk−1) =

AI(s,2)
(HDk−1)

AI(s,2)

·ms(I(s,2))
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Figure 23.29: Quantitative criterion mapping: One partially confident source
and a totally reliable source - interval 1.

ms,I(s,2)
(HDk) =

AI(s,2)
(HDk)

AI(s,2)

· ms(I(s,2))

ms,I(s,2)
(HDk+1) =

AI(s,2)
(HDk+1)

AI(s,2)

·ms(I(s,2)).

Figure 23.30: Quantitative criterion mapping: One partially confident source
and a partially reliable source - interval 2.
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23.3.4.4 Generalization: evaluation of one source s with nbInt
numerical intervals

• One totally reliable source with nbInt imprecise evaluations

We consider here the source s that provides nbInt evaluation intervals. The jth

interval is defined by I(s,Intj) = [xInf(s,Intj)
, xSup(s,Intj)

] with the index j ∈
{1, 2, . . . , nbInts}. The length of the interval is length(I(s,Intj)) = xSup(s,Intj)

−
xInf(s,Intj )

. The membership area of the interval AI(s,Intj)
depends on the

length of the considered interval with hAI(s,Intj )
corresponding to the height

of the area ( hAI(s,Intj )
= 1 corresponds to a full membership) as shown in

eq. (23.4).

AI(s,Intj)
= length(I(s,Intj)) ∗ hAI(s,Intj )

(23.4)

The whole area AI(s,Intj )
is the sum of the intersected areas of intervals with

the fuzzy intervals of the mapping model.

AI(s,Intj)
=

nbInts
X

j=1

AI(s,Intj)
(HDk)

with k such as AI(s,Intj )
∩Amodelx(HDk) �= ∅.

The bba transferred on HDk results from the intersection of the interval I(s,Intj)

with the mapping model Amodelx - see eq. (23.5) - with:

– AI(s,Intj)
corresponding to the intersection area of the interval with the

mapping model Amodelx (as an example DST or DSmT mapping models
as described in applications section;

– AI(s,Intj)
(HDk) corresponding to the intersection of the interval AI(s,Intj )

with the fuzzy L−R interval coding for the kth element of the frame of
discernment Θ.

ms,I(s,Intj)
(HDk) =

AI(s,Intj )
(HDk)

AI(s,Intj)

·ms(I(s,Intj)) (23.5)

For each element of the frame of discernment HDk, we sum the bba transferred
by each interval. Finally, the resulting mapped bba of the source s for nbInts

evaluation intervals is defined by eq. (23.6):

ms(HDk) =

nbInts
X

j=1

ms,I(s,Intj )(HDk) (23.6)
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• A partially reliable source with nbInt imprecise evaluations

For a partially reliable source, the bba are discounted according the classical
reliability discounting process. m′

s(HDk) = αs · ms(x1) and m′
s(Θ) = (1 −

αs) + αs · ms(Θ). In case of a partially reliable source, the bba transferred on
each element HDk of the considered frame of discernment (corresponding to a
given mapping model Amodelx is

m′
s,I(s,Intj)

(HDk) =
AI(s,Intj )

(HDk)

AI(s,Intj )

· αs ·ms,I(s,Intj )
.

A synthetic view of the quantitative mapping process from evaluation intervals
to the mapped bba is described in Fig. 23.31 for nbInts = 2.

Figure 23.31: Quantitative criterion mapping: One partially confident source
and a partially reliable source - Fusion

23.3.5 Step 3: Mapping qualitative criterion into a common
frame

Qualitative mapping transforms an evaluation of a qualitative criterion into basic be-
lief assignments (bba’s) expressed on the common frame of discernment. At the end
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of the scaling process, the result of the evaluation of qualitative criterion cj by the
the source s is summarized in a belief interval belInt(s,cj) and a weighted discounted
factor αs.

Instead of choosing only one evaluation grade, the expert can distribute his con-
fidence between different combinations depending on the model used. Therefore, he
can express the strength of his belief in the different classification levels. He can even
notify that he has no information about the evaluation of the criterion by assigning
his confidence to the whole set of classes (corresponding to the total ignorance).

Qualitative criteria correspond to criteria whose evaluation is carried out in a
Boolean way. For a given criterion cj and its gth evaluation grade HQualg,cj , a given
alternative belongs or does not belong to the evaluation grade. A numerical interval
[xInf , xSup] can be considered as a qualitative criterion as soon as its limits cannot
change. The qualitative mapping process transforms an uncertain evaluation of qual-
itative criteria into basic belief assignments and discounting factor compliant with
the global fusion process.

The basic belief assignment elicitation for qualitative criteria is a two steps pro-
cess. We consider a qualitative criterion cj , for which a given expert or source, has to
provide an evaluation according to the evaluation grades of the common frame of dis-
cernment Θ = {HD1, HD2, . . . , HDk, . . . , HDGD}. The criterion cj is evaluated ac-
cording to the qualitative evaluation grades {HQual1,cj , HQual2,cj , . . . , HQualg,cj , . . . ,
HQualGD,cj}. A qualitative (DST or DSmT based) mapping model is used to link
expert’s evaluation to the evaluation grades of the common frame Θ. The belief is cal-
culated for each qualitative evaluation grade using the importance bba (see Fig. 23.32)
and the comparative confidence qualitative discounting factor using a (DST or DSmT
based) scaling model.

23.3.5.1 Global mapping process for qualitative criterion

As for quantitative criteria, the global process aims at build links between evaluation
grades related to qualitative criteria and the element of the common frame of discern-
ment. Each evaluation grade is assessed first according to its importance according
to the decision to take (e.g. the sensitivity level) and secondly to the confidence level
related to its assessment by the source. As for qualitative criteria, two frames of
discernment and mapping models are considered as shown on Fig. 23.33.

The mapping process corresponds to the following steps:

• Choice of evaluation grades scaling model with regard to the acceptance (DSmT
scaling model) or non-acceptance (DST scaling model) of non empty intersec-
tions between the evaluation grades;
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Figure 23.32: Mapping from qualitative criterion assessment to the common
frame of discernment.

• Importance assessment of each evaluation grade (to calculate weights consid-
ered as equivalent to basic belief assignments);

• Confidence level assessment for the evaluation by a given source s;

• Gathering of these evaluation into a common belief interval with lower and an
upper limits;

• mapping of this belief interval to the common frame of discernment.

23.3.5.2 Importance of each qualitative evaluation grade: DST or
DSmT scaling

A qualitative criterion cj is assessed according to a set of g evaluation grades denoted
as H(Qualg,cj) with g ∈ {1, 2, . . . , G}. These evaluation grades correspond to real
situations that the source may encounter while trying to assess a real problem. As an
example, the criterion C[112] coding for the part of global sensitivity due to the living
places or infrastructures is described by a set of evaluation grades corresponding to
industrial equipments ({Ind}), collectivities ({Col}) or rescue equipments ({Resc}).
They respectively correspond to an increasing level of sensitivity: rescue equipment
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Figure 23.33: Frame of discernment corresponding to DST and DSmT mapping
models.

is considered as more important than a collective equipment which is itself more
important than an industrial equipment. Ranking the different evaluation grades
according to their importance is handled through an AHP based pairwise comparison
matrix. For each evaluation grade, weights are considered as basic belief assignments.
As focal elements are singletons, according to the modeling principles, these bba’s
are equivalent to beliefs following eq. (23.7).

w(HQualg,cj ,s) = m(HQualg,cj ,s) = Bel(HQualg,cj ,s) (23.7)

In a real-case application, different combinations of these equipments can exist:
industrial equipments such as telephonic exchanges, power plants, roads, bridges can
also be considered as rescue equipments. A finest gradation in term of sensitivity
can be proposed. An equipment whose contribution to sensitivity is multiple will be
more sensitive than as many separate equipments: such an equipment concentrating
different functions on a unique geographical point represents an higher potential of
damage. The evaluation model should be able to consider this case. Therefore, two
models are proposed:

• A DST based model considers that the evaluation grades are totally exclusive.
This model cannot take into account the intersection of two evaluation grades;

• A DSmT based model allows intersection between the evaluation grades. Basic
belief assignments put on these empty intersections correspond to the situations
where equipments belong to several evaluation grades.
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We could have obviously imagined modeling the intersection cases through a
refinement of the initial DST model. To our point of view, the DSmT model fits in a
closer way to the real case application. In such a model, the case of an equipment that
would be both an industrial and an rescue equipment corresponds to an evaluation
of the elements {Ind}, {Col} and {Ind ∩ Col}.

23.3.5.3 Confidence level of qualitative evaluation grade

Once the source s has chosen whether an evaluation grade was existing on the studied
area, it must valuate its confidence related to its valuation. For a given qualitative
criterion cj , its evaluation grades can be partially assessed by the source s. Any
evaluation attempt by the source s of the evaluation grade g of the criterion cj cor-
responds to a Boolean factor denoted as input(HQualg,cj ,s). This factor is important

to calculate the weighted discounted factor depending on the evaluated grades.

For each evaluation grade of the criterion cj , the source s has to valuate its confi-
dence level through a confidence ranking interval confRankInt defined in eq. (23.8)
with its minimum and maximum values chosen in a ”Saaty-like” ordinal scale ranging
from confRankmin = 1 (no confidence at all in the valuation) to confRankmax = 9
(total confidence in the valuation).

confRankInt = [inputConfRankmin, inputConfRankmax] (23.8)

These rankings are normalized to calculate lower and upper confidence index following
as follows:

confmin =
inputConfRankmin − confRankmin

confRankmax − confRankmin

confmax =
inputConfRankmax − confRankmin

confRankmax − confRankmin

confmean =
confmin − confmax

2

with inputConfRank = inputConfRank(HQualg,cj ,s).

23.3.5.4 Belief interval

For each evaluation grade g of the criterion cj by the source s, a belief interval
BelInt(HQualg,cj ,s) is derived from the confidence ranking interval confRankInt and

the importance bba m(HQualg,cj ,s). The confidence level associated to this belief inter-

val αcj ,s the ratio between the importance bba weighted by the mean confidence and
the maximum belief value. The final data used to map the qualitative criterion cj are
αcj ,s and BelIntcj = [BelIntmin,cj , BelIntmax,cj ], BelIntmin,g = confmin,g · Belg,
BelIntmax,g = confmax,g · Belg, BelIntmin,cj =

P

g=1,...,G inputg · BelIntmin,g,
BelIntmax,cj =

P

g=1,...,G inputg · BelIntmax,g with inputg = input(HQualg,cj ,s),

Belg = Bel(HQualg,cj ,s), αg = α(HQualg,cj ,s) and BelIntmin,g = BelInt(min,HQualg,cj ,s),
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(similarly with max), BelIntmin,cj = BelInt(min,cj ,s) (similarly with max), confmin,g =
conf(min,HQualg,cj ,s) (similarly with max and mean).

23.3.5.5 Fusion order

The fusion process can be different from the hierarchical decision model. These fusion
orders are parts of the description of the fusion processes in the model. Several
strategies can be imagined depending whether the decision is taken by one source
(see Fig. 23.34) or by several sources (see Fig. 23.35).

Figure 23.34: How far does the fusion process must follow the hierarchical
decision model (case of one source)?

In this work, the implemented model corresponds to (⊕Criterion (⊕Source −
Evaluation)) depicted in Fig. 23.36) below.

23.3.5.6 Fusion of mapped bba of nbSources sources

A given criterion is identified by its criterion identification vector CIV = [r1, r2, . . . , rn].
s sources, denoted as si with i ∈ {1, 2, . . . , s}, provide nbEvalsi interval-based eval-
uations. Each evaluation by the source s, denoted as evalj,s, consists of nbIntj,s

intervals. nbFusedSources represents the total number of all the sources that are
fused for the criterion (sum of all the evaluations of the sources for the given criterion)
(Eq. 23.9).Several fusion processes can be proposed. The following equations concern
the (⊕Criterion(⊕Source−Evaluation)) process. An example is given for the crite-
rion C[111] for which two sources s1 and s2 provide each one evaluation (Eq. 23.10).

nbFusedSourcesCIV =

s
X

si=1

(

nbEvalsi
X

j=1

j) (23.9)
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Figure 23.35: How far does the fusion process must follow the hierarchical
decision model (case of several sources)?

Figure 23.36: Description of the implemented fusion process.
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m(C[111])
(HDk) = (m(C[111],s1,eval1) ⊕ m(C[111],s2,eval1))(HDk) (23.10)

In a UML standard, the fusion process can partially be represented as in Fig. 23.37
below.

Figure 23.37: ER-MCDA framework - UML Class diagram - Principle of the
fusion process.

23.3.5.7 Discounting factors for reliability and importance
assessment

The classical reliability discounting factor

In a classical way, discounting factors are used to take into account the reliabilities
of the sources. For each source of evidence, αr with r ∈ {1, 2, . . . , S} represents the
confidence given by the system to this source. αr = 1 corresponds to a totally
reliable source of evidence and αr = 0 corresponds to totally unreliable source of
evidence [Dezert 2003]10 .

The AHP method can be used to calculate the discounting factors. A preference
matrix using pairwise comparisons gives the relative weight of importance wr of
each source. After a normalization step based on the maximum of the weights, the
discounting factor αr can be defined as [Beynon 2005]11 :

10p.21
11p.1891
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αr =
wr

max(wk)
with k ∈ {1, 2, . . . , S} (23.11)

In our ER-MCDA framework, discounting factors are used at many different steps
of the process:

• following the classical approach, a discounting factor is applied to the different
sources providing an evaluation for qualitative or quantitative criteria. Normal-
ization factor is used at the evaluation step of qualitative criterion to evaluate
the confidence of the assessor in its judgment (confidence qualitative discounting
factor);

• normalized weights of the basic level criteria are transformed in discounting
factors (with a maximum based normalization instead of a direct use of weights
– see Fig. 23.38).

Figure 23.38: From preference weights to discounting factors for S = 5 sources.

The last situation may appear as a misunderstanding of the concept of discounting
factor. In fact, we consider here that the evaluation of a criterion results both from its
importance in the decision process and from the evaluation uncertainty. For a given
criterion cj , the pairwise comparison of qualitative evaluation grades produce weights
considered as basic belief assignment related to their contribution to the sensitivity:
they are named importance bba. This principle justifies the fact that they are used
to calculate the bba in the common frame of discernment. For this criterion, the
evaluator has some variable confidence about its evaluation: ”Does this evaluation
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grade really belong to the site that I am evaluating?”. The singletons (extended with
intersections in a DSmT framework) are considered to compare the levels of confidence
on each of these evaluation grades. The weights are then considered as discounting
factors as they reduce the importance of the previous evaluation. A fusion would not
have any sense since the discernment frame and the meaning is different.

Can importance be assessed by a (new) discounting factor?

Mixing fusion and multi-criteria decision approaches can lead to the difficulty of
making a difference between uncertainty and importance. This also corresponds to a
classical discussion about difference between aggregation of preferences and informa-
tion fusion. In an ideal framework, we do consider that fusion should mainly concern
uncertain pieces of evidence and not the preferences between criteria. The final fu-
sion step of mapped basic level criteria should be compared to an aggregation method
based on the result of fusion. Nevertheless, we propose in the following section, an
experimental approach to take importance into account through a new discounting
factor.

Figure 23.39: DST and DSmT models for importance discounting model.

The classical discounting method transforms a basic belief assignment m(·) through
a discounting factor α that reduces the basic belief assignment for each focal element
and increases the basic belief assignment assigned to the total ignorance Θ. In our
ER-MCDA framework, the mapping process leads to mapped basic belief assignments
taking into account the reliability of the different sources. During that first step (so-
called mapping and scaling steps), the classical discount method is appropriate since
it really corresponds to a variable level of confidence for each evaluation.

The second step of the process aims at fuse the basic level criteria evaluation
according to their importance. This last fusion step produces the final basic belief
assignment that can be analyzed to make a decision according different rules such as
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maximum of bba, maximum of credibility, etc. The question is to represent the pref-
erences weights issued from MCDA model in a fusion model. The weights represent
relative importance from one criterion to another and not relative uncertainty: a lower
importance basic level criterion can be assessed in a certain way while a very impor-
tant criterion can be very uncertain. Using the classical discounting factor [Beynon
2005] cannot represent this difference since it only corresponds to a reduction of the
reliability.

Definition (importance discounting factor): To represent the relative importance of
the basic level criteria in a same way than in a multi-criteria decision problem, we
propose (following more or less some principles proposed by Smets), a specific (and
experimental) importance discounting factor denoted as αImp and defined as follows:
For a source B described by a bba m(·) relatively to the frame of discernment Θ and
used in an ER-MCDA12 process, the importance discounting factor αImp,B is defined
as αImp ∈]0, 1] such as for any subset A ⊂ Θ, the importance discounted bba m′

Imp(·)
is defined by the following eq. (23.12):

(

m(A)

m(∅)
−→

(

m′
Imp(A) = αImp · m(A), ∀A �= ∅

m′
Imp(∅) = (1− αImp) + αImp ·m(∅)

(23.12)

The case where αImp = 1 corresponds to a source B that has the maximum
reachable relative importance value. The principle of this importance discounting
factor is to reduce the basic belief assignment related to a given basic level criterion
without increasing the total ignorance corresponding to m(Θ). It is therefore possible
to discount a source according by using both to its reliability and its importance.

As it involves basic belief assignment on the empty set, this double discounting
method should be used with fusion rules that are able to redistribute conflict and with
models that make a difference between the real conflict between hypotheses and the
basic belief assignment put on the empty set. The classical Dempster’s rule is known
to fail when conflict increases: we can expect than it will not be the best choice in
our experimental model that consists in artificially transfer bba’s on the empty set
at the final stage of fusion.

The following examples show the principle of using this importance discounting
factor in a very simple case (Card(Θ) = 2) in DST and DSmT frameworks. The
source c1 is supposed to be poor reliable (αRel,1 = 0.1) but very important in the
decision process (αImpRel,1 = 1) while the source c2 is considered as fully reliable
(αRel,2 = 1) but not very important in the decision process (αImpRel,2 = 0.1). Basic
belief assignments correspond to the highest possible level of conflict between sources
(see Fig. 23.40).

12Evidential reasoning - Multi-criteria decision analysis
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Figure 23.40: Reliability and importance of sources (experts) c1 and c2.

First approach: The classical discounting factor is applied twice (succes-
sively)

The Table 23.1 (for DST framework) and the Table 23.2 (for DSmT framework)
of discounted criteria using a double successive reliability discounting show that no
usable difference appears between the different hypotheses.

Using the classical discounting process to represent the relative importance of a
criterion compared to another does not seem to be efficient to make a decision. We
therefore introduce a new importance discounting factor in that simple test case.

Second (experimental) approach: The classical discounting factor is first
applied, a new discounting factor is applied

The Tables 23.3 (for DST framework) and 23.4 (for DSmT framework) of dis-
counted criteria using first a classical reliability discounting and then an importance
discounting. The figure 23.41 shows the comparison with a successive discounting
process based on the classical discounting factor.

Conclusion and interpretation

In our opinions, using twice the classical discounting factor to represent both
reliability and importance does not provide any valuable information for decision (see
left side of Fig. 23.41): the bba resulting from fusion are equal for any elements of the
frame of discernment. The fusion process fails here to take importance or preference
into account. Note also that the bba have been voluntarily chosen with ”extreme”
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Θ = {HD1, HD2}
Discounted bba

Discounting steps Source discounting factor ∅ HD1 HD2 Θ
initialization: None c1 none 0 0 1 0

c2 none 0 1 0 0
Step 1: Reliability c1 αRel,1 = 0.1 0 0 0.1 0.9

c2 αRel,2 = 1 0 1 0 0

Step 2: Reliability c1 αImpRel,1 = 1 0 0 0.1 0.9
c2 αImpRel,2 = 0.1 0.9 1 0 0

Fusion rule: Dempster’s rule
Result of fusion c1 ⊕ c2 bba 0 0.0909 0.0909 0.8182

Bel 0 0.0909 0.0909 1
Pl 0 0.9091 0.9091 1

BetP 0 0.5 0.5 1
DSmP 0 0.5 0.5 1

Fusion rule: Smets rule
Result of fusion c1 ⊕ c2 bba 0.01 0.09 0.09 0.81

Bel 0.01 0.1 0.1 1
Pl 0.01 0.9 0.9 0.99

BetP 0.01 0.5050 0.505 1
DSmP 0.01 0.4950 0.495 0.99

Fusion rule: PCR6 rule
Result of fusion c1 ⊕ c2 bba 0 0.095 0.095 0.81

Bel 0 0.095 0.095 1
Pl 0 0.905 0.905 1

BetP 0 0.5 0.5 1
DSmP 0 0.5 0.5 1

Table 23.1: ER-MCDA framework - double reliability discounting of two
criteria c1 and c2 - DST framework.

Θ = {HD1, HD2}
Discounted bba

Discounting steps Source discounting factor ∅ H
D

1

H
D

1
∩

H
D

2

H
D

2

Θ

initialization: None c1 none 0 0 0 0.1 0.9
c2 none 0.9 0.1 0 0 0

Step 1: Reliability c1 αRel,1 = 0.1 0 0 0 0.1 0.9
c2 αRel,2 = 1 0 1 0 0 0

Step 2: Reliability c1 αImpRel,1 = 1 0 0 0 0.1 0.9
c2 αImpRel,2 = 0.1 0.9 0.1 0 0 0

Fusion rule: DSm, Smets or PCR6 rules
Result of fusion c1 ⊕ c2 bba 0 0.09 0.01 0.09 0.81

Bel 0 0.1 0.01 0.1 1
Pl 0 1 1 1 1
BetP 0 0.685 0.37 0.685 1
DSmP 0 0.99 0.9982 0.999 1

Table 23.2: ER-MCDA framework - double reliability discounting of two
criteria c1 and c2 - DSmT framework.

values in our example. In such a case, only the partial conflict redistribution rules
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Θ = {HD1, HD2}
Discounted bba

Discounting steps Source discounting factor ∅ HD1 HD2 Θ
initialization: None c1 none 0 0 1 0

c2 none 0 1 0 0
Step 1: Reliability c1 αRel,1 = 0.1 0 0 0.1 0.9

c2 αRel,2 = 1 0 1 0 0

Step 2: Importance c1 αImp,1 = 1 0 0 0.1 0.9
c2 αImp,2 = 0.1 0.9 1 0 0

Fusion rule: Dempster’s rule
Result of fusion c1 ⊕ c2 bba 0 1 0 0

Bel 0 1 0 0
Pl 0 1 0 0

BetP 0 1 0 0
DSmP 0 1 0 0

Fusion rule: Smets rule
Result of fusion c1 ⊕ c2 bba 0.91 0.09 0 0

Bel 0.91 1 0 0
Pl 0.91 0.09 0 0

BetP 0.91 1 0 0
DSmP 0 0.09 0 0

Fusion rule: PCR6 rule
Result of fusion c1 ⊕ c2 bba 0.486 0.095 0.014 0.4050

Bel 0.486 0.5810 0.5 1
Pl 0.486 0.5 0.419 0.514

BetP 0.486 0.7835 0.7025 1
DSmP 0 0.448 0.066 0.5140

Table 23.3: ER-MCDA framework - Reliability and importance discounting
of two criteria c1 and c2 - DST framework.

manage to provide a result that can be interpreted for a decision. The analysis of the
results when using the importance discounting factor at the second step of the fusion
process allow to make the following conclusions (see right side of Fig. 23.41):

• the input bba issued from sources c1 (or expert 1) and c2 (or expert 2) are
transferred on the empty set and on Θ accordingly to their relative reliability
and importance;

• the bba resulting from fusion are distributed on the empty set, Θ and the
focal elements. The repartition of bba on those elements provides information
about information used in the fusion process. They must be interpreted in a
relative way. The respectively very high value assigned to the empty set and
Θ correspond to the fact that the two sources have respectively ”conflicting”
or ”very different” importance, while the bba assigned to Θ can be classically
interpreted as a comparative level of ignorance. Some limits values can probably
be identified. Distance between those limits values and the calculated bba
would represent the differential importance or reliability of sources;

• in that case of two highly different sources (full reliable but not important versus
poor reliable but important source), the fusion process proposes to choose the
most important source which is consistent in a decision context. The absolute
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Θ = {HD1, HD2}
Discounted bba

Discounting steps Source discounting fac-
tor

∅ H
D

1

H
D

1
∩

H
D

2

H
D

2

Θ

initialization:
None

c1 none 0 0 0 0.1 0.9

c2 none 0.9 0.1 0 0 0
Step 1: Reliability c1 αRel,1 = 0.1 0 0 0 0.1 0.9

c2 αRel,2 = 1 0 1 0 0 0

Step 2: Impor-

tance

c1 αImp,1 = 1 0 0 0 0.1 0.9

c2 αImp,2 = 0.1 0.9 0.1 0 0 0

Fusion rule: DSm rule
Result of fusion c1 ⊕ c2 bba 0 0.9 0.1 0 0

Bel 0 1 0.1 0 0
Pl 0 1 1 0 0
BetP 0 1 0.55 0 0
DSmP 0 1 0.999 0 0

Fusion rule: Smets rule
Result of fusion c1 ⊕ c2 bba 0.9 0.09 0.01 0 0

Bel 0.9 1 0.91 0 0
Pl 0.9 0.1 0.1 0 0
BetP 0.9 1 0.955 0 0
DSmP 0 1 0.099 0 0

Fusion rule: PCR6 rule
Result of fusion c1 ⊕ c2 bba 0.486 0.09 0.01 0.009 0.4050

Bel 0.486 0.586 0.496 0.505 1
Pl 0.486 0.514 0.514 0.514 0.514
BetP 0.486 0.8605 0.6805 0.82 1
DSmP 0 0.5136 0.5131 0.5135 0.514

Table 23.4: ER-MCDA framework - Reliability and importance discounting
of two criteria c1 and c2 - DSmT framework.

value of the bba (here a very low value) and the relative bba assigned to the
empty set and Θ provides additional information to interpret this result: the
decision is clearly not the result from a complete consensus between sources.

This proposition must obviously be discussed and analyzed in a further way from
a practical and theoretical way.

23.3.6 Decision-making

This final step corresponds to the ultimate goal of the whole process. All the more
or less uncertain evaluations, provided by more or less reliable sources are fused in
a unique decision criteria that has to be analyzed to make a decision. In our frame-
work, the decision is analyzed according to the fusion parameters such as basic belief
assignments, credibility, plausibility, pignistic probability assigned to the different
hypotheses of the frame of discernment.
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Figure 23.41: Comparison of discounting method: reliability–reliability and
reliability–importance (DST and DSmT frameworks).

Making a decision on the basis of these values is a well-known problem for fusion
applications [Martin and Quidu 2008, Bloch et al. 2001]. The existing applications
mixing evidential reasoning and multi-criteria decision analysis also use these func-
tions to choose a solution once the fusion is done: [Beynon et al. 2000] interprets
the results according to the interval between credibility and plausibility: the smaller
interval, the more certain is the alternative. There is still some place for proposition
of some methods allowing to interpret the results of fusion in a more operational way
with one essential objective: the decision must remain understable by the decision-
makers themselves !
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23.4 Applications: Sensitivity index in a multi-experts
environment

We present here two applications cases:

• the first one is a simplified model corresponding to an evaluation of a sensitivity
index for snow avalanches in a multi-expert framework. This case is illustrated
through numerical examples applied to examples of (quantitative and qualita-
tive) basic level criteria. The process from the evaluations to the mapped bba
is illustrated through partial results.

• the second case deals with a geographic application of risk zoning maps, intro-
ducing the problem and the specificity for spatial extent of the method without
any numerical results.

23.4.1 Sensitivity index in a multi-experts environment

23.4.1.1 Implementation

The DSmT framework allows coping with uncertain and imprecise information. Its
main drawback is the complexity in calculations due to the huge number of elements
in DΘ (e.g. with |Θ| = 3 we already get |DΘ| = 19 elements, with |Θ| = 3 we get
|DΘ| = 167, etc). However, not all the elements of the hyper-power set DΘ have to
be filled in and some automated routines and programs have been proposed either to
encode the -power set or to implement the DSmH rule of combination [Djiknavorian
and Grenier 2006].

In our application, we use a new and powerful calculation framework that al-
lows to consider in an easy and versatile way the different models free DSm Model
denoted (Mf (Θ), the hybrid DSm Model M(Θ) or Shafer’s Model M0(Θ) [Martin
2009]. These different models correspond to an increasing level of constraints be-
tween the different hypotheses of the frame of discernment. Fusion routines have
been encapsulated in a global framework that evaluates the multi-criteria decision
model and then operates fusion of the basic level criteria. Although it was developed
in MATLABTM, this tool has been designed according to object-oriented develop-
ment principles. An UML conceptual model has been designed to describe the global
process. All data are saved in hierarchical structures allowing an easy access to all
steps of calculation. The data structures and internal functions can be modified to
deal with other hierarchical model. Some graphical functions have been developed to
help the user to interpret results.
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23.4.1.2 Description of the hierarchic model

In mountainous areas and in France in particular, snow-avalanches are known to
be important risks. Face to numerous avalanches prone areas, decision-makers try
to determine an exposure level for any site and secondly to propose a classification
based on this sensitivity level: this ranking, based on the evaluation of the hazard and
vulnerability levels (Fig. 23.42) can then be used to prioritize prevention strategies
implementation.

Figure 23.42: Decision context: ranking avalanche prone areas according haz-
ard and vulnerability related criteria.

We present here a simplified version of the real existing decision support sys-
tem which consists of a 6-level hierarchy [Rapin 2007] called SSA for Sites Sensible
Avalanches (sensitive avalanche paths). In comparison with the original and existing
framework, this application aims at merge several expert evaluations to determine
the sensibility index of a snow-avalanche prone-area including imprecise and uncer-
tain evaluations of both qualitative and quantitative criteria. The root of this 3-level
hierarchical model (Fig. 23.43) corresponds to the sensitivity level of the avalanche-
prone area (C[1]). Its principles is based on the classical risk equation as presented in
Fig. 23.2. This sensitivity is evaluated according to two sub-criteria corresponding
to vulnerability (C[11]) and hazard (C[12]). The vulnerability criterion is broken down
into two basic-level criteria corresponding to a permanent winter occupants (C[111])
and living places/infrastructures (C[112]). The hazard criterion is broken down into
three basic-level criteria corresponding to morphology (C[121]), history (C[122]) and
Snow-climatology (C[123]). In the original model, each basic level criterion is evalu-
ated according to a criterion-estimator-solution model (Fig. 23.10).
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Figure 23.43: Sample simplified model of the Avalanche sensitivity framework.
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Note that numerical values used in this sample model are fictive and do not
correspond to real numerical intervals used in the original model. The evaluation of
five basic-level criteria is done accordingly to the following hypothesis:

• Winter occupants (C[111]): this quantitative criterion is evaluated according to
the number of winter occupants with 3 evaluation grades in the initial version;

• Living places (C[112]): this qualitative criterion is evaluated according to seven
evaluation grades corresponding to existing facilities or infrastructures in the
studied area;

• Morphology (C[121]): this quantitative criterion is evaluated according the slope
angle;

• History (C[122]): this quantitative criterion is evaluated to an empirical fre-
quency;

• Snow-Climatology (C[123]): this quantitative criterion is evaluated according
snow-height.

The initial evaluation classes are used as a basis to build the mapping model used
in the ER-MCDA model. In that model, classes do not exist anymore for quanti-
tative criteria: the expert provide an evaluation on real numerical values which are
then mapped into the elements of the common frame of discernment. For qualita-
tive criteria, a specific method is proposed to consider the level of confidence of the
evaluation. In a classical hierarchical AHP approach, weights are calculated for each
criterion according to pairwise comparisons from the root criterion to the basic level
criterion level. This principle requires having an equal number of evaluation grades
for each criterion: increasing the number of evaluation grades for a given basic level
criterion induces an higher weight of the basic level criterion with a classical normal-
ization method based on sum. The initial model from which is derived our sample
model had not been designed according to this principle. It was not described as
a hierarchical structure and un-normalized weights had been defined directly by the
experts for each evaluation grade of the basic-level criteria (e.g. 20 for the evalua-
tion grade C[1111] corresponding to a class of winter occupants ranging from 1 to 4
persons). To transform these values into normalized weights and propagate them to
the different levels of the hierarchy, different normalization principles can be used. In
our application, based on a criterion-estimator-solution framework, we use a so-called
SumMax method which is based on the following principle: un-normalized weights
(at the evaluation grade) are normalized using the sum. The absolute weight of basic
level criteria corresponds to the maximum of un-normalized weights of the evaluation
grades. Normalization is then done on a sum basis for the other criteria levels up to
the root level. The normalized weights are then calculated from the root to the basic
level criteria: they are then used to calculate the importance discounting criteria
(Fig. 23.44).
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Figure 23.44: From hierarchical model to importance discounting factor.

In our context, we need to build a link between the criteria and the common frame
of discernment. The first step of the process consists of mapping the evaluation of
basic level criteria by the sources. For each criterion, the mapped bba of those
evaluations are then fused together to get a mapped bba for each basic level criterion
(Fig. 23.36). Examples of results are described in detail for an example of quantitative
criterion (C[111]) and for an example of a qualitative criterion (C[112]) in the following
sections. Only evaluation interval data and a summary table is given for the others
criteria.

23.4.1.3 Example of results for the quantitative criterion C[111]

The criterion C[111] is a quantitative basic level criterion which corresponds to the
vulnerability due to permanent winter occupants in the area. The evaluation provided
by the sources consists of numerical intervals corresponding to the number of occu-
pants. First, each source defines numerical intervals with necessity levels (Fig. 23.45).
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Figure 23.45: From evaluation intervals to mapped bba of intervals.

These necessity levels, interpreted as confidence levels are transformed into bba
(Fig. 23.17). The bba corresponding to each evaluation interval are then transferred
to each element of the frame of discernment corresponding to the chosen mapping
model (DST or DSmT mapping model) according to their areas. The mapped bba
for the first evaluation (including 3 intervals) of the source no. 1 is compiled in the
Table 23.5 and described in a graphical way in Fig. 23.46. The principle of this
calculation as it can be checked in the implemented software application is presented
on (Fig. 23.47). For a given source and its evaluations intervals, different mapping
processes can be applied. We only present here partial results for a DST mapping
model.

source s coded by (C[111], Src1, Eval1)

Frame of discernment - DST - Θ = {NoS, LS, MS, HS}
NoS LS MS HS

Int. Code ms,I(s,Int)
(HD1) ms,I(s,Int)

(HD2) ms,I(s,Int)
(HD3) ms,I(s,Int)

(HD4)

1 I(s, 1) 0 0.375 0.125 0
2 I(s, 2) 0 0.1429 0.1071 0
3 I(s, 3) 0 0.1071 0.1429 0

Table 23.5: Mapped Basic belief assignment (bba)- Criterion C[111] - Source 1
- Evaluation 1 - Fusion process no. 1 - DST framework.
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Figure 23.46: From mapped bba of evaluation to mapped bba of criterion
C[111].

Figure 23.47: Results of mapping process of criterion C[111].
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Fusion of mapped bba for C[111]

A comparison of different combination rules (DST-normalized, Smets and PCR6
rules) in a DST mapping framework can be done using the same input data taking into
account un-discounted or discounted evaluation sources (see the Table 23.6) according
to the user choice.

23.4.1.4 Example of results for the qualitative criterion C[112]

The evaluation of a qualitative criterion uses both a scaling model to produce a belief
(credibility) interval and a mapping model to transform this credibility interval into
the common frame of discernment. The criterion C[112] is a qualitative criterion which
corresponds to the vulnerability due to the infrastructures, facilities and collective
equipments such as schools in the area. Three main categories corresponding to
industrial equipment, collective or community equipments and rescue equipments.
Two different scaling models (DST scaling model or DSmT scaling model) can be
used to transform the evaluation provided by the source into a belief interval that
will be further used in the qualitative mapping process (see Fig. 23.48).

Figure 23.48: Two models for quantitative criterion ”Living places” C[112].
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We only present here partial results for a DSmT scaling model and a DST mapping
model. The choice of the scaling model depends on the nature of the infrastructures
that exist on the site. Some infrastructures may belong to the same time to sev-
eral categories. To take this into account, we can imagine a DSmT scaling model
which will be presented here. Each qualitative category is analyzed according to its
importance (contribution) to the vulnerability using a pairwise comparison approach.

The weights are directly interpreted as bba’s. For each combination of types of
infrastructures, credibility values are calculated as shown in Fig. 23.49.

Figure 23.49: Qualitative criterion C[112] - DSmT scaling - Importance of the
evaluation grade for mapping model.
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The qualitative mapping model is built to establish a correspondence between an
interval evaluation (with a lower and an higher value of credibility) and the common
frame of discernment according to the chosen mapping model (for a DST mapping
model and a DSmT scaling model, see Fig. 23.50).

Figure 23.50: Qualitative criterion C[112] - DST mapping - DSmT scaling -
Evaluation intervals for sources 1 and 2.

To provide an evaluation, the user chooses an input value that indicates if the
chosen category exists in the zone and then a rating of its confidence level about
its evaluation (Fig. 23.51). Results are a weighted belief interval and a discounting
factor about this belief interval. These values are then used in the qualitative mapping
process using the same principle than described for quantitative criterion.
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Figure 23.51: Qualitative criterion C[112] - DST and DSmT mapping - confi-
dence levels - source 1.
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Belief interval: from scaling to mapping

A belief interval resulting from the scaling process is used as data in the mapping
process of the qualitative criterion. An example of user inputs for confidence levels is
given for the criterion C[112] in a context of so-called DSmT scaling where the evalu-
ation grades can have non empty intersections (see the Table 23.7) and in a context
of so-called DST scaling where the evaluation grades are considered as exclusive from
one to each other (see Table ??). In our application case, for a DST scaling, we get
BelInt(C[112],s1) = [0.466, 0.628] and α(C[112],s1) = 0.842. For a DSmT scaling, we get

BelInt(C[112],s1) = [0.314, 0.419] and α(C[112],s1) = 0.875.

23.4.1.5 Partial results for quantitative criteria: C[121], C[122] &
C[123]

The following figures describe the evaluation data interval provided by two sources
for each of the basic level criteria related to the hazard evaluation in a DST mapping
model for the morphology criterion C[121] (Fig. 23.52), the history criterion C[122]

(Fig. 23.53) and the snoow-meteorology criterion C[123] (Fig. 23.54). The resulting
mapped bba for each criterion and each source are then discounted and injected in a
fusion process that produces a mapped bba for each criterion.

Figure 23.52: Quantitative criterion C[121] - DST mapping - Evaluation inter-
vals for sources 1 and 2.
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Figure 23.53: Quantitative criterion C[122] - DST mapping - Evaluation inter-
vals for sources 1 and 2.

Figure 23.54: Quantitative criterion C[123] - DST mapping - Evaluation inter-
vals for sources 1 and 2.
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23.4.1.6 Decision level-criterion C[1]

Fusion processes are described in an extensive way according to all the parameters
chosen for fusion. On the basis on the same input data set, different simulations can
be done to compare fusion rules, mapping models, . . . (see Fig. 23.55). This section
presents results at the decision level for different examples corresponding to a DST
mapping model (fusion processes no. 1 and 3) and a DSmT mapping model (fusion
processes no. 7 and 9). These results compare two different mapping models with
the same fusion rule (e.g processes 1 and 7 or 3 and 9), the same mapping model with
different fusion rules (e.g. processes 1 and 3 or 7 and 9).

Decision level - Fusion process - DST framework

The following tables present the results of fusion of discounted basic-level criteria:

- For the fusion process no. 1, see Table 23.8;

- For the fusion process no. 3, see Table 23.9.

The bba’s in the following tables correspond to un-discounted values. The re-
sult of fusion comes from discounted bba ’s. For each basic level criterion (e.g.
C[111]), the basic belief assignments correspond to the result of fusion of the dis-
counted evaluations of the different sources (for C[111]), this corresponds to the fusion
of m1 = m(C[111],Src1,Eval1) and described in the table of Fig. 23.6. The importance
discounting factors are deduced from the hierarchical decision model depending on
the normalization and evaluation data input. In that example, we use the SumMax
model (Fig. 23.43).

Decision level - Fusion process - DSmT framework

The following tables present the equivalent results to fusion process no. 1 and 3
with only changes in the mapping model (from DST model to DSmT model):

- For the fusion process no. 7, see Table 23.10;

- For the fusion process no. 9, see Table 23.11.

Note that in a DSmT model, results are the same for DST rule (to be understood
as DSm rule) and PCR6 rules since the conflict does not exist.
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Figure 23.55: Description of the fusion processes no. 1, 3, 7 and 9.
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23.4.1.7 Examples of implementation

An integrated framework has been developed using MATLABTM and the calculation
routines developed by [Martin 2009]. All data are saved in structures corresponding to
the UML conceptual modeling principles (the application is not an object application
but only an object-oriented framework - see Fig. 23.56).

Figure 23.56: Quantitative criterion C[111] - Fusion process no. 7 - Data struc-
tures from global identification to evaluation level.

In addition to the calculation framework, some graphical functions have been
added to facilitate the use and interpretation of results (see Fig. 23.57 and Fig. 23.58).
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Figure 23.57: Comparison of results for the fusion processes no. 1, 3, 7 and 9.
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Figure 23.58: Root decision criterion C[1] - Fusion process no. 7 - Data struc-
tures for results plot.
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23.5 Discussion

23.5.1 Mixing uncertainty, imprecision, importance and
traceability

Considering both uncertainty, imprecision, importance and traceability of the exper-
tise process is the ultimate goal of a mixed ER-MCDA framework based on decision-
aid methods and formal theories for uncertainty management. The purpose is both to
aid decision and to describe how far the different sources and evaluations contribute
to the final result: is the decision based on certain evaluations of non important cri-
teria and/or based on uncertain evaluations of important criteria?

Through the literature review, two main approaches can be identified. From one
hand, decision-aid science and specially the multi-criteria decision analysis community
introduces uncertainty management in its traditional framework. This mainly con-
sists of considering uncertain assessment of decision criteria through interval-based,
fuzzy or evidence theory based approaches. On the other hand, ”new” uncertainty
theories (possibilities, evidence theory) develop applications with obvious decision
purposes. Criterion decision based on fused information are proposed in those differ-
ent frameworks.

In our approach, the Analytic Hierarchy Process (AHP) is used as a conceptual
tool to model the problem, to elicit preferences and subjective basic belief assignments
(bba) to be used in the fusion process. Using information fusion in a multi-criteria
decision analysis framework requires that the model analyst should be able to assess
each criterion according to common scale and/or evaluation grades. In the proposed
model, these evaluation grades are considered as elements of the frame of discern-
ment. Under this assumption of a common frame of discernment, the information
fusion and specially its new developments such as DSmT and fusion rules for conflict
situations offer interesting abilities to help to make a decision in the natural hazard
context. Uncertain evaluations of quantitative criteria are fused either at the design
model stage or at the evaluation stage (fusing the different experts sources). As de-
cision depends on fusion process, choosing ad-hoc combination rules is essential: the
combination rules must remain efficient when the conflict level is very high, e.g. when
the classical combination rules of DST fails to propose acceptable results.

Our approach has explored some developments of these ideas while trying to
consider limits and drawbacks of each of methods and theories. Indeed, if the principle
of a joined application of evidential reasoning and Multi-Criteria Decision Analysis
(MCDA) is an interesting perspective, some questions remain, as described in the
following section.
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23.5.2 Advantages and lacks of the ER-MCDA framework

In comparison with existing approaches, we consider that this framework offer the
following advantages:

• First, it allows to trace uncertainty and imprecision for both quantitative and
qualitative criteria. In comparison with existing approaches mixing multi-
criteria decision analysis and evidential reasoning, the information sources,
mainly resulting from expert assessment, are fully described. The expert judge-
ments are identified both for modeling and evaluation steps. Links between cri-
teria evaluation and the fusion process an specially the choice of the frame of
discernment are elicitated through so-called quantitative and qualitative map-
ping processes;

• A formal description and conceptual modeling are proposed. They describe
both the decision model design and the belief function theory framework. A
comparison is proposed to model the same problem using the classical Dempster-
Shafer framework (DST) based on exhaustive and exclusive hypothesis, and the
more recent Dezert-Smarandache framework (DSmT)which relaxes those con-
straints;

• In our application, using advanced and recent fusion rules (such as PCR6 rule)
allow more realistic decisions. ”Ad-hocity” of fusion rules depending on the
class problem is still a research question;

• Importance (related to the preference concept) and reliability should be consid-
ered as two different concepts in any model. A method of a specific discounting
method is proposed but has to be studied in a theoretical way.

The lacks or remaining questions related to the proposed framework are described
as following:

• The difference between fusion and aggregation of preferences remains an im-
portant subject of debate. Fusion and multi-criteria decision analysis cannot
be used in the same conditions. In that sense, some hypothesis of pre-existing
models mixing MCDA and evidential reasoning such as DS-AHP Beynon2000
and other variants can immediatly be critized according to the way in which
they mix weights (corresponding to preferences) and fusion process. The fu-
sion process should be compliant with the nature of combined information: it
is recognized that aggregating preferences and fusing pieces of uncertain evi-
dence should involve different fusion methods Bloch2001 but no definitive and
practical classification is available;

• Basic belief assignment elicitation is an essential part of process. The subjective
evaluation of bba for qualitative criteria using the AHP process can be critized.
At least, it allows to trace the hypothesis and choices of the evaluating experts;
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• At the present stage of development, reliability of sources are chosen in a very
arbitrary and subjective way. Multi-criteria approaches can be imagined up-
stream from the fusion process to characterize this expert reliability according
to experience, backgrounds . . . Tacnet2006b;

• The fact that we consider a unique frame of discernment is also questionable:
with such a principle, we force the sources to provide an evaluation that will
be compliant with the common frame of discernment through a so-called map-
ping process. It may also be argued that the decision is too strongly influenced
by the chosen hierarchical model. This framework requires to define mapping
processes to evaluate all the criteria in the chosen frame of discernment. Sen-
sitivity analysis should be done to analyze whether the choice of this mapping
models influences the final result for fusion;

• In this present version, the framework provide information for decision but
not a real decision. Different alternatives or choices are described in a finer
way than with usual MCDA methods with regards to their uncertainty level.
The final result has still to be analyzed to produce a decision as in any fusion
problem. The further development will probably involve decision-aid method
(total aggregation or outranking methods) using result of fusion to make a
decision;

23.5.3 The question of the validation

As it involves a fusion process, the proposed ER-MCDA framework does not avoid the
difficult question of validation. How can a fusion system be validated and evaluated
(what does it mean) ? Bloch2001 analyse the way to propose such a validation as
following. The validation should concern the problem modeling, the data input, the
fusion in itself and the outputs of the system. In most applications, the proposed
decision-aid systems propose solutions but do not check with a real and pre-existing
choice. This situation also includes applications dealing with simplified testing cases
without any real need for decision (choosing a car, a master course, a candidate).
Nevertheless, this remains an important question and we humbly recognize that no
satisfying answer exists in our application domain of natural hazards at the moment.
We only describe here some principles to implement such a validation.
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Testing the sources is the first necessary step to evaluate the experts reliability
according to, as an example, their tendency toward overconfidence. Finally, in order
to judge the value of the outputs, the easiest situation corresponds to cases where it
is possible to make a comparison between a collection of input examples for which
expected answers of the fusion process are known by experience or expertise. When
validation results arrive after the fusion was done, it is much more difficult to make
a conclusion and decide whether the process is inappropriate or the information pro-
vided is not sufficient. Finally, the last but not the least way to validate the global
decision and/or fusion results is to check that its principles are understood and useful
for the end-users who are supposed to use it as a decision tool . . ..

From a thematic point of view related to natural hazards management, validation
in a decision context (normative vs. empirical approach) also remains a problem. In
industrial contexts, experimental data are more easily available to validate models and
decision-aid tools. When dealing with expert approaches, it remains quite difficult to
validate the result of the proposed methodology since the solution is never unique and
fully certain. Should we consider the existing result as the target for the decision-aid
system, given that all the hypotheses are not always fully argued and justified in an
explicit way ? For risk zoning maps, we cannot consider one result as a reference that
should be obtained by the compared method. The intrinsic value of such a map is in
fact difficult to establish. A satisfactory zoning map would correspond to a situation
where no unexpected damage occur. A zoning map can be considered as right as
long as no event has occurred in a way that had not been planned during its design.
Therefore, a way to validate the process can consist of making a list of required
quality criteria for expertise processes and to analyze if the proposed methodology is
able to improve the existing implementation framework. We are able to measure the
validity of the result only when the reference event (considered as rare most of time)
occurs. A priori validation is therefore quite difficult. In our case, we consider than
a formal elicitation of the reasoning process and the uncertainty level linked to these
information in a recognized theoretical framework is already a valuable result. Being
able to explicit how the decision was taken (with or without conflicts between experts)
and on which initial basis (scientific hypothesis, field data, historical data . . .) it was
founded are already two important step towards the validation of an expertise result.
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23.5.4 Towards an improved ER-MCDA framework

Neither the framework based on multi-criteria decision analysis or fusion seem able
to propose alone an ideal framework to make a decision when several more or less
reliable sources provide uncertain and imprecise evaluations on heterogeneous and
conflicting criteria. Reaching a compromise respecting the preferences of decision-
makers seems as necessary than evaluating and considering the truth associated to
their evaluations. At the end, despite of some known difficulties, mixing evidential
reasoning and multi-criteria decision-aid methods remains a promising perspective.
For further developments, we think at the end that an improved decision framework
should use fusion results as inputs data for a multi-criteria partial aggregation method
(or outranking method) such as ELECTRE Roy1985 and its more recent variants
(Fig. 23.59).

Figure 23.59: The ideal ER-MCDA framework: fusion at the evaluation level,
multi-criteria decision analysis for problem modeling and decision making.
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23.6 Conclusion

Searching for the best of MCDA and evidential reasoning

The natural hazards risk management process is indeed a real complex decision
framework where uncertainty and imprecision come both from the different steps of
the risk analysis, its actors and the information sources. Mixing multi-criteria deci-
sion analysis (MCDA) and evidential reasoning (ER), using some recent developments
such as new fusion rules and theoretical framework such as Dezert-Smarandache The-
ory (DSmT) is a very attractive objective. This first link between the belief function
theory, multi-criteria decision making for natural risks management in mountains ar-
eas appears as an encouraging research development direction. From one side, multi-
criteria methods consider (more or less depending on their hypothesis) the complexity
of the real world, the non-rational behaviour of decision maker, the un-comparability
of choices to help the decision-maker. On the other side, belief function (or Evidence)
theory is a powerful and versatile framework for human reasoning under uncertainty.
Departing from a real, therefore complex, decision problem, this work proposes an
operational methodology to integrate those two approaches at different steps of the
reasoning process. Improving the elicitation of these levels of imprecision and un-
certainty obviously induce more complexity in the risk management framework. As
against, it is a possible way to increase the risk awareness in the population and
decision makers: experts judgements are not the absolute truth.

Implementation is possible: a first practical framework to improve

A dilemma when trying to imagine a framework that deals with decision and
uncertainty is to propose an application whose principles, input and results can be
understood by the decision makers. On this basis, introducing an uncertainty level in
existing decision-aid methods could be roughly and immediately considered as use-
less according to the previous objective since fusion calculation can quickly induce
high complexity. Though its recognized abilities to represent human theory under
uncertainty, the belief function theory (or Evidence Theory) still remains difficult to
implement. This applies to the classical Dempster-Shafer Theory (DST) but also to
the recent DSmT. Last developments on fusion calculation moderate these traditional
drawbacks. From a software programming implementation point of view, this frame-
work implies to handle a great amount of data which needs to be structured. Mixing
multi-criteria decision analysis and fusion applications produce more informational
results than the classical individual approaches. Data models and conceptual mod-
eling of this kind of problem have been proposed as a basis for further development.
The formal description of both hierarchical model and uncertain evaluation also al-
lows to make some links with information systems. Such methodologies issued from
software engineering appear as valuable tools to describe the problematic, its com-
ponents but also to prepare a further integration in a database management system
(DBMS). The global methodology contributes therefore to help decision but also to
improve the traceability of reasoning process which is an important requirement and
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domain of progress in the natural hazards risk management context. The principles
of the method remain quite simple and we consider that it can be easily understood
by the decision-makers and experts. Graphical synthetic results are proposed as ex-
amples to help the decision. All this remain a prototype and for decision purposes,
there are still work to be done to design and realize a full friendly-user application.
To our point of view, one of the advantage of this framework is first to elicit the
reasoning hypothesis chosen by the experts along their decision process with respect
to the conflict and ignorance levels associated to their evaluations. This concern as
much the alternatives evaluations than the models used to make transformation from
one framework to another (e.g. the so-called ”scaling” and ”mapping” models used
to transform qualitative and quantitative evaluations into a common frame of dis-
cernment.

Remaining issues and further developments

Main issues to use DST and DSmT in the natural hazards expertise context
remain:

• the use of the results for decision purpose with optimistic, pessimistic or com-
promise point of views;

• fusion order according to (or not) the hierarchical framework of the multi-
criteria approach;

• choice of fusion rules according to their ability to take conflict into account;

• choice and evaluation of discounting factors related to the different information
sources. A multi-criteria approach can be useful to determine these discounting
factors;

• results validation.

Main difficulties come from the choice of the frame of discernment, the conflict
management and aggregation techniques. This approach extends some existing mixed
application of evidential reasoning and multi-criteria decision models. We show that
DSmT provides a versatile tool able to consider imprecise and uncertain information
with some advantages such as conflict management and paradoxical information. In
our framework, deterministic models such as snow-avalanches modeling tools would
be considered as common sources. Assessing the reliability of such model corresponds
to an important research issue: it comes as much from the modeling hypotheses than
from data uncertainty. To handle this uncertainty, some new approaches mixing
probabilistic and possibilistic frameworks and called ”hybrid methods” have been
proposed by Baudrit et al. recently. In the natural hazards context, data are of-
ten lacking or incomplete. Those approaches should be developed to characterize
the uncertainty coming from modeling in the global expertise process. Other multi-
criteria decision frameworks could be tested in order to compare this framework with
partial aggregation techniques such as Electre-based method. Outranking methods
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should be used to produce a decision. This could include comparison between differ-
ences of credibility, plausibility, pignistic probability, etc. An improved ER-MCDA
framework, and a further way for development, could include fusion process at the
evaluation level and multi-criteria decision analysis at the initial stage of problem
modeling and at the ultimate stage for decision making.

Guidelines for further developments

From a theoretical point of view, the question of ad-hocity of fusion or aggregation
methods according to the problem still requires additional research. Efficient fusion
techniques are necessary to have a global assessment of situation and to help to take
the right decision, and an efficient decision-making support system will help in the
risk prevention against natural hazards. The model proposed in this work is a first
attempt to introduce the global problematic of information fusion for natural hazards
risk assessment. Of course, some developments for improving these frameworks in
relationship with the fusion and decision-aid methods community are under progress
in several directions. For example, a deep parametric analysis must be carried out to
precisely estimate the importance discounting and reliability factors of all the sources
before extending this ER-MCDA approach to the full-criteria real case application.
From a thematic point of view, the global methodology is not strictly limited to
the snow-avalanche domain: it can be used in others contexts of natural hazards
where expertise is required such as torrential floods, rockfalls, etc, as well. Many
ways are possible to improve this approach, say by a better choice and comparative
analysis of decision rules and on the model choices specially for geographical aspects.
To be used in a practical way, numeric tools will be also required. The model has
to be plugged with DBMS systems that use information. New developments about
qualitative combination rules proposed in DSmT have not yet been tested and could
also be used.
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