
INTERVAL NEUTROSOPHIC MST CLUSTERING ALGORITHM AND ITS

AN APPLICATION TO TAXONOMY

RIDVAN SAHIN∗

Abstract. Interval neutrosophic sets (INSs) are a generalization of interval valued intuitionistic

fuzzy sets (IVIFSs) whose the membership and non-membership values of elements consist of

interval values. In this paper, we extend the clustering techniques based graph theory given for

IVIFSs to INSs. Firstly, we propose a minimal spaning tree (MST) algorithm based on distance

measure under interval neutrosophic environment and then use the interval neutrosophic MST

(INMST) clustering algorithm to classify any dataset in here. Finally, we present some numerical

examples in order to demonstrate the availability and effectiveness of the developed clustering

algorithm.

1. INTRODUCTION

Clustering process is a procedure which divides a given dataset into groups such that similar

objects are collect in a group whereas objects that is not similar are in different groups, and

has a significant place in many fields including medicine, computational biology, economics, image

processing and mobile communication. The need of gathering the objects with similar characteristic

in same group causes to development of many methods. In the literature, a wide variety of

clustering algorithms such as hierarchical, partitional, graph-based model-based and density-based

have been proposed. Since similarity measure between sets is often can expressed by a graph, an

interesting and important variant of data clustering is graph clustering. An application of fuzzy

set theory in cluster analysis has proposed in the work of Ruspini [4]. Dong et al. [23] proposed a

hierarchical clustering algorithm using the connectedness property of fuzzy graphs. A graph based

clustering is actually a minimum spanning tree (MST) clustering. MST is a significant structure

used to design many clustering algorithms and to connect all the data points either by a direct

edge or by a path. To overcome many of the problems encountered by the classical clustering

algorithms, it has been commonly studied by many authors in biological data analysis [13], image

processing [11, 14] and pattern recognition [15]. The best known graph-based clustering algorithm,

which starts by finding a minimum spanning tree in the graph and then removes inconsistent edges

from the MST to create clusters, is Zahn’s Minimum Spanning Tree (MST) clustering [1]. Recently,
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Wang et al. [5] have presented a fast minimum spanning tree-inspired clustering algorithm by using

an efficient implementation of the cut and the cycle property of the MTSs. Gryorash et al. [17] have

proposed two minimum spanning tree based clustering algorithms and applied the algorithms to

image color clustering. There are several well known MST algorithms to solve minimum spanning

tree problem [7, 16, 19]. By constructing the fuzzy similarity relation matrix, Chen et al. [3]

have defined the concept of maximum spanning tree and used the threshold of this matrix to cut

maximum spanning tree and obtained the classification on the respective level. Zhao et al. [24]

have introduced an intuitionistic fuzzy clustering method which is called intuitionistic fuzzy MST

clustering algorithm based on the graph theoretic techniques and the intuitionistic fuzzy distance

measure to cluster intuitionistic fuzzy information, and extended them to clustering interval valued

intuitionistic fuzzy information. Based on the idea of the conventional MST clustering algorithm

and the hesitant fuzzy distance matrix, Zhang et al. [22] have proposed a hesitant fuzzy MST

clustering algorithm.

Neutrosophic set theory [25] is defined by Smarandache for modelling uncertaintly in real word.

However, since neutrosophic sets is be difficult to use in real scientific or engineering applications,

Wang et al. [6] defined the concept of interval neutrosophic set (INS) which is a more general

platform than the classic set, fuzzy set [12], interval valued fuzzy set [20], intuitionistic fuzzy set

[9] and interval valued intuitionistic fuzzy set [10]. Because of this generalization, the existing

MST clustering algorithms cannot cluster the interval neutrosophic data. So we need to develop

the clustering techniques to cluster such data. This paper focuses on a clustering method based

graph to handle the data represented by interval neutrosophic information.

The organization of this paper is as follows: Section 2 presents a short summary on the

interval neutrosophic sets and its distance measures, graph theory and MST clustering algorithm.

The proposed approach for the interval neutrosophic clustering algorithm based on MST as well as

the experimental results have been shown in Section 3. The last section summarizes the conclusions.

2. Preliminaries

In the section, we first give some basic concepts of a graph and its minimum spanning tree

(MST). Then we recall the definition of interval neutrosophic set and its some relevant relations.

2.1. The graph and the minimum spanning tree (MST). Graphs are mathematical struc-

tures used to represent pairwise relations between objects from a certain collection. A graph G

consists of a set V and a set E, where the elements of V is called nodes and the elements of E are

called edges. An undirected graph is a graph, in which each edge is an unordered pair {v1, v2},
where the nodes v1 and v2 are called the endpoints of an edge, while a directed graph is a graph,

in which each edge is ordered pair. A subgraph H of G has an edge set E
′ ⊆ E, and a node set

induced by E
′
. A path in G is a sequence of nodes v0, v1, ..., vk such that there is an edge between
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any two adjacent nodes vi, vi+1 in the sequence. A cycle in G is a path whose endpoint is the same

as its start point. A graph is connected if there is a path between any two nodes in the graph. A

tree is a graph that is minimally connected, that does not contain any cycle. A spanning tree of

G is a subgraph of G that is a tree and that covers every node in G. A weighted graph is a graph

that a weight function w : E −→ R is defined on the edge set E of a graph G. Weight of a graph

is sum of the weights of all edges denoted by number w(e) for an edge e ∈ E. In Fig. 1 we present

an example of weighted graph.
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FIGURE 1. A weighted graph

Since a spanning tree H of G is connected, there is a path involving only edges in H between

any two nodes in G, and since it is a tree, this path is unique. Figure 2 shows two different spanning

trees of weighted graph given in Fig. 1.
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FIGURE 2. Two spanning trees

A minimum spanning tree (MST) in a connected and weighted graph is a spanning tree with

minimum weight among all spanning trees. That is, a MST is a tree obtained from a subset of the

edges in an undirected graph and has the following two properties:
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(1) it is a minimum, i.e., the total weight of all the edges is as low as possible.

(2) it spans the graph, i.e., it includes every node in the graph.

Here, the total weight is the sum of the weights of all the edges of the spanning tree. In Fig.

3 we present two different minimum spanning trees of weighted graph given in Fig. 3.
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FIGURE 3. Two minimum spanning trees

The set E in a simple graph defines a crisp relation over V × V . In other words, if there

exists an edge between the nodes v1, v2 ∈ V, then membership degree of the pair equals 1 (µE(

v1, v2) = 1), if there not, it follows that µE( v1, v2) = 0. If R is defined as a fuzzy relation over

V × V , then such a graph is referred to as fuzzy graph and the membership function µE( v1, v2)

takes values from 0 to 1. If R is an interval valued intuitionistic fuzzy relation over V × V , then

G = (V,R) is referred to as interval valued intuitionistic fuzzy graph [24]. Similarity, we define the

interval neutrosophic graph by interval neutrosophic relation over V × V .

In clustering analysis based MST, the distance between the end points forming an edge is

commonly considered as the weight for this edge. So a MST algorithm can identify potentially

significant edges or path in the graph. Well known algorithms for finding MST are Kruskal’s

algorithm [7], Boruvka’s algorithm [16], Prim’s algorithm [19] and Karger et al.’s faster randomized

MST algorithm [2]. Algorithms considered in the rest of the article are Kruskal’s and Prim’s

algorithms.

Kruskal’s algorithm based on the edge selection starts by creating disjoint subsets of V con-

taining only that node and for each node. It then controls the edges according to non-decreasing

weight. If an edge connects two nodes in disjoint subsets, the edge is added and the subsets are

merged into one set. The algorithm finishes when all the subsets are merged into one set.

Prim’s algorithm based on the node selection grows by starting from an arbitrary node. At

each stage, a new node and edge are added to the tree that is already constructed, and the algorithm

finishes when all the nodes have been chosen.
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INTERVAL NEUTROSOPHIC MST CLUSTERING ALGORITHM 5

2.2. The concept of INS.

Definition 2.1. [25] Let X be a space of points (objects) and x ∈ X. A neutrosophic set N in X

is defined by a truth-membership function TN , an indeterminacy-membership function IN and a

falsity-membership function FN , where TN (x), IN (x) and FN (x) are real standard or nonstandard

subsets of ]0−, 1+[. That is, TN : X −→]0−, 1+[, IN : X −→]0−, 1+[ and FN : X −→]0−, 1+[.

There is no restriction on the sum of TN (x), IN (x) and FN (x), so 0− ≤ supTN (x) +

supIN (x) + supFN (x) ≤ 3+. Here, for practical purposes and to keep the discussion relatively

simpler we are assuming the range of [0, 1].

Definition 2.2. [6] Let X be a set and Int[0, 1] be the set of all closed subsets of [0, 1]. An INS A in

X is defined with the form A = {(x, uA(x), wA(x), vA(x)) : x ∈ X}, where uA : X −→Int[0, 1], wA :

X −→Int[0, 1] and vA : X −→Int[0, 1] with the condition 0 ≤ supuA(x), supwA(x), sup vA(x) ≤ 3,

for all x ∈ X.

The intervals uA(x), wA(x) and vA(x) denote the truth-membership degree, indeterminacy-

membership degree and falsity-membership degree of x to A, respectively.

For convenience, if let uA(x) =
[
u+A(x), u−A(x)

]
, wA(x) =

[
w+

A(x), w−
A(x)

]
and vA(x) =[

v+A(x), v−A(x)
]
, then A =

{(
x,
[
u−A(x), u+A(x)

]
,
[
w−

A(x), w+
A(x)

]
,
[
v−A(x), v+A(x)

])
: x ∈ X

}
with the

condition 0 ≤ sup(x) + supw+
A(x) + sup v+A(x) ≤ 3, for all x ∈ X. If wA(x) = [0, 0] and u+A(x) +

v+A(x) ≤ 1, then A reduces to an interval valued intuitionistic fuzzy set [9] and if wA(x) = [0, 0]

and vA(x) = [0, 0], then A reduces to a interval valued fuzzy set [20]. The relationship of interval

neutrosophic set and other sets is presented in Table 1.

Interval neutrosophic set

⇑
Interval valued intuitionistic fuzzy set

⇑
Intuitionistic fuzzy set (Interval valued fuzzy set)

⇑
Fuzzy set

⇑
Classic set

TABLE 1. Relationships between sets

2.3. Relations of INS. Let INS(X) denote the set of all interval neutrosophic sets over X.
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6 RIDVAN SAHIN∗

Definition 2.3. [6] Let A and B be two interval neutrosophic sets,

A =
{(
x,
[
u−A(x), u+A(x)

]
,
[
w−

A(x), w+
A(x)

]
,
[
v−A(x), v+A(x)

])
: x ∈ X

}
,

B =
{(
x,
[
u−B(x), u+B(x)

]
,
[
w−

B(x), w+
B(x)

]
,
[
v−B(x), v+B(x)

])
: x ∈ X

}
.

Then some operations can be defined as follows:

(1) A ⊆ B if and only if u−A(x) ≤ u−B(x), u+A(x) ≤ u+B(x), w−
A(x) ≥ w−

B(x), w+
A(x) ≥ w+

B(x),

v−A(x) ≥ v−B(x) and v+A(x) ≥ v+B(x) ∀x ∈ X;

(2) A = B if and only if A ⊆ B and B ⊆ A;

(3) Ac =
{(
x,
[
v−A(x), v+A(x)

]
, [1− supwA(x), 1− inf wA(x)] ,

[
u−A(x), u+A(x)

])
: x ∈ X

}
.

2.4. The distance measures of INSs. Suppose that X = {x1, x2, ..., xn} is an universe of

discourse. Consider that the elements xi (i = 1, 2, ..., n) in the universe X may have different

importance, let ω = {ω1, ω2, ...ωn}T be the weight vector of xi (i = 1, 2, ..., n), with ωi ≥ 0,

i = 1, 2, ..., n,
n∑

i=1

ωi = 1. Suppose that A and B are two interval neutrosophic sets over X.

Ye [8] has defined the generalised distance as follows:

d1(A,B) =

(
1

6n

n∑
i=1

(
∣∣u−A(x)− u−B(x)

∣∣p +
∣∣u+A(x)− u+B(x)

∣∣p (1)

+
∣∣w−

A(x)− w−
B(x)

∣∣p +
∣∣w+

A(x)− w+
B(x)

∣∣p +
∣∣v−A(x)− v−B(x)

∣∣p +
∣∣v+A(x)− v+B(x)

∣∣p)
) 1

p .

If it is taken as p = 1 and p = 2, then it is obtained the normalized Hamming distance and

the normalized Euclidean distance, respectively:

(1) The normalized Hamming distance

d2(A,B) =

(
1

6n

n∑
i=1

(
∣∣u−A(x)− u−B(x)

∣∣+
∣∣u+A(x)− u+B(x)

∣∣ (2)

+
∣∣w−

A(x)− w−
B(x)

∣∣+
∣∣w+

A(x)− w+
B(x)

∣∣+
∣∣v−A(x)− v−B(x)

∣∣+
∣∣v+A(x)− v+B(x)

∣∣))
(2) The normalized Euclidean distance

d3(A,B) =

(
1

6n

n∑
i=1

(
∣∣u−A(x)− u−B(x)

∣∣2 +
∣∣u+A(x)− u+B(x)

∣∣2 (3)

+
∣∣w−

A(x)− w−
B(x)

∣∣2 +
∣∣w+

A(x)− w+
B(x)

∣∣2 +
∣∣v−A(x)− v−B(x)

∣∣2 +
∣∣v+A(x)− v+B(x)

∣∣2)
) 1

2
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Ye [8] has extended the weighted distance to generalised distance as follows:

d4(A,B) =

(
1

6

n∑
i=1

ωi

(∣∣u−A(x)− u−B(x)
∣∣p +

∣∣u+A(x)− u+B(x)
∣∣p (4)

+
∣∣w−

A(x)− w−
B(x)

∣∣p +
∣∣w+

A(x)− w+
B(x)

∣∣p +
∣∣v−A(x)− v−B(x)

∣∣p +
∣∣v+A(x)− v+B(x)

∣∣p)) 1
p

If it is taken as p = 1 and p = 2, then it is obtain the normalized Hamming distance and the

normalized Euclidean distance, respectively:

(1) The normalized Hamming distance

d5(A,B) =

(
1

6

n∑
i=1

ωi

(∣∣u−A(x)− u−B(x)
∣∣+
∣∣u+A(x)− u+B(x)

∣∣ (5)

+
∣∣w−

A(x)− w−
B(x)

∣∣+
∣∣w+

A(x)− w+
B(x)

∣∣+
∣∣v−A(x)− v−B(x)

∣∣+
∣∣v+A(x)− v+B(x)

∣∣))
(2) The normalized Euclidean distance

d6(A,B) =

(
1

6

k∑
i=1

ωi

(∣∣u−A(x)− u−B(x)
∣∣2 +

∣∣u+A(x)− u+B(x)
∣∣2 (6)

+
∣∣w−

A(x)− w−
B(x)

∣∣2 +
∣∣w+

A(x)− w+
B(x)

∣∣2 +
∣∣v−A(x)− v−B(x)

∣∣2 +
∣∣v+A(x)− v+B(x)

∣∣2)) 1
2

.

Moreover,

Xu [21] has defined the generalised distance measure of IVIFSs as follows:

d1(A,B) =

(
1

4

n∑
i=1

ωi(
∣∣u−A(xi)− u−B(xi)

∣∣2 +
∣∣u+A(xi)− u+B(xi)

∣∣2 + (7)

+
∣∣v−A(xi)− v−B(xi)

∣∣2 +
∣∣v+A(xi)− v+B(xi)

∣∣2)
) 1

2

Burillo et al. [18] has defined the generalised distance measure of IVFSs as follows:

(8) d1(A,B) =

(
1

2

n∑
i=1

ωi(
∣∣u−A(xi)− u−B(xi)

∣∣2 +
∣∣u+A(xi)− u+B(xi)

∣∣2)

) 1
2

3. Clustering algorithm for INSs

Now, we define the concept of interval neutrosophic distance matrix.

Definition 3.1. Let aj (j = 1, 2, ...,m) be a m INSs, then D = (dij)m×m is called an interval

neutrosophic distance matrix, where dij = d(ai, aj) is the distance between ai and aj , which has

the following properties:

(1) dij = 0 iff ai = aj ;

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



8 RIDVAN SAHIN∗

(2) 0 ≤ dij ≤ 1 for all i, j = 1, 2, ...,m;

(3) dij = dji for all i, j = 1, 2, ...,m.

Based on the interval neutrosophic distance matrix, we extend the interval-valued intuitionistic

MST clustering algorithm to interval neurosophic MST clustering algorithm, which is given by

following steps:

Step 1 : Construct the interval neutrosophic distance matrix and interval neutrosophic graph.

(1) Calculate the distance dij = d(ai, aj) by Eq (6) to obtain the interval neutrosophic

distance matrix D = (dij)m×m.

(2) Build the interval neutrosophic graph G = (E, V ), which has m nodes related to the

samples aj (for j = 1, 2, ...,m) represented by INSs and has m(m − 1)/2 edge that

every edge between ai and aj having the weight dij , which is an element of the interval

neutrosophic distance matrixD = (dij)m×m and demonstrates the dissimilarity degree

between the samples ai and aj .

Step 2: Compute the MST of the interval neutrosophic graph G = (E, V ) by Kruskal method

[7] or Prim method [19]:

(1) Sort the edges of G in increasing range from the smallest weight to the largest one

and choose the edge with the smallest weight.

(2) Choose the edge with the smallest weight from the each rest edges such that do not

form a cycle with edge previously added.

(3) Repeat the process (2) until (m − 1) edges have been chosen. Hence, we obtain the

MST of the interval neutrosophic graph G = (V,E).

Step 3: Cluster the nodes into groups by disconnecting all the edges of the MST with weights

greater than a threshold λ. Hence, we can obtain a certain number of sub-trees (clusters).

The clustering results obtained by the sub-trees is not connected with some particular

MST.

3.1. Numerical examples. In the section, we give some examples to demonstrate the real appli-

cations and effectiveness of the clustering algorithm proposed for INSs.

In the world, there is no a precise information about number of living species but scientists

have estimate that there are species between 10 and 30 million. Because of this number of species,

scientific studies become more difficult and this situation makes classification imperative. Our aim

is to give a method based on graph that allows this classification.

A biologist group want to make a classification of eight rediscovered living species based on two

attributes: x1−physical structure and x2−anatomical structure. According to the two attributes,

they analyze the eight living species and report the interval neutrosophic date as
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a1 = {(x1, [0.3, 0.8] , [0.2, 0.4] , [0.4, 0.5]) , (x2, [0.3, 0.5] , [0.1, 0.4] , [0.6, 0.7])} ,

a2 = {(x1, [0.1, 0.2] , [0.8, 0.9] , [0.1, 0.9]) , (x2, [0.1, 0.8] , [0.5, 0.9] , [0.2, 0.5])} ,

a3 = {(x1, [0.1, 0.4] , [0.5, 0.7] , [0.3, 0.5]) , (x2, [0.1, 0.4] , [0.3, 0.6] , [0.5, 0.6])} ,

a4 = {(x1, [0.2, 0.3] , [0.4, 0.5] , [0.5, 0.7]) , (x2, [0.5, 0.6] , [0.2, 0.3] , [0.3, 0.4])} ,

a5 = {(x1, [0.1, 0.7] , [0.1, 0.7] , [0.2, 0.4]) , (x2, [0.3, 0.5] , [0.5, 0.8] , [0.4, 0.5])} ,

a6 = {(x1, [0.5, 0.6] , [0.3, 0.5] , [0.4, 0.6]) , (x2, [0.3, 0.7] , [0.1, 0.2] , [0.1, 0.2])} ,

a7 = {(x1, [0.5, 0.6] , [0.5, 0.7] , [0.2, 0.4]) , (x2, [0.1, 0.2] , [0.5, 0.7] , [0.2, 0.8])} ,

a8 = {(x1, [0.8, 0.9] , [0.7, 0.8] , [0.3, 0.5]) , (x2, [0.1, 0.5] , [0.3, 0.4] , [0.3, 0.9])} .

Let the weight vector of the attributes xj (j = 1, 2) be ω = (0.45, 0.55)T . We use the INMST

clustering algorithm to group these species aj(j = 1, 2, ..., 8):

Step 1: Construct the interval neutrosophic distance matrix and interval neutrosophic graph:

(1) Calculate the distance dij = d(ai, aj) by Eq (6) to obtain the interval neutrosophic

distance matrix D = (dij)8×8. Then we can obtain the interval neutrosophic distance

matrix D = (dij)8×8 as follows:

D =



0, 0000 0, 4029 0, 2073 0, 2234 0, 2273 0, 2478 0, 2714 0, 2650

0, 4029 0, 0000 0, 2519 0, 3192 0, 3074 0, 3762 0, 3133 0, 3747

0, 2073 0, 2519 0, 0000 0, 2146 0, 1843 0, 2865 0, 1914 0, 2752

0, 2234 0, 3192 0, 2146 0, 0000 0, 2712 0, 1717 0, 3139 0, 3373

0, 2273 0, 3074 0, 1843 0, 2712 0, 0000 0, 3042 0, 2224 0, 3264

0, 2478 0, 3762 0, 2865 0, 1717 0, 3042 0, 0000 0, 3317 0, 3114

0, 2714 0, 3133 0, 1914 0, 3139 0, 2224 0, 3317 0, 0000 0, 2018

0, 2650 0, 3747 0, 2752 0, 3373 0, 3264 0, 3114 0, 2018 0, 0000



(2) Build the interval neutrosophic graph G = (E, V ), which has 8 nodes related to

the samples aj (for i = 1, 2, ..., 8) represented by INSs and has 28 edge that every

edge between ai and aj having the weight dij , which is an element of the interval

neutrosophic distance matrix D = (dij)8×8 and demonstrates the dissimilarity degree

between the samples ai and aj . Then we can give the interval neutrosophic graph
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G = (E, V ) in Fig. 4.

a1

a8

a6 a5

a7

a2

a3

a4

FIGURE 4. The interval neutrosophic graph G = (V,E)

Step 2: Compute the MST of the interval neutrosophic graph G = (E, V ) by Kruskal method

[7] or Prim method [19]:

(1) Sort the edges of G in increasing range from the smallest weight to the largest one

and choose the edge with the smallest weight, that is the edge e46 between a4 and a6.

d46 < d35 < d37 < d78 < d13 < d34 < d57 < d14 < d15 < d16

< d23 < d18 < d45 < d17 < d38 < d36 < d56 < d25 < d68

< d27 < d47 < d24 < d58 < d67 < d48 < d28 < d26 < d12.

(2) Choose the edge with the smallest weight from the each rest edges such that do not

form a cycle with edge previously added, that is the edge e35 between a3 and a5
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(3) Repeat the process (2) until seven edges have been chosen. Thus, we obtain the MST

of the interval neutrosophic graph G = (V,E) as shown in Fig. 5.

a1

a3

a8

a6

a5

a2

a4

a7

FIGURE 5. The MST of interval neutrosophic graph G = (V,E)

Step 3: Cluster the nodes into groups: by choosing a threshold λ and by disconnecting all

the edges of the MST with weights greater than λ, we can obtain a certain number of

sub-trees (clusters) as listed in Table 2.

Table 2. INMST clustering results

λ Corresponding to clustering result

λ = d23 = 0, 2519 {a1, a2, a3, a4, a5, a6, a7, a8}
λ = d34 = 0, 2146 {a2} , {a1, a3, a4, a5, a6, a7, a8}
λ = d13 = 0, 2073 {a2} , {a4, a6} {a1, a3, a5, a7, a8}
λ = d78 = 0, 2018 {a1} , {a2} , {a4, a6} {a3, a5, a7, a8}
λ = d37 = 0, 1914 {a1} , {a2} , {a4, a6} {a3, a5, a7} , {a8}
λ = d35 = 0, 1843 {a1} , {a2} , {a3, a5} , {a4, a6} , {a7} , {a8}
λ = d46 = 0, 1717 {a1} , {a2} , {a3} , {a5} , {a4, a6} , {a7} , {a8}
λ = 0 {a1} , {a2} , {a3} , {a4} , {a5} , {a6} , {a7} , {a8}

To compare the interval neutrosophic MST (INMST) clustering algorithm and the interval valued

intuitionistic fuzzy MST (IVIFMST) clustering algorithm, we extend the example of Zhao [24] by

adding the indeterminacy-membership degree to each attributes.

Example 3.1. The six sets of operational plans are made to complete an operational mission. The

basic idea is to cluster these operational plans according to their comprehensive functions. For this

purpose, a military committee has been established to evaluate the information on them. However,

it is required that the evaluation is made with respect to two following considerations: x1= the

effectiveness of operational organization and x2= the effectiveness of operational command. After
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the performance of the six operational plans based to the attributes xj (j = 1, 2) is evaluated by the

military committee, it have been reported the data INS as follows:

a1 = {(x1, [0.60, 0.80] , [0.25, 0.35] , [0.10, 0.20]) , (x2, [0.50, 0.70] , [0.15, 0.20] , [0.10, 0.30])} ,

a2 = {(x1, [0.30, 0.50] , [0.45, 0.60] , [0.25, 0.45]) , (x2, [0.70, 0.85] , [0.30, 0.45] , [0.00, 0.15])} ,

a3 = {(x1, [0.45, 0.65] , [0.15, 0.75] , [0.15, 0.35]) , (x2, [0.60, 0.80] , [0.35, 0.45] , [0.05, 0.20])} ,

a4 = {(x1, [0.34, 0.54] , [0.05, 0.10] , [0.25, 0.45]) , (x2, [0.50, 0.70] , [0.25, 0.55] , [0.10, 0.30])} ,

a5 = {(x1, [0.40, 0.60] , [0.00, 0.50] , [0.25, 0.40]) , (x2, [0.65, 0.80] , [0.15, 0.25] , [0.10, 0.20])} ,

a6 = {(x1, [0.45, 0.65] , [0.55, 0.75] , [0.15, 0.35]) , (x2, [0.47, 0.67] , [0.12, 0.20] , [0.05, 0.25])} .

Let the weight vector of the attributes xj (j = 1, 2) be ω = (0.45, 0.55)T . We use the INMST

clustering algorithm to group these plans aj(j = 1, 2, ..., 6):

Step 1: Construct the interval neutrosophic distance matrix and interval neutrosophic graph:

(1) Calculate the distance dij = d(ai, aj) by Eq (6) to obtain the interval neutrosophic

distance matrix D = (dij)6×6. Then we can obtain the interval neutrosophic distance

matrix D = (dij)6×6 as follows:

D =



0, 0000 0, 2099 0, 1742 0, 1906 0, 1455 0, 1571

0, 2099 0, 0000 0, 1230 0, 2020 0, 1579 0, 1580

0, 1742 0, 1230 0, 0000 0, 2014 0, 1244 0, 1609

0, 1906 0, 2020 0, 2014 0, 0000 0, 1611 0, 2591

0, 1455 0, 1579 0, 1244 0, 1611 0, 0000 0, 1843

0, 1571 0, 1580 0, 1609 0, 2591 0, 1843 0, 0000



(2) Build the interval neutrosophic graph G = (E, V ), which has 6 nodes related to the

samples aj (j = 1, 2, ..., 6) represented by INSs and has 15 edge that every edge be-

tween ai and aj having the weight dij , which is an element of the interval neutrosophic

distance matrix D = (dij)6×6 and demonstrates the dissimilarity degree between the

samples ai and aj . Then we can give the interval neutrosophic graph G = (E, V ) in
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Fig. 6.

a1

a3a6

a2

a4a5

FUGURE 6. The interval neutrosophic graph G = (V,E)

Step 2: Compute the MST of the interval neutrosophic graph G = (E, V ) by Kruskal method

[7] or Prim method [19]:

(1) Sort the edges of G in increasing range from the smallest weight to the largest one

and choose the edge with the smallest weight, that is the edge e23 between a2 and a3.

d23 < d35 < d15 < d16 < d25 < d26 < d36 < d45

< d13 < d56 < d14 < d34 < d24 < d12 < d46.

(2) Choose the edge with the smallest weight from the each rest edges such that do not

form a cycle with edge previously added, that is the edge e35 between a3 and a5.

(3) Repeat the process (2) until seven edges have been chosen. Thus, we obtain the MST

of the interval neutrosophic graph G = (V,E) as shown in Fig. 7.

a3

a4

a5

a2

a6

a1

FIGURE 7. The interval neutrosophic graph G = (V,E)

Step 3: Cluster the nodes into groups: by choosing a threshold λ and by disconnecting all

the edges of the MST with weights greater than λ, we can obtain a certain number of

sub-trees (clusters) as listed in Table 3.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



14 RIDVAN SAHIN∗

Table 3. INMST clustering results

λ Corresponding to clustering result

λ = d45 = 0, 1611 {a1, a2, a3, a4, a5, a6}
λ = d16 = 0, 1571 {a4} , {a1, a2, a3, a5, a6}
λ = d15 = 0, 1455 {a4} , {a1, a2, a3, a5} , {a6}
λ = d35 = 0, 1244 {a1} , {a4} , {a2, a3, a5} , {a6}
λ = d23 = 0, 1230 {a1} , {a2, a3} , {a4} , {a5} , {a6}
λ = 0 {a1} , {a2} , {a3} , {a4} , {a5} , {a6}

Example 3.2. Suppose that the performance of a group of six operational plans based on the at-

tributes xj (j = 1, 2), whose weight vector is ω = (0.45, 0.55)T , is asked the military committee

for evaluation according to data expressed by IVIFS, then it can be transformed the interval neu-

trosophic dataset of Example 3.1 into interval valued intuitionistic fuzzy dataset by removing the

indeterminacy-membership degree to each attributes as follows:

a1 = {(x1, [0.60, 0.80] , [0.10, 0.20]) , (x2, [0.50, 0.70] , [0.10, 0.30])} ,

a2 = {(x1, [0.30, 0.50] , [0.25, 0.45]) , (x2, [0.70, 0.85] , [0.00, 0.15])} ,

a3 = {(x1, [0.45, 0.65] , [0.15, 0.35]) , (x2, [0.60, 0.80] , [0.05, 0.20])} ,

a4 = {(x1, [0.34, 0.54] , [0.25, 0.45]) , (x2, [0.50, 0.70] , [0.10, 0.30])} ,

a5 = {(x1, [0.40, 0.60] , [0.25, 0.40]) , (x2, [0.65, 0.80] , [0.10, 0.20])} ,

a6 = {(x1, [0.45, 0.65] , [0.15, 0.35]) , (x2, [0.47, 0.67] , [0.05, 0.25])} ,

Let the weight vector of the attributes xj (j = 1, 2) be ω = (0.45, 0.55)T . We use the IVIFMST

clustering algorithm to group these plans aj(j = 1, 2, ..., 6):

Step 1: Construct the interval valued intuitionistic fuzzy distance matrix and interval valued

intuitionistic fuzzy graph:

(1) Calculate the distance dij = d(ai, aj) by (7) to obtain the interval valued intuitionistic

fuzzy distance matrix D = (dij)6×6.

Then we can obtain the interval valued intuitionistic fuzzy distance matrix D =

(dij)6×6 as follows:

D =



0, 0000 0, 2070 0, 1111 0, 1573 0, 1479 0, 0938

0, 2070 0, 0000 0, 0985 0, 1158 0, 0702 0, 1440

0, 1111 0, 0985 0, 0000 0, 0971 0, 0515 0, 0706

0, 1573 0, 1158 0, 0971 0, 0000 0, 0832 0, 0768

0, 1479 0, 0702 0, 0515 0, 0832 0, 0000 0, 0971

0, 0938 0, 1440 0, 0706 0, 0768 0, 0971 0, 0000
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(2) Build the interval valued intuitionistic fuzzy graph G = (E, V ), which has 6 nodes

related to the samples aj (j = 1, 2, ..., 6) represented by IVIFSs and has 15 edge

that every edge between ai and aj having the weight dij , which is an element of the

interval valued intuitionistic fuzzy distance matrix D = (dij)6×6 and demonstrates

the dissimilarity degree between the samples ai and aj . Then the interval valued

intuitionistic fuzzy graph G = (E, V ) is identical to Fig. 4.

Step 2: Compute the MST of the interval valued intuitionistic fuzzy graph G = (E, V ) by

Kruskal method [7] or Prim method [19]:

(1) Sort the edges of G in increasing range from the smallest weight to the largest one

and choose the edge with the smallest weight, that is the edge e35 between a3 and a5.

d35 < d25 < d36 < d46 < d45 < d16 < d56 = d34

< d23 < d13 < d24 < d26 < d15 < d14 < d12.

(2) Choose the edge with the smallest weight from the each rest edges such that do not

form a cycle with edge previously added, that is the edge e25 between a2 and a5.

(3) Repeat the process (2) until seven edges have been chosen. Thus, we obtain the MST

of the interval valued intuitionisitc fuzzy graph G = (V,E) as shown in Fig. 8.

a1

a2

a5

a3

a6

a4

FIGURE 8. The interval valued intuitionistic fuzzy graph G = (V,E)

Step 3: Cluster the nodes into groups: by choosing a threshold λ and by disconnecting all

the edges of the MST with weights greater than λ, we can obtain a certain number of

sub-trees (clusters) as listed in Table 4.
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Table 4. IVIFMST clustering results

λ Corresponding to clustering result

λ = d16 = 0, 0938 {a1, a2, a3, a4, a5, a6}
λ = d46 = 0, 0768 {a1} , {a2, a3, a4, a5, a6}
λ = d36 = 0, 0706 {a1} , {a4} , {a2, a3, a5, a6}
λ = d25 = 0, 0702 {a1} , {a4} , {a2, a3, a5} , {a6}
λ = d35 = 0, 0515 {a1} , {a2} , {a4} , {a3, a5} , {a6}
λ = 0 {a1} , {a2} , {a3} , {a4} , {a5} , {a6}

Example 3.3. Suppose that the performance of a group of six operational plans based on the at-

tributes xj (j = 1, 2), whose weight vector is ω = (0.45, 0.55)T , is asked the military committee

for evaluation according to data expressed by IVFS, then it can be transformed the interval neutro-

sophic dataset of Example 3.1 into interval valued fuzzy dataset by removing the indeterminacy-

membership and falsity membership degrees to each attributes as follows:

a1 = {(x1, [0.60, 0.80]) , (x2, [0.50, 0.70])} ,

a2 = {(x1, [0.30, 0.50]) , (x2, [0.70, 0.85])} ,

a3 = {(x1, [0.45, 0.65]) , (x2, [0.60, 0.80])} ,

a4 = {(x1, [0.34, 0.54]) , (x2, [0.50, 0.70])} ,

a5 = {(x1, [0.40, 0.60]) , (x2, [0.65, 0.80])} ,

a6 = {(x1, [0.45, 0.65]) , (x2, [0.47, 0.67])} ,

Let the weight vector of the attributes xj (j = 1, 2) be ω = (0.45, 0.55)T . We use the IVMST

clustering algorithm to group six operational plans aj(j = 1, 2, ..., 6):

Step 1: Construct the interval valued fuzzy distance matrix and interval valued fuzzy graph:

(1) Calculate the distance dij = d(ai, aj) by (8) to obtain the interval valued fuzzy dis-

tance matrix D = (dij)6×6.

Then we can obtain the interval valued fuzzy distance matrixD = (dij)m×m as follows:

D =



0, 0000 0, 2401 0, 1250 0, 1744 0, 1641 0, 1030

0, 2401 0, 0000 0, 1164 0, 1338 0, 0766 0, 1832

0, 1250 0, 1164 0, 0000 0, 1046 0, 0425 0, 0964

0, 1744 0, 1338 0, 1046 0, 0000 0, 1027 0, 0770

0, 1641 0, 0766 0, 0425 0, 1027 0, 0000 0, 1211

0, 1030 0, 1832 0, 0964 0, 0770 0, 1211 0, 0000


(2) Build the interval valued fuzzy graph G = (E, V ), which has 6 nodes related to the

samples aj (j = 1, 2, ..., 6) represented by IVFS and has 15 edge that every edge

between ai and aj having the weight dij , which is an element of the interval valued
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fuzzy distance matrix D = (dij)6×6 and demonstrates the dissimilarity degree between

the samples ai and aj . Then the interval valued fuzzy graph G = (E, V ) is identical

to Fig. 4.

Step 2: Compute the MST of the interval valued fuzzy graph G = (E, V ) by Kruskal method

[7] or Prim method [19]:

(1) Sort the edges of G in increasing range from the smallest weight to the largest one

and choose the edge with the smallest weight, that is the edge e35 between a3 and a5.

d35 < d25 < d46 < d36 < d45 < d16 < d34 < d23

< d56 < d13 < d24 < d15 < d14 < d26 < d12.

(2) Choose the edge with the smallest weight from the each rest edges such that do not

form a cycle with edge previously added, that is the edge e25 between a2 and a5

(3) Repeat the process (2) until seven edges have been chosen. Thus, we obtain the MST

of the interval valued fuzzy graph G = (V,E) as shown in Fig. 9.

a1

a2

a4

a6

a5

a3

FIGURE 9. The interval valued fuzzy graph G = (V,E)

Step 3: Select a threshold λ and disconnect all the edges of the MST with weights greater

than λ to obtain a certain number of sub-trees (clusters) automatically, as listed in Table

5.
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Table 5. IVFMST clustering results of the eight different countries

λ Corresponding to clustering result

λ = d16 = 0, 1030 {a1, a2, a3, a4, a5, a6}
λ = d36 = 0, 0964 {a1} , {a2, a3, a4, a5, a6}
λ = d46 = 0, 0770 {a1} , {a2, a3, a5} , {a4, a6}
λ = d25 = 0, 0766 {a1} , {a4} , {a2, a3, a5} , {a6}
λ = d35 = 0, 0425 {a1} , {a2} , {a4} , {a3, a5} , {a6}
λ = 0 {a1} , {a2} , {a3} , {a4} , {a5} , {a6}

An INS is a generalization of an IVIFS while an IVIFS is a generalization of an IVFS (also

fuzzy set). In Table 6, we can say that the clustering results obtained from clustering algorithms

are rather different. The main reason of this situation is form of functions that characterize to set.

That is, an IVIFS is only characterized with membership and non-membership function consisting

of interval values while an IVFS is only characterized with membership function consisting of

interval values. So it can be said that the information loss in IVFSs is more than IVIFSs on the

same universe of discourse. However, an INS has basic three functions with independent of each

other such that truth-membership, indeterminacy-membership and falsity- membership, it allows

less information loss in the environment. Then it is more reasonable to use the INSs for clustering

process.

Table 6. Comparison of clustering results

classes INMST clustering Alg. IVIFMST clustering Alg. IVFMST clustering Alg.

1 {a1, a2, a3, a4, a5, a6} {a1, a2, a3, a4, a5, a6} {a1, a2, a3, a4, a5, a6}

2
{a4} ,
{a1, a2, a3, a5, a6}

{a1} ,
{a2, a3, a4, a5, a6}

{a1} ,
{a2, a3, a4, a5, a6}

3
{a4} ,
{a1, a2, a3, a5} , {a6}

{a1} , {a4} ,
{a2, a3, a5, a6}

{a1} ,
{a2, a3, a5} , {a4, a6}

4
{a1} , {a4} ,
{a2, a3, a5} , {a6}

{a1} , {a4} ,
{a2, a3, a5} , {a6}

{a1} , {a4} ,
{a2, a3, a5} , {a6}

5
{a1} , {a2, a3} ,
{a4} , {a5} , {a6}

{a1} , {a2} , {a4} ,
{a3, a5} , {a6}

{a1} , {a2} , {a4} ,
{a3, a5} , {a6}

6
{a1} , {a2} , {a3} ,
{a4} , {a5} , {a6}

{a1} , {a2} , {a3} ,
{a4} , {a5} , {a6}

{a1} , {a2} , {a3} ,
{a4} , {a5} , {a6}
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4. Conclusion

Interval neutrosophic set theory present a more general platform for modeling uncertainty and

recently been studied by many authors in a wide range of applications. However, in the literature,

until now there is no any work on clustering of dataset in interval neutrosophic environment despite

the large number of clustering algorithm. In this article, we focused our attention on the clustering

analysis for interval neutrosophic environment. Based on the graph theory, we proposed an interval

neutrosophic MST clustering algorithm which is more general than the existing algorithms. The

effectiveness of the algorithm via some numerical examples is presented.
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