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Abstract — In Dempster-Shafer Theory (DST) of ev-
idencee and transferable belief model (TBM), the prob-
ability transformation is necessary and crucial for
decision-making. The evaluation of the quality of the
probability transformation is usually based on the en-
tropy or the probabilistic information content (PIC)
measures, which are questioned in this paper. Another
alternative of probability transformation approach is
proposed based on the uncertainty minimization to ver-
ify the rationality of the entropy or PIC as the evalua-
tion criteria for the probability transformation. Accord-
ing to the experimental results based on the comparisons
among different probability transformation approaches,
the rationality of using entropy or Probabilistic Infor-
mation Content (PIC) measures to evaluate probability
transformation approaches is analyzed and discussed.
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1 Introduction

Evidence theory, as known as Dempster-Shafer Theory
(DST) [1,2] can reason with imperfect information in-
cluding imprecision, uncertainty, incompleteness, etc.
It is widely used in many fields in information fusion.
There are also some drawbacks and problems in evi-
dence theory, i.e. the high computational complexity,
the counter-intuitive behaviors of Dempster’s combi-
nation rule and the decision-making in evidence the-
ory, etc. Several modified, refined or extended mod-
els were proposed to resolve the problems aforemen-
tioned, such as transferable belief model (TBM) [3] pro-
posed by Philippe Smets and Dezert-Smarandache The-
ory (DSmT) [4] proposed by Jean Dezert and Florentin
Smarandache, etc.
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The goal of uncertainty reasoning is the decision-
making. To take a decision, the belief assignment val-
ues for a compound focal element should be at first
assigned to the singletons. So the probability transfor-
mation from belief function is crucial for the decision-
making in evidence theory. The research on probability
transformation has attracted more attention in recent
years.

The most famous probability transformation in evi-
dence theory is the pignistic probability transformation
(PPT) in TBM. TBM has two levels including credal
level and pignistic level. At the credal level, beliefs
are entertained, combined and updated while at the
pignistic level, the PPT maps the beliefs defined on
subsets to the probability defined on singletons, then a
classical probabilistic decision can be made. In PPT,
belief assignment values for a compound focal element
are equally assigned to the singletons belonging to the
focal element. In fact, PPT is designed according to
principle of minimal commitment, which is somehow
related with uncertainty maximization. But the goal
of information fusion at decision-level is to reduce the
uncertainty degree. That is to say more uncertainty
might not be helpful for the decision. PPT uses equal
weights when splitting masses of belief of partial un-
certainties and redistributing them back to singletons
included in them. Other researchers also proposed some
modified probability transformation approaches [5-13]
to assign the belief assignment values of compound fo-
cal elements to the singletons according to some ra-
tio constructed based on some available information.
The typical approaches include the Sudano’s probabili-
ties [8] and the Cuzzolin’s intersection probability [13],
etc. In the framework of DSmT, another probability
transformation approach was proposed, which is called
DSmP [9]. DSmP takes into account both the values of
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the masses and the cardinality of focal elements in the
proportional redistribution process. DSmP can also be
used in Shafer’s model within DST framework.

In almost all the research works on probability trans-
formations, the entropy or Probabilistic Information
Content (PIC) criteria are used to evaluate the prob-
ability transformation approaches. Definitely for the
purpose of decision, less uncertainty should be better
to make a more clear and solid decision. But does the
probability distribution generated from belief functions
with less uncertainty always rational or always be ben-
efit to the decision? We do not think so. In this pa-
per, an alternative probability transformation approach
based on the uncertainty minimization is proposed.
The objective function is established based on the Shan-
non entropy and the constraints are established based
on the given belief and plausibility functions. The ex-
perimental results based on some provided numerical
examples show that the probability distributions gen-
erated based on the proposed alternative approach have
the least uncertainty degree when compared with other
approaches. When using the entropy or PIC to evalu-
ate the proposed probability transformation approach,
the probability distribution with the least uncertainty
seemingly should be the optimal one. But some risky
and strange results can be derived in some cases, which
are illustrated in some numerical examples. It can be
concluded that the entropy or PIC, i.e. the uncertainty
degree might not be enough to evaluate the probability
transformation approach. In another word, the entropy
or PIC might not be used as the only criterion to make
the evaluation.

2 Basics of evidence theory and
probability transformation

2.1 Basics of evidence theory

In Dempster-Shafer theory [2], the elements in the
frame of discernment (FOD) © are mutually exclusive.
Define the function m : 2° — [0, 1] as the basic prob-
ability assignment (BPA, also called mass function),
which satisfies:

ZAQG m(A) =1, m(®) =0

Belief function and plausibility function are defined
respectively in (2) and (3):

Bel(A) = ZBQA m(B)

(1)

(2)

A =3 miB) 3)

and Dempster’s rule of combination is defined as fol-
lows: mq,mao, ..., m, are n mass functions, the new com-
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bined evidence can be derived based on (4)

0, A=90
m(A) = NA;=A 1311[5”77”(1%) ’ A 7& @ (4)

NA;#0 1<i<n

Dempster’s rule of combination is used in DST to
accomplish the fusion of bodies of evidence. But the fi-
nal goal of the information fusion at decision-level is to
make the decision. The belief function (or BPA, plausi-
bility function) should be transformed to the probabil-
ity, before the probability-based decision-making. Al-
though there are also some research works on making
decision directly based on belief function or BPA [14],
probability-based decision methods are the develop-
ment trends of uncertainty reasoning and theories [15].
This is because the two-level reasoning and decision
structure proposed by Smets in his TBM is appealing.

2.2 Pignistic transformation

As a type of probability transformation approach, the
classical pignistic probability in TBM framework was
coined by Philippe Smets. TBM is a subjective and
non probabilistic interpretation of evidence theory. It
extends the evidence theory to the open—world propo-
sitions and it has a range of tools for handling belief
functions including discounting and conditioning, etc.
At the credal level of TBM, beliefs are entertained, com-
bined and updated while at the pignistic level, beliefs
are used to make decisions by transforming beliefs to
probability distribution based on pignistic probability
transformation (PPT). The basic idea of the pignistic
transformation consists in transferring the positive be-
lief of each compound (or nonspecific) element onto the
singletons involved in that element split by the cardi-
nality of the proposition when working with normalized
BPAs.

Suppose that © = {61,65,...,0,} is the FOD. The
PPT for the singletons is illustrated as follows [3]:

D

0;€B, BC2©

m™(B)
B

where 29 is the power set of the FOD. Based on the
pignistic probability derived, the corresponding deci-
sion can be made.

But in fact, PPT is designed according to the idea
being similar to uncertainty maximization. In general,
the PPT is just a simple averaging operation. The mass
value is not assigned discriminately to the different sin-
gletons involved. But for information fusion, the aim is
to reduce the degree of uncertainty and to gain a more
consolidated and reliable decision result. The high un-
certainty in PPT might be not helpful for the decision.
Several researchers aim to modify the traditional PPT.
Some typical modified probability transformation ap-
proaches are as follows.
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1) Sudano’s probabilities: Sudano [8] proposed
some interesting alternatives to PPT denoted by PrPl,
PrNPI, PraPl, PrBel and PrHyb, respectively. Sudano
uses different kinds of mappings either proportional to
the plausibility, to the normalized plausibility, to all
plausibilities and to the belief, respectively or a hybrid

mapping.

2) Cuzzolin’s intersection probability: In the
framework of DST, Fabio Cuzzolin [13] proposed an-
other type of transformation. From a geometric inter-
pretation of Dempster’s combination rule, an intersec-
tion probability measure was proposed from the propor-
tional repartition of the total non specific mass (TNSM)
by each contribution of the non-specific masses involved
in it.

3) DSmP: Dezert and Smarandache proposed the
DSmP as follows: Suppose that the FOD is © =
{61, ...,0,}, the DSmP_(6;)can be directly obtained by:

DSmP. (6;) = m({0:}) + (m({0:}) + ¢)-

m(X)
( Z@ > m(Y)+E~|X\) (6)
JG(ECQX Ye2;’
[X]>2 |y]=1

In DSmP, both the values of the mass assignment and
the cardinality of focal elements are used in the pro-
portional redistribution process. DSmP does an im-
provement of all Sudano, Cuzzolin, and BetP formulas,
in the sense that DSmP mathematically makes a more
accurate redistribution of the ignorance masses to the
singletons involved in ignorance. DSmP works in both
theories: DST and DSmT as well.

There are still some other definitions on modified
PPT such as the iterative and self-consistent approach
PrScP proposed by Sudano in [5] and a modified PrScP
in [12]. Although the approaches aforementioned are
different, all the probability transformation approaches
are evaluated based on the degree of uncertainty. Less
uncertainty means that the corresponding probability
transformation result is better. According to such a
idea, the probability transformation approach should
attempt to enlarge the belief differences among all the
propositions and thus to derive a more reliable decision
result. Is this definitely rational? Is the uncertainty
degree always proper or enough to evaluate the prob-
ability transformation? In the following section, some
uncertainty measures are analyzed and an alternative
probability transformation approach based on uncer-
tainty minimization is proposed to verify the rationality
of the uncertainty degree as the criteria for evaluating
the probability transformation.
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3 An alternative probability
transformation based on un-
certainty minimization

3.1 Evaluation criteria for probability
transformation

The metrics depicting the strength of a critical decision
by a specific probability distribution are introduced as
follows:

1) Normalized Shannon entropy

Suppose that pg is a probability distribution, where
0 € ©, |©| = N and the |0| represents the cardinality
of the FOD ©. The evaluation criterion for the proba-
bility distribution derived based on different probability
transformation is as follows [12].

— > pology(ps)
6co

logy N @

The dividend in (7) is the Shannon entropy and the di-
visor in (7) is maximum value of the Shannon entropy
for {py|@ € B},|0| = N. Obviously Fp is normalized.
The larger the Ey is, the larger the degree of uncer-
tainty is. The less the Ey is, the less the degree of un-
certainty is. When Ey= 0, there is only one hypothesis
has a probability value of 1 and the rest has 0, the agent
or system can make decision correctly. When EFpy= 1,
it is impossible to make a correct decision, because all
the pg, V0 € © are equal.

2) Probabilistic Information Content

Probabilistic Information Content (PIC) criterion is
an essential measure in any threshold-driven automated
decision system. A PIC value of one indicates the total
knowledge to make a correct decision.

1
PIC(P) =1+ oz, N > pology(pe)
6co
Obviously, PIC = 1 — Ey. The PIC is the dual of
the normalized Shannon entropy. A PIC value of zero
indicates that the knowledge to make a correct deci-
sion does not exist (all the hypotheses have an equal
probability value), i.e. one has the maximal entropy.
As referred above, for information fusion at decision-
level, the uncertainty seemingly should be reduced as
much as possible. The less the uncertainty in prob-
ability measure is, the more consolidated and reliable
decision can be made. Suppose such a viewpoint is
always right and according to such an idea, an alter-
native probability transformation of belief function is
proposed.

Ey =

(8)

3.2 Probability transformation of belief
function based on uncertainty min-
imization

To accomplish the probability transformation, the be-

lief function (or the BPA, the plausibility function)
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should be available. The relationship between the prob-
ability and the belief function are analyzed as follows.
Based on the viewpoint of Dempster and Shafer, the
belief function can be considered as a lower probabil-
ity and the plausibility can be considered as an upper
probability. Suppose that py € [0,1] is a probability
distribution, where 8 € ©. For a belief function defined
on FOD O, suppose that B € 2°, the inequality (9) is
satisfied:
Bel(B) <Y, vy < PI(B) 9)
This inequality can be proved according to the proper-
ties of the upper and lower probability.
Probability distributions (pg|6 € ©) also must meet
the usual requirements for probability distributions, i.e.

{ 0<py<1,¥8€©
ZQEQPOZ]-

It can be taken for granted that there are several proba-
bility distributions {ps|0 € ©} consistent with the given
belief function according to the relationships defined in
(9) and (10). This is a multi-answer problem or one-to-
many mapping relation. As referred above, the proba-
bility is used for decision, so the uncertainty seemingly
should be as little as possible. We can select one prob-
ability distribution from all the consistent alternatives
according to the uncertainty minimization criterion and
use the corresponding probability distribution as the re-
sult of the probability transformation.

The Shannon entropy is used here to establish the
objective function. The equations and inequalities in
(9) and (10) are used to establish the constraints. The
problem of probability transform of belief function here
is converted to an optimization problem under con-
straints as follows:

(10)

Min {— > Do logz(pe)}

{pe|0€©} €0

(11)
Bel(B) < ZQEB pe < PI(B)
0<py<1,Voe€O

Zee@ pe =1

Given belief function (or the BPA, the plausibility), by
solving (11), a probability distribution can be derived,
which has least uncertainty measured by Shannon en-
tropy and thus is seemingly more proper to be used in
decision procedure.

It is clear that the problem of finding a minimum en-
tropy probability distribution does not admit a unique
solution in general. The optimization algorithm used
is the Quasi-Newton followed by a global optimization
algorithm [16] to alleviate the effect of the local ex-
tremum problem. Other intelligent optimization algo-
rithms [17, 18] can also be used,such as Genetic Algo-
rithm (GA), Particle Swarm Optimization (PSO), etc.

s.t.
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4 Analysis based on examples

At first, two numerical examples are first provided to
illustrate some probability transformation approaches.
To make the different approaches reviewed and pro-
posed in this paper more comparable, the examples
in [6,12] are directly used here. The PIC is used to
evaluate the probability transformation.

4.1 Example 1

For FOD © = {6y,0,,03,0,4}, the corresponding BPA
is as follows:

m({61}) = 0.16, m({f2}) = 0.14, m({63}) = 0.01,
({04}) = 0.02,

m({91,92}) = 0.20, m({@l, 93}) = 0.097

({61,04}) = 0.04, m({hs,03}) = 0.04,

({92794}) = 002, m({93, 94}) = 0017

({017 92, 03}) = 010, m({91, 02, 04}) = 0037

(

(

3
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{91793, 94}) = 0.03, m({92,03, 94}) = 0.037
m(©) = 0.08.

The corresponding belief functions are calculated and
listed as follows:

Bel({61}) = 0.16, Bel({62}) = 0.14,

Bel({65}) = 0.01, Bel({64}) = 0.02,

Bel({&l, 92}) = 0.50, Bel({&l, 93}) = 0.26,
Bel({@l, 94}) = 0.22, Bel({eg, 93}) = 0.19,
Bel({ﬁg, 94}) = 018, Bel({ﬁg, 94}) = 004,
Bel({@l, 02, 93}) = 074, Bel({@l, 92,94}) = 061,
Bel({&l, 937 94}) = 036, Bel({927 93,94}) = 027,
Bel(©) = 1.00.

The corresponding plausibility functions are calcu-
lated and listed as follows:

Pl({6,}) =0.73, Pl({02}) = 0.64, PI({63}) = 0.39,
Pl({04}) = 0.26,

Pl({61,02}) = 0.96, Pi({61,603}) = 0.82,
Pl({61,04}) = 0.81, Pi({62,603}) =0.78,
Pl({05,04}) = 0.74, PI({fs,64}) = 0.50,
Pl({6;,02,05}) = 0.98, Pl({61,02,04}) = 0.99,
Pl({01,05,04}) = 0.86, PL({02,03,04}) = 0.84,
Pl(©) = 1.00.

Suppose the probability distribution as the unknown
variables. Based on the plausibility functions and the
belief functions, the constraints and the objective func-
tion can be established according to (11). The probabil-
ity distribution can be derived based on the minimiza-
tion. The results of some other probability transforma-
tion approaches are also calculated. All the results are
listed in Table 1 (on the next page) to make the com-
parison between the approach proposed in this paper
(denoted by Un_min) and other available approaches.

4.2 Example 2

For FOD © = {6y,602,05,04}, the corresponding BBA
is as follows:

m({01}) = 0.05, m({f2}) = 0.00, m({fs}) = 0.00,
m({64}) = 0.00,
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Table 1 Probability Transformation Results of
Example 1 based on Different Approaches

Table 2 Probability Transformation Results of
Example 2 based on Different Approaches

61 0 05 0, PIC 6 [0, [6s [6, [PIC
BetP [3] 0.3983 0.3433| 0.1533 0.1050 0.0926 PrBel [8] N/A due to 0 value of singletons
PraPl [8] 0.4021] 0.3523| 0.1394] 0.1062 0.1007 FPTI11] N/A due to 0 value of singletons
PrP1 [§] 0.4544] 0.3609| 0.1176 0.0671) 0.1638 PrScP [10] | N/A due to 0 value of singletons
PrHyb [8] | 0.4749 0.3749| 0.0904] 0.0598 0.2014 PrBP1 [12] | N/A due to 0 value of singletons
PrBel [§] 0.5176) 0.4051] 0.0303| 0.0470| 0.3100 PraPl [§] 0.4630, 0.2478 0.1561] 0.1331] 0.0907
FPTI11] 0.5176) 0.4051] 0.0303| 0.0470| 0.3100 BetP [3] 0.4600 0.2550, 0.1533 0.1317 0.0910
DSmP_0[9] | 0.5176 0.4051] 0.0303 0.0470 0.3100 PrP1 [§] 0.6161| 0.2160| 0.0960| 0.0719 0.2471
PrScP [10] | 0.5403| 0.3883| 0.0316| 0.0393 0.3247 PrBP2 [12] | 0.6255 0.2109 0.0936 0.0700 0.2572
PrBP1 [12] | 0.5419 0.3998| 0.0243 0.0340 0.3480 PrHyb [§] 0.6368 0.2047 0.0909 0.0677 0.2698
PrBP2 [12] | 0.5578 0.3842 0.0226| 0.0353] 0.3529 DSmP_0[9] | 0.5162 0.4043 0.0319 0.0477 0.3058
PrBP3 [12] | 0.0605 0.3391] 0.0255 0.0309 0.3710 PrBP3 [12] | 0.8823 0.0830 0.0233 0.0114 0.5449
Un_min 0.7300, 0.2300, 0.0100; 0.0300| 0.4813 Un_min 0.9000 0.0900, 0.0000 0.0100f 0.7420

m({@l, 92}) =0. 39 m({91,93}) =0. ].9

m({Hl, 94}) =0.18 m({927 93}) =0. 04

m({eg, 94}) =0. 02 m({93,94}) =0. 01

m({@l, 02, 93}) =0. 04 m({@l, 92, 94}) =0. 02

m({@l, 93, 04}) =0. 03 m({@z, 93, 94}) =0. 03
m(©) = 0.00.

The corresponding belief functions are calculated and
listed as follows:

Bel({6:}) = 0.05, Bel({f2}) = 0.00,

Bel({05}) = 0.00, Bel({64}) = 0.00,
Bel({01,05}) = 0.44, Bel({6:,05}) = 0.24,
Bel({@l, 94}) = 023, Bel({92, 93}) = 004,
BGZ({@Q, 94}) = 002, Bel({93, 94}) = 001,
Bel({@l, 6‘2,93}) = 0.71, Bel({6‘1,62, 94}) = 0.667
Bel({@l, 93,94}) = 0.46, Bel({92,93, 94}) = 0.107
Bel(©) = 1.00.

The corresponding plausibility functions are calcu-
lated and listed as follows:

Pl({ﬂl}) =0.90, Pl({62}) = 0.54, PI({65}) = 0.34,
Pi({04}) = 0.29,
PI({61,05}) = 0.99, Pl({61,65}) = 0.98,
PI({61,04}) = 0.96, Pl({62,65}) =0.77,
Pl({05,04}) = 0.76, PL({03,604}) = 0.56,
Pl({61,05,05}) = 1.00, PI({61,62,04}) = 1.00,
PI({601,03,04}) = 1.00, Pl({f,05,604}) = 0.95,
PI(©) = 1.00.

Suppose the probability distribution as the unknown
variables. Based on the plausibility functions and the
belief functions, the constraints and the objective func-
tion can be established according to (11). The probabil-
ity distribution can be derived based on the minimiza-
tion. The results of some other probability transfor-
mation approaches are also calculated. All the results
are listed in Table 2 to make the comparison between
the approach proposed in this paper and other available
approaches.

N/A in Table 2 means "Not available”.
means the parameter € in DSmP is 0.

DSmP_0
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Based on the experimental results listed in Table 1
and Table 2, it can be concluded that the probabil-
ity derived based on the proposed approach (denoted
by Un_min) has significantly lower uncertainty when
compared with the other probability transformation ap-
proaches. The difference among all the propositions can
be further enlarged, which is seemingly helpful for the
more consolidated and reliable decision.

Important remark: In fact, there exist fatal deficien-
cies in the probability transformation based uncertainty
minimization, which are illustrated in following exam-
ples.

4.3 Example 3

The FOD and BPA are as follows [4]:

@ = {91,02}, m({@l}) = 03,

m({62}) = 0.1, ,m({01,02}) = 0.6

Based on different approaches, the experimental re-
sults are derived as listed in Table 3

Table 3 Probability Transformation Results of
Example 3 based on Different Approaches

0, 02 PIC
BetP 0.6000 0.4000 0.0291
PrP1 0.6375 0.3625 0.0553
PraPl 0.6375 0.3625 0.0553
PrHyb 0.6825 0.3175 0.0984
DSmP_0.001| 0.7492 0.2508 0.1875
PrBel 0.7500 0.2500 0.1887
DSmP_0 0.7500 0.2500 0.1887
Un_min 0.9000 0.1000 0.5310

DSmP_0 means the parameter € in DSmP is 0 and
DSmP_0.001 means the parameter £ in DSmP is 0.001.

Is the probability transformation based on PIC max-
imization (i.e. entropy minimization) rational ?

It can be observed, in our very simple example
3, that all the mass of belief 0.6 committed {6;,6-}
is actually redistributed only to the singleton {6;}
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using the Un_min transformation in order to get the
maximum of PIC.

A deeper analysis shows that with Un_min transfor-
mation, the mass of belief m{6;,02} > 0 is always fully
distributed back to {61} as soon as m({61}) > m({62})
in order to obtain the maximum of PIC (i.e. the min-
imum of entropy). Even in very particular situations
where the difference between masses of singletons is
very small like in the following example:

© = {01,062}, m({01}) = 0.1000001,

m({62}) = 0.1, m({61,6>}) = 0.7999999.

This previous modified example shows that the prob-
ability obtained from the minimum entropy principle
yields a counter-intuitive result, because m({6:}) is
almost the same as m({f2}) and so there is no solid rea-
son to obtain a very high probability for ; and a small
probability for 5. Therefore, the decision based on the
result derived from Un_min transformation is too risky.
Sometimes uncertainty can be useful, and sometimes it
is better to not take a decision than to take the wrong
decision. So the criterion of uncertainty minimization
is not sufficient for evaluating the quality /efficiency of a
probability transformation. There are also other prob-
lems in the probability transformation based on uncer-
tainty minimization principle, which are illustrated in
our next example.

4.4 Example 4

The FOD and BPA are as follows: © = {6;,6,,03},
with |
m({01,02}) = m({02,05}) = m({01,0s}) = 1/3.

Using the probability transformation based on uncer-
tainty minimization, we can derive six different proba-
bility distributions yielding the same minimal entropy,
which are listed as follows:

P({0}) =1/3, P({62}) = 2/3 P({03}) =
P({0}) =1/3, P({0a}) = P({bs}) = 2/3
P{61}) =0, P({6:}) = 1/3 P({0s}) = 2/3;
P({6:}) =0, P({62}) =2/3, P({63}) = 1/3
P({0}) =2/3, P({62}) = 1/3 P({03}) =
P({61}) =2/3, P({62}) = P({03}) = 1/3

It is clear that the problem of finding a probabil-
ity distribution with minimal entropy does not admit a
unique solution in general. So if we use the probabil-
ity transformation based on uncertainty minimization,
there might exist several probability distributions de-
rived as illustrated in this Example 4. How to choose
a unique one? In Example 4, depending on the choice
of the admissible probability distribution, the decision
results derived are totally different which is a serious
problem for decision-making support.
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From our analysis, it can be concluded that the max-
imization of PIC criteria (or equivalently the minimiza-
tion of Shannon entropy) is not sufficient for evaluating
the quality of a probability transformation and other
criteria have to be found to give more acceptable prob-
ability distribution from belief functions. The search
for new criteria for developing new transformations is
a very open and challenging problem. Until finding
new better probability transformation, we suggest to
use DSmP as one of the most useful probability trans-
formation. Based on the experimental results shown in
Examples 1-3, we see that the DSmP can always be
computed and generate a probability distribution with
less uncertainty and it is also not too risky, i.e. DSmP
can achieve a better tradeoff between a high PIC value
(i.e. low uncertainty) and the risk in decision-making.

5 Conclusion

Probability transformation of belief function can be
considered as a probabilistic approximation of belief
assignment, which aims to gain more reliable decision
results. In this paper, we focus on the evaluation crite-
ria of the probability transformation function. Experi-
mental results based on numerical examples show that
the maximization of PIC criteria proposed by Sudano
is insufficient for evaluating the quality of a probability
transformation. More rational criteria have to be found
and to better justify the use of a probability transfor-
mation with respect to another one.

All the current probability transformations devel-
oped so far redistribute the mass of partial ignorances
to the belief of singletons included in it. The redistri-
bution is based either only on the cardinality of partial
ignorances, or eventually also on a proportionalization
using the masses of singletons involved in partial igno-
rances. However when the mass of a singleton involved
in a partial ignorance is zero, some probability trans-
formations, like Cuzzolin’s transformation by example,
do not work at all and that’s why the £ parameter has
been introduced in DSmP transformation to make it
working in all cases. In future, we plan to develop
a more comprehensive and rational criterion, which
can take both the risk and the uncertainty degree into
consideration, to evaluate the quality of a probability
transformation and to find an optimal probability
distribution from any basic belief assignment.
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