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Abstract: For an integer m ≥ 1, a combinatorial manifold M̃ is defined to be

a geometrical object M̃ such that for ∀p ∈ M̃ , there is a local chart (Up, ϕp) en-

able ϕp : Up → Bni1
⋃

Bni2
⋃

· · ·
⋃

B
nis(p) with Bni1

⋂
Bni2

⋂
· · ·

⋂
B

nis(p) 6=

∅, where B
nij is an nij -ball for integers 1 ≤ j ≤ s(p) ≤ m. Integral theory

on these smoothly combinatorial manifolds are introduced. Some classical re-

sults, such as those of Stokes’ theorem and Gauss’ theorem are generalized to

smoothly combinatorial manifolds in this paper.
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§1. Introduction

As a localized euclidean space, an n-manifold Mn is a Hausdorff space Mn, i.e.,
a space that satisfies the T2 separation axiom such that for ∀p ∈ Mn, there is an
open neighborhood Up, p ∈ Up ⊂ Mn and a homeomorphism ϕp : Up → Rn. These
manifolds, particularly, differential manifolds are very important to modern geome-
tries and mechanics. By a notion of mathematical combinatorics, i.e. mathematics
can be reconstructed from or turned into combinatorization([3]), the conception of
combinatorial manifold is introduced in [4], which is a generalization of classical
manifolds and can be also endowed with a topological or differential structure as a
geometrical object.

Now for an integer s ≥ 1, let n1, n2, · · · , ns be an integer sequence with 0 < n1 <

n2 < · · · < ns. Choose s open unit balls Bn1
1 , Bn2

2 , · · · , Bns
s , where

s⋂
i=1

Bni

i 6= ∅ in

Rn1+2+···ns. A unit open combinatorial ball of degree s is a union

B̃(n1, n2, · · · , ns) =

s⋃

i=1

Bni

i .

Then a combinatorial manifold M̃ is defined in the next.

Definition 1.1 For a given integer sequence n1, n2, · · · , nm, m ≥ 1 with 0 < n1 <

n2 < · · · < nm, a combinatorial manifold M̃ is a Hausdorff space such that for
any point p ∈ M̃ , there is a local chart (Up, ϕp) of p, i.e., an open neighborhood

Up of p in M̃ and a homoeomorphism ϕp : Up → B̃(n1(p), n2(p), · · · , ns(p)(p)) with
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{n1(p), n2(p), · · · , ns(p)(p)} ⊆ {n1, n2, · · · , nm} and
⋃

p∈fM

{n1(p), n2(p), · · · , ns(p)(p)} =

{n1, n2, · · · , nm}, denoted by M̃(n1, n2, · · · , nm) or M̃ on the context and

Ã = {(Up, ϕp)|p ∈ M̃(n1, n2, · · · , nm))}

an atlas on M̃(n1, n2, · · · , nm). The maximum value of s(p) and the dimension ŝ(p)

of
s(p)⋂
i=1

Bni

i are called the dimension and the intersectional dimensional of M̃(n1, n2,

· · · , nm) at the point p, respectively.

A combinatorial manifold M̃ is called finite if it is just combined by finite man-
ifolds and smooth if it can be endowed with a C∞ differential structure. For a
smoothly combinatorial manifold M̃ and a point p ∈ M̃ , it has been shown in [4]

that dimTpM̃(n1, n2, · · · , nm) = ŝ(p)+
s(p)∑
i=1

(ni− ŝ(p)) and dimT ∗
p M̃(n1, n2, · · · , nm) =

ŝ(p) +
s(p)∑
i=1

(ni − ŝ(p)) with a basis

{
∂

∂xhj
|p|1 ≤ j ≤ ŝ(p)}

⋃
(

s(p)⋃

i=1

ni⋃

j=bs(p)+1

{
∂

∂xij
|p | 1 ≤ j ≤ s})

or

{dxhj|p|}1 ≤ j ≤ ŝ(p)}
⋃

(

s(p)⋃

i=1

ni⋃

j=bs(p)+1

{dxij |p | 1 ≤ j ≤ s}

for a given integer h, 1 ≤ h ≤ s(p). Denoted all k-forms of M̃(n1, n2, · · · , nm)

by Λk(M̃) and Λ(M̃) =
bs(p)−s(p)bs(p)+

Ps(p)
i=1 ni⊕

k=0

Λk(M̃), then there is a unique exterior

differentiation d̃ : Λ(M̃) → Λ(M̃) such that for any integer k ≥ 1, d̃(Λk) ⊂ Λk+1(M̃)
with conditions following hold similar to the classical tensor analysis([1]).

(i) d̃ is linear, i.e., for ∀ϕ, ψ ∈ Λ(M̃), λ ∈ R,

d̃(ϕ+ λψ) = d̃ϕ ∧ ψ + λd̃ψ

and for ϕ ∈ Λk(M̃), ψ ∈ Λ(M̃),

d̃(ϕ ∧ ψ) = d̃ϕ+ (−1)kϕ ∧ d̃ψ.

(ii) For f ∈ Λ0(M̃), d̃f is the differentiation of f .

(iii) d̃2 = d̃ · d̃ = 0.

(iv) d̃ is a local operator, i.e., if U ⊂ V ⊂ M̃ are open sets and α ∈ Λk(V ), then

d̃(α|U) = (d̃α)|U .
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Therefore, smoothly combinatorial manifolds poss a local structure analogous
smoothly manifolds. But notes that this local structure maybe different for neigh-
borhoods of different points. Whence, geometries on combinatorial manifolds are
Smarandache geometries([6]-[8]).

There are two well-known theorems in classical tensor analysis, i.e., Stokes’ and
Gauss’ theorems for the integration of differential n-forms on an n-manifold M ,
which enables us knowing that

∫

M

dω =

∫

∂M

ω

for a ω ∈ Λn−1(M) with compact supports and

∫

M

(divX)µ =

∫

∂M

iXµ

for a vector fieldX, where iX : Λk+1(M) → Λk(M) defined by iX̟(X1, X2, · · · , Xk) =
̟(X,X1, · · · , Xk) for ̟ ∈ Λk+1(M). The similar local properties for combinato-
rial manifolds with manifolds natural forwards the following questions: wether the
Stokes’ or Gauss’ theorem is still valid on smoothly combinatorial manifolds? or if
invalid, What are their modified forms for smoothly combinatorial manifolds?.

The main purpose of this paper is to find the revised Stokes’ or Gauss’ theorem
for combinatorial manifolds, namely, the Stokes’ or Gauss’ theorem is still valid for n-
forms on smoothly combinatorial manifolds M̃ if n ∈ H

fM
, where H

fM
is an integer

set determined by the smoothly combinatorial manifold M̃ . For this objective,
we consider a particular case of combinatorial manifolds, i.e., the combinatorial
Euclidean spaces in the next section, then generalize the definition of integration on
manifolds to combinatorial manifolds in Section 3. The generalized form for Stokes’
or Gauss’ theorem can be found in Section 4. Terminologies and notations used in
this paper are standard and can be found in [1] − [2] or [4] for those of manifolds
and combinatorial manifolds respectively.

§2. Combinatorially Euclidean Spaces

As a simplest case of combinatorial manifolds, we characterize combinatorially eu-
clidean spaces of finite and generalize some results in eucildean spaces in this section.

Definition 2.1 For a given integer sequence n1, n2, · · · , nm, m ≥ 1 with 0 < n1 <

n2 < · · · < nm, a combinatorially eucildean space R̃(n1, · · · , nm) is a union of

finitely euclidean spaces
m⋃

i=1

Rni such that for ∀p ∈ R̃(n1, · · · , nm), p ∈
m⋂

i=1

Rni with

m̂ = dim(
m⋂

i=1

Rni) a constant.

By definition, we can express a point p of R̃ by an m×nm coordinate matrix [x]

following with xil = xl

m
for 1 ≤ i ≤ m, 1 ≤ l ≤ m̂.
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[x] =




x11 · · · x1 bm x1( bm)+1) · · · x1n1 · · · 0
x21 · · · x2 bm x2( bm+1) · · · x2n2 · · · 0
· · · · · · · · · · · · · · · · · ·
xm1 · · · xm bm xm( bm+1) · · · · · · xmnm−1 xmnm




For making a combinatorially Euclidean space to be a metric space, we introduce
inner product of matrixes similar to that of vectors in the next.

Definition 2.2 Let (A) = (aij)m×n and (B) = (bij)m×n be two matrixes. The inner
product 〈(A), (B)〉 of (A) and (B) is defined by

〈(A), (B)〉 =
∑

i,j

aijbij .

Theorem 2.1 Let (A), (B), (C) be m× n matrixes and α a constant. Then
(1) 〈A,B〉 = 〈B,A〉;
(2) 〈A+B,C〉 = 〈A,C〉 + 〈B,C〉;
(3) 〈αA,B〉 = α 〈B,A〉;
(4) 〈A,A〉 ≥ 0 with equality hold if and only if (A) = Om×n.

Proof (1)-(3) can be gotten immediately by definition. Now calculation shows
that

〈A,A〉 =
∑

i,j

a2
ij ≥ 0

and with equality hold if and only if aij = 0 for any integers i, j, 1 ≤ i ≤ m, 1 ≤ j ≤
n, namely, (A) = Om×n ♮

Theorem 2.2 (A), (B) be m× n matrixes. Then

〈(A), (B)〉2 ≤ 〈(A), (A)〉 〈(B), (B)〉

and with equality hold only if (A) = λ(B), where λ is a constant.

Proof If (A) = λ(B), then 〈A,B〉2 = λ2 〈B,B〉2 = 〈A,A〉 〈B,B〉. Now if there
are no constant λ enabling (A) = λ(B), then (A) − λ(B) 6= Om×n for any real
number λ. According to Theorem 2.1, we know that

〈(A) − λ(B), (A) − λ(B)〉 > 0,

i.e.,

〈(A), (A)〉 − 2λ 〈(A), (B)〉 + λ2 〈(B), (B)〉 > 0.

4



Therefore, we find that

∆ = (−2λ)2 − 4 〈(B), (B)〉 ≥ 0,

namely,

〈(A), (B)〉2 ≤ 〈(A), (A)〉 〈(B), (B)〉 . ♮

Corollary 2.1 For given real numbers aij , bij, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

(
∑

i,j

aijbij)
2 ≤ (

∑

i,j

a2
ij)(

∑

i,j

b2ij).

Let Õ be the origin of R̃(n1, · · · , nm). Then [O] = Om×nm
. For ∀p, q ∈ R̃(n1, · · · , nm),

we also call
−→
Op the vector correspondent to the point p similar to classical euclidean

space, Then −→pq =
−→
Oq −

−→
Op. Theorem 2.2 enables us to introduce an angle between

two vectors −→pq and −→uv for points p, q, u, v ∈ R̃(n1, · · · , nm).

Definition 2.3 Let p, q, u, v ∈ R̃(n1, · · · , nm). Then the angle θ between vectors −→pq
and −→uv is determined by

cos θ =
〈[p] − [q], [u] − [v]〉√

〈[p] − [q], [p] − [q]〉 〈[u] − [v], [u] − [v]〉

with the condition 0 ≤ θ ≤ π.

Corollary 2.2 The conception of angle between two vectors is well defined.

Proof Notice that

〈[p] − [q], [u] − [v]〉2 ≤ 〈[p] − [q], [p] − [q]〉 〈[u] − [v], [u] − [v]〉

by Theorem 2.2. Thereby, we know that

−1 ≤
〈[p] − [q], [u] − [v]〉√

〈[p] − [q], [p] − [q]〉 〈[u] − [v], [u] − [v]〉
≤ 1.

Therefore there is a unique angle θ with 0 ≤ θ ≤ π enabling Definition 2.3 hold. ♮

For two points p, q in R̃(n1, · · · , nm), the distance d(p, q) between points p and q
is defined to be

√
〈[p] − [q], [p] − [q]〉. We get the following result.

Theorem 2.3 For a given integer sequence n1, n2, · · · , nm, m ≥ 1 with 0 < n1 <

n2 < · · · < nm, (R̃(n1, · · · , nm); d) is a metric space.

Proof We only need to verify each condition for a metric space is hold in
(R̃(n1, · · · , nm); d). For two point p, q ∈ R̃(n1, · · · , nm), by definition we know that
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d(p, q) =
√

〈[p] − [q], [p] − [q]〉 ≥ 0

with equality hold if and only if [p] = [q], namely, p = q and

d(p, q) =
√
〈[p] − [q], [p] − [q]〉 =

√
〈[q] − [p], [q] − [p]〉 = d(q, p).

Now let u ∈ R̃(n1, · · · , nm). Then by Theorem 2.2, we find that

(d(p, u) + d(u, p))2

= 〈[p] − [u], [p] − [u]〉 + 2
√

〈[p] − [u], [p] − [u]〉 〈[u] − [q], [u] − [q]〉

+ 〈[u] − [q], [u] − [q]〉

≥ 〈[p] − [u], [p] − [u]〉 + 〈[p] − [u], [u] − [q]〉 + 〈[u] − [q], [u] − [q]〉

= 〈[p] − [q], [p] − [q]〉 = d2(p, q).

Whence, d(p, u) + d(u, p) ≥ d(p, q) and (R̃(n1, · · · , nm); d) is a metric space. ♮

§3. Integration on combinatorial manifolds

We generalize the integration on manifolds to combinatorial manifolds and show it
is independent on the choice of local charts and partition of unity in this section.

3.1 Partition of unity

Definition 3.1 Let M̃ be a smoothly combinatorial manifold and ω ∈ Λ(M̃). A
support set Suppω of ω is defined by

Suppω = {p ∈ M̃ ;ω(p) 6= 0}

and say ω has compact support if Suppω is compact in M̃ . A collection of subsets
{Ci|i ∈ Ĩ} of M̃ is called locally finite if for each p ∈ M̃ , there is a neighborhood Up

of p such that Up ∩ Ci = ∅ except for finitely many indices i.

A partition of unity on a combinatorial manifold M̃ is defined in the next.

Definition 3.2 A partition of unity on a combinatorial manifold M̃ is a collection
{(Ui, gi)|i ∈ Ĩ}, where

(1) {Ui|i ∈ Ĩ} is a locally finite open covering of M̃ ;

(2) gi ∈ X (M̃), gi(p) ≥ 0 for ∀p ∈ M̃ and suppgi ∈ Ui for i ∈ Ĩ;

(3) For p ∈ M̃ ,
∑
i

gi(p) = 1.

We get the next result for the partition of unity on smoothly combinatorial
manifolds.
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Theorem 3.1 Let M̃ be a smoothly combinatorial manifold. Then M̃ admits par-
titions of unity.

Proof For ∀M ∈ V (G[M̃ ]), since M̃ is smooth we know that M is a smoothly

submanifold of M̃ . As a byproduct, there is a partition of unity {(Uα
M , g

α
M)|α ∈ IM}

on M with conditions following hold.
(1) {Uα

M |α ∈ IM} is a locally finite open covering of M ;
(2) gα

M(p) ≥ 0 for ∀p ∈ M and suppgα
M ∈ Uα

M for α ∈ IM ;
(3) For p ∈M ,

∑
i

gi
M(p) = 1.

By definition, for ∀p ∈ M̃ , there is a local chart (Up, [ϕp]) enable ϕp : Up →
Bni1

⋃
Bni2

⋃
· · ·

⋃
B

nis(p) with Bni1

⋂
Bni2

⋂
· · ·

⋂
B

nis(p) 6= ∅. Now let Uα
Mi1

, Uα
Mi2

,

· · ·, Uα
Mis(p)

be s(p) open sets on manifolds M,M ∈ V (G[M̃ ]) such that

p ∈ Uα
p =

s(p)⋃

h=1

Uα
Mih

. (3.1)

We define

S̃(p) = {Uα
p | all integers α enabling (3.1) hold}.

Then

Ã =
⋃

p∈fM

S̃(p) = {Uα
p |α ∈ Ĩ(p)}

is locally finite covering of the combinatorial manifold M̃ by properties (1) − (3).

For ∀Uα
p ∈ S̃(p), define

σUα
p

=
∑

s≥1

∑

{i1,i2,···,is}⊂{1,2,···,s(p)}

(

s∏

h=1

gMς
ih

)

and

gUα
p

=
σUα

p∑
eV ∈eS(p)

σ
eV

.

Then it can be checked immediately that {(Uα
p , gUα

p
)|p ∈ M̃, α ∈ Ĩ(p)} is a partition

of unity on M̃ by properties (1)-(3) on gα
M and the definition of gUα

p
. ♮

Corollary 3.1 Let M̃ be a smoothly combinatorial manifold with an atlas Ã =
{(Vα, [ϕα])|α ∈ Ĩ} and tα be a Ck tensor field, k ≥ 1, of field type (r, s) defined
on Vα for each α, and assume that there exists a partition of unity {(Ui, gi)|i ∈ J}

7



subordinate to Ã, i.e., for foralli ∈ J , there exists α(i) such that Ui ⊂ Vα(i). Then

for ∀p ∈ M̃ ,

t(p) =
∑

i

gitα(i)

is a Ck tensor field of type (r, s) on M̃

Proof Since {Ui|i ∈ J} is locally finite, the sum at each point p is a finite sum

and t(p) is a type (r, s) for every p ∈ M̃ . Notice that t is Ck since the local form of
t in a local chart (Vα(i), [ϕα(i)]) is

∑

j

gitα(j),

where the summation taken over all indices j such that Vα(i)

⋂
Vα(j) 6= ∅. Those

number j is finite by the local finiteness. ♮

3.2 Integration on combinatorial manifolds

First, we introduce integration on combinatorial Euclidean spaces. Let R̃(n1, · · · , nm)
be a combinatorially euclidean space and

τ : R̃(n1, · · · , nm) → R̃(n1, · · · , nm)

a C1 differential mapping with

[y] = [yκλ]m×nm
= [τκλ([xµν ])]m×nm

.

The Jacobi matrix of f is defined by

∂[y]

∂[x]
= [A(κλ)(µν)],

where A(κλ)(µν) = ∂τκλ

∂xµν .

Now let ω ∈ T 0
k (R̃(n1, · · · , nm)), a pull-back τ ∗ω ∈ T 0

k (R̃(n1, · · · , nm)) is defined
by

τ ∗ω(a1, a2, · · · , ak) = ω(f(a1), f(a2), · · · , f(ak))

for ∀a1, a2, · · · , ak ∈ R̃.

Denoted by n =
m∑

i=1

ni − m̂m. If 0 ≤ l ≤ n, recall([4]) that the basis of

Λl(R̃(n1, · · · , nm)) is

{ei1 ∧ ei2 ∧ · · · ∧ eil|1 ≤ i1 < i2 · · · < il ≤ n}

8



for a basis e1, e2, · · · , en of R̃(n1, · · · , nm) and its dual basis e1, e2, · · · , en. Thereby

the dimension of Λl(R̃(n1, · · · , nm)) is

(
n

l

)
=

(
m∑

i=1

ni − m̂m)!

l!(
m∑

i=1

ni − m̂m− l)!
.

Whence Λn(R̃(n1, · · · , nm)) is one-dimensional. Now if ω0 is a basis of Λn(R̃), we
then know that its each element ω can be represented by ω = cω0 for a number
c ∈ R. Let τ : R̃(n1, · · · , nm) → R̃(n1, · · · , nm) be a linear mapping. Then

τ ∗ : Λn(R̃(n1, · · · , nm)) → Λn(R̃(n1, · · · , nm))

is also a linear mapping with τ ∗ω = cτ ∗ω0 = bω for a unique constant b = detτ ,
called the determinant of τ . It has been known that ([1])

detτ = det(
∂[y]

∂[x]
)

for a given basis e1, e2, · · · , en of R̃(n1, · · · , nm) and its dual basis e1, e2, · · · , en,

where n =
m∑

i=1

ni − m̂m.

Definition 3.3 Let R̃(n1, n2, · · · , nm) be a combinatorial Euclidean space,n = m̂+
m∑

i=1

(ni − m̂), Ũ ⊂ R̃(n1, n2, · · · , nm) and ω ∈ Λn(U) have compact support with

ω(x) = ω(µi1
νi1

)···(µinνin )dx
µi1

νi1 ∧ · · · ∧ dxµinνin

relative to the standard basis eµν , 1 ≤ µ ≤ m, 1 ≤ ν ≤ nm of R̃(n1, n2, · · · , nm)

with eµν = eν for 1 ≤ µ ≤ m̂. An integral of ω on Ũ is defined to be a mapping∫
eU

: f →
∫

eU
f ∈ R with

∫

eU

ω =

∫
ω(x)

bm∏

ν=1

dxν
∏

µ≥ bm+1,1≤ν≤ni

dxµν , (3.2)

where the right hand side of (3.2) is the Riemannian integral of ω on Ũ .

For example, consider the combinatorial Euclidean space R̃(3, 5) with R3∩R5 =

R. Then the integration of an ω ∈ Λ6(Ũ) for an open subset Ũ ∈ R̃(3, 5) is

∫

eU

ω =

∫

eU∩(R3∪R5)

ω(x)dx1dx12dx13dx22dx23dx24dx25.

9



Theorem 3.2 Let U and V be open subsets of R̃(n1, · · · , nm) and τ : U → V is
an orientation-preserving diffeomorphism. If ω ∈ Λn(V ) has compact support for

n =
m∑

i=1

ni − m̂m, then τ ∗ω ∈ Λn(U) has compact support and

∫
τ ∗ω =

∫
ω.

Proof Let ω(x) = ω(µi1
νi1

)···(µinνin )dx
µi1

νi1 ∧ · · · ∧ dxµinνin ∈ Λn(V ). Since τ is
a diffeomorphism, the support of τ ∗ω is τ−1(suppω), which is compact by that of
suppω compact.

By the usual change of variables formula, since τ ∗ω = (ω ◦ τ)(detτ)ω0 by defini-
tion, where ω0 = dx1 ∧ · · · ∧ dxbm ∧ dx1( bm+1) ∧ dx1( bm+2) ∧ · · · ∧ dx1n1 ∧ · · · ∧ dxmnm ,
we then get that

∫
τ ∗ω =

∫
(ω ◦ τ)(detτ)

bm∏

ν=1

dxν
∏

µ≥ bm+1,1≤ν≤nµ

dxµν

=

∫
ω. ♮

Definition 3.4 Let M̃ be a smoothly combinatorial manifold. If there exists a family
{(Uα, [ϕα]|α ∈ Ĩ)} of local charts such that

(1)
⋃
α∈eI

Uα = M̃ ;

(2) for ∀α, β ∈ Ĩ, either Uα

⋂
Uβ = ∅ or Uα

⋂
Uβ 6= ∅ but for ∀p ∈ Uα

⋂
Uβ, the

Jacobi matrix

det(
∂[ϕβ ]

∂[ϕα]
) > 0,

then M̃ is called an oriently combinatorial manifold and (Uα, [ϕα]) an oriented chart

for ∀α ∈ Ĩ.
For a smoothly combinatorial manifold M̃(n1, · · · , nm), it must be finite by def-

inition. Whence, there exists an atlas C = {(Ũα, [ϕα])|α ∈ Ĩ} on M̃(n1, · · · , nm)

consisting of positively oriented charts such that for ∀α ∈ Ĩ, ŝ(p) +
s(p)∑
i=1

(ni − ŝ(p)) is

an constant n
eUα

for ∀p ∈ Ũα. Denote such atlas on M̃(n1, · · · , nm) by C
fM

and an

integer family H
fM

= {n
eUα
|α ∈ Ĩ}.

Now for any integer n ∈ H
fM

, we can define an integral of n-forms on a smoothly

combinatorial manifold M̃(n1, · · · , nm).
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Definition 3.5 Let M̃ be a smoothly combinatorial manifold with orientation O and
(Ũ ; [ϕ]) a positively oriented chart with a constant n

eU . Suppose ω ∈ Λn eU (M̃), Ũ ⊂ M̃

has compact support C̃ ⊂ Ũ . Then define

∫

eC

ω =

∫
ϕ∗(ω|eU). (3.3)

Now if C
fM

is an atlas of positively oriented charts with an integer set H
fM

, let

P̃ = {(Ũα, ϕα, gα)|α ∈ Ĩ} be a partition of unity subordinate to C
fM

. For ∀ω ∈

Λn(M̃), n ∈ H
fM

, an integral of ω on P̃ is defined by

∫

eP

ω =
∑

α∈eI

∫
gαω. (3.4)

The next result shows that the integral of n-forms, n ∈ H
fM

is well-defined.

Theorem 3.3 Let M̃(n1, · · · , nm) be a smoothly combinatorial manifold. For n ∈

H
fM

, the integral of n-forms on M̃(n1, · · · , nm) is well-defined, namely, the sum
on the right hand side of (3.4) contains only a finite number of nonzero terms, not
dependent on the choice of C

fM
and if P and Q are two partitions of unity subordinate

to C
fM

, then

∫

eP

ω =

∫

eQ

ω.

Proof By definition for any point p ∈ M̃(n1, · · · , nm), there is a neighborhood

Ũp such that only a finite number of gα are nonzero on Ũp. Now by the compactness
of suppω, only a finite number of such neighborhood cover suppω. Therefore, only
a finite number of gα are nonzero on the union of these Ũp, namely, the sum on the
right hand side of (3.4) contains only a finite number of nonzero terms.

Notice that the integral of n-forms on a smoothly combinatorial manifold M̃(n1,

· · · , nm) is well-defined for a local chart Ũ with a constant n
eU = ŝ(p)+

s(p)∑
i=1

(ni− ŝ(p))

for ∀p ∈ Ũ ⊂ M̃(n1, · · · , nm) by (3.3) and Definition 3.3. Whence each term on the
right hand side of (3.4) is well-defined. Thereby

∫
eP
ω is well-defined.

Now let P̃ = {(Ũα, ϕα, gα)|α ∈ Ĩ} and Q̃ = {(Ṽβ, ϕβ, hβ)|β ∈ J̃} be partitions of
unity subordinate to atlas C

fM
and C ∗

fM
with respective integer sets H

fM
and H ∗

fM
.

Then these functions {gαhβ} satisfy gαhβ(p) = 0 except only for a finite number of
index pairs (α, β) and

∑

α

∑

β

gαhβ(p) = 1, for ∀p ∈ M̃(n1, · · · , nm).
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Since
∑
β

= 1, we then get that

∫

eP

=
∑

α

∫
gαω

=
∑

β

∑

α

∫
hβgαω

=
∑

α

∑

β

∫
gαhβω

=

∫

eQ

ω. ♮

Now let n1, n2, · · · , nm be a positive integer sequence. For any point p ∈ M̃ ,
if there is a local chart (Ũp, [ϕp]) such that [ϕp] : Up → Bn1

⋃
Bn2

⋃
· · ·

⋃
Bnm

with Bn1
⋂
Bn2

⋂
· · ·

⋂
Bnm 6= ∅, then M̃ is called a homogenously combinatorial

manifold. Particularly, if m = 1, a homogenously combinatorial manifold is nothing

but a manifold. We then get consequences for the integral of (m̂+
m∑

i=1

(ni−m̂))-forms

on n-manifolds.

Corollary 3.2 The integral of (m̂ +
m∑

i=1

(ni − m̂))-forms on a homogenously com-

binatorial manifold M̃(n1, n2, · · · , nm) is well-defined, particularly, the integral of
n-forms on an n-manifold is well-defined.

Similar to Theorem 3.2 for the change of variables formula of integral in combina-
torial Euclidean space, we get that of formula in smoothly combinatorial manifolds.

Theorem 3.4 Let M̃ and Ñ be oriently combinatorial manifolds and τ : M̃ → Ñ

an orientation-preserving diffeomorphism. If ω ∈ Λ(Ñ) has compact support, then
τ ∗ω has compact support and

∫
ω =

∫
τ ∗ω.

Proof Notice that suppτ ∗ω = τ−1(suppω). Thereby τ ∗ω has compact support

since ω has so. Now let {(Ui, ϕi)|i ∈ Ĩ} be an atlas of positively oriented charts

of M̃ and P̃ = {gi|i ∈ Ĩ} a subordinate partition of unity with constants nUi
.

Then {(τ(Ui), ϕi ◦ τ
−1)|i ∈ Ĩ} is an atlas of positively oriented charts of Ñ and

Q̃ = {gi ◦ τ
−1} is a partition of unity subordinate to the covering {τ(Ui)|i ∈ Ĩ} with

constants nτ(Ui). Whence, we get that

∫
τ ∗ω =

∑

i

∫
giτ

∗ω =
∑

i

∫
ϕi∗(giτ

∗ω)
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=
∑

i

∫
ϕi∗(τ

−1)∗(gi ◦ τ
−1)ω

=
∑

i

∫
(ϕi ◦ τ

−1)∗(gi ◦ τ
−1)ω

=

∫
ω. ♮

§4. A generalization of Stokes’ theorem

Definition 4.1 Let M̃ be a smoothly combinatorial manifold. A subset D̃ of M̃ is
with boundary if its points can be classified into two classes following.

Class 1(interior point IntD̃) For ∀p ∈ IntD, there is a neighborhood Ṽp of p

enable Ṽp ⊂ D̃.

Case 2(boundary ∂D̃) For ∀p ∈ ∂D̃, there is integers µ, ν for a local chart
(Up; [ϕp]) of p such that xµν(p) = 0 but

Ũp ∩ D̃ = {q|q ∈ Up, x
κλ ≥ 0 for ∀{κ, λ} 6= {µ, ν}}.

Then we generalize the famous Stokes theorem on manifolds in the next.

Theorem 4.1 Let M̃ be a smoothly combinatorial manifold with an integer set H
fM

and D̃ a boundary subset of M̃ . For n ∈ H
fM

if ω ∈ Λn(M̃) has compact support,
then

∫

eD

dω =

∫

∂ eD

ω

with the convention
∫

∂ eD
ω = 0 while ∂D̃ = ∅.

Proof By Definition 3.5, the integration on a smoothly combinatorial manifold
was constructed with partitions of unity subordinate to an atlas. Let C

fM
be an atlas

of positively oriented charts with an integer set H
fM

and P̃ = {(Ũα, ϕα, gα)|α ∈ Ĩ}
a partition of unity subordinate to C

fM
. Since suppω is compact, we know that

∫

eD

dω =
∑

α∈eI

∫

eD

d(gαω),

∫

∂ eD

ω =
∑

α∈eI

∫

∂ eD

gαω.

and there are only finite nonzero terms on the right hand side of the above two
formulae. Thereby, we only need to prove

13



∫

eD

d(gαω) =

∫

∂ eD

gαω

for ∀α ∈ Ĩ.
Not loss of generality we can assume that ω is an n-forms on a local chart (U, ϕ)

with compact support. Now write

ω(x) = ω(µi1
νi1

)···(µinνin )dx
µi1

νi1 ∧ · · · ∧ dxµinνin

ω =
n∑

h=1

(−1)h−1ωµih
νih
dxµi1

νi1 ∧ · · · ∧ ̂dxµih
νih ∧ · · · ∧ dxµinνin ,

where ̂dxµih
νih means that dxµih

νih is deleted, where

ih ∈ {1, · · · , n̂U , (1(n̂U + 1)), · · · , (1n1), (2(n̂U + 1)), · · · , (2n2), · · · , (mnm)}.

Then

dω =

n∑

i=1

∂ωi

∂xi
dxµi1

νi1 ∧ · · · ∧ dxµih
νih ∧ · · · ∧ dxµinνin . (4.1)

Consider the appearance of chart U . There are two cases must be considered.

Case 1 U
⋂
∂U = ∅

In this case,
∫

∂U
ω = 0 and U is in M̃ \ D̃ or in IntD̃. The former is naturally

implies that
∫

eD
d(gαω) = 0. For the later, we find that

∫

eD

dω =

n∑

i=1

∫

U

∂ωi

∂xi
dxµi1

νi1 · · · dxµinνin . (4.2)

Notice that
∫ +∞

−∞
∂ωi

∂xi dx
i = 0 since ωi has compact support. Thus

∫
U
dω = 0 as

desired.

Case 2 ∂U 6= ∅

In this case we can do the same trick for each term except the last. Without loss
of generality, assume that

U
⋂

D̃ = {q|q ∈ U, xn(q) ≥ 0}

and

U
⋂

∂D̃ = {q|q ∈ U, xn(q) = 0}.
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Then we get that

∫

∂ eD

ω =

∫

U∩∂ eD

ω

=
n∑

h=1

(−1)h−1

∫

U∩∂ eD

ωµih
νih
dxµi1

νi1 ∧ · · · ∧ ̂dxµih
νih ∧ · · · ∧ dxµinνin

= (−1)n−1

∫

U∩∂ eD

ωµnνn
dxµi1

νi1 ∧ · · · ∧ dxµin−1
νin−1

since dxn(q) = 0 for q ∈ U ∩∂D̃. Notice that Rn−1 = ∂Rn
+ but the usual orientation

on Rn−1 is not the boundary orientation, whose outward unit normal is −en =
(0, · · · , o,−1). Hence

∫

∂ eD

ω = −

∫

∂Rn
+

ωµnνn
(xµi1

νi1 , · · · , xµin−1
νin−1 , 0)dxµi1

νi1 · · · dxµin−1
νin−1 .

On the other hand, by the fundamental theorem of calculus,

∫

Rn−1

(

∫ ∞

0

∂ωµnνn

∂xµnνn
)dxµi1

νi1 · · · dxµin−1
νin−1

= −

∫

Rn−1

ωµnνn
(xµi1

νi1 · · ·xµinνin , 0)dxµi1
νi1 · · · dxµin−1

νin−1 .

Since ωµinνin
has compact support, thus

∫

U

ω = −

∫

Rn−1

ωµnνn
(xµi1

νi1 · · ·xµinνin , 0)dxµi1
νi1 · · ·dxµin−1

νin−1 .

Therefore, we get that

∫

eD

dω =

∫

∂ eD

ω

This completes the proof. ♮

Corollaries following are immediately obtained by Theorem 4.1

Corollary 4.1 Let M̃ be a smoothly and homogenously combinatorial manifold with
an integer set H

fM
and D̃ a boundary subset of M̃ . For n ∈ H

fM
if ω ∈ Λn(M̃) has

compact support, then

∫

eD

dω =

∫

∂ eD

ω,

particularly, if M̃ is nothing but a manifold, the Stokes theorem holds.
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Corollary 4.2 Let M̃ be a smoothly combinatorial manifold with an integer set
H

fM
. For n ∈ H

fM
, if ω ∈ Λn(M̃) has a compact support, then

∫

fM

ω = 0.

Similar to the case of manifolds, we find a generalization for Gauss theorem in
the next.

Theorem 4.2 Let M̃ be a smoothly combinatorial manifold with an integer set H
fM

,

D̃ a boundary subset of M̃ and X a vector field on M̃ with compact support. Then

∫

eD

(divX)v =

∫

∂ eD

iXv,

where v is a volume form on M̃ , i.e., nonzero elements in Λn(M̃) for n ∈ H
fM

.

Proof This result is also a consequence of Theorem 4.1. Notice that

(divX)v = diXv + iXdv = diX.

According to Theorem 4.1, we then get that

∫

eD

(divX)v =

∫

∂ eD

iXv. ♮
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