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Abstract. A Smarandache multi-space is a union of n different spaces

equipped with some different structures for an integer n ≥ 2, which can be

both used for discrete or connected spaces, particularly for geometries and

spacetimes in theoretical physics. This monograph concentrates on character-

izing various multi-spaces including three parts altogether. The first part is

on algebraic multi-spaces with structures, such as those of multi-groups, multi-

rings, multi-vector spaces, multi-metric spaces, multi-operation systems and

multi-manifolds, also multi-voltage graphs, multi-embedding of a graph in an

n-manifold,· · ·, etc.. The second discusses Smarandache geometries, including

those of map geometries, planar map geometries and pseudo-plane geometries,

in which the Finsler geometry, particularly the Riemann geometry appears as

a special case of these Smarandache geometries. The third part of this book

considers the applications of multi-spaces to theoretical physics, including the

relativity theory, the M-theory and the cosmology. Multi-space models for

p-branes and cosmos are constructed and some questions in cosmology are

clarified by multi-spaces. The first two parts are relative independence for

reading and in each part open problems are included for further research of

interested readers.
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6. Applications to theoretical physics

Whether are there finite, or infinite cosmoses? Is there just one? What is the
dimension of our cosmos? Those simpler but more puzzling problems have confused
the eyes of human beings thousands years and one does not know the answer even
until today. The dimension of the cosmos in the eyes of the ancient Greeks is 3,
but Einstein’s is 4. In recent decades, 10 or 11 is the dimension of our cosmos in
superstring theory or M-theory. All these assumptions acknowledge that there is
just one cosmos. Which one is the correct and whether can human beings realize
the cosmos or cosmoses? By applying results gotten in Chapters 3-5, we tentatively
answer those problems and explain the Einstein’s or Hawking’s model for cosmos in
this chapter.

§6.1 Pseudo-Faces of Spaces

Throughout this chapter, Rn denotes an Euclid space of dimensional n. In this
section, we consider a problem related to how to represent an Euclid space in another.
First, we introduce the conception of pseudo-faces of Euclid spaces in the following.

Definition 6.1.1 Let Rm and (Rn, ω) be an Euclid space and a pseudo-metric space.
If there is a continuous mapping p : Rm → (Rn, ω), then the pseudo-metric space
(Rn, ω(p(Rm))) is called a pseudo-face of Rm in (Rn, ω).

Notice that these pseudo-faces of R3 in R2 have been considered in Chapter 5.
For the existence of a pseudo-face of an Euclid space Rm in Rn, we have a result as
in the following.

Theorem 6.1.1 Let Rm and (Rn, ω) be an Euclid space and a pseudo-metric space.
Then there exists a pseudo-face of Rm in (Rn, ω) if and only if for any number
ǫ > 0, there exists a number δ > 0 such that for ∀u, v ∈ Rm with ‖u − v‖ < δ,

‖ω(p(u)) − ω(p(v))‖ < ǫ,

where ‖u‖ denotes the norm of a vector u in the Euclid space.

Proof We only need to prove that there exists a continuous mapping p : Rm →
(Rn, ω) if and only if all of these conditions in this theorem hold. By the definition
of a pseudo-space (Rn, ω), since ω is continuous, we know that for any number ǫ > 0,
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‖ω(x) − ω(y)‖ < ǫ for ∀x, y ∈ Rn if and only if there exists a number δ1 > 0 such
that ‖x − y)‖ < δ1.

By definition, a mapping q : Rm → Rn is continuous between Euclid spaces
if and only if for any number δ1 > 0, there exists a number δ2 > 0 such that
‖q(x) − q(y)‖ < δ1 for ∀u, v ∈ Rm with ‖u − v)‖ < δ2.

Combining these assertions, we know that p : Rm → (Rn, ω) is continuous if and
only if for any number ǫ > 0, there is number δ = min{δ1, δ2} such that

‖ω(p(u)) − ω(p(v))‖ < ǫ

for ∀u, v ∈ Rm with ‖u − v)‖ < δ. ♮

Corollary 6.1.1 If m ≥ n + 1, let ω : Rn → Rm−n be a continuous mapping, then
(Rn, ω(p(Rm))) is a pseudo-face of Rm in (Rn, ω) with

p(x1, x2, · · · , xn, xn+1, · · · , xm) = ω(x1, x2, · · · , xn).

Particularly, if m = 3, n = 2 and ω is an angle function, then (Rn, ω(p(Rm))) is a
pseudo-face with p(x1, x2, x3) = ω(x1, x2).

There is a simple relation for a continuous mapping between Euclid spaces and
that of between pseudo-faces established in the next result.

Theorem 6.1.2 Let g : Rm → Rm and p : Rm → (Rn, ω) be continuous mappings.
Then pgp−1 : (Rn, ω) → (Rn, ω) is also a continuous mapping.

Proof Because a composition of continuous mappings is a continuous mapping,
we know that pgp−1 is continuous.

Now for ∀ω(x1, x2, · · · , xn) ∈ (Rn, ω), assume that p(y1, y2, · · · , ym) = ω(x1, x2,
· · · , xn), g(y1, y2, · · · , ym) = (z1, z2, · · · , zm) and p(z1, z2, · · · , zm) = ω(t1, t2, · · · , tn).
Then calculation shows that

pgp−(ω(x1, x2, · · · , xn)) = pg(y1, y2, · · · , ym)

= p(z1, z2, · · · , zm) = ω(t1, t2, · · · , tn) ∈ (Rn, ω).

Whence, pgp−1 is a continuous mapping and pgp−1 : (Rn, ω) → (Rn, ω). ♮

Corollary 6.1.2 Let C(Rm) and C(Rn, ω) be sets of continuous mapping on an
Euclid space Rm and an pseudo-metric space (Rn, ω). If there is a pseudo-space for
Rm in (Rn, ω). Then there is a bijection between C(Rm) and C(Rn, ω).

For a body B in an Euclid space Rm, its shape in a pseudo-face (Rn, ω(p(Rm)))
of Rm in (Rn, ω) is called a pseudo-shape of B. We get results for pseudo-shapes of
a ball in the following.

Theorem 6.1.3 Let B be an (n + 1)-ball of radius R in a space Rn+1, i.e.,
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x2
1 + x2

2 + · · · + x2
n + t2 ≤ R2.

Define a continuous mapping ω : Rn → Rn by

ω(x1, x2, · · · , xn) = ςt(x1, x2, · · · , xn)

for a real number ς and a continuous mapping p : Rn+1 → Rn by

p(x1, x2, · · · , xn, t) = ω(x1, x2, · · · , xn).

Then the pseudo-shape of B in (Rn, ω) is a ball of radius
√

R2−t2

ςt
for any parameter

t,−R ≤ t ≤ R. Particularly, for the case of n = 2 and ς = 1
2
, it is a circle of radius√

R2 − t2 for parameter t and an elliptic ball in R3 as shown in Fig.6.1.

Fig.6.1¸

Proof For any parameter t, an (n + 1)-ball

x2
1 + x2

2 + · · ·+ x2
n + t2 ≤ R2

can be transferred to an n-ball

x2
1 + x2

2 + · · · + x2
n ≤ R2 − t2

of radius
√

R2 − t2. Whence, if we define a continuous mapping on Rn by

ω(x1, x2, · · · , xn) = ςt(x1, x2, · · · , xn)

and

p(x1, x2, · · · , xn, t) = ω(x1, x2, · · · , xn),

then we get an n-ball

x2
1 + x2

2 + · · ·+ x2
n ≤ R2 − t2

ς2t2
,
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of B under p for any parameter t, which is the pseudo-face of B for a parameter t
by definition.

For the case of n = 2 and ς = 1
2
, since its pseudo-face is a circle in an Euclid

plane and −R ≤ t ≤ R, we get an elliptic ball as shown in Fig.6.1. ♮
Similarly, if we define ω(x1, x2, · · · , xn) = 2 6 (

−→
OP, Ot) for a point P = (x1, x2, · · · ,

xn, t), i.e., an angle function, then we can also get a result like Theorem 6.1.2 for
these pseudo-shapes of an (n + 1)-ball.

Theorem 6.1.4 Let B be an (n + 1)-ball of radius R in a space Rn+1, i.e.,

x2
1 + x2

2 + · · · + x2
n + t2 ≤ R2.

Define a continuous mapping ω : Rn → Rn by

ω(x1, x2, · · · , xn) = 2 6 (
−→
OP, Ot)

for a point P on B and a continuous mapping p : Rn+1 → Rn by

p(x1, x2, · · · , xn, t) = ω(x1, x2, · · · , xn).

Then the pseudo-shape of B in (Rn, ω) is a ball of radius
√

R2 − t2 for any parameter
t,−R ≤ t ≤ R. Particularly, for the case of n = 2, it is a circle of radius

√
R2 − t2

for parameter t and a body in R3 with equations

∮

arctan(
t

x
) = 2π and

∮

arctan(
t

y
) = 2π

for curves of its intersection with planes XOT and Y OT .

Proof The proof is similar to the proof of Theorem 6.1.3. For these equations

∮

arctan(
t

x
) = 2π or

∮

arctan(
t

y
) = 2π

of curves on planes XOT or Y OT in the case of n = 2, they are implied by the
geometrical meaning of an angle function. ♮

For an Euclid space Rn, we can get a subspace sequence

R0 ⊃ R1 ⊃ · · · ⊃ Rn−1 ⊃ Rn,

where the dimensional of Ri is n − i for 1 ≤ i ≤ n and Rn is just a point. But we
can not get a sequence reversing the order, i.e., a sequence

R0 ⊂ R1 ⊂ · · · ⊂ Rn−1 ⊂ Rn

in classical space theory. By applying Smarandache multi-spaces, we can really find
this kind of sequence by the next result, which can be used to explain a well-known
model for our cosmos in M-theory.
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Theorem 6.1.5 Let P = (x1, x2, · · · , xn) be a point of Rn. Then there are subspaces
of dimensional s in P for any integer s, 1 ≤ s ≤ n.

Proof Notice that in an Euclid space Rn, there is a basis e1 = (1, 0, 0, · · · , 0),
e2 = (0, 1, 0, · · · , 0), · · ·, ei = (0, · · · , 0, 1, 0, · · · , 0) (every entry is 0 unless the i-th
entry is 1), · · ·, en = (0, 0, · · · , 0, 1) such that

(x1, x2, · · · , xn) = x1e1 + x2e2 + · · · + xnen

for any point (x1, x2, · · · , xn) of Rn. Now we consider a linear space R− = (V, +new, ◦new)
on a field F = {ai, bi, ci, · · · , di; i ≥ 1}, where

V = {x1, x2, · · · , xn}.
Not loss of generality, we assume that x1, x2, · · · , xs are independent, i.e., if there
exist scalars a1, a2, · · · , as such that

a1 ◦new x1 +new a2 ◦new x2 +new · · · +new as ◦new xs = 0,

then a1 = a2 = · · · = 0new and there are scalars bi, ci, · · · , di with 1 ≤ i ≤ s in R−

such that

xs+1 = b1 ◦new x1 +new b2 ◦new x2 +new · · · +new bs ◦new xs;

xs+2 = c1 ◦new x1 +new c2 ◦new x2 +new · · ·+new cs ◦new xs;

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ;

xn = d1 ◦new x1 +new d2 ◦new x2 +new · · ·+new ds ◦new xs.

Therefore, we get a subspace of dimensional s in a point P of Rn. ♮

Corollary 6.1.3 Let P be a point of an Euclid space Rn. Then there is a subspace
sequence

R−
0 ⊂ R−

1 ⊂ · · · ⊂ R−
n−1 ⊂ R−

n

such that R−
n = {P} and the dimensional of the subspace R−

i is n − i, where 1 ≤
i ≤ n.

Proof Applying Theorem 6.1.5 repeatedly, we get the desired sequence. ♮

§6.2. Relativity Theory

In theoretical physics, these spacetimes are used to describe various states of particles
dependent on the time parameter in an Euclid space R3. There are two kinds of

7



spacetimes. An absolute spacetime is an Euclid space R3 with an independent time,
denoted by (x1, x2, x3|t) and a relative spacetime is an Euclid space R4, where time
is the t-axis, seeing also in [30] − [31] for details.

A point in a spacetime is called an event, i.e., represented by

(x1, x2, x3) ∈ R3 and t ∈ R+

in an absolute spacetime in the Newton’s mechanics and

(x1, x2, x3, t) ∈ R4

with time parameter t in a relative space-time used in the Einstein’s relativity theory.
For two events A1 = (x1, x2, x3|t1) and A2 = (y1, y2, y3|t2), the time interval △t

is defined by △t = t1 − t2 and the space interval △(A1, A2) by

△(A1, A2) =
√

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2.

Similarly, for two events B1 = (x1, x2, x3, t1) and B2 = (y1, y2, y3, t2), the space-
time interval △s is defined by

△2s = −c2△t2 + △2(B1, B2),

where c is the speed of the light in vacuum. In Fig.6.2, a spacetime only with two
parameters x, y and the time parameter t is shown.

Fig.6.2¸

The Einstein’s spacetime is an uniform linear space. By the assumption of lin-
earity of a spacetime and invariance of the light speed, it can be shown that the
invariance of the space-time intervals, i.e.,

For two reference systems S1 and S2 with a homogenous relative velocity, there
must be

△s2 = △s′2.
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We can also get the Lorentz transformation of spacetimes or velocities by this
assumption. For two parallel reference systems S1 and S2, if the velocity of S2

relative to S1 is v along x-axis such as shown in Fig.6.3,

Fig.6.3¸

then we know the Lorentz transformation of spacetimes






























x2 = x1−vt1√
1−( v

c
)2

y2 = y1

z2 = z1

t2 =
t1− v

c
x1√

1−( v
c
)2

and the transformation of velocities






























vx2
=

vx1
−v

1− vvx1

c2

vy2
=

vy1

√
1−( v

c
)2

1− vvx1

c2

vz2
=

vz1

√
1−( v

c
)2

1− vvx1

c2

.

In the relative spacetime, the general interval is defined by

ds2 = gµνdxµdxν ,

where gµν = gµν(x
σ, t) is a metric dependent on the space and time. We can also

introduce the invariance of general intervals, i.e.,

ds2 = gµνdxµdxν = g′
µνdx′µdx′ν .

Then the Einstein’s equivalence principle says that

There are no difference for physical effects of the inertial force and the gravitation
in a field small enough.

An immediately consequence of the Einstein’s equivalence principle is the idea
of the geometrization of gravitation, i.e., considering the curvature at each point in
a spacetime to be all effect of gravitation([18]), which is called a gravitational factor
at this point.
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Combining these discussions in Section 6.1 with the Einstein’s idea of the ge-
ometrization of gravitation, we get a result for spacetimes in the theoretical physics.

Theorem 6.2.1 Every spacetime is a pseudo-face in an Euclid pseudo-space, espe-
cially, the Einstein’s space-time is Rn in (R4, ω) for an integer n, n ≥ 4.

By the uniformity of a spacetime, we get an equation by equilibrium of vectors
in a cosmos.

Theorem 6.2.2 By the assumption of uniformity for a spacetime in (R4, ω), there

exists an anti-vector ω−
O of ωO along any orientation

−→
O in R4 such that

ωO + ω−
O = 0.

Proof Since R4 is uniformity, By the principle of equilibrium in a uniform space,
along any orientation

−→
O in R4, there must exists an anti-vector ω−

O of ωO such that

ωO + ω−
O = 0. ♮

Theorem 6.2.2 has many useful applications. For example, let

ωµν = Rµν −
1

2
Rgµν + λgµν ,

then we know that

ω−
µν = −8πGTµν .

in a gravitational field. Whence, we get the Einstein’s equation of gravitational field

Rµν −
1

2
Rgµν + λgµν = −8πGTµν

by the equation in Theorem 6.2.2 which is widely used for our cosmos by physicists.
In fact, there are two assumptions for our cosmos in the following. One is partially
adopted from the Einstein’s, another is just suggested by ours.

Postulate 6.2.1 At the beginning our cosmos is homogenous.

Postulate 6.2.2 Human beings can only survey pseudo-faces of our cosmos by
observations and experiments.

Applying these postulates, the Einstein’s equation of gravitational field and the
cosmological principle, i.e., there are no difference at different points and different
orientations at a point of a cosmos on the metric 104l.y., we can get a standard model
of cosmos, also called the Friedmann cosmos, seeing [18],[26], [28],[30]− [31],[79] and
[95] for details. In this model, its line element ds is

ds2 = −c2dt2 + a2(t)[
dr2

1 − Kr2
+ r2(dθ2 + sin2 θdϕ2)]

10



and cosmoses are classified into three types:

Static Cosmos: da/dt = 0;

Contracting Cosmos: da/dt < 0;

Expanding Cosmos: da/dt > 0.

By the Einstein’s view, our living cosmos is the static cosmos. That is why
he added a cosmological constant λ in his equation of gravitational field. But un-
fortunately, our cosmos is an expanding cosmos found by Hubble in 1929. As a
by-product, the shape of our cosmos described by S.Hawking in [30] − [32] is coin-
cide with these results gotten in Section 6.1.

§6.3 A Multi-Space Model for Cosmoses

6.3.1. What is M-theory

Today, we have know that all matter are made of atoms and sub-atomic particles,
held together by four fundamental forces: gravity, electro-magnetism, strong nuclear
force and weak force. Their features are partially explained by the quantum theory
and the relativity theory. The former is a theory for the microcosm but the later
is for the macrocosm. However, these two theories do not resemble each other in
any way. The quantum theory reduces forces to the exchange of discrete packet
of quanta, while the relativity theory explains the cosmic forces by postulating the
smooth deformation of the fabric spacetime.

As we known, there are two string theories : the E8 × E8 heterotic string, the
SO(32) heterotic string and three superstring theories: the SO(32) Type I string, the
Type IIA and Type IIB in superstring theories. Two physical theories are dual to
each other if they have identical physics after a certain mathematical transformation.
There are T-duality and S-duality in superstring theories defined in the following
table 6.1([15]).

fundamental string dual string
T − duality Radius ↔ 1/(radius) charge ↔ 1/(charge)

Kaluza − Klein ↔ Winding Electric ↔ Magnet
S − duality charge ↔ 1/(charge) Radius ↔ 1/(Radius)

Electric ↔ Magnetic Kaluza − Klein ↔ Winding

table 6.1¸

We already know some profound properties for these spring or superspring the-
ories, such as:

(i) Type IIA and IIB are related by T-duality, as are the two heterotic theories.
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(ii) Type I and heterotic SO(32) are related by S-duality and Type IIB is also
S-dual with itself.

(iii) Type II theories have two supersymmetries in the 10-dimensional sense, but
the rest just one.

(iv) Type I theory is special in that it is based on unoriented open and closed
strings, but the other four are based on oriented closed strings.

(v) The IIA theory is special because it is non-chiral(parity conserving), but the
other four are chiral(parity violating).

(vi) In each of these cases there is an 11th dimension that becomes large at
strong coupling. For substance, in the IIA case the 11th dimension is a circle and
in IIB case it is a line interval, which makes 11-dimensional spacetime display two
10-dimensional boundaries.

(vii) The strong coupling limit of either theory produces an 11-dimensional space-
time.

(viii) · · ·, etc..

The M-theory was established by Witten in 1995 for the unity of those two string
theories and three superstring theories, which postulates that all matter and energy
can be reduced to branes of energy vibrating in an 11 dimensional space. This theory
gives us a compelling explanation of the origin of our cosmos and combines all of
existed string theories by showing those are just special cases of M-theory such as
shown in table 6.2.

M − theory































E8 × E8 heterotic string
SO(32) heterotic string
SO(32) Type I string
Type IIA
Type IIB.

Table 6.2¸

See Fig.6.4 for the M-theory planet in which we can find a relation of M-theory
with these two strings or three superstring theories.
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Fig.6.4¸

As it is widely accepted that our cosmos is in accelerating expansion, i.e., our
cosmos is most possible an accelerating cosmos of expansion, it should satisfies the
following condition

d2a

dt2
> 0.

The Kasner type metric

ds2 = −dt2 + a(t)2d2
R3 + b(t)2ds2(Tm)

solves the 4 + m dimensional vacuum Einstein equations if

a(t) = tµ and b(t) = tν

with
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µ =
3 ±

√

3m(m + 2)

3(m + 3)
, ν =

3 ∓
√

3m(m + 2)

3(m + 3)
.

These solutions in general do not give an accelerating expansion of spacetime of
dimension 4. However, by using the time-shift symmetry

t → t+∞ − t, a(t) = (t+∞ − t)µ,

we see that yields a really accelerating expansion since

da(t)

dt
> 0 and

d2a(t)

dt2
> 0.

According to M-theory, our cosmos started as a perfect 11 dimensional space
with nothing in it. However, this 11 dimensional space was unstable. The original
11 dimensional spacetime finally cracked into two pieces, a 4 and a 7 dimensional
cosmos. The cosmos made the 7 of the 11 dimensions curled into a tiny ball, allowing
the remaining 4 dimensional cosmos to inflate at enormous rates. This origin of our
cosmos implies a multi-space result for our cosmos verified by Theorem 6.1.5.

Theorem 6.3.1 The spacetime of M-theory is a multi-space with a warping R7 at
each point of R4.

Applying Theorem 6.3.1, an example for an accelerating expansion cosmos of 4-
dimensional cosmos from supergravity compactification on hyperbolic spaces is the
Townsend-Wohlfarth type in which the solution is

ds2 = e−mφ(t)(−S6dt2 + S2dx2
3) + r2

Ce2φ(t)ds2
Hm

,

where

φ(t) =
1

m − 1
(ln K(t) − 3λ0t), S2 = K

m
m−1 e−

m+2

m−1
λ0t

and

K(t) =
λ0ζrc

(m − 1) sin[λ0ζ |t + t1|]
with ζ =

√

3 + 6/m. This solution is obtainable from space-like brane solution and

if the proper time ς is defined by dς = S3(t)dt, then the conditions for expansion
and acceleration are dS

dς
> 0 and d2S

dς2
> 0. For example, the expansion factor is 3.04

if m = 7, i.e., a really expanding cosmos.

6.3.2. A pseudo-face model for p-branes

In fact, M-theory contains much more than just strings, which is also implied in
Fig.6.4. It contains both higher and lower dimensional objects, called branes. A
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brane is an object or subspace which can have various spatial dimensions. For any
integer p ≥ 0, a p-brane has length in p dimensions, for example, a 0-brane is just a
point; a 1-brane is a string and a 2-brane is a surface or membrane · · ·.

Two branes and their motion have been shown in Fig.6.5 where (a) is a 1-brane
and (b) is a 2-brane.

Fig.6.5¸

Combining these ideas in the pseudo-spaces theory and in M-theory, a model for
Rm is constructed in the below.

Model 6.3.1 For each m-brane B of a space Rm, let (n1(B), n2(B), · · · , np(B))
be its unit vibrating normal vector along these p directions and q : Rm → R4 a
continuous mapping. Now for ∀P ∈ B, define

ω(q(P )) = (n1(P ), n2(P ), · · · , np(P )).

Then (R4, ω) is a pseudo-face of Rm, particularly, if m = 11, it is a pseudo-face for
the M-theory.

For the case of p = 4, interesting results are obtained by applying results in
Chapters 5.

Theorem 6.3.2 For a sphere-like cosmos B2, there is a continuous mapping q :
B2 → R2 such that its spacetime is a pseudo-plane.

Proof According to the classical geometry, we know that there is a projection
q : B2 → R2 from a 2-ball B2 to an Euclid plane R2, as shown in Fig.6.6.
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Fig.6.6¸

Now for any point u ∈ B2 with an unit vibrating normal vector (x(u), y(u), z(u)),
define

ω(q(u)) = (z(u), t),

where t is the time parameter. Then (R2, ω) is a pseudo-face of (B2, t). ♮
Generally, we can also find pseudo-surfaces as a pseudo-face of sphere-like cos-

moses.

Theorem 6.3.3 For a sphere-like cosmos B2 and a surface S, there is a continuous
mapping q : B2 → S such that its spacetime is a pseudo-surface on S.

Proof According to the classification theorem of surfaces, an surface S can be
combinatorially represented by a 2n-polygon for an integer n, n ≥ 1. If we assume
that each edge of this polygon is at an infinite place, then the projection in Fig.6.6
also enables us to get a continuous mapping q : B2 → S. Thereby we get a pseudo-
face on S for the cosmos B2. ♮

Furthermore, we can construct a combinatorial model for our cosmos by applying
materials in Section 2.5.

Model 6.3.2 For each m-brane B of a space Rm, let (n1(B), n2(B), · · · , np(B))
be its unit vibrating normal vector along these p directions and q : Rm → R4 a
continuous mapping. Now construct a graph phase (G, ω, Λ) by

V (G) = {p − branes q(B)},

E(G) = {(q(B1), q(B2))|there is an action between B1 and B2},

ω(q(B)) = (n1(B), n2(B), · · · , np(B)),

and
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Λ(q(B1), q(B2)) = forces between B1 and B2.

Then we get a graph phase (G, ω, Λ) in R4. Similarly, if m = 11, it is a graph phase
for the M-theory.

If there are only finite p-branes in our cosmos, then Theorems 6.3.2 and 6.3.3
can be restated as follows.

Theorem 6.3.4 For a sphere-like cosmos B2 with finite p-branes and a surface S,
its spacetime is a map geometry on S.

Now we consider the transport of a graph phase (G, ω, Λ) in Rm by applying
results in Sections 2.3 and 2.5.

Theorem 6.3.5 A graph phase (G1, ω1, Λ1) of space Rm is transformable to a graph
phase (G2, ω2, Λ2) of space Rn if and only if G1 is embeddable in Rn and there is a
continuous mapping τ such that ω2 = τ(ω1) and Λ2 = τ(Λ1).

Proof By the definition of transformations, if (G1, ω1, Λ1) is transformable to
(G2, ω2, Λ2), then there must be G1 is embeddable in Rn and there is a continuous
mapping τ such that ω2 = τ(ω1) and Λ2 = τ(Λ1).

Now if G1 is embeddable in Rn and there is a continuous mapping τ such that
ω2 = τ(ω1), Λ2 = τ(Λ1), let ς : G1 → G2 be a continuous mapping from G1 to G2,
then (ς, τ) is continuous and

(ς, τ) : (G1, ω1, Λ1) → (G2, ω2, Λ2).

Therefore (G1, ω1, Λ1) is transformable to (G2, ω2, Λ2). ♮
Theorem 6.3.5 has many interesting consequences as by-products.

Corollary 6.3.1 A graph phase (G1, ω1, Λ1) in Rm is transformable to a planar
graph phase (G2, ω2, Λ2) if and only if G2 is a planar embedding of G1 and there is
a continuous mapping τ such that ω2 = τ(ω1), Λ2 = τ(Λ1) and vice via, a planar
graph phase (G2, ω2, Λ2) is transformable to a graph phase (G1, ω1, Λ1) in Rm if and
only if G1 is an embedding of G2 in Rm and there is a continuous mapping τ−1 such
that ω1 = τ−1(ω2), Λ1 = τ−1(Λ2).

Corollary 6.3.2 For a continuous mapping τ , a graph phase (G1, ω1, Λ1) in Rm is
transformable to a graph phase (G2, τ(ω1), τ(Λ1)) in Rn with m, n ≥ 3.

Proof This result follows immediately from Theorems 2.3.2 and 6.3.5. ♮
This theorem can be also used to explain the problems of travelling between

cosmoses or getting into the heaven or hell for a person. For example, water will
go from a liquid phase to a steam phase by heating and then will go to a liquid
phase by cooling because its phase is transformable between the steam phase and
the liquid phase. For a person on the earth, he can only get into the heaven or hell
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after death because the dimension of the heaven is more than 4 and that of the hell
is less than 4 and there does not exist a transformation for an alive person from
our cosmos to the heaven or hell by the biological structure of his body. Whence,
if black holes are really these tunnels between different cosmoses, the destiny for a
cosmonaut unfortunately fell into a black hole is only the death ([30][32]). Perhaps,
there are really other kind of beings in cosmoses or mankind in the further who can
freely change from one phase in a space Rm to another in Rn with m 6= n, then the
travelling between cosmoses is possible for those beings or mankind in that time.

6.3.3. A multi-space model of cosmos

Until today, many problems in cosmology are puzzling one’s eyes. Comparing with
these vast cosmoses, human beings are very tiny. In spite of this depressed fact, we
can still investigate cosmoses by our deeply thinking. Motivated by this belief, a
multi-space model for cosmoses is constructed in the following.

Model 6.3.3 A mathematical cosmos is constructed by a triple (Ω, ∆, T ), where

Ω =
⋃

i≥0

Ωi, ∆ =
⋃

i≥0

Oi

and T = {ti; i ≥ 0} are respectively called the cosmos, the operation or the time set
with the following conditions hold.

(1) (Ω, ∆) is a Smarandache multi-space dependent on T , i.e., the cosmos
(Ωi, Oi) is dependent on the time parameter ti for any integer i, i ≥ 0.

(2) For any integer i, i ≥ 0, there is a sub-cosmos sequence

(S) : Ωi ⊃ · · · ⊃ Ωi1 ⊃ Ωi0

in the cosmos (Ωi, Oi) and for two sub-cosmoses (Ωij , Oi) and (Ωil, Oi), if Ωij ⊃ Ωil,
then there is a homomorphism ρΩij ,Ωil

: (Ωij , Oi) → (Ωil, Oi) such that

(i) for ∀(Ωi1, Oi), (Ωi2, Oi)(Ωi3, Oi) ∈ (S), if Ωi1 ⊃ Ωi2 ⊃ Ωi3, then

ρΩi1,Ωi3
= ρΩi1,Ωi2

◦ ρΩi2,Ωi3
,

where ◦ denotes the composition operation on homomorphisms.
(ii) for ∀g, h ∈ Ωi, if for any integer i, ρΩ,Ωi

(g) = ρΩ,Ωi
(h), then g = h.

(iii) for ∀i, if there is an fi ∈ Ωi with

ρΩi,Ωi

⋂

Ωj
(fi) = ρΩj ,Ωi

⋂

Ωj
(fj)

for integers i, j, Ωi

⋂

Ωj 6= ∅, then there exists an f ∈ Ω such that ρΩ,Ωi
(f) = fi for

any integer i.
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Notice that this model is a multi-cosmos model. In the Newton’s mechanics, the
Einstein’s relativity theory or the M-theory, there is just one cosmos Ω and these
sub-cosmos sequences are

R3 ⊃ R2 ⊃ R1 ⊃ R0 = {P},

R4 ⊃ R3 ⊃ R2 ⊃ R1 ⊃ R0 = {P}
and

R4 ⊃ R3 ⊃ R2 ⊃ R1 ⊃ R0 = {P} ⊃ R−
7 ⊃ · · · ⊃ R−

1 ⊃ R−
0 = {Q}.

These conditions in (2) are used to ensure that a mathematical cosmos posses
a general structure sheaf of a topological space, for instance if we equip each multi-
space (Ωi, Oi) with an abelian group Gi for an integer i, i ≥ 0, then we get a
structure sheaf on a mathematical cosmos. For general sheaf theory, one can see
in the reference [29] for details. This structure enables that a being in a cosmos of
higher dimension can supervises those in lower dimension.

Motivated by this multi-space model of cosmos, we present a number of conjec-
tures on cosmoses in the following. The first is on the number of cosmoses and their
dimension.

Conjecture 6.3.1 There are infinite many cosmoses and all dimensions of cosmoses
make up an integer interval [1, +∞].

A famous proverbs in Chinese says that seeing is believing but hearing is un-
believing, which is also a dogma in the pragmatism. Today, this view should be
abandoned by a mathematician if he wish to investigate the 21st mathematics. On
the first, we present a conjecture on the problem of travelling between cosmoses.

Conjecture 6.3.2 There must exists a kind of beings who can get from one cosmos
into another. There must exists a kind of being who can goes from a space of higher
dimension into its subspace of lower dimension, especially, on the earth.

Although nearly every physicist acknowledges the existence of black holes, those
holes are really found by mathematical calculation. On the opposite, we present the
next conjecture.

Conjecture 6.3.3 Contrary to black holes, there are also white holes at where no
matters can arrive including the light in our cosmos.

Conjecture 6.3.4 Every black hole is also a white hole in a cosmos.

Our cosmonauts is good luck if Conjecture 6.3.4 is true since they do not need to
worry about attracted by these black holes in our cosmos. Today, a very important
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task in theoretical and experimental physics is looking for dark matters. However,
we do not think this would be success by the multi-model of cosmoses. This is
included in the following conjecture.

Conjecture 6.3.5 One can not find dark matters by experiments since they are in
spatial can not be found by human beings.

Few consideration is on the relation of the dark energy with dark matters. But
we believe there exists a relation between the dark energy and dark matters such as
stated in the next conjecture.

Conjecture 6.3.6 Dark energy is just the effect of dark matters.
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